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Abstract

Regression analysis is one of the most applied statistical techniques. The sta-
tistical inference of a linear regression model with a monotone constraint had been
discussed in early analysis. A natural question arises when it comes to the difference
between the cases of with and without the constraint. Although the comparison be-
tween confidence intervals of linear regression models with and without restriction
for one predictor variable had been considered, this discussion for multiple regres-
sion is required.

In this thesis, I discuss the comparison of the confidence intervals between a

multiple linear regression model with and without constraints.

Keywords: Least favorable distribution, Chi-bar-square distribution, Likelihood

ratio test, Confidence interval.
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Chapter 1

Introduction

Regression analysis has been applied in a large number of areas in statistics.

First we consider the standard linear regression model
Y = X3 +e¢, (1.1)

where Y is an (n x 1) vector, X is an (n X p) fixed or random matrix of rank p, 3 is a
(px 1) vector of unknown parameters, and € is an (n x 1) multivariate normal vector
of errors with mean zero and covariance matrix o2I. In the usual unrestricted case,
(3 is simply assumed to lie in RP. Suppose that R is a (k X p) matrix of constants

with rank k, where k < p. For a given (k x 1) vector r, testing involves

RpB=r against RB>r, RpB#r,

there seems much more needs to be done. (Mukerjee and Tu,1995) discussed the
inference for the mean of the response variable when p=2. In this thesis we consider
three dimensional case in the same format. When it comes to higher dimensional

case, the inference becomes much more complicated.



(Peiris and Bhattacharya, 2016) have obtained point estimators and confidence
intervals for model parameters as well as mean response variable by inverting several
tests in early analysis. By using least favorable distribution, we calculated critical
values of those tests and now we can try to compare confidence intervals of linear

regression models with and without restriction in high dimensional case.

1.1 First Order Model With Two Variables

Consider the standard linear regression model with two predictor variables,

Y = 5o + 51 X1i + B2 X2 + €, (1.2)

where ¢; are iid N(0, o2).
Let BO, Bl and BQ be the unrestricted maximum likelihood estimators of 5y, 5;

and [y respectively. Now consider the constraints,

The following Lemma shows that the restricted MLEs of g; are functions of
corresponding unrestricted MLEs.

Lemma 1.0.1. Restricted MLEs of By, (1, B2 under (1.2)are given by,

By = Bo, By = max{ﬁ},O}, B5 = mam{ﬁ},()}.

Proof. This follows using the constraint (1.3) and monotonicity of the likelihood in

p1 and Ss.



1.2 Inference for 5,, 51 and j;

Let,
S2 =%XZ S% =%XZ and S =X(Yi— fy— fiXy — foXa) [v
where v= n-3. We assume that the entries of matrix X satisty,
YX1;=0,2X9;, =0 and XX;Xy =0. (1.4)

The following well known result shows that sampling distribution of unrestricted
MLEs.
Lemma 1.1.1. Let ,éo, 31 and Bg be the unrestricted MLEs of By, 51 and Py respec-
tively, and S? be as defined above. Then {Bo, Bl, BQ, S?} are mutually independent.
Further, fo ~ N(Bo, 0®/n), B ~ N(By, 0*/S%1), fr ~ N(Bs, 02/S%,) and vS?/o
~ X

Proof. Tt is known that (Kutner, et.al, 2005),

n 21;1 i1 2?21 Ti2
COV(B) = 02 Z?:l i1 Z?:l IZZI Z?:l Ti1T49 where B = (BO; Bla 52)/
D1 Tig D TaTi Do 7

then using (1.3) COV(BO,Bl) =Yy =0, COV(BO,BQ) = Y = 0, and cov(ﬁ],ﬁ})

= ESL’HIZ‘Q = 0. Let,



1 21 x12

1 2o w2
Y = (917?/2,“‘ 7yn)/ and X =

1 Tn1 Tp2

Since,

COV(B,Y —XB) =COV((X' X)'X'Y,Y - X(X' X)"'X'X'Y)
= COV((X' X)'X'Y, (I, - X(X X)'X1X)Y)
= (X' X)"Y D), - X(X' X)X 1X)

= (X' X)X - X' X)X X(X' X)X IX) =0,

. . . 112
so that 3 and Y — X 3 are independent, thus 3 and S?= HY — Xp ‘ /v are indepen-

dent. Therefore { Bo, 31, 32, S?} are mutually independent. Following the properties
of multivariate normal distribution, £y ~ N(Bo, %/n), By ~ N(By, 0%/5%,), Boy ~
N(ﬁg, 0'2/52(2). Further Y; — ﬁo — Blei — ﬂQXQZ‘: €; N(O,O’2), SO VS2/O'2 ~ XV2

where v=n — 3.



Chapter 2

Inference of mean response E(Y)

We consider inferences about the mean function E(Y) = [o+51201+P2x02 at
predictor variable values (z¢1, xo2). Here we have four possible cases based on the

signs of xg; and xgy. First we consider the case with xg; > 0, zgo > 0.

2.1 Test for 60—|-511’01—|—52$02 (when o1 > O, Tooy > O)

We consider the hypotheses,
Go : Bo+ Brror + Pazo2 <1, 51 20,8, >0, Gy:681 20,8 >0, (2.1)

and test Gy vs G1—G for some 1 € R. Using the transformation from 3 to v, where

Yo = V1o, 71 = Sz, 1, Y2 = Sy P2. The constraint (2.1) becomes J—%+%+gﬂ§

z3

_lSzg . Szg _xOIS(L‘Q
1, or, %< by — ¢y — dy7y1, where by =0 O =70 and d; = oS Then,

the hypotheses(2.1) becomes:

Gn:0< v <b —-—cvo—dim1, 0<vm, Gii:m=>0,72>0, (2.2)



and test Go; vs Gi; — Go;. Let K be the closed convex cone bounded by the

hyperplanes {c17o + div1 +72 = 0,71 > 0,72 > 0},{12 = 0,0 <1 < %% < 0},
and {71 = 0,0 < v < —c170,% < 0} and let L:(lc’—i,0,0), then Gy is the shifted
cone K+L. The faces of Gop are {17 + diy1 + 72 = b1,71 = 0,7 > 0}, {12 =
0,c17v0+dimi+72 < b, < bi/at, and {1 = 0,cv0+diyi+72 < b,y < bi/erf(see

Figure 2.1 below).

