PROJECT NUMBER: REC0036

# A Comparison of Quantum Mechanical Models Applied to $\alpha, \beta$ Unsaturated Carbonyl Compounds

A Major Qualifying Project By:

William Henri Neve IV 4/28/2011

**Approved By:** 

Professor Robert E. Connors, Ph.D. Project Advisor

### Abstract

Popular quantum mechanical methods that predict the geometries, vibrational spectra, and electronic spectra of organic molecules were investigated. Theoretical predictions were compared to experimental data and the accuracies of the predictions were determined. Methods studied include Hyperchem (semi-empirical, *ab initio*), WebMO (Gaussian B3LYP/6-311+G(d,p)) and the empirical Woodward-Fieser rules. From these comparisons the most accurate techniques were found to be the Woodward-Fieser rules (calculating the electronic spectrum  $\lambda$  max) and B3LYP/6-311+G(d,p) (calculating peaks in the vibrational spectrum).

# Acknowledgements

I would like to thank Professor Robert E. Connors for his guidance, advice, and use of his laboratory throughout this year. I would also like to thank Christopher Zoto for always being there to help and take time out of his research to assist myself and others. Finally, I would like to thank Librarian Laura R. Hanlan for her help with literature research and dedication to learn about Chemistry in order to help find what I needed.

# **Table of Contents**

| Abstract                                                |
|---------------------------------------------------------|
| Acknowledgements                                        |
| Table of Figures                                        |
| List of Tables                                          |
| Introduction7                                           |
| Experiments 10                                          |
| I. Hyperchem Experiments10                              |
| II. WebMO Experiments                                   |
| III. Woodward-Fieser Rules                              |
| Comparisons & Discussion                                |
| I. Semi-Empirical Comparison16                          |
| II. Ab initio Comparison                                |
| III. Density Functional Theory Comparison               |
| IV. Woodward-Fieser Rules Comparison                    |
| V. Discussion                                           |
| Conclusions                                             |
| References                                              |
| Appendix                                                |
| I. Semi-Empirical Singlet and Triplet State Transitions |
| II. Hyperchem IR and UV Spectra                         |
| III. WebMO IR and UV Spectra                            |
| IV. Literature IR and UV Spectra                        |

# **Table of Figures**

| Figure 1: Carbonyl Compounds 1-7                | pg. 7     |
|-------------------------------------------------|-----------|
| Figure 2: Carbonyl Compounds 8-14               | pg. 7     |
| Figure 3: Woodward-Fieser Rules                 | pg. 15    |
| Figure 4: Singlet and Triplet State Transitions | pgs.40-42 |
| Figure 5&6: <i>Hyperchem</i> IR and UV Spectra  | pgs.43-44 |
| Figure 7&8: WebMO IR and UV Spectra             | pg. 45    |
| Figure 9&10: Literature IR and UV Spectra       | pg. 46    |

# **List of Tables**

| Table 1: Semi-empirical Infrared Data                                                     | pg. 11 |
|-------------------------------------------------------------------------------------------|--------|
| Table 2: Semi-empirical Ultraviolet Data                                                  | pg.12  |
| Table 3: Ab initio Infrared Data                                                          | pg. 13 |
| Table 4: Density Functional Theory Infrared Data                                          | pg. 14 |
| Table 5: Density Functional Theory Ultraviolet Data                                       | pg. 14 |
| Table 6: Woodward Fieser Predicted Peak Values                                            | pg. 16 |
| Table 7: Acrylaldehyde Comparison of Semi-Empirical and Literature IR Peaks               | pg. 17 |
| Table 8: MVK Comparison of Semi-Empirical and Literature IR Peaks                         | pg. 18 |
| Table 9: Methacrylaldehyde Comparison of Semi-Empirical and Literature IR Peaks           | pg. 19 |
| Table 10: Crotonaldehyde Comparison of Semi-Empirical and Literature IR Peaks             | pg. 20 |
| Table 11: Comparison of Semi-Empirical and Literature UV $\lambda$ Max Peaks              | pg. 21 |
| Table 12: Acrylaldehyde comparison of <i>ab initio</i> and literature IR peak values      | pg. 23 |
| Table 13: MVK comparison of <i>ab initio</i> and literature IR peak values                | pg. 24 |
| Table 14: Methacrylaldehyde comparison of <i>ab initio</i> and literature IR peak values  | pg. 25 |
| Table 15: Acrylaldehyde comparison of DFT and literature IR peak values                   | pg. 26 |
| Table 16: MVK comparison of DFT and literature IR peak values                             | pg. 27 |
| Table 17: Methacrylaldehyde comparison of DFT and literature IR peak values               | pg. 28 |
| Table 18: Crotonaldehyde comparison of DFT and literature IR peak values                  | pg. 29 |
| Table 19: Comparison of DFT and Literature UV $\lambda$ Max Peaks                         | pg. 30 |
| Table 20: Comparison of Woodward-Fieser Rules and literature UV $\lambda$ max peak values | pg. 31 |
| Table 21: C=O stretches and calculations.                                                 | pg. 32 |
| Table 22: C=C stretches and calculations                                                  | pg. 32 |
| Table 23: Scale factor calculations for C=O and C=C stretches with averages               | pg. 33 |
| Table 24: C=O Scaled Stretches and calculations.                                          | pg. 34 |
| Table 25: C=C Scaled Stretches and calculations.                                          | pg. 34 |
| Table 26: Acrylaldehyde IR spectrum comparison (scaled values)                            | pg. 35 |
| Table 27: Acrylaldehyde Differences and Percent Differences.                              | pg. 36 |
| Table 28: UV $\lambda$ max peak values comparison                                         | pg.37  |
| Table 29: UV $\lambda$ max differences and percent differences                            | pg. 38 |

# Introduction

With the rise of powerful computers, the scientific community has been able to run experiments using quantum mechanical methods to efficiently and quickly predict valuable structural and spectral data. Yet, there are numerous quantum mechanical programs and methods available to carry out these computations. Therefore, the question arises as to which are the most accurate and efficient? In this study, the programs Hyperchem and WebMO as well as the empirical Woodward-Fieser Rules are compared with known infrared and ultraviolet spectra for the test case of  $\alpha$ , $\beta$  unsaturated carbonyl compounds. This MQP focuses on fourteen specific carbonyl



compounds which have various  $\alpha$  and  $\beta$  substituents which test the methodologies of each by increasing the size and altering the type of compound. With this range of compounds, each method would be tested thoroughly for their efficiency and accuracy.

The methods that were studied in this project covered four different levels of calculations: empirical, semi-empirical, *ab initio*, and density functional theory. Semi-empirical and *ab initio* were studied in the program package known as *Hyperchem*. *Hyperchem* allows for a user to draw compounds in a three dimensions and optimize the geometry of the structure and generate vibrational and electronic data from these calculations.

The semi-empirical methods in the *Hyperchem* package that were studied are PM3 and ZINDO/S. The semi-empirical methods make approximations to make these calculations much faster than more sophisticated methods. An example of an approximation made is the two electron model of the Hamiltonian in Schrodinger's equation being parameterized and calculations carried out normally otherwise.

The *ab initio* method in the *Hyperchem* package used was 6-31G\* and is on a level of theory higher than that of semi-empirical. This level makes many less approximations than semi-empirical; however, still approximates calculations to make the Schrodinger's equation into a "simple" eigenvalue problem, which is much easier for a computer to calculate than a full complex problem, as will be discussed a little with density functional theory. The 6-31G\* method was used to calculate the geometry optimization and vibrational spectral data.

The final quantum mechanical method that was studied, was operated through the program package of *WebMO*. This is an online system that is fairly similar to *Hyperchem*; however, the use of large servers rather than just the computational power of a laptop or desktop serves for much faster calculations to be done at a higher level of calculation. *WebMO*, much like

*Hyperchem*, can calculate optimized geometries, vibrational spectra, and electronic spectra; however, *WebMO* allows for much easier exporting and transformation of raw data into vibrational and electronic spectra and gives the user a much nicer interface which is simpler to use.

The density functional theory (DFT) method used through *WebMO* functions on a much higher level than that of semi-empirical and *ab initio* even. The DFT level followed a Gaussian B3LYP/6-311+G(d,p) set of calculations where the calculations have become much less about approximations and much more intricate in the mathematical operations performed.

The final method studied was an empirical method known as the Woodward-Fieser Rules. This method is named for Robert Burns Woodward and Louis Fieser whom studied empirical data of many compounds to find trends in how specific bonds in certain areas in a compound would affect the peak value in the UV/Vis spectrum. These rules allow one to find the  $\lambda$  max absorption value, which is also the  $\pi$ -> $\pi$ \* transition from the highest occupied molecular orbital (HOMO) to the lowest unoccupied molecular orbital (LUMO).

# **Experiments**

#### I. Hyperchem Experiments

As mentioned before, *Hyperchem* was used to test the semi-empirical and *ab initio* levels of calculation in this study. Each compound shown before was created in *Hyperchem* and then their geometries were optimized. These optimized geometries in the semi-empirical method of PM3 were computed for all fourteen compounds. Afterwards, a vibrational spectrum of each compound was generated by use of the PM3 method as well. This gave the theoretical infrared spectral data for the semi-empirical method.

|    |                              |          | formyl  | C=0     | C=C     | formyl  | vinyl CH |
|----|------------------------------|----------|---------|---------|---------|---------|----------|
|    | Name                         | vinyl CH | СН      | Stretch | Stretch | CH rock | rock     |
| 1  | acrylaldehyde                | 3122.4   | 2925.81 | 1977.95 | 1847.22 | 1244.76 | 1203.33  |
| 2  | Methyl Vinyl Ketone          | 3130.22  | Х       | 1975.45 | 1853.35 | Х       | 1285.91  |
| 3  | methacrylaldehyde            | Х        | 2921.23 | 1980.11 | 1865.2  | 1353.22 | Х        |
| 4  | (Z)-3-chloroacrylaldehyde    | 3058.47  | 2925.89 | 1973.12 | 1824.98 | 1286.45 | 1204.56  |
| 5  | crotonaldehyde               | 3049.04  | 2926.47 | 1973.86 | 1874.55 | 1319.39 | 1205.4   |
| 6  | 2-cyclopenten-1-one          | 3112.95  | Х       | 2012.64 | 1811.43 | х       | 1275.1   |
|    | 2-methyl-2-cyclopenten-1-    |          |         |         |         |         |          |
| 7  | one                          | Х        | Х       | 2010.1  | 1866.96 | Х       | Х        |
| 8  | 3-methoxy-2-propenal         | 3144.62  | 2993.33 | 1963.79 | 1840.95 | 1378.53 | 1235.72  |
| 9  | (2E)-2-methyl- 2-butenal     | Х        | 2916.73 | 1977.87 | 1875.56 | 1338.52 | Х        |
| 10 | 2,4-pentadienal              | 3132.67  | 2993    | 1975.2  | 1873.76 | 1335.85 | 1236.81  |
|    | 2-methoxy-3methyl-           |          |         |         |         |         |          |
|    | 4methylene-cyclopent-2-      | X        | V       | 2015 07 | 1000 20 | X       | V        |
| 11 | enone                        | X        | X       | 2015.97 | 1868.29 | X       | X        |
| 12 | 2-methoxy-3-methyl-2-        | v        | v       | 2007 1  | 107/ 22 | v       | v        |
| 12 | (7) (0Cl) 2 (mothylthic) 2   | ^        | ^       | 2007.1  | 1074.22 | ^       | ^        |
| 13 | (Z)- (9CI)-3-(Methylthio)-2- | 3199 11  | 3023 3  | 1968 62 | 1817 83 | 1380 19 | 1282.21  |
| 15 | (27) 2 (dimothylamino) 2     | 5155.11  | 5025.5  | 1300.02 | 1017.05 | 1500.15 | 1202.21  |
| 14 | propenal                     | 3133.44  | 2985.56 | 1965.67 | 1815.82 | 1344.31 | 1294.8   |

