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Abstract

Almost 300 million people across the world suffer from depression. This is a
widespread issue in which a majority of those suffering do not receive treatment.
Screening for depression using smartphone data could result in less biased, more
proactive results and could be accomplished by recognizing text patterns in
people’s messages. To explore this potential, we analyzed previously collected
text message data through the application of lexical category featurization and
a deep learning model, BERT. While we experimented with existing data, we
also researched methods for further data collection. We concluded that the Bag
of Words method of categorizing words outperformed the Empath method. We
also determined that the methods of lexical category featurization produced
higher accuracies than the BERT models, and more advanced BERT models
were prone to overfitting. By visualizing the results, we discovered that those
with depression discussed less about personal topics than asymptomatic people.
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1 Introduction

Depression is a “common and serious medical illness that negatively affects
how you feel, the way you think and how you act” (Torres, 2020). This per-
vasive mental disorder affects over 264 million people worldwide [3]. Untreated
depression can lead to an array of other problems, such as a weakened immune
system, heart disease, physical pain, and, in the worst case scenario, suicide [4].

Thankfully, treatment for depression is highly effective, as up to 80% of
those treated show signs of improvement within around four to six weeks [5].
However, “nearly two out of three people suffering with depression do not ac-
tively seek nor receive proper treatment” [5], and it takes an average of 11 years
for someone with a mental illness to get treatment [6]. Much of this is due to
the stigma surrounding depression and mental health – an individual suffering
from depression may feel unworthy of help or not normal for suffering from
depression. Since depression can worsen when left untreated, this is extremely
detrimental and dangerous. In the modern and digital age, technology has in-
creased the capacity for human connection. You can reach virtually anyone
through a few clicks, and it seems that people are constantly interacting with
one another through text messaging or social media. However, despite this con-
stant connection, people are more lonely than ever. There is an alarming linear
correlation between depression and smartphone use, with more time spent on
smartphones being associated with a higher risk of depression [7]. Therefore,
detecting depression with the culprit itself - mobile devices - could unobtrusively
monitor for signs of depression.

1.1 Current Screening Methods

Screening methods - such as the EQ5D, the Child Behavior Checklist (CBCL),
and the Patient Health Questionnaire (PHQ-9) - can be applied to detecting
depression. These methods are not intended to diagnose depression, but to in-
dicate that the patient should be evaluated further. For example, the EQ5D is
a questionnaire designed to evaluate general quality of life in five different areas:
mobility, self-care, usual activities, pain/discomfort and anxiety/depression [8].
Since depression can often lead to a decrease in overall quality of life, this screen-
ing method is useful as it can provide context to other areas of a person’s life if it
indicates they are depressed. The EQ5D is widely available and takes just under
five minutes to complete. Furthermore, the CBCL is a questionnaire/checklist
designed to measure behavioral and social problems for youth aged 6-18 [8].
The checklist can be administered to the child’s parents, the child’s teachers, or
the child.

Lastly, the PHQ-9 contains a range of questions that aim to gauge the level
of depressive symptoms that the patient has been experiencing [8]. The PHQ-9
is the technique that this project focuses on, as it is the most common screening
method in the United States [9], and it has been proven to be effective when in-
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tegrated with mobile devices [10]. PHQ-9 scores are divided into five categories:
asymptomatic (scores 0-4), mild (5-9), moderate (10-14), moderate-severe (15-
19), and severe (20+). This survey is pictured below.

Figure 1: PHQ-9 Questionnaire
[11]

Unfortunately, surveys can be unreliable as they require honest self-reflection
and a great deal of self awareness. Not only that, but merely 4.2% of adults
were screened for depression during routine doctor visits in 2012 and 2013 [11].
Overall, current screening methods fail to provide the reliability nor the level of
outreach necessary to address this global mental health crisis. A more proactive,
unbiased method is a vital step towards helping people get the treatment they
need. Hence, we aim to develop a system in which smartphones can unobtru-
sively indicate whether its user has depression, by advancing machine learning
and deep learning models on text message data.
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1.2 Problem Statement and Challenges

The undertaking of this project is accompanied by a few challenges, including
a small data set and problems associated with applying text-speak to NLP
models. Primarily, NLP models are typically complex and require a significant
amount of data to avoid overfitting. Since this project works with a small data
set of just approximately 300 participants (over 300 for Moodable, 60 for EMU),
data must be methodically pre-processed and managed to yield the desired
results. Moreover, applying text-speak data to NLP models has its own set of
challenges due to the casual and often grammatically-inaccurate manner of text
messages. For instance, people often use abbreviation, slang, or misspellings
in their text messages. This can cause a model to categorize words or phrases
separately when they really have the same meaning. Also, text message inboxes
can be flooded with insignificant messages from bots, such as verification codes,
appointment reminders, spam messages, etc. With an already limited dataset,
these sorts of obstructions are a huge roadblock in developing an NLP model
with high accuracy.

1.3 Summary of Prior Related Work and Research

The concept that deep learning models could have the capability to detect
depression stems from prior research that correlates certain linguistic patterns
with depression [12]. In the domain of implementing deep learning methods
to detect depression, research has been conducted on audio-based depression
screening [13]. BERT models have been explored for purposes of Twitter text
analysis [14] and classifying tweets into different categories in the field of dis-
aster management [15]. Our project bridges this gap between applying BERT
towards text analysis and detecting depression with deep learning, by applying
BERT towards text message analysis for classifying participants as depressed or
not depressed. Furthermore, research has been conducted regarding visualizing
patterns that represent what BERT is learning [16], and visualizing BERT’s at-
tention mechanism, or the mechanism that forms connections between elements,
such as words [16].

Additionally, past MQP teams have spearheaded this project by experi-
menting with detecting depression and anxiety from audio data, collecting text
message data, and experimenting with applying text and call log data to de-
tecting depression. Researchers in the summer of 2021 implemented an Empath
tool to create new lexical categories and developed machine learning models to
determine if these new features could aid in detecting depression in text mes-
sages. Additionally, the researchers developed BERT models for the text mes-
sage dataset, and began experimenting with preprocessing methods to improve
the results of these BERT models.
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1.4 Our Approach and Contributions

Our approach to addressing the aforementioned problems is to build off
the prior work in machine learning with Empath features, and to develop an
optimized BERT model for detecting depression. We aim to complete the pre-
processing that the summer researchers began experimenting with, by applying
techniques such as a sliding window to create chunked data, enabling the model
to accomodate special characters, and generating new lexical categories with
Empath. We also seek to strengthen this model by investigating the potential
use of the data collection platform Beiwe to gather more data. Our overarching
goal is to achieve a highly accurate model that will help advance research on
mobile depression screening.

2 Background

2.1 Prior Work

Summer Work

During the summer of 2021, a Research Experience for Undergraduates
(REU) team, consisting of Benjamin Litterer, Nicholas Jurovich, Mahum Shah,
and Sai Thatigotla, investigated two ways of using machine learning to screen for
depression by conducting preliminary experiments. The first approach involved
creating new lexical categories through the use of the Empath tool. Unlike the
original Empath lexical categories, which were created based on fictional writing
on the web, these new categories were created based on a Reddit-based model.
Unfortunately, the results collected with these new categories did not indicate
a significant improvement in the ability to screen for depression. The other ap-
proach taken by the REU team was to run BERT models on the text message
datasets. They found that, linguistically, it is difficult to run BERT models with
text message data, and the team determined that the results could be improved
if preprocessing techniques were implemented. They began experimenting with
these techniques, but were not finished before the completion of the REU. Our
team aims to continue the development of these preprocessing methods, as well
as add post-processing methods, by improving the previous attempts and by
implementing fresh, new ideas. Through these augmentations, the MQP team
hopes to increase the accuracy of the BERT models. The team will also be
working to improve the lexical categories approach by implementing new, more
domain-specific categories and by running various machine learning models.

MQP 20-21

The MQP Team during the 2020-2021 year worked on collecting new data.
The team improved and increased survey methods and collected a new dataset
from college students. They also conducted experiments to see if time series
constructed from text and call logs can predict if an individual is depressed.
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MQP 19-20

The MQP Team during the 2020-2021 year worked on collecting a new set
of data. They developed an Android application and a website to distribute
a survey, which was updated to incorporate questions from the PHQ-9 survey.
The app also, with permission, offered audio prompts for participants to answer,
and recorded call logs, text message data, and calendar events. This resulted
in a new dataset from college students, in which they were able to analyze cal-
culated PHQ-9 scores and compare them with past studies, and analyze the
demographics of their data set. They also conducted experiments to see if time
series constructed from text and call logs can reveal a pattern in PHQ-9 scores.
Ultimately, they found some correlation between outgoing text logs and pre-
dicting depression, however more research needs to be done on the significance
of this trend.

2.2 Prior Related Research

2.2.1 BERT

Tweets Classification with BERT in the Field of Disaster Management

Data from social media can provide valuable real-time insight into local situ-
ations during times of disaster [15]. Therefore, the field of disaster management
often leverages this data for tasks such as damage assessment, outbreak detec-
tion, and sentiment analysis. However, these data sets are enormous, noisy,
and unstructured, which makes them difficult to work with. To address this,
Stanford researchers decided to train a deep learning model to sort tweets into
different categories (or labels), so that only relevant data can be analyzed. These
labels include “Caution and Advice,” “Not Related or Not Informative,” etc.,
as shown on the table below.

Figure 2: Classification labels for BERT in the Field of Disaster Relief
[15]

This was accomplished by training various BERT models with a cumulative
dataset of 75,800 tweets. The results are depicted below, and overall it was
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found that the BERT model outperformed the baseline model by about 3%.
These results confirm that BERT is effective when applied to messy datasets of
text-speak.

Figure 3: Results for BERT in the Field of Disaster Relief
[15]

2.2.2 Visualizing BERT

Deconstructing BERT: Distilling 6 Patterns from 100 Million Param-
eters

This paper gives a surface level view of what BERT is and describes a tech-
nique to visualize the learned weights in the BERT model. It credits the im-
portance of doing this to the fact that the process by which BERT fine-tunes
these weights is hard to understand. The visualization of these weights aims to
show exactly what BERT is learning. BERT can show what it’s learned in many
ways, but this paper summarizes the six most common learning patterns To see
where the attention, or weighted average, in each of these patterns is, it will
show a line from the left or selected token to the right or expected token with
the opacity being how strong the attention is. The patterns were: attention
to the next word, attention to the previous word, attention to identical/related
words, attention to identical/related words in other sentences, attention to other
words predictive of word, and attention to delimiter tokens. Figure 1 shows the
attention to the next word visual graphic [16].
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Figure 4: Next Word Attention
[16]

Deconstructing BERT, Part 2: Visualizing the Inner Workings of
Attention

This paper focuses on BERT’s attention mechanism. Attention is the im-
portance of where you should focus in any given task and is another word for
a weighted average. BERT makes use of attention by using multiple attention
heads that work in parallel; it then adds layers of this that work off the previous
layers, making for very rich representations at lower layers [17]. It goes into how
attention weights are computed by a compatibility function, which gives a score
to each pair of words and shows how much they should attend to each other.
The model starts by assigning each word a query vector and a key vector, which
are constructed for determining the compatibility of words. The compatibility
score is found by taking the dot product of the query vector of one word and
the key vector of the other. Taking these scores and making them attention
weights, means normalizing them to positive and sum to one. This is done by
using the softmax function over the scores for a given word. The final softmax
value that is given is the final attention weight [17].

The paper also describes visualizing how attention weights are computed
from the query and key vectors we talked about before, using neuron view.
This view shows positive values as blue and negative values as orange, with the
intensity of the color being its magnitude. The intensity of the lines also shows
the strength of attention. These come together in this view to show how atten-
tion is computed from the chosen word to the end chosen words. The visual
below shows a delimiter-focused attention pattern in the neuron view. The key
vector for the two [SEP] tokens carry a distinctive look as they both have a few
extremely positive (blue) or negative (orange) values and have a larger amount
of spots that are closer to zero (light blue/orange or white). These spots then
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get further matched by the query vector, which causes the product to exemplify
this with very positive (blue) spots.

Figure 5: Neuron View on Delimiter Focused Attention
[17]

2.2.3 Empath

Human Attention Maps for Text Classification: Do Humans and Neu-
ral Networks Focus on the Same Words?

In this paper the focus was on how close the attention maps created by
humans and machines are. To do this there was a focus on the words focused on,
the distribution over lexical categories and the context-dependency of sentiment
polarity. The process of doing this was done three times with 50 word reviews,
100 word reviews and 200 word reviews and the groups of people determined
sentiment and highlighted words that helped them make their decision. Then
the machine was built and ran to make it’s attention maps. The data showed
that the amount of text there is decreases the accuracy of the machine as well
as the similarity of attention between machine and human. It also showed that
in general humans were slightly better at understanding sentiment from reviews
with 50 words and the gap increased as the number of words increased [18].
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Figure 6: Test accuracy from three subsets of Yelp data.
[18]

An Introduction to Bag of Words (BoW) - What is Bag of Words?

This paper explains what the “Bag of Words” technique is, why it’s used, as
well as its limitations. Bag of words is a NLP technique of text modelling that
extracts features to show what words and how many times each word shows up
in a sentence. Bag of Words takes messy and unstructured text and makes it
structured in the form of numbers for machine learning algorithms to use [19].
One of the weaknesses of Bag of Words is the problem of using negative words to
make a positive sentence or the opposite, this can be fixed with N-grams which
groups words together and allows us to identify differences between sentences
like “This is not good at all” versus “This is a good job. I will not miss it for
anything” [19]. Bag of Words limitations include being unable to determine
where words are in respect to each other and seeing words that mean the same
thing as completely different [19].

Figure 7: Bag of Words output for sentence 1: ”welcome great learning now
start learning” and sentence 2: ”learning good practice”

[19]

Understanding Depression from Psycholinguistic Patterns in Social
Media Texts

In this paper, Alina Trifan et. al. from the University of Aveiro used Empath
to detect how depression affects linguistic patterns by analyzing Reddit posts
[12]. The posts were taken from 30,000 users who had either explicitly stated
that they were diagnosed with depression or who had never made a post about
mental health. After running different experiments with various classifiers and
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weighting schemes on the data – for example, using the TF-IDF technique with
the Passive Aggressive classifier – they found that the language that depressed
individuals used in their posts had significant differences from that of non-
depressed individuals. Their conclusions were that depressed users typically
use more negative emotion words, self-related speech, absolutist words, and use
more words in posts [12].

2.2.4 Preprocessing Techniques

Audio-based Depression Screening using Sliding Window Sub-clip
Pooling

Detecting signs of depression based on the human voice can be quite diffi-
cult, as the cues are subtle and voice datasets often have limited participants.
To overcome these roadblocks, researchers applied a Sliding Window Sub-clip
Pooling (SWUP) method [13]. Parent voice clips are divided into sub-clips,
which are then pooled. Pooling is when the input size is decreased, effectively
summarizing the input features. These pooled sub-clips enable depression de-
tection as the signals occur in real-time, thus increasing the sensitivity to these
signals. When evaluated on four datasets, it was found that SWUP outperforms
the baseline models significantly, and that max pooling is the best version (as
seen on the table below).

Figure 8: Results of Audio-based Depression Screening Model
[13]
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2.2.5 Beiwe

Use of Beiwe Smartphone App to Identify and Track Speech Decline
in Amyotrophic Lateral Sclerosis (ALS)

In this paper, the researchers used the Beiwe application to identify the
early symptoms of Amyotrophic Lateral Sclerosis (ALS). For each of the partic-
ipants, the app would send them notifications each week that would ask them to
complete a questionnaire and to record themselves reading a passage. The app
would actively collect this data every week and then would passively collect a
variety of other data to compare. Passively the app would collect the number of
steps, battery life, GPS, among other data. This study showed how the “Beiwe
platform provides a viable approach for [certain] symptoms and to track speech
decline in ALS” [20].

Collecting and analyzing smartphone sensor data for health — Prac-
tice and Experience in Advanced Research Computing

In this study a team from the University of Texas used Beiwe in a study
about pregnant women. The university used the application for data collection
and created a dashboard to track the data’s movement along the pipeline. The
study used the pipeline to look at the participants’ data over a span of time so
they could see patterns or any changes in their routines. Evidence suggests that
“signatures of health and disease, or digital biomarkers, exist within the hetero-
geneous, temporally-dense data gathered from smartphone sensors” [21]. From
this, the study uses both physical and virtual sensors such as, accelerometer,
GPS, power/screen state, call logs, among others.

2.3 Data Collection

Data collection is an essential part of the ongoing Emutivo project since the
goal is to analyze private text messages to predict depression. This section will
describe two existing datasets that will be used in this as well as a new data
collection platform that will be used for future data collection and subsequent
dataset generation.