Yo SN =z - curved
Rejection g

v1

Figure 2.1: The region Gg; and the rejection region

Let 4 denotes the MLE of v under Gy, and ~* denotes the MLE of 4 under
G11. For testing Gy versus G117 — Go1, the LRT rejects Gy for large values of the

test statistic,

Xor = —2logh = (|15 =3II° = |15 =11 /o* = |17 = 7*|* /o, (2.3)

where A is the appropriate LRT statistic. Now we move on to investigate the rejec-

tion region of LRT in (2.3).



We divide the R? space into thirteen disjoint polyhedral cone regions and cal-
culate the test statistic x3, in (2.3) for each region. First consider when 4 €
{(70,71,7%2) : M1 < 0,7 < 0} = S; W S,, where W means disjoint union, Sy =
{7 <bi/ei,m1 < 0,72 <0} and Sp = {79 > b1/c1,71 < 0,72 <0}

Let {¥ : ||7* — 4|l > Cao} be the rejection region for level o test for some
critical value C,. From (2.3), when 4 € Si, |7 — 9l1=/(70,0,0) — (7o, 0, 0)||=0.
When 4 € Sa, [|[7v* — 7||=(70,0,0) — (b1/¢1,0,0)||=5 — b1 /c1 > Cyo and hence the
boundary of the rejection region in Sy is ¥y = by /c; + Cyho.

Consider when 5 € {(70,71,7%2) : 1 < 0,72 > 0} = S35 W S, W S5, where
Ss={71<0,0< v <b—c1v}, Sa = {m < 0,7 > max{b; —c170,v0/c1 —b1/c3}}
and S5 = {11 < 0,0 < 7 < Y/c1 — b1/c?}, where the line ¢;yg + 72 = by (ML
in Figure 2.2) is the intersects of the plane ¢1vy + diy1 + 72 = by and the vy
plane. The line v, = 7y/c; — by/ci (NL in Figure 2.2) is orthogonal to the line
ML. These two hyperplanes divide the space 4 € {(70,71,72) : 11 < 0,72 > 0} into
S3,S4,S5. Now when 4 € Ss, |7 =9 = (70,0,72) — (70,0,72)|| = 0. When
5 e Sq, |17 =A17 = |50, 0,72) — ((Fo, 0, 72) - w)ul||* > C202, where w is a unit vec-
tor along the line ¢;79+ 2 = by on the 77, plane, which means the boundary plane
is parallel and has C,o distance to the hyperplane c¢1y9 + v2 = b;. So the boundary
of the rejection region is ¢1yg + 72 = b1 + \/TC%OQO'. When % € S5, the rejection
region [[7* = 4[* = [[(40,0,92) = (b1/1,0,0)[| = (Fo — bi/c1)? + 4 > CZo?, which

is a partly cylindrical region with axis vy = by /c1, 72 = 0 with radius C,0.



s4
S5

S3 = Gol

|

¥

S2 S1

Figure 2.2: Two dimensional views of the rejection region when ~; = 0

S2 S1

Y0 R S6 = Go1

S8
S7

vl

Figure 2.3: Two dimensional views of the rejection region when v, = 0

We continue to find the rejection region in these cases. When 4 € Se, [|[7* — || =

8



(0. 71,0) = (o, 70, )| = 0. 15 € S, [lv* = A1* = 110, 71, 0) = (o, 71,0) - w)o
> (3’202, where v is a unit vector along the line c;y9 + d1y1 = b1 on the ~yvy; plane,
which means the boundary plane is parallel and has C,o distance to the hyper-
plane ¢y + di1yy = b1. So the boundary of the rejection region is ¢y + dyyy =
by + /& + d&3C,0. When 4 € S, the rejection region ||y — 4||* =

(Y0, 71,0) — (b1/c1,0,0)|| = (Jo—b1/e1)?++1° > C202, which is a partly cylindrical
region with axis 79 = by /¢y, 11 = 0 with radius C,0.

Furthermore, we consider the hyperplane that is orthogonal to the hyperplane
17 + diy1 + 72 = by and contains the line ¢y + 2 = by, given by c1diyo — (1 +
c%)’h + d1y2 = bydy. Also consider the hyperplane that is orthogonal to the hy-
perplane ¢1yy + di1y1 + 72 = by and contains the line ¢1yy + diyy; = by, given by
c1vo + iy — (¢f + di)ye = br.

These two hyperplanes divide the space ¥ € {(70,71,72) : 71 > 0,72 > 0} into

So, S10, 811, S12, S13, where Sy = Go1 = {c170 + diy1 + 72 < 01,0 < 41,0 < 7},

_ crd d bid 1 b _ 1 b
S10={0 <7 < TV T EYe T e 2 % é}, where 72 = 90 — 3.

d bid d b
Su={n2=n-"80<7%<z%zntzizn - zizh S ={0<n <

ﬂ%—%yoﬁw > é%—%} and S12 = {71 > 0,72 > 0} — So ¥ S10 ¥ S11 W Si3.

Cc1



S9=Gol
(hidden under)
AVASNVIAN);

Figure 2.4: Regions Sy — Si3

When 3 € Sy, [|7* = 4ll=[17 = 411=0. 1§ € So. Iy = A" = 17 = (3 - w)ul’
> C20?, where w is a unit vector along the line ¢,y + 72 = b;. Thus the boundary
of the rejection region is the a part of a cylinder whose axis is the line c1vyy + 72 =
b1,71 = 0 and the radius is C,o. Let wy be the angle between ¢y + 72 = by and g
axis, then tanw, = ¢; We find the equation of the boundary of the rejection region
in Syo by rotating this cylinder by an angle ¢; = 7 — wy. Then using the rotation

matrix, we get

Yo — % cosfy 0 sinby| [y — % (o — %) cos 61 + 2 sin 6y
Mmool 0 L0 Mo = gl
Yo —sinf; 0 cosb, Yo —(v0 — %) sin 0 + 7y, cos 04
Then the equation of the rotated cylinder is 77 + (70 — % )costy +asinb;)? = C20”.
Since tanwy = ¢, thus sinf; = sin(§ — w;) = 11+ ~ and cosf; = cos(§ — wy) =
‘1

10



—4a i iq A2 1 _ biy)2
T so the equation is 77 + (myg + \/1+_2(7 2))

boundary of the rejection region in Stg.

= C2%0?, which is the

When 4 € 811, |[v* = A11° = |7 — (5 - v)v||* > C26?, where v is a unit vector
along the line ¢1v9 + d1y1 = b1,72 = 0. Therefore the boundary of the rejection
region is a part of a cylinder whose axis is the line ¢1vg + diy1 = b1,7%2 = 0 and
the radius is C,,o. By using the similar technique rotating the cylinder in Syg, the

022

boundary of the rejection region in Sy is 72 (\/ cxwr il + 7 2+d2 (o—2))?

