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Abstract 

Structural equation models  combine factor analysis models and multivariate regression models to estimate 

associations between observed variables and unobserved variables. The main achievement of this Capstone 

Project is the understanding of structural equation models   and application of the models to real-world data.      

In this report, we reviewed structural equation models and several prerequisite topics. We performed a 

simulation study to compare maximum likelihood structural equation model estimation versus two-stage 

sequential estimation using multiple linear regression and maximum likelihood factor analysis. The simulation 

study confirmed that confidence intervals produced by structural equation models are valid and those 

obtained by two-stage sequential estimation are largely inaccurate. We applied structural equation models to 

an educational data comparing the efficacy of teaching conditions on learning scientific inquiry skills among 

177 middle school students in Fitchburg, Massachusetts using a computer simulated science microworld. 

Application of structural equation models to the educational data showed that there were no significant 

differences in test score gains between three learning conditions, while controlling for latent factors measured 

by survey responses.  
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SECTION 1: INTRODUCTION 

Structural equation models (SEM) combine factor analysis and multivariate regression models to estimate 

associations between observable variables and unobservable (latent) variables. The main achievement of this 

Capstone Project is the understanding of structural equation models and application of the models to real-

world data.  

       Section 2 introduces the Assistments project, the source of our real-world data. The Assistments team 

measured the scientific inquiry skills of middle school students, specifically their understanding of the control 

for variables strategy. The data the team collected are used throughout this report. Section 3 reviews topics 

prerequisite to the understanding and application of structural equation models. Topics covered are path 

diagrams, factor models, parallel analysis and orthogonal rotation. These tool were applied to the Assistments 

data. Section 4 provides a review and real-world explanation of structural equation models. In this section we 

evaluated the estimation accuracy of SEM through simulation and then we analyzed the Assistments data 

using a bivariate structural model.  

       Through a simulation study we confirmed that the validity of confidence intervals produced by SEM are 

valid and those obtained by two-stage sequential estimation are largely inaccurate.. Finally our application of 

structural equation models to the Assistments data showed no significant differences in test score gains 

between learning conditions, while controlling for latent factors.  

 

SECTION 2: THE ASSISTMENTS EXPERIMENT 

In this section, we introduce the Assistments project, which focuses on the scientific inquiry skills of middle 

school students. We define scientific inquiry skills and the control for variables strategy, and then explain an 

experiment conducted by the Assistments team which measured these skills. Finally we report the results 

from our basic analysis of the experimental data, which tested the randomization of treatment groups, and 

also tested for learning gains and treatment effects. 

 

The Assistments Project 

 “Computer Science Assistant Professor Neil Heffernan of Worcester Polytechnic Institute (WPI) and his 

colleagues at Carnegie Mellon University (CMU) are the developers of the Assistments program 

(www.assistments.org). This intelligent tutoring system is a web-based system for Math that provides example 

problems and reacts to students’ inputs in real time. Math Assistments is presently used by students and 

teachers in Massachusetts with the goal of improving students’ math learning. One of the measures used to 

assess student improvement is the Massachusetts Comprehensive Assessment System (MCAS) score for Math. 

There are various types of mathematical concepts covered in the Assistments problems to improve MCAS 

scores.” (Richardson, 2008) 

       Social Sciences Professor Janice Gobert of Worcester Polytechnic Institute (WPI) is the principal 

investigator for this project. The following description is paraphrased from her annual report. “The long-term 

goal of this project is to improve inquiry skills in middle school, so that students can transfer this knowledge to 

other science topics, and ideally to real-world problems and improve upon content learning as well. Research 

suggests that these skills should be developed during middle school. The extent to which inquiry skills can be 
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learned and then transferred to learn new domains will be determined as part of the project.” For more 

information of the Assistments system, refer to (Gobert) and (Richardson, 2008). 

 

Scientific Inquiry and the Control for Variables Strategy 

The method of scientific inquiry is the investigative process which scientists use to understand the natural 

world. Scientific inquiry skills are important for conducting experiments and making decisions in real-world 

situations. They are not developed naturally, and many student lack these vital skills. The National Science 

Education Standards (NSES, 1996) is a framework for science education in primary and secondary schools in 

the United States. They defines scientific inquiry skills as follows: 

       “Scientific inquiry refers to the diverse ways in which scientists study the natural world and propose 

explanations based on the evidence derived from their work. Inquiry also refers to the activities of students in 

which they develop knowledge and understanding of scientific ideas, as well as an understanding of how 

scientists study the natural world.” 

       “Inquiry is a multifaceted activity that involves making observations; posing questions; examining books 

and other sources of information to see what is already known; planning investigations; reviewing what is 

already known in light of experimental evidence; using tools to gather, analyze, and interpret data; proposing 

answers, explanations, and predictions; and communicating the results. Inquiry requires identification of 

assumptions, use of critical and logical thinking, and consideration of alternative explanations. Students will 

engage in selected aspects of inquiry as they learn the scientific way of knowing the natural world, but they 

also should develop the capacity to conduct complete inquiries.” (NSES, 1996 p.23) 

     The control for variables strategy is a strategy under the broader inquiry strand of conducting scientific 

investigations. It involves measuring the effect on a response variable by manipulating one independent 

variable and holding all other independent variables constant. The strategy investigates the relationship 

between two variables at a time. 

       Consider an experiment where a ball is rolled down an inclined plane. The response variable is the 

distance the ball rolls. Many variables could affect the distance the ball rolls, such as the surface roughness of 

the inclined plane, the angle of the inclined plane, or the type of ball. To measure the effect of ramp steepness 

using the control for variables strategy, the experimenter would vary the ramp steepness while holding all 

other variables constant.  

 

Experimental Design and Procedure 

WPI social science Professor Janice Gobert and WPI computer science graduate student Michael Sao Pedro 

designed and conducted an experiment which explored the scientific inquiry skills of middle-school students. 

Specifically it focused on their understanding of the control for variables strategy, in which one measures the 

effect of one variable while holding all other variables constant. 

 

Participants 

The study participants were students chosen from a Central Massachusetts middle school. This school was 

decided to be a good candidate for the study because it is ethnically diverse, has large numbers of English 

language learner (ELL) students, has a large proportion of students on free or assisted lunch programs, and 
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had a substantial number of below-proficient scores on the science portion of the Massachusetts 

Comprehensive Assessment System (MCAS) exam. 

       A total of 177 students were selected from the 7th and 8th grades, with 98 students in the 7th grade and 

79 students in the 8th grade. Students from each grade were chosen from 5 different class periods but with 

the same teacher for students in each grade level. Selecting from multiple periods was done such that 

students were chosen from a range of class levels, from low performing with paraprofessional help to average 

and above average performing. 

 

Materials 

A ramp apparatus (see Figure 1) was simulated as a microworld by the Assistments team.  A microworld is a 

tiny computer simulated world in which a student can explore alternatives, test hypotheses, and discover 

scientific principles. The microworld allowed students to change the steepness, run length, type of ball and 

ramp surface. The simulation includes two ramps to allow for direct side-by-side comparison. The student can 

choose the four parameters for each ramp. 

 

Figure 1: Ramp Apparatus 

 

 

Pre-tests  Surveys and Post-tests 

Students were given two pre-tests to measure their scientific inquiry skills and the control for variables 

strategy, specifically. Two surveys were administered to measure their understanding of scientific models 

(SUMS) and their perseverance and passion for long-term goals (GRIT). Both surveys are described in more 

detail in the next section. The students were also given two post-tests to measure the gain in understanding. 

       The inquiry pre-test and inquiry post-test measure inquiry skills, which include formulating hypotheses, 

data interpretation, conducting experiments (including the control for variables strategy) and replicability of 

experiments. The ramp experiment pre-test requests students to design an experiment to determine how 

steepness and run length affect the distance rolled using the two ramps in the microworld. The ramp 

experiment post test focuses on all four of the available variables in the ramp microworld, unlike the pre-test 

which is concerned only with steepness and run length. 

       The term SUMS is an acronym for Students' Understanding of Models in Science. The survey consists of 

twenty-seven questions on a five-point Likert scale. It was developed by David F. Treagust et al (2002) with the 

specific objective of learning more about students' understanding of what a model is, and the role of models 
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in science. Briefly, it measures students' epistemologies of models on a continuum from simple, i.e., models 

are exact replicas, to intermediate, i.e., models are explanatory tools, to complex, i.e., models are tools for 

hypothesis-generation and scientific prediction. 

       The grit survey consists of thirteen questions on a five-point Likert scale. The concept of grit was 

developed by Angela Duckworth (2007), to help address the question: Why do some individuals accomplish 

more than others of equal intelligence? She defines grit as: "perseverance and passion for long-term goals. 