2.3.1 Datasets

Amazon Mechanical Turk (MTurk) is a crowdsourcing marketplace that out-
sources posted jobs to a public distributed workforce. These jobs can be posted
by anyone with an MTurk account and could include anything – from image
recognition to survey participation. Previous MQP teams have used MTurk to
create the Moodable and EMU datasets, which include the data types shown in
the table below. Our team will used both the Moodable and Emu datasets for
our research.
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Active Data
Surveys Audio Recordings

Passive Data
GPS Text messages
Call logs Calendar
Power state Reachability
Social media content

Table 1: Data Types in the Moodable/EMU Datasets [1]

Moodable

The 2017-2018 MQP team gathered data for this dataset by using the MTurk
platform to deploy the Moodable application. This application then collected
user data including PHQ-9 scores, texts, mobile files, voice samples, calendar,
contacts, call logs, GPS locations, and social media content from over 300 crowd-
sourced individuals. [1]

EMU

The dataset was collected by the 2018-2019 MQP team, using the same Ama-
zon Mechanical Turk platform to deploy a different application called “EMU”.
The data collected by this app is similar to the Moodable dataset, but with one
notable exception being the addition of GAD-7 screening scores from over 60
crowd-sourced individuals. [22]

2.3.2 Beiwe

Beiwe (pronounced bee-we) is an open-source research platform that was
created for researchers to collect smartphone-based data from participants in
their studies. The platform was developed by the Onnela Lab at the Harvard
T.H. Chan School of Public Health with funding from the National Institutes
of Health (NIH). The use of smartphone data allows researchers to study their
participants’ digital phenotypes – a term that was coined by the research team
and refers to the continuous passive gathering of smartphone-based data on the
individual level. The Beiwe platform is available as an open-source software to
promote collaboration and reproducibility in studies. [2]

Parts of the Platform

The Beiwe platform is composed of two parts: frontend data collection ap-
plications for Android and iOS devices, and a backend system based on Amazon
Web Services (AWS) cloud computing infrastructure for long-term data storage
and analysis, as well as an online study management portal [20]. The frontend
applications are written Java and Kotlin for the Android version, and Swift and
Objective-C for the iOS version [2]. The backend code is written in Python
3.6, Django, and Flask, and uses the following AWS services: S3, EC2, Elastic
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Beanstalk, and RDS [2]. The backend hosts an online study management portal,
which allows researchers to create new studies and manage existing ones [21].
The following diagram shows a simplified version of the frontend and backend
parts of the platform, as well as how they connect to each other.

Figure 9: How Beiwe Works

Data Collection

Once a new study has been created, participants can download the frontend
application on their personal smartphones and log in with their user ID, tem-
porary password, and the URL address of the backend server – all of which are
generated by the backend study management portal [2]. The Beiwe app allows
participants to upload two types of data:

• Active data, which requires active involvement for its creation; and

• Passive data, which are created without any active involvement. [2]

The following table showcases what kinds of data Beiwe is able to collect.

Data Encryption and Storage

The Beiwe app will store all of the data collected from the participants in a
CSV file that will then encrypt all the data with the public half of a 2048-bit
RSA encryption key [21][2]. It will then upload the data to the AWS server
whenever there is a Wi-Fi connection [21]. The server will re-encrypt the data
with the study master key and ultimately route it to an S3 bucket [21][2].
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Active Data
Surveys Audio Recordings

Passive Data
GPS Call logs - metadata
Message logs - metadata Proximity
Power state Reachability
Wi-Fi Bluetooth
Device motion (accelerometer,
gyroscope, magnetometer)

Table 2: Data Types Collected by Beiwe [2]

Open-Source Materials

The code for Beiwe is all open-source and available on Github. There are a
total of three Github repositories for different parts of the platform:

• Android app: https://github.com/onnela-lab/beiwe-android;

• iOS app: https://github.com/onnela-lab/beiwe-ios; and

• AWS backend: https://github.com/onnela-lab/beiwe-backend.

In addition to making the frontend code available on Github, the Onnela
Lab also provides corresponding apps on the Apple App Store as well as the
Google Play Store. This app is called “Beiwe2” and is meant to be downloaded
by study participants in ongoing research studies.

2.3.3 AWS

Amazon Web Services (AWS) is a cloud-computing platform that offers over
200 services – from servers and data storage to artificial intelligence, and Internet
of Things [23].

Simple Storage Service

Simple Storage Service (S3) allows you to store any amount of data and
access it from anywhere. Data is stored in “buckets”, which are secure and
scalable.

Elastic Compute Cloud

Elastic Compute Cloud (EC2) allows you to build and run applications vir-
tually. CPU, memory, storage, and networking capacity can be configured by
choosing an instance type, such as the Beiwe AMI. Using EC2 allows your ap-
plication to be secure and scalable.
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CloudFormation

CloudFormation lets you model and provide other AWS services by creating
templates to manage the configurations and infrastructure of the other services.
The process of using CloudFormation is broken into three parts: creating a
template, creating a stack, and finally building a running environment. Cloud-
Formation allows you to set up a template, which is like a blueprint for AWS
resources – it includes all the configurations for each resource. A stack is a
subset of the AWS resources whose properties were outlined in the template
– these are the resources you want to use to build your running environment.
CloudFormation will then take the stack and build a running environment.

HIPPA Compliance

There is no formal HIPAA certification for AWS or other cloud service
providers [24]. Instead, AWS meets requirements outlined by the Federal Risk
and Authorization Management Program (FedRAMP) and National Institute
of Standards and Technology (NIST) 800-53, which map to the HIPAA criterion
[24]. However, though AWS can be naturally HIPAA-compliant, configuration
mistakes can leave protected health information (PHI) unprotected and there-
fore accessible to unauthorized groups.

To solve this problem, AWS released their Quick Start program, from which
you can choose pre-configured AWS services that align with HIPAA practices
and use those services for your applications. The Quick Start program uses
CloudFormation – you are given a template that includes various AWS resources
that are configured to be HIPAA-compliant, and can then create stacks and run
applications using those configured resources.

2.4 Machine Learning

Machine learning is a subset of artificial intelligence that helps computers
learn how to make predictions from data using mathematical models and al-
gorithms. It is extremely powerful as it allows the computer to learn without
directly telling it how to make every decision. Machine learning algorithms
are able to run on either labelled data (supervised learning) or unlabelled data
(unsupervised learning), and can also replace a human agent (reinforcement
learning). Algorithms can be used to solve either regression problems, in which
the prediction is any numerical value – for example, 100 or 3.14 – or classifica-
tion problems, in which the prediction is category – for example, “cat” or “dog.”
[25]

2.4.1 Classification Machine Learning Algorithms

There are four main kinds of machine learning algorithms: supervised, semi-
supervised, unsupervised, and reinforcement machine learning algorithms [26].
Since the data that we used for this project was labelled with distinct PHQ-9
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scores, we used supervised classification algorithms to build models to predict
depression given some participant’s text messages. This section describes the
different types of supervised classification machine learning algorithms.

Logistic regression

Logistic regression algorithms fit a continuous sigmoid function – also known
as a logistic curve – to the data. Logistic regression has categorical outcomes –
for example, binary, multinomial, or ordinal – instead of continuous outcomes.
[27] [28]

Näıve Bayes

The Näıve Bayes algorithm follows the principle of the Bayes Theorem, which
calculates the probability of an event based on given true conditions, to calculate
the probability that an event will occur. The algorithm is referred to as “näıve”
because it believes that all variables are independent of each other, which is
almost never the case in the real world. [29] [27]

KNN

The k-nearest neighbors (KNN) algorithm labels new data points based on
the existing data points that are closest to the new point. Predictions are made
based on a set number of nearest data points – this number is specified as the
value k and is usually an odd number. The model will return the mode of the
k nearest points. [29]

SVM

Support Vector Machines (SVMs) will draw an n-dimensional hyperplane
between the two classes in the data by maximizing the distance between those
classes. The vectors from those two classes are called support vectors, and
the SVM will draw the hyperplane by maximizing the distance, also called the
margin, between those support vectors (Figure 11). [29] [27]
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Figure 10: SVM hyperplanes drawn for different dimensions of data.
[30]

Decision Trees and Random Forests

These algorithms model decision-making and contain nodes that represent
questions about the data – for example, “Is the beetle pink?” Branches that
stem from each node then split the data into homogeneous sets based on the
answer to the question at the node. The data continues to be split and classified
further until all data points have been classified. However, decision trees are
vulnerable to overfitting. [28] [27] Random forests are built by combining
hundreds of decision trees into one model. This “forest” of decision trees will
aggregate votes from random formations of the trees in order to determine the
final classification of the target (Figure 12). [29] [31]

Figure 11: Random forest model containing four decision trees.
[31]

Gradient Boosting

These are generic algorithms that aim to improve prediction performance by
training a sequence of weak prediction models. The gradient boosting algorithm
will train each subsequent weak model on what its predecessor did poorly on,
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thus compensating for all weaknesses. The result is a highly accurate predictive
model. [29] [32]

Neural Networks

Neural network algorithms, also known as artificial neural networks (ANNs),
make predictions by mimicking the way our brains work when processing new
information. In the artificial neural network, new information is first passed
through an input layer that is made up by features from the data, then various
hidden layers, and finally an output layer that is made up by predictions. The
figure below shows how the layers in an ANN are structured. The hidden layers
contain interconnected neurons with weights and thresholds that are tweaked
and fine-tuned as the neural network “learns” how to make accurate predictions
from the data. The resulting model will pass the data along the layers and for
each neuron it reaches, if the output from that neuron meets the threshold, the
neuron will pass the data to the next layer. [28] [33]

Figure 12: Layer structure in a neural network.
[33]

2.4.2 Classification Machine Learning Algorithms

In addition to refining machine learning models to predict depression from
text messages, we also created visualizations to compare differences in texting
topics among participants in different levels of depression. These texting topics
were clustered into super-categories to make the visualization more intuitive.
This section describes the most common types of clustering machine learning
algorithms.

26



Centroid-Based Clustering

Centroid-based clustering is a technique that relies on the Euclidean dis-
tances between points in the datasets. The algorithm groups a data point to
a cluster that results in the smallest square distance from the cluster centroid
[34]. The most common centroid-based clustering algorithm is k-means, which
groups data points into k clusters [35].

Density-Based Clustering

Density-based clustering groups the points that are in areas of high density
[35]. This algorithm leaves out outliers [34]. A famous density-based clus-
tering algorithm is density-based spatial clustering of applications with noise
(DBSCAN) [34].

Distribution-Based Clustering

Distribution-based clustering assumes that the data is from a distribution
such as the Gaussian distribution [35]. One example of a distribution-based
clustering algorithm is the Gaussian Mixture Model algorithm [34].

Hierarchical Clustering

The use of hierarchical clustering implies that the data is hierarchical – for
example, taxonomy or family tree data. This technique builds a tree of clusters
that looks similar to a family tree, called a dendrogram [34]. In the beginning,
the algorithm assigns each point to its own cluster. Clusters that are close
together are grouped into larger clusters, and this process repeats until there
is only one giant cluster [36]. There are many ways to compute the distance
between two clusters – these methods are called linkage methods and are listed
below [36].
Single

d(u, v) = min(dist(u[i], v[j]))

Complete
d(u, v) = max(dist(u[i], v[j]))

Average

d(u, v) =
∑
ij

d(u[i], v[j])

(|u| ∗ |v|)

Weighted
d(u, v) = (dist(s, v) + dist(t, v))/2

Centroid
dist(s, t) = ||cs − ct||2

Ward

d(u, v) =

√
|v|+ |s|

T
d(v, s)2 +

|v|+ |t|
T

d(v, t)2 − |v|
T

d(s, t)2
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2.4.3 Evaluation Metrics

In machine learning, there are many different evaluation metrics that can be
used to represent the effectiveness and accuracy of the model.

Confusion Matrix

A confusion matrix is used to describe the performance of a machine learning
model on a set of test data. It is best represented by an NxN matrix of different
combinations of predicted and actual values. The matrix is extremely useful for
measuring precision, specificity, accuracy and AUC-ROC curves [37].

Accuracy

Accuracy is defined as the number of correct predictions divided by the total
number of predictions made [38].

Accuracy =
NumberOfCorrectPredictions

TotalNumberOfPredictionsMade

Precision

Precision is an indicator of a machine learning model’s performance, it’s the
quality of a positive prediction made by the model. It measures the quality and
the recall measure of quantity of the model.

Sensitivity

The sensitivity of a model is the accuracy which reports the presence or
absence of a condition. It is also known as the true positive rate since it “cor-
responds to the proportion of positive data points that are correctly considered
as positive, with respect to all positive data points” [38]. The metric evaluates
the ability to predict true positives for each of the available categories.

TruePositiveRate =
TruePositive

FalseNegative + TruePositive

Specificity

Specificity, also known as the true negative rate, is when there is a portion
“of negative data points that are correctly considered as negative, with respect
to all negative data points” [37].

TrueNegativeRate =
TrueNegative

TrueNegative + FalsePositive
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AUC

Area under the curve (AUC) measures the entire two-dimensional area under
the curve. The AUC is the area under the curve of a False Positive Rate vs.
True Positive Rate at different points [38]. The greater the value of the AUC,
the better the performance of the machine learning model.

F1 Score

An F1 Score is used to measure a model’s test accuracy. It informs the
viewer about “how precise [the] classifier is (how many instances it classifies
correctly), as well as how robust it is (it does not miss a significant number of
instances” [38]. The F1 score is a combination of precision and recall which
allows for higher precision but lower recall. As a result, it often “misses a larger
number of instances that are difficult to classify” [38]. Since the F1 Score often
misses pieces of data, it is often overlooked for more precise methods.

F1 = 2 ∗ 1
1

Precision + 1
Recall

MAE

Mean absolute error (MAE) is used to evaluate a Regression model. It finds
the magnitude of the difference between the prediction of an observation and
the true value of that observation. The metric gives the measure of how far the
predictions were from the actual output of the model [38].

MSE

Mean squared error (MSE) finds the squared difference between the actual
and predicted value. MSE is one of the simplest and most common loss functions
used. MSE is very similar to MAE, the difference is “that MSE takes the average
of the square of the difference between the original values and the predicted
values” [38].

RMSE

Root mean squared error (RMSE) is used to evaluate the quality of predic-
tions. RMSE is mostly used with supervised learning applications since it needs
true measurements at each predicted data point.

R-Squared

R-Squared is a statistical measure which represents the proportion of the
variance for a dependent variable that’s explained by an independent variable
or variables in a regression model [39]. The statistic indicates the percentage of
the variance in the dependent variable that the independent variables explain
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correctly.

R2 =
var(mean)− var(line)

var(mean)

2.5 Natural Language Processing

Natural Language Processing, or NLP, is an interdisciplinary field between
computer science, artificial intelligence, and linguistics that aims to equip com-
puters with the tools to analyze and understand human language. NLP is a
broad field that includes feature engineering techniques for analyzing text –
such as lexical categories – and fully formed models – such as BERT.

2.5.1 NLP and Computational Linguistics

Before we begin to use different machine learning models to analyze text,
we must first understand how to extract attributes and characteristics of data
from the text. Feature engineering, which is the process of extracting those
attributes and characteristics – which are called features – from data, is an
extremely important technique used in both natural language processing (NLP)
and computational linguistics. NLP is the use of computers to analyze natural
language and is a term widely used by computer and data scientists, whereas
computational linguistics is the study of linguistics through a computational lens
and is a term widely used by linguists [40]. Though there are subtle differences
between the two fields, the two terms can be used interchangeably [40].

2.5.2 Lexical Categories

In NLP, one way to create features from a document is through the use of
lexical categories, also known as word categories [41]. Every word in a body
of text has subtle meanings associated with it and the recognition of these sig-
nals in language is a growing interest in NLP [42]. For example, the previous
sentence included words associated with communication (“word”, “text”, “lan-
guage”, “signal”), cleverness (“subtle”, “recognition”), and health (“body”).
These three categories – communication, cleverness, and health – are examples
of lexical categories.

Empath

Lexical categories and their associated words are stored in vast collections
called lexicons. When combined with machine learning models that are avail-
able to the public in the form of APIs, these lexicons allow researchers to quickly
analyze a body of text to find hidden psycholinguistic patterns.

Unlike the LIWC lexicon, the Empath lexicon boasts more than 200 pre-
built categories that the model learned by analyzing modern fiction on the web
[42]. Additionally, Fast et. al. have also released an Empath tool that allows
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researchers to create their own categories by using one of three models [43].
The descriptions of each model and the colloquial names we have decided to
call them by are listed below:

• Empath model trained on modern web fiction — FanPATH

• Empath model trained on Reddit — ReddiPATH

• Empath model trained on the New York Times — NewsPATH

2.5.3 BERT

BERT, or Bidirectional Encoder Representations from Transformers, was
developed by Google researchers in 2018 [44]. It is a semi-supervised model that
is known to produce state-of-the-art results when applied to Natural Language
Understanding (NLU) and Natural Language Processing (NLP) tasks.

Transformers are the basis of the BERT model, and it consists of an encoder
and a decoder. A transformer consists of an encoder and a decoder. An encoder
takes in all words, or tokens, in a piece of text simultaneously, which enables
it to learn context [45]. It produces embeddings for each token, or vectors that
represent the meaning of each token. Similar words will have closer numbers in
their embeddings.