When 4 € S1a, |7 = Al° = |5 — (5 - w)w]|]* > C20?, where w is a unit vector
along the vector (c1, dq, 1) which is orthogonal to the hyperplane ¢1yy+d;y1+72 = by.
This gives the hyperplane which is parallel and has C,o distance to the hyperplane
c1% + div1 + 2 = by given by ¢170 + diy1 + 72 = b1 + \/m(faa-

When 4 € Sys, [|[7* = 4II° = (o — B)2 4%+ 42" > C2o?, thus the boundary of
the rejection region in Syz is (7o — ) + 79?2 4+ ~2 = C2%0?, which is part of a sphere
with radius C,o and center L.

From the discussion above, we get the rejection region which is the union of the
following nine disjoint regions,

L {fo> 2 +Coo, < 0,72 <0},

2. {(o— 2P +7" 2 Coo®, N <0,0< % < 29— 2

3. {(fo—2) +7° > Cl0% 0 <1 < Dy — b?ﬁz <0},
4. Ao - %)2 + 7+ > Clo?, 0 <Ay < (Z—i’fo - %,0 <72 < é’?o - i—%}?
5. {efo+ 792 = b+ 1+ 3Co0, 1 < 0,9, > 90— %

6‘ {0170 + dl'Yl - bl V Cl —+ d C g, ’}/1 = bldl r)/ < 0}

T AN (gt s (o= 3)) 2 0202,

<~ c1dy o bidp < 1 b1
0_71_ 1+ 270+1+8272 1+027/y2_ c170 %}7

~

8. {732+(\/2+d271+\/2+d2(%—cl)) > C2o?,

5 di o bidy c1 o di o bt
M2 o J0 e 0< 7 < Z+az 0 + S+ N c§+d§}’

11



9. {Cl’fg + dl’}71 +’YA2 - b1 Z CaU\/ 1+ C% + d%,

o Cld1 b1d1 bl
71 = max{0, 5o+ 1+c — e T2 2 max{0, 235 + 02+d271 ZiE

where C,, = C, (w1, ws), w; is the angle between ¢y + 72 = by and v, = 0 on the
YoY2-plane, and wsy is the angle between ¢y 4+ d17, = by and v; = 0 on the ~vyv;-
plane.

To find C,,, we need to find the least favorable distribution of y3, in (2.3),

Pr(LRT <t)= i Pr(LRT <t|¥ € S;)Pr(4 € S;). (2.5)
i=1

It is shown in (Peiris and Bhattacharya, 2016), the least favorable null value of y2,
is attained at L = (%,0,0). When 4 = L, 4 ~ N3(L,0?I), the length and the
direction of the 4 are independent. Then for each region S;, Pr(LRT < t|§ € S;) =
Pr(LRT <t). When i =1,3,6,9,LRT = 0. When i = 2, LRT = (7o — —) /o2,
which is the squared length of the first coordinate, therefore LRT has a x? distribu-
tion. When i = 5,8, LRT = ((Jo — 2)* +7,%)/0* and LRT = ((Jo — 2)* +71%)/0?
respectively, which are both the summation of two squared lengths. These two are
both distributed as x3 distribution. When 4 € Si3, LRT = ((vo — —) + 1% +
Yo%) /o2, which is obviously distributed as a x32 distribution.

When 4 € S4, we consider a new orthogonal coordinate system. New v, and
v2 axis becomes the line 79 — c172 = % and ¢ + 72 = b1 on 1 = 0 hyperplane.
Then LRT = |v* = 4l° = |(50,0,72) — ((50,0,72) - w)ul|* is the squared length
of one coordinate only, which is distributed as x? distribution. Similarly when
4 € Sz, we consider a new orthogonal coordinate system with axis along the line
divo — 11 = % and ¢y + di1y1 = by, 72 = 0 as new 7, and 7, axis respectively.
Thus the LRT given 4 € Sy is also distributed as x? distribution.

When 4 € Sjg, it is obvious that v* = 4 and ¥ is the projection of 4 (also

12



v*) onto the line ¢1y9 + 2 = b, = 0.(ie. 5 = II(¥|Go1)). Thus LRT =
15 — I(5|Go1)||* /o2 = |T1(5|Gi)|I? /0% ~ X3, (Silvapulle and Sen, 2005). There-
fore the LRT has x3 distribution when 4 € S19. When 4 € S11, v* = 4 and 7 is the
projection of 4 (also *) onto the line ¢;7y9 + d1y1 = b1, 72 = 0.(i.e. 7 =T1(¥|Gor))-
So similarly LRT = |TI(5|Gi,)|1> /o* ~ x2_, (Silvapulle and Sen, 2005). Thus the
LRT given 4 € S1; also has 3 distribution.

When 4 € Sy, LET = [§ — 1(3|Gon)|* /0% = [T1(3IGay)I /0% The TI(3]Gon)
is the projection onto the face of Go;. Thus 4 — II(9|Go1) is the projection onto
the line (%,0,0) + u(cy,dy, 1), which is orthogonal to the face of Gy and hence
ITI(5|GE,)||? /o ~ X2 (Silvapulle and Sen, 2005). Therefore the LRT has x? distri-
bution when 4 € Sia.

We get the probabilities Pr(¥ € S;) by using the lemma 2 in (Peiris and
Bhattacharya, 2016) which gives us Pr(¥ € S) = (47)71(0; + 09 + 03 — ), where
01,052,603 are the angles between the faces of S. Thus we can show that Pr(§ €
S1) = Am) N r/2+7/2+7/2 —7) = 1/8, Pr(§¥ € S3) = 1/8, Pr(¥ € S3) =

(47) " (cos™? 11%%), Pr(4 € 84)=1/8, Pr(¥ € Ss) = (47) "1 (7/2 — cos™! \/#_c%)’
Pr(¥ € Sg) = (47) *(cos™ \/ccél_d%), Pr(¥ € S7) =1/8, Pr(§ € Sg) = (4m) " (m/2—
cos™1 \/C‘;i—d%), Pr(¥ € Sp) = (4m) " (cos™! \/ﬁﬂms_l \/ﬁ—ﬂﬂ), Pr(4 €
S10) = (4W)1(Cosl\/%), Pr(5 € Su) = (4m) " (cos™! %) Pr# €
S12) = (47) (cos™! m) and Pr(% € S13) =1 - Y12, Pr(¥ € S;).

b1

Since the least favorable null value of y2, is attained at 4 = L = (2,0,0), the

Cc1

least favorable null distribution of LRT is
3
Pr(LRT <ty =L)=> wPr(x; <t), (2.6)
i=0
and we can classify the probabilities above and get our weights wy, wy, ws, w3, where,

13



_ —1 —1 1 —1 d1 —1 1 —1 dy
wo = (47 CoS + cos + cos” "t ———= + cOos T ———
o= (4m)7( e td? 1+ +d2 V 1+ci+d3 )

w = (A7) (EZ + cosT! ——L—),

2 2 2
wy = (4m) (7 +cos™! SRV i A e E e cos™! L),

+ co
\/1+c3+d? \ 1+c2+d? 1+c? c2+d?