**Table 1:** Semi-Empirical Infrared Spectral Data

The optimized geometries were then used to calculate the UV spectral data through the use of the ZINDO/S semi-empirical method. The  $\lambda$  max absorption value (the  $\pi$ -> $\pi$ \* transition) was focused on for this project.

| Name                                           | Semi-Empirical(in nm) |
|------------------------------------------------|-----------------------|
| acrylaldehyde                                  | 206.2                 |
| Methyl Vinyl Ketone                            | 206.6                 |
| methacrylaldehyde                              | 216.9                 |
| (Z)-3-chloroacrylaldehyde                      | 220.95                |
| (Z)-but-2-enal                                 | 221.02                |
| 2-cyclopenten-1-one                            | 211.69                |
| 2-methyl-2-cyclopenten-1-one                   | 225.42                |
| 3-methoxy-2-propenal                           | 232.14                |
| (2E)-2-methyl- 2-butenal                       | 229.77                |
| 2,4-pentadienal                                | 255.21                |
| 2-methoxy-3methyl-4methylene-cyclopent-2-enone | 277.9                 |
| 2-methoxy-3-methyl-2-cyclopenten-1-enone       | 242.27                |
| (Z)- (9CI)-3-(methylthio)-2-propenal           | 234.55                |
| (2Z)-3-(dimethylamino)-2-propenal              | 249.22                |
|                                                |                       |

 Table 2: Semi-empirical ultraviolet spectral data

The same procedure was repeated at the *ab initio* level excluding the UV/Vis

|    |                                     |          |         |         |         | formyl |          |
|----|-------------------------------------|----------|---------|---------|---------|--------|----------|
|    |                                     |          | formyl  | C=O     | C=C     | СН     | vinyl CH |
|    | Name (Numbers in cm <sup>-1</sup> ) | vinyl CH | СН      | Stretch | Stretch | rock   | rock     |
| 1  | acrylaldehyde                       | 3382.75  | 3157.65 | 2012.78 | 1851.32 | 1414.2 | 1270.36  |
| 2  | Methyl Vinyl Ketone                 | 3346.05  | х       | 1998.06 | 1855.84 | х      | 1386.83  |
| 3  | methacrylaldehyde                   | х        | 3165.31 | 2003.56 | 1869.78 | 1448.3 | х        |
| 4  | (Z)-3-chloroacrylaldehyde           | 3410.99  | 3169.32 | 2012.52 | 1837.03 | 1442.2 | 1347.8   |
| 6  | 2-cyclopenten-1-one                 | 3383.64  | х       | 2020.58 | 1816.8  | х      | 1309.1   |
| 7  | 2-methyl-2-cyclopenten-1-one        | х        | Х       | 2011.49 | 1870.28 | х      | х        |
| 8  | 3-methoxy-2-propenal                | 3344.77  | 3122    | 1995.71 | 1874.33 | 1402.5 | 1287.18  |
| 9  | (2E)-2-methyl- 2-butenal            | х        | 3155.77 | 1996.94 | 1889.47 | 1364.5 | х        |
| 10 | 2,4-pentadienal                     | 3342.95  | 3200.89 | 1995.43 | 1804.93 | 1375   | 1276.28  |
|    | 2-methoxy-3methyl-                  |          |         |         |         |        |          |
| 11 | 4methylene-cyclopent-2-enone        | Х        | Х       | 2010.21 | 1855.7  | Х      | Х        |
|    | 2-methoxy-3-methyl-2-               |          |         |         |         |        |          |
| 12 | cyclopenten-1-enone                 | Х        | Х       | 1998.48 | 1891.39 | Х      | Х        |
|    | (Z)- (9Cl)-3-(methylthio)-2-        |          |         |         |         |        |          |
| 13 | propenal                            | 3327.8   | 3207.24 | 1997.49 | 1809.29 | 1489.6 | 1333.12  |
|    | (2Z)-3-(dimethylamino)-2-           |          |         |         |         |        |          |
| 14 | propenal                            | 3273.76  | 3108.23 | 1978.01 | 1827.53 | 1340.2 | 1246.05  |

calculations. The geometries were optimized and the vibrational spectrum was calculated.

**Table 3:** Ab Initio Infrared Spectral Data

#### II. WebMO Experiments

Through the program package *WebMO* the density functional theory was tested at the Gaussian B3LYP/6-311+G(d,p) level of theory for the first ten compounds. First a geometry optimization was performed on the structures along with the vibrational spectrum. This procedure, much like the semi-empirical level, was followed by using that same geometry to determine the electronic spectrum for each compound.

|    |                                     |          |         |         |         | formyl |          |
|----|-------------------------------------|----------|---------|---------|---------|--------|----------|
|    |                                     |          | formyl  | C=O     | C=C     | СН     | vinyl CH |
|    | Name (Numbers in cm <sup>-1</sup> ) | vinyl CH | СН      | Stretch | Stretch | rock   | rock     |
| 1  | acrylaldehyde                       | 3170.78  | 2882.31 | 1770.47 | 1673.92 | 1387.3 | 1297.58  |
| 2  | Methyl Vinyl Ketone                 | 3165.4   | х       | 1744.57 | 1677.66 | х      | 1307.31  |
| 3  | methacrylaldehyde                   | х        | 2888.44 | 1765.81 | 1688.33 | 1389.8 | Х        |
| 4  | (Z)-3-chloroacrylaldehyde           | 3169.63  | 2958.23 | 1754.92 | 1642.49 | 1420.3 | 1217     |
| 5  | crotonaldehyde                      | 3166.9   | 2918.11 | 1750.05 | 1685.73 | 1381.7 | 1264.77  |
| 6  | 2-cyclopenten-1-one                 | 3217.7   | Х       | 1778.1  | 1640.59 | Х      | 1366.12  |
| 7  | 2-methyl-2-cyclopenten-1-one        | Х        | Х       | 1770.4  | 1686.92 | Х      | Х        |
| 8  | 3-methoxy-2-propenal                | 3196.39  | 2936.11 | 1738.4  | 1675.13 | 1387   | 1208.72  |
| 9  | (2E)-2-methyl- 2-butenal            | х        | 2880.88 | 1756.77 | 1700.96 | 1408.5 | Х        |
| 10 | 2,4-pentadienal                     | 3167.58  | 2940.18 | 1744.07 | 1650.73 | 1383.8 | 1238.49  |

#### **Table 4:** Density Functional Theory Infrared Spectral Data

| Name                                                         | DFT (in nm) |  |  |
|--------------------------------------------------------------|-------------|--|--|
| acrylaldehyde                                                | 199.52      |  |  |
| Methyl Vinyl Ketone                                          | 203.87      |  |  |
| methacrylaldehyde                                            | 212.48      |  |  |
| (Z)-3-chloroacrylaldehyde                                    | 234.11      |  |  |
| (Z)-but-2-enal                                               | 213.66      |  |  |
| 2-cyclopenten-1-one                                          | 206.78      |  |  |
| 2-methyl-2-cyclopenten-1-one                                 | 217.58      |  |  |
| 3-methoxy-2-propenal                                         | 238.17      |  |  |
| (2E)-2-methyl- 2-butenal                                     | 217.83      |  |  |
| 2,4-pentadienal                                              | 257.26      |  |  |
| Table 5: Density Functional Theory Ultraviolet Spectral Data |             |  |  |

#### III. Woodward-Fieser Rules

Unlike the other methods, the empirical Woodward-Fieser Rules is not a quantum mechanical method and does not require complex calculations. The process to determining the  $\lambda$  max absorption for any carbonyl compound is a simple addition problem that can be calculated in seconds. By using observations of how substituents affect the absorption peak in the UV spectrum the Woodward-Fieser rules are able to quickly estimate the peak value for absorption.

| Woodward-Fieser Rules for Calculating the $\pi \rightarrow$ | $\pi^* \lambda_{max}$ of Conjugated Carbonyl |
|-------------------------------------------------------------|----------------------------------------------|
| Compounds                                                   |                                              |

| Core Chromophore                                                                                            |                                                    | Substituent and Influence                                                                                                                                                                                                                                                                                                                                                                                                   |
|-------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $ \begin{array}{c} & R \\ & C = 0 \\ & C = 0 \\ & \boldsymbol{\beta} \\ & \boldsymbol{\alpha} \end{array} $ | R = Alkyl 215 nm<br>R = H 210 nm<br>R = OR' 195 nm | α- SubstituentR- (Alkyl Group)+10 nmCl- (Chloro Group)+15Br- (Chloro Group)+25                                                                                                                                                                                                                                                                                                                                              |
| β-c, β                                                                                                      | Cyclopentenone<br>202 nm                           | HO- (Hydroxyl Group) +35<br>RO- (Alkoxyl Group) +35<br>RCO <sub>2</sub> - (Acyl Group) +6<br>β- Substituent<br>R- (Alkyl Group) +12 nm                                                                                                                                                                                                                                                                                      |
|                                                                                                             |                                                    | Cl- (Chloro Group) +12<br>Br- (Chloro Group) +30<br>HO- (Hydroxyl Group) +30<br>RO- (Alkoxyl Group) +30<br>RCO <sub>2</sub> - (Acyl Group) +6<br>RS- (Sulfide Group) +6<br>RS- (Sulfide Group) +85<br>R <sub>2</sub> N- (Amino Group) +95<br>$\gamma \& \delta$ - Substituents<br>R- (Alkyl Group) +18 nm (both $\gamma \& \delta$ )<br>HO- (Hydroxyl Group) +50 nm ( $\gamma$ )<br>RO- (Alkoxyl Group) +30 nm ( $\gamma$ ) |
|                                                                                                             |                                                    | Further π -Conjugation<br>C=C (Double Bond) +30<br>C <sub>6</sub> H <sub>5</sub> (Phenyl Group) +60                                                                                                                                                                                                                                                                                                                         |