These embeddings are then processed through the decoder, which uses them
to predict the next word. This process is repeated until the end of the sentence
is reached. BERT is essentially stacked encoders, as depicted below.

Figure 13: BERT Model Encoder
[44]
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BERT can perform a variety of NLP tasks, such as neural machine trans-
lation, question answering, sentiment analysis, and text summarization [46].
BERT is pre-trained to understand language, and then can be fine tuned to
learn the specific task you are working for. Pre-training involves Masked Lan-
guage Modeling (MLM) and Next Sentence Prediction (NSP). With MLM, ran-
dom words are “masked,” or hidden, to train BERT to learn how to fill in the
blanks. NSP is when BERT is given two sentences, and must predict whether
the first sentence follows the first, or vice versa. Essentially, MLM helps BERT
learn the context of words and NSP helps BERT learn the context of sentences.
BERT is fine-tuned when the model is trained with an additional specific data
set that aligns with the goal at hand.

2.5.4 spaCy

An open-source library, spaCy provides advanced NLP capabilities in Python
[47]. The library provides many features including tokenization, lemmatization,
part-of-speech tagging, named entity recognition, and similarity [47]. In this
project, we used spaCy’s similarity feature to calculate similarity scores between
Empath category names. The similarity score is calculated by comparing the
word vectors of two given words and results in a number between 0 and 1 [47].

2.6 Importance of Visualizations

Accompanying machine learning models with data visualizations is vital,
as it can enhance one’s ability to notice trends and outliers in the data. For
example, if there is data with an upward trend, one will recognize this trend
sooner by looking at a line graph than a spreadsheet of data. Further, one
can identify outliers in this upward trend much more quickly and accurately by
referencing this line graph. Data visualizations present the knowledge learned
from the data in a story-like manner. They can be introduced in a way that is
memorable, personable, and relatable. Statistics alone typically do not have the
same extensive capabilities in informing a general audience as a visualization.
It is also much easier to recall an image than it is to recall a number or statistic
that was generated from a machine learning algorithm. Whether the purpose
of a machine learning model is to prove, learn, or discover something about the
data, the results should be presented in an easily digestible way so it can be
shared with and understood by others.

3 Methodology

3.1 Lexical Categories

3.1.1 Empath

In order to create lexical categories to apply as features to the text messages,
we first experimented with the built-in categories provided by the Empath tool
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developed by Ethan Fast [43]. The categories created by Empath, along with
our own categories, were able to produce the results our team was looking for.
However, we still wanted to find a way to make the code even more accurate.
Very early on in the project we decided that we wanted to add new features and
work on pre-processing the data.

URLs

When the text messages are analyzed, a URL shows up as characters uniden-
tifiable by Empath. As we analyzed the messages with Empath to create lexical
category features, the characters of the URL caused an error in the accuracy of
the prediction in the message. Our team wanted to add in a function that will
be able to identify a URL and remove it from the message before the analysis
takes place. By doing this, we hoped that the predictions of the messages would
be more accurate.

Emojis

When communicating with others over text, emojis are used to help convey
emotions. Emojis tend to show people’s emotions better than the words in
the message themselves. We decided that adding a category to identify emojis
would help to increase the accuracy of the predictions.

New Categories

In the Empath tool there are currently over 150 categories of words. As our
team went through each of the different categories we thought of a few that
could be added. The categories that we decided we wanted to add were drugs,
environment, conflict, choice, absolutist, self-related, entertainment, and queer.
To create these categories we plan on using the different Empath models which
we named FanPath, NewsPath, and ReddiPath.

Each of the models were trained on different sites and have their own strengths
and weaknesses. Our team plans on generating categories using each of the mod-
els and reviewing what words are generated. Once the categories are generated,
we plan on going through and cleaning them so that the words in the categories
are the ones that relate the most to the topic.

Improving the Efficiency of the Code

Existing code from the work the REU Emutivo team did over the summer
of 2021 on lexical categories was not efficient [48]. Analyzing the text messages
from only 5 participants with Empath took about 30 seconds to run. Since
there are hundreds of participants, this would have resulted in a computationally
expensive algorithm. Thus the team worked on improving the efficiency of the
code.
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Pre-processing

Pre-processing is required to get the data into the specific format Empath
needs to run. Because Empath does lexical analysis on words, the charac-
ters need to be presented in a way that Empath will be able to identify. We
tested many pre-processing techniques to see the effect they would have on Em-
path’s classification code. We began by removing punctuation from the text
and transforming the text into all lower case, for the purpose of finding exact
word matches. In some experiments we then removed abbreviations and other
text slang. In others we removed non-English entries using pyEnchant, which
is a spell checking package for python. Each word was split into a list of indi-
vidual characters. The list of characters of each word was compared against the
extensive PyEnchant dictionary. If a word had more than four differences from
the closest English word, it was deemed to be non-English [49]. The conversa-
tions with no remaining English words were then removed from the data set.
We also tested word stemming and lemmatization techniques, as these could be
useful for identifying different tenses or forms of words. We used the Wordnet
extension of Python’s natural language toolkit to perform these operations [50].

Some transformations had to be done to the data set of text messages after
the physical texts themselves were cleaned in order to run a machine learning
analysis. The team from the summer of 2021 had begun to transform the data,
however it did not seem to be complete. The messages were imported and iden-
tified by a unique participant ID, and the features of each id included the body
of the text, the number it was sent to, and the PHQ-9 score for the body of text.
However, instead of looking at each individual message from each participant
for analysis, we decided to group them by conversation, making Empath experi-
ments run on Bag of Words experiments were run on conversation level data.
Conversations were identified by the sender’s ID and the recipient’s phone num-
ber. The initial experiments only consisted of messages sent by the participant.
We experimented with grouping the conversations by the ID of the sender as
well to ensure that all conversations from one send end up in either the train or
test split. Lastly, the set of sent messages was combined with the set of received
messages to create a data set of the complete conversation. One problem that
quickly arose was the high number of spam messages within the received data
set. Spam messages are unsolicited or unwanted texts, and are usually adver-
tisements from a company or automated reminders from an unknown phone
number. After pre-processing the received data set in the same way as the sent,
all of the messages were combined into one set of entire conversations.

3.1.2 Bag of Words

Bag of Words is a model that extracts features from text by disregarding
everything besides what words show up and how often they do [51]. Bag of
Words was implemented in separate experiments to compare results against
Empath experiments. Empath cuts out words and focuses on categorizing words
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for further analysis. Bag of Words contritely shows us what keeping all of the
words in the data set with no categorization does. Bag of Words experiments
were run on participant level data.

Spell Checking

Similar to the Empath experiments, two different spell checkers were run,
textblob and pyspellchecker. Textblob is a library for pre-processing textual
data, and was used to fix typos and abbreviations that show up in text messages
[52]. Pysypellchecker was used similarly. It spellchecks text and compares words
with more than 2 errors with the closest word within the English dictionary
[53]. This was done to fix any words that may not have been detected before.
However, it did not account for non-english text and did not remove any entries.

3.1.3 Machine Learning

The conversation data set with the lexical features and the Bag of Words
code was then run through the machine learning code from the 2019-2020 MQP
using F1 scores to predict PHQ-9 scores of participants [41]. Adjustments had
to be made to the train/test split to support the conversation-level data, as well
as the conversations grouped by sender ID. Experiments were also run using
the train/test split created for the BERT models described in the next section.
The machine learning code calculates F1 scores to measure the most accurate
model and feature set used to predict PHQ-9 scores from many different machine
learning models. From there, the results of each experiment were compared
using a box plot analysis code also adapted from the 2019-2020 MQP team’s
code.

3.2 BERT

Emoji Experiment

Our first experiments involved testing whether the inclusion of emojis in the
text messages would impact the model’s ability to determine whether the par-
ticipant had depression. We decided to perform these experiments after finding
prior research papers that modified BERT to accommodate emojis, which raised
their accuracy by almost five percent [54]. We implemented the Python package
Emoji 1.5.0, which can be used to transform emojis into text that is readable for
the BERT model. Before giving the data to the model, we used the “demojize”
function on the text messages. The text generated for each emoji was formatted
with colons on either side of descriptive text of the given emoji. For instance,
a winking emoji may be replaced with “:winkingface:”. This allows the model
to differentiate emojis from words because it can recognize the characters being
used to represent them.

We added the emoji code to existing BERT code that had been produced
over the summer by the REU team. This was an initial test to evaluate the
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potential of using emojis. The code uses the base BERT model that, alongside
other BERT variants, is available through HuggingFace - a reputable startup
that provides open source software, especially in the realm of NLP [55]. We
chose to stick with the base BERT model at the moment but plan to investigate
the potential of using other BERT models, such as BERTweet, in the future.
For the initial emoji experiments, we ran five models with emojis and five mod-
els without emojis. We compared the two models by examining the average
accuracy for each of them.

Increasing Code Efficiency

Following the conclusion of our emoji experiment, we decided to take the
time to go over the previously written code. While the code from the summer
was functional, we did not know whether it was the optimal way to approach the
problem. Over the course of two days, we went through the code line by line until
we understood every part of it. During this process, we eliminated unhelpful
or unused parts of the code and commented on the purpose of each section.
The newly cleaned code was moved into a new file that could be modified so we
could conduct future experiments.

Test Set

A major challenge we encountered was the presence of participants with
large amounts of data in the dataset. If these participants, which we referred to
as “whales”, were included in the test set, we risked having too little data to ac-
curately train the model. Our solution was to remove the “whales” from the list
of participants before creating the test set. We defined “whales” as participants
with more than five chunks of data, where one chunk of data was 200 words.
These chunks were created by adding messages from a participant together until
the maximum size was reached. By dividing the participants by their number
of chunks, we could ensure that only participants with a small amount of next,
which was defined as five or less chunks of data, could be included in the test set.

Another challenge we faced was that the dataset with only the small par-
ticipants had a different ratio of depressed to not depressed participants when
compared to the overall dataset and the training dataset. Additionally, we had
to ensure that no participant was in both the train set and test set. We chose
to loop through random seeds until we found one that had a distribution of
depressed and not depressed participants in the test set that reflected the ratio
in the overall dataset.

After successfully solving these problems, we created a testing dataset that
consisted of approximately 20 percent of the overall data. We recorded the par-
ticipants’ IDs in both the train set and the test set so the same test set could be
used for all future experiments. Finally, by modifying the function that outputs
the validation statistics, we were able to output statistics, such as the confusion
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matrix and the accuracy, for the test set.

Child IDs

For the training set, we wanted to implement cross validation by dividing
the data into folds. These folds needed to have a consistent ratio of depressed
and not depressed chunks, and needed to be approximately equal in size. We
accomplished this by splitting the large participants, or “whales”, into individual
participants with five chunks each. We assigned each group of five chunks a child
ID that was appended onto the end of the parent ID. For example, “e1528” could
become “e1528-0” and “e1528-1”. A visual example is included in the graphic
below.

Figure 14: Visual Example of Splitting A Whale ID Into Smaller Child IDs

By dividing the “whales” into smaller participants, we were able to more
easily create the even folds for cross validation. This was achieved by allowing
different child IDs to be in different folds, even if they shared a parent ID.

Hyperparameter Tuning

Next, we ran experiments to determine the optimal hyperparameters to yield
the highest accuracy, focusing on the number of epochs, the dropout rate, the
batch size, and the number of folds. We tested these hyperparameters using the
uncased version of the base BERT model.

For the epoch experiments, we experimented with a range of options that
included 5, 10, 15, and 20 epochs. Each option was run with five random seeds
(1-5), and the accuracies were calculated using the average of those five runs.
We also varied the dropout rate for these experiments and ran each number of
epochs with a dropout rate of 0.1, 0.3, and 0.5. The batch size experiments
were run with sizes of 12, 16, 20, 25, and 32. Each batch size was run with
five random seeds (1-5), and the accuracies were calculated using the average of
those five runs. For the number of folds, we tried 3 folds, 4 folds, and 5 folds.

37



Each number of folds was run with ten random seeds (1-10), and again the
accuracies were calculated using the average of those ten runs. Each of these
hyperparameters were tuned using the validation accuracy.

BERT Models

Our initial experiments were all run with the uncased base BERT model,
but we decided to test other additional BERT models to determine whether a
different model could give us better test accuracies. The second model we chose
to focus on was the cased base BERT model because it would allow us to learn
how capitalization within the text would impact BERT’s ability to accurately
label the data as depressed or not depressed. We also added the ALBERT
model to act as an example of a smaller version of BERT. By choosing a model
with far fewer parameters than base BERT, we could learn how varying the
number of parameters could negatively or positively affect our statistics. The
final model that we decided to implement was the RoBERTa model, which was
pretrained on more text than the base BERT model, which was only pretrained
on BooksCorpus and English Wikipedia. We aimed to see if the increased text
knowledge could help RoBERTa to outperform base BERT when classifying
texts.

Data Input Types

Our team ran experiments with a total of thirteen different data input types.
Each set of experiments was run with the optimized hyperparameters and five
(1-5) random seeds for each of the four models we decided to test (base BERT,
uncased and cased, ALBERT, and RoBERTa). We also kept the participants
in the test set consistent to enable accurate comparisons across data types.

The first data type that we experimented with was chunks of 200 words.
This dataset was made prior to the creation of our train and test sets. We
referred to this dataset as “sent14chunked200.” We then ran the models with
the individual messages for the participants. We marked this dataset as “mes-
sageLevelTrain.” These experiments would help us to see how the statistics from
the chunked data compared to those from the individual messages.

Our next experiments involved using a sliding window to create overlap-
ping chunks. The sliding window started with the first message for a partici-
pant and added text messages until the goal of “X” characters was reached or
until no messages for that participant were left. We created datasets of 250,
500, 1000, and 2000 character chunks. We named the files for each of these
datasets according to their character count - “chunkedDataFrame2000,” “chun-
kedDataFrame1000,” “chunkedDataFrame500,” and “chunkedDataFrame250.”
We ran each of the models with each of the chunked datasets created using the
sliding window approach.
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As a comparison to the character-based chunks, we also used a sliding win-
dow to create chunks based on a number of messages. These chunks were created
by adding messages from a participant until either the participant ran out of
messages or the desired amount of messages was reached. We specifically chose
five messages so we could still have enough data to accurately train the models.
Like the character-based chunks, these message-based chunks also had overlap-
ping. We referred to this dataset as “chunkedBy5Messages”.

Our next data input type was a conversation-level dataset that included
both sent texts as well as received texts. Previously, our experiments had fo-
cused solely on sent text data so this was a new set of data to test with. Each
chunk of text in this dataset was a conversation, where one conversation con-
tained all the texts sent and received between two phone numbers. This dataset
was referred to as “conversationLevelTrain”.

Following these experiments, we realized that the 200 word chunk train-
ing set had some overlapping IDs with the testing set. This situation occurred
because those chunks were created prior to the development of the train and test
splits. To fix this issue, we remade the 200 word non-overlapping chunks and
also made chunks of 50, 100, 250, and 300 words as well. We added the number
of words in each chunk to the names of the files - “chunked50word,” “chun-
ked100word,” “chunked200word,” “chunked250word,” and “chunked300word.”
We ran each of the models with the newly created non-overlapping datasets.

Datasets

The table below presents each of the previously mentioned datasets that
were utilized in our experimentation, along with the size, whether or not the
messages overlap between chunks, the number of data entries (or rows), and the
percent of positively labeled data entries.
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Name Size Overlapping Count % Positive
messageLevelTrain One text message No 4051 31.6218

chunkedBy5Messages 5 messages Yes 4051 31.6218
chunkedDataFrame250 250 characters Yes 4051 31.6218
chunkedDataFrame500 500 characters Yes 4051 31.6218
chunkedDataFrame1000 1000 characters Yes 4051 31.6218
chunkedDataFrame2000 2000 characters Yes 4501 31.6218
conversationLevelTrain Various amount of messages No 176 48.8636

sent14chunked200 200 words (IDs in both train and test) No 321 37.3832
chunked50word 50 words No 657 34.8554
chunked100word 100 words No 390 35.3846
chunked200word 200 words No 217 35.9447
chunked250word 250 words No 183 37.1585
chunked300word 300 words No 158 36.7089

Documentation

Throughout the duration of the MQP, our team updated the README doc-
ument in the MQPBert branch of the GitLab repository to reflect the optimized
hyperparameters alongside the IDs that were included in the train and test sets.

Additionally, we created a series of visualizations that reflect how our code
works. These illustrations solidified our understanding and will allow for easier
replication of our work by future members of the project.

3.3 Lexical Categories Visualization

In addition to predicting depression from private text messages using basic
machine learning models with lexical categories, or by using BERT, the team
also wanted to create data visualizations. The goal of building these visualiza-
tions would allow for a better understanding of the results from our experiments
and to bring a more humanistic touch to the data. Additionally, we want to
create art pieces associated with our project that leave a long-lasting impression
on the audience.