_ _ \/1+c2 _ c24d? _
wsy = (4m) 1 (EF — cosTt XY=L —cos Tt ——L —cos ! ———
1+ci+dg 1+ci+dy v/ 1+ci+dy
—1 d1 -1 dq
—cos F —4—u —cosT T —— ).
v/ 143 +d? (14c2)(c2+d?) )
Since wy+wy = wi+ws = % hold, we can rewrite ws = (47) 1 (Z—cos ! ——4____
0TW2 = W13 = 5 ) 3= (m) 73 (1+¢)(c3+d3)

The lower bound of the confidence interval for the mean response is obtained by

inverting the acceptance region of hypotheses (2.2). We rewrite the rejection region

1Sz

. . Sz 20152 ~ 5 A 5
in terms of ﬂa smce bl = :E022’ 1 = Wﬁv dl = mozszj’ Yo = \/ﬁﬂ& M= SLMﬂla

Vo = Sa, BAQ, then the rejection region can be written as

L {fo>1+ C’aa\/%;,/él < 0,6, <0},
{n(B— 12 + 52,8 = C20%, B < 0,0 < By < %2(By — )},
3. {n(B— 172+ S35 > C20%,0 < By < (B — ). B < 0},
4 {n(Bo— 12+ 25" + 826, > C20?,

0.< B < % (B —1).0 < B < 2 (fo — 1)},

5. {Bo + Powgs > 1 + wg—gz +1C,0, Bi < 0,55 > ns‘?f (Bo — 1)},

6. {BO+BI'T01 Zl—i_wlg_%i—i_%caoygl Z %(BO_Z>7B2 <O}7

o

A2 A
7. {85581+ (Bo+ Bozoz — 1)~ 2 2 C%0?,
ntss,
0<p < B — 1 (50 + Bogy — l),Bz > %(Bo — 1)},
1 (S%Jr%) D)
T2
~ 9 R .
8. {555+ (Bo+ Proon — 1)* - > Co?,
ntg2-

B> 7:%011(60 —1),0< 5y < g—z(éirl)(ﬁr*‘ﬁlxm -0},
52, "

~ A R P -
9. {50 + le01 + B2I02 >+ Cag\/m7
zq zo

£ > max{0, e (Bo+ Paroa—1)}, fa > max{0, %%(Bo-irglxm—l)}},
x] &+l ) M_&_l

.S'z2 n Szl n

14



Thus the lower bound L of the confidence interval for mean response is, L =

1-@rfwwﬁ;if&§Q@§Q

; C2,,02-52, 0, 5 5 2
o a/2 2 - NTqo
2. 50 ) Zf 51 < 07 0< 52 < C'cy/20' +WCOQS
S 51 . S nxOI
3. Bo— if 0< 01 <Cypo m,52<0

C?,,02-52 Bi°-S2 B 5
4.%—¢ B0 <y < Capo

A A 22 oA A 2
5. /80 + 62$02 - C101/20 % %7 Zf Bl < 0762 > Ca/20 :;—2225

= if B> Ca/20\/544:;%752 <0,

7. Bo + 323302 - \/(02/202 ﬁl)( %2 )7

|—

~ A~ 2
6. Bo+ Bizor — Coj20 E— +

. 5 Sé x2
Zf 0 S 61 < Ca/20/\/ 3%1 x?)I (% + %)aﬁ? > Oa/QU

> /30”1%1—\/(02/202 SLO3) (G + ),

15



2.2 Test (2.1) in opposite direction(when zy; > 0,
Too > 0)

We consider the hypotheses,
Hy : Bo+ Biwor + Pazos > u, B1>0,8>0, Hyi:p81>0,08 >0, (2.7)

for some u € R and test Hy against Hy; — Hy. Using the transformation from 3 to

~, the constraint in (2.7) becomes vy, > b} — ¢170 — d17y1, where b} = %, = xiL\Q/E
and d; = % The hypotheses in terms of v can be written as,
31
Hy iy > by —civo—dim, 71 >0,7%>0, Hyp:y>0,7% >0, (2.8)

and test Hy against Hy; — Hoy. The faces of Hyy are {17 + diyi + 72 = b,

Vv

V

0,72 > 0}, {72 =0,c17 + diy1 + 72 > b, 71 > 0}, and {1 = 0,170 + diy1 + 72 >
b,1772 Z 0}

Hol R

(A) R

Figure 2.5: Two dimensional views of the rejection region of the LRT (2.9) when

M =0
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Hol

(B) 1

Figure 2.6: Two dimensional views of the rejection region of the LRT (2.9) when

72 =0

Again, the LRT rejects Hy; for large values of the test statistics and

Xoo = —2logh = (|7 =3I — 15 —v*11) /%, (2.9)

Let {||5 —7)> = | = v*|> > D202} be the rejection region. We obtain the critical

value D, by investigating the least favorable distribution of LRT. It is shown that

in (Peiris and Bhattacharya, 2016), the least favorable null value of LRT is attained

at infinity and

SUD~y ey Pyl o 17 — 7||2_|W _ 7*||2 > D20%} = tﬁolgglﬁoo Prdy/ci—s—cit, cit, 1)

{X%, > D2}, when it is attained, the critical value is D2 = x3 ., Do = Za.
According to discussion in (Peiris and Bhattacharya, 2016), the power of the

test of LRT is quite low at the vertex of the null region. We consider a new test

ignoring the restrictions v; > 0,7, > 0. Now the hypotheses

Moy i y2 =2 by — 1o — diyr, Mgy < by — e1v0 — di, (2.10)
c1yo+d1v1+72—b]

o o is (4 B h s the Teiect]
The rejection region is {% S < —Zy0}, which contains the rejection

17



region of the restricted case so this test is more powerful than the restricted case but
this test also creates a philosophical dilemma that in some of the rejection region
of this case (but not the restricted case). It is possible to reject Hy; though ~+* is
in Hyp;. To solve it, we need to construct a modified rejection region. Following the
argument in (Mukerjee and Tu, 1995) we propose the following as the modified LRT
for hypothesis(2.8).