(2011). Retrieved March 6, 2011, 2011, from http://www2.chemistry.msu.edu/faculty/reusch/VirtTxtJml/Spectrpy/UV-Vis/uvspec.htm

Figure 3: Woodward-Fieser Rules

| With these rules in | hand, the $\lambda$ n | ax absorption | value could b | be calculated for | each compound. |
|---------------------|-----------------------|---------------|---------------|-------------------|----------------|
|                     | ,                     | 1             |               |                   | 1              |

| Name                                           | Woodward (in nm) |
|------------------------------------------------|------------------|
| acrylaldehyde                                  | 210              |
| Methyl Vinyl Ketone                            | 215              |
| methacrylaldehyde                              | 220              |
| (Z)-3-chloroacrylaldehyde                      | 222              |
| (Z)-but-2-enal                                 | 222              |
| 2-cyclopenten-1-one                            | 202              |
| 2-methyl-2-cyclopenten-1-one                   | 212              |
| 3-methoxy-2-propenal                           | 240              |
| (2E)-2-methyl- 2-butenal                       | 232              |
| 2,4-pentadienal                                | 252              |
| 2-methoxy-3methyl-4methylene-cyclopent-2-enone | 279              |
| 2-methoxy-3-methyl-2-cyclopenten-1-enone       | 261              |
| (Z)- (9CI)-3-(methylthio)-2-propenal           | 295              |
| (2Z)-3-(dimethylamino)-2-propenal              | 305              |
|                                                |                  |

 Table 6: Woodward-Fieser Rules Predicted UV Peak Data

# **Comparisons & Discussion**

With the experiments concluded and a lot of information to analyze, the best course of action would be a direct comparison between the literature values and the values determined by the experiments.

#### I. Semi-Empirical Comparison

|             |            | Numbers in 1/cm |                  |            |
|-------------|------------|-----------------|------------------|------------|
| Normal Mode | Literature | Semi Empirical  | Corresponding To | Difference |
| 1           | 3102       | 3142.63         | vinyl CH         | 40.63      |
| 2           | Х          | 3122.43         | Х                | Х          |
| 3           | 3000       | 3050.66         | vinyl CH         | 50.66      |
| 4           | 2800       | 2925.81         | formyl CH        | 125.81     |
| 5           | 1723       | 1977.95         | C=O              | 254.95     |
| 6           | 1625       | 1847.22         | C=C              | 222.22     |
| 7           | 1422       | 1339.5          | CH2 Bend         | 82.5       |
| 8           | 1361       | 1244.76         | formyl CH rock   | 116.24     |
| 9           | 1276       | 1203.33         | vinyl CH rock    | 72.67      |
| 10          | 1159       | 1168.3          | vinyl CH2 rock   | 9.3        |
| 11          | 993        | 1057.4          | C=C Torsion      | 64.4       |
| 12          | 980        | 983.02          | formyl CH wag    | 3.02       |
| 13          | 959        | 925.25          | vinyl CH2 wag    | 33.75      |
| 14          | 913        | 909.85          | C-C              | 3.15       |
| 15          | 589        | 569.7           | vinyl CH wag     | 19.3       |
| 16          | 564        | 567.56          | C-C=O bend       | 3.56       |
| 17          | 340        | 359.15          | C-C=C bend       | 19.15      |
| 18          | 158        | 75.14           | skeletal torsion | 82.86      |

**Table 7:** Acrylaldehyde Comparison ofSemi-Empirical and Literature IR Peaks

|             |            | Numbers in 1/cm |                      |            |
|-------------|------------|-----------------|----------------------|------------|
| Normal Mode | Literature | Semi Empirical  | Corresponding to     | Difference |
| 1           | 3105       | 3178.26         | CH2                  | 73.26      |
| 2           | 3027       | 3144.3          | СН                   | 117.3      |
| 3           | 2997       | 3130.22         | CH2                  | 133.22     |
| 4           | 2978       | 3090.93         | CH3                  | 112.93     |
| 5           | 2966       | 3078.82         | CH3                  | 112.82     |
| 6           | 2947       | 3046.52         | CH3                  | 99.52      |
| 7           | 1712       | 1975.45         | C=O                  | 263.45     |
| 8           | 1624       | 1853.35         | C=C                  | 229.35     |
| 9           | 1440       | 1405.64         | δ(CH3)               | 34.36      |
| 10          | 1440       | 1391.78         | δ(CH3)               | 48.22      |
| 11          | 1400       | 1383.85         | δ(CH2)               | 16.15      |
| 12          | 1365       | 1345.86         | δ(CH3)               | 19.14      |
| 13          | 1285       | 1285.91         | (C-C), (C-CH3)       | 0.91       |
| 14          | 1248       | 1193.4          | ρ(CH)                | 54.6       |
| 15          | 1055       | 1050.02         | ρ(C2)                | 4.98       |
| 16          | 1022       | 1035.16         | τ(C=C), γ(C-H)       | 13.16      |
| 17          | 998        | 993.07          | γ(CH2)               | 4.93       |
| 18          | 965        | 969.64          | ρ(CH3)               | 4.64       |
| 19          | 951        | 925.77          | ρ(CH3)               | 25.23      |
| 20          | 765        | 873.07          | (C-C-C)              | 108.07     |
| 21          | 598        | 677.17          | τ(C=C), γ(C-H)       | 79.17      |
| 22          | 538        | 594.55          | δ(C-C=O)             | 56.55      |
| 23          | 494        | 499.42          | δ(C-C-CH3), δ(C-C=O) | 5.42       |
| 24          | 432        | 365             | γ(C=O)               | 67         |
| 25          | 280        | 285.04          | δ(C-C-CH3), δ(C-C=O) | 5.04       |
| 26          | 175        | 101.5           | τ(CH3)               | 73.5       |
| 27          | 101        | 46.55           | τ(C-C)               | 54.45      |

**Table 8:** Methyl Vinyl Ketone comparison ofSemi-Empirical and Literature IR Peaks

|             |            | Numbers in 1/cm |                         |            |
|-------------|------------|-----------------|-------------------------|------------|
| Normal Mode | Literature | Semi Empirical  | Corresponding To        | Difference |
| 1           | 3096       | 3169.45         | CH2                     | 73.45      |
| 2           | 2998       | 3135.27         | CH2                     | 137.27     |
| 3           | 2975       | 3129.15         | CH3                     | 154.15     |
| 4           | 2960       | 3077.48         | CH3                     | 117.48     |
| 5           | 2940       | 3071.7          | CH3                     | 131.7      |
| 6           | 2830       | 2921.23         | CHald                   | 91.23      |
| 7           | 1718       | 1980.11         | C=0                     | 262.11     |
| 8           | 1648       | 1865.2          | C=C                     | 217.2      |
| 9           | 1453       | 1452.55         | δ(CH3)                  | 0.45       |
| 10          | 1453       | 1396.69         | δ(CH3)                  | 56.31      |
| 11          | 1425       | 1389.7          | δ(CH2)                  | 35.3       |
| 12          | 1390       | 1353.22         | δ(CH3)                  | 36.78      |
| 13          | 1360       | 1328.47         | δ(CHald)                | 31.53      |
| 14          | 1310       | 1221.94         | (C-C), (C-CH3)          | 88.06      |
| 15          | 1050       | 1054.84         | ρ(CH3)                  | 4.84       |
| 16          | 995        | 1008.02         | ρ(CH3)                  | 13.02      |
| 17          | 970        | 989.62          | ρ(CH2)                  | 19.62      |
| 18          | 948        | 957.75          | γ(CHald)                | 9.75       |
| 19          | 932        | 942.28          | γ(CH2)                  | 10.28      |
| 20          | 813        | 931.6           | (C-C), (C-CH3) in phase | 118.6      |
| 21          | 695        | 614.46          | τ(C=C)                  | 80.54      |
| 22          | 628        | 603.18          | δ(C-C=O)                | 24.82      |
| 23          | 422        | 452.71          | γ(CH3)                  | 30.71      |
| 24          | 410        | 437.32          | δ(C=C-C), δ(C=C-CH3)    | 27.32      |
| 25          | 266        | 284.25          | δ(C=C-C), δ(C=C-CH3)    | 18.25      |
| 26          | Х          | 92.01           | τ(C-CH3)                | Х          |
| 27          | 169        | 35.95           | τ(C-C)                  | 133.05     |

**Table 9:** Methacrylaldehyde comparison ofSemi-Empirical and Literature IR Peaks

|             |            | Numbers in 1/cm |                      |            |
|-------------|------------|-----------------|----------------------|------------|
| Normal Mode | Literature | Semi Empirical  | Corresponding To     | Difference |
| 1           | 3058       | 3175.04         | СН                   | 117.04     |
| 2           | 2995       | 3079.36         | СН                   | 84.36      |
| 3           | 2980       | 3068.76         | CH3                  | 88.76      |
| 4           | 2963       | 3049.04         | CH3                  | 86.04      |
| 5           | 2938       | 3027.33         | CH3                  | 89.33      |
| 6           | 2805       | 2926.47         | CHald                | 121.47     |
| 7           | 1720       | 1973.86         | C=0                  | 253.86     |
| 8           | 1649       | 1874.55         | C=C                  | 225.55     |
| 9           | 1455       | 1429.05         | δ(CH3)               | 25.95      |
| 10          | 1455       | 1401.93         | δ(CH3)               | 53.07      |
| 11          | 1391       | 1388.08         | δ(CH3), ρ(CHald)     | 2.92       |
| 12          | 1375       | 1319.39         | δ(CH3), ρ(CHald)     | 55.61      |
| 13          | 1304       | 1220.41         | δ(CH)                | 83.59      |
| 14          | 1253       | 1205.4          | δ(CH)                | 47.6       |
| 15          | 1147       | 1127.03         | C-C                  | 19.97      |
| 16          | 1074       | 1069.04         | C-CH3                | 4.96       |
| 17          | 1042       | 1054.22         | ρ(CH3)               | 12.22      |
| 18          | 973        | 1005.89         | ρ(CH3)               | 32.89      |
| 19          | 973        | 986.76          | τ(C=C), γ(C-H)       | 13.76      |
| 20          | 928        | 910.18          | γ(CHald)             | 17.82      |
| 21          | 780        | 724.85          | γ(C-H)               | 55.15      |
| 22          | 539        | 630.18          | δ(C-C=O)             | 91.18      |
| 23          | 464        | 466.53          | δ(C=C-C), δ(C=C-CH3) | 2.53       |
| 24          | 295        | 363.93          | τ(C=C), γ(CH3)       | 68.93      |
| 25          | 230        | 238.04          | δ(C=C-C), δ(C=C-CH3) | 8.04       |
| 26          | 173        | 58.1            | τ(C-CH3), τ(C-C)     | 114.9      |
| 27          | 122        | 38.89           | τ(C-CH3), τ(C-C)     | 83.11      |

**Table 10:** Crotonaldehyde comparison ofSemi-Empirical and Literature IR Peaks

As one can see from the full spectral comparisons of four of the compounds above, the semi-empirical data (from the PM3 method) is varied in accuracy. Some of the peak values are fairly accurate and point towards a good comparison; however, due to the inconsistency of the peaks being above or below the value it is trying to replicate (with a standard deviation of 67.7) and there being no pattern one can decipher there is no possible way to make a scale factor for

the semi-empirical data. A scale factor would multiply the experimental values by a decimal to try and have their accuracy increase compared to the literature values.