The Data

The Moodable dataset was used to build this visualization. First, the text
messages and PHQ-9 scores were taken from the Moodable dataset, analyzed
with Empath to create lexical category features, and then we split the fea-
tured dataset into subsets where each participant had the same PHQ-9 cate-
gory – asymptomatic, mild, moderate, moderate-severe, and severe. We then
ran statistics on each PHQ-9 subset to compute the mean score of each lexical
category, and normalized the mean values. Finally, we sought to build a visu-

40



alization for each PHQ-9 category using the normalized means and the steps
described in the following sections.

Gathering Inspiration

Gathering inspiration and planning are essential requisites to building or
creating an important project. This is why artists will use pencil on canvas
before painting, why architects create blueprints, and why writers create out-
lines and character sheets. In the beginning, a Google Doc was used as
a storage place for any found data visualizations that were relevant to the field
of computational linguistics. However, this quickly became hard to navigate as
we realized that scrolling up and down a document when attempting to find a
certain visualization was inefficient, and the format did not invoke any feelings
of inspiration.

To answer this problem, a Pinterest board was created to store all of the
data visualizations, data art, artwork, and various other creations that caught
our eye. This enabled us to not only see a minimized and organized array of
awe-inspiring visuals, but also to find patterns and subgroups within the collec-
tion.

We grew our board through three main ways:

1. Adding projects that we were already aware of prior to this project;

2. Adding data visualizations from research conducted during this project;
and

3. Adding recommendations from the Pinterest algorithm.

Adding projects that we were already aware of prior to this project

The captivating works of Giorgia Lupi, Nadieh Bremer, and Gabrielle Mérite,
among others, were added to the Pinterest board. These data artists, informa-
tion designers, and visualization experts have been an inspiration in the past
and continue to inspire in the present. Additionally, data visualizations about
mental health that were already known – for example, A View on Despair by
Sonja Kuijpers – were added to the board.

Adding data visualizations from research conducted during this project

Visualizations such as the EmotionWatch created by Swiss Federal Institute
of Technology Lausanne researchers were found after scouring the web for rele-
vant linguistic data visualizations [56]. This, among others, was also added to
the Pinterest collection.
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Adding recommendations from the Pinterest algorithm

One of the most unique features of the Pinterest website is its ability to
recommend visually similar suggestions to the “pins”, or posts, that are already
saved to your personal boards. By using this algorithm, the team was able to
find beautiful creations that we may not have thought to look for – for exam-
ple, a calendar containing data visualizations about the environment, various
infographics, and data journalism.

3.3.1 Planning and Drafting

Once we had an ample amount of inspiration from our Pinterest board, we
continued on brainstorming and drafting ideas for the lexical categories data
visualizations. These ideas were both inspired by and honored the following
goals:

• Visualizing how depression affects linguistic differences in texts;

• Creating art that induces an emotional response to hard data about de-
pression; and

• Understanding the output from our lexical categories machine learning
pipeline in a more intuitive way.

After the brainstorming stage, paper and pencil was used to make the ab-
stract ideas more concrete and to draw out possible projects. Final ideas were
drawn in a graphics editor app for a more professional finish.

3.3.2 Creating the Visualizations

D3.js was used to develop the data visualizations. Andrea Mignone kindly
gave us permission to reuse the code for his flower plots, which were found on the
data visualization platform Observable [57]. Though Mignone’s original flower
plots were intended to be a marriage between a pie chart and a bar graph, for
the purpose of this project we treated the flower plots as pie charts. We chose
these flower plots to highlight the big picture instead of numerical details, as
well as to create something beautiful from data about depression.

The Big Picture
Our team was more interested in the contribution of each Empath category

score contributed to the whole picture, so we looked into using radial visual-
izations like pie charts. We were less interested in details like the exact size of
each Empath category score than an estimated relative size of the category to
other categories. We also wanted a visualization that was compact so that com-
parisons could be drawn without using too much eye movement and brain power.

Creating Something Beautiful
Depression can be a hard topic to bring up in conversation because of the
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stigma, triggers, and unpleasant feelings around it. Our team wanted to give
our researchers, study participants, and the general public some semblance of
satisfaction when they stop to smell the roses – or in this case, when they stop
to view the flowers.

3.3.3 Creating Super-Categories

We quickly realized that the flower plots could be improved by color-coding
by Empath categories instead of by PHQ-9 categories. Some categories – like
“banking”, “wealthy”, “payment”, and “business” – are very similar to each
other. The Empath categories can be summarized into groups – for example,
“work and wealth” for the previous words. We created these “super-categories”
by experimenting with machine learning techniques and by doing it manually.

Machine Learning Techniques
Natural language processing (NLP) and machine learning clustering tech-

niques can be used to group the Empath categories into clusters based on simi-
larity. Similarity between two words can be calculated using the spaCy package,
which turns a given pair of words into respective word vectors and calculates
the distance between the two vectors [58]. The similarity score was calculated
for each pair of Empath category names, and the scores were then normalized
so that the machine learning algorithms did not group all of the scores into one
giant cluster.

There are four common types of clustering algorithms: centroid-based clus-
tering, density-based clustering, distribution-based clustering, and hierarchical
clustering [35]. The data generated by calculating the similarity scores between
Empath category names resulted in a distance matrix. Since centroid-based
clustering relies on Euclidean distance, we could not use that method since our
distance matrix was not Euclidean [35]. Similarly, the distance matrix did not
imply that the data fit a distribution, so we could not use distribution-based
clustering [35]. Thus, we experimented with density-based clustering and hier-
archical clustering to group the Empath categories into super-categories.

Manual Clustering
We used draw.io, an online diagram maker, to manually cluster the Empath

category names. After inputting all the Empath category names as bubbles in
draw.io, we clustered the category names using our knowledge of their semantic
meanings.

3.3.4 Color Coding Using Empath Super-Categories

The flower plots were then color-coded based on the super-category of each
Empath category petal. The color palette for the super-categories was tested
for efficacy with different color blindness filters. By color-coding the super-
categories, we could easily discover trends in what participants in each PHQ-9
category tended to text about.
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Figure 15: Color Palette for the Super-Categories

3.4 Beiwe

The open-source data collection platform Beiwe is complex and can be cus-
tomized extensively to collect and analyze participants’ smartphone phenotypes.
The team’s existing knowledge of this state-of-the-art platform was limited at
the start of the project, but its open-source status meant that deep exploration
could be done on its capabilities.

However, although Beiwe is an open-source platform, this does not mean
that its implementation will be completely free of charge. The platform uses
various Amazon Web Services (AWS) platforms including the EC2 Server, which
is estimated to cost about $62 a month, and S3, which has variable costs de-
pending on how much data will be stored in it [59].

Based on this information, our first goal was to explore the logistics of using
Beiwe for data collection. This included obtaining a general overview of how
the platform works, as well as what kinds of data it could collect.

Our second goal was to test the viability of Beiwe to run without using AWS
so this project could continue without additional funding or costs. There were
two main solutions to this problem that were proposed:

• Storing the data collected by the frontend before it uploads to the backend;
and

• Running the backend on a VM instead of using AWS services.

3.4.1 Researching Beiwe’s Capabilities

We began looking into Beiwe by doing research on its official website (Beiwe
site). The site gave us the background we needed to understand Beiwe’s capabil-
ities. Beiwe is an open-source application so we started by analyzing the Github
pages and created an analysis document which can be found in Appendix A.
Once we understood a bit about the code our team wanted to look into studies
that used Beiwe to collect data for various studies. Through these studies, we
began to understand how Beiwe worked and how we could use Beiwe for our
own study.
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3.4.2 Storing The Data Collected By The Frontend

In order to test the viability of Beiwe to run without using AWS services,
one solution was to re-route the data collected by the frontend to a secure
data management platform other than AWS, such as REDCap. Beiwe has the
compatibility to run on both iOS and Android devices. The application can
be downloaded for free from the app store – “Beiwe2” from the Apple App
Store and the Google Play Store. The code is also open-source and available
for download from Github. Even though the app can be downloaded from the
app store, by working with the open-source code, our team had the ability to
control the different functions of Beiwe.

iOS

When we began working with the iOS frontend code, we downloaded it from
the Github repository and made sure to save it on our computer. We worked
with Xcode to debug, compile, and run the code. As we began to work with
the code, there was not much documentation on the Github so we had to figure
things out as we went. Our team documented everything we worked on and the
errors we encountered which can be found in Appendix B.

Android

Similar to the iOS frontend code, we downloaded the Android frontend code
from the Github repository and saved it to our computer. Compared to the
iOS frontend code, the Android code was significantly more documented. As
we began our debugging process, we started by following the instructions that
we laid out to us. We used Android Studio to debug, compile, and run our code
for the frontend. Similar to when our team was working on the iOS code we
made sure to document all the errors we encountered and we compiled them
into a document which can be found in Appendix C.

Testing the Viability of Using REDCap

The Emutivo team has an existing account with REDCap, a secure web
platform for creating and managing both databases and surveys. Thus, the team
wanted to test the viability of connecting the backend to a REDCap database
for long-term data storage and to avoid using AWS S3 buckets, which could
be costly. Our goal was to discover if the frontend code could be modified to
upload data to REDCap instead of an S3 bucket.

3.4.3 Running The Backend Locally

To test the viability of Beiwe to run without using AWS, another solution
was to run the backend on a VM. Running the backend on a VM would have
provided the following benefits:
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• Immediate implementation of Beiwe without applying for funding for AWS
services; and

• Using a frontend app to test if participants can log into a study.

Immediate Implementation of Beiwe

To run the Beiwe backend open-source code found on Github, a virtual ma-
chine (VM) was set up to serve the backend. We first tried an Ubuntu VM;
however, this made the backend run locally and the study management portal
could only be accessed inside the VM. To make the portal accessible outside
the VM, a development VM was set up on the WPI servers and given a unique
URL that could be accessed by any device, even outside of the WPI wifi net-
work. Documentation for setting up an Ubuntu VM can be found in Appendix
D and documentation for setting up Emutivo’s development VM can be found
in Appendix E.

Running the code on a VM allowed the team to immediately be able to create
new studies with the Beiwe study management portal. Additionally, running
the backend on the VM allowed for further testing with frontend integration.

Testing With Frontend Apps

The team wanted to determine whether running the backend on a VM could
be a long-term alternative to using AWS. To do this, ready-made frontend apps
– “Beiwe2” from the Apple App Store and the Google Play Store – were down-
loaded. To test whether the studies created by the local server could be used
in a real study, the team attempted to log into the Beiwe2 apps using infor-
mation generated by the backend for a given study. In addition to using the
Beiwe2 app, the team modified the open-source frontend code to connect to the
backend, then attempted to log into the frontend app.

3.4.4 Making AWS Services HIPAA-Compliant

In order to run Beiwe on AWS services, the team first made an AWS Educate
account, which offers up to $100 in credits for WPI students [60]. We then
researched how to make the EC2 and S3 services HIPAA-compliant.

4 Results

4.1 Lexical Categories

4.1.1 Empath

The dataset created using Empath resulted in 200 feature sets. When run-
ning this through machine learning code the resulting F1 score was 0.72.
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New Categories

In training the eight categories that we added to the original Empath cat-
egories, we used a different combination of hard coding, as well as the three
Empath tools to achieve the appropriate words for each category. For the cate-
gories absolutist and self-related, we hard coded the words that fall under each
category because of the small number of words, and the repetition that oc-
curred among words when we ran the Empath tool. For the category queer,
we ran reddiPath first to get a foundation of words, then hard coded ones we
felt were missing, and removed more repetition. For choice and entertainment,
we ran newsPath and fanPath, as news sources and fiction had more obvious
expressions of words in each category than ReddiPath did. Conflict was run on
fanPath and reddiPath, as news sources often gave a one-sided, unspecified de-
scription on perceived conflict. Lastly, the categories of drugs and environment
were trained on all three Empath tools.

Besides the hard-coded categories, we initially had 300+ words in some of
the categories. To fix this, we went through and removed words that had been
repeated, words that were unrelated, and phrases that contained underscores.
Doing this enabled us to cut down the categories to 100-200 words each.

Improving Efficiency of the Code

Previously, using Empath to analyze the text messages of 5 participants took
about 30 seconds to run. The team worked on improving the efficiency of the
Empath analysis algorithm, which resulted in an algorithm that took less than
a second to run on 5 participants.

Text Cleaning

The effect of pre-processing is immense on the text as words that were pre-
viously not recognized due to syntactical errors such as capitalization and punc-
tuation can now be analyzed using Empath. The effectiveness of fixing these
problems can be easily tested with the existing Empath model and sample words
and sentences.
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Figure 16: Running Uppercase and Punctuation Through Empath

As seen in the figure above, “baseball” is a word contained in Empath, but as
soon as you add any punctuation or capitalization it can no longer be identified.
The answer for these problems is as simple as a cleaning function that will result
in outcomes shown in the figure below.

Figure 17: Running Same Problematic Text Through Pre-processing Function

However, harder problems arise when tackling issues like typos, spam mes-
sages, languages other than english, and text abbreviations. The steps we took
to solve these problems are highlighted in the following sections.

Spell Checking

Using the pyEnchant spell checker to remove non-English entries refined the
number of sent messages from 8,007 to 6,090, and the received data set from
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39,784 messages to 28,157 messages. This also proved useful in detecting spam
messages in the received data set. Upon further investigation, we found this is
because spam messages often contain random sets of characters as a coupon,
only a URL, or other content that would not be detected as English. Spam
messages ultimately accounted for so many more entries being dropped from
the received data set than the sent.

Grouping the Data set

After the data was cleaned, it was grouped by conversation. The sent mes-
sage set was grouped into 366 different conversations. We also experimented
with grouping the conversations by the sender’s ID, but that proved to be a bit
restrictive on the data set, as the index was refined to only 88 ID’s, each with
multiple conversations associated. When combining the sent messages with the
received, the data was grouped only by conversation.

Ultimately, the message data set was refined to these sizes at each respective
step:

Figure 18: Number of Entries in the sent and recieved data sets after each pre-
processing step.

4.1.2 Bag of Words

Running Bag of Words on the dataset created a new feature set that had
5,349 words in it compared to Empath’s 198 categories. These features were

49



also measured differently as rather than being a measurement between zero to
one like Empath, Bag of Words counted how many times each word showed up.
The F1 score from Bag of Words was 0.75.

Spellchecking

Running textblob on Bag of Words showed an increase from 5,349 words
to 6,122 words in the dataset. On the other hand running pyspellchecker on
Bag of Words showed no change in the amount of feature sets. The F1 scores
for textblob with Empath were 0.72 for both running the spell checker before
and after cleaning the text. For running text blob on Bag of Words the F1
scores were 0.74 for running it before cleaning the text and 0.75 for running
it after cleaning the text. The F1 scores for pyspellchecker on Empath were
0.70 for running it before cleaning and 0.72 for running it after cleaning. For
pyspellchecker with Bag of Words it was 0.74 for both before and after cleaning.

Minimum Text Messages

Testing for the best amount of minimum texts was done on the previously
determined best parameters which was not running spell checker, running only
on the sent texts database, running for Bag of Words and Chi for the features.
Increasing the requirements on minimum text messages slowly decreased the
amount of participants as it went from 129, 114, 105, 97, 88, 82, 78, and 75 for
the amount of participants as the minimum increased from one text to eight
texts. Running all these text messages on Bag of Words resulted in F1 scores
0.75, 0.75, 0.77, 0.78, 0.74, 0.74, 0.74, 0.72 for one text message minimum to
eight text messages minimum respectively.

Different Data sets

Three different data sets were observed, those being sent text messages,
received text messages and the combination of sent and received text messages.
All three data sets were tested with bag of words and 4 minimum text messages
being sent. The F1 scores were 0.78 for just sent text messages, 0.73 for received
text messages and 0.74 for the combination of sent and received text messages.

4.1.3 Machine Learning Box Plots

Conversation Level Data

The following box plots demonstrate the accuracy of the best models for
predicting PHQ-9 scores of different variations of the text message data at the
conversation level.
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Figure 19: Best Models for Predicting PHQ-9 Scores on Conversation-Level
Data

The box plots highlight significant results. First, the BERT train/test
split out performed the existing train/test split methods from the summer team.
Most surprisingly, the sent and received set (BERTSPLIT-Received) had the
highest average prediction accuracy at .76, whereas the original splitting method
averages consistently hovered around .7.

4.1.4 Participant Level Data

The following box plots demonstrate the accuracy of the best models for
predicting PHQ-9 scores of different variations of the text message data at the
participant level.

The following box plots use the described naming conventions. ”Default” or
not mentioning ”BOW” means that it used the original Empath code found on
github. ”BOW” means that it used Bag of Words. ”blob” refers to the use of
Textblob. ”pyspell” refers to the use of pyspellchecker. ”After” and ”Before”
refer to when the spell checker was used in comparison to cleaning the text (Be-
fore means spell checker was before text cleaning and after means it was done
after text cleaning). And ”clean” is slightly redundant as they were all cleaned,
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but it was used with the spell checkers name and ”before” and ”after” to help
naming.

