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Abstract

Regression analysis is one of the most applied statistical techniques. The sta-

tistical inference of a linear regression model with a monotone constraint had been

discussed in early analysis. A natural question arises when it comes to the difference

between the cases of with and without the constraint. Although the comparison be-

tween confidence intervals of linear regression models with and without restriction

for one predictor variable had been considered, this discussion for multiple regres-

sion is required.

In this thesis, I discuss the comparison of the confidence intervals between a

multiple linear regression model with and without constraints.

Keywords: Least favorable distribution, Chi-bar-square distribution, Likelihood

ratio test, Confidence interval.
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Chapter 1

Introduction

Regression analysis has been applied in a large number of areas in statistics.

First we consider the standard linear regression model

Y = Xβ + ε, (1.1)

where Y is an (n×1) vector, X is an (n×p) fixed or random matrix of rank p, β is a

(p×1) vector of unknown parameters, and ε is an (n×1) multivariate normal vector

of errors with mean zero and covariance matrix σ2I. In the usual unrestricted case,

β is simply assumed to lie in Rp. Suppose that R is a (k × p) matrix of constants

with rank k, where k ≤ p. For a given (k × 1) vector r, testing involves

Rβ=r against Rβ≥r, Rβ 6=r,

there seems much more needs to be done. (Mukerjee and Tu,1995) discussed the

inference for the mean of the response variable when p=2. In this thesis we consider

three dimensional case in the same format. When it comes to higher dimensional

case, the inference becomes much more complicated.
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(Peiris and Bhattacharya, 2016) have obtained point estimators and confidence

intervals for model parameters as well as mean response variable by inverting several

tests in early analysis. By using least favorable distribution, we calculated critical

values of those tests and now we can try to compare confidence intervals of linear

regression models with and without restriction in high dimensional case.

1.1 First Order Model With Two Variables

Consider the standard linear regression model with two predictor variables,

Yi = β0 + β1X1i + β2X2i + εi, (1.2)

where εi are iid N(0, σ2).

Let β̂0, β̂1 and β̂2 be the unrestricted maximum likelihood estimators of β0, β1

and β2 respectively. Now consider the constraints,

β1 ≥ 0 and β2 ≥ 0. (1.3)

The following Lemma shows that the restricted MLEs of βi are functions of

corresponding unrestricted MLEs.

Lemma 1.0.1. Restricted MLEs of β0, β1, β2 under (1.2)are given by,

β∗0 = β̂0, β∗1 = max{β̂1, 0}, β∗2 = max{β̂2, 0}.

Proof. This follows using the constraint (1.3) and monotonicity of the likelihood in

β1 and β2.
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1.2 Inference for β0, β1 and β2

Let,

S2
X1

= ΣX2
1i, S

2
X2

= ΣX2
2i and S2 = Σ(Yi − β̂0 − β̂1X1i − β̂2X2i)

2
/ν

where ν= n-3. We assume that the entries of matrix X satisfy,

ΣX1i = 0,ΣX2i = 0 and ΣX1iX2i = 0. (1.4)

The following well known result shows that sampling distribution of unrestricted

MLEs.

Lemma 1.1.1. Let β̂0, β̂1 and β̂2 be the unrestricted MLEs of β0, β1 and β2 respec-

tively, and S2 be as defined above. Then {β̂0, β̂1, β̂2, S2} are mutually independent.

Further, β̂0 ∼ N(β0, σ2/n), β̂1 ∼ N(β1, σ2/S2
X1), β̂2 ∼ N(β2, σ2/S2

X2) and νS2/σ2

∼ χν
2.

Proof. It is known that (Kutner, et.al, 2005),

COV (β̂) = σ2


n

∑n
i=1 xi1

∑n
i=1 xi2∑n

i=1 xi1
∑n

i=1 x
2
i1

∑n
i=1 xi1xi2∑n

i=1 xi2
∑n

i=1 xi1xi2
∑n

i=1 x
2
i2

 where β̂ = (β̂0, β̂1, β̂2)′

then using (1.3) cov(β̂0,β̂1) = Σxi1 = 0, cov(β̂0,β̂2) = Σxi2 = 0, and cov(β̂1,β̂2)

= Σxi1xi2 = 0. Let,
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Y = (y1, y2, · · · , yn)′ and X =



1 x11 x12

1 x21 x22

...
...

...

1 xn1 xn2


.

Since,

COV (β̂, Y −Xβ̂) = COV ((X
′
X)−1X

′
Y, Y −X(X

′
X)−1X−1X

′
Y )

= COV ((X
′
X)−1X

′
Y, (In −X(X

′
X)−1X−1X

′
)Y )

= (X
′
X)−1(σ2I)(In −X(X

′
X)−1X−1X

′
)

= σ2((X
′
X)−1X

′ −X ′X)−1X
′
X(X

′
X)−1X−1X

′
) = 0,

so that β̂ and Y −Xβ̂ are independent, thus β̂ and S2=
∥∥∥Y −Xβ̂∥∥∥2

/ν are indepen-

dent. Therefore {β̂0, β̂1, β̂2, S2} are mutually independent. Following the properties

of multivariate normal distribution, β̂0 ∼ N(β0, σ2/n), β̂1 ∼ N(β1, σ2/S2
X1), β̂2 ∼

N(β2, σ2/S2
X2). Further yi − β0 − β1X1i − β2X2i= εi ∼ N(0, σ2), so νS2/σ2 ∼ χν

2

where ν= n− 3.
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Chapter 2

Inference of mean response E(Y )

We consider inferences about the mean function E(Y) = β0+β1x01+β2x02 at

predictor variable values (x01, x02). Here we have four possible cases based on the

signs of x01 and x02. First we consider the case with x01 > 0, x02 > 0.

2.1 Test for β0+β1x01+β2x02 (when x01 > 0, x02 > 0)

We consider the hypotheses,

G0 : β0 + β1x01 + β2x02 ≤ l, β1 ≥ 0, β2 ≥ 0, G1 : β1 ≥ 0, β2 ≥ 0, (2.1)

and test G0 vs G1−G0 for some l ∈ R. Using the transformation from β to γ, where

γ0 =
√
nβ0, γ1 = Sx1β1, γ2 = Sx2β2. The constraint (2.1) becomes γ0√

n
+γ1x01

Sx1
+γ2x02

Sx2
≤

l, or, γ2≤ b1 − c1γ0 − d1γ1, where b1 =
lSx2
x02

, c1 =
Sx2
x02
√
n

and d1 =
x01Sx2
x02Sx1

. Then,

the hypotheses(2.1) becomes:

G01 : 0 ≤ γ2 ≤ b1 − c1γ0 − d1γ1, 0 ≤ γ1, G11 : γ1 ≥ 0, γ2 ≥ 0, (2.2)
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and test G01 vs G11 − G01. Let K be the closed convex cone bounded by the

hyperplanes {c1γ0 + d1γ1 + γ2 = 0, γ1 ≥ 0, γ2 ≥ 0},{γ2 = 0, 0 ≤ γ1 ≤ −c1γ0
d1

, γ0 ≤ 0},

and {γ1 = 0, 0 ≤ γ2 ≤ −c1γ0, γ0 ≤ 0} and let L=( b1
c1
, 0, 0), then G01 is the shifted

cone K+L. The faces of G01 are {c1γ0 + d1γ1 + γ2 = b1, γ1 ≥ 0, γ2 ≥ 0}, {γ2 =

0, c1γ0+d1γ1+γ2 ≤ b1, γ0 ≤ b1/c1}, and {γ1 = 0, c1γ0+d1γ1+γ2 ≤ b1, γ0 ≤ b1/c1}(see

Figure 2.1 below).

γ1

Go1curved

Rejection Region
curvedγο

γ2

Figure 2.1: The region G01 and the rejection region

Let γ̂ denotes the MLE of γ under G01 and γ∗ denotes the MLE of γ under

G11. For testing G01 versus G11−G01, the LRT rejects G01 for large values of the

test statistic,

χ̄2
01 ≡ −2logΛ = (‖γ̂ − γ̄‖2 − ‖γ̂ − γ∗‖2)/σ2 = ‖γ̄ − γ∗‖2 /σ2, (2.3)

where Λ is the appropriate LRT statistic. Now we move on to investigate the rejec-

tion region of LRT in (2.3).
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We divide the R3 space into thirteen disjoint polyhedral cone regions and cal-

culate the test statistic χ̂2
01 in (2.3) for each region. First consider when γ̂ ∈

{(γ0, γ1, γ2) : γ1 < 0, γ2 < 0} = S1 ] S2, where ] means disjoint union, S1 =

{γ0 < b1/c1, γ1 < 0, γ2 < 0} and S2 = {γ0 ≥ b1/c1, γ1 < 0, γ2 < 0}.

Let {γ̂ : ‖γ∗ − γ̂‖ > Cασ} be the rejection region for level α test for some

critical value Cα. From (2.3), when γ̂ ∈ S1, ‖γ∗ − γ̂‖=‖(γ̂0, 0, 0)− (γ̂0, 0, 0)‖=0.

When γ̂ ∈ S2, ‖γ∗ − γ̂‖=‖(γ̂0, 0, 0)− (b1/c1, 0, 0)‖=γ̂0− b1/c1 ≥ Cασ and hence the

boundary of the rejection region in S2 is γ̂0 = b1/c1 + Cασ.

