
A Decentralized Strategy for Swarm Robots to Manage
Spatially Distributed Tasks

by

Rohit Sheth

A Thesis

Submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

In partial fulfilment of the requirements for the

Degree of Master of Science

in

Robotics Engineering

by

May 2017

APPROVED:

Professor Carlo Pinciroli, Thesis Advisor

Professor Jie Fu, Thesis Committee Member

Professor Eugene Eberbach, Thesis Committee Member

Abstract

Large-scale scenarios such as search-and-rescue operations, agriculture,
warehouse, surveillance, and construction consist of multiple tasks to be performed
at the same time. These tasks have non-trivial spatial distributions. Robot swarms
are envisioned to be efficient, robust, and flexible for such applications. We model
this system such that each robot can service a single task at a time; each task
requires a specific number of robots, which we refer to as ’quota’; task allocation
is instantaneous; and tasks do not have inter-dependencies. This work focuses on
distributing robots to spatially distributed tasks of known quotas in an efficient
manner. Centralized solutions which guarantee optimality in terms of distance
travelled by the swarm exist. Although potentially scalable, they require non-trivial
coordination; could be computationally expensive; and may have poor response
time when the number of robots, tasks and task quotas increase. For a swarm
to efficiently complete tasks with a short response time, a decentralized approach
provides better parallelism and scalability than a centralized one. In this work, we
study the performance of a weight-based approach which is enhanced to include
spatial aspects. In our approach, the robots share a common table that reports
the task locations and quotas. Each robot, according to its relative position with
respect to task locations, modifies weights for each task and randomly chooses a
task to serve. Weights increase for tasks that are closer and have high quota as
opposed to tasks which are far away and have low quota. Tasks with higher weights
have a higher probability of being selected. This results in each robot having its
own set of weights for all tasks. We introduce a distance-bias parameter, which
determines how sensitive the system is to relative robot-task locations over task
quotas. We focus on evaluating the distance covered by the swarm, number of
inter-task switches, and time required to completely allocate all tasks and study
the performance of our approach in several sets of simulated experiments.

Acknowledgements

I would like to express my gratitude to my advisor Prof. Carlo Pinciroli for

his guidance, direction, criticism, and enthusiasm during the course of this work. I

thank him for introducing me to the wonderful and elegant world of swarm robotics.

i

Contents

1 Introduction 1

1.1 Problem statement . 3

1.2 Outline . 4

2 Literature 5

2.1 Taxonomy for Task Allocation . 5

2.1.1 Gerkey’s Taxonomy . 6

2.1.2 Korsah’s extension . 8

2.2 Problem Formulation . 11

2.2.1 Mathematical Formulation . 11

2.2.2 Complexity Analysis . 13

2.3 Modelling Coalition Formation Problem 14

2.3.1 Multiple Travelling Salesman Problem 15

2.3.2 Optimal Assignment Problem 15

2.3.3 MRTA as an Economic Game 16

2.4 State of the Art for Decentralized Allocation of Spatially Distributed

Tasks . 17

2.5 Drawbacks . 18

3 Approach 21

3.1 Framework . 21

3.1.1 Spatial Task Information Management 22

3.1.2 Recruitment . 23

3.1.3 Spatial Bias Strategy for Task Selection 25

3.1.4 Navigation . 27

3.1.5 Counting Robots . 28

ii

3.1.6 Simplification . 32

3.2 Design . 33

3.2.1 Algorithm Structure . 33

3.2.2 Task Allocation and Spatial Bias Formulation 34

4 Evaluation 38

4.1 Criteria for Evaluation . 38

4.1.1 Robot Metrics . 38

4.2 Experiment Design . 39

4.2.1 Spatial Task Distribution . 40

4.2.2 Task Size Distribution . 41

4.2.3 Arena Size . 43

4.2.4 Mean Robots per Task . 43

4.2.5 Numerical Parameters . 44

4.2.6 Special Cases . 44

4.2.7 ARGoS . 45

4.3 Results . 49

4.3.1 Spatial Task Distribution . 49

4.3.2 Task Size Distribution . 52

4.3.3 Arena Size . 53

4.3.4 Mean robots per task . 56

4.3.5 Pointmass3d Engine . 59

4.3.6 Redundant Robots . 60

4.3.7 Jevtic’s Formulation . 62

4.3.8 Circle Topology . 63

4.4 Analysis of Results . 65

4.4.1 Task Topology . 65

4.4.2 Arena Size Results . 66

4.4.3 Mean Robots per Task Results 66

4.4.4 Pointmass3d Results . 67

4.4.5 Robot Redundancy Results 67

4.4.6 Jevtic Formulation Comparison 68

4.4.7 Circle Topology Results: Sanity Check 68

iii

5 Concluding Remarks 70

5.1 Conclusions . 70

5.2 Future work . 71

Appendix 72

References 72

iv

List of Figures

1.1 Problem Statement Illustration . 3

2.1 Gerkey’s Taxonomy . 6

2.2 iTax: Korsah’s Taxonomy for MRTA 10

2.3 Coalitions and Coalition Structures 12

2.4 Complexity of Coalition Formation 14

3.1 Framework . 21

3.2 Recruitment . 24

3.3 Spatial Bias . 26

3.4 Lennard-Jones Potential . 28

3.5 Collision Avoidance . 28

3.6 Connected Network of Robots . 29

3.7 Broadcast Initiated by Host Robot 30

3.8 Connected Spanning Tree . 30

3.9 Convergecast Initiated by Nodes . 30

3.10 Convergecast last step . 30

3.11 Count Propagated to all Nodes . 31

3.12 Robot State Machine . 34

3.13 Linear Formulation . 36

3.14 Exponent Formulation . 37

4.1 Lattice Distribution of Tasks . 40

4.2 Uniform Distribution of Tasks . 40

4.3 Scale-free Distribution of tasks . 41

4.4 Constant Task Size . 42

4.5 Varying Task Size . 42

v

4.6 Increasing Arena Size: (a) 16m x 16m; 9 Tasks (b) 32m x 32m; 50

Tasks (c) 56m x 56m; 170 Tasks . 43

4.7 Robots per Task. From right: 1, 10, 20 robots per task 43

4.8 Circle topology with robots clustered at the centre. 45

4.9 ARGoS Simulator . 46

4.10 Foot-bot (Source: IRIDIA) . 47

4.11 Lattice Task Topology (a) Distance and Task Switches 49

4.12 Lattice Task Topology (b) Allocation Time 50

4.13 Uniform Task Topology (a) Distance and Task Switches 50

4.14 Uniform Task Topology (b) Allocation Time 51

4.15 Scale-free Task Topology (a) Distance and Task Switches 51

4.16 Scale-free Task Topology (b) Allocation Time 52

4.17 Small Arena 16m x 16m (a) Distance and Task Switches 53

4.18 Small Arena 16m x 16m (b) Allocation Time 53

4.19 Medium Arena 32m x 32m (a) Distance and Task Switches 54

4.20 Medium Arena 32m x 32m (b) Allocation Time 54

4.21 Large Arena 56m x 56m (a) Distance and Time 55

4.22 Large Arena 56m x 56m (b) Allocation Time 55

4.23 Mean Robots per Task = 1 (a) Distance and Task Switches 56

4.24 Mean Robots per Task = 1 (b) Allocation Time 56

4.25 Mean Robots per Task = 10 (a) Distance and Task Switches 57

4.26 Mean Robots per Task = 10 (b) Allocation Time 57

4.27 Mean Robots per Task = 20 (a) Distance and Task Switches 58

4.28 Mean Robots per Task = 20 (b) Allocation Time 58

4.29 Pointmass3d Engine Mean Robots per Task = 20 (a) Distance and

Task Switches . 59

4.30 Pointmass3d Engine Mean Robots per Task = 20 (b) Allocation Time 59

4.31 Redundancy Factor 1.2 (a) Distance and Task Switches 60

4.32 Redundancy Factor 1.2 (b) Allocation Time 60

4.33 Redundancy Factor 1.5 (a) Distance and Task Switches 61

4.34 Redundancy Factor 1.5 (b) Allocation Time 61

4.35 Jevtic Formulation (a) Distance and Switches 62

4.36 Jevtic Formulation (b) Allocation Time 62

vi

4.37 Circle Topology for Linear Formulation (a) Distance and Task

Switches . 63

4.38 Circle Topology for Linear Formulation (b) Allocation Time 63

4.39 Circle Topology for Jevtic’s Formulation (a) Distance and Task Switches 64

4.40 Circle Topology for Jevtic’s Formulation (b) Allocation Time 64

vii

List of Tables

3.1 Shared Table . 33

3.2 Sample Comparison Set . 35

4.1 Task Topology Results . 65

4.2 Arena Size Results . 66

4.3 Mean Robots per Task Results . 67

4.4 PointMass3D Physics Engine Results 67

4.5 Robot Redundancy Results . 68

4.6 Jevtic Formulation Comparison . 68

4.7 Circle Topology . 69

viii

Chapter 1

Introduction

Robots, if not already, will soon become a part of everyday life for humans. Robots

can be thought of as advanced tools created by humans. Robots are designed with

three intentions in mind: to aid humans in performing tasks; to outperform humans;

or to perform tasks which humans are incapable of undertaking.

Research in robotics includes the field of multi-robot systems (MRS) where

robots can execute multiple tasks simultaneously or significantly improve the perfor-

mance over one executed by a single robot. MRS can be classified based on local

or complete awareness; centralized and decentralized decision-making; and local or

global communication. Robotic swarms is a branch of MRS which concentrates on

decentralized decision making, local awareness and local communication for each

robot in the swarm. Robotic swarms focus on an emergent behaviour from simple

interactions between robots and the environment. Motivation for robotic swarm

arose from examples in nature such as ant-colonies, flocking of birds, etc.

The first mention of robotic swarm can be traced back to 1986 when Craig

Reynolds developed a program called ’Boids’. ’Boids’, a contraction of ’bird-oid

object’, is a computer simulation that mimics the flocking behaviour in birds. Swarm

robots are not dependent on an individual robot, thus the death of a robot or

addition of a robot does not affect collective behaviour. Robotic swarms adapt well

to change in environmental conditions. Design complexity is reduced as building

multiple simplistic robots with varying abilities is easier compared to building one

powerful robot. Robotic swarms execute one or multiple tasks in parallel which

improves the overall efficiency of the system. Robotic swarm systems are designed

to be inherently scalable and achieve similar behaviour within acceptable changes

1

in swarm size. This makes swarm robust, scalable, efficient, simplistic, and flexible.

It is with these advantages that swarming robots are anticipated to be effective

in search and rescue, surveillance, mining, agriculture, construction and warehouse

applications. Such applications span over large area and require multiple tasks to

be executed simultaneously. Additionally the requirement of the number of robots;

sensing and actuation requirements of tasks; location; and duration is dynamic and

non-deterministic. In such situations, swarm systems can efficiently complete these

tasks with a short response time and provide better parallelism and scalability.

The above mentioned applications often have multiple smaller tasks distributed

in space which together form a big task. Robotic swarms are efficient when perform-

ing multiple small tasks in order to serve a bigger purpose. Consider an example of

spraying pesticides over a partially disease affected field. It is important to identify

all regions with diseased crop, carry pesticide to affected regions, and spray in an

area around the affected region. Limited battery life is a bottleneck when covering

large fields. Therefore it is vital to minimize distance travelled when performing

robot-task assignment. Additionally, multiple robots are required to spray pesticide

over a substantially large affected region. Such an assignment for hundreds of robots

is not intuitive and therefore task allocation must be studied in swarms.

Task allocation by itself is a vast field. Some of the areas where task allocation

is important communication networks, multi-processor systems, operations research

and management, surveillance and security, service based industry, and multi-robot

systems. Clients, allocators and performers is one way to visualize task allocation.

Clients request for task to be performed, allocators process task requests and assign

tasks to performers who execute the tasks. Task allocation is difficult as the number

of ways in which tasks can be assigned to performers scale logarithmically. Therefore,

design of a fast, and efficient allocator to generate is not always possible.

Communication is a means to achieve a multi-robot system with a single alloca-

tor in the above mentioned applications. However, loss of communication, non-

deterministic robot failure, and erroneous sensor data further complicate the design

of an efficient allocator. Such a system is also expected to provide fast response to

the aforementioned problems and handle dynamic requests for tasks. This is the

primary reason to turn towards inspiration in nature from social insects such as

ants, termites, and bees where performers have a say in the task assignment process

and the system does not depend on a single allocator. The intention of this work

2

is to provide a framework for a decentralized task allocation strategy that allows

performers to make independent decisions. The work, then, focuses on exploiting the

spatial information of tasks to improve the strategy and evaluates the performance

in different sets of simulated experiment.

1.1 Problem statement

The main focus of this work is provide a decentralized strategy for task allocation

that makes use of the spatial task information in robotic swarms. The difficulty

of task allocation increases when number of robots required by tasks are non-

deterministic, total number of robots and tasks is high. The aim of developing such

a strategy is to facilitate a scalable, fast, and efficient solution. The strategy focuses

on utilizing spatial information about tasks and the number of robots required to

achieve efficiency and a decentralized approach to achieve scalability.