Figure 20: Best Models for Predicting PHQ-9 Scores on Participant-Level Data
For Chi Squared
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Figure 21: Best Models for Predicting PHQ-9 Scores on Participant-Level Data
For PCA
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Figure 22: Best Models for Predicting PHQ-9 Scores on Participant-Level Data
For Sent, Received and Combination of Those Datasets
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Figure 23: Best Models for Predicting PHQ-9 Scores on Participant-Level Data
For Minimum Text Messages

4.2 BERT

The results from our work with the BERT model includes increasing code
efficiency, running an experiment with emojis, and optimizing the hyperparam-
eters.

Increasing Code Efficiency

Upon initially starting this project, we looked over the code we would be
working with from the REU Team. After going through the code thoroughly to
increase efficiency, we came across many areas where code could be reduced. As
a result, the initial code was reduced from 535 to 455 lines. This decrease was
despite writing comments throughout and adding whitespace for readability.
Moreover, we documented instructions about how to run the code, wrote a
shell script that first time users can execute to install all necessary technical
requirements, and added system arguments so that experiments can be run
more seamlessly. All of these steps resulted in cleaner, more legible code so that
future collaborators will be able to effectively understand and work with the
code.
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Emoji Experiment

Although the emoji experiment was initially promising based on the research,
ultimately incorporating emojis had no effect on the accuracy. The table below
shows the accuracy of the base model with the emojis incorporated and without
the emojis incorporated.

With Emojis and Without Emojis
0.725 0.8
0.775 0.7
0.625 0.55
0.6 0.725
0.7 0.775

Table 3: Emoji Experiment Results

The following table displays the average accuracy and standard deviation
for each method as well.

With Emojis Without Emojis
Average 0.685 0.71
STDEV 0.06442 0.087464

AVG+STDEV 0.74942 0.797464
AVG-STDEV 0.62058 0.622536

Table 4: Averages and Standard Deviations of Emoji Experiment Results

Hyperparameters Experiment

As discussed in the methodology, we conducted experiments to optimize four
different hyperparameters - the batch size, number of folds for cross validation,
number of epochs, and dropout rate. The optimal value for each of those pa-
rameters is displayed below. These are the parameters that were used for all
succeeding experiments.

Hyperparameter # Folds Batch Size Epochs Dropout Rate
Optimal Value 5 16 15 0.1

Table 5: Hyperparameter Experiment Results

We experimented with batch sizes of 12, 16, 20, 25, and 32, and the results
are outlined below. A batch size of 16 yielded the most accurate results, so that
will be the standard moving forward.
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Batch Size 12 16 20 25 32
Mean Accuracy 0.689 0.786 0.701 0.645 0.642

Table 6: Batch Size Experiment Results

After experimenting with 3, 4, and 5 folds, we decided to implement 5-fold
cross validation based on the results below.

Folds 3 4 5
Mean Accuracy 0.705 0.747 0.755

Table 7: Folds Experiment Results

The dropout rates and epochs were tested together since the two parameters
can impact each other. Based on the results below, we decided that 15 epochs
with a dropout rate of 0.1 is optimal.

4.2.1 BERT Models and Data Input Types

As discussed in the methodology, we applied various data input types to the
optimized BERT code to determine which preprocessing methods yield the best
results. These data input types include individual text messages, chunks based
on number of words, chunks created by sliding over messages, chunks created
by sliding over chunks of characters, and conversation-level data. For each of
these inputs, four different BERT models were experimented with - Base Cased,
Base Uncased, ALBERT, and RoBERTa.

For each combination of models and data input types, we found the accuracy,
F1 score, precision, recall, and AUC/balanced accuracy. AUC and balanced ac-
curacy are the same for binary predictors like our model (https://arxiv.org/pdf/2103.11357.pdf),
so for the sake of simplicity the results will refer to both with the title “AUC/Bal
Acc.” The tables below display each of these statistics for each of the combina-
tions.
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Individual Text Messages

The results of running the BERT code on each of the four BERT models on
the individual messages data are displayed below. As you can see, the BERT
Cased model has the highest accuracy but a small margin, but the lowest recall,
or the ability to correctly identify true positives.

Chunks By Number of Words

The graph below depicts the results that we found when running the BERT
code with the original 200 word chunks. These are the experiments we had to
rerun with the newly developed chunked datasets after we created the train and
test splits.
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The following graph shows the results when we run the BERT models with
chunks of 50 words. The RoBERTa model performs the best, with the highest
value for each of the statistics. One notable area it particularly does well in is
recall.

This graph displays the results for the chunks of 100 words. For this ex-
periment, the BERT Uncased model has the highest accuracy and the highest
balanced accuracy. Another model that performs well is the RoBERTa model,
which has accuracies that are not far behind those of the BERT Uncased model.
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For the new 200 word chunks that were created with the new train and
test splits, the RoBERTa model performs the best for all of the statistics. The
ALBERT model performs poorly, with an F1 score and recall that are completely
dwarfed by the RoBERTa model.

The RoBERTa model once again has a very high recall when it comes to
the 250 word chunks. In terms of accuracy and balanced accuracy, however, the
BERT Cased model performs equal or better when compared to the RoBERTa
model.
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Similarly to the previous results, the 300 word chunks produce results that
also see the RoBERTa model perform the best in terms of accuracy and balanced
accuracy. Notably, it is beaten by BERT Cased when it comes to both F1 score
and recall.

Chunks Created by Sliding over Chunks of Characters

Below are the results of running each of the four BERT models with data
generated by sliding over chunks of 250 characters. Once again, the BERT
Uncased model slightly outperforms the other models, but has a far lower recall.
This likely implies that the model can identify participants that do not have
depression more accurately than participants that do have depression.
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Each of the four BERT models were also run with data generated by slid-
ing over chunks of 500 characters. The results below imply that the BERT
Cased Model has once again outperformed other models in accuracy but under-
performed in recall.

The graph below illustrates the results of running each BERT model with
data generated by sliding over chunks of 1,000 characters. BERT Uncased proves

62



to have the highest accuracy and AUC, yet the results vary for the F1 score,
precision, and recall.

For the results of running each BERT model with data generated by sliding
over chunks of 2,000 characters, BERT Cased again exhibits the highest accuracy
yet the lowest recall. Roberta performs exceedingly well in terms of recall and
F1 score.
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Chunks Created by Sliding over Messages

Applying all four BERT models to the data generated by sliding over five
messages, it is found that BERT Uncased and Albert have the highest accuracy,
and BERT Uncased outperforms Albert with most other performance measures.

Conversation Level Data

For the conversation level data, there is another case of Albert having the
highest accuracy yet the lowest recall. Albert has the second highest accuracy
and significantly outperforms the other models in precision.
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Total Data Input Types

The graph below displays every previously-mentioned resulting accuracy
from the various data input types. Overall, running the sliding over messages
data with the ALBERT model has the highest accuracy, with a 60.011% test
accuracy for predicting whether a participant has depression or not. This re-
sult is closely followed by the BERT Uncased model with the same data, which
scores a test accuracy of 59.740%.
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4.3 Lexical Categories Visualization

Gathering Inspiration

The work put into building the Pinterest board was able to inspire new ideas
and perspectives on visualizing the lexical categories, and the team was able to
gain a better understanding of what factors make a data visualization intuitive,
memorable, and beautiful. A snapshot of the board can be seen in Figure 24.
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Figure 24: Snapshot of the lexical categories visualization Pinterest board.

4.3.1 Planning and Drafting

After creating the Pinterest board, possible data visualizations were drawn
with pencil and paper. The team was inspired by elements found in nature,
since nature has long been known to have positive benefits in improving mental
health [61]. The goal of the visualizations was to visualize the output from the
lexical categories machine learning pipeline. The output is the estimated value
for each lexical category based on the given PHQ-9 score. In the visualizations,
the PHQ-9 score is shown along with corresponding lexical categories, which
are sized proportional to the value predicted by the machine learning algorithm.
Rough sketches for the ideas can be found in Figures 25 and 26, and digitized
versions of the sketches can be found in Figures 27 through 31.
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Figure 25: Brainstormed sketches
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Figure 26: Brainstormed sketches part 2
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Figure 27: Visualization inspired by planets

Figure 28: Visualization inspired by constellations
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Figure 29: Visualization inspired by flowers

Figure 30: Visualization inspired by forests
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Figure 31: Visualization inspired by lemon trees

In addition, the team designed possible logos relating to the lexical categories
aspect of this project. These logos may be used to brand the data visualizations
in the future so that credit can be traced back to the Emutivo project. Three
variations were created and can be seen in Figure 32.

Figure 32: Possible logo designs for the lexical categories subteam.

4.3.2 Creating the Visualizations

Andrea Mignone kindly gave us permission to reuse his flower plots, which
were found on the data visualization platform Observable. The following visu-
alizations were created and colored by PHQ-9 category.
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Figure 33: Top 10 Lexical Categories in Texts: Asymptomatic

Figure 34: Top 10 Lexical Categories in Texts: Mild
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Figure 35: Top 10 Lexical Categories in Texts: Moderate

Figure 36: Top 10 Lexical Categories in Texts: Moderate-Severe
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Figure 37: Top 10 Lexical Categories in Texts: Severe

From the visualizations, it can be determined that asymptomatic and mild
patients tend to talk about more light-hearted and personal topics, as evidenced
by the presence of the “friends”, “positive emotions”, “affection”, “love”, and
“optimism” categories. The “night” category is present only for the asymp-
tomatic category, perhaps because those patients keep talking to loved ones at
night. Mild, moderate, and moderately-severe patients talk a lot about methods
of communication such as “communication”, “messaging”, “transportation”,
“speaking”, “listen”, and “hearing”. Moderately-severe and severe patients tend
to talk about impersonal categories like money and work – “banking”, “money”,
“business”, “payment”, and “wealthy”.

4.3.3 Creating Super-Categories

We experimented with creating super-categories with machine learning as
well as manually. We used spaCy to compute similarity scores between each pair
of Empath category names and created a distance matrix using those scores.
We then used two clustering algorithms to create clusters: density-based spatial
clustering of applications with noise (DBSCAN), the most common density-
clustering algorithm, and hierarchical clustering. We then compared the results
of using machine learning to clusters created manually.

DBSCAN

The scikit-learn DBSCAN package includes two important parameters: eps,
the maximum distance between two samples in one neighborhood, and min samples,
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the minimum number of samples in a neighborhood. When skimming the Em-
path category names, we hypothesized that most super-category clusters would
be at least 5, so we chose a min samples value of 5. We ran several experiments
to determine the eps value that would result in the largest number of clusters,
which turned out to be eps=0.4 and a cluster size of 4. The results of the
experiment are shown in Figure 38

Figure 38: Number of Clusters for Different DBSCAN eps Values

When analyzing the results of running DBSCAN with min samples=5 and
eps=0.4, we realized that the algorithm gave 3 small clusters and 1 large primary
cluster with more than half of the Empath categories, as seen in Figure 39.
Thus, we moved on to experimenting with hierarchical clustering.
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Figure 39: Resulting Clusters Using DBSCAN

Hierarchical Clustering

We tested three linkage techniques: average linkage, centroid linkage, and
Ward linkage (Figures 40, 41, and 42). Ward linkage resulted in the most
balanced dendrogram so we used that linkage technique for further experimen-
tation. We first directed the SciPy hierarchical clustering package to create
clusters no larger than 20 words – the results are shown in Figure 43.

Figure 40: Dendrogram Using Average Linkage
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Figure 41: Dendrogram Using Centroid Linkage

Figure 42: Dendrogram Using Ward Linkage
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Figure 43: Resulting Clusters Using Hierarchical Clustering

Manual Clustering

Clustering manually in draw.io resulted in 15 clusters, which can be seen in
Table 4.3.3. An overview of the clusters in draw.io can also be seen in Figure
44.

Figure 44: Overview of Manual Clustering
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Science and
technology

[’science’, ’tool’, ’technology’, ’internet’, ’computer’,
’phone’, ’programming’]

Health [’health’, ’healing’, ’pain’, ’medical emergency’, ’injury’,
’help’, ’sleep’, ’hygiene’, ’cleaning’, ’eating’]

Positive emo-
tions

[’optimism’, ’surprise’, ’zest’, ’celebration’, ’pride’, ’pos-
itive emotion’, ’contentment’, ’achievement’, ’joy’, ’an-
ticipation’, ’fun’, ’cheerfulness’, ’giving’, ’sympathy’,
’trust’, ’affection’, ’love’]

Negative emo-
tions

[’exasperation’, ’childish’, ’fear’, ’neglect’, ’ridicule’,
’emotional’, ’rage’, ’irritability’, ’sadness’, ’shame’, ’dis-
pute’, ’swearing terms’, ’disappointment’, ’disgust’, ’ag-
gression’, ’envy’, ’horror’, ’confusion’, ’weakness’, ’nega-
tive emotion’, ’torment’, ’conflict’, ’timidity’, ’suffering’,
’hate’, ’sad’, ’anger’, ’deception’, ’nervousness’]

Violence [’prison’, ’stealing’, ’weapon’, ’violence’, ’crime’, ’kill’,
’death’, ’terrorism’, ’breaking’, ’military’, ’war’, ’fight’]

Self and iden-
tity

[’philosophy’, ’religion’, ’worship’, ’divine’, ’self’,
’queer’, ’body’, ’anonymity’, ’choice’, ’independence’,
’hipster’, ’appearance’, ’feminine’, ’masculine’, ’attrac-
tive’, ’fashion’, ’clothing’, ’fabric’, ’youth’]

Communication [’communication’, ’speaking’, ’noise’, ’listen’, ’journal-
ism’, ’hearing’, ’sound’, ’social media’, ’messaging’]

Travel [’exotic’, ’tourism’, ’air travel’, ’traveling’, ’vacation’,
’ship’, ’sailing’, ’car’, ’vehicle’, ’driving’]

Descriptions [’ugliness’, ’cold’, ’warmth’, ’ancient’, ’shape and size’,
’absolutist’, ’smell’, ’beauty’]

Arts and enter-
tainment

[’legend’, ’magic’, ’monster’, ’heroic’, ’superhero’, ’me-
dieval’, ’toy’, ’entertainment’, ’leisure’, ’art’, ’music’,
’reading’, ’writing’, ’musical’, ’restaurant’, ’cooking’,
’shopping’]

Exercise and
partying

[’strength’, ’exercise’, ’movement’, ’sports’, ’play’,
’dance’, ’hiking’, ’swimming’, ’competing’, ’drugs’,
’lust’, ’party’, ’sexual’, ’alcohol’]

Nature and en-
vironment

[’animal’, ’ocean’, ’water’, ’liquid’, ’urban’, ’environ-
ment’, ’beach’, ’plant’, ’rural’, ’fire’, ’weather’, ’night’,
’morning’]

School and
work

[’economics’, ’money’, ’real estate’, ’work’, ’meeting’,
’politeness’, ’valuable’, ’banking’, ’payment’, ’occupa-
tion’, ’business’, ’wealthy’, ’poor’, ’domestic work’,
’white collar job’, ’blue collar job’, ’office’, ’gain’, ’ne-
gotiate’, ’college’,’farming’,’school’]

Home and loved
ones

[’furniture’, ’home’, ’friends’, ’family’, ’pet’, ’children’,
’wedding’]

Leadership [’law’, ’order’, ’royalty’, ’power’, ’government’, ’domi-
nant personality’, ’leader’, ’dominant heirarchical’, ’pol-
itics’]

Resulting Clusters Using Manual Clustering
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4.3.4 Color Coding Using Empath Super-Categories

After creating the super-categories, we altered the flower plots so that each
petal displayed the color that corresponded to its super-category. The super-
categories are also roughly ordered from most personal to least personal: lighter
colors are more personal topics like “self and identity” and darker colors are more
impersonal topics like “science and technology”. The visualizations are shown
in Figures 45, 45, 46, 47, 48, and 49.

Figure 45: Top 10 Lexical Categories in Texts: Asymptomatic (Color-Coded)
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Figure 46: Top 10 Lexical Categories in Texts: Mild (Color-Coded)

Figure 47: Top 10 Lexical Categories in Texts: Moderate (Color-Coded)
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Figure 48: Top 10 Lexical Categories in Texts: Moderate-Severe (Color-Coded)

Figure 49: Top 10 Lexical Categories in Texts: Severe (Color-Coded)

From the updated visualizations, it can be determined that asymptomatic
and mild patients tend to talk about more light-hearted and personal topics, as
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evidenced by the lighter colors and presence of the pink “positive emotions” cat-
egory. Mild, moderate, and moderately-severe patients talk a lot about methods
of communication as seen by the presence of the dark green “communication”
category. Moderately-severe and severe patients tend to talk about impersonal
categories like money and work – as seen by the dark brown “school and work”
category. The shift from lighter colors to darker colors is also more prevalent.