Since these values are so far off in some places and so close in others, it seems impossible to replicate the literature values from the given semi-empirical data. The double bond stretches (C=O, C=C) both have PM3 peak values that are around 200-250 cm<sup>-1</sup> increased from the literature values so it would be easy to make a scale factor that is around 85-87% of those values (or multiply the PM3 values by .860 or so) as it would scale them to a value much closer to that of the literature ones. Yet, a good scale factor should be able to apply to every value and this is not the case here. Therefore, it is easy to conclude that the PM3 method is not accurate enough to be of use for a full infrared spectrum.

| Pi -> Pi*                                      | Numbers    | in nm          |
|------------------------------------------------|------------|----------------|
| Name                                           | Literature | Semi-Empirical |
| acrylaldehyde                                  | 209        | 206.2          |
| Methyl Vinyl Ketone                            | 215        | 206.6          |
| methacrylaldehyde                              | 219        | 216.9          |
| (Z)-3-chloroacrylaldehyde                      | 221        | 220.95         |
| (Z)-but-2-enal                                 | 221        | 221.02         |
| 2-cyclopenten-1-one                            | 219        | 211.69         |
| 2-methyl-2-cyclopenten-1-one                   | 229        | 225.42         |
| 3-methoxy-2-propenal                           | 239        | 232.14         |
| (2E)-2-methyl- 2-butenal                       | 241        | 229.77         |
| 2,4-pentadienal                                | 251        | 255.21         |
| 2-methoxy-3methyl-4methylene-cyclopent-2-enone | 259        | 277.9          |
| 2-methoxy-3-methyl-2-cyclopenten-1-enone       | 266        | 242.27         |
| (Z)- (9CI)-3-(methylthio)-2-propenal           | 294        | 234.55         |
| (2Z)-3-(dimethylamino)-2-propenal              | 304        | 249.22         |

Where the PM3 method may have failed, the ZINDO/S method did somewhat succeed.

**Table 11:** Comparison of Semi-Empiricaland Literature UV  $\lambda$  Max Peak Values

The ZINDO/S method, with the compounds that were smaller and had smaller peak values (less substituents as well) produced fairly accurate data and nearly perfect data in many instances. Yet, as the compounds increased in size, the ZINDO/S method seemed to vary as much as the PM3 method did with the IR spectrum. This observation is not too surprising as the ZINDO/S method has empirical data that these approximations are based off of and having an abundance of smaller molecules to refer from makes sense as other compounds can be based off of them. With these bases the programs are then able to use some simple calculations to try and assume the larger molecules. The data, however, shows that this method is not perfect in any way (with a standard deviation of 19.3) and cannot be considered reliable for anything other than smaller molecules.

Overall, the semi-empirical method is fast and that is about all it is. The PM3 method is far too inaccurate for anyone to use any of that data as a close approximation when they do not know the actual spectral data. The ZINDO/S is also a fast method; however, it is somewhat accurate where PM3 is not. The trouble with both are the inaccuracies due to the empirical aspect of these methods.

|             |            | Numbers in 1/cm |                  |            |
|-------------|------------|-----------------|------------------|------------|
| Normal Mode | Literature | Ab initio       | Corresponding To | Difference |
| 1           | 3102       | 3423.84         | vinyl CH         | 321.84     |
| 2           | Х          | 3382.75         | Х                | Х          |
| 3           | 3000       | 3336.61         | vinyl CH         | 336.61     |
| 4           | 2800       | 3157.65         | formyl CH        | 357.65     |
| 5           | 1723       | 2012.78         | C=O              | 289.78     |
| 6           | 1625       | 1851.32         | C=C              | 226.32     |
| 7           | 1422       | 1593.99         | CH2 Bend         | 171.99     |
| 8           | 1361       | 1522.97         | formyl CH rock   | 161.97     |
| 9           | 1276       | 1414.24         | vinyl CH rock    | 138.24     |
| 10          | 1159       | 1270.36         | vinyl CH2 rock   | 111.36     |
| 11          | 993        | 1145.78         | C=C Torsion      | 152.78     |
| 12          | 980        | 1133.26         | formyl CH wag    | 153.26     |
| 13          | 959        | 1122.58         | vinyl CH2 wag    | 163.58     |
| 14          | 913        | 996.37          | C-C              | 83.37      |
| 15          | 589        | 660.3           | vinyl CH wag     | 71.3       |
| 16          | 564        | 611.61          | C-C=O bend       | 47.61      |
| 17          | 340        | 346.01          | C-C=C bend       | 6.01       |
| 18          | 158        | 173.96          | skeletal torsion | 15.96      |

### <u>II. Ab initio Comparison</u>

**Table 12:** Acrylaldehyde comparison of<br/>ab initio and literature IR peak values

|             |            | Numbers in 1/cm |                      |            |
|-------------|------------|-----------------|----------------------|------------|
| Normal Mode | Literature | Ab initio       | Corresponding to     | Difference |
| 1           | 3105       | 3426.54         | CH2                  | 321.54     |
| 2           | 3027       | 3376.92         | СН                   | 349.92     |
| 3           | 2997       | 3346.05         | CH2                  | 349.05     |
| 4           | 2978       | 3322.63         | CH3                  | 344.63     |
| 5           | 2966       | 3272.66         | CH3                  | 306.66     |
| 6           | 2947       | 3212.1          | CH3                  | 265.1      |
| 7           | 1712       | 1998.06         | C=O                  | 286.06     |
| 8           | 1624       | 1855.84         | C=C                  | 231.84     |
| 9           | 1440       | 1623.81         | δ(CH3)               | 183.81     |
| 10          | 1440       | 1618.11         | δ(CH3)               | 178.11     |
| 11          | 1400       | 1581.39         | δ(CH2)               | 181.39     |
| 12          | 1365       | 1550.19         | δ(CH3)               | 185.19     |
| 13          | 1285       | 1425.56         | (C-C), (C-CH3)       | 140.56     |
| 14          | 1248       | 1386.83         | ρ(CH)                | 138.83     |
| 15          | 1055       | 1174.5          | ρ(C2)                | 119.5      |
| 16          | 1022       | 1158.56         | τ(C=C), γ(C-H)       | 136.56     |
| 17          | 998        | 1141.8          | γ(CH2)               | 143.8      |
| 18          | 965        | 1119.96         | ρ(CH3)               | 154.96     |
| 19          | 951        | 1037.51         | ρ(CH3)               | 86.51      |
| 20          | 765        | 818.64          | (C-C-C)              | 53.64      |
| 21          | 598        | 761.18          | τ(C=C), γ(C-H)       | 163.18     |
| 22          | 538        | 578.6           | δ(C-C=O)             | 40.6       |
| 23          | 494        | 525.23          | δ(C-C-CH3), δ(C-C=O) | 31.23      |
| 24          | 432        | 470.41          | γ(C=O)               | 38.41      |
| 25          | 280        | 295.58          | δ(C-C-CH3), δ(C-C=O) | 15.58      |
| 26          | 175        | 154.59          | τ(CH3)               | 20.41      |
| 27          | 101        | 126.09          | τ(C-C)               | 25.09      |

**Table 13:** Methyl Vinyl Ketone comparisonof ab initio and literature IR peak values

|             |            | Numbers in 1/cm |                         |            |
|-------------|------------|-----------------|-------------------------|------------|
| Normal Mode | Literature | Ab initio       | Corresponding To        | Difference |
| 1           | 3096       | 3414.41         | CH2                     | 318.41     |
| 2           | 2998       | 3333.41         | CH2                     | 335.41     |
| 3           | 2975       | 3290.84         | CH3                     | 315.84     |
| 4           | 2960       | 3274.55         | CH3                     | 314.55     |
| 5           | 2940       | 3214.67         | CH3                     | 274.67     |
| 6           | 2830       | 3165.31         | CHald                   | 335.31     |
| 7           | 1718       | 2003.56         | C=O                     | 285.56     |
| 8           | 1648       | 1869.78         | C=C                     | 221.78     |
| 9           | 1453       | 1637.67         | δ(CH3)                  | 184.67     |
| 10          | 1453       | 1621.07         | δ(CH3)                  | 168.07     |
| 11          | 1425       | 1599.52         | δ(CH2)                  | 174.52     |
| 12          | 1390       | 1566.59         | δ(CH3)                  | 176.59     |
| 13          | 1360       | 1528.52         | δ(CHald)                | 168.52     |
| 14          | 1310       | 1448.29         | (C-C), (C-CH3)          | 138.29     |
| 15          | 1050       | 1186.25         | ρ(CH3)                  | 136.25     |
| 16          | 995        | 1136.67         | ρ(CH3)                  | 141.67     |
| 17          | 970        | 1124.61         | ρ(CH2)                  | 154.61     |
| 18          | 948        | 1103.01         | γ(CHald)                | 155.01     |
| 19          | 932        | 1056.77         | γ(CH2)                  | 124.77     |
| 20          | 813        | 879.33          | (C-C), (C-CH3) in phase | 66.33      |
| 21          | 695        | 775.46          | τ(C=C)                  | 80.46      |
| 22          | 628        | 670.36          | δ(C-C=O)                | 42.36      |
| 23          | 422        | 465.23          | γ(CH3)                  | 43.23      |
| 24          | 410        | 432.67          | δ(C=C-C), δ(C=C-CH3)    | 22.67      |
| 25          | 266        | 281.26          | δ(C=C-C), δ(C=C-CH3)    | 15.26      |
| 26          | Х          | 186.55          | τ(C-CH3)                | Х          |
| 27          | 169        | 155.98          | τ(C-C)                  | 13.02      |
|             |            |                 |                         |            |

of ab initio and literature IR peak values

The *ab initio* data, compared to the PM3 data in the semi-empirical level of theory, seems to be equal in inaccuracy. There is, however, a big difference between these spectra above and the semi-empirical data and that is the ability for these values to be scaled. Where the semi-empirical was inconsistent as well as inaccurate the *ab initio* level is inaccurate as well (with a standard deviation of 107.7) but has a bit of consistency in how it is inaccurate (especially when

compared to the PM3 method). Almost every value is greater than that of the literature value given and when they are greater they seem to be off by a similar percentage. Later on in the conclusion sections the scale factors will be covered for each level of theory.