Figure 2.7: Rejection region of modified LRT of test (2.9)

Here we remove the region that cause dilemma and the rejection region is
L efotAa by, if 5 < YR 4 5,

2. afo+dii <by, if Y1 >0,9 < —/1+3+d3Z,0,

3. o<, if 41 0,9 <min{0,~di71 — 1+ + di Ze0}

4. Ao+ diyy + 2 <V —\/1+ 2+ diZ,0, otherwise.

The § form rejection region,
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X2 X2
l+¢+ﬂ
~ ~ ~ n sg(l s§(2 ~
L {Bo+feXo2 <u, fi < —t—5—"Zao, [ 2>0},
2. {Bo+BiXon <u, B120, fo<——x—"Z,0},
3. {bh<u, /<0, B <min{0, —+—F—"Z.0}},
5 5 5 X2 X2 .
4. {Bo+ L1 Xo1 + f2Xp2 < u— \/% + ST)T ST)(EQZQU, otherwise}.
1 2

Thus we define the upper bound of the confidence interval by inverting the ac-
ceptance region of hypotheses (2.7). So the upper bound U of the confidence interval

can be obtained, U =

1. 504'52%27 if 31 < -

2. Bo+ Brzon, if >0, fy<-—

3. fo, if B <0, Po<minf{0,—

4. Bo + ﬁ}xol + Bﬂog + % + g—gi + ;—gzZa/ga, otherwise

Now we get both the lower bound and the upper bound of the restricted confi-
dence interval of the both positive case.

Then we consider the both negative case, when xy; < 0 and xgy < 0, we have
Go to compare with the Gy, in the both positive case and the rejection region of
the modified LRT is shown below, which is mirror image of the figure of the both
positive case. Same thing happens when we consider the test in opposite direction

and all the formulas can be obtained using the symmetric property.
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ALV

Figure 2.8: Rejection region of the both negative case

2.3 Inference for mixed signs case

1Sz,

We now consider hypothesis when xp; > 0,200 < 0. Let by = s, Oy =

Szq _ 015X,
zo2v/n? 2 2025z,

. Now note that cs, ds are both negative. The hypotheses are,

Goz i 72 > by —co0o —dayi, 7M1 =>20,7%2>0, Giz:y =>0,7%>0. (2.11)

The faces of Gog are{coyy + doy1 + 72 = ba, 71 > 0,72 > 0},{m1 = 0,c70 +
doy1 +72 < ba,y2 > 0} and {2 = 0, cay0 +day1 +92 > by, 71 > 0}. The LRT rejects

Go3 for large values of the test statistics and

Xos = —2logh = (IIF =3I = 17 = 7I)/0*, (2.12)
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Again, We consider the rejection region {||5 — 7[> — |5 — v*||* > E20?}. Ac-
cording to (Peiris and Bhattacharya, 2016), the null least favorable distribution of

LRT is attained at lim (g, 0,b2 — ¢277). Thus,

Y0—>0
sup Pro {3 |5 = 3° =117 =771 = E30®} = lim Prey,0,bs—cxv0){Xgs > Ea}-
YE€Gos R
Further we can derive the null least favorable distribution of LRT, which is
1 6

sup Pr(LRT > c) = (-+
Y€Gos ( ) (4 2m

, 1 6

P(xi > )+ (=—>2)P(x5 > ¢) (2.13)

P(v2 >
)(Xo_c)+ 1 o

1
2
where 6; is the angle between the hyperplanes covo+dovy; +72 = b and ;3 = 0. Since
the least favorable is attained at infinity. The power will be low near the vertex of

Gos. Therefore, we consider a more powerful test that ignores the restriction v > 0

that is,

Mo : 72 2 by —covo —doyi, M =20 and My :vy > 0. (2.14)

LRT rejects My, for large values of
_ N = ~ sk (12
Xoa = (17 =317 =115 =v1%) /0%, (2.15)

where 7 is the MLE under My and +** is the MLE under M;j,. Notice that
%2, = |In** —7||* /o2 In this case, we can divide the space into five disjoint re-
gions and calculate x2, for each region. Then we combine them like the previous
case.

We use the hyperplane covg + 72 = by to divide v < 0 to get S; and S5,
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where S7 = {7y : 711 < 0,07 + 72 > b} and Sy = {y : 11 < 0,70 + 2 <
bo}, S5 = Mope. Now let o9 + 72 = ba, 71 = 0 be the center axis. When
¥ e S, 2= v =7l* /o> = 0. When 4 € S,, for 7, we need to project 4
onto the center axis. Then, ||[v** —=F|> = ||(F0,0,92) — (50,0, 72) - w)ul®, where
u is an unit vector along the center axis. Therefore the rejection region will be
(50, 0,42) — ((4o,0, %) - w)ul|> > F202, which gives a parallel hyperplane to the
hyperplane ¢y + 72 = by with distance F,,o. The boundary of the rejection region
will be vy + 72 = by — /1 + 3 F,0.

We then use the hyperplane cyyp + doy1 + 72 = by as well as the hyperplane
that is orthogonal to cayy + doy1 + 72 = by and contains the center axis (which is
cadayo — (1 4 ¢2)y1 + doye = bady) to divide the 41 > 0 region into three disjoint

regions S3, Sy, Ss.

Sy ={7:0<m < £%0+ %27 —i’f?} Si=A{v:m = %%+ 137 -

PN E = F - gk Ss={y:0<n < - E%— gk
When 7 € Sy, then [y _':YH = |7 - (’?'U)UIIQ, where u is a unit vector

along the center axis. Let ||v** —7|° > F. 2% and this gives a part of cylinder with
radius F,o and its axis is center axis. Thus, by using the technique that rotates

cylinder mentioned before, we can get the boundary of the rejection region in Ss is

v+ ( \/1:_03’72 - \/i (70 — 2))* = FJo?. When 4 € Sy, then v** will be equal
to 4 and 4 will be the projection of 4 onto the hyperplane covg + day; + 72 = ba,
thus ||[v** — F|I” = |4 — (% - w)w]||?, where w is the unit vector that is orthogonal to
the hyperplane oy + doyy + 72 = be. Then the boundary of the rejection region
will be the hyperplane which is parallel and has F,o distance to the hyperplane
cao +day1 +7y2 = ba, that is coyo +dayi +72 = by — mFaU‘ When 7 € Ss,
~** will be equal to 4 and 4 will be equal to 4, thus ||[y** — 7||* = 0.