Grit entails working strenuously toward challenges, maintaining effort and interest over years despite failure, 

adversity, and plateaus in progress. The gritty individual approaches achievement as a marathon: his or her 

advantage is stamina. Whereas disappointment or boredom signals to others that it is time to change 

trajectory and cut losses, the gritty individual stays the course." (Duckworth, 2007 pp. 1087-1088) 

 

Experimental Procedure 

The following (simplified) procedure was implemented by the Assistments team. Students were first given the 

two pre-tests to measure their scientific inquiry skills and initial understanding of the ramp experiment. Two 

surveys were administered to measure their understanding of scientific models (SUMS) and their 

perseverance and passion for long-term goals (GRIT).  

       Each student was then randomly assigned by the Assistments system to one of three treatment groups. 

The “discovery” learning condition in which students explored a ramp microworld to “discover” the control for 

variables strategy. The “direct” learning condition in which students were given the microworld (but did not 

explore it directly) and were given explicit instruction about the control for variables strategy in the form of a 

textual description of it. The “direct plus reify” learning condition, in which students were given a description 

of the control for variables strategy (as in b, above) but were also asked, at specific points, to provide written 

explanations of their understanding of the control for variables strategy. 

       After learning about the control for variables strategy, each student was given the two post-tests to 

measure their scientific inquiry skills and final understanding of the ramp experiment. For each student we 

computed the "gain score" as post-test score minus pre-test score. We are interested in the effect of the three 

learning conditions (treatments) and the students' survey responses on the gain scores. 

 

Figure 2: Experimental Procedure 

 

Note: the above diagram is based on a presentation by Michael Sao Pedro, used with permission.  
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SECTION 3: PATH DIAGRAMS AND FACTOR ANALYSIS 

In this section we review topics prerequisite to understanding and applying structural equation models. These 

topics include path diagrams, factor models, parallel analysis and orthogonal rotation. Path diagrams allow for 

the visualization of systems of equations, such as regression models and factor models. Factor analysis is a 

method for measuring unobservable factors by extracting information common to several observed variables. 

Parallel analysis can be used to determine the number of factors to model and orthogonal factor rotation may 

aid in the interpretation of a factor solution. Then, we apply these tools to the Assistments data.  

 

Path Diagrams 

A path diagram is a pictorial representation of a system of simultaneous equations. Path diagrams illustrate 

relationships and dependencies between variables and distinguish observable, measured variables from 

unobservable, theoretical latent variables. These diagrams are a fundamental tool of structural equation 

modeling. 

       A path diagram contains many symbols: A rectangle or a square represents an observed variable and a 

circle or an ellipse represents an unobserved or latent variable. An unenclosed variable represents an 

unobservable measurement error or disturbance. Straight arrows signify causality or dependence, with letters 

above the lines denoting regression coefficients. Two-headed arrows signify an association between two 

variables.  

 

Figure 3: Path Diagrams 

 

Figure 3 contains a labeled path diagram, emphasizing the main path diagram components used throughout 

this Project Report. The path diagram in (a) is that of a simple linear regression model with equation Y = λ1 X1 + 

λ 2 X2 + ε  with observed independent and dependent variables. The diagram in (b) depicts two latent variables 

sharing an association; and the diagram in (c) shows an observed variable dependent on a latent variable. For 

a more thorough treatment of path diagrams, see (Bollen, 1989).  
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Factor Analysis and The Factor Model 

Factor analysis is a statistical method for studying the variability among many observed intercorrelated 

variables in terms of fewer unobserved latent variables called factors. Factor analysis condenses many highly 

correlated observed variables into fewer components by analyzing patterns in the correlation matrix of 

observed variables. The resulting factors may represent theoretical variables of interest that are otherwise 

unobservable, and allow for hypothesis testing on these theoretical variables (Pohlmann, p.14). 

       The factor model is written as:  

)1()1()()1()1( ×××××

++=
p

i
m

i
mppp

i εFLμX  

 

where X is a random vector with p variables, F is a vector of m elements called factors with m < p, L is a p × m 

matrix of unknown coefficients called factor loadings, and ε is a vector of p elements called errors. In the 

literature, F is usually called the common factor, and ε is usually called the specific factor; these two vectors 

are assumed to be uncorrelated, and the errors ε are assumed to be uncorrelated with each other. 

       Let ji ,l  denote the elements of L so that ij
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       Communality, h
2
, is the proportion of variance in X explained by each of the m factors in F. The remaining 

proportion of variance, ψi, is due to error. The proportion of the total variance due to each of the m factors, vj, 

can be estimated from the factor loadings and the sample variances. 
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       To estimate the factor loadings in L, we use the method of maximum likelihood, which assumes 

multivariate normality. Let x1, ..., xn be n observations on p variables sampled from a multivariate normal 

distribution, with mean μ and covariance matrix Σ.  
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       The older, traditional methods of factor analysis relied on eigendecomposition of the sample correlation 
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matrix or a modified sample correlation matrix. The method of maximum likelihood estimation produces 

better estimates than these traditional methods of factor analysis. It also allows for hypothesis tests 

concerning the number of common factors, as well as standard error and confidence interval estimates for 

factor loadings and factor correlations. For more a thorough explanation of the maximum likelihood method 

of factor analysis, refer to (Johnson, 1999).  

       The factor model may be better understood using an example. Consider the grit survey data mentioned 

earlier, where students responded to thirteen survey questions. The factor model for this survey response 

data is written as 

iii G ψLX +×=  

 

where Xi denotes the i
th

 student’s survey responses, G denotes the grit factor which is related to X through the 

factor loadings matrix L.  The vector of specific errors is denoted by ψ. The factor model essentially transforms 

the thirteen survey responses into one “grit score”.   

 

Figure 4: Path Diagram of a Grit Factor Model 

 

 

The grit factor model is illustrated in the path diagram in Figure 4. The path diagram contains thirteen 

observed survey responses, X1, …, X13. The survey responses are related to the grit factor through the factor 

loadings λ1, …, λ13. The specific errors ψ1, …, ψ 13 represent the variation in the survey responses not explained 

by the grit factor. Note that G is one-dimensional, so the factor loadings matrix L is a vector. 
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orthogonal rotation preserves the maximum likelihood estimated correlation matrix, as well as the 

communalities and specific errors.  

       There are several methods for choosing the orthogonal rotation matrix T. The most commonly employed 

method of orthogonal rotation is called  varimax rotation. The method involves an orthogonal rotation of the 

factor axes that maximizes the variances of the squared factor loadings. Varimax rotation produces a factor 

solution where each factor has few large coefficients and a many of small coefficients. Additionally, each 

observed variable tends to be associated with one factor.  

       In mathematical notation, varimax rotation searches for the orthogonal matrix T which maximizes the 

following quantity: 

∑ ∑∑
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Factor rotation is possible with two or more factors. A single factor structure cannot be rotated.  

 

Determining The Number of Factors with Parallel Analysis 

The purpose of exploratory factor analysis is to examine a collection of p observed variables to ascertain the 

underlying factor structure. In exploratory factor analysis, one first determines the number of underlying 

factors m, and then one estimates and interprets those factors. This section describes a modern method for 

determining the number of factors, m, which must be known prior to estimating the factor loadings. 

       The traditional methods for determining the number of factors are fairly subjective and should be avoided. 

Modern methods available today are considerably less subjective; one such method is an objective resampling 

technique called parallel analysis. There are multiple methods of parallel analysis; we use the false discovery 

rate (FDR) method.  

       In multiple hypothesis testing, the false discovery rate is the expected proportion of rejected null 

hypotheses which are erroneously rejected (Benjamini, 1995). The false discovery method is less conservative 

and more powerful than older family-wise error rate methods of multiple hypothesis testing, such as 

Bonferroni and bootstrapping. The false discovery rate method of parallel analysis is based on this concept 

from multiple hypothesis testing.  

       In traditional methods of factor analysis, eigenvectors of the sample correlation matrix correspond to 

factors, and the eigenvalues correspond to the variance explained by those factors. In parallel analysis the 

eigenvalues of the observed correlation matrix are compared against eigenvalues of sample correlation 

matrices obtained through resampling.  

       To obtain the eigenvalues, let R be the observed p × p sample correlation matrix. Since R is symmetric and 

positive definite, then orthogonal decomposition will give the eigenvalues and eigenvectors, and these 

eigenvalues are guaranteed to be real and positive. That is,  
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where Q is a square p × p orthogonal matrix and Λ is the diagonal matrix whose diagonal elements are the 

corresponding eigenvalues of R. The columns of the matrix Q Q
T
 are the eigenvectors of R. 

 

False Discovery Rate Parallel Analysis Procedure 

1. For each of the n observations (rows) in the sample, permute the p variable labels among the variable 

values (columns). The permutations should be independent for each observation. The result is a 

permutation sample. Obtain the eigenvalues from the sample correlation matrix.  