|             |            | Numero and in 1 (and      |                  |            |
|-------------|------------|---------------------------|------------------|------------|
|             |            | Numbers in 1/cm           |                  |            |
| Normal Mode | Literature | Density Functional Theory | Corresponding To | Difference |
| 1           | 3102       | 3222.96                   | vinyl CH         | 120.96     |
| 2           | Х          | 3170.78                   | Х                | Х          |
| 3           | 3000       | 3131.11                   | vinyl CH         | 131.11     |
| 4           | 2800       | 2882.31                   | formyl CH        | 82.31      |
| 5           | 1723       | 1770.47                   | C=0              | 47.47      |
| 6           | 1625       | 1673.92                   | C=C              | 48.92      |
| 7           | 1422       | 1454.7                    | CH2 Bend         | 32.7       |
| 8           | 1361       | 1387.35                   | formyl CH rock   | 26.35      |
| 9           | 1276       | 1297.58                   | vinyl CH rock    | 21.58      |
| 10          | 1159       | 1171.38                   | vinyl CH2 rock   | 12.38      |
| 11          | 993        | 1032.71                   | C=C Torsion      | 39.71      |
| 12          | 980        | 1025.02                   | formyl CH wag    | 45.02      |
| 13          | 959        | 997.75                    | vinyl CH2 wag    | 38.75      |
| 14          | 913        | 921.64                    | C-C              | 8.64       |
| 15          | 589        | 609.29                    | vinyl CH wag     | 20.29      |
| 16          | 564        | 572.72                    | C-C=O bend       | 8.72       |
| 17          | 340        | 324.36                    | C-C=C bend       | 15.64      |
| 18          | 158        | 166.82                    | skeletal torsion | 8.82       |

III. Density Functional Theory Comparison

**Table 15:** Acrylaldehyde comparison of densityfunctional theory and literature IR peak values

|             |            | Numbers in 1/cm           |                      |            |
|-------------|------------|---------------------------|----------------------|------------|
| Normal Mode | Literature | Density Functional Theory | Corresponding to     | Difference |
| 1           | 3105       | 3223.44                   | CH2                  | 118.44     |
| 2           | 3027       | 3165.4                    | СН                   | 138.4      |
| 3           | 2997       | 3143.27                   | CH2                  | 146.27     |
| 4           | 2978       | 3140.44                   | CH3                  | 162.44     |
| 5           | 2966       | 3093.55                   | CH3                  | 127.55     |
| 6           | 2947       | 3035.54                   | CH3                  | 88.54      |
| 7           | 1712       | 1744.57                   | C=0                  | 32.57      |
| 8           | 1624       | 1677.66                   | C=C                  | 53.66      |
| 9           | 1440       | 1478.96                   | δ(CH3)               | 38.96      |
| 10          | 1440       | 1474.54                   | δ(CH3)               | 34.54      |
| 11          | 1400       | 1444.04                   | δ(CH2)               | 44.04      |
| 12          | 1365       | 1388.85                   | δ(CH3)               | 23.85      |
| 13          | 1285       | 1307.31                   | (C-C), (C-CH3)       | 22.31      |
| 14          | 1248       | 1268.44                   | ρ(CH)                | 20.44      |
| 15          | 1055       | 1072.22                   | ρ(C2)                | 17.22      |
| 16          | 1022       | 1046.99                   | τ(C=C), γ(C-H)       | 24.99      |
| 17          | 998        | 1036.87                   | γ(CH2)               | 38.87      |
| 18          | 965        | 990.65                    | ρ(CH3)               | 25.65      |
| 19          | 951        | 945.22                    | ρ(CH3)               | 5.78       |
| 20          | 765        | 760.56                    | (C-C-C)              | 4.44       |
| 21          | 598        | 694.88                    | τ(C=C), γ(C-H)       | 96.88      |
| 22          | 538        | 538.14                    | δ(C-C=O)             | 0.14       |
| 23          | 494        | 492.31                    | δ(C-C-CH3), δ(C-C=O) | 1.69       |
| 24          | 432        | 431.52                    | γ(C=O)               | 0.48       |
| 25          | 280        | 281.1                     | δ(C-C-CH3), δ(C-C=O) | 1.1        |
| 26          | 175        | 123.94                    | τ(CH3)               | 51.06      |
| 27          | 101        | 119.33                    | τ(C-C)               | 18.33      |

**Table 16:** Methyl Vinyl Ketone comparison of densityfunctional theory and literature IR peak values

|             |            | Numbers in 1/cm           |                         |            |
|-------------|------------|---------------------------|-------------------------|------------|
| Normal Mode | Literature | Density Functional Theory | Corresponding To        | Difference |
| 1           | 3096       | 3216.88                   | CH2                     | 120.88     |
| 2           | 2998       | 3131.09                   | CH2                     | 133.09     |
| 3           | 2975       | 3116.86                   | CH3                     | 141.86     |
| 4           | 2960       | 3088.26                   | CH3                     | 128.26     |
| 5           | 2940       | 3035.95                   | CH3                     | 95.95      |
| 6           | 2830       | 2888.44                   | CHald                   | 58.44      |
| 7           | 1718       | 1765.81                   | C=O                     | 47.81      |
| 8           | 1648       | 1688.33                   | C=C                     | 40.33      |
| 9           | 1453       | 1490.88                   | δ(CH3)                  | 37.88      |
| 10          | 1453       | 1473.12                   | δ(CH3)                  | 20.12      |
| 11          | 1425       | 1450.44                   | δ(CH2)                  | 25.44      |
| 12          | 1390       | 1413.97                   | δ(CH3)                  | 23.97      |
| 13          | 1360       | 1389.75                   | δ(CHald)                | 29.75      |
| 14          | 1310       | 1322.6                    | (C-C), (C-CH3)          | 12.6       |
| 15          | 1050       | 1073.83                   | ρ(CH3)                  | 23.83      |
| 16          | 995        | 1035.72                   | ρ(CH3)                  | 40.72      |
| 17          | 970        | 1012.8                    | ρ(CH2)                  | 42.8       |
| 18          | 948        | 973.26                    | γ(CHald)                | 25.26      |
| 19          | 932        | 971.3                     | γ(CH2)                  | 39.3       |
| 20          | 813        | 826.12                    | (C-C), (C-CH3) in phase | 13.12      |
| 21          | 695        | 704.65                    | τ(C=C)                  | 9.65       |
| 22          | 628        | 625.28                    | δ(C-C=O)                | 2.72       |
| 23          | 422        | 435.76                    | γ(CH3)                  | 13.76      |
| 24          | 410        | 404.3                     | δ(C=C-C), δ(C=C-CH3)    | 5.7        |
| 25          | 266        | 261.06                    | δ(C=C-C), δ(C=C-CH3)    | 4.94       |
| 26          | Х          | 178.65                    | τ(C-CH3)                | Х          |
| 27          | 169        | 132.52                    | τ(C-C)                  | 36.48      |

**Table 17:** Methacrylaldehyde comparison of density

 functional theory and literature IR peak values

|             |            | Numbers in 1/cm           |                      |            |
|-------------|------------|---------------------------|----------------------|------------|
| Normal Mode | Literature | Density Functional Theory | Corresponding To     | Difference |
| 1           | 3058       | 3166.9                    | СН                   | 108.9      |
| 2           | 2995       | 3138.87                   | СН                   | 143.87     |
| 3           | 2980       | 3119.6                    | CH3                  | 139.6      |
| 4           | 2963       | 3062.61                   | CH3                  | 99.61      |
| 5           | 2938       | 3023.31                   | CH3                  | 85.31      |
| 6           | 2805       | 2918.11                   | CHald                | 113.11     |
| 7           | 1720       | 1750.05                   | C=0                  | 30.05      |
| 8           | 1649       | 1685.73                   | C=C                  | 36.73      |
| 9           | 1455       | 1483.99                   | δ(CH3)               | 28.99      |
| 10          | 1455       | 1479.82                   | δ(CH3)               | 24.82      |
| 11          | 1391       | 1450.18                   | δ(CH3), ρ(CHald)     | 59.18      |
| 12          | 1375       | 1417.69                   | δ(CH3), ρ(CHald)     | 42.69      |
| 13          | 1304       | 1381.71                   | δ(CH)                | 77.71      |
| 14          | 1253       | 1264.77                   | δ(CH)                | 11.77      |
| 15          | 1147       | 1164.17                   | C-C                  | 17.17      |
| 16          | 1074       | 1072.6                    | C-CH3                | 1.4        |
| 17          | 1042       | 1026.12                   | ρ(CH3)               | 15.88      |
| 18          | 973        | 1022.32                   | ρ(CH3)               | 49.32      |
| 19          | 973        | 1012.14                   | τ(C=C), γ(C-H)       | 39.14      |
| 20          | 928        | 922.15                    | γ(CHald)             | 5.85       |
| 21          | 780        | 740.83                    | ү(С-Н)               | 39.17      |
| 22          | 539        | 617.99                    | δ(C-C=O)             | 78.99      |
| 23          | 464        | 445.7                     | δ(C=C-C), δ(C=C-CH3) | 18.3       |
| 24          | 295        | 346.25                    | τ(C=C), γ(CH3)       | 51.25      |
| 25          | 230        | 233.63                    | δ(C=C-C), δ(C=C-CH3) | 3.63       |
| 26          | 173        | 161.58                    | τ(C-CH3), τ(C-C)     | 11.42      |
| 27          | 122        | 120.4                     | τ(C-CH3), τ(C-C)     | 1.6        |

**Table 18:** crotonaldehyde comparison of densityfunctional theory and literature IR peak values

This method is the superior one in terms of calculation complexity and, therefore, near completion of what calculations would need to be done to exactly approximate the infrared spectrum. By looking at the comparisons above this is the superior method for estimating an infrared spectrum. The values are not only closer to the literature values (with a standard deviation of 42.8) but are also more consistently inaccurate in the same direction (as in greater or

less than the literature values) compared to the semi-empirical and *ab initio* levels of theory. This seemingly is close enough to use as an approximation as it is now; however, we shall see how a scale factor improves or decreases upon the accuracy of the entire spectrum.