From the analysis above, we can get the rejection region,
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CQ’}?() +’}?2 S b2 — 1 + C%FQO', ’)?1 < 0,

3+ (e + Ao~ B 2 F20% 0 <1 < B+ i, — 2%,

ot deiit: S by—Foo/1+ 3 +d3, 51 > max{0, 2B+ 1257 — 25}

Again, test (2.14) is a more powerful test than (2.12) but also creates a philo-

sophical dilemma when % is in some regions. Thus a modified rejection region is

needed.

Y2

YO

Figure 2.9: Modified rejection region

From (Peiris and Bhattacharya, 2016), we reject Gz when

L fo>% 41<0,9% < —\/1+3Eq0,

2. (o — (ba)cs + /I + B /caBa0))? + (1 + 2)912 > (1 + ) E20?,
0 S 7\1 S 1+6270 + 1+c2f}/2 - 1-&-62”}/2 < Y 1 +02E g,

3. Yo+ dofi <by— (V1+E+d3—\/1+3B)E,0,

41 > max{0, 1%27 + mﬂa {%22},% < —/1+3E,0,
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4. Cer() + ’}72 <by—+/1+ C%EQO', ’}?1 < 0,’}72 > —\/14+ CgEaO'7

5. 7+ (\/11+ =72 + \/ficz (Yo — ba/c2))* > EZ0?,

0<y < 10165:227 + 1+c27A - fic?za% 1+ c2E,o,
6. covo + dovi + 72 < by — /143 + d5Eq,0,

cods

71 = max{0, Tte 2’)/0+1+82'Y2 1+02} 72>_\/1+02E g,

In terms of the original variables, we reject Gz when

1. Bo>l,51<0,32<m_i2 /‘E02+ EO‘
2. (Bo—1- /z02+ LEa0) + (3 + DSLA° > (B + 1),
0< B < (fo— I B) gt o < 5 e

1? =

Zo
N A~ 2 2
3. botrnf >+ (o441 [ 2+ LE,o,
z9 zq
b1 > (Bo —l+$0252)§—2ﬁ,ﬁ2 < $ 9002 —|— E o,
st tw

n

2
4. 30+930232Zl+\/x°2+ E051<052_z2 %24- 2 Ea0,

5. (Bo — 1+ 370232>2 + (L ) ﬁl > (% + %)E20-27

~ 2
0< b1 < (50—l+900252) 102;752 > x—; §—§2+%Ea0,

sz, ' n

6. o+ zo i+ xafs > 1+ \/ 52 o + S L1E,0,

3 B0 — Yoo 1 5o 1 [3d 1
81> (Ko l+$0252)531 i_‘_;’ﬁz > 203 \/ 52, + ~Ea0,

s3, ' m

Thus the lower bound L of the confidence interval can be obtained, L =

Lo B it <06 <y [5E + LEapo,

2 ~ 2 22
2. Bo— \/( + %)(E2 202 — 52 017) — | S + 2 Eqy 0,

. 22
R xozﬁz+(\/ 02+ +f \/32+}L)Ea/2a R
. Sz | 22
if 0< 51 < Sg 2 ,/82 < x—i? =z —|— EQ/QO'
7(52 + + =)

01
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X 1‘ "E2
3. 50 + 330151 \/ =+ gt —l— \/S% + %)Ea/20_;
@

22
R 3302/82+( 52+01+1\/02+;)Ea/20 R
. Z9 1 2
it b= S I a— B2 < 5205 “ L Eos0,
'xl( 02+ Ol+ )

z01 52

4. Bo +x02B2 — 1/ i) —|— EQ/QO' if ﬁl <0 62 > E %2 + Ea/g()'

~ ~ 22 ~ 2
5. Bo+ Pazor — \/(s§2 )(E2 202 Sz B ),

it 0<B< Q/Q“Q Bo> L[+ 1B, 0,
Fodigs Vi
01
6. Bo+ z0o1P1 + T022 — \/ 52 e N s 1 Eq )20,

. 5 E, /o0 2
if 51 > SZ/ - Bg peue 02 + EQ/QO'
\/Sg%l ﬂ(%ﬁ)

101

2.4 Test in opposite direction of mixed signs case

Again, we follow the similar steps in section 2.2. First consider the hypothesis,

let b, = “5o2.
o2

Hp:0< v <by—cyyo—doyi, >0 and Hiz:y >0,7%>0 (2.16)

Next, state the test statistics. Since the least favorable null value is attained
at infinity thus by ignoring the restriction y; > 0, we can get a more powerful test

and then we modify the test because of philosophical dilemma arises.
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Figure 2.10: Rejection region of modified LRT of test (2.16)

From (Peiris and Bhattacharya, 2016), we reject Hys at level o« when

~ b’ A ~
L Ao > 2, 71 < V6 +d3Ka0,7 <0,
2. (CQ’}?()—(bIQ— Cg + d%KaU))2+(C%+d%)’}?22 Z (C%+d%)K202, ’}?1 < é C% + d%KaO'7
b/

- c2 dy o 2
Osn<gZght+zieh - Za

3. exfot e 2 b+ (V1I+ G +dy — 6+ d3)Kao, 1 < 3/ + d3 Koo,

~ co o dy o b,
V22 gigho T i T e

4o eofo+doy 2 by + /& + A3 Koo, Gi < /65 4 d5K a0, <0,
- 2 dy o AN 2.2 o 1 /2 2
5. Yo+ (\/cgidg% + \/cc;—i-d% (Yo — 2))? > K3o*, M > /&3 + d3K,0,
~ e ~ do .~ bl
0<% <zigh+zian— zia