4.4 Beiwe

4.4.1 Storing The Data Collected By The Frontend

Our team worked hard debugging both the iOS and Android frontend code.
We could not integrate the frontend with REDCap; however, we were able to
successfully compile the Android code and integrate it with the backend code.
In terms of the iOS code, we worked on debugging the code but ran into an error
that can only be fixed by the authors of the code. This put a halt to working
with the iOS code so we then began to focus on getting the Android code to
compile successfully.

iOS

When our team began working with the iOS frontend, we started by going
through Github and understanding the structures. The repository for iOS had
no readme file and was not well documented. When trying to get the application
up and running on our personal devices we ran into many issues. Within the
repository we were able to use some of the posts in the issues section to solve
errors along with Google searches. The team learned early on that we needed
to document our steps so that if another team wanted to run Beiwe, they would
be able to set it up more easily. All the information we gathered went into a
tutorial document which can be found in Appendix B.

We spent most of our time debugging the iOS frontend code to have the
ability to run locally on our own devices without having to use the application
from the app store. As we began the debugging process, we updated all of the
packages used in the project and updated our computers operating system in
order to ensure the versions we were using would work. Our team also encoun-
tered challenges with integrating the files properly with the project. The Beiwe
project used cocoapods to import code from various Github repositories. We
quickly learned that we needed to update versions of the repositories and change
how some variables were declared in the project. Our debugging process and
solutions for the integration problems can be found in Appendix B.

Once the cocoapods were integrated properly with the project, we were
presented with a new set of issues. We found that the Hakuba package which
was imported via the cocoapods was outdated and would not integrate with
the project. In order to fix this error we downgraded our version of Xcode and
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ran various pod commands to try and integrate the package. This error was a
constant throughout our debugging process and there were many times when
we thought we had fixed it but we were mistaken. This process finally fixed the
error and it did not come up again as we continued to debug.

We also had errors involving objective-c headers and not being able to find
headers within the scope of the project. These were easily fixed with a google
search and found solutions through Stack Overflow and the Apple developer
website, these fixes can be found in Appendix B. The final error we were left
with was “‘CellModel’ is ambiguous for type lookup in this context.” When
working on this error it was very hard to find any specific information on how
to solve it. The only constant in my research was that our team needed to
be more specific when declaring the variable. We decided to reach out on the
Github repository to get help from others. When we reached out we were con-
tacted by one of the authors of the repository and they informed our team that
they would fix the issue.

Android

Similar to how we started with the iOS frontend, we did the same with the
Android frontend. The Android Github repository had significantly more doc-
umentation and direction than the iOS one provided. We began downloading
the code and using Android Studio to run our version of the Beiwe Android
frontend. As we began trying to get the frontend application up and running
the app automatically compiled with no errors, but when we went to build we
were met with a multitude of errors.

The first set of errors we worked on were updating versions within the SDK
files. Some of them were out of date since they were uploaded. We then went
through and updated the Android Manifest along with making sure the firebase
was set up properly. There were instructions in the Github on how to set up a
firebase so we made sure to go back through each step to make sure we set it
up properly. A package that was implemented within FirebaseInstanceId was
deprecated meaning that it was out of date and was no longer compatible with
the program. There was an updated version of the package so our team went
through and updated the program. Once this was done we ran into some new
errors.

We had immense trouble with the Android Studio APK/Bundles. In or-
der to run a clean build of the program we needed to generate a signed APK.
The generated APK went hand in hand with a file called keystore.properties
which held the username and password. When we read through the Github
instructions it led us to believe that we needed to create this file ourselves. By
creating this file ourselves we cause a multitude of errors. As we began looking
for solutions to this issue we learned that this file was automatically generated
when the signed APK was made. Once we figured this out we deleted the key-
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store.properties file that our team created and re-made the signed APK. After
the signed APK was made the keystore.properties file was automatically gener-
ated and the error was resolved.

We were able to have a successful build of the Android app once these errors
were resolved. We documented all of our steps in Appendix C so that if others
ran into similar problems they would be able to solve them easier.

Testing the Viability of Using REDCap

Unfortunately, the team could not successfully find where the frontend app
stored data locally or sent data to an S3 bucket, in both the iOS and Android
versions. This meant that we could not determine how to re-route the data
collected by the frontend to REDCap instead of AWS.

4.4.2 Running The Backend on a VM

To test the viability of Beiwe to run without using AWS services, one solution
was to run the backend completely locally. A virtual machine (VM) was set up to
serve the backend, which allowed the team to immediately be able to create new
studies with the Beiwe study management portal. While undergoing research,
two different VMs were set up:

• A local Ubuntu VM; and

• A development VM for the Emutivo website.

The team tested the integration of the frontend with the backend and de-
termined that using a VM instead of AWS would not work.

Implementation on Ubuntu VM

Initially the team tried running the Beiwe backend on a local MacOS host.
However, this was quickly determined to be an ineffective solution since the
Beiwe backend is designed to run on an Ubuntu OS. Thus, an Ubuntu VM was
set up on the host MacOS machine and the Beiwe backend code was downloaded
onto the VM. The team was able to run the Flask app included in the backend
code to host the study management portal on a local port. Once the portal
was opened, the team was able to log in, create new studies, researchers, and
participants. Documentation on implementing the backend on the Ubuntu VM
can be found in Appendix D.

To test whether the studies created by the Ubuntu local server could be
used in a real study, the team attempted to log into the Beiwe2 apps from the
Apple Store and the Google Play Store using information generated by the back-
end for a given study. However, the Beiwe2 app required a URL for the server.
Since the study management portal was run on a local port in the Ubuntu
server, a persistent URL did not exist and it was not possible to log into the
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app. To solve this issue, a development VM was set up for the Emutivo team’s
home website.

Implementation on Emutivo’s Development VM

The solution to the inability to log into the Beiwe2 app was to host the
backend on a persistent URL. Initially, the team thought to incorporate the
study portal directly on the Emutivo team’s home website, which is hosted on
Wordpress (emutivo.wpi.edu). Dr. Ermal Toto, the Assistant Director of Aca-
demic and Research Computing at WPI, proposed a better solution: create a
development VM that acts as a mirror version of the Emutivo home website
(emutivo-dev.wpi.edu).

Thus, a development VM was set up and the team was able to upload the
Beiwe backend code to the VM using Cyberduck, an open-source client that is
used for transferring files over the internet. The backend was reconfigured to
run on the emutivo-dev.wpi.edu server and was set up by following the same
steps as those outlined in the previous section.

However, the team ran into an issue. The backend is composed of a Flask
app, which needs both a server and a port to be specified in order to run prop-
erly. Thus, the study portal was hosted on emutivo-dev.wpi.edu:8080 instead of
the desired emutivo-dev.wpi.edu. Dr. Toto helped us solve this issue by setting
up Flask as a service on the Ubuntu-based development VM. Running Flask as
a service allowed the Beiwe Flask app to remain uninterrupted so that progress
wouldn’t be lost. Additionally, he helped us certify a new website URL with
a public IP address – emutivo-beiwe.wpi.edu – to signify the change to a pro-
duction server, run the service on a URL that doesn’t include a port number,
and make the URL accessible outside of the WPI wifi network. Documentation
on setting up the backend on the Emutivo development VM can be found in
Appendix E.

Testing With Frontend Apps

After successfully setting up the Beiwe backend on the development VM, we
began testing integration with the frontend. We discovered that the “Beiwe2”
app from the app store expected to connect to the studies.beiwe.org server and
would fail to connect to any custom server URLs. Instead of using Beiwe2,
we used our version of the Android open-source code and paired the code on
Android Studio with a personal Android device for testing. After modifying
the frontend to connect to the emutivo-beiwe.wpi.edu study server, we began
to test if we could log into a study created by the backend. However, the team
could not register and the app showed the error message in the figure below.
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Figure 50: Error message on frontend app

After tracing the error back to the code, the team discovered that a 500 error
was hard-coded for any error that was not known, as seen in Table 8. By looking
at the other error messages, the team knew that the frontend could connect
to the emutivo-beiwe.wpi.edu study server, the login username and password
were correct, and the device was connected to the internet. We determined
that the backend error is likely caused by an AWS EC2 error – the Android
frontend is expecting to connect to a Beiwe AMI but detects the WPI Emutivo
development VM instead. Ultimately, the team discovered that the Beiwe is too
integrated with AWS for the platform to run properly without those services.
Documentation on this error can be found in Appendix E.

88



Error Code Error Message
1 Someone misconfigured the server! Please contact research staff.
2 Received an invalid encryption key, please contact the Beiwe ad-

ministrator.
400 This device could not be registered under the provided patient ID;

please contact research staff.
405 Sorry, this User ID already has a phone registered. Please contact

the research staff and ask them to clear your registration so that
you can register this new phone.

502 It looks like you’re not connected to the internet- please connect
to the internet and try again.

502 and 404 Are you sure the URL for the study is correct? Beiwe can’t connect
to the server.

403 Sorry: either your Study URL, your User ID, or your Temporary
Password is incorrect.

403 Sorry, your Current Password is incorrect.
403 Sorry, your Temporary Password is incorrect.
500 An unknown error occurred.

Table 8: Error messages in the frontend

4.4.3 Making AWS Services HIPAA-Compliant

In order to run Beiwe on AWS services, the team first made an AWS Educate
account, which offers up to $100 in credits for WPI students [60]. Through our
research on how to make the EC2 and S3 services HIPAA-compliant, we discov-
ered that though AWS is naturally HIPAA-compliant, configuration mistakes
can leave protected health information (PHI) open to unauthorized groups and
therefore no longer HIPAA-compliant.

To solve this problem, AWS released their Quick Start program, from which
you can choose pre-configured AWS services that align with HIPAA practices
and use those services for your applications. The team did not have enough time
to fully set up the Beiwe platform with the credits from AWS Educate and use
the Quick Start program, so we created a tutorial for future teams (Appendix
F).

5 Conclusions

5.1 Lexical Categories

Evaluating F1 Prediction accuracy

Grouping the data by conversation and leaving all of the text entry content
as is had the highest prediction accuracy when using the train/test split used
by the BERT team. Grouping them by ID after grouping by conversation ulti-
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mately was too restrictive on the train/test split with this specific data set, as
there were only 88 unique ID’s.

The Bag of Words Experiments also tested PCA against Chi squared as
the machine learning model. Chi squared was way better than PCA as the F1
scores were always higher for the Chi squared than PCA when looking at the
same feature set.

Spell Checker

Three different spell checkers were run on the data to try and fix typos,
language and abbreviations to make the data formatted Empath to read. The re-
sults showed no increase in F1 score for either pyEnchant, Textblob or pyspellchecker.
This is likely because neither of the spell checkers make any relevant fixes to
words that would be indicative of depression.

Minimum Text Messages

When running the best results so far being, Bag of Words, Chi squared, the
sent messages dataset, and no spell checker, we tested the different amounts of
minimum text messages. The results showed an increase until four minimum
text messages and then decrease after four, meaning that the best amount of
minimum text messages was four. This makes sense because if the minimum is
too low you get too much noise and if the minimum is too high you lose too
much data.

Future Work

The experiments in this project can be built upon in many ways, especially
in regards to the set of sent and received messages. The new Empath code could
be run with different numbers of messages considered per conversation similar
to the Bag of Words experiments run. Also, if further data collection is done, a
larger set of participants would increase the diversity in the train/test splits.

5.2 BERT

Individual Messages VS Chunks

When comparing the individual message data to the chunked data, we found
that the individual message data generally had slightly higher accuracies than
the chunked data. The only exception to this statement was the chunks of
messages that were created using the sliding window. These findings show that
dividing by messages may produce better results than dividing by characters or
words.
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No Overlap VS Overlap

We found that the chunks that were generated using the sliding window,
either based on the number of characters or number of messages, did noticably
better than the chunks that contained no overlap. The overlapping chunks
had accuracies that were around 5-10 percent higher than the non-overlapping
chunks. From these findings, we can determine that using a sliding window will
likely lead to better BERT results.

Sliding Over Messages vs Sliding Over Characters

The five message chunks that we generated performed slightly better than
the chunks that were generated using a specific number of characters, with the
closest results being between the ”chunkedDataFrame250” and ”chunkedBy5Messages”
datasets. These two datasets had accuracies that were only around 1 to 2 per-
cent apart. This discovery makes sense because we found that our messages
have an average of 54 characters in them. This statistic shows that five mes-
sages and 250 characters are roughly equivalent for our dataset. It also shows
that smaller chunks may be better at producing more accurate BERT results.
For comparison, the 2000 character chunks performed about 2 percent worse
than the 250 character chunks when it came to test accuracy.

Conversation

Our findings showed that the conversation-level data performed worse than
the datasets of overlapping chunks of data, but it performed better than the
non-overlapping chunks. This finding shows that using both sent and received
texts could allow BERT to produce better results.

Future Work Suggestions

Future work should look into whether it could be possible to combine conversation-
level data with the sliding window. Additionally, a sliding window could be used
to create more overlapping chunks based on a varying number of messages. Fi-
nally, new data collected through Beiwe could be used to further train and test
the models.

5.3 Lexical Categories Visualization

The lexical categories visualizations showed that there are differences be-
tween topics commonly talked about among mild and asymptomatic partici-
pants, compared to the most common topics among moderate-severe and severe
participants. Those who had lower PHQ-9 scores talked much more about per-
sonal super-categories like “self and identity” and “positive emotions”. Those
who had higher PHQ-9 scores talked much more about “school and work”. Fu-
ture work includes continuing work on visualizing super-categories and testing
their efficacy.
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Alternative flower visualizations in which each petal is an Empath super-
category instead of an Empath category could be created. This would allow a
more intuitive understanding of which super-categories are more prevalent in
different PHQ-9 categories.

Also, in order to ensure that the data visualizations are intuitive, memorable,
and effective, we will survey a group of people to gather feedback. Then, we
will implement any changes that need to be made, and repeat the process.

5.4 Beiwe

The team focused mainly on research – whether it be for implementing new
technologies, methods for pre-processing data, or the best hyperparameters to
use for a model. After about three and a half months of exploring the dataset,
different technologies, and learning about what other research teams have done
in the past, next steps are to apply our learnings by running experiments with
different models on our cleaned datasets. These experiments include running
various classification algorithms on the dataset with features created by Empath
and running BERT with various aggregation and pre-processing methods. In
addition, we will experiment with setting up the Beiwe backend Flask app with
a custom URL.

5.4.1 Front-End

By working with the frontend code, our team would hopefully have the
ability to design our own studies with the capability to collect a wide variety
of data that we could customize. We were unable to run sample studies with
Beiwe but our hope is that another team will be able to customize a study and
collect more data over a long period of time. Having the ability to edit the code
freely allows the director of a study to pick and choose what kind of data they
would like to have collected. The ease of using Beiwe we hope will allow future
groups to have an easier time customizing their studies and collect a variety of
different data.

iOS

The iOS frontend code has potential to run a study that could be designed
to collect almost any data that the directors of the study want. Our team was
unable to get a sample up and running due to a problem with the code that
needs to be fixed by the owners of the Github repository. Once this error is
fixed, our hope is that another team will be able to customize a sample study
to get more diverse data.

Android

Our team was able to get the Android code up and running and connect it
to the backend. We were unable to run a sample study due to some errors in
the connection to the backend. We hope that another team will be able to take
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the information we have documented and run a sample study using AWS and
then eventually reconfigure the code to work on the WPI server.

5.4.2 Back-End

Using a development VM to run the Beiwe backend was determined to not
be ideal. Future teams will have to use AWS services to run the platform and
may sign up for either AWS Educate – which offers $100 to students and $200
to faculty – or AWS Cloud Credit for Research, through which faculty and staff
can receive any amount of credits they put in their research proposal to AWS
[60]. Finally, the Quick Start program must be used to ensure that the AWS
resources used are HIPAA-compliant.
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Beiwe Android Github
Link to Github: https://github.com/onnela-lab/beiwe-android

Overview: Beiwe is a smartphone-based digital phenotyping research platform. This is the
Beiwe Android app code. The Beiwe2 app is also available on the Google Play store to use with
open source builds of the Beiwe backend.

What is this Repository?
This repository is the front end of the Android Beiwe application.

Compiling
1. To compile and sign the app, you must add a directory called private (beiwe-android’s

.gitignore file keeps the private directory out of Git), and a file called
private/keystore.properties, containing these lines(no quotes around the values that you
fill in):

2. If it’s your first time running the project, open android Studio and click “Sync Project with
Gradle Files”. If you run into errors, open Android Studio’s “SDK Manager” and make
sure you have the correct SDK Platform installed (the “API level” should match the one
specified in app/build.gradle’s compileSdkVersion).

3. You’ll need to generate a key file b y running Build -> Generate Signed Bundle/APK, and
then, inside private/keystore.properties, update the four values with the information for
your newly-generated key and keystore.

4. (Optional) You can also configure a Sentry DSN for each build type inside your
private/keystore.properties file.