Just as it was with the semi-empirical method, there is also the ultraviolet spectrum to review. As it also was with the semi-empirical, emphasis was put on the accuracy of the  $\lambda$  max absorption peak value.

| Pi -> Pi*                    | Numbers    | in nm |
|------------------------------|------------|-------|
| Name                         | Literature | DFT   |
| acrylaldehyde                | 209        | 200   |
| Methyl Vinyl Ketone          | 215        | 204   |
| methacrylaldehyde            | 219        | 212   |
| (Z)-3-chloroacrylaldehyde    | 221        | 234   |
| (Z)-but-2-enal               | 221        | 214   |
| 2-cyclopenten-1-one          | 219        | 207   |
| 2-methyl-2-cyclopenten-1-one | 229        | 216   |
| 3-methoxy-2-propenal         | 239        | 238   |
| (2E)-2-methyl- 2-butenal     | 241        | 218   |
| 2,4-pentadienal              | 251        | 257   |
|                              |            |       |

**Table 19:** Comparison of density functionaltheory and literature UV  $\lambda$  max peak values

Where density functional theory provides fairly accurate peak values here, they are still inconsistent. There are some values which are near perfect, as has been experienced before with the semi-empirical data; however, there are also values that are inaccurate and, therefore, are not very helpful. Density functional theory may end up having a very low percent difference compared to the literature values but this is due to inconsistencies of highly accurate values and fairly inaccurate values both appearing throughout. Yet, the standard deviation was only 5.9, much better than the semi-empirical method and the Woodward-Fieser Rules.

#### IV. Woodward-Fieser Rules Comparison

As explained before in Figure 3 on page 15, the Woodward-Fieser Rules are simply

empirical rules that are based off compounds much like the ones being studied in this project. By

following them closely based on what substituents are added where on the base carbonyl

structure one can quickly predict an approximate peak value for the  $\lambda$  max absorption.

| Pi -> Pi*                                      | Numbers    | in nm    |
|------------------------------------------------|------------|----------|
| Name                                           | Literature | Woodward |
| acrylaldehyde                                  | 209        | 210      |
| Methyl Vinyl Ketone                            | 215        | 215      |
| methacrylaldehyde                              | 219        | 220      |
| (Z)-3-chloroacrylaldehyde                      | 221        | 222      |
| (Z)-but-2-enal                                 | 221        | 222      |
| 2-cyclopenten-1-one                            | 219        | 202      |
| 2-methyl-2-cyclopenten-1-one                   | 229        | 212      |
| 3-methoxy-2-propenal                           | 239        | 240      |
| (2E)-2-methyl- 2-butenal                       | 241        | 232      |
| 2,4-pentadienal                                | 251        | 252      |
| 2-methoxy-3methyl-4methylene-cyclopent-2-enone | 259        | 279      |
| 2-methoxy-3-methyl-2-cyclopenten-1-enone       | 266        | 261      |
| (Z)- (9CI)-3-(methylthio)-2-propenal           | 294        | 295      |
| (2Z)-3-(dimethylamino)-2-propenal              | 304        | 305      |

**Table 20:** Comparison of Woodward-FieserRules and literature UV  $\lambda$  max peak values

As expected from empirical rules that were based on many structures, including the ones that are being studied in this project, the predicted values are extremely accurate and, in fact, are the best of the three predictions for the absorption peaks (although the standard deviation of 7.2 was higher than the density functional theory). This is much easier to see when these are all compared together.

#### V. Discussion

The quantum mechanical programs were tested for accuracy, speed, and consistency. For the infrared spectral data, the C=O and C=C bonds were highlighted due to their intensity in the

spectrum for any compound and since they were easier to determine as the actual values they were representing, as fingerprint region data (under  $1200 \text{ cm}^{-1}$ ) is inaccurate for all. By doing this, a scale factor was able to be created by dividing the literature values for each C=O and C=C stretches that were given by the experimental values. By averaging these all together, this scale factor should apply to the entire spectrum.

|           |            |                                           |            |        |         |      |          |    |             | -            |
|-----------|------------|-------------------------------------------|------------|--------|---------|------|----------|----|-------------|--------------|
|           | C=O Streto | C=O Stretches Numbers in cm <sup>-1</sup> |            |        |         |      |          |    |             |              |
|           | Name       |                                           |            | Lit.   | S.I     | Ξ.   | A.I      |    | D.F.T       |              |
|           | a          | acrylaldehyde                             |            | 1723   | 1977    | 7.95 | 2012.    | 78 | 1770.47     |              |
|           | Met        | hyl Vinyl Keto                            | one        | 1712   | 1975    | 5.45 | 1998.0   | 06 | 1744.57     |              |
|           | me         | thacrylaldehy                             | 'de        | 1718   | 1980    | ).11 | 2003.    | 56 | 1765.81     |              |
|           | Cr         | crotonaldehyde                            |            | 1720   | 1973    | 8.86 | N/A      |    | 1750.05     | ]            |
| Na        | me         | Diff. (S.E)                               | %Diff (S.E | ) Diff | . (A.I) | %D   | iff(A.I) | Di | iff (D.F.T) | %Diff(D.F.T) |
| acrylal   | dehyde     | 254.95                                    | 13.78      | 28     | 9.78    | 1    | 5.51     |    | 47.47       | 2.72         |
| Methyl Vi | nyl Ketone | 263.45                                    | 14.29      | 28     | 6.06    | 1    | 5.42     |    | 32.57       | 1.88         |
| methacry  | laldehyde  | 262.11                                    | 14.18      | 28     | 5.56    | 1    | 5.35     |    | 47.81       | 2.74         |
| crotona   | ldehyde    | 253.86                                    | 13.74      |        | Х       |      | Х        |    | 30.05       | 1.73         |
| Avera     | age =>     | 258.59                                    | 14.00      | 28     | 7.13    | 1    | 5.43     |    | 39.47       | 2.27         |

 Table 21: C=O stretches and calculations

| C=C Stretches Numbers in cm <sup>-1</sup> |      |         |         |         |
|-------------------------------------------|------|---------|---------|---------|
| Name                                      | Lit. | S.E.    | A.I.    | D.F.T   |
| acrylaldehyde                             | 1625 | 1847.22 | 1851.32 | 1673.92 |
| Methyl Vinyl Ketone                       | 1624 | 1853.35 | 1855.84 | 1677.66 |
| methacrylaldehyde                         | 1648 | 1865.20 | 1869.78 | 1688.33 |
| crotonaldehyde                            | 1649 | 1874.55 | N/A     | 1685.73 |

| Name                | Diff. (S.E) | %Diff (S.E) | Diff. (A.I) | %Diff(A.I) | Diff (MO) | %Diff(D.F.T) |
|---------------------|-------------|-------------|-------------|------------|-----------|--------------|
| acrylaldehyde       | 222.22      | 12.80       | 226.32      | 13.02      | 48.92     | 2.97         |
| Methyl Vinyl Ketone | 229.35      | 13.19       | 231.84      | 13.32      | 53.66     | 3.25         |
| methacrylaldehyde   | 217.2       | 12.36       | 221.78      | 12.61      | 40.33     | 2.42         |
| crotonaldehyde      | 225.55      | 12.80       | Х           | Х          | 36.73     | 2.20         |
| Average =>          | 223.58      | 12.79       | 226.65      | 12.98      | 44.91     | 2.71         |

**Table 22:** C=C stretches and calculations

The calculations show that the most accurate of the three is density functional theory by a significant margin. With only 2.27% and 2.71% difference on average for the C=O and C=C stretches respectively the density functional theory seemingly can estimate, within very acceptable standards, these two important stretches consistently. This is a slight positive but, as we saw before, the entire spectrum follows pretty closely to the results we see here.

The semi-empirical and *ab initio* both are off around 13.50% on average which is poor for either one. As we saw before, the semi-empirical seemingly cannot provide reliable scale factors due to the inconsistency that it shows compared to the literature values but the *ab initio* possibly could. Using the scale factors created by the use of only these C=O and C=C bands, we should see an improvement in the percent difference and generally in the full spectrum.

|                     | Scolo Factor |              | Scolo Factor |              | Scale  | Scaled  |
|---------------------|--------------|--------------|--------------|--------------|--------|---------|
| Name (C=O)          | Scale Factor | Scaled (S.E) | Scale Factor | Scaled (A.I) | Factor | (D.F.T) |
| acrylaldehyde       | 0.871        | 1729.70      | 0.856        | 1745.94      | 0.973  | 1726.96 |
| Methyl Vinyl Ketone | 0.867        | 1727.52      | 0.857        | 1733.17      | 0.981  | 1701.69 |
| methacrylaldehyde   | 0.868        | 1731.59      | 0.857        | 1737.94      | 0.973  | 1722.41 |
| crotonaldehyde      | 0.871        | 1726.13      | х            | х            | 0.983  | 1707.04 |
| Average =>          | 0.869        |              | 0.857        |              | 0.978  |         |
|                     |              |              |              |              | Scale  | Scaled  |
| Name (C=C)          | Scale Factor | Scaled (S.E) | Scale Factor | Scaled (A.I) | Factor | (D.F.T) |
| acrylaldehyde       | 0.880        | 1615.38      | 0.878        | 1605.88      | 0.971  | 1632.78 |
| Methyl Vinyl Ketone | 0.876        | 1620.74      | 0.875        | 1609.80      | 0.968  | 1636.43 |
| methacrylaldehyde   | 0.884        | 1631.10      | 0.881        | 1621.89      | 0.976  | 1646.84 |
| crotonaldehyde      | 0.880        | 1639.28      | х            |              | 0.978  | 1644.30 |
| Average =>          | 0.880        |              | 0.878        |              | 0.973  |         |
|                     |              | Scale Factor |              | Scale Factor |        |         |
| Scale Factor (S.E)  | 0.874        | (A.I)        | 0.867        | (M.O)        | 0.975  |         |