The problem is to divide a group of robots into smaller sub-groups and assign

these sub-groups to various tasks. The number of sub-groups is equal to the number

of tasks and the size of sub-group assigned to a task is equal to number of robots

required in the task. The tasks are static in time, space, and have constant task

size. The robotic swarm is made of homogeneous robots that are capable of serving

one task at a time.

Figure 1.1: Problem Statement Illustration

3

Figure 1.1 illustrates the problem statement. Considering the fact that top half

of the figure indicates and initial stage where tasks are the green coloured circles

and robots are clustered in the centre as grey dots. Darkness of the shade of green

is proportional to the number of robots required by the task. The problem at hand

is to allocate the grey dots in smaller sub-groups and assign the sub-groups to tasks

as shown by the figure below. The sub-groups are highlighted with different colour

to show assignment to different tasks.

1.2 Outline

Chapter 2 introduces the multi-robot task allocation problem and explores various

taxonomies to categorize the problem. Understanding the problem category aids in

modelling the problem with existing techniques and also relates better with existing

literature. First part of Chapter 3 describes a framework to perform decentralized

task allocation in swarm robots. The focus of this work is on utilizing spatial

task information for task allocation and hence simplifications made to the proposed

framework are described in this chapter. The second part describes in detail the

proposed design for improving task allocation. Chapter 4 explores the metrics for

evaluating task allocation and also describes the parameters used in setting up

various experiments. The chapter concludes with a section on results, comparison

and analysis. Chapter 5 is the final chapter which follows up analysis with concluding

remarks and points the reader in directions this work can be expanded in the future.

4

2:Literature
3:Approach
4:Evaluation
5:Concl

Chapter 2

Literature

Section 2.1 introduces two taxonomies that provide a broad overview of Multi-robot

Task Allocation (MRTA). Section 2.2 formulates the problem statement, introduces

the concept of coalitions, and analyses the complexity of the problem. Section 2.3

discusses multiple approaches to model the problem using existing methods. Section

2.4 highlights existing research in MRTA relevant to robotic swarms.

2.1 Taxonomy for Task Allocation

Taxonomy in MRTA aim at categorizing MRTA problems based on robot and task

specifications. This provides an improved understanding of the problem by compar-

ing it with existing mathematical formulations and models for a particular category

of problem.

The taxonomy of Gerkey (2003) concentrates on measuring a robot’s ability to

perform tasks and also temporal nature of tasks. This is a benchmark taxonomy

for understanding problems in MRTA. Korsah et al. (2013) studied the interre-

lated constraints and dependencies between robots and tasks and added a layer of

dependencies upon Gerkey’s taxonomy. Nunes et al. (2016) proposed a taxonomy

which extended Gerkey’s taxonomy to include hard and soft constraints on task

deadlines and ordering of tasks. Gerkey’s and Korsah’s taxonomies are sufficient to

categorize the problem and are explored in further detail in the following section.

5

2.1.1 Gerkey’s Taxonomy

Utility Factor

Gerkey defined a Utility Factor U as a measure of a robot’s ability to perform a

task. Utility factor is defined by considering two factors, cost C of performing a

task, and quality Q of the task.

Given a robot R and a task T , if R is capable of executing T , and if cost of

executing the task CRT and the quality QRT is defined, then utility factor of the

task is given as

URT =

QRT − CRT , if R is capable of executing T

0, otherwise

MRTA

ST

ST-SR

ST-SR-IA ST-SR-TA

ST-MR

ST-MR-IA ST-MR-TA

MT

MT-SR

MT-SR-IA MT-SR-TA

MT-MR

MT-MR-IA MT-MR-TA

Figure 2.1: Gerkey’s Taxonomy

Criteria for Gerkey’s Taxonomy

Gerkey divides MRTA problems (see Figure 2.1) based on the following three criteria:

• Single-Task vs Multi-Task robots [ST-MT]: ST robots indicates that

each robot in MRS can execute only one task at any given time while MT

robots can perform multiple tasks simultaneously.

• Single-Robot vs Multi-Robot tasks [SR-MR]: SR tasks indicate that

only one robot is required to completely perform a task while MR tasks require

more than one robot to complete a task.

6

• Instantaneous Assignment vs Time-extended Assignment [IA-TA]:

Instantaneous allocation refers to the allocation process performed using

information about currently existing tasks and robot states without planning,

while Time-extended assignment takes into account the task information,

addition and deletion of tasks, and robot states at a future point in time.

ST-SR Domain:

The problems in ST-SR-IA can be modelled as Optimal Assignment Problem, where

given a set of robots and a set of tasks, assign at most one task to each robot such

that sum of Utility Factor 2.1.1 for all robots is maximised. The ST-SR-TA version

of the problem takes into account future utilities of robots and tasks. This problem

is proven to be NP-hard.

One of the ways to look at this problem is to model the time-extended cost

schedule for each robot by assigning weights and further minimizing the total

weighted cost. Another approach is to first solve the initial problem as optimal

assignment problem and secondly use a greedy algorithm to assign remaining tasks.

This method basically ignores the time-extended element and approximates the

problem as an iterated ST-SR-IA problem. However, such an approach is feasible

when the number of robots is greater than the number of tasks.

ST-MR / MT-SR Domain:

The ST-MR-IA problem (formally known as Coalition Problem) splits a set of robots

R is into disjoint sets (called ’coalitions ’) where the number of coalitions is equal

to the number of tasks and each coalition is assigned to at most one task. The

splitting of a set into disjoint sets such that the union of split sets is the original set

is also known as the Set Partitioning Problem (Hoffman and Padberg, 2001) . The

complexity of this problem is strongly NP-hard and is studied in further detail in

Section 2.2.2.

A decentralized strategy to solve ST-MR-IA related task allocation problems

that returns an efficient solution in response time and total distance travelled is the

focus of this work. The ST-MR-IA problem can be modelled in a number of ways as

seen in Section 2.3. Further details about existing methods and strategies to address

Coalition Formation Problem is mentioned in Section 2.4.

The ST-MR-TA problem includes both, coalition formation and schedule

7

components. This problem is NP-Hard. Like the ST-SR-TA solution, modelling an

iterative solution that repeatedly solves ST-MR-IA for small time steps.

The category of MT-SR-IA and The MT-SR-TA problems allows robots to

perform multiple tasks simultaneously while each task requires only one robot. The

analysis of this problem is similar to those its ST-MR counterparts with robots and

tasks interchanged in the problem formulation.

MT-MR Domain:

When robots simultaneously perform multiple tasks that requires more than one

robots for complete execution, the problem belongs to MT-MR-IA category. The ST-

MR-IA category was modelled as a Set Partition or Coalition Formation Problem.

However, in the MT-MR-IA problem, the set of robots R is split in non-disjoint sets.

The subsets of R can now be intersecting sets and is popularly known in mathematics

as the Set Covering Problem. This problem is strongly NP-hard. The MT-MR-TA

problem is an instance of scheduling problem with Set Covering problem.

2.1.2 Korsah’s Taxonomy

Gerkey’s taxonomy is important to understand different flavours of MRTA, however,

it does not capture all the MRTA problems. Gerkey’s taxonomy is unable to account

for problems with interrelated utilities and constraints. Korsah et al. (2013) gives

the example of a multi-Travelling Salesman Problem (mTSP) where robots have to

visit multiple target locations which results in utilities (see 2.1.1) being related to

the cost of the route instead.

Gerkey’s definition of utility is unable to accurately handle the problem

statement in Section 1.1 where the utility for a robot-task pair depends on the

actions of other robots. For example, task ti requires j robots and if more than j

robots (say k) are assigned to the task. Gerkey’s definition assigns positive utility

for all k robots. However, only the j robots that arrive first and begin performing

the task have positive utility while the remaining k − j robots’ utility is modelled

incorrectly.

8

Korsah et al. (2013) introduced the definition of effective utility eU to model

utility for a subset of robots and is given by

URT =
∑
r∈R

∑
t∈T

eURT
rt

Korsah states that the equality does not hold for problems with interrelated

utilities. Korsah proposes a modified version of taxonomy called iTax that

introduces an additional layer on Gerkey’s taxonomy (see Figure 2.2). The

additional layer is useful to address the interrelated utilities and constraints.

Task Decomposition

Task decomposition enables division of tasks into sub-tasks which can be performed

as individual tasks or further partitioned in smaller tasks. Pini et al. (2011) propose

self-organised task decomposition in which swarm decides whether to partition a

task into sub-tasks. The additional layer previously mentioned includes the task

decomposition terminology provided by Zlot and Stentz (2006) .

• Simple Task: A task at its lowest or atomic level and cannot be broken

down into sub-tasks.

• Compound Task: A task that can be completely decomposed into a set of

simple tasks.

• Complex Task: Task decomposition takes place in a set of multi-allocatable

subtasks in at least one way. These subtasks may be simple, compound or

complex where a complex task can have multiple complete decompositions.

iTax Layer:

Based on the decomposition of tasks and the definition of utility for a subset of

robots, Korsah categorizes the intertask dependencies in the following manner:

• No dependencies: Tasks are simple or compound with independent agent-

task utilities in this category. In other words, the effective utility of an agent

for a task doesn’t depend on any other tasks or robots in the system.

9

• In-Schedule Dependencies: The tasks in this set of problems have schedul-

ing dependencies. The utilities for a robot depend on the order of tasks

performed by a robot. Constraints placed on task schedules affect the utility

of the individual robot. The nature of tasks remains simple or compound.

• Cross-schedule Dependencies: The set of problems where the utilities

for robots depend on the tasks executed by other robots, and on the order

of tasks performed by the robot itself fall in this category. Constraints that

exist between schedules of multiple robots and optimization of individual robot

schedule cannot be decoupled from that of other robots. The nature of tasks

remains simple or compound.

• Complex Dependencies: This is the only case when the nature of tasks

is complex. These are task allocation problems where utilities depend on the

interrelated task schedules between robots which is additionally dependent on

the decomposition chosen for the complex tasks.

iTax

No Dependencies

ND

Cross-Schedule

Dependencies XD

Complex

Dependencies CD

ND[ST-SR-IA]

ND[ST-SR-TA]

ID[ST-SR-IA]

ID[ST-SR-TA]

ID[MT-SR-TA]

XD[ST-SR-IA]

XD[ST-SR-TA]

XD[MT-SR-IA]

XD[MT-SR-TA]

XD[ST-MR-IA]

XD[ST-MR-TA]

XD[MT-MR-IA]

XD[MT-MR-TA]

CD[ST-SR-IA]

CD[ST-SR-TA]

CD[MT-SR-IA]

CD[MT-SR-TA]

CD[ST-MR-IA]

CD[ST-MR-TA]

CD[MT-MR-IA]

CD[MT-MR-TA]

Figure 2.2: iTax: Korsah’s Taxonomy for MRTA

10

2.2 Problem Formulation

If the nature of tasks is known, then the problem of task allocation has two aspects

(McLurkin and Yamins, 2005) :

1. Calculating the number of robots required by each task

2. Splitting the set of robots in sub-teams and assigning a sub-team to a task

The number of robots required for each task is provided to the system in order

to simplify the problem. With reference to Section 2.1, the second of the above

mentioned aspects is analogous to Coalition Formation Problem or Set Partitioning

Problem. Shehory and Kraus (1998) studied task allocation as a coalition formation

problem with inspiration from Distributed Artificial Intelligence methods present

in 1990s. Coalition Problem is a well studied problem, especially in the areas of

Operations Research(Padberg, 1972) and mathematics. Section 2.2.2 shows the

difficulty in solving the Coalition Formation Problem.

2.2.1 Mathematical Formulation

Coalition: A non-empty set C is said to be a coalition of set A if

C ⊆ A ,

Coalition Structure: A coalition structure (CS) is a partition of set A, into

disjoint, exhaustive coalitions. Each element from set A belongs to only one coalition

set Ci and the union of coalition sets is equal to set A.

A =
⋃

Ci

Let us consider an example with three robots as shown in Figure 2.3.

Nc = 7 : {1,2,3},{1,2},{2,3},{1,3},{1},{2},{3}
NCS = 5:

[
{1},{2},{3}

]
,
[
{1,2},{3}

]
,
[
{2,3},{1}

]
,
[
{1,3},{2}

]
,
[
{1,2,3}

]

11

Figure 2.3: Coalitions and Coalition Structures

Formulation

Given

A set of n Robots R = r1, r2...rn

A set of m Tasks T = t1, t2...tm

For a set of Task Sizes N = n1, n2...nm where
∑m

i=1 ni = n

At m Locations L = (x1, y1), (xm, ym), ...(xm, ym)

The set of robots R must be divided into m Coalitions s.t.

Set of Coalitions C = C1, C2...Cm form a Coalition Structure

where Coalition Ci ⇒ Ti

while minimizing total distance travelled D and time taken for complete allocation

of all tasks S

D =
∑
i=1

n(di) ; di = distance travelled by ri

S = max(s1, s2, s3.....sm) ; si = time required for allocation of task ti

12

2.2.2 Complexity Analysis

The aim of the Coalition Formation problem is to select the right coalition for a given

task under certain conditions. The complexity of the problem lies in the number of

coalition structures that can be formed. Sandholm et al. (1999) coalition structures

and is briefly described below.