2. Repeat the previous step one thousand times. The result will be one thousand sets of eigenvalues from 

each of the one thousand permutation samples. Save the eigenvalues, but not the permutation 

samples or their correlation matrices. 

3. Choose an initial eigenvalue cutoff e0; any positive real number will suffice.  

4. Count the number of eigenvalues from the observed sample that are greater than e0; this is called the 

observed discovery, denoted xOD. For each of the one thousand permutation samples, count the 

number of eigenvalues greater than e0 and average these counts together; this is called the false 

discovery, denoted xFD. Calculate the false discovery rate:  FDR = xFD / xOD. 

5. Using a bisection search algorithm, iteratively repeat step (4) to determine the eigenvalue cutoff eFD 

corresponding to a false discovery rate of approximately 10%. Count the number of eigenvalues from 

the observed sample correlation matrix which are greater then eFD, this is the number of factors to 

retain in factor analysis.  

 

Factor Analysis of The Assistments Survey Data 

In this section, we analyze the factor structure of the two surveys administered during the Assistments 

experiment. We employed the methods of parallel analysis and maximum likelihood factor analysis discussed 

in the previous two sections. 

       To determine the number of underlying factors in the SUMS and grit  surveys, we performed independent 

parallel analyses, each with false discovery rates of ten percent. The results are shown in Table 1. Eigenvalue 

cutoff values and their corresponding number of factors are shown for several false discovery rates. For both 

surveys, a ten percent false discovery rate suggests one underlying factor.  

 

Table 1: Results of False Discovery Rate (FDR) Parallel Analysis on Survey Data 

 Grit Survey SUMS Survey 

FDR Cutoff e0 Factors m Cutoff e0 Factors m 

0.50 2.43 1 2.79 1 

0.25 2.47 1 2.82 1 

0.10 2.51 1 2.85 1 

0.05 2.53 1 2.87 1 

0.01 2.57 1 2.92 1 
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Having determined the number of factors in each of the surveys, we performed maximum likelihood factor 

analysis to estimate the factor loadings. The results are presented in Table 2, which contains the estimated 

factor loadings, specific errors, and proportion of variation explained by each model.  

 

Table 2: Factor Analysis of Survey Data 

Item     λ    ψ   Item     λ    ψ 

GRIT02 0.568 0.678  SUMS01 0.361 0.869 

GRIT03 0.334 0.888  SUMS03 0.597 0.644 

GRIT04 0.653 0.574  SUMS04 0.371 0.863 

GRIT05 0.645 0.584  SUMS05 0.480 0.770 

GRIT06 -0.154 0.976  SUMS07 0.493 0.757 

GRIT07 0.251 0.937  SUMS10 0.547 0.701 

GRIT08 -0.240 0.942  SUMS12 0.439 0.807 

GRIT09 -0.141 0.980  SUMS13 0.501 0.749 

GRIT10 0.593 0.648  SUMS15 0.346 0.880 

GRIT11 0.605 0.634  SUMS16 0.550 0.698 

GRIT12 -0.200 0.960  SUMS18 0.465 0.784 

GRIT13 0.489 0.761  SUMS19  0.999 

GRIT14 0.771 0.406         

Variation Explained 0.233   Variation Explained 0.207 

 

Note: Blank spaces are factor loadings less than 0.10, which are not outputted by the factor analysis procedure 

in R. Loadings greater than 0.30 are shown in bold. The “Variation Explained” row denotes the proportion of 

the variance in the survey data accounted for by the factor model. 

 

SECTION 4: STRUCTURAL EQUATION MODELS 

Structural equation models (SEM) combine factor analysis and multivariate regression models to estimate 

associations between observable variables and unobservable (latent) variables. They are commonly used in 

social sciences, since they allow the analysis of unobserved latent variables, such as intelligence and 

perseverance. Multiple linear regression and factor analysis are special cases of structural equations models. 

     In this section we review and interpret structural equation models. We performed a simulation study to 

evaluate the correctness of estimation using SEM and compared these estimates with those from traditional 

methods of regression analysis and factor analysis. Finally, we analyzed the Assistments data using structural 

equation models for bivariate response data. 

 

Model and Assumptions 

Structural equation models have two components: the measurement model, which relates the observed 

variables to latent variables; and the structural model which relates the latent variables among each other. 

The structural component is not necessary, and was not used in this project. 

       The structural equation measurement model has the following form: 
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iiyi εηΛy +=        ),(~ ypi N Σ0ε  

iixi δξΛx +=        ),(~ xqi N Σ0δ  

with the following assumptions:  

 

0)( =ηE ,       0)( =ξE ,       0)( =εE ,       0)( =δE , 

 

Iη =)(Var ,       Iξ =)(Var , 

 

0),(Cov =ηε ,       0),(Cov =ξε ,       0),(Cov =δε ,       0),(Cov =ξδ ,       0),(Cov =ηδ  

 

The observed vectors yi and xi are multivariate normal with p and q variables, respectively. In the model, Λy 

and Λx are matrices of factor loadings. The vectors ηi and ξi are latent variables, vectors εi and δi are normally 

distributed errors or residuals, and Σy and Σx are covariance matrices – typically chosen to be diagonal.  

       Existing structural equation modeling software packages such as R, SAS, and LISREL require the covariance 

matrix of the observed variables and the number of observations in the sample as inputs. The software 

packages use many methods for estimating the unknown parameters in SEM, such as maximum likelihood, 

unweighted least squares, and two-stage least squares. These methods essentially estimate the unknown 

parameters such that the implied covariance matrix is close to the sample covariance matrix. For a more 

thorough discussion of the estimation of parameters in SEM, see (Bollen, 1989, pp. 104-123). 

       To use SEM estimation, we must assume our data are multivariate normal. In the case of the Assistments 

data, we know these data are not normally distributed. The survey response data are ordinal (Likert scale), as 

are the pre-test scores and post-test scores. Polychoric correlation matrices could be used instead of regular 

correlation matrices; see (Jöreskog, 2005) for details on polychoric correlations.  

 

Interpretation 

Consider the following structural equation model, based on the Assistments data: 

 

iiiii

iii

εGγβtβtβtY

G

++++=

+=

33,22,11,

ψLX
 

 

       Let X be the vector of survey responses from the grit survey, and G is the latent unobservable factor 

representing students’ grit. Let t1, t2, and t3 be treatment indicator variables with corresponding treatment 

effects β1, β2, and β3. Finally, let γ be the effect of the latent grit factor. The first equation is a factor model 

relating survey responses to an unobservable factor. The second equation is a regression model measuring the 

treatment effects, and the effect of the latent grit factor. The path diagram for this structural equation model 

is illustrated in Figure 5. 
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Figure 5: Path Diagram of a Structural Equation Model 

 

 

The path diagram of the structural equation model in Figure 5 contains two sections. The upper section 

represents a factor model relating grit survey responses X1, …, X13 to G, the grit factor. The lower section 

represents a multiple linear regression model with response variable Y, treatment effects β1, β2, β3, grit effect 

γ, and error term ε.  

 

Simulation Study 

We used  simulation study to determine whether statistical procedures perform as expected. Of particular 

interest in this project is whether the structural equation procedure “sem()” available in the R statistical 

software package can correctly estimate the unknown model parameters. 

       We simulated two structural equation models: a simple model, and a more complex model with 

interaction and treatment effects, which will later be applied to the Assistments data. We compared the 

performance of SEM estimation with that of a two-stage method, which applies factor analysis to estimate the 

latent factors, then sequentially applies multiple linear regression analysis. The validity of confidence 

statements in confidence intervals estimated by two methods are compared.  

 

Simulation Study of a Simple Structural Equation Model 

Consider the following simple structural equation model with latent factor G, intercept β, and slope γ. The 

model contains no interaction terms and no treatment effects.  

 

iii G δLX +=      and     iii εGγβY ++=  

 

The Simulation Study Procedure 

1. Select β, γ, the factor loadings L, and the specific errors ψ. 

t1 

Y 

t3 

G 

ψ1 

λ1 

λ2 

λ3 X1 

X2 

X3 X11 

X12 

X13 λ11 
λ12 

λ13 

ψ2 

ψ3 ψ11 

ψ12 

ψ13 

t2 

γ
β1 

β2 

β3 

ε
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2. Generate Gi and εi from the standard normal distribution and generate δi from the multivariate normal 

distribution with diagonal covariance matrix, where the diagonal elements are equal to ψ. For a model 

with treatments, assign observations to treatments with n = 3000 observations per treatment. 

3. Calculate Xi and Yi.  

4. Estimate β and γ using the two-stage method of factor analysis followed by regression analysis. 

5. Estimate β and γ using the one-stage structural equation model procedure. 

6. Repeat steps (2) - (5) one thousand times. For each replicate, record the coefficient estimates and their 

standard errors. Calculate 95% confidence intervals and check whether they contain their actual 

parameter values, chosen in step (1).  