Consider when γ̂ ∈ {(γ0, γ1, γ2) : γ1 < 0, γ2 ≥ 0} = S3 ] S4 ] S5, where

S3 = {γ1 < 0, 0 ≤ γ2 < b1−c1γ0}, S4 = {γ1 < 0, γ2 ≥ max{b1−c1γ0, γ0/c1−b1/c
2
1}}

and S5 = {γ1 < 0, 0 ≤ γ2 < γ0/c1 − b1/c
2
1}, where the line c1γ0 + γ2 = b1 (ML

in Figure 2.2) is the intersects of the plane c1γ0 + d1γ1 + γ2 = b1 and the γ0γ2

plane. The line γ2 = γ0/c1 − b1/c
2
1 (NL in Figure 2.2) is orthogonal to the line

ML. These two hyperplanes divide the space γ̂ ∈ {(γ0, γ1, γ2) : γ1 < 0, γ2 ≥ 0} into

S3,S4,S5. Now when γ̂ ∈ S3, ‖γ∗ − γ̂‖ = ‖(γ̂0, 0, γ̂2)− (γ̂0, 0, γ̂2)‖ = 0. When

γ̂ ∈ S4, ‖γ∗ − γ̂‖2 = ‖(γ̂0, 0, γ̂2)− ((γ̂0, 0, γ̂2) · u)u‖2 ≥ C2
ασ

2, where u is a unit vec-

tor along the line c1γ0 +γ2 = b1 on the γ0γ2 plane, which means the boundary plane

is parallel and has Cασ distance to the hyperplane c1γ0 + γ2 = b1. So the boundary

of the rejection region is c1γ0 + γ2 = b1 +
√

1 + c2
1Cασ. When γ̂ ∈ S5, the rejection

region ‖γ∗ − γ̂‖2 = ‖(γ̂0, 0, γ̂2)− (b1/c1, 0, 0)‖ = (γ̂0 − b1/c1)2 + γ̂2
2 ≥ C2

ασ
2, which

is a partly cylindrical region with axis γ0 = b1/c1, γ2 = 0 with radius Cασ.
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R

R

S2 S1

D

C

N

A

B

M

L

γ2

γ0

S3 = Go1

S4
S5

Figure 2.2: Two dimensional views of the rejection region when γ1 = 0

R

R

R

S2 S1

G

C

Y

E

F

X

L

γ1

γ0

S8
S7

S6 = Go1

Figure 2.3: Two dimensional views of the rejection region when γ2 = 0

We continue to find the rejection region in these cases. When γ̂ ∈ S6, ‖γ∗ − γ̂‖ =
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‖(γ̂0, γ̂1, 0)− (γ̂0, γ̂1, 0)‖ = 0. If γ̂ ∈ S7, ‖γ∗ − γ̂‖2 = ‖(γ̂0, γ̂1, 0)− ((γ̂0, γ̂1, 0) · v)v‖2

≥ C2
ασ

2, where v is a unit vector along the line c1γ0 + d1γ1 = b1 on the γ0γ1 plane,

which means the boundary plane is parallel and has Cασ distance to the hyper-

plane c1γ0 + d1γ1 = b1. So the boundary of the rejection region is c1γ0 + d1γ1 =

b1 +
√
c2

1 + d2
1Cασ. When γ̂ ∈ S8, the rejection region ‖γ∗ − γ̂‖2 =

‖(γ̂0, γ̂1, 0)− (b1/c1, 0, 0)‖ = (γ̂0−b1/c1)2 + γ̂1
2 ≥ C2

ασ
2, which is a partly cylindrical

region with axis γ0 = b1/c1, γ1 = 0 with radius Cασ.

Furthermore, we consider the hyperplane that is orthogonal to the hyperplane

c1γ0 + d1γ1 + γ2 = b1 and contains the line c1γ0 + γ2 = b1, given by c1d1γ0 − (1 +

c2
1)γ1 + d1γ2 = b1d1. Also consider the hyperplane that is orthogonal to the hy-

perplane c1γ0 + d1γ1 + γ2 = b1 and contains the line c1γ0 + d1γ1 = b1, given by

c1γ0 + d1γ1 − (c2
1 + d2

1)γ2 = b1.

These two hyperplanes divide the space γ̂ ∈ {(γ0, γ1, γ2) : γ1 ≥ 0, γ2 ≥ 0} into

S9,S10,S11,S12,S13, where S9 = G01 = {c1γ0 + d1γ1 + γ2 ≤ b1, 0 ≤ γ1, 0 ≤ γ2},

S10 = {0 ≤ γ1 ≤ c1d1
1+c21

γ0 + d1
1+c21

γ2 − b1d1
1+c21

, γ2 ≥ 1
c1
γ0 − b1

c21
}, where γ2 = 1

c1
γ0 − b1

c21
.

S11 = {γ1 ≥ d1
c1
γ0 − b1d1

c21
, 0 ≤ γ2 ≤ c1

c21+d21
γ0 + d1

c21+d21
γ1 − b1

c21+d21
}, S10 = {0 ≤ γ1 ≤

d1
c1
γ0− b1d1

c21
, 0 ≤ γ2 ≥ 1

c1
γ0− b1

c21
} and S12 = {γ1 ≥ 0, γ2 ≥ 0}−S9 ]S10 ]S11 ]S13.
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S7S8S8
γ1S11γο S13

S12
S10

(hidden under)γ2
S9=Go1

Figure 2.4: Regions S9 − S13

When γ̂ ∈ S9, ‖γ∗ − γ̂‖=‖γ̂ − γ̂‖=0. If γ̂ ∈ S10, ‖γ∗ − γ̂‖2 = ‖γ̂ − (γ̂ · u)u‖2

≥ C2
ασ

2, where u is a unit vector along the line c1γ0 + γ2 = b1. Thus the boundary

of the rejection region is the a part of a cylinder whose axis is the line c1γ0 + γ2 =

b1, γ1 = 0 and the radius is Cασ. Let ω2 be the angle between c1γ0 + γ2 = b1 and γ0

axis, then tanω2 = c1 We find the equation of the boundary of the rejection region

in S10 by rotating this cylinder by an angle θ1 = π
2
− ω2. Then using the rotation

matrix, we get


γ0 − b1

c1

γ1

γ2

→


cos θ1 0 sin θ1

0 1 0

− sin θ1 0 cos θ1



γ0 − b1

c1

γ1

γ2

 =


(γ0 − b1

c1
) cos θ1 + γ2 sin θ1

γ1

−(γ0 − b1
c1

) sin θ1 + γ2 cos θ1

 .
(2.4)

Then the equation of the rotated cylinder is γ2
1 +((γ0− b1

c1
)cosθ1 +γ2sinθ1)2 = C2

ασ
2.

Since tanω2 = c1, thus sin θ1 = sin(π
2
− ω2) = 1√

1+c21
and cos θ1 = cos(π

2
− ω2) =

10



c1√
1+c21

, so the equation is γ2
1 + ( 1√

1+c21
γ2 + c1√

1+c21
(γ0 − b1

c1
))2 = C2

ασ
2, which is the

boundary of the rejection region in S10.

When γ̂ ∈ S11, ‖γ∗ − γ̂‖2 = ‖γ̂ − (γ̂ · v)v‖2 ≥ C2
ασ

2, where v is a unit vector

along the line c1γ0 + d1γ1 = b1, γ2 = 0. Therefore the boundary of the rejection

region is a part of a cylinder whose axis is the line c1γ0 + d1γ1 = b1, γ2 = 0 and

the radius is Cασ. By using the similar technique rotating the cylinder in S10, the

boundary of the rejection region in S11 is γ2
2 +( d1√

c21+d21
γ1+ c1√

c21+d21
(γ0− b1

c1
))2 = C2

ασ
2.

When γ̂ ∈ S12, ‖γ∗ − γ̂‖2 = ‖γ̂ − (γ̂ ·w)w‖2 ≥ C2
ασ

2, where w is a unit vector

along the vector (c1, d1, 1) which is orthogonal to the hyperplane c1γ0+d1γ1+γ2 = b1.

This gives the hyperplane which is parallel and has Cασ distance to the hyperplane

c1γ0 + d1γ1 + γ2 = b1 given by c1γ0 + d1γ1 + γ2 = b1 +
√

1 + c2
1 + d2

1Cασ.

When γ̂ ∈ S13, ‖γ∗ − γ̂‖2 = (γ̂0− b1
c1

)2 + γ̂1
2 + γ̂2

2 ≥ C2
ασ

2, thus the boundary of

the rejection region in S13 is (γ0 − b1
c1

)2 + γ2
1 + γ2

2 = C2
ασ

2, which is part of a sphere

with radius Cασ and center L.