Focus is initially given to the number of coalitions before selecting a coalition

structure. A coalition is a non-empty subset of elements from a superset of all

elements (also referred to as ’agents in Game Theory). This is a combinatorial

problem where number of ways to form a coalition of a given size s is
(
n
s

)
. Thus the

total number of Coalitions Nc is given by

Nc =

(
n

1

)
+

(
n

2

)
+

(
n

3

)
......

(
n

n

)
=

n∑
i=1

(
n

i

)
where

(
n

k

)
=

n!

k!(n− k)!

Nc = 2n − 1 (Sum of Binomial Coefficients)

The number of coalition structures scale rapidly in comparison to number of

Coalitions. The total number of coalition structures is

n∑
i=1

Z(n, i)

where Z(n, i) is the number of coalition structures formed by i coalitions. The

following recurrence sum provides an alternate way to capture the number of

coalition

Z(n, i) = iZ(n− 1, i) + Z(n− 1, i− 1),

Z(n, n) = Z(n, 1) = 1

Consider a game of (n − 1) agents where the first term, iZ(n − 1, i) counts the

number of coalition structures formed by adding a new agent to existing coalitions.

The addition of a new agent is done in i ways for existing i coalitions. The second

term Z(n−1, i−1) considers adding the agent in a coalition of its own, and therefore

considers existing coalition structures that are formed with (i− 1) coalitions.

13

Sandholm et al. state that the number of coalition structures is O(nn) and

ω(nn/2) . Figure 2.4 illustrates how 2n − 1, nn, and nn/2 scale with respect to n.

0 5 10 15 20 25 30

Number of Robots (x)

100

1010

1020

1030

1040

1050

L
o

g
|y
|

Complexity of Coalition Formation

y=x
x

y=x
0.5*x

y=2
x
-1

Figure 2.4: Complexity of Coalition Formation

2.3 Modelling Coalition Formation Problem

Coalition Formation Problem can be formulated as another existing problem. This

helps in implementing existing techniques to solve the coalition formation. Popular

ways to model the problem are explored in this section.

14

2.3.1 Multiple Travelling Salesman Problem

Multiple Travelling Salesman Problem (mTSP) is a generalized case of the popular

Travelling Salesman Problem(TSP). In TSP, an optimal route must be computed

for a single salesman to visit multiple cities. For the mTSP, there are m salesmen

travelling to n cities where the total route of m salesmen is optimized.

Coalition Formation is modelled as mTSP (Bektas, 2006) where robots play

the role of salesmen and tasks are modelled as cities. The formulation includes

two modifications: the number of salesmen that visit each city can be more than

one; and the tour ends once a salesman visits a city. In order to remove the first

modification, the number of tasks spawned at a location are equal to the task size.

This helps to retain the initial formulation of each salesman visiting one city.

A popular solution for solving the mTSP is Kuhn (1955) ’s Hungarian Method

for assignment problems . Dorigo and Gambardella (1997) used swarm intelligence

technique called Ant Colony Optimization to solve the TSP. Zhang et al. (2006)

improved upon the Ant Colony Optimization and proposed a method to solve mTSP

using the Ant Colony Optimization. Bektas (2006) covers various methods of

modelling and solving the mTSP.

2.3.2 Optimal Assignment Problem

Optimal Assignment Problem is a classical problem where there are m workers and

n weighted jobs, where each job requires one worker. Each worker has the ability

to estimate it’s non-negative efficiency to perform a task. The efficiency of every

robot-task pair is taken in to account to perform optimal assignment that maximises

performance of the system.

Optimal assignment in the case of MRTA can be observed as robots being workers

and tasks in place of jobs where a robot can perform multiple tasks and a task

may require multiple robots. The system should have the ability to estimate the

efficiency of robots to perform tasks. One example, is to use the Utility definition

and maximize utility.

Optimal assignment problems can also be modelled as minimization problems

where the total cost to perform tasks, time required or distance travelled is

minimized.

15

2.3.3 Multi-robot Task Allocation as an Economic Game

A broker sells tasks in the system where the cost of task j is cj. Robot i acts in a

greedy manner and submits a bid hij for task j. Every robot bids for all tasks in the

market. The problem at hand is setting the initial price pi of task, that is higher

than broker value ci but not so high that robot bids would not lead to purchase of

the task.

A market is assumed to be at equilibrium when no two robots purchase the same

task. Multiple instances of the same task are sold for tasks that require multiple

robots. Profits must be made by all agents at equilibrium to reach an optimal

solution. The broker is empowered to resolve conflicts when more than one robots

attempt to purchase a particular task. Conflict consume valuable time in assignment

process and therefore it is important to model bidding of robots such that conflicts

are reduced. This concept of task marketplace gave rise to auction based centralized

and decentralized methods.

Gerkey and Matarić (2002) proposed an auction-based task allocation system

MURDOCH, for multi-robot dynamic task allocation. The purpose of MURDOCH

is to show that distributed negotiation for auction based systems are effective for

coordinating multi-robot systems. Zlot and Stentz (2006) modelled an auction

based approach for complex tasks where individually work on smaller partitions of

the task to complete a complex task.

Vig and Adams (2006) introduce RACHNA system to handle dynamic tasks in

the ST-MR problem category. The system creates two types of agents, a task agent

to auction new tasks and service agents to bid on tasks. Vig and Adams (2006)

modified Utility definition to facilitate bids based on utility value for such a market

based approach. Choi et al. (2009) proposed a consensus based-bundle algorithm

(CBAA) for decentralized multi-robot auctions. CBBA is able to resolve conflicting

winning bids via local interactions.

16

2.4 State of the Art for Decentralized Allocation

of Spatially Distributed Tasks

Jevtić et al. (2012) proposed a Distributed Bees Algorithm to address the problem of

task allocation. The highlight of this algorithm is that decision-making is distributed

and robot choose assignments autonomously. Such a system does not depend on

coordination with other robots and robots make decisions purely on the knowledge

of tasks requirements and task locations.

Ak and Akn (2016) work on a hybrid approach to solve spatial task allocation

problems. Tasks are initially clustered based on relative distances to robots. Robots

are then assigned to the best cluster based on optimization for distance travelled by

all robots. Robots independently plan for the tasks present in the assigned clusters.

Ducatelle et al. (2009) proposed an algorithm in which a client announces tasks

to selective robots in space. The aim is to divide tasks among other robots in the

swarm. Two methods are used to achieve task assignment: one relies on simple

attraction and repulsion to light, while in the other method, task information is

spread to the swarm via local communication with a gossip based model.

Parker et al. (2016) ’s work focused on dividing heterogeneous team of robots

into dynamic task teams to handle time dependent tasks. Parker’s word accounted

for uncertainties present in robot and task locations, robot life and communication

errors.

Claes et al. (2015) used a Multi-agent Markov Decision Framework to allocate

spatially distributed tasks. Initially, the robots estimate a suitable task assignment

and then estimate the task assignment for other robots in the system. Thus a robot

predicts the quantity in which all tasks that will be serviced and makes a decision

based on the prediction.

Khaluf and Rammig (2013) focused on the temporal aspect of task allocation

while considering task size. The author introduces the idea of allocating tasks based

on probability matrix for each task. The probabilities of each task at a particular

time instance are dependent on task size, task deadline, and number of robots in

the task at that instance.

Di Paola et al. (2015) propose a decentralized model for task allocation for

heterogeneous robots. The subset of robots that meet skill requirements to execute

a task is formed. Task assignment is carried out by a consensus among the subset of

17

robots. Selection criteria is modelled based on distance from the task and urgency

(termed as fieriness).

Mottola et al. (2014) presented a team-level programming model system called

VOLTRON which uses a distributed hash-table to perform dynamic task allocation

for drones. Space is divided into grids and actions(tasks) are specified in form of

spatial variables for each location in space.

Dantu et al. (2011) demonstrate ’Karma’, a system to program a swarm of micro-

aerial vehicles (MAVs). These MAVs update spatial information in form of tuple

space at a centralized host which is the central scheduler for the system. Importance

of spatial information in swarm system is highlighted despite the centralized nature

of the work.

2.5 Drawbacks

This section is devoted to analysing the drawbacks and shortcomings of the models

and methods mentioned in Section 2.3 and Section 2.4 respectively.

Challenges in mTSP:

Solving the mTSP using traditional methods such as Kuhn (1955) ’s algorithm and

its extension results in computation time of O(n3) (where n is the number of cities).

This limits scalability unless response time for the solution is relaxed considerably in

impractical for hundreds of robots and task.Thus as the size of the problem increases,

exact methods consume become too slow and approximate methods are the only

option. Ant Colony Optimization is an approximate method with no guarantees on

optimality of the solution. The quality of the solution provided by ACO improves

with the number of iterations performed. Additionally, according to Zhang et al.

(2006) ’s method, mTSP has to be decomposed as a TSP and different decomposi-

tions are provided to each ant. Such a solution puts a higher demand on the number

of iterations required.

Bottlenecks in Auction/Market-based Algorithms:

Complexity analysis for auction based methods by Kalra et al. (2006) shows that

computation complexity of auction based algorithms depends upon the processes of

18

bid valuation, winner determination, and number of auctions while the communica-

tion complexity depends on the phases of auction call, bid submission, and decision

announce phase. The complexity of winner determination is worst at O(r.n2)

where n is the number of tasks and r is the number of robots that bid for the

item. Additionally, after each auction, m robots are assigned to tasks and therefore

the total number of auctions are
n

m
. Bottlenecks in communication complexity of

auction methods is auction call phase with O(r.n) and bid submission phase with

O(r.n).

Decentralized Approaches that do not use Spatial Task Information

Among decentralized approaches, Khaluf and Rammig (2013) ’s work focuses on

biasing weights based on task size, task deadlines, and currently present robots in

the task but do not consider the spatial distribution of tasks. Ducatelle et al. (2009)

’s work in multi-robot task assignment depends on perception of light intensity and

a gossip based algorithm, however robots do not use spatial information of task to

improve on task selection.

Shortcomings of work that use Spatial Task Information

Di Paola et al. (2015) and Claes et al. (2015) make use of spatial information of

tasks to improve on task selection. However in both methods, additional information

of other robots’ locations, decisions (true or predicted), and ability to execute a

task is taken into account. This invokes the need of communication of additional

information and increased local interaction with other robots. The work in this

paper enables robots to make decisions independently without any knowledge of

other robots in the system.

Ak and Akn (2016) and Dantu et al. (2011) ’s work include spatial information of

tasks in assigning robots to task. In both methods, assignment to tasks is performed

by a centralized system that is made aware of task locations. This is also the case

with Mottola et al. (2014) ’s work with VOLTRON programming system, where

drones are connected to a centralized system using Wifi..

Novelty

The work in this papers presents a decentralized framework that allows robots

to independently make decisions and perform self allocation of tasks. This aids

19

in removing the bottleneck of scalability as each robot makes decisions by itself.

Additionally, the robots do not depend on selection performed by other robots and

thus bottlenecks present in communication for task assignment are removed. Thus

the response of the system for task assignment is instantaneous. Due to the lack

of information about the decisions taken by other robots, the resultant assignment

is sub-optimal. We make use of the spatial information to improve on the sub-

optimality of the solution and explore how to bias tasks selection with task size and

task locations. Additionally, we conduct an extensive simulations in various spatial

topologies and study the behaviour of the system in detail.

20

Chapter 3

Approach

In Chapter 2, the complexity of the forming coalitions is discussed. Additionally,

drawbacks of existing systems are noted in Section ??. In this chapter, a framework

for allocating spatially distributed tasks and a design for task allocation algorithm

is discussed. However, the framework realizes a complex emergent behaviour which

makes it hard to study the task allocation strategy. Therefore, simplifications

(Section 3.1.6) are made to the system in order to study spatial task allocation

in detail. The design of spatial task allocation is studied in Section 3.2.

3.1 Framework

Figure 3.1: Framework

21

The framework in Figure 3.1 describes a decentralized system in which a

robotic swarm discovers task in the environment (see Section 3.1.1), communicates

task information (see Section 3.1.2), performs task allocation (see Section 3.1.3),

navigation (see Section 3.1.4) and keeps a count of robots (see Section 3.1.5)

performing each task. Each part of the framework is important for the swarm to

function independently.

3.1.1 Spatial Task Information Management

In Chapter 1, numerous examples of spatially distributed tasks are mentioned.

Knowledge about task information such as task location, task size, task deadlines,

required sensing and actuation, and scheduling dependencies are essential to perform

all tasks. The focus of this research is on spatially distributed tasks for a homoge-

neous swarm with no deadlines or inter-task scheduling dependencies. Therefore

this subsection is focused on inferring spatial and task size information.

Discovering Spatially Distributed Tasks

The aim of this subsection is to understand the concept of discovering spatially

distributed tasks. Each task is characterised by task quota and task location. Ants

and other social animals infer task information from the environment. Informa-

tion about the presence of food is validated with smell, taste, touch, and sight.