 

       The procedure will produce one thousand simulated samples. For each sample, the coefficients and their 

standard errors are estimated using the SEM procedure and the two-stage estimation method. For each 

coefficient estimate, we determine whether the Estimated 95% confidence interval contains the true 

parameter value. The capture rate is the portion of these estimated 95% confidence intervals which contain 

the actual parameter value; this is the quantity we are interested in. 

       The results of the simulation study are presented in Table 3. For both estimation methods, the mean and 

median of the one thousand parameter estimates are exactly the same as the true parameter values. The 

capture rate of SEM estimation was exactly 95% overall, meaning that 95% of the estimated confidence 

intervals contained their true parameter values. The capture rate of the two-stage estimation method was 

72%, much lower than the SEM method. The cost of applying two independent iterations of maximum 

likelihood in the two-stage method is apparent in the low capture rate. Part of the reason we achieved a 95% 

capture rate is because the sample size was large (n = 3000). With smaller sample size, the capture rate will 

decrease. For example, with 30 observations, we observed a 93.1% capture rate.  

 

Table 3: Simulation Study Parameter Estimates for the Simple Model 

  SEM Estimation Two-Stage Estimation 

Parameter Actual Mean Median Capture Rate Mean Median Capture Rate 

β 1.50 1.50 1.50 95.0% 1.50 1.50 64.2% 

γ 2.50 2.50 2.50 94.9% 2.50 2.50 79.7% 

Overall     95.0%    72.0% 

 

Simulation Study of a Complex Structural Equation Model 

Consider the following structural equation model; this is the ideal model we would like to apply to the 

Assistments data: 

iikkki εGγβY ++=,  

iii δGLX +=  

3,2,1=k  

 

       In the ideal model, the response variable Y is the overall test score gain, X is the vector of grit survey 

responses, and βk are intercepts for students under the k
th

 learning condition. The grit factor is denoted G with 



 14 

grit-treatment interaction effects γk. The regression model error terms are denoted by ε, and L is the usual 

matrix of factor loadings with error vector δ.  

       The ideal model above is the model we want to estimate. However, structural equation modeling software 

available today has a major disadvantage: the software cannot directly estimate interaction effects between 

an observable variable and an unobservable variable. In order to estimate the interaction effects we must use 

a compromise model instead: 

 

ikikkki εGγβY ++= ,,  

ikiki δGLX += ,  

3,2,1=k  

 

       In the ideal model, the grit factor is estimated once for all three treatments; in the compromise model, 

each treatment group has its own estimated grit factor, with different factor loading matrices. In the 

compromise model, information about the grit factor is not shared across treatment groups. We partition the 

sample into three sub-samples, such that all of the observations from treatment k are in sub-sample k. Then 

we fit sub-model k to sub-sample k. The simulation procedure for estimation is effectively the same as the 

procedure used for the simple model. Instead of two parameters of interest (β, γ), we have six (β1, β2, β3, γ1, 

γ2, γ3). In our analysis, the two-stage estimation method is applied directly to the ideal model and the SEM 

estimation method is applied to the compromise model.  

 

Table 4: Simulation Study Parameter Estimates for the Full Model 

  SEM Estimation Two-Stage Estimation 

Parameter Actual Mean Median Capture Rate Mean Median Capture Rate 

β1 1.50 1.50 1.50 94.5% 1.50 1.50 73.6% 

β2 2.50 2.50 2.50 94.5% 2.50 2.50 87.1% 

β3 3.50 3.50 3.50 94.4% 3.50 3.50 96.3% 

γ1 3.00 3.00 3.00 94.7% 3.00 3.00 84.8% 

γ2 2.00 2.00 2.00 94.6% 2.00 2.00 92.7% 

γ3 1.00 1.00 1.00 93.8% 1.00 1.00 96.7% 

Overall     94.4%    88.5% 

 

       The results of the simulation study are presented in Table 4. For both estimation methods, the mean and 

median parameter estimates are same as the true parameter values. The SEM estimation capture rate was 

94.4% overall. The capture rate is lower than 95% because we used the compromise model. The two-stage 

estimation capture rate was 88.5%, still quite lower than the SEM method, even though the ideal model was 

used for the two-stage method.  There is another notable observation from Table 4. The capture rates for SEM 

estimation are consistently about 95% for all six parameters. In contrast, the two-stage estimation capture 

rates varied wildly across the six parameters, ranging from 73.6% to 96.7%. This inconsistency in estimation is 

likely a consequence of applying two iterations of maximum likelihood estimation.  
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Preliminary Analysis of Assistments Data 

In this section the Assistments dataset is presented and the statistical tests we conducted are presented; 

these analyses focused on testing treatment randomization, testing  for within-treatment gains, and testing 

for treatment effect. Throughout this section we require an α = 0.05 significance level. 

       The data in Table 5 is a fabricated sample of the Assistments dataset. Each row represents one student. 

For each student we have the grade level, treatment assignment, scores for the ramp experiment and inquiry 

pre-tests and post-tests, and responses to the grit and SUMS surveys.  

 

Table 5: The Assistments Data, A Fabricated Example 

Student Grade Treatment Ramp Pre/Post Inquiry Pre/Post Grit Survey Responses SUMS Survey Responses 

1 7 1 2 4 1 3 {1,5,3,2,5,3,5,3,2,5,4,5,4} {5,1,4,1,1,3,2,1,3,2,3,3} 

2 7 2 4 2 3 2 {5,3,4,3,1,1,1,1,3,3,2,4,4} {1,1,2,5,4,2,3,1,2,4,4,1} 

3 7 3 1 2 3 3 {3,5,4,3,3,2,4,5,4,2,2,3,2} {4,1,3,1,5,2,3,4,2,2,2,2} 

4 8 1 1 2 3 1 {4,1,5,4,2,2,2,1,4,4,1,4,5} {3,1,4,2,3,4,2,4,2,4,3,3} 

5 8 2 3 4 1 1 {4,1,1,5,4,4,3,4,5,4,2,2,4} {1,4,3,2,2,2,1,3,3,1,1,5} 

6 8 3 2 2 1 3 {4,2,5,3,2,4,1,5,3,2,5,1,1} {3,4,4,3,4,5,1,2,1,3,1,3} 

 

       Each student was randomly assigned a treatment group after completing the ramp experiment pre-test 

and the inquiry pre-test. The assignment to treatment groups was random, so there should be no difference in 

mean pre-test scores across treatment groups. To test this randomization of treatment groups, we performed 

an analysis of variance (ANOVA) with the pre-test scores as the response variables, and the treatments as the 

group variables. The ANOVA results do not provide sufficient evidence to suggest a difference in mean pre-test 

scores across treatment groups. The p-value for the ramp experiment pre-test was 0.4148, and the p-value for 

the inquiry pre-test was 0.1304. Note that fewer students completed the inquiry pre-test than the ramp pre-

test, so the degrees of freedom are different. 

 

We then explored whether there was a difference between pre-test scores and post-test scores; in other 

words, we checked whether the students learned from the ramp microworld, regardless of the learning 

condition (treatment group). To test whether there were gains in test scores, we performed t-tests for each 

treatment group; the results are summarized in Table 6 and Table 7. From these tables, we conclude that 

there were significant gains in experiment test scores across all three treatment groups. However, there was 

not sufficient evidence to suggest that the inquiry pre-test scores were different from the post-test scores.  

Table 6: T-Tests for Within-Treatment Gains on Ramp Experiment Tests 

Treatment DF Mean 95% C.I. P-Value 

1 56 0.632 (0.181, 1.082) 0.0068 

2 56 0.316 (0.036, 0.596) 0.0277 

3 52 0.642 (0.326, 0.957) 0.0002 

 

Note: The treatment groups were coded as follows: 1 = Direct, 2 = Discovery, and 3 = Direct + Reify. Refer to 

the experimental procedure for treatment group descriptions. 
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Table 7: T-Tests for Within-Treatment Gains on Inquiry Tests 

Treatment DF Mean 95% C.I. P-Value 

1 49 0.180 (-0.117, 0.477) 0.2285 

2 43 0.250 (-0.079, 0.579) 0.1323 

3 46 0.191 (-0.164, 0.547) 0.2833 

 

Analysis of Assistments Data with SEM 

The structural equation model used to analyze the Assistments data was based on the compromise model 

from the previous section. We modeled inquiry test score gains, YI, and ramp experiment test score gains, YR, 

as the bivariate response variable Y = (YI, YR). In the Grit Model, gain scores are modeled as a function of 

treatment effects and the effect of a latent grit factor G. In the SUMS Model, gain scores are modeled as a 

function of treatment effects and the effect of a latent SUMS factor S.  