Build Variants and Product Flavors
When building the Android app, we can choose one of the Build Variants and one of the Product
Flavors. There are three of each, specified in the buildTypes section of app/build.gradle. To
select which Build Variant the app compiles as, go to Build > Select Build Variant in the menu
bar (documentation).



Three Build Variants:

Three Product Flavors:

Product Flavor App
Name

Intended for Server URL Record
text
message
and call
log stats

Request
backgroun
d location
permission

googlePlayStore Beiwe2 Distribution via
Google Play
Store

Customizable
at registration

No No

onnelaLabServer Beiwe Download APK
from
studies.beiwe.org
/download

Hardcoded to
studies.beiwe.
org

Yes Yes

commStatesCustomUrl Beiwe Download APK
from /download
link on other
Beiwe
deployments

Customizable
at registration

Yes Yes

Beiwe Backend Github
Link to Github: https://github.com/onnela-lab/beiwe-backend

Overview: Beiwe is a smartphone-based digital phenotyping research platform. This is the
Beiwe backend code.



What is this Repository?
This repository is home to the backend code of the Beiwe application.

Setup Instructions
Configuring SSL
Beiwe deals with sensitive data that is covered under HIPAA, so we need to make sure to set up
SSL certificates so that the web traffic is encrypted with HTTPS.

The instructions in this Github uses AWS Certificate Manager to generate an SSL certificate.
AWS checks that we control the domain by sending verification emails to the email addresses in
the domain’s WHOIS listing.

Configuring Firebase
To configure the firebase SDK we generate a private key file and place it in the project root.

Configuration Settings
Empty strings and None are considered invalid

Development setup
Set-up for development NOT production

- Strongly discouraged to set up the development environment inside of a Python system

Before starting:

Local Celery Setup



Don’t need to use Celery for local testing

Beiwe IOS Github
Link to Github: https://github.com/onnela-lab/beiwe-ios

Overview: Beiwe is a smartphone-based digital phenotyping research platform. This is the
Beiwe iOS app code. The Beiwe2 app is also available on the Apple app store to use with open
source builds of the Beiwe backend.

Initial Setup
There is no Readme, in another document there will be an explanation of the initial setup and
the steps taken.

General Notes
How does the front end connect to the back end?
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Setting up Xcode and downloading the Beiwe code
We will be downloading Beiwe for IOS, so you will need to be using an apple computer or mac
operating system.

Xcode
Can download Xcode from the apple app store, make sure it is updated to the most recent
version.

Figure 1: Screenshot of Xcode on the Apple App Store

Download Beiwe Code
Beiwe IOS front end code can be found on Github.
Link: https://github.com/onnela-lab/beiwe-ios

In order to download the code you will need to access the Git Repository. Once you have
opened the Repository, click on the green button that reads Code.

Figure 2: Main Page of the IOS Beiwe Repository



Once you’ve clicked the button, a window will pop up. From that window you will want to select
Download ZIP.

Figure 3: Main Page of the IOS Beiwe Repository once Code is selected.

After the code is downloaded, save it somewhere it can easily be found. I like to save my things
to my Desktop or to my Documents.

Cocoapods
The pods file for Beiwe is already created when the files are downloaded from Github.

Install on Computer
Open terminal, you use sudo or pip

Integrating with the Beiwe Project
Once installed, you will want to right click on your project folder and open terminal.

Then we want to integrate the cocoapods with the current Beiwe project.

Once pod install is run, the cocoapods should be integrated into the project. Go into your
Beiwe project folder and open the xcworkspace project file. If the cocoapods don’t integrate into



the project, try running pod update to make sure everything is up to date. If you are still
struggling, try pod deintegrate and then pod install again.

Building the Project
While working on the project, these are the errors I encountered. As you work through the errors
when building the project I hope these articles help solve the error.

Objective-c Headers
https://coderedirect.com/questions/425245/error-could-not-build-objective-c-module-firebase-wit
h-swift-5

- Followed these steps and restarted xCode and the Objective-c headers error was gone
Command used in terminal: rm -rf some_dir
Error in terminal: “Could not find 'CFPropertyList' (>= 2.3.3, < 4.0) among 78 total gem(s)
(Gem::MissingSpecError)”

- Solved  by doing “gem install CFPropertyList”

Work on “no such module” error, messed around with some of the fixes found in this
stackoverflow message

- https://stackoverflow.com/questions/29500227/getting-error-no-such-module-using-xcod
e-but-the-framework-is-there

“Cannot find type ‘SectionHeader’” in Scope
https://developer.apple.com/forums/thread/691672

- Following the directions to change the build settings from yes -> no fixed this error

“No such model” Hakuba Error
Error is noted in the Github repository, just need to mess around with pod install, pod update,
and the different branches of Hakuba. After downgrading the software and then updating it
again, along with running the various pod commands, our team was able to integrate the
Hakuba package into our project.

Downgrading Xcode Software
- Need to download old versions of Xcode from the apple development website

- First trying version 13.0 (10.58GB)
- Then version 12.3 (11.56GB)

- Xcode 12 not compatible with Monterey
- https://ifnotnil.com/t/xcode-12-is-not-compatible-with-monterey/2093



“‘CellModel’ is ambiguous for type lookup in this context”
Swift class documentation

- https://docs.swift.org/swift-book/LanguageGuide/Protocols.html

Ambiguous without more context
- https://codesource.io/solved-type-of-expression-is-ambiguous-without-more-context/

Conclusion
I was unable to complete a successful build of the iOS frontend of Beiwe due to the error
“‘CellModel’ is ambiguous for type lookup in this context.” Through my own research I was
struggling to find an answer other than needing to be more specific with the variable I was
declaring. I posted on the Beiwe iOS Github with this issue and it is currently being looked at by
the original author’s of the Beiwe code.
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Setting up Android Studio and downloading the
Beiwe code
We will be downloading Beiwe for Android, you do not need to have a Windows system to edit
the code but in order to run the code you will need to have an Android device.

Android Studio
You will need to download Android studio from the internet, once searched you will want to click
on the website that is developer.android.tools.

Figure 1: Website Once Opened

You will want to download the version for the computer you are using. I am using a mac
computer so my suggested download is for Mac, but if you have a Windows or Linux system you
will want to download that version.

Download Beiwe Code
Beiwe Android front end code can be found on Github.
Link: https://github.com/onnela-lab/beiwe-android

In order to download the code you will need to access the Git Repository. Once you have
opened the Repository, click on the green button that reads Code.



Figure 2: Main Page of the Android Beiwe Repository

Once you’ve clicked the button, a window will pop up. From that window you will want to select
Download ZIP.

Figure 3: Main Page of the Android Beiwe Repository once Code is selected.

After the code is downloaded, save it somewhere it can easily be found. I like to save my things
to my Desktop or to my Documents.

Building the Project
When first opening the project in Android Studio, it will build with no errors but you will need to
build the project again which is where errors will begin to emerge. Below I have listed the ones I
encountered and how I fixed them.

SDK Version Issues
compileSdkVersion was 30 needed to be 31
targetSdkVersion was 29 needed to be 31
minSdkVersion was 16 needed to be 19



Android Manifest
<activity

android:name="org.beiwe.app.ui.LoadingActivity"
android:label="${appName}${appNameSuffix}"
android:exported="true">

<receiver android:name=".listeners.BootListener"
android:exported="true">

<receiver android:name=".listeners.SmsReceivedLogger"
android:exported="true">

<receiver android:name=".listeners.PowerStateListener"
android:exported="true">

Needed to add the android:exported line to each of this activities and receivers

FirebaseInstanceId
- Make sure firebase is set up properly -> instructions in the github README

- https://firebase.google.com/docs/android/setup
- Package is deprecated -> need to change toFirebaseMessaging

- Lines 269-308: made changes in MainService.java
- https://firebase.google.com/docs/reference/android/com/google/firebase/iid/Fireb

aseInstanceId

ComStatsCustomUrlBeta
Error: “com.android.ide.common.signing.KeytoolException: Failed to read key androidBeiwe
from store”

- Use this tutorial to generate a key and keystore, and sign the app with it. Scroll down to
where it says “Sign your app for release to Google Play” and follow all steps in that
section.

- This tutorial may also come in handy.
- Use the values listed in the README from Beiwe github to generate the APK to

connect the keystore.properties (screenshot below)



Changing Server URL
Change the “production_website” string in the file res/values/strings.xml to
https://emutivo-beiwe.wpi.edu.

Permission Errors
Went through and made sure ruby was properly downloaded (Mac)

- https://www.moncefbelyamani.com/how-to-install-xcode-homebrew-git-rvm-ruby-on-mac/
?utm_source=stackoverflow

Original error: While executing gem ... (Gem::FilePermissionError) You don't have write
permissions for the /Library/Ruby/Gems/2.6.0 directory.

- https://stackoverflow.com/questions/51126403/you-dont-have-write-permissions-for-the-li
brary-ruby-gems-2-3-0-directory-ma



CommStatsCustomUrlBetaJavaWithJavac
BuildConfig error -> solved by generating a bundle/APK

APK, keystore.properties file
- Make sure to generate a signed APK - clean/build
- Check the SDK platform version

- Must be the same as the SDK version in the gradle file

Fastlane -> Google Play Console
In order for the frontend to run it needs to be connected to the Google play console in order for
the information collected to be uploaded to the cloud

- Need API access

Fastlane local setup from Android Beiwe Github
You shouldn't need to do this, other than for debugging the Fastlane setup. We intend Fastlane to be
primarily run on the cloud, inside GitHub Actions. But if for some reason you decide to run it locally, here's
how to do it:

1. Follow Fastlane's Android getting started documentation, including: install Ruby. Then gem install
bundler, and then  bundle install.

2. Make sure you have the following credentials, and that they're correct:
a. The keystore inside this repo at private/signing_keystore.jks
b. Your private/keystore.properties file, which should include releaseDSN
c. Your Google Service Account credentials JSON file, which enables you to upload the

Android App Bundle to Google Play. Its location is defined in fastlane/Appfile.
d. AWS IAM credentials that allow you to upload an object to the bucket used for hosting

APK files for download. Your credentials should be exported as two environment
variables called AWS_ACCESS_KEY_IDand AWS_SECRET_ACCESS_KEY.

3. Run fastlane buildAAB
4. Run fastlane buildAPKs

Once I set up Google Play Console and fastlane, I opened up the application to many more
errors in terms of RegistrationActivity and various build errors.

Signed APK Error
Solution for this was to re-download from the original github, which built with no errors initially

- Next steps to see if we can run on an android divide
- See what happens and evaluate from there

1.https://developer.android.com/studio/publish/app-signing#sign_release
2.https://stackoverflow.com/questions/57253143/keystoreexception-this-keystore-does-not-supp
ort-probing-and-must-be-loaded-wit



Running the Application With Emutivo Development
VM
Note: We have only managed to run the application using an actual Android phone. We could
not get it to work using an emulator.

1. First, create a new participant in the backend.
2. Open Android Studio and open the Beiwe Android frontend code.
3. Connect your computer to your Android device using a USB cord. The device selection

button next to the “Run” button should automatically select your device to be run on.

4. Click the “Run” button and run the app on your device.
5. You should be taken to a login screen – log in using the participant information

generated by the backend and choose your password.

Error: When following the steps in “Running The Beiwe Backend On The Emutivo Development
VM” to set up the backend and create a new participant, the app will show the following error:

Tracing the error through logs shows us that this is caused by a 500 error:

The “can’t register” is something that we printed out, not the official error.



Figuring Out Why There’s An Error
List of things the error IS NOT caused by:

1. Can’t connect to the website / website doesn’t exist
a. Would give a 502 error and different log

2. Using a https website instead of http → we thought maybe this was the case because
the app uses the function “HttpURLConnectionImp” instead of “HttpsURLConnectionImp”

a. “HttpURLConnectionImp” actually works with both http and https websites
3. AWS S3 error

a. We connected the application with an S3 bucket (see step II.III for directions on
how to do that) but the error persisted

Conclusion
After working through these errors, our team had a successful build of the Android frontend of
Beiwe. However, the frontend does not work perfectly with the backend. We determined that the
backend error is likely caused by an AWS EC2 error – the Android frontend is expecting to
connect to a Beiwe AMI but detects the WPI Emutivo development VM instead.
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Running The Beiwe Backend Locally On Linux

[Deprecated - See “Running The Beiwe Backend On The Development VM” for updated instructions]

Madeline Halley (mehalley@wpi.edu) and Jyalu Wu (jwu7@wpi.edu)

Note: This was our first method for running the Beiwe backend without using the AWS EC2 server. We

saw this through completion but determined that this method does not work since the study server is not

an actual URL but a port on the VM.

One way to run the Beiwe backend locally is through Ubuntu. This documentation will include steps on

how to set up an Ubuntu virtual machine on a Mac, but the process should be similar for a Windows

machine. The rest of the steps should be the same if run on any Ubuntu machine / Ubuntu VM.

I. Setting Up an Ubuntu VM (MacOS)

These steps are taken from this tutorial by dev2qa and from this tutorial by how2geek.

Download VirtualBox

1. First, head to this link to download VirtualBox.

2. Go to where it says VirtualBox [version number] platform packages and click the where it says OS

X hosts. The download should happen automatically.

3. After downloading it, open up the downloaded file and finish installing VirtualBox.

Set Up a New Ubuntu VM

1. Open up VirtualBox.



2. Click on the “New” button to create a new VM.

3. Input a custom name for your VM, choose “Linux” as the Type and “Ubuntu (64-bit)” as the

Version.

4. Click the “Continue” button and adjust the virtual machine’s hard disk size, memory size, and

CPU processor number if necessary. After you’re done, click the “Create” button.

a. The Beiwe server will need quite a lot of space in order to run smoothly since we will need

to create a local sqlite database as well. 2048MB is not enough. I chose about 4000MB

but this may be excessive.

5. Head to ubuntu.com and download the ubuntu iso file to a local folder.

6. Select the new VM in the left panel, click “Settings” on the top menu bar, then click “Storage”.

7. Select the blue laser disk icon (it should look like a blue CD) in the left Storage Devices panel,

then click the laser disk icon again where it says “Optical Drive”. Click “Choose/Create Virtual

Optical Disk File” and select the ubuntu iso file you just downloaded.



8. Select the VM on the left side and click the “Start” button on the top menu bar. If you get an

error that looks like this, head to the next section.

Fixing the “Kernel driver not installed” Error

Make sure that you do this within 30 minutes of installing VirtualBox. If the “System software from

developer…” message doesn’t appear in your System Preferences, uninstall VirtualBox and redo

everything.

1. Go to the System Preferences app, then click “Security and Privacy”.

2. There should be text near the bottom that says, “System Software from Developer ‘Oracle

America, Inc.’ Was Blocked from Loading.” Click the “Allow” button and click the lock to prevent

further changes.



II. Running the VM

Installing Ubuntu in the VM

1. Select the VM on the left panel and click Start —> Normal Start in the top menu.

2. After the VM gets up and running, it will show the Ubuntu installation wizard.

3. It will then show you two options: “Try Ubuntu” and “Install Ubuntu”. I chose “Install Ubuntu”.

4. Then choose what software will be installed. I chose the “Normal installation” option.

5. Then, you can choose the “Erase disk and install Ubuntu” option if you want to go with default

settings for the Ubuntu OS. Otherwise, feel free to choose the “”Something else” option to

customize the OS.

6. Finally, create a user account so you can log into Ubuntu. Make sure you save this information!



Fixing Screen Resolution

If your VM was cutting off the desktop during the installation process, you can change the screen

resolution to fix this problem.

1. Go to “Show Applications” on the dock in your VM, search “Settings”, click “Settings”.

2. Scroll and click on “Display” on the left menu.

3. Change the resolution to whatever makes sense for your screen size.

III. Running Beiwe Locally on the VM

These steps are copied from the Beiwe backend github and this tutorial by Liquid Web.

Download the Code

1. In your VM, head to https://github.com/onnela-lab/beiwe-backend and download the code. Save

this in your Documents folder.

Setting Up a Virtual Environment

You should create a virtual environment for running the Beiwe codebase - it expects at least Python 3.6.

1. Install some necessary prerequisites:

a. sudo apt-get update; sudo apt-get install make build-essential libssl-dev zlib1g-dev

libbz2-dev libreadline-dev libsqlite3-dev wget curl llvm libncursesw5-dev xz-utils tk-dev

libxml2-dev libxmlsec1-dev libffi-dev liblzma-dev

b. sudo apt install git-all

c. sudo apt install curl

2. Install the latest version of pyenv:

a. git clone https://github.com/pyenv/pyenv.git ~/.pyenv

3. Set up some important environment variables and pyenv autocompletion:

a. echo 'export PYENV_ROOT="$HOME/.pyenv"' >> ~/.bashrc

b. echo 'export PATH="$PYENV_ROOT/bin:$PATH"' >> ~/.bashrc

c. echo -e 'if command -v pyenv 1>/dev/null 2>&1; then\n eval "$(pyenv init -)"\nfi' >>

~/.bashrc

4. To start using pyenv, restart the shell by running:

a. exec "$SHELL"

Setting Up the Codebase

1. Open the folder in Terminal and run these commands:

a. sudo apt-get update; sudo apt-get install postgresql libpq-dev



b. sudo apt install python3-pip

c. pip install --upgrade pip setuptools wheel

d. pip install -r requirements.txt

e. Create a file for your environment variables that contains at least these:

i. export DOMAIN_NAME="localhost://8080"

ii. export FLASK_SECRET_KEY="asdf"

iii. export S3_BUCKET="a"

iv. Export SYSADMIN_EMAILS="sysadmin@localhost"

f. I usually store it at private/environment.sh.