**Table 23:** Scale factor calculations forC=O and C=C stretches with averages

| C=O Stretches (num  |             |             |              |              |         |           |      |                |  |
|---------------------|-------------|-------------|--------------|--------------|---------|-----------|------|----------------|--|
| Name                |             | Literature  | Scaled (     | Scaled (S.E) |         | ed (A.I)  | Sca  | Scaled (D.F.T) |  |
| acrylaldehy         | de          | 1723        | 1729.        | 70           | 17      | 45.94     |      | 1726.96        |  |
| Methyl Vinyl K      | etone       | 1712        | 1727.        | 52           | 17      | 33.17     |      | 1701.69        |  |
| methacrylalde       | hyde        | 1718        | 1731.        | 59           | 17      | 37.94     |      | 1722.41        |  |
| crotonaldeh         | yde         | 1720        | 1720 1726.13 |              | Х       |           |      | 1707.04        |  |
| Name                | Diff. (S.E) | %Diff (S.E) | Diff. (A.I)  | %Di          | ff(A.I) | Diff (D.I | F.T) | %Diff(D.F.T)   |  |
| acrylaldehyde       | 6.70        | 0.39        | 22.94        | 1.           | .32     | 3.96      |      | 0.23           |  |
| Methyl Vinyl Ketone | 15.52       | 0.90        | 21.17        | 1.           | .23     | 10.32     | 1    | 0.60           |  |
| methacrylaldehyde   | 13.59       | 0.79        | 19.94        | 1.           | .15     | 4.41      |      | 0.26           |  |
| crotonaldehyde      | 6.13        | 0.36        | х            |              | х       | 12.96     |      | 0.76           |  |
| Average =>          | 10.48       | 0.61        | 21.35        | 1.           | .23     | 7.91      |      | 0.46           |  |

 Table 24: C=O Scaled Stretches and calculations

| C=C Stretches (numbers in cm-1) |            |              |              |                |
|---------------------------------|------------|--------------|--------------|----------------|
| Name                            | Literature | Scaled (S.E) | Scaled (A.I) | Scaled (D.F.T) |
| acrylaldehyde                   | 1625       | 1615.38      | 1605.88      | 1632.78        |
| Methyl Vinyl Ketone             | 1624       | 1620.74      | 1609.80      | 1636.43        |
| methacrylaldehyde               | 1648       | 1631.10      | 1621.89      | 1646.84        |
| crotonaldehyde                  | 1649       | 1639.28      | Х            | 1644.30        |

| Name              | Diff. (S.E) | %Diff (S.E) | Diff. (A.I) | %Diff(A.I) | Diff (MO) | %Diff(D.F.T) |
|-------------------|-------------|-------------|-------------|------------|-----------|--------------|
| acrylaldehyde     | 9.62        | 0.59        | 19.12       | 1.18       | 7.78      | 0.48         |
| Methyl Vinyl      |             |             |             |            |           |              |
| Ketone            | 3.26        | 0.20        | 14.20       | 0.88       | 12.43     | 0.76         |
| methacrylaldehyde | 16.90       | 1.03        | 26.11       | 1.60       | 1.16      | 0.07         |
| crotonaldehyde    | 9.72        | 0.59        | Х           | Х          | 4.70      | 0.29         |
| Average =>        | 9.87        | 0.60        | 19.81       | 1.22       | 6.52      | 0.40         |

 Table 25: C=C Scaled Stretches and calculations

By scaling the C=O and C=C bonds by the scale factors mentioned before, the average percent difference becomes even smaller than it already was. We can decipher that the density functional theory still has the best accuracy. The best way to see which becomes the most accurate when the scale factor is introduced is to compare a full spectrum between the literature and the three methods.

|             |            | Numbers in 1/cm |            |              |                  |
|-------------|------------|-----------------|------------|--------------|------------------|
| Normal Mode | Literature | Scaled S.E      | Scaled A.I | Scaled D.F.T | Corresponding To |
| 1           | 3102       | 2746.66         | 2968.47    | 3142.39      | vinyl CH         |
| 2           | Х          | 2729.00         | 2932.84    | 3091.51      | Х                |
| 3           | 3000       | 2666.28         | 2892.84    | 3052.83      | vinyl CH         |
| 4           | 2800       | 2557.16         | 2737.68    | 2810.25      | formyl CH        |
| 5           | 1723       | 1728.73         | 1745.08    | 1726.21      | C=O              |
| 6           | 1625       | 1614.47         | 1605.09    | 1632.07      | C=C              |
| 7           | 1422       | 1170.72         | 1381.99    | 1418.33      | CH2 Bend         |
| 8           | 1361       | 1087.92         | 1320.41    | 1352.67      | formyl CH rock   |
| 9           | 1276       | 1051.71         | 1226.15    | 1265.14      | vinyl CH rock    |
| 10          | 1159       | 1021.09         | 1101.40    | 1142.10      | vinyl CH2 rock   |
| 11          | 993        | 924.17          | 993.39     | 1006.89      | C=C Torsion      |
| 12          | 980        | 859.16          | 982.54     | 999.39       | formyl CH wag    |
| 13          | 959        | 808.67          | 973.28     | 972.81       | vinyl CH2 wag    |
| 14          | 913        | 795.21          | 863.85     | 898.60       | C-C              |
| 15          | 589        | 497.92          | 572.48     | 594.06       | vinyl CH wag     |
| 16          | 564        | 496.05          | 530.27     | 558.40       | C-C=O bend       |
| 17          | 340        | 313.90          | 299.99     | 316.25       | C-C=C bend       |
| 18          | 158        | 65.67           | 150.82     | 162.65       | skeletal torsion |

 Table 26: Acrylaldehyde IR spectrum comparison (scaled values)

| Normal Mode | Diff (S.E) | % Diff (S.E) | Diff (A.I) | % Diff (A.I) | Diff (D.F.T) | % Diff (D.F.T) |
|-------------|------------|--------------|------------|--------------|--------------|----------------|
| 1           | 355.34     | 12.15        | 133.53     | 4.40         | 40.39        | 1.29           |
| 2           | Х          | Х            | Х          | Х            | Х            | Х              |
| 3           | 333.72     | 11.78        | 107.16     | 3.64         | 52.83        | 1.75           |
| 4           | 242.84     | 9.07         | 62.32      | 2.25         | 10.25        | 0.37           |
| 5           | 5.73       | 0.33         | 22.08      | 1.27         | 3.21         | 0.19           |
| 6           | 10.53      | 0.65         | 19.91      | 1.23         | 7.07         | 0.43           |
| 7           | 251.28     | 19.38        | 40.01      | 2.85         | 3.67         | 0.26           |
| 8           | 273.08     | 22.30        | 40.59      | 3.03         | 8.33         | 0.61           |
| 9           | 224.29     | 19.27        | 49.85      | 3.98         | 10.86        | 0.85           |
| 10          | 137.91     | 12.65        | 57.60      | 5.10         | 16.90        | 1.47           |
| 11          | 68.83      | 7.18         | 0.39       | 0.04         | 13.89        | 1.39           |
| 12          | 120.84     | 13.14        | 2.54       | 0.26         | 19.39        | 1.96           |
| 13          | 150.33     | 17.01        | 14.28      | 1.48         | 13.81        | 1.43           |
| 14          | 117.79     | 13.79        | 49.15      | 5.53         | 14.40        | 1.59           |
| 15          | 91.08      | 16.76        | 16.52      | 2.84         | 5.06         | 0.86           |
| 16          | 67.95      | 12.82        | 33.73      | 6.17         | 5.60         | 1.00           |
| 17          | 26.10      | 7.98         | 40.01      | 12.50        | 23.75        | 7.24           |
| 18          | 92.33      | 82.56        | 7.18       | 4.65         | 4.65         | 2.90           |
| Average =>  | 151.18     | 16.40        | 40.99      | 3.60         | 14.94        | 1.50           |

 Table 27: Acrylaldehyde Differences and Percent Differences

As expected, the density functional theory method is fairly accurate to begin with; however, with the scale factor created from the double bond stretches the method performs even better and becomes significantly accurate for the entire spectrum. The semi-empirical method fails to improve due to the inconsistency of the approximation to begin with. This was expected as it is impossible to correct data that oscillates between being greater than or less than the literature values. The *ab initio* values, however, became increasingly accurate when a scale factor was applied. It went from about a 13-15% difference to a 3.60% difference which is accurate enough to be used as a good approximation of a spectrum. Be that as it may, the density functional theory is still the best even though the *ab initio* level became better than expected with the scale factor mentioned before (.867). For the ultraviolet spectral data, the  $\lambda$  max peak absorption was highlighted due to it being the main peak in the absorption spectrum.

| Pi -> Pi*                                          | Numbers    | in nm          |          |        |
|----------------------------------------------------|------------|----------------|----------|--------|
| Name                                               | Literature | Semi-Empirical | Woodward | D.F.T  |
| acrylaldehyde                                      | 209        | 206.2          | 210      | 199.52 |
| Methyl Vinyl Ketone                                | 215        | 206.6          | 215      | 203.87 |
| methacrylaldehyde                                  | 219        | 216.9          | 220      | 212.48 |
| (Z)-3-chloroacrylaldehyde                          | 221        | 220.95         | 222      | 234.11 |
| (Z)-but-2-enal                                     | 221        | 221.02         | 222      | 213.66 |
| 2-cyclopenten-1-one                                | 219        | 211.69         | 202      | 206.78 |
| 2-methyl-2-cyclopenten-1-one                       | 229        | 225.42         | 212      | 217.58 |
| 3-methoxy-2-propenal                               | 239        | 232.14         | 240      | 238.17 |
| (2E)-2-methyl- 2-butenal                           | 241        | 229.77         | 232      | 217.83 |
| 2,4-pentadienal                                    | 251        | 255.21         | 252      | 257.26 |
| 2-methoxy-3methyl-4methylene-<br>cyclopent-2-enone | 259        | 277.9          | 279      | х      |
| 2-methoxy-3-methyl-2-cyclopenten-1-                |            |                |          |        |
| enone                                              | 266        | 242.27         | 261      | Х      |
| (Z)- (9CI)-3-(methylthio)-2-propenal               | 294        | 234.55         | 295      | Х      |
| (2Z)-3-(dimethylamino)-2-propenal                  | 304        | 249.22         | 305      | Х      |

**Table 28:** UV  $\lambda$  max peak values comparison

| Difference (S.E) | % Diff. (S.E) | Difference (W) | % Diff. (W) | Difference (D.F.T) | % Diff. (D.F.T) |
|------------------|---------------|----------------|-------------|--------------------|-----------------|
| 2.80             | 1.35          | 1.00           | 0.48        | 9.48               | 4.64            |
| 8.40             | 3.98          | 0.00           | 0.00        | 11.13              | 5.31            |
| 2.10             | 0.96          | 1.00           | 0.46        | 6.52               | 3.02            |
| 0.05             | 0.02          | 1.00           | 0.45        | 13.11              | 5.76            |
| 0.02             | 0.01          | 1.00           | 0.45        | 7.34               | 3.38            |
| 7.31             | 3.39          | 17.00          | 8.08        | 12.22              | 5.74            |
| 3.58             | 1.58          | 17.00          | 7.71        | 11.42              | 5.11            |
| 6.86             | 2.91          | 1.00           | 0.42        | 0.83               | 0.35            |
| 11.23            | 4.77          | 9.00           | 3.81        | 23.17              | 10.10           |
| 4.21             | 1.66          | 1.00           | 0.40        | 6.26               | 2.46            |
| 18.90            | 7.04          | 20.00          | 7.43        | Х                  | х               |
| 23.73            | 9.34          | 5.00           | 1.90        | Х                  | Х               |
| 59.45            | 22.50         | 1.00           | 0.34        | Х                  | Х               |
| 54.78            | 19.80         | 1.00           | 0.33        | Х                  | х               |
| 14.53            | 5.67          | 5.43           | 2.30        | 10.15              | 4.59            |

Table 29: UV  $\lambda$  max differences and percent differences

When the data is analyzed it is clear that the most accurate (also the fastest) is the empirical Woodward-Fieser Rules. This makes sense as it is based on the empirical data from various carbonyl compounds including the ones being studied in this project. The interesting thing is that none of the methods do poorly in this study. Each one is still in single digit percent differences, which is fairly good accuracy overall. Yet, of the two non-empirical methods, the superior of these is the density functional theory method. The only issue is that is has very low consistency with the values it calculates and, therefore, is not very reliable. The semi-empirical method performed well but had some issues with consistency as well, although it was more due to the inability for the method to calculate for larger compounds.