 

          The Grit Model                                                               The SUMS Model 
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The models are essentially bivariate versions of the compromise model from the previous section with terms 

analogous to those of the compromise model. The effects coefficients are vectors (βI,k, βR,k)
T
 and (γI,k, γR,k)

T
, 

with (k = 1, 2, 3). For example, the effect of treatment group k = 1 on inquiry test score gain is denoted βI,1 in 

the SEM model.  

       The structural equation model coefficient estimates of interest for both models are presented in Table 8. 

The β’s represent the average test score gain for a student with zero grit which has no practical meaning. The 

difference in coefficients (βR,2 - βR,1) represents the difference in test score gains between conditions 2 and 1 

for students with the same grit. The difference (γR,2 - γR,1) represents the additional test score gain for one unit 

increase of grit. The coefficient differences and their associated p-values are presented in Table 9. There were 

no significant differences, meaning no treatment conditions resulted in significantly higher (or lower) test 

score gains than another treatment condition. With a larger sample size, and presumably smaller standard 

errors, some meaningful differences might emerge.  
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Table 8: SEM Parameter Estimates 

 SUMS Model GRIT Model 

Parameter Estimate Standard Error Estimate Standard Error 

γI,1 -1.2893 1.0519 0.0348 0.7759 

βI,1 1.3666 1.0396 0.1567 0.7701 

γR,1 -0.1908 1.6989 -1.0346 1.2895 

βR,1 0.7244 1.6948 1.5969 1.2752 

γI,2 -2.8867 2.1714 0.5413 0.8520 

βI,2 3.1263 2.1350 -0.3421 0.8434 

γR,2 2.0088 2.3953 -1.5483 0.8593 

βR,2 -1.6734 2.3761 1.9835 0.8323 

γI,3 -1.8893 1.5087 0.6178 0.8200 

βI,3 2.2030 1.4891 -0.2730 0.8120 

γR,3 0.4804 1.3821 -1.1112 0.7709 

βR,3 0.2190 1.3783 1.7256 0.7561 

 

Table 9: SEM Coefficient Differences 

 SUMS Model GRIT Model 

Difference Estimate Standard Error Z-Value P-Value Estimate Standard Error Z-Value P-Value 

γI,2 – γI,1 -1.5974 2.4128 -0.6621 0.5079 0.5064 1.1524 0.4395 0.6603 

γI,3 – γI,1 -0.5999 1.8392 -0.3262 0.7443 0.5830 1.1289 0.5164 0.6055 

γI,3 – γI,2 0.9975 2.6441 0.3772 0.7060 0.0766 1.1825 0.0647 0.9484 

βI,2 – βI,1 1.7597 2.3747 0.7410 0.4587 -0.4989 1.1421 -0.4368 0.6623 

βI,3 – βI,1 0.8364 1.8161 0.4605 0.6451 -0.4298 1.1190 -0.3840 0.7009 

βI,3 – βI,2 -0.9233 2.6030 -0.3547 0.7228 0.0691 1.1707 0.0590 0.9529 

γR,2 – γR,1 2.1996 2.9366 0.7490 0.4538 -0.5137 1.5495 -0.3315 0.7402 

γR,3 – γR,1 0.6712 2.1901 0.3065 0.7593 -0.0766 1.5023 -0.0510 0.9593 

γR,3 – γR,2 -1.5285 2.7655 -0.5527 0.5805 0.4371 1.1544 0.3786 0.7050 

βR,2 – βR,1 -2.3977 2.9186 -0.8215 0.4113 0.3866 1.5227 0.2539 0.7996 

βR,3 – βR,1 -0.5053 2.1845 -0.2313 0.8171 0.1287 1.4825 0.0868 0.9308 

βR,3 – βR,2 1.8924 2.7469 0.6889 0.4909 -0.2579 1.1244 -0.2294 0.8186 

 

In summary, using structural equation models we tested the effects of the three learning conditions on 

students’ scientific inquiry test score gains. Each model controlled for an unobservable latent trait hidden 

within survey response data, and also measured the interaction between the learning conditions and the 

unobservable trait. The key results from this analysis in Table 9 indicate no significant test score gains from 

treatment effects or interaction effects; in other words, no learning condition was significantly better or worse 

than any other learning condition, when controlling for the latent traits.  
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APPENDIX A: SOURCE CODE 

# LOAD THE ASSISTMENTS DATA 
# ------------------------- 
 
ds.data <- read.table("C:\\ASSISTMENTS.TXT", header = TRUE, sep="\t") 
 
ds.grit <- na.omit(ds.data[,17:29]) # Select the GRIT survey items 

ds.sums <- na.omit(ds.data[,05:16]) # Select the SUMS survey items 
 
 
# PRELIMINARY ANALYSIS OF ASSISTMENTS DATA 
# ---------------------------------------- 
 
# Treatment Randomization Tests  
# ----------------------------- 
 
ds.lm <- lm( RAMP_PRE ~ factor(TREATMENT), data=ds.data) 
anova(ds.lm) 
 
ds.lm <- lm( INQ_PRE  ~ factor(TREATMENT), data=ds.data) 
anova(ds.lm) 
 
# T-Tests for Within-Treatment Gains 
# ---------------------------------- 
 
t.test( subset(ds.data, TREATMENT==1)$RAMP_GAIN )   # Test for ramp experiment gains 
t.test( subset(ds.data, TREATMENT==2)$RAMP_GAIN )   # 
t.test( subset(ds.data, TREATMENT==3)$RAMP_GAIN )   # 
 
t.test( subset(ds.data, TREATMENT==1)$INQ_GAIN )    # Test for inquiry gains 
t.test( subset(ds.data, TREATMENT==2)$INQ_GAIN )    # 
t.test( subset(ds.data, TREATMENT==3)$INQ_GAIN )    # 
 
# ANOVA for Treatment Effects on Post-Test Scores 
# ----------------------------------------------- 
 
ds.lm <- lm( RAMP_POST ~ factor(TREATMENT) + RAMP_PRE, data=ds.data) 
anova(ds.lm) 
summary(ds.lm) 
 
ds.lm <- lm(  INQ_POST ~ factor(TREATMENT) + INQ_PRE , data=ds.data) 
anova(ds.lm) 
summary(ds.lm) 
 
# DETERMINING THE NUMBER OF FACTORS WITH PARALLEL ANALYSIS 
# -------------------------------------------------------- 
# The following program will perform false-discovery-rate parallel analysis on the GRIT or SUMS surveys. The  
# procedure is used to estimate the number of factors to estimate in factor analysis (or SEM). 
 
 ds <- ds.grit          # Change from "ds.grit" to "ds.sums" to analyze the SUMS data 
 rs <- ds               # Resampled Dataset via Random Permutation 
  n <- nrow(ds)         # Number of Obserations 

  p <- ncol(ds)         # Number of Survey Items 

  r <- 10               # Replication Count 

 ev <- matrix( ,r, p)   # Eigenvalues for each Replicate 
 
# Resampling Responses 
---------------------- 
# Each observation in the original dataset is a vector of p survey responses. We randomly permute the survey  
# responses within each observation to generate a new new dataset. Then we calculate the eigenvalues of the new  
# resampled dataset. We repeat this procedure 1,000 times, and the result is a 1000 x p matrix of eigenvalues. 
 
for( k in 1:r)                     # For each replicate 

{ for( i in 1:n )                  # For each observation in the dataset 

  { rs[i,] <- sample(ds[i,]) }     # Randomly permute the survey responses within observation 

  ev[k,] <- eigen(cor(rs))$values  # Compute the eigenvalues of the resampled dataset 

} 
 
# Bisection Search 
# ---------------- 
# The following algorithm will use bisection search to determine the observed discovery OD that corresponds to a  
# false discovery rate target of FD/OD = 0.10. 
 
e_min = 0               # Lower bound for bisection search 

e_max = 5               # Upper bound for bisection search 
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e <- (e_min+e_max)/2    # Bisection (initial guess) 

td <- 0.10              # Target FD/OD Ratio 
 
for( i in 1:20)         # Max of 20-Iterations 

{ 
  fd <- array(0, r)                   # Empty array of eigenvalue counts 
  od <- sum(eigen(cor(ds))$values>e) 
  for( k in 1:r)                      # For each replicate 

  { 
    fd[k] <- sum(ev[k,] > e )         # Count number of eigenvalue greater than cutoff  
  } 
 
  if( od == 0 ) e_max <- e 
 
  if( od > 0 ) 
  { 
     if( mean(fd)/od > td ) e_min <- e  # Determine new bisection window 
     if( mean(fd)/od < td ) e_max <- e 
  } 
  e <- (e_min + e_max)/2                # Bisection   
  if ( e_max - e_min < 0.001 ) break    # Break if convergence is achieved 