From the discussion above, we get the rejection region which is the union of the

following nine disjoint regions,

1. {γ̂0 ≥ b1
c1

+ Cασ, γ̂1 ≤ 0, γ̂2 ≤ 0},

2. {(γ̂0 − b1
c1

)2 + γ̂2
2 ≥ C2

ασ
2, γ̂1 < 0, 0 ≤ γ̂2 <

1
c1
γ̂0 − b1

c21
},

3. {(γ̂0 − b1
c1

)2 + γ̂1
2 ≥ C2

ασ
2, 0 ≤ γ̂1 <

d1
c1
γ̂0 − b1d1

c21
, γ̂2 < 0},

4. {(γ̂0 − b1
c1

)2 + γ̂1
2 + γ̂2

2 ≥ C2
ασ

2, 0 ≤ γ̂1 <
d1
c1
γ̂0 − b1d1

c21
, 0 ≤ γ̂2 <

1
c1
γ̂0 − b1

c21
},

5. {c1γ̂0 + γ̂2 ≥ b1 +
√

1 + c2
1Cασ, γ̂1 < 0, γ̂2 ≥ 1

c1
γ̂0 − b1

c21
},

6. {c1γ̂0 + d1γ̂1 − b1 ≥
√
c2

1 + d2
1Cασ, γ̂1 ≥ d1

c1
γ̂0 − b1d1

c21
, γ̂2 < 0},

7. {γ̂1
2 + ( 1√

1+c21
γ̂2 + c1√

1+c21
(γ̂0 − b1

c1
))2 ≥ C2

ασ
2,

0 ≤ γ̂1 ≤ c1d1
1+c21

γ̂0 + d1
1+c21

γ̂2 − b1d1
1+c21

, γ̂2 ≥ 1
c1
γ̂0 − b1

c21
},

8. {γ̂2
2 + ( d1√

c21+d21
γ̂1 + c1√

c21+d21
(γ̂0 − b1

c1
))2 ≥ C2

ασ
2,

γ̂1 ≥ d1
c1
γ̂0 − b1d1

c21
, 0 ≤ γ̂2 ≤ c1

c21+d21
γ̂0 + d1

c21+d21
γ̂1 − b1

c21+d21
},
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9. {c1γ̂0 + d1γ̂1 + γ̂2 − b1 ≥ Cασ
√

1 + c2
1 + d2

1,

γ̂1 ≥ max{0, c1d1
1+c21

γ̂0 + d1
1+c21
− b1d1

1+c21
}, γ̂2 ≥ max{0, c1

c21+d21
γ̂0 + d1

c21+d21
γ̂1− b1

c21+d21
}},

where Cα = Cα(ω1, ω2), ω1 is the angle between c1γ0 + γ2 = b1 and γ2 = 0 on the

γ0γ2-plane, and ω2 is the angle between c1γ0 + d1γ1 = b1 and γ1 = 0 on the γ0γ1-

plane.

To find Cα, we need to find the least favorable distribution of χ̄2
01 in (2.3),

Pr(LRT ≤ t) =
13∑
i=1

Pr(LRT ≤ t|γ̂ ∈ Si)Pr(γ̂ ∈ Si). (2.5)

It is shown in (Peiris and Bhattacharya, 2016), the least favorable null value of χ̄2
01

is attained at L = ( b1
c1
, 0, 0). When γ̂ = L, γ̂ ∼ N3(L, σ2I), the length and the

direction of the γ̂ are independent. Then for each region Si, Pr(LRT ≤ t|γ̂ ∈ Si) =

Pr(LRT ≤ t). When i = 1, 3, 6, 9, LRT = 0. When i = 2, LRT = (γ̂0 − b1
c1

)2/σ2,

which is the squared length of the first coordinate, therefore LRT has a χ2
1 distribu-

tion. When i = 5, 8, LRT = ((γ̂0 − b1
c1

)2 + γ̂2
2)/σ2 and LRT = ((γ̂0 − b1

c1
)2 + γ̂1

2)/σ2

respectively, which are both the summation of two squared lengths. These two are

both distributed as χ2
2 distribution. When γ̂ ∈ S13, LRT = ((γ̂0 − b1

c1
)2 + γ̂1

2 +

γ̂2
2)/σ2, which is obviously distributed as a χ2

3 distribution.

When γ̂ ∈ S4, we consider a new orthogonal coordinate system. New γ0 and

γ2 axis becomes the line γ0 − c1γ2 = b1
c1

and c1γ0 + γ2 = b1 on γ1 = 0 hyperplane.

Then LRT = ‖γ∗ − γ̂‖2 = ‖(γ̂0, 0, γ̂2)− ((γ̂0, 0, γ̂2) · u)u‖2 is the squared length

of one coordinate only, which is distributed as χ2
1 distribution. Similarly when

γ̂ ∈ S7, we consider a new orthogonal coordinate system with axis along the line

d1γ0 − c1γ1 = b1d1
c1

and c1γ0 + d1γ1 = b1, γ2 = 0 as new γ0 and γ1 axis respectively.

Thus the LRT given γ̂ ∈ S7 is also distributed as χ2
1 distribution.

When γ̂ ∈ S10, it is obvious that γ∗ = γ̂ and γ̄ is the projection of γ̂ (also
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γ∗) onto the line c1γ0 + γ2 = b1, γ1 = 0.(i.e. γ̄ = Π(γ̂|G01)). Thus LRT =

‖γ̂ − Π(γ̂|G01)‖2 /σ2 = ‖Π(γ̂|G∗01)‖2 /σ2 ∼ χ2
3−1 (Silvapulle and Sen, 2005). There-

fore the LRT has χ2
2 distribution when γ̂ ∈ S10. When γ̂ ∈ S11, γ∗ = γ̂ and γ̄ is the

projection of γ̂ (also γ∗) onto the line c1γ0 + d1γ1 = b1, γ2 = 0.(i.e. γ̄ = Π(γ̂|G01)).

So similarly LRT = ‖Π(γ̂|G∗01)‖2 /σ2 ∼ χ2
3−1 (Silvapulle and Sen, 2005). Thus the

LRT given γ̂ ∈ S11 also has χ2
2 distribution.

When γ̂ ∈ S12, LRT = ‖γ̂ − Π(γ̂|G01)‖2 /σ2 = ‖Π(γ̂|G∗01)‖2 /σ2. The Π(γ̂|G01)

is the projection onto the face of G01. Thus γ̂ − Π(γ̂|G01) is the projection onto

the line ( b1
c1
, 0, 0) + u(c1, d1, 1), which is orthogonal to the face of G01 and hence

‖Π(γ̂|G∗01)‖2 /σ2 ∼ χ2
1 (Silvapulle and Sen, 2005). Therefore the LRT has χ2

1 distri-

bution when γ̂ ∈ S12.

We get the probabilities Pr(γ̂ ∈ Si) by using the lemma 2 in (Peiris and

Bhattacharya, 2016) which gives us Pr(γ̂ ∈ S) = (4π)−1(θ1 + θ2 + θ3 − π), where

θ1, θ2, θ3 are the angles between the faces of S. Thus we can show that Pr(γ̂ ∈

S1) = (4π)−1(π/2 + π/2 + π/2 − π) = 1/8, Pr(γ̂ ∈ S2) = 1/8, Pr(γ̂ ∈ S3) =

(4π)−1(cos−1 1√
1+c21

), Pr(γ̂ ∈ S4) = 1/8, Pr(γ̂ ∈ S5) = (4π)−1(π/2− cos−1 1√
1+c21

),

Pr(γ̂ ∈ S6) = (4π)−1(cos−1 d1√
c21+d21

), Pr(γ̂ ∈ S7) = 1/8, Pr(γ̂ ∈ S8) = (4π)−1(π/2−

cos−1 d1√
c21+d21

), Pr(γ̂ ∈ S9) = (4π)−1(cos−1 1√
1+c21+d21

+cos−1 d1√
1+c21+d21

−π/2), Pr(γ̂ ∈

S10) = (4π)−1(cos−1

√
1+c21√

1+c21+d21
), Pr(γ̂ ∈ S11) = (4π)−1(cos−1

√
c21+d21√

1+c21+d21
), Pr(γ̂ ∈

S12) = (4π)−1(cos−1 d1√
(1+c21)(c21+d21)

) and Pr(γ̂ ∈ S13) = 1−
∑12

i=1 Pr(γ̂ ∈ Si).

Since the least favorable null value of χ̄2
01 is attained at γ̂ = L = ( b1

c1
, 0, 0), the

least favorable null distribution of LRT is

Pr(LRT ≤ t|γ̂ = L) =
3∑
i=0

ωiPr(χ
2
i ≤ t), (2.6)

and we can classify the probabilities above and get our weights ω0, ω1, ω2, ω3, where,

13



ω0 = (4π)−1(cos−1 1√
1+c21

+ cos−1 d1√
c21+d21

+ cos−1 1√
1+c21+d21

+ cos−1 d1√
1+c21+d21

),

ω1 = (4π)−1(3π
2

+ cos−1 d1√
(1+c21)(c21+d21)

),

ω2 = (4π)−1(π+cos−1

√
1+c21√

1+c21+d21
+cos−1

√
c21+d21√

1+c21+d21
− cos−1 1√

1+c21
− cos−1 d1√

c21+d21
),

ω3 = (4π)−1(3π
2
− cos−1

√
1+c21√

1+c21+d21
− cos−1

√
c21+d21√

1+c21+d21
− cos−1 1√

1+c21+d21

− cos−1 d1√
1+c21+d21

− cos−1 d1√
(1+c21)(c21+d21)

).

Since ω0+ω2 = ω1+ω3 = 1
2

hold, we can rewrite ω3 = (4π)−1(π
2
−cos−1 d1√

(1+c21)(c21+d21)
).