Along with the location, the size of food source needs to be communicated. Ants

communicate food location by laying a pheromone trail from the food source to the

nest. Mailleux et al. (2000) showed that ants have a higher probability of laying

a trail if the volume of a food source exceeds a threshold. This results in a global

emergent behaviour where the size of a food source corresponds to the recruitment

of ants.

Similarly, robots are equipped with various sensors such light sensors, proximity

sensors, camera, audio receivers, and GPS to deduce existence, location and task

size from environment. Such a wide array of sensing abilities allow for multiple ways

to detect task locations.

22

Some examples in swarm literature include:

1. The Swarmanoid Project (Dorigo et al., 2013) used camera mounted on indoor

flying robots (eye-bot) to search a desired object in the environment. The eye-

bots then communicate location to via connected swarm network to foot-bots

(see Section 4.2.7) and hand-bot(robots capable of climbing and manipulating

small objects) which cooperate to retrieve the object.

2. Ducatelle et al. (2009) used different coloured lights to create attractive

and repulsive potentials. The foot-bots use camera to detect and calculate

an attraction potential to the position of a yellow light, and a repulsive

potential from the position of green light. The required recruitment of robots

is controlled by modifying the number of yellow and green lights at a task

position.

3. Habibi et al. (2016) demonstrate two distributed methods by using proxim-

ity sensors and local communications where robots cooperate to estimate 2D

geometry of objects placed on the ground.

4. Li et al. (2017) detected task by projecting different lights on robots. The

robotic swarm then attempted to camouflage according to incident light.

In this experiment, robots are required to move in the arena. The arena floor

is equipped with lights and change in grey-level value from floor colour indicate a

task location. The robots detect task quotas by sensing the grey level values on the

floor and task location is naturally set at the location where the robot discovered

the task. However, such a detection of task locations and task quotas to invoke the

need to recruit robots to execute tasks.

3.1.2 Recruitment

Once tasks are discovered and requirement of agents is estimated, it is vital to spread

this information across the swarm. The spread of task information aids in recruiting

robots to perform tasks. The roles are divided as performer, messenger, and worker.

The main goal of the forager robots is to discover spatially distributed tasks and

recruit robots to perform tasks. The role of the messenger robots is to spread task

information using local communication across the swarm in order to recruit robots.

The performer robots execute the tasks (see Figure3.2).

23

Forager

Each robot starts off as a forager robot and switches role to either a messenger or a

performer robot. Initially, the robot has no task information and moves randomly in

search of tasks. While exploring discovering tasks (see Section 3.1.1), the robot also

listens to any local broadcast messages from other other robots. If a forager robot

receives task information from a messenger robot, the forager robot then takes role

of a messenger robot. If it discovers a new task and does not encounter a messenger

robot, the forager robot takes the role of performer at the discovered task.

Figure 3.2: Recruitment

Messenger

As a robot switches the role to a messenger it does not discover a task successfully

but receives task information from a nearby broadcasting robot. As a messenger, the

robot continues to accumulates new task information received from other messenger

and performer robots. Additionally, the messenger robot keeps broadcasting all

known task information within the local communication range for a certain amount

of time. Once a certain amount of time is passed, the robot allocates itself a task

to perform based on the task selection strategy and proceeds to the task location.

24

Performer

In this experiment, the only task executed by a performer robot is to wait inside a

radius around task location and to keep broadcasting all known task information.

Additionally, the robot continues to accumulate information about new tasks from

passing messenger robots or other nearby performer robots.

Virtual Stigmergy:

Though the concept of virtual stigmergy is not explored in this work, the concept

refers to modifications made to the environment to transfer information. The

inspiration behind virtual stigmergy arises from social insects (eg. ants laying a

phermone trail). Pinciroli et al. (2015) explored the concept of virtual stigmergy

by allowing robots to share (key,value) pairs using tuples. Previously described

works of Dantu et al. (2011) and Mottola et al. (2014) use the concept of tuple

spaces to model variables distributed in space. The concept of virtual stigmergy is

important as it is an active area of research in robotic swarm and an effective means

for information transfer.

3.1.3 Spatial Bias Strategy for Task Selection

If a robot in a messenger state receives information about multiple tasks, then after

a threshold time has passed, it must make a decision to choose a task from the

available list of tasks. The strategy is a decentralized strategy since every robot

selects a task independently.

Task Selection

Each task is characterized by task size and spatial location. A robot selects a number

randomly between 0 and 1. Each task is weighted based on the number of required

robots and these weights are then added together and normalized. This strategy

assigns intervals proportional to task size for each robot. When number of robots

and number of tasks are high, such a strategy ensures that roughly the required

number of robots are assigned to tasks. The the task selection strategy is scalable

and facilitates quick decision making.

25

Spatial Bias

The task selection method does not take into account task locations and therefore

robots can end up choosing far away tasks. It is therefore necessary to take into

account the relative location of these tasks with respect to a robot’s locations.

Spatial bias is used to modify weights locally on a robot utilizing task location

information. Even though weights generated from task size are propagated equally

within the swarm; the weights assigned by a robot to each task depend on its relative

distance to tasks. This strategy results in different robots having different weights

for the same set of tasks. The resultant effect is that tasks that are closer, and

require high number of robots have increased weights and tasks that are far away,

and require low number of robots have reduced weights.

Figure 3.3 shows an example of 3 robots adjusting weights according to relative

distance to each task. Column 1 named ’common’ shows that all tasks require equal

number of robots and thus have the same weights. Columns 1, 2, and 3 show weights

biased using spatial information by individual robots 1, 2, and 3 respectively.

co
m

m
on

ro
bo

t1

ro
bo

t2

ro
bo

t3
0

0.2

0.4

0.6

0.8

1

T
as

k
W

ei
gh

ts

Task1 Task2 Task3 Task4 Task5

Figure 3.3: Spatial Bias

26

3.1.4 Navigation

Robots have to move in the environment for searching tasks, communicating task

information with other robots, and travelling to task location. Robots diffuse in the

arena when performing the role of forager or messenger. When a robot allocates

itself to a task, the robot must go to the task location. A potential field approach

is used to attract robots to task locations. This approach results in optimal paths

in an arena with no obstacles.

Collision Avoidance

Collision avoidance is vital for any robot. Foot-bots 4.2.7 have 24 proximity sensors

arranged uniformly on the peripheral circle. The proximity sensor informs about

the range and bearing of obstacles up to 10 cm away from the robot. Readings

from all sensors are added together to get the resultant vector of collision. For each

reading from the proximity sensors, an opposite direction vector is calculated. The

magnitude of vector is more sensitive to obstacles that are closer as compared to

those far away. The magnitude is calculated with the aid of Lennard-Jones potential.

The magnitude of repulsion from Lennard-Jones potential for a target distance xt

is given as:

f(x) = −g
x

((xt
x

)2n
−
(xt
x

)n)
where xt = Target distance

x = Distance of collision

g = Gain factor

n = Exponent

Target distance is the range of proximity sensor, therefore any reading from the

proximity sensors for x > xt are not possible and potential for noisy readings is

truncated to 0 (shown by the red dot in Figure 3.4). Gain factor (g) is set to 100

and Exponent(n) is set to 2.

27

0 1 2 3 4 5

−
3
0

−
2

0
−

1
0

0
1
0

2
0

3
0

Lennard−Jones Potential

Distance (m)

M
a
g
n
it
u
d
e
 o

f
R

e
p
u
ls

io
n

Figure 3.4: Lennard-Jones Potential

Figure 3.5: Collision
Avoidance

In order to avoid collision, the foot-bot is made to move for short amount of

time Ta in the opposite direction to collision. After which the foot-bot is made to

turn and move in another direction for another short duration Tb and then foot-bot

continues either diffusing if the robot state is forager or messenger, or moving to

task location if the robot is a performer.

When two robots are in imminent collision, both of them perform collision

avoidance. This results in both robots moving away from each other followed by both

robots moving in different directions.Ta and Tb are tuned to ensure that both robots

move sufficiently away from each other and do not encounter repeated collisions.

3.1.5 Counting Robots

Local counting of robots is essential to decide whether to make redundant robots

leave a task or ask for more robots to execute a task. A simple algorithm to count

robots is to maintain a list of robot IDs on each robot. However, maintaining a

list is an expensive operation in a swarm as each robot must broadcast its ID to all

robots, IDs must be shared and propagated throughout the swarm. Additionally,

the ID list must be checked for each received message and updated in the case of

new IDs. Brambilla (2009) work shows three decentralized algorithms to estimate

group size.

28

A good decentralized counting algorithm returns the count quickly, does not

require ether high number or large size communication messages and requires less

computations and memory storage. Spanning tree serves as a viable solution as it

satisfies listed requirements.

Spanning Trees

Robots performing a task are assumed to have a connected network among them.

Such a connected network ensures that each robot can communicate directly or

indirectly with every other robot. Thus by randomly selecting a robot to perform

as a root node, we can build a spanning tree in the network which is a connected

graph.

H

Figure 3.6: Connected Network of Robots

Broadcast Phase

The spanning tree is built in the broadcast phase. An initiator robot begins the count

as the root (referred to as Host) robot and connects to nearby neighbouring robots.

From the point of each robot other than the Host robot, there is a parent robot which

initiates connection. Once a connection with a parent robot is established, the robot

then acts a parent and connects to other robots in its vicinity as its children. The

newly added children now broadcast and establish connection with further robots.

29

H

Figure 3.7: Broadcast Initiated
by Host Robot

H

Figure 3.8: Connected Spanning
Tree

Convergecast Phase

If a robot has no children, it begins the convergecast phase and sends a count value

of 1 to the parent. The parent robot waits until the count value is received from all

children. Once the count value is received, the parent robot sums up the count from

all children, adds itself to the count and sends the new count value to its parent.

This continues until the root robot receives count value from all its children.

H

Figure 3.9: Convergecast
Initiated by Nodes

H

Figure 3.10: Convergecast last
step

Count Propagation Phase

Once the root robot has received a count from all children, the total value of count

is the sum received from all children plus the root robot itself. The root robot

computes and propagates this count throughout the connected network and thus

each robot in the network has information on the total count.

30

H

Figure 3.11: Count Propagated to all Nodes

Discussion

1. The advantages of using spanning trees in this application are:

• The number of messages required for counting are 3n where n is the

number of robots in a connected graph.

• Each robot needs to only store IDs of Root, Parent and Children.

• Time complexity depends on the topology of robots and in the worst case

is3nt where t is the time required to transmit and process each message.

In the average case, it depends on the diameter of spatial distribution of

robots.

2. Limitations when spanning trees are used for counting. They are as follows:

• Breakdown of a robot during the three phases of count leads to disruption

of count.

• Since substantial time is required for constructing spanning tree, the

robots are assumed to be remain static in space. Subsequent movement

results in change of connected graph and disrupts the count.

• If the range of communication is small, multiple spanning trees will be

formed and invokes the need of merging count from different hosts.

31

3.1.6 Simplification

Difficulties in isolating task allocation

1. Effect of Task Discovery: Task discovery in space depends on the distribu-

tion of robots with respect to distribution of tasks and delay in task discovery

results in dynamic addition of tasks to the list of existing tasks. This creates a

temporal aspect to task allocation problem mimicking dynamic task requests.

2. Effect of Robot Counting: Counting the number of robots has the above

mentioned limitations(3.1.5) . Despite ignoring any robot failure in simulation,

the time required to count robots is non-deterministic and introduces delays.

3. Effect of Recruitment: Recruitment procedure induces an effect similar to

task discovery, where task information is spread via local communication. This

results in robots making decisions for allocation based on partially gathered

task information.

Modifications

The focus of this work is on allocation of spatially distributed tasks, and therefore the

modifications written below are made to the mentioned framework. These modifi-

cations enable isolation of the spatial allocation aspect and simplify some of the

elements of a distributed system.

1. Spatial locations and robot requirement of each task is made readily available

to the swarm via a Shared Table (3.2.1).

2. Counting of robots performing a particular task is performed via Loop

Functions (Section 4.2.7).

3. Real-time update about the current requirement of robots for each task is also

updated via a Shared Table (Section 3.2.1).

32

3.2 Design

3.2.1 Algorithm Structure

Shared Table

A Shared Table includes information about all tasks that is communicated to robots

periodically. Task information is in the form of task location and task selection

weights. Task selection weights are initially determined by the number of robots

required by each task. The weights depends on two factors, the number of robots

required by all tasks and the number of robots required by the task itself. A task

that is under allocated is assigned positive weight while a task allocated with the

exact number of robots has weight set to 0 and a task with more than necessary

robots is assigned negative weight. Robots only select tasks with weights greater

than 0.

Table 3.1: Shared Table

Task ID Task 1 Task 2 Task 3 ... Task m
Task Location x1, y1 x2, y2 x3, y3 ... xm, ym
Task Quota C1 C2 C3 ... Cm

Thus robots allocate themselves to a task from the set of tasks with positive

thresholds and perform task switching (see Section 3.2.2) if they are joining or

performing a task with negative threshold. Table 3.1 shows an example of shared

table. The quota values are updated when robots join or leave a task.

State Machine

We modelled the swarm behaviour with a state machine (see Fig 3.12. At any give

time, a robot can execute only one state.

