

Designing and Developing a

Travel-Based Android Application
A Major Qualifying Project Report:

submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

in partial fulfillment of the requirements for the

Degree of Bachelor of Science

by

Kevin Hufnagle

Date: May 6, 2014

Approved:

Professor Emmanuel Agu, Project Co-Advisor

Professor Jennifer deWinter, Project Co-Advisor

This report represents the work of one of more WPI undergraduate students submitted to the

faculty as evidence of a completion of a degree requirement. WPI routinely publishes these

reports on its website without editorial or peer review. For more information about the projects

program at WPI, see http://www.wpi.edu/academics/ugradstudies/project-learning.html

ii

Abstract
Many people in North America enjoy capturing the visual, historical, and experiential contexts

that landmarks offer as they travel. These individuals, however, use disjoint resources to plan

trips, reducing the quality of the narrative experience they receive when visiting a place. To

facilitate the narrativization of a place and create a shared experience of that place, I created an

Android smartphone application, which allows users to explore basic facts, photographs,

historical details, and travelers’ experiences regarding New England’s 117 coastal lighthouses. I

developed three image-processing algorithms to serve as photograph filters and conducted two

surveys and five usability studies to inform my iterative, audience-involved application design.

iii

Acknowledgments

 First and foremost, I thank my two project advisors, Jennifer deWinter and Emmanuel

Agu, for their continuous support and dedication towards this project.

 Jay Hyland of the Lighthouse Preservation Society provided key background information

about New England lighthouses in general and an avenue for distributing surveys to

members of the society.

 Ryan Avery from Cape Neddick (“Nubble”) Lighthouse deserves a special mention for

helping me collect pre-design survey responses.

 I am also grateful for Ryan Avery, Bob Gallagher from Old Scituate Light, Francene

Webster from Highland (“Cape Cod”) Lighthouse, and Sarah Mumford and Keith

Sisterson from Nauset Light for allowing me to use the grounds by their lighthouses to

conduct my usability studies.

 Jeremy D’Entremont kindly permitted me to include information from his book and

website within my app.

 Finally, I’d like to thank my family for their personal support throughout this project

experience.