The lower bound of the confidence interval for the mean response is obtained by

inverting the acceptance region of hypotheses (2.2). We rewrite the rejection region

in terms of β, since b1 =
lSx2
x02

, c1 =
Sx2
x02
√
n
, d1 =

x01Sx2
x02Sx1

, γ̂0 =
√
nβ̂0, γ̂1 = Sx1 β̂1,

γ̂2 = Sx2 β̂2, then the rejection region can be written as

1. {β̂0 ≥ l + Cασ
1√
n
, β̂1 ≤ 0, β̂2 ≤ 0},

2. {n(β̂0 − l)2 + S2
x2
β̂2

2
≥ C2

ασ
2, β̂1 < 0, 0 ≤ β̂2 <

nx02
S2
x2

(β̂0 − l)},

3. {n(β̂0 − l)2 + S2
x1
β̂1

2
≥ C2

ασ
2, 0 ≤ β̂1 <

nx01
S2
x1

(β̂0 − l), β̂2 < 0},

4. {n(β̂0 − l)2 + S2
x1
β̂1

2
+ S2

x2
β̂2

2
≥ C2

ασ
2,

0 ≤ β̂1 <
nx01
S2
x1

(β̂0 − l), 0 ≤ β̂2 <
nx02
S2
x2

(β̂0 − l)},

5. {β̂0 + β̂2x02 ≥ l +

√
x202
S2
x2

+ 1
n
Cασ, β̂1 < 0, β̂2 ≥ nx02

S2
x2

(β̂0 − l)},

6. {β̂0 + β̂1x01 ≥ l +

√
x201
S2
x1

+ 1
n
Cασ, β̂1 ≥ nx01

S2
x1

(β̂0 − l), β̂2 < 0},

7. {S2
x1
β̂1

2
+ (β̂0 + β̂2x02 − l)2 1

1
n

+
x202
S2x2

≥ C2
ασ

2,

0 ≤ β̂1 <
x01
S2
x1

1

(
x202
S2x2

+ 1
n

)
(β̂0 + β̂2x02 − l), β̂2 ≥ nx02

S2
x2

(β̂0 − l)},

8. {S2
x2
β̂2

2
+ (β̂0 + β̂1x01 − l)2 1

1
n

+
x201
S2x1

≥ C2
ασ

2,

β̂1 ≥ nx01
S2
x1

(β̂0 − l), 0 ≤ β̂2 <
x02
S2
x2

1

(
x201
S2x1

+ 1
n

)
(β̂0 + β̂1x01 − l)},

9. {β̂0 + β̂1x01 + β̂2x02 ≥ l + Cασ

√
1
n

+
x201
S2
x1

+
x202
S2
x2

,

β̂1 ≥ max{0, x01
S2
x1

1
x202
S2x2

+ 1
n

(β̂0 + β̂2x02− l)}, β̂2 ≥ max{0, x02
S2
x2

1
x201
S2x1

+ 1
n

(β̂0 + β̂1x01− l)}},
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Thus the lower bound L of the confidence interval for mean response is, L =

1. β̂0 − Cα/2σ 1√
n
, if β̂1 ≤ 0, β̂2 ≤ 0,

2. β̂0 −

√
C2
α/2

σ2−S2
x2
β̂2

2

n
, if β̂1 < 0, 0 ≤ β̂2 < Cα/2σ

√
nx202

S4
x2

+nx202S
2
x2

,

3. β̂0 −

√
C2
α/2

σ2−S2
x1
β̂1

2

n
, if 0 ≤ β̂1 < Cα/2σ

√
nx201

S4
x1

+nx201S
2
x1

, β̂2 < 0,

4. β̂0 −

√
C2
α/2

σ2−S2
x1
β̂1

2−S2
x2
β̂2

2

n
, if 0 ≤ β̂1 < Cα/2σ

√
(1−

S2x2
β̂2

2

C2
α/2

σ2
)nx201

S4
x1

+nx201S
2
x1

,

0 ≤ β̂2 < Cα/2σ

√
(1−

S2x1
β̂1

2

C2
α/2

σ2
)nx202

S4
x2

+nx202S
2
x2

,

5. β̂0 + β̂2x02 − Cα/2σ
√

x202
S2
x2

+ 1
n
, if β̂1 < 0, β̂2 ≥ Cα/2σ

√
nx202

S4
x2

+nx202S
2
x2

,

6. β̂0 + β̂1x01 − Cα/2σ
√

x201
S2
x1

+ 1
n
, if β̂1 ≥ Cα/2σ

√
nx201

S4
x1

+nx201S
2
x1

, β̂2 < 0,

7. β̂0 + β̂2x02 −
√

(C2
α/2σ

2 − S2
x1
β̂2

1)( 1
n

+
x202
S2
x2

),

if 0 ≤ β̂1 < Cα/2σ/

√
S2
x1

+
S4
x1

x201
(
x202
S2
x2

+ 1
n
), β̂2 > Cα/2σ

√
(1−

S2x1
β̂1

2

C2
α/2

σ2
)nx202

S4
x2

+nx202S
2
x2

,

8. β̂0 + β̂1x01 −
√

(C2
α/2σ

2 − S2
x2
β̂2

2)( 1
n

+
x201
S2
x1

),

if β̂1 > Cα/2σ

√
(1−

S2x2
β̂2

2

C2
α/2

σ2
)nx201

S4
x1

+nx201S
2
x1

, 0 ≤ β̂2 < Cα/2σ/

√
S2
x2

+
S4
x2

x202
(
x201
S2
x1

+ 1
n
),

9. β̂0 + β̂1x01 + β̂2x02 − Cα/2σ
√

1
n

+
x201
S2
x1

+
x202
S2
x2

,

if β̂1 > Cα/2σ/

√
S2
x1

+
S4
x1

x201
(
x202
S2
x2

+ 1
n
), β̂2 > Cα/2σ/

√
S2
x2

+
S4
x2

x202
(
x201
S2
x1

+ 1
n
),
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2.2 Test (2.1) in opposite direction(when x01 > 0,

x02 > 0)

We consider the hypotheses,

H0 : β0 + β1x01 + β2x02 ≥ u, β1 ≥ 0, β2 ≥ 0, H1 : β1 ≥ 0, β2 ≥ 0, (2.7)

for some u ∈ R and test H0 against H1 −H0. Using the transformation from β to

γ, the constraint in (2.7) becomes γ2 ≥ b′1− c1γ0−d1γ1, where b′1 =
uSx2
x02

, c1 =
Sx2
x02
√
n

and d1 =
x01Sx2
x02Sx1

. The hypotheses in terms of γ can be written as,

H01 : γ2 ≥ b′1 − c1γ0 − d1γ1, γ1 ≥ 0, γ2 ≥ 0, H11 : γ1 ≥ 0, γ2 ≥ 0, (2.8)

and test H01 against H11 −H01. The faces of H01 are {c1γ0 + d1γ1 + γ2 = b′1, γ1 ≥

0, γ2 ≥ 0}, {γ2 = 0, c1γ0 + d1γ1 + γ2 ≥ b′1, γ1 ≥ 0}, and {γ1 = 0, c1γ0 + d1γ1 + γ2 ≥

b′1, γ2 ≥ 0}.

R

R

R

(A)

γ2

γ0 L’

Ho1

Figure 2.5: Two dimensional views of the rejection region of the LRT (2.9) when

γ1 = 0

16



R

R

R
Ho1

γ1

γ0 L’

(B)

Figure 2.6: Two dimensional views of the rejection region of the LRT (2.9) when

γ2 = 0

Again, the LRT rejects H01 for large values of the test statistics and

χ̄2
02 ≡ −2logΛ = (‖γ̂ − γ̄‖2 − ‖γ̂ − γ∗‖2)/σ2, (2.9)

Let {‖γ̂ − γ̄‖2 − ‖γ̂ − γ∗‖2 > D2
ασ

2} be the rejection region. We obtain the critical

value Dα by investigating the least favorable distribution of LRT. It is shown that

in (Peiris and Bhattacharya, 2016), the least favorable null value of LRT is attained

at infinity and

supγ∈H01
Prγ{γ̂ : ‖γ̂ − γ̄‖2−‖γ̂ − γ∗‖2 ≥ D2

ασ
2} = lim

t→∞,s→∞
Pr(b

′
1/c1−s−c1t, c1t, c1s)

{χ̄2
02 > D2

α}, when it is attained, the critical value is D2
α = χ2

1,α, Dα = Zα.

According to discussion in (Peiris and Bhattacharya, 2016), the power of the

test of LRT is quite low at the vertex of the null region. We consider a new test

ignoring the restrictions γ1 ≥ 0, γ2 ≥ 0. Now the hypotheses

M01 : γ2 ≥ b′1 − c1γ0 − d1γ1, M11 : γ2 < b′1 − c1γ0 − d1γ1, (2.10)

The rejection region is {γ̂ :
c1γ̂0+d1γ̂1+γ̂2−b′1√

1+c21+d21σ
< −Zασ}, which contains the rejection
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region of the restricted case so this test is more powerful than the restricted case but

this test also creates a philosophical dilemma that in some of the rejection region

of this case (but not the restricted case). It is possible to reject H01 though γ∗ is

in H01. To solve it, we need to construct a modified rejection region. Following the

argument in (Mukerjee and Tu, 1995) we propose the following as the modified LRT

for hypothesis(2.8).