6. covo+ dovi + 92 > by + /14 3+ d5K,0, Y1 > é G+ d3K,o,
bl

~ c da o P
V22 gigTo T gl T Fa

In terms of the original variables, we reject Hyz when

26



1. ﬂogu,ﬁl<$ %+3’01K0,(32<0
A~ 2 2 2
2. (Bo—u— /5t B Ka0) + (5 + %S 26 > (L4 )KL,
A 2 ~
51<x—i1 %+%Ka070§52<(ﬁo+$0151—u)(5202)ﬁ
1 ;—i_g
~ A 2 2 2
3. Bo+zoafa <u—( %+Z_§:i+%_ %—i—%)KU
b <HV%+ xOlK a0, P2 2 (50+$0151—u)(;§02)ﬁ
n Z‘l
4. o+ <u— zOlKUﬂl_m +x°1K052<O
~ 2 ~ ~
5. 87,5 - (50+$0151—U)22K502,
ats
1
ﬁl_a —‘l'mOlKU,OSBz (504—%151—“)(%2)1 1;6(2)1
+2
Sz

6. BO—F.IOlﬁAl +x02/6A2 <y-— %"‘ ) + .”1302K o,

B> % 14 IOIK w0, B2 > (Bo + w01 f1 — u) 5202);
1,

Thus the upper bound U of the confidence interval can be obtained, U =

L By, if A<t/ 4+ 1K, 00,8 <0,

01

A (E ~ 2
2. Bo— S Ka/QU‘I'\/( - )(K2202 S2 B2 ),

2 A

(\/52 +o3- +,}l\/:,(2)1+71b)Ka/20'+x01ﬁl
Tl

S2

T02

3. Bo+ zo2fa — ( %1 —i— —|— i \/%1 + 1)Ko 20,

2 .
) (\/L-FL-‘:-—\/;%-l-i)Ka/za-&-xmﬁl
. 1 x2 T
it fr <o/ + LK. 20, By > 2 ;
(522+52 +3)

Y

2 A~
if /61 < = —;31 + lKa/QO-,O < 52 <

o1 1 n (m02 +9001 +l)
s2, n

r02

4. Bo+zofr — Sz Ka/20 if > I—(ln %1 —l— Ka/zU By <0,

ot

Bo+$0131+\/(§i+ S)KZ 50 —53252)7

27



. - 2 i~ —_
if > ;—g + 2 Ko/20,0 < 3 < L (SEZQ)Ka/za,

— z01 2 2
””01+””02 41
S SE,

~ ~ ~ 1,2 $2 1
6. fo+zo1fr + To2fe — [ 2~ + 3 + 1 Kay20,
1 z2

. A 22 ~ _
if /81 > L ot + lKoz/Qo-a BZ > ! ( $202)Ka/20-7
o1 le n 2 12 Sacg
01+ 02+1
2, SE,

Now we get both the lower bound and the upper bound of the restricted confi-

dence interval of the mixed signs case.
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Chapter 3

Comparison Between Confidence
Intervals with and without

Restrictions

As discussed in (Peiris and Bhattacharya, 2016), the length of the intervals
strictly depend on the values of xp; and xg;. So a comparison of restricted and
unrestricted confidence intervals is needed to identify which method works better
for a given data set. In this chapter we compare the restricted intervals we obtained
in previous chapters with confidence intervals for the unrestricted general linear

regression model.

3.1 Some properties of the critical values

Before we compare the confidence intervals, we discuss some properties of the

critical values we introduce in previous chapters.
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Lemma 1 If a/2 € (0,a0/2], then
Raf2 < Ca/2 < 22:04/27 (31)

where ¢y is the solution to the equation

1

1 2 2 w 2 2
a2 = EP{XI > Ca/z} + (Z - %)P{)@ > Ca/z}a (3.2)

where o /2 = P{z > @} = 0.2643 and z is the N(0,1) random variable.
Proof We have

Zaf2 < Ca/2,

because we get ¢,/ from the least favorable distribution. Now we are going to prove
that 22,/0 — a2 > 0 for all a/2 in (0, a0/2]. Here this proof is given only for the
case xg1 > 0 and zga < 0. The proof is similar for the other mixed case. Let x and

y be the solutions to the equations

a 1 1
— = —P{d > 2*} + - P{x5 > 2%}, (3.3)
2 2 4
and
% = P{z >y} (3.4)
respectively. Then > o3 because § = P{x} > 2} + (5 — 52)P{x3 > 25}

and y = z,/2. We are going to prove a stronger argument 2y — x > 0, so that we
have 22,5 — ¢aj2 > 0. Let (3.3) and (3.4) equal, since $ P{x] > 2} = P{z > z},

then

2

z

! /x St = tew (3.5)
—— | e zdt=-e"7, .
V2 Jy 4

z _t2 _
\/%fye 2dt:\/%e 7 (x—y) =

Thus there exists a t* such that
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y<t-<u.

Hence

We notice that § = P{z > y} and og/2 = P{z > @} = 0.2643. Thus when § <

G =0.2643, y > @. Therefore, we have 2z4/3 — co2 > 0 when § < 5 = 0.2643.

Lemma 2 The solution x(«) of

1 1 2
Oé/2 = §P{F17n_2 > Z’z} + ZP{FQ’"_z > %} (36)

1s a decreasing function of o for x > 0.

Proof To prove z(«) is decreasing, we take the derivative respect to a.

1 dx

3= g [y e [ a0 = (o) + phanalet/2) g

Therefore, we obtain

d_x S 2 <0
da x[dfin_o(72) + fon_o(22/2)]

where f is the pdf of the F-distribution. Therefore, z(«) is a decreasing function of a.

Lemma 3 The function g(z) = z—2tan \/1‘17—22 tan \/1‘17 18 a strictly increasing
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function of z for z > 0, where

A == An = — 7n - 374,
Ar5)
Proof Consider the derivative ¢'(z),
2Az(1 +t 2 LQ A 3 1+t 2 A _
gy =1y S A A el
(14 22)%2 V1t 22 (1 4 22)3/2

now we are going to prove ¢'(z) is positive on both [0, 1] and [1, c0).

n—2
First consider when z € [0,1]. Since A = A, = %,n = 3,4,---, thus
2

when n = 3, A attains its maximum value 7/4. For 0 < A < 7/4,v/2/2 < cos A < 1,

we have
. A A A
tan A _ Sin 1+22 < \/1+22 < \/1+22 (3 8)
VI+ 22 cos—2A— T cos—2— ~ cosA ’
z 1422 V1422
Thus,

Az Az3 Az
() 2 91(2) = 1+ o + qrapr — maviee

Now we are going to prove g(z) < 0 and minimum value of g;(z) = ¢1(1) > 0,

then we can get ¢'(z) > 0.

1

2 g~ D0+ 25)2 _
gi(Z) = —A A(H_Zz)s/z 4 < 0 and 91(1) =1- ﬁﬁ(coi,q - 3) > 1-

8—\”&(4\/5 —3) > 0. Therefore, when z € [0, 1], ¢’(z2) is positive.