iv

Table of Contents

Acknowledgments.. iii

List of Tables ... vi

List of Figures ... vii

1. Introducing an Application that Offers Mobile Traveling Experience 1

1.1. Why Humans Enjoy Travel-Based Experiences .. 1

1.2. Android Smartphone Use Continues to Grow Quickly .. 3

1.3. Computers Do Not (Yet) Satisfy Expectations Regarding Digital Image Processing 6

1.4. Challenges Associated with Current Options Available .. 8

1.5. Addressing These Challenges: Creating the Lighthouse Navigator Application 9

1.6. Overview of Report’s Contents .. 11

2. Presenting Current Applications, Theoretical Foundation for Work 12

2.1. Current Websites Each Offer Narrow Scope of Travel-Based Information 12

2.2. Existing Smartphone Applications Combine to Form Narrative Space 26

2.3. Key Research Involving Images and Image-Processing Algorithms 37

2.4. Space and Place: Embedded Comfort Within the Unknown ... 49

3. Designing a Compelling Lighthouse Portal Using Audience Feedback 52

3.1. Android Design Guidelines Stress Simplicity, Usability ... 52

3.2. Design Paradigms ... 56

3.3. Guiding Users through the Application’s Different Screens ... 59

3.4. Improving Design using Iterative, Audience-Based Process ... 72

3.5. Designing Universally Effective Application Involves Consideration of Market 79

3.6. Presenting the Modular Structure of the Android and Image-Processing Projects 81

4. Structure and Strategies for Implementing Application ... 85

4.1. Preparing Development Environment: Eclipse and ADT .. 85

4.2. Presenting an Overview of Lighthouse Navigator Application 86

4.3. Using Existing Data Structures and Packages to Enhance Application Efficiency 93

4.4. Creating New Data Structures for Organizing Run-Time Application Data 96

4.5. Using Flickr’s API and Android Multithreading to Download Photographs 108

4.6. Creating a Flexible Back End: XML File and Photograph Cache 113

v

4.7. Constructing Image Processing Algorithms with ImageJ .. 115

4.8. Preparing Image-Processing Algorithms for Testing ... 125

5. Reflecting on Algorithm Performance and Application Usability 127

5.1. Findings from Image-Processing Algorithm Testing ... 127

5.2. Presenting User-Friendly Elements in Mobile Application Increases its Appeal 137

6. Reflecting on the Project’s Takeaways and Future Trajectories .. 142

6.1. Application Attained Usability Goal, but Cross-Cultural Narratives Tough to Create 142

6.2. Image-Processing Algorithms Achieved High Accuracy, but Tough to Generalize ... 143

6.3. Completing App Functionality, Adding Filters, Investigating Simulacra in Future 144

7. References ... 146

Appendix A: Instructions for Installing Project Files (README)... A-1

Appendix B: Version History ... A-6

Appendix C: Interview with Jay Hyland .. A-8

Appendix D: Survey for Visitors of Cape Neddick Lighthouse ... A-12

Appendix E: Survey for Lighthouse Preservation Society Members A-18

Appendix F: Usability Study Materials .. A-22

vi

List of Tables

Table 1-1. Distribution of Existing Android Devices by Operating System Version. (Accurate as

of May 1, 2014)... 6

Table 1-2. Distribution of Existing Android Devices by Screen Density....................................... 7

Table 2-1. Primary and Secondary Categories of Information on Travel- and Experience-Based

Websites .. 12

Table 2-2. Existing smartphone applications featuring specific points of interest. 27

Table 4-1. Naming Convention of Lighthouse Photographs Appearing within “Drawable”

Resource Folder. ... 89

Table 4-2. Structure of URLs for Travel Experience Websites Featuring Lighthouses. 101

Table 4-3. Descriptions of Enumerated Lists within Application. ... 102

Table 4-4. Process of Transforming Test Image used in Shape-Based Feature-Matching

Algorithm. ... 124

vii

List of Figures

Figure 2-1. Flickr's user-level advanced search lacks location-based filtering. 14

Figure 2-2. “Search the map” button unnecessarily hidden within Flickr world map. 16

Figure 2-3. Sample Search Results Page on Panoramio ... 17

Figure 2-4. Viewing location information, photographs, and user experiences for a point of

interest on Yelp. .. 19

Figure 2-5. Viewing location information, photographs, and user experiences for a point of

interest on TripAdvisor. .. 21

Figure 2-7. Filtering Options within Cowbird. ... 23

Figure 2-7. Story about a Lighthouse on Cowbird. .. 24

Figure 2-9. Log book entries and image gallery for the “Fundy Tides” geocache on Geocaching.

... 26

Figure 2-9. Sample location listing in Boston City Guide application. .. 29

Figure 2-10. Sample itinerary in Boston City Guide application. .. 29

Figure 2-13. Sample location listing in New York City – Everything NYC. 31

Figure 2-12. First screen of main dashboard within New York City – Everything NYC. 31

Figure 2-14. Sample grayscale image and its corresponding histogram. 38

Figure 2-15. Sample grayscale image with its corresponding cumulative histogram. 39

Figure 2-16. The general histogram matching algorithm: Mapping cumulative histogram

intensity values.. 42

Figure 2-17. Discretization of the general histogram matching algorithm: “stacking” intensity

value “blocks” from the original image onto the reference image. .. 43

Figure 2-18. Approximation of Distances from a Pixel to Its 8-Connected Neighbors (3×3)...... 46

Figure 2-19. Approximation of Distance from a Pixel to Its Nearest 24 Neighbors (5×5). 47

Figure 3-1. Multiple Elements within “Information” and “Photographs” Screens within

Application. ... 54

Figure 3-2. Areas of Screens Affording Real-Time User Interaction. .. 55

Figure 3-3. Relationships among Artifacts and Ideas while Using Audience-Involved