• NOTASK: Robot is neither performing any task nor joining any task. Every

robot starts the experiment in a NOTASK state and if it allocates a task to

itself, robot changes state to JOININGTASK.

33

Figure 3.12: Robot State Machine

• JOININGTASK: A robot in NOSTATE allocates itself a task and changes

its Execution State to JOININGTASK. The robot then proceeds to move to

the task location.

• PERFORMINGTASK: A robot in JOININGSTATE changes its

Execution State to PERFORMINGTASK upon reaching the task location.

For simulation, the switch to PERFORMINGSTATE takes place when the

distance of robot from task location is less than task radius.

• LEAVETASK: When the number of robots performing a task is equal or

more than the required robots in task, a robot joining the task or performing

the task can enter LEAVETASK state. In LEAVETASK state, the robot

executes task switching where robots assign themselves to a new task. All

robots in JOININGTASK state immediately switch tasks while the robots

performing the task have a predefined probability to leave the task. This

ensures that all robots performing a task do not switch tasks simultaneously.

3.2.2 Task Selection and Spatial Bias Formulation

At the initial stage, the number of robots required in each task is known and weights

for each task are derived from them. When a robot selects a task (see Section 3.1.3),

the probability of a task being chosen depends on the weights assigned to each task.

34

However, in order to improve the efficiency of the system, it is necessary to bias these

weights with spatial information from task locations. The following subsection is

dedicated to different formulations of biasing the weights.

The following terms are used in various spatial bias formulations.

wiinit
: Initial weight for taski

winew : Biased weight for taski

dij : Distance of taski from robotj

sij : Distance inverse(1/dij) of taski from robotj

µj : Average of distances to all tasks from robotj

Σdj : Sum of distances of all tasks from robotj

wiinit
: Initial weight for taski

β : Spatial Bias Factor

α : Task Size Factor

Each formulation is explained and compared with ten tasks. To understand the

effect of the formulation on spatial information, the task size is kept equal for all

tasks.

Table 3.2: Sample Comparison Set

Task ID Task1 Task2 Task3 Task4 Task5 Task6 Task7 Task8 Task9
Task Size 1 1 1 1 1 1 1 1 1

Dist to Task 1 2 3 4 5 6 7 8 9

It is important to note that the above sample set is for one robot with equally

sized tasks. In scenarios with more robots, more tasks and various distribution

of tasks in space, analysis of formulations do not remain trivial. For this reason

extensive simulation experiments have been carried out.

Linear Formulation

This is the proposed primary formulation for spatial bias. The biasing function

includes a tuning factor β which decides the sensitivity of the system. Increasing

the sensitivity results in increased weights for nearby tasks and tasks further away

get neglected once the weights for the tasks go below zero. Increasing sensitivity

35

also results in reduced impact from task size factor which is instrumental in deciding

the initial weight.

winew = wiinit
− β(dij − µj)

Σdj

0 2 4 6 8 10

−
0

.4
−

0
.2

0
.0

0
.2

0
.4

Linear Formulation

Tasks

T
h

re
s
h

o
ld

Inital

Beta = 1

Beta = 2

Beta = 3

Beta = 4

Figure 3.13: Linear Formulation

Exponent Formulation

Jevtić et al. (2012) proposed this formulation in the Distributed Bees Algorithm.

The formulation takes two parameters into account, namely quality and cost of the

task which is controlled by two factors,α and β. The two factors enable control over

qualities and cost independently.

To show the behaviour of Jevtic’s function in this case, quality of a task

is assigned to task size and definition of cost is kept similar to the original

algorithm(1/DistToTaski).

winew =
wαiinit

sβij∑n
i=1w

α
iinit

sβij

36

0 2 4 6 8 10

−
0

.4
−

0
.2

0
.0

0
.2

0
.4

Exponent Formulation (Jevetic)

Tasks

T
h

re
s
h

o
ld

Inital

Beta = 0.5

Beta = 0.8

Beta = 1.1

Beta = 1.5

Figure 3.14: Exponent Formulation

Task Switching

Task switching is an integral part of a decentralized approach to task allocation when

more than the required number of robots attempt to perform a task. Excessive

robots at one or more tasks results in under-allocation of other tasks, waste of

travelled distance and time taken to reach the task, and crowding effect. Thus it is

beneficial for the system when excess robots, performing or joining a task, to allocate

themselves to another task. It is more efficient for robots in JOININGTASK state

to switch tasks than the robots in PERFORMINGTASK state.

37

Chapter 4

Evaluation

Chapter 3 discussed the framework and design of Spatial Bias Strategy. This chapter

discusses the criteria for evaluation of the performance of biasing strategy (see

Section 4.1). Section 4.2 lists the various changes made to experiment setup that are

necessary to observe the behaviour of the system. Section 4.3 shows the compiled

results from selected sets of experiments. Since a vast number of simulations were

carried out, it is not possible to show result from every set of simulations. Therefore,

results that aid in understanding the nature of the system under various parameters

are taken into consideration.

4.1 Criteria for Evaluation

4.1.1 Robot Metrics

Distance Travelled

Reducing total distance travelled by the entire swarm is the primary criteria in robot

metrics. In a physical world, reducing the total distance means using less energy to

travel. This is critical as inexpensive robots usually have low battery life.

It is important to note that reduction of total travel distance does not imply

that time required to allocate tasks also reduces. Consider a situation where a high

number of robots travel very low distance and small number of robots travel large

distances due to excessive task switching yet results in reduced total travel distance.

However, the small number of robots take more time to get allocated. Therefore,

distance travelled is mapped as box plots for each set of experiments.

38

Total Allocation Time

Reducing total task allocation time is equally important criteria as compared to

reducing the distance travelled by the swarm. This criteria refers to the time

required to completely allocate all tasks. In simulations, the experiment is said

to be complete when all tasks are allocated. As the number of robots are set to be

equal or greater than the total number of robots required, each experiment converges

to total allocation state. In practical situations, priority is given to total allocation

time or total distance travelled depending on the application.

Task Switches

This is a secondary criteria as compared to total distance travelled and total time

required. When a robot is forced to switch allocation from one task to another, the

energy spent in travelling to initial task is wasted. Thus limiting the number of task

switches is important. However in situations where the number of robots required

is more than required, this criteria can be relaxed and focus can be given to either

or both of the above criteria.

4.2 Experiment Design

Section 4.1 focuses on an evaluation metric to judge task allocation strategy. It is

necessary to carry out extensive simulation to understand the workings of this system

with respect to different parameters. These parameters include spatial task topology,

ratio of number of robots to number of tasks, and number of tasks in an arena.

Additionally, varying these values over different bias factors for a large number of

random seeds aids in understanding the system. Studying the behaviour of swarm

system requires simulations involving large number of robots such as hundreds or

even thousands. Section 4.2.7 describes the use of ARGoS simulator and the foot-

bots used for simulations.

39

4.2.1 Spatial Task Distribution

Lattice

Spatial distribution of tasks follow different topologies depending on the application.

Application in structured environments such as warehouses, construction, surveil-

lance grids and agriculture fields have task locations placed in grid-like topology.

Figure 4.1: Lattice Distribution of Tasks

Uniform

Applications where task locations do not have relationship with other task locations

tend to have uniform distribution. Applications such as pick-up and delivery

requests in cities, show uniform distribution. Uniform distribution means that the

probability of task being present at a position in space is equal for all positions.

Figure 4.2: Uniform Distribution of Tasks

40

Scale-free

Scale-free networks show interesting behaviour which is seen in many applications.

Scale-free distribution means that new task requests have higher probability of

occurrence in the vicinity of existing tasks. This results in high density clusters of

task and is seen in applications such as search and rescue, agriculture, and mining.

Figure 4.3: Scale-free Distribution of tasks

4.2.2 Task Size Distribution

Constant task size

In order to study the effect of task locations, task size is kept constant. This enables

all tasks to have equal initial weights. The initial probabilities are altered by each

robot depending on its relative position to each task. It is expected for the system

to travel smaller total distances for increasing values of bias factor. Figure 4.4 shows

an example when each task requires five robots.

41

Tas
k1

Tas
k2

Tas
k3

Tas
k4

Tas
k5

0

2

4

6

8

10

5 5 5 5 5

N
u

m
b

er
of

ro
b

ot
s

Figure 4.4: Constant Task Size

Uniformly distributed task size

Selecting task based only on distance results in ignoring the number of robots

required by a task. The problem of efficiently distributing tasks is studied along

with varying task sizes. Such a setting is important to study how sensitivity of

the system and the effect on time required for complete allocation. The range for

each experiment conducted with varying task size (0 - 2.5*meanrobots/task) i.e., if

meanrobots/task is set to 10, the range for task size is set between (0-25).

Tas
k1

Tas
k2

Tas
k3

Tas
k4

Tas
k5

0

2

4

6

8

10

7

1

9

2
3

N
u

m
b

er
of

ro
b

ot
s

Figure 4.5: Varying Task Size

42

4.2.3 Arena Size

To confirm the scalability of the system, it is important to test the system by

increasing the number of tasks. Arena size is increased in proportion to the number

of tasks such that ratio of tasks to area is kept constant. Thus increasing arena sizes

have increasing number of tasks. Increase in number of tasks directly corresponds to

increase in density of clusters in a scale-free topology; a situation that can possibly

lead to crowding of robots.

Figure 4.6: Increasing Arena Size: (a) 16m x 16m; 9 Tasks (b) 32m x 32m; 50 Tasks
(c) 56m x 56m; 170 Tasks

4.2.4 Mean Robots per Task

Robots per task is an equally important parameter that is varied. This enables

to study the scalability of system in terms of number of robots, along with the

effect on time required to allocate tasks when number of robots per task increase.

The number of robots per tasks is varied from 1,5,10,15,20. Figure 4.7 shows the

three cases with 1, 10, 20 robots per task. The design of the system is such that it

can handle both ST-SR-IA and ST-MR-IA cases of Gerkey’s taxonomy (see Section

2.1.1) without any special reservations for either categories.

Figure 4.7: Robots per Task. From right: 1, 10, 20 robots per task

43

4.2.5 Numerical Parameters

Three numerical parameters are varied for various sets of experiments.

1. Bias Factor β : The value of Bias Factor is varied from 0 to 5.0 with steps

of 0.25. Increasing the value of Bias Factor makes the robots more greedy to

tasks that are closer and over power the task quota factor.

2. Random seed : Since the strategy depends on random number selection for

task allocation decisions, each experiment setting is carried out for 50 different

values of random seed. This is important because task size and task locations

in uniform and scale-free settings are also randomized.

4.2.6 Special Cases

Robot Redundancy Factor

Performance of the system is measured when redundant robots are added to the

system. Redundancy factor of 1.2 implies that if the system needed 100 total robots,

120 robots were given to the system. Redundancy factor of 1.2 and 1.5 is used in

simulations.

Jevtic’s Formulation

A set of experiments is conducted by using the formulation provided by Jevtic (see

Section 3.2.2). Although the intention of Jevtic in (Jevtić et al., 2012) is to measure

the accuracy of coalition formed; we study the the performance of the formulation

with respect to the mentioned evaluation metrics (see Section 4.1).

PointMass3D Physics Engine

A large of experiments have been perform using the ’Dynamics2D’ physics engine.

The Dynamics2D physics engine takes into account collisions with physical

geometries of robots while the PointMass3D engine treats robots as point-masses

and allows robots to pass through one another without collision. Thus, the

PointMass3D physics engine aids in studying the crowding effect cause when the

density of robots and tasks in an area increases. Such a crowding effect makes it

hard for other robots to find a way through robots engaged in other tasks.

44

Circle topology

This scenario is used as a corner case scenario and used as a means to validate the

working of the proposed strategy. Tasks are spread evenly on the circumference of

a circle and robots are densely clustered near the center of the circle (see Fig 4.8).

Such a situation is expected to negate the distance factor as deviation of distance

of all tasks from any robot is very less.

Figure 4.8: Circle topology with robots clustered at the centre.

4.2.7 ARGoS - Autonomous Robots Go Swarming

ARGoS (Pinciroli et al., 2012) is a multi-robot simulator and was built for the

Swarmanoid Project (Dorigo et al., 2013) at IRIDIA Lab at the Universit Libre de

Bruxelles, Belgium. ARGoS is highly flexible and efficient as it offers modularity in

terms of design, parallelism in execution, and composability of objects. ARGoS is

the most efficient tool to simulate the physics of thousands or even tens of thousands

of robots.

Simulator

ARGoS facilitates use of multiple physics engines. ARGoS can divide the arena in

regions and use a different dedicated physics engine for each region. This improves

the flexibility and efficiency of the simulator and also allows robots to switch physics

engines based on the position in the simulation space. ARGoS supports 2D kinemat-

ics and dynamics engines, a 3D particle engine and a 3D-dynamics engine.

45

The ARGoS simulator is highly modular. It facilitates the addition of different

robots, physics engines,entities, visualizations, and communication media. This

modularity makes ARGoS highly flexible. ARGoS simulator supports visualizations

using a combination of Qt5 and OpenGL, ray tracing using POV-Ray, and text-

based visualization.