} 
 
e; od; mean(fd); mean(fd)/od;                      # Statistics of interest 

ds.grit.factors <- sum(eigen(cor(ds))$values>e)    # Resulting number of factors to retain change this  
                                                   # to “ds.sums.factors” when analyzing the SUMS survey 
# FACTOR ANALYSIS 
----------------- 
This section will perform factor analysis on the GRIT and SUMS surveys. It assumes that the number of factors 
has been pre-determined using parallel analysis (previous section), and that the number of factors to retain in 
stored in the variables “ds.grit.factors” and “ds.sums.factors” 
 
ds.grit.fa <- factanal(ds.grit, factors=ds.grit.factors) # GRIT Factor Analysis 
ds.sums.fa <- factanal(ds.sums, factors=ds.grit.factors) # SUMS Factor Analysis 
 
# SIMULATION STUDY OF STRUCTURAL EQUATION MODELS 
# ---------------------------------------------- 
#  
#  Symbol   Description in Study 
#  --------------------------------------------------------- 
#    Y      Test Score Gains (Post Test – Pre Test) 
#    X      Survey Response Data, Each of the 13 Survey Items = {1,2,3,4,5} or NA 
#    b      Effect of Observed Covariate   “beta” 
#    g      Effect of Latent Factor        “gamma” 
#    G      Grit (Latent Factor) 
#    t1     Treatment Group 1, Indicator Variable (0,1) 
#    t2     Treatment Group 2, Indicator Variable (0,1) 
#    t3     Treatment Group 3, Indicator Variable (0,1) 
#    e      Regression Analysis Observation-Wise Errors (epsilon) 
#    d      Factor Analysis Observation-Wise Errors (delta) 
#    L      Factor Analysis Loadings Matrix 
#    psi    Factor Analysis Specific Errors 
#    n      Number of Observations in the Sample 
#    i      Index for Observations in the Sample, (i = 1 to n)  
#    u      Unit Vector (Intercept) 
#    r      Index for Replicates 
 
# Methodology 
# 
# A. Select b, g, L, and psi. 
# B. Generate G[i], e[i] from normal distribution, d[i] from multivariate normal distribution. 
# C. Calculate X[i] and Y[i]. 
# D. Estimate model using “two-stage” method. Save coefficient estimates and standard errors 
# E. Estimate model using “one-stage” method. Save coefficient estimates and standard errors 
# F. Repeat (B-E) one thousand times. 
  
# PART ONE: THE SIMPLE MODEL, Y = b + g*G + e 
# 
 
# Step 1: Load Packages, Specify Path Diagram 
# ------------------------------------------- 
# The first step is to load the required R packages and specify the path diagram for our model. The “sem”  
# library is needed to perform structural equation modeling, and the “MASS” library is needed to sample from  
# the multivariate normal distribution.  
# 
 
library(sem)                # Library: Structural Equation Modeling  
library(MASS)               # Library: Modern Applied Statistics 
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ds.model <- specify.model() 
G   ->  x01, lamda01, NA 
G   ->  x02, lamda02, NA 
G   ->  x03, lamda03, NA 
G   ->  x04, lamda04, NA 
G   ->  x05, lamda05, NA 
G   ->  x06, lamda06, NA 
G   ->  x07, lamda07, NA 
G   ->  x08, lamda08, NA 
G   ->  x09, lamda09, NA 
G   ->  x10, lamda10, NA 
G   ->  x11, lamda11, NA 
G   ->  x12, lamda12, NA 
G   ->  x13, lamda13, NA 
y   <-    u, intercept, NA 
y   <-    G, lamda_G, NA 
G   <->   G, NA, 1 
y   <->   y, e, NA 
x01 <-> x01, delta01, NA  
x02 <-> x02, delta02, NA 
x03 <-> x03, delta03, NA 
x04 <-> x04, delta04, NA 
x05 <-> x05, delta05, NA 
x06 <-> x06, delta06, NA 
x07 <-> x07, delta07, NA 
x08 <-> x08, delta08, NA 
x09 <-> x09, delta09, NA 
x10 <-> x10, delta10, NA 
x11 <-> x11, delta11, NA 
x12 <-> x12, delta12, NA 
x13 <-> x13, delta13, NA 
 
# Step 2: Initialize Replication Counter, or Re-Enter Interrupted Code 
# -------------------------------------------------------------------- 
# The goal is to accumulate results from one thousand replicates. After each replicate finishes, the results are 
# appended to a text file. If R crashes before finishing all one thousand replicates, we import the text file to  
# determine the last replicate that finished. Then we continue where we left off.  
 
r<-1                         # Initialize replicate index 

options(warn=-1)             # Suppress warning messages 
 
# Look for the results file. If the results file exists, then figure out the correct value of r. Otherwise the  
# file does not exist, and r is left unchanged, so r=1. 
 
try(temp <-read.table("c:\\SIMPLE_1STAGE.TXT", header = FALSE, sep="\t")) 
try(r <- max(temp[,1]) + 1) 
 
while (r <= 10  )                           # Loop through 1000 replicate 
{ 
 
  # Step 3: Specify Regression Effects 
  # ---------------------------------- 
 
  n <-30                                    # Number of Observations 
  u <- rep(1,n)                             # 
  b <- rbind(1.5, 2.5)                      # Beta (b) = 1.5 and Gamma (g) = 2.5 
  rownames(b) = c("Intercept","Slope")      # 
 
  # Step 4: Factor Loadings, Specific Errors, Random Errors 
  # ------------------------------------------------------- 
  # (1) Generate GRIT Factor ~ N(0,1) 
  # (2) Specify L and Psi from previous research. 
  # (3) Generate errors: d(elta) and e(psilon) 
 
  G<-rnorm(n) 
 
  L   <-rbind(0.501, 0.599, 0.591, 0.756, -0.531, 0.527, -0.643, -0.466, 0.686, 0.477, -0.531, 0.740, 0.622) 
  psi <-    c(0.749, 0.641, 0.650, 0.429,  0.718, 0.723,  0.587,  0.783, 0.529, 0.772,  0.718, 0.453, 0.613) 
 
  d <-mvrnorm(n,rep(0,13),diag(psi)) 
  e <- rnorm(n,0,1) 
 
  # Step 5: Calculate X, Y. Build Final Dataset  
  # ------------------------------------------- 
 
  X<-matrix(rep(0,13*n),n,13) 
  Y<-rep(0,n) 
  for(i in 1:n) 
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  { 
    X[i,] <- L %*% G[i] + d[i,]  
    Y[i]  <- b[1] + b[2]*G[i] + e[i] 
  } 
  ds <- data.frame(cbind(Y,u,X)) 
  names(ds) = cbind("y","u","x01","x02","x03","x04","x05","x06","x07","x08","x09","x10","x11","x12","x13") 
 
  # Step 6: Two-Stage Estimation using Factor Analysis and Regression 
  # ----------------------------------------------------------------- 
  # (1) Factor analysis to estimate latent factor G 
  # (2) Multiple linear regression analysis to estimate b and g 
 
  ds.fa <- factanal(x = ds[,3:15], factors=1, scores="regression")   # Factor Analysis 
  ds <- data.frame(cbind(ds, ds.fa$scores))                          # Get Factor Scores 

  colnames(ds)[16]="g"                                               # 
 
  ds.lm <- lm( y ~ g, data=ds )                                      # Linear Regression 

  ds.lm.b <- summary(ds.lm)$coefficients[1:2,1:2]                    # Get Coefficients, Standard Errors 
   
  # Step 7: One-Stage Estimation using Structural Equation Modeling 
  # --------------------------------------------------------------- 
  # When the number of observations is small, the sem() procedure sometimes refuses to estimate our paramters.  
  # This behavior is not mentioned in the sem() documentation. The sem() procedure is executed within a try()  
  # function to prevent premature termination of our program when this failure occurs. The current replicate is      
  # repeated until the sem() procedure successfully executes.  
 
  ds.rm <- raw.moments(ds)   # Raw moments matrix, needed to calculate intercepts in sem() procedure 
 
  remove("ds.sem")           # You *must* remove this object. 

  remove("ds.sem.summary")   # You *must* remove this object. 
 
  
  try(ds.sem <- sem(ds.model, ds.rm, n, fixed.x=c("u"), raw=TRUE),silent=TRUE)  # Estimate Model w/ SEM 
 
  if(!exists("ds.sem")) { next }                                                #                  
  ds.sem.se <- sqrt(diag(ds.sem$cov))                                           # Standard Errors 
 
  ds.sem.b <- rbind( cbind(ds.sem$coef[14], ds.sem.se[14]), 
                     cbind(ds.sem$coef[15], ds.sem.se[15])) 
 
  rownames(ds.sem.b) = rownames(b) 
  try(ds.sem.summary <- summary(ds.sem), silent=TRUE) 
 