γ1  Region
Rejection

Ho1

γο
γ2

Figure 2.7: Rejection region of modified LRT of test (2.9)

Here we remove the region that cause dilemma and the rejection region is

1. c1γ̂0 + γ̂2 ≤ b′1, if γ̂1 ≤
−
√

1+c21+d21Zασ

d1
, γ̂2 ≥ 0,

2. c1γ̂0 + d1γ̂1 ≤ b′1, if γ̂1 ≥ 0, γ̂2 ≤ −
√

1 + c2
1 + d2

1Zασ,

3. γ̂0 <
b′1
c1
, if γ̂1 ≤ 0, γ̂2 ≤ min{0,−d1γ̂1 −

√
1 + c2

1 + d2
1Zασ}

4. γ̂0 + d1γ̂1 + γ̂2 ≤ b′1 −
√

1 + c2
1 + d2

1Zασ, otherwise.

The β form rejection region,
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1. {β̂0 + β̂2X02 ≤ u, β̂1 < −

√
1
n

+
X2

01
S2
X1

+
X2

02
S2
X2

X01
Zασ, β̂2 ≥ 0},

2. {β̂0 + β̂1X01 ≤ u, β̂1 ≥ 0, β̂2 < −

√
1
n

+
X2

01
S2
X1

+
X2

02
S2
X2

X02
Zασ},

3. {β̂0 ≤ u, β̂1 < 0, β̂2 < min{0,−

√
1
n

+
X2

01
S2
X1

+
X2

02
S2
X2

X02
Zασ}},

4. {β̂0 + β̂1X01 + β̂2X02 ≤ u−
√

1
n

+
X2

01

S2
X1

+
X2

02

S2
X2

Zασ, otherwise}.

Thus we define the upper bound of the confidence interval by inverting the ac-

ceptance region of hypotheses (2.7). So the upper bound U of the confidence interval

can be obtained, U =

1. β̂0 + β̂2x02, if β̂1 < −

√
1
n

+
x201
S2x1

+
x202
S2x2

x01
Zα/2σ, β̂2 ≥ 0,

2. β̂0 + β̂1x01, if β̂1 ≥ 0, β̂2 < −

√
1
n

+
x201
S2x1

+
x202
S2x2

x02
Zα/2σ,

3. β̂0, if β̂1 < 0, β̂2 < min{0,−

√
1
n

+
x201
S2x1

+
x202
S2x2

x02
Zα/2σ},

4. β̂0 + β̂1x01 + β̂2x02 +

√
1
n

+
x201
S2
x1

+
x202
S2
x2

Zα/2σ, otherwise

Now we get both the lower bound and the upper bound of the restricted confi-

dence interval of the both positive case.

Then we consider the both negative case, when x01 < 0 and x02 < 0, we have

G02 to compare with the G01 in the both positive case and the rejection region of

the modified LRT is shown below, which is mirror image of the figure of the both

positive case. Same thing happens when we consider the test in opposite direction

and all the formulas can be obtained using the symmetric property.
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γο γ1 Region
Rejection

Go2

γ2

Figure 2.8: Rejection region of the both negative case

2.3 Inference for mixed signs case

We now consider hypothesis when x01 > 0, x02 < 0. Let b2 =
lSx2
x02

, c2 =

Sx2
x02
√
n
, d2 =

x01SX2

x02Sx1
. Now note that c2, d2 are both negative. The hypotheses are,

G03 : γ2 ≥ b2 − c2γ0 − d2γ1, γ1 ≥ 0, γ2 ≥ 0, G13 : γ1 ≥ 0, γ2 ≥ 0. (2.11)

The faces of G03 are{c2γ0 + d2γ1 + γ2 = b2, γ1 ≥ 0, γ2 ≥ 0},{γ1 = 0, c2γ0 +

d2γ1 + γ2 ≤ b2, γ2 ≥ 0} and {γ2 = 0, c2γ0 + d2γ1 + γ2 ≥ b2, γ1 ≥ 0}. The LRT rejects

G03 for large values of the test statistics and

χ̄2
03 ≡ −2logΛ = (‖γ̂ − γ̄‖2 − ‖γ̂ − γ∗‖2)/σ2, (2.12)
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Again, We consider the rejection region {‖γ̂ − γ̄‖2 − ‖γ̂ − γ∗‖2 > E2
ασ

2}. Ac-

cording to (Peiris and Bhattacharya, 2016), the null least favorable distribution of

LRT is attained at lim
γ0→∞

(γ0, 0, b2 − c2γ0). Thus,

sup
γ∈G03

Prγ{γ̂ : ‖γ̂ − γ̄‖2−‖γ̂ − γ∗‖2 ≥ E2
ασ

2} = lim
γ0→∞

Pr(γ0, 0, b2−c2γ0){χ̄2
03 > E2

α}.

Further we can derive the null least favorable distribution of LRT, which is

sup
γ∈G03

Pr(LRT ≥ c) = (
1

4
+
θ1

2π
)P (χ2

0 ≥ c)+
1

2
P (χ2

1 ≥ c)+(
1

4
− θ1

2π
)P (χ2

2 ≥ c) (2.13)

where θ1 is the angle between the hyperplanes c2γ0+d2γ1+γ2 = b2 and γ1 = 0. Since

the least favorable is attained at infinity. The power will be low near the vertex of

G03. Therefore, we consider a more powerful test that ignores the restriction γ2 ≥ 0

that is,

M02 : γ2 ≥ b2 − c2γ0 − d2γ1, γ1 ≥ 0 and M12 : γ1 ≥ 0. (2.14)

LRT rejects M02 for large values of

χ̄2
04 = (‖γ̂ − ¯̄γ‖2 − ‖γ̂ − γ∗∗‖2

)/σ2, (2.15)

where ¯̄γ is the MLE under M02 and γ∗∗ is the MLE under M12. Notice that

χ̄2
04 = ‖γ∗∗ − ¯̄γ‖2 /σ2. In this case, we can divide the space into five disjoint re-

gions and calculate χ̄2
04 for each region. Then we combine them like the previous

case.

We use the hyperplane c2γ0 + γ2 = b2 to divide γ1 < 0 to get S1 and S2,
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where S1 = {γ : γ1 < 0, c2γ0 + γ2 ≥ b2} and S2 = {γ : γ1 < 0, c2γ0 + γ2 <

b2}, S5 = M02. Now let c2γ0 + γ2 = b2, γ1 = 0 be the center axis. When

γ̂ ∈ S1, χ̄2
04 = ‖γ∗∗ − ¯̄γ‖2 /σ2 = 0. When γ̂ ∈ S2, for ¯̄γ, we need to project γ̂

onto the center axis. Then, ‖γ∗∗ − ¯̄γ‖2 = ‖(γ̂0, 0, γ̂2)− ((γ̂0, 0, γ̂2) · u)u‖2, where

u is an unit vector along the center axis. Therefore the rejection region will be

‖(γ̂0, 0, γ̂2)− ((γ̂0, 0, γ̂2) · u)u‖2 ≥ F 2
ασ

2, which gives a parallel hyperplane to the

hyperplane c2γ0 + γ2 = b2 with distance Fασ. The boundary of the rejection region

will be c2γ0 + γ2 = b2 −
√

1 + c2
2Fασ.

We then use the hyperplane c2γ0 + d2γ1 + γ2 = b2 as well as the hyperplane

that is orthogonal to c2γ0 + d2γ1 + γ2 = b2 and contains the center axis (which is

c2d2γ0 − (1 + c2
2)γ1 + d2γ2 = b2d2) to divide the γ1 > 0 region into three disjoint

regions S3, S4, S5.

S3 = {γ : 0 ≤ γ1 <
c2d2
1+c22

γ0 + d2
1+c22

γ2 − b2d2
1+c22
}, S4 = {γ : γ1 ≥ c2d2

1+c22
γ0 + d2

1+c22
γ2 −

b2d2
1+c22

, γ1 ≥ b2
d2
− c2

d2
γ0 − 1

d2
γ2}, S5 = {γ : 0 ≤ γ1 <

b2
d2
− c2

d2
γ0 − 1

d2
γ2}.

When γ̂ ∈ S3, then ‖γ∗∗ − ¯̄γ‖2 = ‖γ̂ − (γ̂ · u)u‖2, where u is a unit vector

along the center axis. Let ‖γ∗∗ − ¯̄γ‖2 ≥ F 2
ασ

2 and this gives a part of cylinder with

radius Fασ and its axis is center axis. Thus, by using the technique that rotates

cylinder mentioned before, we can get the boundary of the rejection region in S3 is

γ2
1 + ( 1√

1+c22
γ2 + c2√

1+c22
(γ0 − b2

c2
))2 = F 2

ασ
2. When γ̂ ∈ S4, then γ∗∗ will be equal

to γ̂ and ¯̄γ will be the projection of γ̂ onto the hyperplane c2γ0 + d2γ1 + γ2 = b2,

thus ‖γ∗∗ − ¯̄γ‖2 = ‖γ̂ − (γ̂ · w)w‖2, where w is the unit vector that is orthogonal to

the hyperplane c2γ0 + d2γ1 + γ2 = b2. Then the boundary of the rejection region

will be the hyperplane which is parallel and has Fασ distance to the hyperplane

c2γ0 +d2γ1 +γ2 = b2, that is c2γ0 +d2γ1 +γ2 = b2−
√

1 + c2
2 + d2

2Fασ. When γ̂ ∈ S5,

γ∗∗ will be equal to γ̂ and ¯̄γ will be equal to γ̂, thus ‖γ∗∗ − ¯̄γ‖2 = 0.