### Conclusions

From the results we can make the conclusion that the density functional theory method is the superior method overall and is fairly accurate for both infrared and ultraviolet spectral data. With that said, the superior ultraviolet predictor was the Woodward-Fieser Rules; however, they are very conditional as they will only work for compounds that are within the rules that exist (i.e. carbonyl and diene compounds). Otherwise it is a bit of a split decision as both semi-empirical (the ZINDO/S method) and the density functional theory (Gaussian B3LYP/6-311+G(d,p)) have similarities in their predictions, as they are inconsistent; however, semi-empirical is only good for smaller compounds. Since that is so, semi-empirical is the superior method for small compounds as it is quick and fairly accurate.

For the infrared spectrum the density functional theory is by far the superior method. The other two methods are very inaccurate without a scale factor and the DFT method has a percent difference of only 5% and that accuracy increased when the scale factor was applied. Therefore, DFT is the superior method for infrared spectral data.

### References

(2011). Retrieved March 6, 2011, 2011, from

http://www2.chemistry.msu.edu/faculty/reusch/VirtTxtJml/Spectrpy/UV-Vis/uvspec.htm

- Brand, J. C. D., & Williamson, D. G. (1963). Near-ultra-violet spectrum of propenal. The University, Glasgow, Department of Chemistry)., 184-191.
- Oelichmann, H. J. (1981). Coupled calculation of vibrational frequencies and intensities:: Part VI. IR and raman spectra of crotonaldehyde, methacrolein and methylvinylketone. *Journal of Molecular Structure*, *77*(3-4), 179.
- SciFinder. (2011). *IR absorption spectra (acrylaldehyde)*. Retrieved February 9, 2011, from https://scifinder.cas.org/scifinder/view/scifinder/scifinderExplore.jsf
- Talrose, V., et al. (2009). 2-propenal: UV/Visible spectrum. Retrieved February 15, 2011, from http://webbook.nist.gov/cgi/cbook.cgi?ID=C107028&Mask=400#Refs
- Baer, T. (2002). Ultraviolet spectroscopy and UV lasers. practical spectroscopy series. volume
  30 edited by prabhakar misra (howard university) and mark A. dubinskii (magnon, inc., reisterstown, MD). Marcel Dekker. *Journal of the American Chemical Society*, *124*(40), 12054.

# Appendix

#### I. Semi-Empirical Singlet and Triplet State Transitions

| Acrylaldehyde       |                 |              |           |        |  |  |
|---------------------|-----------------|--------------|-----------|--------|--|--|
| Spin                | Transition      | λ(nm)        | 1/cm      | f      |  |  |
| S->T                | π->π*           | 522.8        | 19127.3   | 0      |  |  |
| S->T                | n->π*           | 473.5        | 21118.3   | 0      |  |  |
| S->S                | n->π*           | 406.3        | 24612.2   | 0      |  |  |
| S->S                | π->π*           | 206.2        | 48487.3   | 0.6614 |  |  |
|                     | Methacrylal     | dehvde       |           |        |  |  |
| Spin                | Transition      | <u>λ(nm)</u> | 1/cm      | f      |  |  |
| S->T                | π->π*           | 572.6        | 17462.7   | 0      |  |  |
| S->T                | n->π*           | 467.2        | 21402.5   | 0      |  |  |
| S->S                | n->π*           | 401.8        | 24888.3   | 0      |  |  |
| S->S                | π->π*           | 216.9        | 46104.8   | 0.5262 |  |  |
|                     | (Z)-3-chloroact | rylaldehy    | <u>de</u> |        |  |  |
| Spin                | Transition      | λ(nm)        | 1/cm      | f      |  |  |
| S->T                | π->π*           | 563.2        | 17755.8   | 0      |  |  |
| S->T                | n->π*           | 481.8        | 20755.1   | 0      |  |  |
| S->S                | n->π*           | 412.9        | 24217.4   | 0      |  |  |
| S->S                | π->π*           | 220.9        | 45271.6   | 0.6259 |  |  |
|                     |                 |              |           |        |  |  |
| Crotonaldehyde      |                 |              |           |        |  |  |
| Spin                | Transition      | λ(nm)        | 1/cm      | f      |  |  |
| S->T                | π->π*           | 567          | 17636.5   | 0      |  |  |
| S->T                | n->π*           | 472.9        | 21148     | 0      |  |  |
| S->S                | n->π*           | 406.8        | 24581     | 0      |  |  |
| S->S                | π->π*           | 220.9        | 45261.1   | 0.6198 |  |  |
| 2-cyclopenten-1-one |                 |              |           |        |  |  |

| Spin | Transition | λ(nm) | 1/cm    | f      |
|------|------------|-------|---------|--------|
| S->T | π->π*      | 540.2 | 18510.4 | 0      |
| S->T | n->π*      | 443.5 | 22547   | 0      |
| S->S | n->π*      | 389.1 | 25700.4 | 0      |
| S->S | π->π*      | 211.7 | 47239.9 | 0.5848 |

2-methyl-2-cyclopenten-1-one

| Spin                                          | Transition  | λ(nm)              | 1/cm      | f      |  |
|-----------------------------------------------|-------------|--------------------|-----------|--------|--|
| S->T                                          | π->π*       | 582.3              | 17172.8   | 0      |  |
| S->T                                          | n->π*       | 442.6              | 22593.6   | 0      |  |
| S->S                                          | n->π*       | 388.4              | 25743.7   | 0      |  |
| S->S                                          | π->π*       | 225.4              | 44360.9   | 0.4946 |  |
|                                               | <u>3-r</u>  | methoxy-2-propena  | <u>1</u>  |        |  |
| Spin                                          | Transition  | λ(nm)              | 1/cm      | f      |  |
| S->T                                          | π->π*       | 591.7              | 16900     | 0      |  |
| S->T                                          | n->π*       | 468.1              | 21363.9   | 0      |  |
| S->S                                          | n->π*       | 404.1              | 24747.4   | 0      |  |
| S->S                                          | π->π*       | 232.4              | 43027.3   | 0.6042 |  |
|                                               | <u>(2E)</u> | -2-methyl- 2-buten | <u>al</u> |        |  |
| Spin                                          | Transition  | λ(nm)              | 1/cm      | f      |  |
| S->T                                          | π->π*       | 635.7              | 15730.8   | 0      |  |
| S->T                                          | n->π*       | 459.4              | 21766.4   | 0      |  |
| S->S                                          | n->π*       | 397.5              | 25157     | 0      |  |
| S->S                                          | π->π*       | 229.8              | 43520.9   | 0.5816 |  |
|                                               |             | 2,4-pentadienal    |           |        |  |
| Spin                                          | Transition  | λ(nm)              | 1/cm      | f      |  |
| S->T                                          | π->π*       | 746.3              | 13399.2   | 0      |  |
| S->T                                          | n->π*       | 479.6              | 20849.7   | 0      |  |
| S->S                                          | n->π*       | 412.9              | 24219.2   | 0      |  |
| S->S                                          | π->π*       | 255.2              | 39184     | 0.9053 |  |
| 2-methoxy-methyl-4methylene-cyclopent-2-enone |             |                    |           |        |  |
| Spin                                          | Transition  | λ(nm)              | 1/cm      | f      |  |
| S->T                                          | π->π*       | 824.6              | 12127.2   | 0      |  |
| S->T                                          | n->π*       | 456.5              | 21907.1   | 0      |  |
| S->S                                          | n->π*       | 399.3              | 25046.3   | 0      |  |
| S->S                                          | π->π*       | 277.9              | 35983.6   | 0.6553 |  |
| 2-methoxy-3-methyl-2-cyclopenten-1-enone      |             |                    |           |        |  |
| Spin                                          | Transition  | λ(nm)              | 1/cm      | f      |  |
| S->T                                          | π->π*       | 606.1              | 16498.3   | 0      |  |
| S->T                                          | n->π*       | 440.9              | 22679.4   | 0      |  |
| S->S                                          | n->π*       | 389.2              | 25697     | 0      |  |
| S->S                                          | π->π*       | 242.3              | 41275.9   | 0.4959 |  |

#### (Z)- (9CI)-3-(methylthio)-2-propenal

| Spin | Transition | λ(nm) | 1/cm    | f      |
|------|------------|-------|---------|--------|
| S->T | π->π*      | 569   | 17574.6 | 0      |
| S->T | n->π*      | 470.1 | 21270.2 | 0      |
| S->S | n->π*      | 405.3 | 24673.3 | 0      |
| S->S | π->π*      | 234.6 | 42634.8 | 0.5662 |
|      |            |       |         |        |

#### (2Z)-3-(dimethylamino)-2-propenal

| Spin | Transition | λ(nm) | 1/cm    | f      |
|------|------------|-------|---------|--------|
| S->T | π->π*      | 587.7 | 17016.3 | 0      |
| S->T | n->π*      | 455.6 | 21947.5 | 0      |
| S->S | n->π*      | 395.6 | 25276.5 | 0      |
| S->S | π->π*      | 249.2 | 40124.6 | 0.6948 |



# II. Hyperchem IR and UV Spectra



# III. WebMO IR and UV Spectra



#### IV. Literature IR and UV Spectra