  # Step 8: Write Results to Files 
  # ------------------------------------------------------- 
  # Column 1: Replication Number (r = 1 to 1000) 
  # Column 2: Coefficient Number 1=beta1, 2=beta2, 3=beta3, 4=gamma, 5=gamma2, 6=gamma3 
  # Column 3: Coefficient Estimate 
  # Column 4: Standard Error 
 
  if( exists("ds.sem.summary") ) 
  { 
     write(t(cbind(rep(r,2), 1:2, ds.sem.b)), ncolumn=4, file="c:\\SIMPLE_1STAGE.TXT", append=TRUE, sep="\t") 
     write(t(cbind(rep(r,2), 1:2, ds.lm.b )), ncolumn=4, file="c:\\SIMPLE_2STAGE.TXT", append=TRUE, sep="\t") 
     r = r + 1 
  } 
  else next  
} 
 
# PART TWO: THE COMPROMISE MODEL, Y = b1*t1 + b2*t2 +b3*t3 + + g1*t1*G + g2*t2*G + g3*t3*G + e 
# 
# The program code here is almost exactly like in the “simple model”. As such, this section of the code is not  
# heavily commented like the previous section, because we are not doing anything different. The only difference  
# is there are more treatment effects, and the model is slighltly different. 
 
library(sem) 
library(MASS) 
 
ds.model <- specify.model() 
G   ->  x01, lamda01, NA 
G   ->  x02, lamda02, NA 
G   ->  x03, lamda03, NA 
G   ->  x04, lamda04, NA 
G   ->  x05, lamda05, NA 
G   ->  x06, lamda06, NA 
G   ->  x07, lamda07, NA 
G   ->  x08, lamda08, NA 
G   ->  x09, lamda09, NA 
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G   ->  x10, lamda10, NA 
G   ->  x11, lamda11, NA 
G   ->  x12, lamda12, NA 
G   ->  x13, lamda13, NA 
y   <-    u, intercept, NA 
y   <-    G, lamda_G, NA 
G   <->   G, NA, 1 
y   <->   y, e, NA 
x01 <-> x01, delta01, NA  
x02 <-> x02, delta02, NA 
x03 <-> x03, delta03, NA 
x04 <-> x04, delta04, NA 
x05 <-> x05, delta05, NA 
x06 <-> x06, delta06, NA 
x07 <-> x07, delta07, NA 
x08 <-> x08, delta08, NA 
x09 <-> x09, delta09, NA 
x10 <-> x10, delta10, NA 
x11 <-> x11, delta11, NA 
x12 <-> x12, delta12, NA 
x13 <-> x13, delta13, NA 
 
r <- 1 
options(warn=-1) 
try(temp<-read.table("c:\\FULL_1STAGE.TXT", header = FALSE, sep="\t")) 
try(r <- max(temp[,1])+1) 
 
while (r <= 10) 
{ 
 
  # Step 3: Specify Regression Effects 
  # ---------------------------------- 
 
  n <-90   
  u <- rep(1,n) 
  b <- rbind(1.5, 2.5, 3.5, 3.0, 2.0, 1.0) 
  t <- cbind(c(rep(1,n/3), rep(2,n/3), rep(3,n/3))) 
  rownames(b) = c("t1","t2","t3","GRIT x t1","GRIT x t2","GRIT x t3") 
 
 
  # Step 4: Factor Loadings, Specific Errors, Random Errors 
  # ------------------------------------------------------- 
 
  G <-rnorm(n) 
  L <-rbind(0.501, 0.599, 0.591, 0.756, -0.531, 0.527, -0.643, -0.466, 0.686, 0.477, -0.531, 0.740, 0.622) 
  psi   <-c(0.749, 0.641, 0.650, 0.429,  0.718, 0.723,  0.587,  0.783, 0.529, 0.772,  0.718, 0.453, 0.613) 
  d <- mvrnorm(n,rep(0,13),diag(psi)) 
  e <- rnorm(n,0,1) 
  
  # Step 5: Calculate X, Y. Build Final Dataset  
  # ------------------------------------------- 
 
  X <- matrix(rep(0,13*n),n,13) 
  Y <- rep(0,n) 
  for(i in 1:n) 
  { 
    X[i,] <- L %*% G[i] + d[i,]  
    Y[i]  <- b[1]*(t[i]==1)      + b[2]*(t[i]==2)      + b[3]*(t[i]==3) + 
             b[4]*(t[i]==1)*G[i] + b[5]*(t[i]==2)*G[i] + b[6]*(t[i]==3)*G[i] + e[i]  
  } 
  ds <- data.frame(cbind(Y,u,X,t)) 
  names(ds) = cbind("y","u","x01","x02","x03","x04","x05","x06","x07","x08","x09","x10","x11","x12","x13","t") 
  ds <- data.frame(cbind(ds, (ds$t==1)*1, (ds$t==2)*1, (ds$t==3)*1)) 
  names(ds) =  cbind("y","u","x01","x02","x03","x04","x05","x06", 
                             "x07","x08","x09","x10","x11","x12","x13","t","t1","t2","t3") 
 
  # Step 6: Two-Stage Estimation using Factor Analysis and Regression 
  # ----------------------------------------------------------------- 
 
  ds.fa <- factanal(x = ds[,3:15], factors=1, scores="regression") 
  ds <- data.frame(cbind(ds, ds.fa$scores)) 
  names(ds)[20]="g" 
 
  ds.lm <- lm( y ~ 0 + t1 + t2 + t3 + g*t1 + g*t2 + g*t3 - g, data=ds ) 
  ds.lm.b <- summary(ds.lm)$coefficients[1:6,1:2] 
 
  # Step 7: One-Stage Estimation using Structural Equation Modeling 
  # --------------------------------------------------------------- 
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  ds.rm1 <- raw.moments(subset(ds,t==1)[,1:15]); remove("ds.sem1"); remove("ds.sem1.summary") 
  ds.rm2 <- raw.moments(subset(ds,t==2)[,1:15]); remove("ds.sem2"); remove("ds.sem2.summary") 
  ds.rm3 <- raw.moments(subset(ds,t==3)[,1:15]); remove("ds.sem3"); remove("ds.sem3.summary") 
 
  try(ds.sem1 <- sem(ds.model, ds.rm1, n/3, fixed.x=c("u"), raw=TRUE),silent=TRUE) 
  try(ds.sem2 <- sem(ds.model, ds.rm2, n/3, fixed.x=c("u"), raw=TRUE),silent=TRUE) 
  try(ds.sem3 <- sem(ds.model, ds.rm3, n/3, fixed.x=c("u"), raw=TRUE),silent=TRUE) 
 
  if( !(exists("ds.sem1") && exists("ds.sem2") && exists("ds.sem3")) ) { next } 
 
  ds.sem1.se <- sqrt(diag(ds.sem1$cov))   # Standard Errors 
  ds.sem2.se <- sqrt(diag(ds.sem2$cov))   # 
  ds.sem3.se <- sqrt(diag(ds.sem3$cov))   # 
 
  ds.sem.b <- rbind( cbind(ds.sem1$coef[14], ds.sem1.se[14]), cbind(ds.sem2$coef[14], ds.sem2.se[14]), 
                     cbind(ds.sem3$coef[14], ds.sem3.se[14]), cbind(ds.sem1$coef[15], ds.sem1.se[15]), 
                     cbind(ds.sem2$coef[15], ds.sem2.se[15]), cbind(ds.sem3$coef[15], ds.sem3.se[15])) 
  rownames(ds.sem.b) = rownames(b) 
 
  try(ds.sem1.summary <- summary(ds.sem1), silent=TRUE) 
  try(ds.sem2.summary <- summary(ds.sem2), silent=TRUE) 
  try(ds.sem3.summary <- summary(ds.sem3), silent=TRUE) 
 
  # Step 8: Write Results to Files 
  # ------------------------------------------------------- 
  # Column 1: Replication Number (r = 1 to 1000) 
  # Column 2: Coefficient Number 1=beta1, 2=beta2, 3=beta3, 4=gamma, 5=gamma2, 6=gamma3 
  # Column 3: Coefficient Estimate 
  # Column 4: Standard Error 
 
  if( exists("ds.sem1.summary") && exists("ds.sem2.summary") && exists("ds.sem3.summary")) 
  { 
     write(t(cbind(rep(r,6), 1:6, ds.sem.b)), ncolumn=4, file="c:\\FULL_1STAGE.TXT", append=TRUE, sep="\t") 
     write(t(cbind(rep(r,6), 1:6, ds.lm.b )), ncolumn=4, file="c:\\FULL_2STAGE.TXT", append=TRUE, sep="\t") 
     r = r + 1 
  } 
  else next 
} 
 
# ANALYSIS OF ASSISTMENTS DATA USING COMRPOMISE MODEL 
# --------------------------------------------------- 
 
ds.sums<-na.omit(cbind(ds.data[,c(03:04,05:16,30:38)],1)) 
ds.grit<-na.omit(cbind(ds.data[,c(03:04,17:29,30:38)],1)) 
 
colnames(ds.sums)[ncol(ds.sums)]="UNIT" 
colnames(ds.grit)[ncol(ds.grit)]="UNIT" 
 