From the analysis above, we can get the rejection region,
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c2γ̂0 + γ̂2 ≤ b2 −
√

1 + c2
2Fασ, γ̂1 < 0,

γ̂1
2 + ( 1√

1+c22
γ̂2 + c2√

1+c22
(γ̂0 − b2

c2
))2 ≥ F 2

ασ
2, 0 ≤ γ̂1 ≤ c2d2

1+c22
γ̂0 + d2

1+c22
γ̂2 − b2d2

1+c22
,

c2γ̂0 +d2γ̂1 + γ̂2 ≤ b2−Fασ
√

1 + c2
2 + d2

2, γ̂1 ≥ max{0, c2d2
1+c22

γ̂0 + d2
1+c22

γ̂2− b2d2
1+c22
}.

Again, test (2.14) is a more powerful test than (2.12) but also creates a philo-

sophical dilemma when γ̂ is in some regions. Thus a modified rejection region is

needed.

γ1

 Region
Rejection

γο Go3

γ2

Figure 2.9: Modified rejection region

From (Peiris and Bhattacharya, 2016), we reject G03 when

1. γ̂0 >
b2
c2
, γ̂1 < 0, γ̂2 < −

√
1 + c2

2Eασ,

2. c2
2(γ̂0 − (b2/c2 +

√
1 + c2

2/c2Eασ))2 + (1 + c2
2)γ̂1

2 ≥ (1 + c2
2)E2

ασ
2,

0 ≤ γ̂1 ≤ c2d2
1+c22

γ̂0 + d2
1+c22

γ̂2 − b2d2
1+c22

, γ̂2 < −
√

1 + c2
2Eασ,

3. c2γ̂0 + d2γ̂1 ≤ b2 − (
√

1 + c2
2 + d2

2 −
√

1 + c2
2)Eασ,

γ̂1 ≥ max{0, c2d2
1+c22

γ̂0 + d2
1+c22

γ̂2 − b2d2
1+c22
}, γ̂2 < −

√
1 + c2

2Eασ,
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4. c2γ̂0 + γ̂2 ≤ b2 −
√

1 + c2
2Eασ, γ̂1 < 0, γ̂2 ≥ −

√
1 + c2

2Eασ,

5. γ̂1
2 + ( 1√

1+c22
γ̂2 + c2√

1+c22
(γ̂0 − b2/c2))2 ≥ E2

ασ
2,

0 < γ̂1 ≤ c2d2
1+c22

γ̂0 + d2
1+c22

γ̂2 − b2d2
1+c22

, γ̂2 ≥ −
√

1 + c2
2Eασ,

6. c2γ̂0 + d2γ̂1 + γ̂2 ≤ b2 −
√

1 + c2
2 + d2

2Eασ,

γ̂1 ≥ max{0, c2d2
1+c22

γ̂0 + d2
1+c22

γ̂2 − b2d2
1+c22
}, γ̂2 ≥ −

√
1 + c2

2Eασ,

In terms of the original variables, we reject G03 when

1. β̂0 > l, β̂1 < 0, β̂2 <
1
x02

√
x202
S2
x2

+ 1
n
Eασ,

2. (β̂0 − l −
√

x202
S2
x2

+ 1
n
Eασ)2 + (

x202
S2
x2

+ 1
n
)S2

x1
β̂1

2
≥ (

x202
S2
x2

+ 1
n
)E2

ασ
2,

0 ≤ β̂1 < (β̂0 − l + x02β̂2) x01
S2
x1

1
x202
S2x2

+ 1
n

, β̂2 <
1
x02

√
x202
S2
x2

+ 1
n
Eασ,

3. β̂0 + x01β̂1 ≥ l + (

√
x202
S2
x2

+
x201
S2
x1

+ 1
n
−
√

x202
S2
x2

+ 1
n
)Eασ,

β̂1 ≥ (β̂0 − l + x02β̂2) x01
S2
x1

1
x202
S2x2

+ 1
n

, β̂2 <
1
x02

√
x202
S2
x2

+ 1
n
Eασ,

4. β̂0 + x02β̂2 ≥ l +

√
x202
S2
x2

+ 1
n
Eασ, β̂1 < 0, β̂2 ≥ 1

x02

√
x202
S2
x2

+ 1
n
Eασ,

5. (β̂0 − l + x02β̂2)2 + (
x202
S2
x2

+ 1
n
)S2

x1
β̂1

2
≥ (

x202
S2
x2

+ 1
n
)E2

ασ
2,

0 ≤ β̂1 < (β̂0 − l + x02β̂2) x01
S2
x1

1
x202
S2x2

+ 1
n

, β̂2 ≥ 1
x02

√
x202
S2
x2

+ 1
n
Eασ,

6. β̂0 + x01β̂1 + x02β̂2 ≥ l +

√
x201
S2
x1

+
x202
S2
x2

+ 1
n
Eασ,

β̂1 ≥ (β̂0 − l + x02β̂2) x01
S2
x1

1
x202
S2x2

+ 1
n

, β̂2 ≥ 1
x02

√
x202
S2
x2

+ 1
n
Eασ,

Thus the lower bound L of the confidence interval can be obtained, L =

1. β̂0, if β̂1 < 0, β̂2 <
1
x02

√
x202
S2
x2

+ 1
n
Eα/2σ,

2. β̂0 −
√

(
x202
S2
x2

+ 1
n
)(E2

α/2σ
2 − S2

x1
β̂1

2
)−

√
x202
S2
x2

+ 1
n
Eα/2σ,

if 0 ≤ β̂1 <
x02β̂2+(

√
x202
S2x2

+
x201
S2x1

+ 1
n
−

√
x202
S2x2

+ 1
n

)Eα/2σ

S2x1
x01

(
x202
S2x2

+
x201
S2x1

+ 1
n

)
, β̂2 <

1
x02

√
x202
S2
x2

+ 1
n
Eα/2σ,
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3. β̂0 + x01β̂1 − (

√
x202
S2
x2

+
x201
S2
x1

+ 1
n
−
√

x202
S2
x2

+ 1
n
)Eα/2σ,

if β̂1 ≥
x02β̂2+(

√
x202
S2x2

+
x201
S2x1

+ 1
n
−

√
x202
S2x2

+ 1
n

)Eα/2σ

S2x1
x01

(
x202
S2x2

+
x201
S2x1

+ 1
n

)
, β̂2 <

1
x02

√
x202
S2
x2

+ 1
n
Eα/2σ,

4. β̂0 + x02β̂2 −
√

x202
S2
x2

+ 1
n
Eα/2σ, if β̂1 < 0, β̂2 ≥ 1

x02

√
x202
S2
x2

+ 1
n
Eα/2σ,

5. β̂0 + β̂2x02 −
√

(
x202
S2
x2

+ 1
n
)(E2

α/2σ
2 − S2

x1
β̂1

2
),

if 0 ≤ β̂1 <
Eα/2σ√

S2
x1

+
S4x1
x201

(
x202
S2x2

+ 1
n

)

, β̂2 ≥ 1
x02

√
x202
S2
x2

+ 1
n
Eα/2σ,

6. β̂0 + x01β̂1 + x02β̂2 −
√

x202
S2
x2

+
x201
S2
x1

+ 1
n
Eα/2σ,

if β̂1 ≥
Eα/2σ√

S2
x1

+
S4x1
x201

(
x202
S2x2

+ 1
n

)

, β̂2 ≥ 1
x02

√
x202
S2
x2

+ 1
n
Eα/2σ,

2.4 Test in opposite direction of mixed signs case

Again, we follow the similar steps in section 2.2. First consider the hypothesis,

let b′2 =
uSx2
x02

.

H03 : 0 ≤ γ2 < b′2 − c2γ0 − d2γ1, γ1 ≥ 0 and H13 : γ1 ≥ 0, γ2 ≥ 0 (2.16)

Next, state the test statistics. Since the least favorable null value is attained

at infinity thus by ignoring the restriction γ1 ≥ 0, we can get a more powerful test

and then we modify the test because of philosophical dilemma arises.
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γ1
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γ2

Figure 2.10: Rejection region of modified LRT of test (2.16)

From (Peiris and Bhattacharya, 2016), we reject H03 at level α when

1. γ̂0 >
b′2
c2
, γ̂1 <

1
d2

√
c2

2 + d2
2Kασ, γ̂2 < 0,

2. (c2γ̂0−(b′2−
√
c2

2 + d2
2Kασ))2+(c2

2+d2
2)γ̂2

2 ≥ (c2
2+d2

2)K2
ασ

2, γ̂1 <
1
d2

√
c2

2 + d2
2Kασ,

0 ≤ γ̂2 <
c2

c22+d22
γ̂0 + d2

c22+d22
γ̂1 − b′2

c22+d22
,

3. c2γ̂0 + γ̂2 ≥ b′2 + (
√

1 + c2
2 + d2

2 −
√
c2

2 + d2
2)Kασ, γ̂1 <

1
d2

√
c2

2 + d2
2Kασ,

γ̂2 ≥ c2
c22+d22

γ̂0 + d2
c22+d22

γ̂1 − b′2
c22+d22

,

4. c2γ̂0 + d2γ̂1 ≥ b′2 +
√
c2

2 + d2
2Kασ, γ̂1 ≤ 1

d2

√
c2

2 + d2
2Kασ, γ̂2 < 0,

5. γ̂2
2 + ( d2√

c22+d22
γ̂1 + c2√

c22+d22
(γ̂0 − b′2

c2
))2 ≥ K2

ασ
2, γ̂1 ≥ 1

d2

√
c2

2 + d2
2Kασ,

0 ≤ γ̂2 <
c2

c22+d22
γ̂0 + d2

c22+d22
γ̂1 − b′2

c22+d22
,

6. c2γ̂0 + d2γ̂1 + γ̂2 ≥ b′2 +
√

1 + c2
2 + d2

2Kασ, γ̂1 ≥ 1
d2

√
c2

2 + d2
2Kασ,

γ̂2 ≥ c2
c22+d22

γ̂0 + d2
c22+d22

γ̂1 − b′2
c22+d22

,

In terms of the original variables, we reject H03 when
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1. β̂0 ≤ u, β̂1 <
1
x01