ARGoS is a multi-threaded simulator that maximises performance and improves

speed of execution on modern CPUs. ARGoS executes an experiment in multiple

simulation steps. Each simulation step is divided into three main phases:

sense+control, act, and physics. All three phases share resources such as sensors,

actuators, and entity information. ARGoS prevents race conditions between the

phases by executing sense+control first, followed by act and finally physics and

also prevents multiple components linking to a same resource. For example, an

actuator is linked to a component on a specific robot and cannot be shared by two

robots.

ARGoS Simulator

Physics
Engines

Robots

Entities

Visualizations

Media

Figure 4.9: ARGoS Simulator

46

Foot-bot

The foot-bot robot was built at cole Polytechnique Fdrale de Lausanne, Switzerland

, for the Swarmanoid Project (Dorigo et al., 2013) . The foot-bot is a differential

drive robot (maximum speed 30 cm/s) with a circular chassis of diameter 13cm and

28cm high. The foot-bot has mechanical modularity and can attach itself to other

foot-bots or hand-bots with the aid of a docking ring and gripper. The foot-bot

contains 24 IR sensors along the circular chassis which act as proximity sensors and

additional 8 IR sensors to the base of the foot-bot which perceive reflected shades of

grey. The foot-bot is also equipped with 13 LEDs, 12 on the circular ring and one on

top. The foot-bot is also equipped with two cameras; one top-front camera and an

omnidirectional camera. It contains two distance sensors; one for near range(40-300

mm) and a long range sensor (200 - 1500 mm). Communication between foot-bots

is achieved using the Range and Bearing system.

Figure 4.10: Foot-bot (Source: IRIDIA)

The foot-bot is an ideal robot for swarm applications due the amount of sensing

capability, mechanical modularity, interaction with other robots and environment,

small size, and ability to hot-swap the battery. Thus the foot-bot can be used

to mimic recharging robots, self-assembling robots, autonomous and decentralized

swarm experiments. In this work proximity, range and bearing, positioning, LED,

and ground sensors/ actuators are used.

47

Controller

A controller is a plug-in that controls the behaviour of robots. ARGoS aids in

developing user code, which is directly usable on real robots by making the controller

access a Control Interface. Control Interface enables users to access sensors and

actuators in a manner similar to that of real robots. Controllers for robots are

written in C++, Lua, and Buzz (Pinciroli et al., 2015) .

Inside the ARGoS configuration file (.argos), the controller section allows

addition of multiple controllers to an experiment.

Loop Functions

Loop functions allow users to modify the simulation. Loop functions act as hooks in

an experiment and aid in initialization as well as determining the end of an experi-

ment. Loop functions enable users to capture robot and environment data after

every time-step and offers hooks for analysis after the experiment. Loop functions

also provide functions for adding, removing, altering parameters or modifying states

of entities. Entities in this case are robots, and objects in the arena.

In this work, loop functions are used to initialize the experiment by placing tasks

in various topologies. Once the experiment begins, the Shared Table (see Section

3.2.1) is communicated to all robots at the start of each control loop. The shared

table is updated by counting the robots that perform and join different tasks or

are idling. This provides robots with any updates in the requirement of robots by

a task and enables the robots to take task switching and task selection decisions.

Loop functions are also used to monitor and record task allocation data after every

100 time-steps(10 secs) and distance travelled by the robots. Data analysed from

various experiments in seen in Section 4.3

48

4.3 Results

This section shows results for various set of experiments described in Section 4.2.

Each experiment setting result is made up of two graphs. The first graph contains

information on the distance travelled by robots in an experiment and average task

switches for all robots. Each experiment is setting is run for 50 different random

seeds. Thus the box plot data of distance travelled by robots consists of number

of robots in the experiment setting times 50. As we want to observe emergent

behaviour, it is important to understand the performance of the majority of the

robots and hence we show box plot data of the travel data of robots. The majority of

robots allocate tasks in the first task selection and do no switch tasks, and therefore

average task switches are considered over median task switches. The second graph

contains data about the time required to completely allocate all tasks.

4.3.1 Spatial Task Distribution

Lattice Task Topology

0.0 0.1 0.5 0.75 1.0 1.25 1.5 1.75 2.0 2.25 2.5
Bias Parameter

0

20

40

60

80

100

D
is

ta
n

ce
 t

ra
v

e
lle

d
 (
m
/r
o
b
o
t)

0.0

0.5

1.0

1.5

2.0

T
a

sk
 S

w
it

ch
e

s
p

e
r

R
o

b
o

t

Median Dist/robot
Average Sw/robot

24m x 24m (Lattice,Const) Tasks=25 with Robots=500

Figure 4.11: Lattice Task Topology (a) Distance and Task Switches

49

0.0 0.1 0.5 0.75 1.0 1.25 1.5 1.75 2.0 2.25 2.5
Bias Parameter

0

500

1000

1500

2000

2500

3000

T
im
e
S
te
p
s

Median TimeSteps

 24m x 24m (Lattice,Constant) Tasks=25 with Robots=500

Figure 4.12: Lattice Task Topology (b) Allocation Time

Uniform Task Topology

0.0 0.1 0.5 0.75 1.0 1.25 1.5 1.75 2.0 2.25 2.5
Bias Parameter

0

20

40

60

80

100

D
is

ta
n
ce

 t
ra

v
e
lle

d
 (
m
/r
o
b
o
t)

0.0

0.5

1.0

1.5

2.0

T
a
sk
 S
w
it
ch
e
s
p
e
r
R
o
b
o
t

Median Dist/robot
Average Sw/robot

 (Uniform, Constant) Tasks=25 with Robots=500

Figure 4.13: Uniform Task Topology (a) Distance and Task Switches

50

0.0 0.1 0.5 0.75 1.0 1.25 1.5 1.75 2.0 2.25 2.5
Bias Parameter

0

500

1000

1500

2000

2500

3000

T
im

e
S
te

p
s

Median TimeSteps

 (Uniform, Constant) Tasks=25 with Robots=500

Figure 4.14: Uniform Task Topology (b) Allocation Time

Scale-free Task Topology

0.0 0.1 0.5 0.75 1.0 1.25 1.5 1.75 2.0 2.25 2.5
Bias Parameter

0

20

40

60

80

100

D
is

ta
n

ce
 t

ra
v

e
lle

d
 (
m
/r
o
b
o
t)

0.0

0.5

1.0

1.5

2.0

T
a

sk
 S

w
it

ch
e

s
p

e
r

R
o

b
o

t

Median Dist/robot
Average Sw/robot

 (Scalefree, Constant) Tasks=25 with Robots=500

Figure 4.15: Scale-free Task Topology (a) Distance and Task Switches

51

0.0 0.1 0.5 0.75 1.0 1.25 1.5 1.75 2.0 2.25 2.5
Bias Parameter

0

500

1000

1500

2000

2500

3000

T
im
e
S
te
p
s

Median TimeSteps

 (Scalefree, Constant) Tasks=25 with Robots=500

Figure 4.16: Scale-free Task Topology (b) Allocation Time

4.3.2 Task Size Distribution

A similar set of experiments with different topologies is carried out by randomising

task size. However, since the trends and behaviour of the system is similar to that

of the graphs in Section 4.3.1, the results have not been included in this report

in interest of space. As a verification check, all the experiments in the following

subsections include randomised task size distribution.

52

4.3.3 Arena Size

Small Arena (9 Tasks)

0.0 0.1 0.5 0.75 1.0 1.25 1.5 1.75 2.0 2.25 2.5 2.75 3.0 3.25 3.5 3.75 4.0 4.25 4.5 4.75 5.0
Bias Parameter

0

20

40

60

80

100

D
is

ta
n
ce

 t
ra

v
e
lle

d
 (
m
/r
o
b
o
t)

0.0

0.5

1.0

1.5

2.0

T
a
sk
 S
w
it
ch
e
s
p
e
r
R
o
b
o
t

Median Dist/robot
Average Sw/robot

16m x 16m (Lattice,Random) Tasks=9 with Robots=180

Figure 4.17: Small Arena 16m x 16m (a) Distance and Task Switches

0.0 0.1 0.5 0.75 1.0 1.25 1.5 1.75 2.0 2.25 2.5 2.75 3.0 3.25 3.5 3.75 4.0 4.25 4.5 4.75 5.0
Bias Parameter

0

500

1000

1500

2000

2500

3000

T
im
e
S
te
p
s

Median TimeSteps

16m x 16m (Lattice,Random) Tasks=9 with Robots=180

Figure 4.18: Small Arena 16m x 16m (b) Allocation Time

53

Medium Arena (50 Tasks)

0.0 0.1 0.5 0.75 1.0 1.25 1.5 1.75 2.0 2.25 2.5 2.75 3.0 3.25 3.5 3.75 4.0 4.25 4.5 4.75 5.0
Bias Parameter

0

20

40

60

80

100

D
is

ta
n

ce
 t

ra
v

e
lle

d
 (
m
/r
o
b
o
t)

0.0

0.5

1.0

1.5

2.0

T
a

sk
 S

w
it

ch
e

s
p

e
r

R
o

b
o

t

Median Dist/robot
Average Sw/robot

32m x 32m (Lattice,Random) Tasks=50 with Robots=1000

Figure 4.19: Medium Arena 32m x 32m (a) Distance and Task Switches

0.0 0.1 0.5 0.75 1.0 1.25 1.5 1.75 2.0 2.25 2.5 2.75 3.0 3.25 3.5 3.75 4.0 4.25 4.5 4.75 5.0
Bias Parameter

1000

1500

2000

2500

3000

3500

4000

T
im

e
S
te

p
s

Median TimeSteps

32m x 32m (Lattice,Random) Tasks=50 with Robots=1000

Figure 4.20: Medium Arena 32m x 32m (b) Allocation Time

54

Large Arena (170 Tasks)

0.0 0.1 0.5 0.75 1.0 1.25 1.5 1.75 2.0 2.25 2.5 2.75 3.0 3.25 3.5 3.75 4.0 4.25 4.5 4.75 5.0
Bias Parameter

0

20

40

60

80

100

D
is

ta
n

ce
 t

ra
v

e
lle

d
 (
m
/r
o
b
o
t)

0.0

0.5

1.0

1.5

2.0

T
a

sk
 S

w
it

ch
e

s
p

e
r

R
o

b
o

t

Median Dist/robot
Average Sw/robot

56m x 56m (Lattice,Random) Tasks=170 with Robots=3400

Figure 4.21: Large Arena 56m x 56m (a) Distance and Time

0.0 0.1 0.5 0.75 1.0 1.25 1.5 1.75 2.0 2.25 2.5 2.75 3.0 3.25 3.5 3.75 4.0 4.25 4.5 4.75 5.0
Bias Parameter

4000

5000

6000

7000

8000

9000

T
im
e
S
te
p
s

Median TimeSteps

56m x 56m (Lattice,Random) Tasks=170 with Robots=3400

Figure 4.22: Large Arena 56m x 56m (b) Allocation Time

55

4.3.4 Mean robots per task

Mean Robot/Task = 1

0.0 0.1 0.5 0.75 1.0 1.25 1.5 1.75 2.0 2.25 2.5 2.75 3.0 3.25 3.5 3.75 4.0 4.25 4.5 4.75 5.0
Bias Parameter

0

20

40

60

80

100

D
is

ta
n

ce
 t

ra
v

e
lle

d
 (
m
/r
o
b
o
t)

0.0

0.5

1.0

1.5

2.0

T
a

sk
 S

w
it

ch
e

s
p

e
r

R
o

b
o

t

Median Dist/robot
Average Sw/robot

32m x 32m (Lattice,Random) Tasks=50 with Robots=50

Figure 4.23: Mean Robots per Task = 1 (a) Distance and Task Switches

0.0 0.1 0.5 0.75 1.0 1.25 1.5 1.75 2.0 2.25 2.5 2.75 3.0 3.25 3.5 3.75 4.0 4.25 4.5 4.75 5.0
Bias Parameter

1000

1500

2000

2500

3000

3500

4000

T
im

e
S
te

p
s

Median TimeSteps

32m x 32m (Lattice,Random) Tasks=50 with Robots=50

Figure 4.24: Mean Robots per Task = 1 (b) Allocation Time

56

Mean Robot/Task = 10

0.0 0.1 0.5 0.75 1.0 1.25 1.5 1.75 2.0 2.25 2.5 2.75 3.0 3.25 3.5 3.75 4.0 4.25 4.5 4.75 5.0
Bias Parameter

0

20

40

60

80

100

D
is

ta
n

ce
 t

ra
v

e
lle

d
 (
m
/r
o
b
o
t)

0.0

0.5

1.0

1.5

2.0

T
a

sk
 S

w
it

ch
e

s
p

e
r

R
o

b
o

t

Median Dist/robot
Average Sw/robot

32m x 32m (Lattice,Random) Tasks=50 with Robots=500

Figure 4.25: Mean Robots per Task = 10 (a) Distance and Task Switches

0.0 0.1 0.5 0.75 1.0 1.25 1.5 1.75 2.0 2.25 2.5 2.75 3.0 3.25 3.5 3.75 4.0 4.25 4.5 4.75 5.0
Bias Parameter