# MODEL 1: The SUMS Model (Multivariate SEM) 
# ------------------------------------------ 
 
ds.sums.model <- specify.model() 
SUMS01 <- SUMS, lams01, NA 
SUMS03 <- SUMS, lams03, NA 
SUMS04 <- SUMS, lams04, NA 
SUMS05 <- SUMS, lams05, NA 
SUMS07 <- SUMS, lams07, NA 
SUMS10 <- SUMS, lams10, NA 
SUMS12 <- SUMS, lams12, NA 
SUMS13 <- SUMS, lams13, NA 
SUMS15 <- SUMS, lams15, NA 
SUMS16 <- SUMS, lams16, NA 
SUMS18 <- SUMS, lams18, NA 
SUMS19 <- SUMS, lams19, NA 
SUMS01 <-> SUMS01, psis01, NA 
SUMS03 <-> SUMS03, psis03, NA 
SUMS04 <-> SUMS04, psis04, NA 
SUMS05 <-> SUMS05, psis05, NA 
SUMS07 <-> SUMS07, psis07, NA 
SUMS10 <-> SUMS10, psis10, NA 
SUMS12 <-> SUMS12, psis12, NA 
SUMS13 <-> SUMS13, psis13, NA 
SUMS15 <-> SUMS15, psis15, NA 
SUMS16 <-> SUMS16, psis16, NA 
SUMS18 <-> SUMS18, psis18, NA 
SUMS19 <-> SUMS19, psis19, NA 
SUMS <-> SUMS, NA, 1 
 INQ_GAIN <->  INQ_GAIN, VAR1, NA 
RAMP_GAIN <-> RAMP_GAIN, VAR2, NA 
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 INQ_GAIN <- SUMS, GAMMA1, NA 
 INQ_GAIN <- UNIT, BETA1, NA 
RAMP_GAIN <- SUMS, GAMMA2, NA 
RAMP_GAIN <- UNIT, BETA2, NA 
 
ds.sums.rm1  <- raw.moments(subset(ds.sums, TREATMENT==1)[,-1]) 
ds.sums.rm2  <- raw.moments(subset(ds.sums, TREATMENT==2)[,-1]) 
ds.sums.rm3  <- raw.moments(subset(ds.sums, TREATMENT==3)[,-1]) 
 
ds.sums.n1 <- nrow(subset(ds.sums, TREATMENT==1)) 
ds.sums.n2 <- nrow(subset(ds.sums, TREATMENT==2)) 
ds.sums.n3 <- nrow(subset(ds.sums, TREATMENT==3)) 
 
ds.sums.sem1 <- sem(ds.sums.model, ds.sums.rm1, N=ds.sums.n1, fixed.x=c("UNIT"), raw=TRUE) 
ds.sums.sem2 <- sem(ds.sums.model, ds.sums.rm2, N=ds.sums.n2, fixed.x=c("UNIT"), raw=TRUE) 
ds.sums.sem3 <- sem(ds.sums.model, ds.sums.rm3, N=ds.sums.n3, fixed.x=c("UNIT"), raw=TRUE) 
 
summary(ds.sums.sem1) 
summary(ds.sums.sem2) 
summary(ds.sums.sem3) 
 
# MODEL 2: The GRIT Model (Multivariate SEM) 
# ------------------------------------------ 
 
ds.grit.model <- specify.model() 
GRIT02 <- GRIT, lamg02, NA 
GRIT03 <- GRIT, lamg03, NA 
GRIT04 <- GRIT, lamg04, NA 
GRIT05 <- GRIT, lamg05, NA 
GRIT06 <- GRIT, lamg06, NA 
GRIT07 <- GRIT, lamg07, NA 
GRIT08 <- GRIT, lamg08, NA 
GRIT09 <- GRIT, lamg09, NA 
GRIT10 <- GRIT, lamg10, NA 
GRIT11 <- GRIT, lamg11, NA 
GRIT12 <- GRIT, lamg12, NA 
GRIT13 <- GRIT, lamg13, NA 
GRIT14 <- GRIT, lamg14, NA 
GRIT02 <-> GRIT02, psig02, NA 
GRIT03 <-> GRIT03, psig03, NA 
GRIT04 <-> GRIT04, psig04, NA 
GRIT05 <-> GRIT05, psig05, NA 
GRIT06 <-> GRIT06, psig06, NA 
GRIT07 <-> GRIT07, psig07, NA 
GRIT08 <-> GRIT08, psig08, NA 
GRIT09 <-> GRIT09, psig09, NA 
GRIT10 <-> GRIT10, psig10, NA 
GRIT11 <-> GRIT11, psig11, NA 
GRIT12 <-> GRIT12, psig12, NA 
GRIT13 <-> GRIT13, psig13, NA 
GRIT14 <-> GRIT14, psig14, NA 
GRIT <-> GRIT, NA, 1 
 INQ_GAIN <->  INQ_GAIN, VAR1, NA 
RAMP_GAIN <-> RAMP_GAIN, VAR2, NA 
 INQ_GAIN <- GRIT, GAMMA1, NA 
 INQ_GAIN <- UNIT, BETA1, NA 
RAMP_GAIN <- GRIT, GAMMA2, NA 
RAMP_GAIN <- UNIT, BETA2, NA 
 
ds.grit.rm1  <- raw.moments(subset(ds.grit, TREATMENT==1)[,-1]) 
ds.grit.rm2  <- raw.moments(subset(ds.grit, TREATMENT==2)[,-1]) 
ds.grit.rm3  <- raw.moments(subset(ds.grit, TREATMENT==3)[,-1]) 
 
ds.grit.n1 <- nrow(subset(ds.grit, TREATMENT==1)) 
ds.grit.n2 <- nrow(subset(ds.grit, TREATMENT==2)) 
ds.grit.n3 <- nrow(subset(ds.grit, TREATMENT==3)) 
 
ds.grit.sem1 <- sem(ds.grit.model, ds.grit.rm1, N=ds.grit.n1, fixed.x=c("UNIT"), raw=TRUE) 
ds.grit.sem2 <- sem(ds.grit.model, ds.grit.rm2, N=ds.grit.n2, fixed.x=c("UNIT"), raw=TRUE) 
ds.grit.sem3 <- sem(ds.grit.model, ds.grit.rm3, N=ds.grit.n3, fixed.x=c("UNIT"), raw=TRUE) 
 
summary(ds.grit.sem1) 
summary(ds.grit.sem2) 
summary(ds.grit.sem3) 
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APPENDIX B: SURVEY QUESTIONS 

Item Survey Text 

SUMS01 A model is a smaller sized version of an object. 

SUMS03 Models are used to make predictions about a scientific object or process. 

SUMS04 Models show the relationship between ideas. 

SUMS05 Models are used to help test theories about a scientific object or process. 

SUMS06 A model may be changed if there are new ideas about a scientific object or process. 

SUMS07 Models are used to help formulate ideas about a scientific objector process. 

SUMS08 More than one model is used to show different versions of an object or process. 

SUMS09 A model may be changed if there are new findings about a scientific object or process. 

SUMS10 Models are used to explain a scientific object or process. 

SUMS11 A model may be changed if there are new theories about a scientific object or process. 

SUMS12 A model is similar to the real thing in every way except for size. 

SUMS13 Models are used to show an object or a process in a visual way. 

SUMS14 More than one model is used to show different perspectives about an object or process. 

SUMS15 A model shows what the real thing looks like. 

SUMS16 A model includes what is needed to show or explain a scientific object or process. 

SUMS17 More than one model is used to show different sides or features of an object or process. 

SUMS18 Models are used to help test predictions about a scientific object or process. 

SUMS19 A model is an exact replica of the real thing. 

SUMS20 There may be more than one model for an object or process because different people may have different viewpoints 

about what it looks like or how it works. 

SUMS21 A model may be changed if new technology allows us to discover new evidence about an object or process. 

SUMS22 More than one model may be used if different people interpret the data/evidence in different ways. 

  

Item Survey Text 

GRIT01 I have a hard time breaking bad habits. 

GRIT02 I am lazy. 

GRIT03 I say inappropriate things. 

GRIT04 I do certain things that are bad for me, if they are fun. 

GRIT05 I refuse things that are bad for me. 

GRIT06 I wish I had more self-discipline. 

GRIT07 I am good at resisting temptation. 

GRIT08 People would say that I have iron self-discipline. 

GRIT09 Pleasure and fun sometimes keep me from getting work done. 

GRIT10 I have trouble concentrating. 

GRIT11 I am able to work effectively towards long-term goals. 

GRIT12 Sometimes I can't stop myself from doing something, even if I know it is wrong. 

GRIT13 I often act without thinking through all the alternatives. 

 