√
1
n

+
x201
S2
x1

Kασ, β̂2 < 0

2. (β̂0 − u−
√

1
n

+
x201
S2
x1

Kασ)2 + ( 1
n

+
x201
S2
x1

)2S2
x2
β̂2

2
≥ ( 1

n
+

x201
S2
x1

)K2
ασ

2,

β̂1 <
1
x01

√
1
n

+
x201
S2
x1

Kασ, 0 ≤ β̂2 < (β̂0 + x01β̂1 − u) (−x02)
S2
x2

1

1
n

+
x201
S2x1

3. β̂0 + x02β̂2 ≤ u− (

√
1
n

+
x201
S2
x1

+
x202
S2
x2

−
√

1
n

+
x201
S2
x1

)Kασ,

β̂1 <
1
x01

√
1
n

+
x201
S2
x1

Kασ, β̂2 ≥ (β̂0 + x01β̂1 − u) (−x02)
S2
x2

1

1
n

+
x201
S2x1

4. β̂0 + x01 ≤ u−
√

1
n

+
x201
S2
x1

Kασ, β̂1 ≥ 1
x01

√
1
n

+
x201
S2
x1

Kασ, β̂2 < 0

5. S2
x2
β̂2

2
+ 1

1
n

+
x201
S2x1

(β̂0 + x01β̂1 − u)2 ≥ K2
ασ

2,

β̂1 ≥ 1
x01

√
1
n

+
x201
S2
x1

Kασ, 0 ≤ β̂2 < (β̂0 + x01β̂1 − u) (−x02)
S2
x2

1

1
n

+
x201
S2x1

6. β̂0 + x01β̂1 + x02β̂2 ≤ u−
√

1
n

+
x201
S2
x1

+
x202
S2
x2

Kασ,

β̂1 ≥ 1
x01

√
1
n

+
x201
S2
x1

Kασ, β̂2 ≥ (β̂0 + x01β̂1 − u) (−x02)
S2
x2

1

1
n

+
x201
S2x1

Thus the upper bound U of the confidence interval can be obtained, U =

1. β̂0, if β̂1 <
1
x01

√
x201
S2
x1

+ 1
n
Kα/2σ, β̂2 < 0,

2. β̂0 −
√

x201
S2
x1

+ 1
n
Kα/2σ +

√
(
x201
S2
x1

+ 1
n
)(K2

α/2σ
2 − S2

x2
β̂2

2
),

if β̂1 <
1
x01

√
x201
S2
x1

+ 1
n
Kα/2σ, 0 ≤ β̂2 <

(

√
x202
S2x2

+
x201
S2x1

+ 1
n
−

√
x201
S2x1

+ 1
n

)Kα/2σ+x01β̂1

S2x2
x02

(
x202
S2x2

+
x201
S2x1

+ 1
n

)
,

3. β̂0 + x02β̂2 − (

√
x201
S2
x1

+
x202
S2
x2

+ 1
n
−
√

x201
S2
x1

+ 1
n
)Kα/2σ,

if β̂1 <
1
x01

√
x201
S2
x1

+ 1
n
Kα/2σ, β̂2 ≥

(

√
x202
S2x2

+
x201
S2x1

+ 1
n
−

√
x201
S2x1

+ 1
n

)Kα/2σ+x01β̂1

S2x2
x02

(
x202
S2x2

+
x201
S2x1

+ 1
n

)
,

4. β̂0 + x01β̂1 −
√

x201
S2
x1

+ 1
n
Kα/2σ, if β̂1 ≥ 1

x01

√
x201
S2
x1

+ 1
n
Kα/2σ, β̂2 < 0,

5. β̂0 + x01β̂1 +

√
(
x201
S2
x1

+ 1
n
)(K2

α/2σ
2 − S2

x2
β̂2

2),
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if β̂1 ≥ 1
x01

√
x201
S2
x1

+ 1
n
Kα/2σ, 0 ≤ β̂2 <

1√
x201
S2x1

+
x202
S2x2

+ 1
n

(−x02)
S2
x2

Kα/2σ,

6. β̂0 + x01β̂1 + x02β̂2 −
√

x201
S2
x1

+
x202
S2
x2

+ 1
n
Kα/2σ,

if β̂1 ≥ 1
x01

√
x201
S2
x1

+ 1
n
Kα/2σ, β̂2 ≥ 1√

x201
S2x1

+
x202
S2x2

+ 1
n

(−x02)
S2
x2

Kα/2σ,

Now we get both the lower bound and the upper bound of the restricted confi-

dence interval of the mixed signs case.
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Chapter 3

Comparison Between Confidence

Intervals with and without

Restrictions

As discussed in (Peiris and Bhattacharya, 2016), the length of the intervals

strictly depend on the values of x01 and x02. So a comparison of restricted and

unrestricted confidence intervals is needed to identify which method works better

for a given data set. In this chapter we compare the restricted intervals we obtained

in previous chapters with confidence intervals for the unrestricted general linear

regression model.

3.1 Some properties of the critical values

Before we compare the confidence intervals, we discuss some properties of the

critical values we introduce in previous chapters.
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Lemma 1 If α/2 ∈ (0, α0/2], then

zα/2 ≤ cα/2 ≤ 2zα/2, (3.1)

where cα/2 is the solution to the equation

α/2 =
1

2
P{χ2

1 > c2
α/2}+ (

1

4
− ω

2π
)P{χ2

2 > c2
α/2}, (3.2)

where α0/2 = P{z >
√

2π
4
} = 0.2643 and z is the N(0, 1) random variable.

Proof We have

zα/2 ≤ cα/2,

because we get cα/2 from the least favorable distribution. Now we are going to prove

that 2zα/2 − cα/2 ≥ 0 for all α/2 in (0, α0/2]. Here this proof is given only for the

case x01 > 0 and x02 < 0. The proof is similar for the other mixed case. Let x and

y be the solutions to the equations

α

2
=

1

2
P{χ2

1 > x2}+
1

4
P{χ2

2 > x2}, (3.3)

and

α

2
= P{z > y} (3.4)

respectively. Then x ≥ cα/2 because α
2

= 1
2
P{χ2

1 > c2
α/2} + (1

4
− ω

2π
)P{χ2

2 > c2
α/2}

and y = zα/2. We are going to prove a stronger argument 2y − x ≥ 0, so that we

have 2zα/2 − cα/2 ≥ 0. Let (3.3) and (3.4) equal, since 1
2
P{χ2

1 > x2} = P{z > x},

then

1√
2π

∫ x

y

e−
t2

2 dt =
1

4
e−

x2

2 , (3.5)

Thus there exists a t∗ such that 1√
2π

∫ x
y
e−

t2

2 dt = 1√
2π
e−

t∗2
2 (x − y) = 1

4
e−

x2

2 , where
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y ≤ t∗ ≤ x.

Hence

x− y =

√
2π

4
e−

(x2−t∗2)
2 ≤

√
2π

4
.

Therefore, 2y − x ≥ 2y − (y +
√

2π
4

) ≥ 0 when

y ≥
√

2π

4
≈ 0.626657

We notice that α
2

= P{z > y} and α0/2 = P{z >
√

2π
4
} = 0.2643. Thus when α

2
<

α0

2
= 0.2643, y ≥

√
2π
4

. Therefore, we have 2zα/2 − cα/2 ≥ 0 when α
2
< α0

2
= 0.2643.

Lemma 2 The solution x(α) of

α/2 =
1

2
P{F1,n−2 > x2}+

1

4
P{F2,n−2 >

x2

2
} (3.6)

is a decreasing function of α for x > 0.

Proof To prove x(α) is decreasing, we take the derivative respect to α.

1

2
=

d

dα
(
1

2

∫ ∞
x2

f1,n−2(t)dt+
1

4

∫ ∞
x2/2

f2,n−2(t)dt) = −x(f1,n−2(x2) +
1

4
f2,n−2(x2/2))

dx

dα

Therefore, we obtain

dx

dα
= − 2

x[4f1,n−2(x2) + f2,n−2(x2/2)]
< 0

where f is the pdf of the F-distribution. Therefore, x(α) is a decreasing function of α.

Lemma 3 The function g(z) = z−2 tan A√
1+z2
−z2 tan A√

1+z2
is a strictly increasing
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function of z for z > 0, where

A = An =

√
πΓ(n−2

2
)

4Γ(n−1
2

)
, n = 3, 4, · · ·

Proof Consider the derivative g′(z),

g′(z) = 1 +
2Az[1 + tan2( A√

1+z2
)]

(1 + z2)3/2
− 2z tan(

A√
1 + z2

) +
Az3[1 + tan2( A√

1+z2
)]

(1 + z2)3/2
(3.7)

now we are going to prove g′(z) is positive on both [0, 1] and [1,∞).