2. There’s no need to set up a local database since the Beiwe Backend automatically recognizes

when it’s running locally and creates a sqlite database in the private folder.

3. Set up the database schema:

a. python3 manage.py migrate

Running Beiwe

1. To run your local codebase run source private/environment.sh and then python3 app.py from the

project root.

a. When you run python3 app.py Beiwe checks for any missing required variables and tells

you if anything is missing.

2. To get the python shell for Beiwe, run python3 manage.py shell_plus from the project root.

IV. Using the Study Management Portal

1. Once you start up the Beiwe server, head to the port address shown in the terminal. You will be

redirected to a login page. Log in with the following credentials:

a. Username: default_admin

b. Password: abc123

2. For safety, change the login password since this is a default password.

Creating a New Study

1. Head to the “Manage Studies” tab and click on the “Create New Study” button. Give a name to

your study and encrypt it with a 32-character key.



2. After creating the study, you will be taken to a page that allows you to customize the types of

data your study will collect.

Creating a New Researcher for the Study

1. Head to the “Manage Researchers” tab and click on the “Add new researcher” button.

2. Choose a username and password for the new researcher, then click “Add new researcher”. An

example username and pass is shown below.



3. Authorize the new researcher to keep track of the study you just created by adding them to it -

select a study then click “Add researcher to study”. This allows the researcher to edit the study,

create new surveys, manage participants, and download the data from the study.

Adding Participants to the Study

1. Head to the “View Study” dropdown list on the top menu and select a study.

2. Click on “Add new participant” to generate a unique ID for a new participant.



3. Ask the new participant to download the “Beiwe2” app on their phone and give them their unique

participant ID, as well as the study server. The participant can then log into the app and start

using it for data collection.

Note: Running the study management portal locally means that the study server is not an actual URL but

is a port on the VM. This means that the participant won’t be able to log into the app. Updated

instructions on solving this problem are in the tutorial titled “Running The Beiwe Backend On The Emutivo

Development VM”.
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Running The Beiwe Backend On The Emutivo

Development VM

[Deprecated - See “Running The Beiwe Backend On AWS” for updated instructions]

Madeline Halley (mehalley@wpi.edu) and Jyalu Wu (jwu7@wpi.edu)

Note: This was our second method for running the Beiwe backend without using the AWS EC2 server. We

saw this through completion but determined that this method does not work since integration with the

Android frontend gave errors.

Note: The VM will only run on WPI machines or when connected to the GlobalProtect VPN. Login

information for the development playground was set up by Dr. Ermal Toto. The following instructions are

Mac-specific. Running the VM on a Windows machine may be different.

I. Connecting to the Development VM

1. On your personal device, connect to the GlobalProtect VPN and open Terminal.

2. Generate an ssh key if you don't have one already: ssh-keygen -t rsa

3. Run the VM:

a. ssh-copy-id [username]@emutivo-dev.wpi.edu

b. ssh [username]@emutivo-dev.wpi.edu

4. Enter the root environment

a. sudo su -

b. Enter in your password

5. Download Cyberduck for transfering files. Make sure to ask Dr. Toto to give you sudo access when

using Cyberduck.

6. Connect to Cyberduck using the following information:

a. SFTP

b. Server: emutivo-dev.wpi.edu

c. Username: your username

d. SSH Private Key: the ssh key you just made

7. Redirect to /var/www/emutivo-dev - this is where the Beiwe backend code will live.



II. Setting Up the Beiwe Backend

It is not necessary to follow these steps – this only needs to be done once.

Download the Code

1. In your VM, head to https://github.com/onnela-lab/beiwe-backend and download the code. Save

this in your Documents folder.

2. Using Cyberduck, transfer the files you just downloaded to the development VM in

/var/www/emutivo-dev.

Setting Up a Virtual Environment

You should create a virtual environment for running the Beiwe codebase - it expects at least Python 3.6.

1. Install some necessary prerequisites:

a. sudo apt-get update; sudo apt-get install make build-essential libssl-dev zlib1g-dev

libbz2-dev libreadline-dev libsqlite3-dev wget curl llvm libncursesw5-dev xz-utils tk-dev

libxml2-dev libxmlsec1-dev libffi-dev liblzma-dev

b. sudo apt install git-all

c. sudo apt install curl

2. Install the latest version of pyenv:

a. git clone https://github.com/pyenv/pyenv.git ~/.pyenv

3. Set up some important environment variables and pyenv autocompletion:

a. echo 'export PYENV_ROOT="$HOME/.pyenv"' >> ~/.bashrc

b. echo 'export PATH="$PYENV_ROOT/bin:$PATH"' >> ~/.bashrc

c. echo -e 'if command -v pyenv 1>/dev/null 2>&1; then\n eval "$(pyenv init -)"\nfi' >>

~/.bashrc

4. To start using pyenv, restart the shell by running:

a. exec "$SHELL"

5. Install pyenv 3.8.3 and run a virtual environment on python 3.8.3.

a. pyenv install --list

b. pyenv install 3.8.3

c. pyenv global 3.8.3

Setting Up the Codebase

1. Open the folder in Terminal and run these commands:

a. sudo apt-get update; sudo apt-get install postgresql libpq-dev

b. sudo apt install python3-pip

c. pip install --upgrade pip setuptools wheel

d. pip install -r requirements.txt

e. Create a file for your environment variables that contains at least these:



i. export DOMAIN_NAME="emutivo-dev.wpi.edu"

ii. export FLASK_SECRET_KEY="asdf"

iii. export S3_BUCKET="a"

iv. Export SYSADMIN_EMAILS="sysadmin@localhost"

f. I usually store it at private/environment.sh.

3. There’s no need to set up a local database since the Beiwe Backend automatically recognizes

when it’s running locally and creates a sqlite database in the private folder.

4. Set up the database schema:

a. python3 manage.py migrate

II. Running the Beiwe Backend

Method I: Running Beiwe With Flask ‘Run’ Command

We first tried to run Beiwe using the Flask ‘run’ command directly in the virtual machine. However, this

method is not recommended – see the ‘Method II’ section for a better method.

1. Change the last line of app.py so it runs on emutivo-dev.wpi.edu instead of localhost.

2. To run your local codebase run source private/environment.sh and then python3 app.py from the

project root.

a. When you run python3 app.py Beiwe checks for any missing required variables and tells

you if anything is missing.

3. Head to a browser and open emutivo-dev.wpi.edu:8080 to see your changes.

This method of running Beiwe results in the following problems:



4. Problem I: since the Beiwe website is a Flask app, the ‘run’ command must include a host (e.g.

emutivo-dev.wpi.edu) and a port (e.g. 8080) as parameters. Thus, the development vm will run

the study management portal on emutivo-dev.wpi.edu:8080 instead of the desired

emutivo-dev.wpi.edu.

5. Problem II: since the Beiwe website runs locally on the emutivo-dev VM, any changes made on the

website are lost once the user exits the Flask app (CTRL+C). These changes include creating new

researchers, studies, users, etc. The same thing happens once the user exits the VM on Terminal.

Method II: Running Beiwe as a Service

To address the problems highlighted in the previous section, Dr. Ermal Toto helped us to set up Flask as a

service on the Ubuntu-based emutivo-dev virtual machine. Running Flask as a service allows the Beiwe

Flask app to remain uninterrupted so progress won’t be lost (Problem II). Additionally, he certified a new

website URL – emutivo-beiwe.wpi.edu – to both signify the change to a production server and also to run

the service on a URL that doesn’t include a port number (Problem I). In order to accomplish all of this, Dr.

Toto followed this tutorial by Digital Ocean and this tutorial by Miguel Grinberg.

1. In Terminal, log into your virtual machine manager account (arc-manager) and add

emutivo-beiwe.wpi.edu as a certified URL under the emutivo-dev VM.

a. cd /etc/ansible

b. Open the https.yml file

c. Head to where it lists ‘emutivo-dev’ as a VM and add ‘emutivo-beiwe’ as an extra URL

2. Create a certification for the emutivo-beiwe URL

a. ansible-playbook https:yml -l emutivo-dev

b. The output from that command should show something that looks like this:

3. Next, enable the emutivo-dev Apache server to run on emutivo-beiwe.wpi.edu.

a. Log into your account on the emutivo-dev VM (see ‘I. Connecting to the Development

VM’ for a refresher).

b. cd /etc/apache2/sites-enabled/

c. Edit the 000-default.conf file so that it contains the following:



d. Enable Apache to use mod_proxy on the VM by following this tutorial by Digital Ocean.

e. Head to emutivo-beiwe.wpi.edu. It should be hosting the study management portal!

4. Do some housekeeping.

a. Rename the /var/www/emutivo-dev folder as /var/www/beiwe-production.

b. Update the run.sh file in /var/www/beiwe-production

c. Add a new group called beiwe-users then add any users working on the Beiwe project to

that group

5. Now, set up the Flask app as a service so that it can run uninterrupted.

a. Head to this tutorial by Miguel Grinberg for running Flask as a Debian service.

b. cd /etc/systemd/system/

c. Edit the beiwe.service file



d. Start and stop the service to make sure that it works by starting and crashing

emutivo-beiwe.wpi.edu

i. systemctl daemon-reload

ii. systemctl start beiwe

iii. systemctl stop beiwe

e. Enable the service and reboot the system. Head to emutivo-beiwe.wpi.edu. It should still

be hosting the study management portal!

i. systemctl enable beiwe.service

ii. reboot

6. Finally, make emutivo-bewe.wpi.edu to a public IP so that it is accessible outside of WPI. Now,

users won’t have to turn on GlobalProtect in order to access it!

III. Connecting to AWS S3

Create an AWS Educate Account

1. Follow this article by WPI Hub on how to set up an AWS Educate account and redeem credits.



Create an S3 Bucket

1. Head to https://aws.amazon.com/ and log into the account you created with your WPI email.

2. Search for “S3” and click on the “S3” service.

3. Click “Create bucket”

4. Choose a name for your bucket, scroll down to the end of the page, and click “Create bucket”.

Create an IAM User

Steps taken from the Beiwe Wiki.

1. Go to the AWS Users page, fill out your desired username, and check “Programmatic access”.



2. Click “Next: Permissions” then click “Create Group”. Fill out your desired group name, then click

“Create policy”.

3. Click “JSON” and fill the text box with the following JSON.

4.

5. Finish creating the policy and group, then finish creating the user using the new group. Once you

have created the user, save the “Access key ID” and “Secret access key”.



Change The Config Files In The Beiwe Backend

1. Open the file /var/www/beiwe-production/config/remote_db_env.py.

2. Change the name of the S3_BUCKET variable to the name of the S3 bucket you just created.

3. Change the variable BEIWE_SERVER_AWS_ACCESS_KEY_ID to S3_ACCESS_CREDENTIALS_USER

and the variable BEIWE_SERVER_AWS_SECRET_ACCESS_KEY to

S3_ACCESS_CREDIENTALS_KEY.

a. We assumed that this can be done because in the file

/var/www/beiwe-production/config/settings.py, the program looks for either the

BEIWE_SERVER_AWS_ACCESS_KEY_ID or the S3_ACCESS_CREDENTIALS_USER, and

same for the other two variables

4.

5. Fill out the S3_ACCESS_CREDENTIALS_USER and S3_ACCESS_CREDIENTALS_KEY variables using

the “Access key ID” and “Secret access key”, respectively.

6. Restart the server using sudo service apache2 restart.

III. Using the Study Management Portal

1. Get the password for logging in as admin

2. Log into the server as username “default_admin” and fill with the password

Creating a New Study

1. Head to the “Manage Studies” tab and click on the “Create New Study” button. Give a name to

your study and encrypt it with a 32-character key.



2. After creating the study, you will be taken to a page that allows you to customize the types of

data your study will collect.

Creating a New Researcher for the Study

1. Head to the “Manage Researchers” tab and click on the “Add new researcher” button.



2. Choose a username and password for the new researcher, then click “Add new researcher”. An

example username and pass is shown below.

3. Authorize the new researcher to keep track of the study you just created by adding them to it -

select a study then click “Add researcher to study”. This allows the researcher to edit the study,

create new surveys, manage participants, and download the data from the study.



Adding Participants to the Study

1. Head to the “View Study” dropdown list on the top menu and select a study.

2. Click on “Add new participant” to generate a unique ID for a new participant.

1. Ask the new participant to download the “Beiwe2” app on their phone and give them their unique

participant ID, as well as the study server. The participant can then log into the app and start

using it for data collection.

IV. Running With Android Frontend

1. Follow the “Running the Beiwe Android Front-end” documentation to set up the frontend. Follow

all steps before “Permission Errors” – the last step should be “Changing Server URL.”

2. Scroll down to “Running the Application With Emutivo Development VM” and follow those steps.



Error: When following the steps in “Running The Beiwe Backend On The Emutivo Development VM” to

set up the backend and create a new participant, the app will show the following error:

Tracing the error through logs shows us that this is caused by a 500 error:

The “can’t register” is something that we printed out, not the official error.

Figuring Out Why There’s An Error

List of things the error IS NOT caused by:

1. Can’t connect to the website / website doesn’t exist

a. Would give a 502 error and different log

2. Using a https website instead of http → we thought maybe this was the case because the app

uses the function “HttpURLConnectionImp” instead of “HttpsURLConnectionImp”

a. “HttpURLConnectionImp” actually works with both http and https websites

3. AWS S3 error

a. We connected the application with an S3 bucket (see step II.III for directions on how to

do that) but the error persisted



In conclusion: We determined that the error is likely caused by an AWS EC2 error – the Android frontend

is expecting to connect to a Beiwe AMI but detects the WPI Emutivo development VM instead.
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Running The Beiwe Backend On AWS

Madeline Halley (mehalley@wpi.edu) and Jyalu Wu (jwu7@wpi.edu)

Note: This is the best way to run the Beiwe backend. We have tried running it locally (see “Running The

Beiwe Backend Locally On Linux”) and running it on a development VM (see “Running The Beiwe Backend

On The Emutivo Development VM”) but both methods were not ideal.

I. Making an AWS Account

Just AWS

Head to the AWS website to create an account with your WPI email. An EC2 server that can handle no

more than 20 participants a month will cost about $62/month, according to the Beiwe Github. Paying on

your own will not be ideal - try to use AWS Educate or AWS Cloud Credit for Research.

Using AWS Educate

AWS Educate is a program that gives credits to faculty and students, as well as online courses for learning

how to use AWS. WPI is an institutional member of AWS Educate so students will be able to receive

$75-$100 worth of credits when signing up with their WPI email.

1. Follow the steps in this article from WPI Hub to set up AWS educate and redeem your credits.

a. IMPORTANT: make sure you create an AWS account with your WPI email BEFORE

registering with AWS Educate! If you don’t create an AWS account first you won’t be

able to access the credits - they simply won’t send you an email with a promo code.

b. Our team had trouble setting up this account so maybe ask WPI IT to help you.



AWS Cloud Credit for Research

Full-time faculty, research staff, and postgraduate students are eligible to apply for AWS Cloud Credit for

Research. You will have to send an application to get research credits – postgraduate awards have a

maximum of $5000 but faculty and staff awards don’t have a maximum.

II. Deploying the Beiwe Backend

Head to the Github wiki and follow the steps on “Deployment Instructions Scalable Deployment”. For a

more in-depth tutorial, head to this wiki page for non-IT users – we found this to be pretty helpful!

III. Making AWS HIPAA Compliant

Since we are dealing with PHI, we will need to make AWS compliant with HIPAA.

1. Head to this article to see the FAQ page for definitions about related terms (e.g. HIPAA, HITECH,

business associate addendum) and how AWS can become HIPAA-compliant.



a. If the “Is AWS HIPAA certified?” answer leaves you confused, we were too. Head to this

article by the HIPAA Journal for a no-nonsense, blunt explanation.

2. The best way to protect your AWS resources and make them HIPAA-compliant is to use Quick

Start, which is based on AWS CloudFormation.

How CloudFormation Works

This is how we (the Emutivo team) think of how CloudFormation works, along with a very loose restaurant

metaphor:

● CloudFormation (chef): you model your AWS resources, CloudFormation sets them up

● Template (recipe book): blueprint for AWS resources

● Stack (order): collection of resources, properties specified by template

Quick Start gives you predefined (HIPAA-compliant) templates and lets you create stacks. In this case, we

would use the Quick Start templates for EC2 and S3 to deploy the Beiwe backend.

For a more in-depth explanation of Quick Start, see the Deployment Guide.
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