1000

1500

2000

2500

3000

3500

4000

T
im

e
S
te

p
s

Median TimeSteps

32m x 32m (Lattice,Random) Tasks=50 with Robots=500

Figure 4.26: Mean Robots per Task = 10 (b) Allocation Time

57

Mean Robot/Task = 20

0.0 0.1 0.5 0.75 1.0 1.25 1.5 1.75 2.0 2.25 2.5 2.75 3.0 3.25 3.5 3.75 4.0 4.25 4.5 4.75 5.0
Bias Parameter

0

20

40

60

80

100

D
is

ta
n

ce
 t

ra
v

e
lle

d
 (
m
/r
o
b
o
t)

0.0

0.5

1.0

1.5

2.0

T
a

sk
 S

w
it

ch
e

s
p

e
r

R
o

b
o

t

Median Dist/robot
Average Sw/robot

32m x 32m (Lattice,Random) Tasks=50 with Robots=1000

Figure 4.27: Mean Robots per Task = 20 (a) Distance and Task Switches

0.0 0.1 0.5 0.75 1.0 1.25 1.5 1.75 2.0 2.25 2.5 2.75 3.0 3.25 3.5 3.75 4.0 4.25 4.5 4.75 5.0
Bias Parameter

1000

1500

2000

2500

3000

3500

4000

T
im

e
S
te

p
s

Median TimeSteps

32m x 32m (Lattice,Random) Tasks=50 with Robots=1000

Figure 4.28: Mean Robots per Task = 20 (b) Allocation Time

58

4.3.5 Pointmass3d Engine

0.0 0.1 0.5 0.75 1.0 1.25 1.5 1.75 2.0 2.25 2.5 2.75 3.0 3.25 3.5 3.75 4.0 4.25 4.5 4.75 5.0
Bias Parameter

0

20

40

60

80

100

D
is

ta
n
ce

 t
ra

v
e
lle

d
 (
m
/r
o
b
o
t)

0.0

0.5

1.0

1.5

2.0

T
a
sk
 S
w
it
ch
e
s
p
e
r
R
o
b
o
t

Median Dist/robot
Average Sw/robot

PointMass3d for (Lattice,Random) Tasks=50 with Robots=1000

Figure 4.29: Pointmass3d Engine Mean Robots per Task = 20 (a) Distance and
Task Switches

0.0 0.1 0.5 0.75 1.0 1.25 1.5 1.75 2.0 2.25 2.5 2.75 3.0 3.25 3.5 3.75 4.0 4.25 4.5 4.75 5.0
Bias Parameter

0

500

1000

1500

2000

2500

3000

T
im
e
S
te
p
s

Median TimeSteps

PointMass3d Engine for (Lattice,Random) Tasks=50 with Robots=1000

Figure 4.30: Pointmass3d Engine Mean Robots per Task = 20 (b) Allocation Time

59

4.3.6 Redundant Robots

Robot Redundancy = 1.2

0.0 0.1 0.5 0.75 1.0 1.25 1.5 1.75 2.0 2.25 2.5 2.75 3.0 3.25 3.5 3.75 4.0 4.25 4.5 4.75 5.0
Bias Parameter

0

20

40

60

80

100

D
is

ta
n
ce

 t
ra

v
e
lle

d
 (

m
/r

o
b
o
t)

0.0

0.5

1.0

1.5

2.0

T
a
sk
 S
w
it
ch
e
s
p
e
r
R
o
b
o
t

Median Dist/robot
Average Sw/robot

Robot Redundancy Factor 1.2 for (Lattice,Random) Tasks=50 with Robots=1000

Figure 4.31: Redundancy Factor 1.2 (a) Distance and Task Switches

0.0 0.1 0.5 0.75 1.0 1.25 1.5 1.75 2.0 2.25 2.5 2.75 3.0 3.25 3.5 3.75 4.0 4.25 4.5 4.75 5.0
Bias Parameter

0

500

1000

1500

2000

2500

3000

T
im

e
S
te
p
s

Median TimeSteps

Robot Redundancy Factor 1.2 for (Lattice,Random) Tasks=50 with Robots=1000

Figure 4.32: Redundancy Factor 1.2 (b) Allocation Time

60

Robot Redundancy = 1.5

0.0 0.1 0.5 0.75 1.0 1.25 1.5 1.75 2.0 2.25 2.5 2.75 3.0 3.25 3.5 3.75 4.0 4.25 4.5 4.75 5.0
Bias Parameter

0

20

40

60

80

100

D
is

ta
n
ce

 t
ra

v
e
lle

d
 (

m
/r

o
b
o
t)

0.0

0.5

1.0

1.5

2.0

T
a
sk
 S
w
it
ch
e
s
p
e
r
R
o
b
o
t

Median Dist/robot
Average Sw/robot

Robot Redundancy Factor 1.5 for (Lattice,Random) Tasks=50 with Robots=1000

Figure 4.33: Redundancy Factor 1.5 (a) Distance and Task Switches

0.0 0.1 0.5 0.75 1.0 1.25 1.5 1.75 2.0 2.25 2.5 2.75 3.0 3.25 3.5 3.75 4.0 4.25 4.5 4.75 5.0
Bias Parameter

0

500

1000

1500

2000

2500

3000

T
im

e
S
te
p
s

Median TimeSteps

Robot Redundancy Factor 1.5 for (Lattice,Random) Tasks=50 with Robots=1000

Figure 4.34: Redundancy Factor 1.5 (b) Allocation Time

61

4.3.7 Jevtic’s Formulation

0.0 0.1 0.5 0.75 1.0 1.25 1.5 1.75 2.0 2.25 2.5 2.75 3.0 3.25 3.5 3.75 4.0 4.25 4.5 4.75 5.0
Beta/Alpha Ratio

0

20

40

60

80

100

D
is

ta
n
ce

 t
ra

v
e
lle

d
 (
m
/r
o
b
o
t)

0.0

0.5

1.0

1.5

2.0

T
a
sk
 S
w
it
ch
e
s
p
e
r
R
o
b
o
t

Median Dist/robot
Average Sw/robot

Jevtic Formulation for (Lattice,Random) Tasks=50 with Robots=1000

Figure 4.35: Jevtic Formulation (a) Distance and Switches

0.0 0.1 0.5 0.75 1.0 1.25 1.5 1.75 2.0 2.25 2.5 2.75 3.0 3.25 3.5 3.75 4.0 4.25 4.5 4.75 5.0
Beta/Alpha Ratio

0

500

1000

1500

2000

2500

3000

T
im

e
S

te
p

s

Median TimeSteps

Jevtic Formulation for (Lattice,Random) Tasks=50 with Robots=1000

Figure 4.36: Jevtic Formulation (b) Allocation Time

62

4.3.8 Circle Topology

Circle Topology for Linear Formulation

0.0 0.1 0.5 0.75 1.0 1.25 1.5 1.75 2.0 2.25 2.5 2.75 3.0 3.25 3.5 3.75 4.0 4.25 4.5 4.75 5.0
Bias Parameter

0

20

40

60

80

100

D
is

ta
n

ce
 t

ra
v

e
lle

d
 (
m
/r
o
b
o
t)

0.0

0.5

1.0

1.5

2.0

T
a

sk
 S

w
it

ch
e

s
p

e
r

R
o

b
o

t

Median Dist/robot
Average Sw/robot

 (Circle,cluster) Tasks=50 with Robots=500

Figure 4.37: Circle Topology for Linear Formulation (a) Distance and Task Switches

0.0 0.1 0.5 0.75 1.0 1.25 1.5 1.75 2.0 2.25 2.5 2.75 3.0 3.25 3.5 3.75 4.0 4.25 4.5 4.75 5.0
Bias Parameter

0

500

1000

1500

2000

2500

3000

T
im
e
S
te
p
s

Median TimeSteps

 (Circle,cluster) Tasks=50 with Robots=500

Figure 4.38: Circle Topology for Linear Formulation (b) Allocation Time

63

Circle Topology for Jevtic’s Formulation

0.0 0.1 0.5 0.75 1.0 1.25 1.5 1.75 2.0 2.25 2.5 2.75 3.0 3.25 3.5 3.75 4.0 4.25 4.5 4.75 5.0
Beta/Alpha Ratio

0

20

40

60

80

100

D
is

ta
n
ce

 t
ra

v
e
lle

d
 (
m
/r
o
b
o
t)

0.0

0.5

1.0

1.5

2.0

T
a
sk
 S
w
it
ch
e
s
p
e
r
R
o
b
o
t

Median Dist/robot
Average Sw/robot

 Jevtic Formulation(Circle,cluster) Tasks=50 with Robots=500

Figure 4.39: Circle Topology for Jevtic’s Formulation (a) Distance and Task
Switches

0.0 0.1 0.5 0.75 1.0 1.25 1.5 1.75 2.0 2.25 2.5 2.75 3.0 3.25 3.5 3.75 4.0 4.25 4.5 4.75 5.0
Beta/Alpha Ratio

0

500

1000

1500

2000

2500

3000

T
im
e
S
te
p
s

Median TimeSteps

 Jevtic Formulation(Circle,cluster) Tasks=50 with Robots=500

Figure 4.40: Circle Topology for Jevtic’s Formulation (b) Allocation Time

64

4.4 Analysis of Results

Results for various sets of simulated experiments are given in Section 4.3. This

section includes a summary of all the results in tabular form that aids in understand-

ing various trends present in different sets of experiments

4.4.1 Task Topology

Lattice topology has tasks in a grid-like formation and the tasks are spread apart

evenly. This does not result in crowding of tasks in the arena. However, the same

is not true in the case of uniform and scale-free topologies.The time required for

allocation for lattice topology converges to approximately 1100 timesteps while it

increases for uniform distribution to 1500 timesteps and around 2300 timesteps.

Task switching increased marginally from 0.45 for lattice to 0.6 for uniform and 0.65

for scale-free topology. The distance travelled by the robots remains approximately

the same for all the topologies.

Table 4.1: Task Topology Results

Topology Lattice Uniform Scale-free
Distance - - -

Time - ↑ ↑↑
Switching - ↑ ↑↑

65

4.4.2 Arena Size Results

The increase in arena size also corresponds to an increase in the number of tasks

as the tasks to area ratio is kept constant. This naturally results in robots travel-

ling larger distances, however, an interesting observation is made that the median

distance travelled is 1/2 times diagonal length of the arena at higher values of Bias

Factor. Analogously, an increase in number of tasks, arena size and robots meant

that time required increased.

Table 4.2: Arena Size Results

Arena Size(Tasks) 16x16(1 0) 32x32(50) 56x56(170)
Distance - ↑ ↑↑

Time - ↑ ↑↑
Switching - - -

4.4.3 Mean Robots per Task Results

In the set of experiments with randomized task quotas, we impose the constraint

that both the total number of robots and the ratio between total number of robots

and total number of tasks are kept constant. When the mean number of robots

of robots required by tasks is low, a high amount of task switching is observed as

tasks quickly get fully allocated and more robots end up switching. When the mean

number of robots is set to 10 or 20, mean task switching is approximately 0.7 unlike

the case when the mean robots per task is 1 which shows mean task switching to

be near 1.2.

66

Table 4.3: Mean Robots per Task Results

Mean Robots per Task 1 10 20
Distance - - -

Time - ↑ ↑↑
Switching ↑↑ ↑ -

4.4.4 Pointmass3d Results

Table 4.4: PointMass3D Physics Engine Results

Comparison with PointMass3D and dynamics2d engine shows the difference between
robots as point masses with no collisions and robots as physical entities with
collision. Using the PointMass3D engine, collision check and obstacle avoidance is
not performed. The difference between the performance is noticed when the number
of robots is increased as collision and crowding increases. PointMass3D engine helps
validate the crowding effect.

Mean Robots per Task Dynamics2D PointMass3D
Distance - -

Time - ↓
Switching - ↓

4.4.5 Robot Redundancy Results

Increasing the number of robots by a factor of 1.2 and 1.5 has a profound effect on

the time required for allocation. For the lattice setup with 50 tasks and 1000 robots,

the average completion time with no redundancy is approximately 2400 timesteps.

Redundancy factors 1.2 and 1.5 reduces this time to 1200 and 900 timesteps respec-

tively. Additionally redundant robots have an adverse effect on task switching as

redundancy factors of 1.2 and 1.5 show average task switching to be 1.1 and 1.6

when bias factor is kept at the maximum of 5.0.

67

Table 4.5: Robot Redundancy Results

Redundancy Factor 1 1.2 1.5
Distance - - -

Time - ↓ ↓↓
Switching - ↑ ↑↑

4.4.6 Jevtic Formulation Comparison

Jevtic’s Formulation shows an improved performance as compared to linear formula-

tion. Both time and distance travelled show marginal improvement using Jevtic’s

formulation. This suggests that having high sensitivity is beneficial. The set

of experiments are conducted using the PointMass3D physics engine for Jevtic’s

formulation. The comparison is performed with PointMass3D physics engine for

linear formulation.