First consider when z ∈ [0, 1]. Since A = An =
√
πΓ(n−2

2
)

4Γ(n−1
2

)
, n = 3, 4, · · · , thus

when n = 3, A attains its maximum value π/4. For 0 < A ≤ π/4,
√

2/2 ≤ cosA < 1,

we have

tan
A√

1 + z2
=

sin A√
1+z2

cos A√
1+z2

≤
A√

1+z2

cos A√
1+z2

≤
A√

1+z2

cosA
(3.8)

Thus,

g′(z) ≥ g1(z) = 1 + 2Az
(1+z2)3/2

+ Az3

(1+z2)3/2
− 2

cosA
Az√
1+z2

.

Now we are going to prove g′1(z) < 0 and minimum value of g1(z) = g1(1) > 0,

then we can get g′(z) > 0.

g′1(z) = −A2( 1
cosA

−1)+(1+ 2
cosA

)z2

(1+z2)5/2
< 0 and g1(1) = 1 − A

2
√

2
( 4

cosA
− 3) ≥ 1 −

π
8
√

2
(4
√

2− 3) > 0. Therefore, when z ∈ [0, 1], g′(z) is positive.

Next, we consider the case when z ∈ [1,∞). To prove this, we consider the

function

g2(z) = 2z tan
A√

1 + z2
(3.9)

Note that lim
z→∞

g2(z) = 2A. To see this, we investigating lim
z→∞

g2(z) = lim
z→∞

2z sin A√
1+z2

cos A√
1+z2

=

lim
z→∞

2 sin A√
1+z2

1
z

, by using the L’Hopital’s rule, lim
z→∞

2 sin A√
1+z2

1
z

= lim
z→∞

2 cos A√
1+z2

− 1
z2

(−z)A(1+

32



z2)−3/2 = lim
z→∞

2z3A(1 + z2)−3/2 = 2A.

Furthermore, g′2(z) = 2 tan A√
1+z2
− 2A z2

(1+z2)3/2
− 2Az2

tan2( A√
1+z2

)

(1+z2)3/2
. Since 0 <

A ≤ π
4
,
√

2A < 5π
12

and cos 5π
12

=
√

6−
√

2
4

, thus we have cos2 A√
2

=
1+cos 2A√

2

2
≥ 5/8.

Thus, tan2 A√
1+z2
≤

A2

1+z2

5
8

=
8
5
A2

1+z2
.

Furthermore, the Taylor expansion of tanx = x+ 1
3
x3 + 2

15
x5 · · · , thus tanx ≥

x+ 1
3
x3 for 0 < x ≤ π

4
and we have, 2 tan A√

1+z2
−2A z2

(1+z2)3/2
≥ 2( A√

1+z2
+ 1

3
A3

(1+z2)3/2
)−

2A z2

(1+z2)3/2
=

2A+ 2
3
A3

(1+z2)3/2
.

Hence, we have

g′2(z) ≥
2A+ 2

3
A3 − 2Az2 8A2

5(1+z2)

(1 + z2)3/2
≥

2A+ 2
3
A3 − 16

5
A3

(1 + z2)3/2
> 0

Therefore, g2(z) is increasing and 2A ≥ 2z tan A√
1+z2

. Thus, when z →∞, g′(z)

attains lower bound that is, g′(z) ≥ (1− 2A) + A 2z+z3

(1+z2)3/2
.

Now we only need to prove the lower bound is positive for z ≥ 1, which is true when

we take the derivative. Therefore, g(z) is a increasing function for z > 0.

Lemma 4 If α/2 ∈ (0, 0.218], then

tn−2,α/2 ≤ cn−2,α/2,w ≤ 2tn−2,α/2, (3.10)

where cn−2,α/2,w in (3.11) is the solution to the equation

α/2 =
1

2
P{F1,n−2 > cn−2,α/2,w}+ (

1

4
− w

2π
)P{F2,n−2 > c2

n−2,α/2,w/2}. (3.11)

Proof We have

tn−2,α/2 ≤ cn−2,α/2,w,
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We now prove

2tα/2 − cα/2 ≥ 0, (3.12)

Again, we follow the steps in the proof of lemma 1, let x(α) and y(α) be the solutions

to

α/2 =
1

2
P{F1,n−2 > x2}+

1

4
P{F2,n−2 >

x2

2
}, (3.13)

and

α/2 = P{Tn−2 > y}. (3.14)

We have,

P{F2,n−2 >
x2

2
} =

∫ ∞
x2/2

Γ(n
2
)

Γ(2
2
)Γ(n−2

2
)
(

2

n− 2
)

1

(1 + 2t
n−2

)n/2
dt =

1

(1 + x2

n−2
)(n−2)/2

,

and

1

2
P{F1,n−2 > x2} = P{Tn−2 > x},

Let (3.13) and (3.14) equal, we have

P{y < Tn−2 < x} =
Γ(n−1

2
)√

(n− 2)πΓ(n−2
2

)

∫ x

y

(1 +
t2

n− 2
)−

n−1
2 dt =

1

4

1

(1 + x2

n−2
)(n−2)/2

,

By mean value theorem, there exists a t∗ ∈ [y, x] such that

Γ(n−1
2

)√
(n− 2)πΓ(n−2

2
)(1 + t∗2

n−2
)(n−3)/2

∫ x

y

1

(1 + t2

n−2
)
dt =

1

4

1

(1 + x2

n−2
)(n−2)/2

,

which is equivalent to

∫ x/
√
n−2

y/
√
n−2

du

1 + u2
= A

(1 + t∗
2

n−2
)(n−3)/2

(1 + x2

n−2
)(n−3)/2

,
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Let B(x) = A
(1+ t∗

2

n−2
)(n−3)/2

(1+ x2

n−2
)(n−3)/2

, then we have

y√
n− 2

=

x√
n−2
− tanB(x)

1 + x√
n−2

tanB(x)
,

Then

y =
x−
√
n− 2 tanB(x)

1 + x√
n−2

tanB(x)
,

where

B(x) ≤ A√
1 + x2

n−2

Therefore,

2y − x =
x− 2

√
n− 2 tanB(x)− x2√

n−2
tanB(x)

1 + x√
n−2

tanB(x)
,

Let

ḡ(x) =
x√
n− 2

− 2 tan
A√

1 + x2

n−2

− x2

n− 2
tan

A√
1 + x2

n−2

,

which is equivalent to g(z) = z − 2 tan A√
1+z2
− z2 tan A√

1+z2
, where z = x√

n−2
.

Then 2y − x ≥ ḡ(x)
1√
n−2

+ x
n−2

tanB(x)
when g(•) attains lower bound. Since g(z) is

increasing and z(α) is a decreasing function of α. From the table that is given in

(Tu, 1995), we know when α/2 ∈ (0, 0.218], g(z) = ḡ(x) ≥ 0 and thus 2y − x ≥ 0.

Therefore, we get the proof for lemma 4.
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3.2 Comparison between confidence intervals with

or without restrictions

As we mentioned before, the comparison is based on lemmas discussed in the

previous section. Therefore, we only do the comparison in mixed signs cases.

Suppose x01 > 0, x02 < 0, when we combine the U and L of mixed signs re-

stricted case, we may find that it is very complicated because of the uncertainty of

x01 and x02. Therefore, we can not give a specific formula to discuss which confi-

dence interval is better, however, when we are given these two values, we can identify

which condition β̂1, β̂2 are in so that we can get our restricted confidence interval

and compare it with the unrestricted confidence interval. For now, we can only

compare those intervals when β̂ is in some certain regions.

Though we cannot get the formulas easily, it does not mean the way we do

the comparison does not work. For example, when σ is unknown, we replace σ

with s and when β̂1 ≥
x02β̂2+(

√
x202
S2x2

+
x201
S2x1

+ 1
n
−

√
x202
S2x2

+ 1
n

)Eα/2s

S2x1
x01

(
x202
S2x2

+
x201
S2x1

+ 1
n

)
, β̂2 <

1
x02

√
x202
S2
x2

+ 1
n
Eα/2s and

1
x01

√
x201
S2
x1

+ 1
n
Kα/2s is relatively small, then we can conclude that our U will be β̂0 +

x01β̂1−
√

x201
S2
x1

+ 1
n
Kα/2s and our L is β̂0+x01β̂1−(

√
x202
S2
x2

+
x201
S2
x1

+ 1
n
−
√

x202
S2
x2

+ 1
n
)Eα/2s.

Note that Kα/2 = Eα/2, we use Cα/2 instead. The difference between restricted con-

fidence interval and unrestricted one will be D = β̂0 + x01β̂1 −
√

x201
S2
x1

+ 1
n
Cα/2s −

(β̂0 + x01β̂1 − (

√
x202
S2
x2

+
x201
S2
x1

+ 1
n
−
√

x202
S2
x2

+ 1
n
)Cα/2s)− 2tα/2

√
x202
S2
x2

+
x201
S2
x1

+ 1
n
s =

(

√
x202
S2
x2

+
x201
S2
x1

+ 1
n
−
√

x202
S2
x2

+ 1
n
−
√

x201
S2
x1

+ 1
n
)Cα/2s − 2tα/2s

√
x202
S2
x2

+
x201
S2
x1

+ 1
n
. Now we

apply lemma 4, since Cα/2 ≤ 2tα/2, then D is negative, our restricted confidence

interval is better. We are still working on this part and will show the other compar-

isons in the future work.
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