Next, we consider the case when z € [1,00). To prove this, we consider the

function
A
z) = 2ztan —— 3.9
0:(2) — (39)
2zsin —4 =
Note that lim go(z) = 2A. To see this, we investigating lim go(z) = lim —5 =
2—00 2—00 z—o00 COS Vira2
2sin —4 2sin —2A 2cos —24
lim —Y**=% by using the L’Hopital’s rule, lim —*2 = lim ——+=2 (—2) A(1+
Z—00 z Z—00 z Z—00 T2
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22)7%2 = lim 22°A(1 + 22)7%/2 = 24,
Z—00
()
Furthermore, g¢4(2) = 2tan% — 2A(1+§ﬁ — 2A22(1+Z—23§722. Since 0 <
14cos 24

A< %,\/514 < ig and cos 2T 5 = f ‘[ thus we have (3082\%5 = 2 > 5/8.
A2 8A2

2 A 1+z2 __ 5
Thus, tan Tae S =1

Furthermore, the Taylor expansion of tanz = z + g2® + Z2° - -+, thus tanz >

s A A3
x—i—lei for 0 <z < % and we have, 2 tan T _2A(1+ 5373 > 2(\/1+Z2 +%(1+22)3/2)_
94 244243

(1+z2)3/2 (1+z2)3/2'

Hence, we have

24+ 2A3 —2A2° 5(1+ ey >2A—|—§A3—%A3

/
%(2) 2 (1 + 2232 N (=) R

Therefore, go(2) is increasing and 24 > 2z tan \/%. Thus, when z — o0, ¢'(2)

attains lower bound that is, ¢’'(z) > (1 —24) + A liZ;gZS 3.

Now we only need to prove the lower bound is positive for z > 1, which is true when

we take the derivative. Therefore, g(z) is a increasing function for z > 0.

Lemma 4 If o/2 € (0,0.218], then
tn—Z,a/Q < Cn—2,a/2,w < 2tn—2,o¢/27 (310)

where Cp_9.0/2.0 M (3.11) is the solution to the equation

1

1 w
Oé/2 = §P{F17n_2 > Cn—2,a/2,w} + (Z_l — —)P{Fgm_g > Ci—Q,a/2,w/2}' (311)

27

Proof We have

tn—2,o¢/2 S Cn—2,a/2,w7
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We now prove

2ta/2 — Ca/2 > O, (312)

Again, we follow the steps in the proof of lemma 1, let z(«r) and y(«) be the solutions

to
1 0y 1 z?
/2= SP{Fin0> 2"} + S P{Fyn0 > T, (3.13)
and
a/2=P{T,-» >y} (3.14)
We have,
22 (L) 2 1 1
P{Fy, o> "=} = 2 dt = )
Wonme > 9= J ot w2 as e T iy Zyeon
and

1
5P{FM_2 > 1%} = P{T,,_y > 7},

Let (3.13) and (3.14) equal, we have

(24 x 2 . 1 1

Ply<T, <z} = 2 / (1+ )Tz dt == - ,

(n —2)7l(%52) Jy n—2 4(1+ 2)m-2)2
By mean value theorem, there exists a t* € [y, 2] such that

Izt /x L1 1
(n—2)aT(552) (1 4+ L) =92y, (14 E5) " A (14 Z5) 2/

which is equivalent to

/ac/ n—2 du _ (1 _}_Tf 5 (n—3)/2

yvims LHu? (14 )92
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2
t* \(n—3)/2
Let B(z) = AUTa)

—n2——— then h
(1+n%22)(n73>/2’t en we have

Y \/%—tanB(x)
vn—2 1+ \/:TQtanB(xf

Then
_x—+/n—2tan B(z)
YTy L tan B(x) ’
where
A
1+ 25
Therefore,
r —2y/n — 2tan B(x) — \/z%tanB(x)
% — 1 = =
o 1+ - tan B(x) ’
Let
3(2) x 91 A x? ; A
g(x) = — 2tan - an :
vn —2 a2 n—2 22
Vit Vit
which is equivalent to g(z) = z — 2tan 11Z2 — 2% tan \/ﬁ7, where z = —.
Then 2y — x > — 9(z) when g(e) attains lower bound. Since g(z) is
m+n—2 tan B(x)

increasing and z(«) is a decreasing function of «. From the table that is given in
(Tu, 1995), we know when «/2 € (0,0.218],¢(z) = g(z) > 0 and thus 2y —z > 0.

Therefore, we get the proof for lemma 4.
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3.2 Comparison between confidence intervals with
or without restrictions

As we mentioned before, the comparison is based on lemmas discussed in the
previous section. Therefore, we only do the comparison in mixed signs cases.

Suppose g > 0,292 < 0, when we combine the U and L of mixed signs re-
stricted case, we may find that it is very complicated because of the uncertainty of
ro1 and xge. Therefore, we can not give a specific formula to discuss which confi-
dence interval is better, however, when we are given these two values, we can identify
which condition ﬁAl, 52 are in so that we can get our restricted confidence interval
and compare it with the unrestricted confidence interval. For now, we can only
compare those intervals when B is in some certain regions.

Though we cannot get the formulas easily, it does not mean the way we do

the comparison does not work. For example, when o is unknown, we replace o

22
) z02B2-+( \/02+ -5 +\/02+711)Ea/23 R
with s and when ; > , Ba < z—(l)ﬂ /5 %2 —|— 1Ea/23 and

wl I02 01
mm( + +)

m—}n ;@ + %Ka /25 is relatively small, then we can conclude that our U will be ﬁo +

To1B1 — 52 LK, /2s and our L is Bo+zo1 01— ( x” + %1 —|— i_ \/%2 + 1) Eqas.
Note that K,/» = E, /2, we use (/o instead. The difference between restricted con-

fidence interval and unrestricted one will be D = 50 + $01B1 — 1/ o —|— Ca/QS —

2) 5 x2 x2 x2 x2
(Bo +xo1B1 — (y/ 5> + 5 L L S o 2)Cay28) = 2tajay f 5 gt 15 =
%2 1 @y 1 f‘gl Ho — 9 Too 4 Ty o4 1 N
( T s n 52, Ta sz, T 7)Cay28 a/25\[ 52 T gz Ty NOW we

apply lemma 4, since Cyn/o < 2t4)2, then D is negative, our restricted confidence

interval is better. We are still working on this part and will show the other compar-

isons in the future work.
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