Table 4.6: Jevtic Formulation Comparison

Formulation Jevtic Linear
Distance - ↑

Time - ↑
Switching - -

4.4.7 Circle Topology Results: Sanity Check

This experiment setting is a corner case situation where the effect of relative

distances is eliminated as the robots are placed at the centre of the circle and the

tasks are on the circumference. For such a situation, the system is expected to

show minimal change in behaviour for different values of Bias Factor. Such a result

is seen for both Linear and Jevtic’s formulation, where the values for distance

travelled, time required for allocation and task switching remain almost same and

show least deviation when compared to all other sets of experiments.

68

Table 4.7: Circle Topology

Formulation Linear Jevtic
Distance - -

Time - -
Switching - -

69

Chapter 5

Concluding Remarks

Chapter 4 concentrated on evaluation of the Spatial Bias Allocation Strategy. Large

set of simulated experiments were analysed to observe trends in behaviour of the

system with respect to change in one or more parameters of experiment setup. This

chapter derives conclusions based on results and also suggests future scope of this

work.

5.1 Conclusions

In this work, we propose a decentralized framework and study spatial bias strategy

for multi-robot task allocation. The framework shows the importance of the robots’

ability to discover tasks, recruit other robots and perform internal counting for a

decentralized approach. We discuss strategies for task discovery and robot recruit-

ment and implement a spanning tree approach to perform internal counting. The

work further focuses on spatial bias formulation, task selection and biasing weights

for task selection. In order to study the task allocation approach in detail, task

discovery, recruitment and counting is performed using a shared table.

Results show that distance travelled and time required for allocation reduces

as the bias factor is increased. However this has an adverse effect on mean task

switching. Scale-free topologies suffer from crowding effect when number of robots

per task and number of tasks increase. Use of Pointmass3D engine for scale-free

topology shows improved performance as collisions are turned off and validates the

crowding effect. Robot switching is high when number of robots per task is low.

Redundant robots aid in task allocation and significantly improve allocation time

70

at the cost of increased task switching. Jevtic’s formulation shows the significance

of increased sensitivity of linear formulation that concentrates on eliminating tasks

as valid selection options.

The system shows a scalable solution with fast response time. Experiments with

170 tasks and 3400 robots completed in 6000 timesteps (equivalent to 10 mins)

in an arena size of 56m x56m where robots travelled at the speed of 0.3m/sec.

Although task assignment is sub-optimal, a simple strategy shows potential for a

scalable solution capable of quick response time. Additionally it is worth noting that

redundant robots improve the performance of the system in terms of allocation time

and also make the system robust to robot failures. The rigorous set of experiments

carried out show the necessary evaluation required for robotics swarms. The large

number of experiments are vital to understand emergent behaviour of the system.

Thus the work presents a robust, scalable, simple, and an efficient strategy in terms

of response time to manage multi-robot task allocation along with a supportive

framework for a completely decentralized approach.

5.2 Future work

The future work can be expanded upon improving the task allocation strategy

and evaluating the performance of allocation strategy under various aspects of task

allocation.Additionally future work also includes performing experiments with real

robots and running simulations for the entire framework.

• Multi-vote Selection: Currently selection of task is performed with a single

draw of random number. In order to ensure that tasks with higher weights

are given more preference, a multi-vote strategy can be used where multiple

random numbers are sampled and tasks are selected on multiple occasion.

Final selection of task depends on the task that is selected most.

• Iterative Biasing: Tasks in this work had two parameters, location and

quota. Iterative biasing is useful in situations where tasks have multiple

parameters such as locations, quotas, deadlines, priorities, urgencies, and skill

requirements. The linear bias method has the capacity to eliminate tasks as

selection options and a similar iterative biasing on multiple parameters can be

performed to further reduce the subset of tasks available for selection. Such a

biasing method may further improve the performance.

71

• Dynamic Biasing: The aim of this method is to reduce task switches by

making the robot dynamically increase bias factor in proportion to the number

of task switched performed by the robot.

• Future Scope in Task Allocation: The temporal nature of tasks in

not considered in this work. The performance of the system with dynamic

addition and deletion of task requests along with task allocation deadlines

is an important aspect of task allocation. Additionally the system can be

explored with heterogeneous robots where the biasing strategy can include

provisions for robot’s ability to perform tasks.

72

Bibliography

Ak, O. and Akn, H. L. (2016). Effective Multi-Robot Spatial Task Allocation using
Model Approximations. ArXiv preprint.

Bektas, T. (2006). The multiple traveling salesman problem: An overview of
formulations and solution procedures. Omega, 34(3):209–219.

Brambilla, M. (2009). Group Size Estimation in Swarm Robotics. Milano, Politec-
nico D I.

Choi, H. L., Brunet, L., and How, J. P. (2009). Consensus-based decentralized
auctions for robust task allocation. IEEE Transactions on Robotics, 25(4):912–
926.

Claes, D., Robbel, P., Oliehoek, F. A., Tuyls, K., Hennes, D., and van der Hoek,
W. (2015). Effective Approximations for Multi-Robot Coordination in Spatially
Distributed Tasks. Aamas, pages 881–890.

Dantu, K., Kate, B., Waterman, J., Bailis, P., and Welsh, M. (2011). Programming
micro-aerial vehicle swarms with karma. Proceedings of the 9th ACM Conference
on Embedded Networked Sensor Systems - SenSys ’11, pages 121–134.

Di Paola, D., Gasparri, A., Naso, D., and Lewis, F. L. (2015). Decentralized dynamic
task planning for heterogeneous robotic networks. Autonomous Robots, 38(1):31–
48.

Dorigo, M., Floreano, D., Gambardella, L. M., Mondada, F., Nolfi, S., Baaboura,
T., Birattari, M., Bonani, M., Brambilla, M., Brutschy, A., Burnier, D., Campo,
A., Christensen, A. L., Decugniere, A., Di Caro, G., Ducatelle, F., Ferrante, E.,
Förster, A., Gonzales, J. M., Guzzi, J., Longchamp, V., Magnenat, S., Mathews,
N., Montes De Oca, M., O’Grady, R., Pinciroli, C., Pini, G., Rétornaz, P.,
Roberts, J., Sperati, V., Stirling, T., Stranieri, A., Stützle, T., Trianni, V., Tuci,
E., Turgut, A. E., and Vaussard, F. (2013). Swarmanoid: A novel concept for the
study of heterogeneous robotic swarms. IEEE Robotics and Automation Magazine,
20(4):60–71.

73

Dorigo, M. and Gambardella, L. (1997). Ant colony system: a cooperative learning
approach to the traveling\nsalesman problem. IEEE Transactions on Evolution-
ary Computation, 1(1):53–66.

Ducatelle, F., Caro, G. A. D., and Gambardella, L. M. (2009). Task allocation in
robotic swarms : new methods and comparisons Task allocation in robotic swarms
: new methods and comparisons. Technical Report No. IDSIA-01-09.

Gerkey, B. P. (2003). ON MULTI-ROBOT TASK ALLOCATION. CRES Technical
Report, CRES-03-012, (April).

Gerkey, B. P. and Matarić, M. J. (2002). Sold!: Auction methods for multirobot
coordination. IEEE Transactions on Robotics and Automation, 18(5):758–768.

Habibi, G., Fekete, P., Kingston, Z., and Mclurkin, J. (2016). Distributed Object
Characterization with Local Sensing by a Multi-Robot System. DARS, pages
1–14.

Hoffman, K. and Padberg, M. (2001). Set Covering, Packing and Partitioning
Problems. Encyclopedia of Optimization, pages 174–178.

Jevtić, A., Gutierrez, Á., Andina, D., and Jamshidi, M. (2012). Distributed bees
algorithm for task allocation in swarm of robots. IEEE Systems Journal, 6(2):296–
304.

Kalra, N., Zlot, R., Dias, M. B., and Stentz, A. (2006). Market-Based Multirobot
Coordination: A Comprehensive Survey and Analysis. Robotics Institute Carnegie
Mellon University Tech Rep CMURITR0516, 94(April):48.

Khaluf, Y. and Rammig, F. (2013). Task Allocation Strategy for Time-Constrained
Tasks in Robots Swarms. European Conference on Artificial Life, (2009):737–744.

Korsah, G. A., Stentz, A., and Dias, M. B. (2013). A comprehensive taxonomy
for multi-robot task allocation. The International Journal of Robotics Research,
32(12):1495–1512.

Kuhn, H. W. (1955). The Hungarian Method for the ASsignment Problem.

Li, Y., Klingner, J., and Correll, N. (2017). Distributed Camouflage for Swarm
Robotics and Smart Materials. NA.

Mailleux, A., Deneubourg, J.-l., and Detrain, C. (2000). How do ants assess food
volume? Animal behaviour, 59(5):1061–1069.

McLurkin, J. and Yamins, D. (2005). Dynamic task assignment in robot swarms.
Proceedings of Robotics: Science and Systems, pages 2007–214838.

74

Mottola, L., Moretta, M., Whitehouse, K., and Ghezzi, C. (2014). Team-level
Programming of Drone Sensor Networks. SenSys ’14 Proceedings of the 12th
ACM Conference on Embedded Network Sensor SystemsSystems, pages 177–190.

Nunes, E., Manner, M., Mitiche, H., and Gini, M. (2016). A taxonomy for
task allocation problems with temporal and ordering constraints. Robotics and
Autonomous Systems, pages –.

Padberg, E. B. M. (1972). On the Set-Covering Problem Author (s):
Egon Balas and Manfred W . Padberg Published by : INFORMS Stable
URL : http://www.jstor.org/stable/169305 REFERENCES Linked references are
available on JSTOR for this article : You may need to log in to JSTOR to a.
20(6):1152–1161.

Parker, J., Nunes, E., Godoy, J., and Gini, M. (2016). Exploiting Spatial Locality
and Heterogeneity of Agents for Search and Rescue Teamwork*. Journal of Field
Robotics, 33(7):877–900.

Pinciroli, C., Lee-Brown, A., and Beltrame, G. (2015). Buzz: An Extensi-
ble Programming Language for Self-Organizing Heterogeneous Robot Swarms.
arXiv:1507.05946, page 12.

Pinciroli, C., Trianni, V., O’Grady, R., Pini, G., Brutschy, A., Brambilla, M.,
Mathews, N., Ferrante, E., Di Caro, G., Ducatelle, F., Birattari, M., Gambardella,
L. M., and Dorigo, M. (2012). ARGoS: A modular, parallel, multi-engine simula-
tor for multi-robot systems. Swarm Intelligence, 6(4):271–295.

Pini, G., Brutschy, A., Frison, M., Roli, A., Dorigo, M., and Birattari, M. (2011).
Task partitioning in swarms of robots: An adaptive method for strategy selection.
Swarm Intelligence, 5(3-4):283–304.

Sandholm, T., Larson, K., Andersson, M., Shehory, O., and Tohmé, F. (1999).
Coalition structure generation with worst case guarantees. Artificial Intelligence,
111(1):209–238.

Shehory, O. and Kraus, S. (1998). Methods for task allocation via agent coalition
formation. Artificial Intelligence, 101(1):165–200.

Vig, L. and Adams, J. A. (2006). Market-Based Multi-robot Coalition Formation.
Distributed Autonomous Robotic Systems 7, 22(4):227–236.

Zhang, J., He, K., Zheng, X., and Zhou, J. (2006). An Ant Colony Optimization
Algorithm for Multiple Travelling Salesman Problem. 2010 International Confer-
ence on Artificial Intelligence and Computational Intelligence, 1(Proceedings of
the First International Conference on Innovative Computing, Information and
Control (ICICIC’06)).

75

Zlot, R. and Stentz, A. (2006). Market-Based Complex Task Allocation for
Multirobot Teams. Proceedings of the 24th US Army Science Conference -
Transformational Science and Technology for the Current and Future Force, pages
169–176.

76

	Introduction
	Problem statement
	Outline

	Literature
	Taxonomy for Task Allocation
	Gerkey's Taxonomy
	Korsah's extension

	Problem Formulation
	Mathematical Formulation
	Complexity Analysis

	Modelling Coalition Formation Problem
	Multiple Travelling Salesman Problem
	Optimal Assignment Problem
	MRTA as an Economic Game

	State of the Art for Decentralized Allocation of Spatially Distributed Tasks
	Drawbacks

	Approach
	Framework
	Spatial Task Information Management
	Recruitment
	Spatial Bias Strategy for Task Selection
	Navigation
	Counting Robots
	Simplification

	Design
	Algorithm Structure
	Task Allocation and Spatial Bias Formulation

	Evaluation
	Criteria for Evaluation
	Robot Metrics

	Experiment Design
	Spatial Task Distribution
	Task Size Distribution
	Arena Size
	Mean Robots per Task
	Numerical Parameters
	Special Cases
	ARGoS

	Results
	Spatial Task Distribution
	Task Size Distribution
	Arena Size
	Mean robots per task
	Pointmass3d Engine
	Redundant Robots
	Jevtic's Formulation
	Circle Topology

	Analysis of Results
	Task Topology
	Arena Size Results
	Mean Robots per Task Results
	Pointmass3d Results
	Robot Redundancy Results
	Jevtic Formulation Comparison
	Circle Topology Results: Sanity Check

	Concluding Remarks
	Conclusions
	Future work

	Appendix
	References