Communication. .. 58

Figure 3-4. Relationship among Screens within Application. .. 59

Figure 3-5. Final Design of “Welcome” Screen within Application. ... 60

Figure 3-6. Final Design of “Search Results” Screen within Application 61

Figure 3-7. Final Design of “Information” Screen within Application .. 63

Figure 3-8. Final Design of “Photographs” Screen within Application. 66

Figure 3-9. Final Design of “History” Screen within Application. .. 69

Figure 3-10. Final Design of “Reviews” Screen within Application.. 71

Figure 3-11. Application Design Process. .. 73

Figure 3-12. Initial Design of “Welcome” Screen within Application. .. 75

Figure 3-13. Initial Design of "Photographs" Screen within Application. 76

Figure 3-14. Class Diagram for Lighthouse Navigator User Interface Screens. 82

file:///C:/Users/Kevin/Google%20Drive/MQP/Hufnagle_MQP_Report_5-5-14.docx%23_Toc387115376
file:///C:/Users/Kevin/Google%20Drive/MQP/Hufnagle_MQP_Report_5-5-14.docx%23_Toc387115377
file:///C:/Users/Kevin/Google%20Drive/MQP/Hufnagle_MQP_Report_5-5-14.docx%23_Toc387115378
file:///C:/Users/Kevin/Google%20Drive/MQP/Hufnagle_MQP_Report_5-5-14.docx%23_Toc387115381
file:///C:/Users/Kevin/Google%20Drive/MQP/Hufnagle_MQP_Report_5-5-14.docx%23_Toc387115383
file:///C:/Users/Kevin/Google%20Drive/MQP/Hufnagle_MQP_Report_5-5-14.docx%23_Toc387115383
file:///C:/Users/Kevin/Google%20Drive/MQP/Hufnagle_MQP_Report_5-5-14.docx%23_Toc387115386
file:///C:/Users/Kevin/Google%20Drive/MQP/Hufnagle_MQP_Report_5-5-14.docx%23_Toc387115387
file:///C:/Users/Kevin/Google%20Drive/MQP/Hufnagle_MQP_Report_5-5-14.docx%23_Toc387115388
file:///C:/Users/Kevin/Google%20Drive/MQP/Hufnagle_MQP_Report_5-5-14.docx%23_Toc387115389
file:///C:/Users/Kevin/Google%20Drive/MQP/Hufnagle_MQP_Report_5-5-14.docx%23_Toc387115390
file:///C:/Users/Kevin/Google%20Drive/MQP/Hufnagle_MQP_Report_5-5-14.docx%23_Toc387115390
file:///C:/Users/Kevin/Google%20Drive/MQP/Hufnagle_MQP_Report_5-5-14.docx%23_Toc387115391
file:///C:/Users/Kevin/Google%20Drive/MQP/Hufnagle_MQP_Report_5-5-14.docx%23_Toc387115391
file:///C:/Users/Kevin/Google%20Drive/MQP/Hufnagle_MQP_Report_5-5-14.docx%23_Toc387115392
file:///C:/Users/Kevin/Google%20Drive/MQP/Hufnagle_MQP_Report_5-5-14.docx%23_Toc387115393
file:///C:/Users/Kevin/Google%20Drive/MQP/Hufnagle_MQP_Report_5-5-14.docx%23_Toc387115394
file:///C:/Users/Kevin/Google%20Drive/MQP/Hufnagle_MQP_Report_5-5-14.docx%23_Toc387115394
file:///C:/Users/Kevin/Google%20Drive/MQP/Hufnagle_MQP_Report_5-5-14.docx%23_Toc387115395
file:///C:/Users/Kevin/Google%20Drive/MQP/Hufnagle_MQP_Report_5-5-14.docx%23_Toc387115396
file:///C:/Users/Kevin/Google%20Drive/MQP/Hufnagle_MQP_Report_5-5-14.docx%23_Toc387115396
file:///C:/Users/Kevin/Google%20Drive/MQP/Hufnagle_MQP_Report_5-5-14.docx%23_Toc387115397
file:///C:/Users/Kevin/Google%20Drive/MQP/Hufnagle_MQP_Report_5-5-14.docx%23_Toc387115398
file:///C:/Users/Kevin/Google%20Drive/MQP/Hufnagle_MQP_Report_5-5-14.docx%23_Toc387115399
file:///C:/Users/Kevin/Google%20Drive/MQP/Hufnagle_MQP_Report_5-5-14.docx%23_Toc387115400
file:///C:/Users/Kevin/Google%20Drive/MQP/Hufnagle_MQP_Report_5-5-14.docx%23_Toc387115401
file:///C:/Users/Kevin/Google%20Drive/MQP/Hufnagle_MQP_Report_5-5-14.docx%23_Toc387115402
file:///C:/Users/Kevin/Google%20Drive/MQP/Hufnagle_MQP_Report_5-5-14.docx%23_Toc387115403
file:///C:/Users/Kevin/Google%20Drive/MQP/Hufnagle_MQP_Report_5-5-14.docx%23_Toc387115404
file:///C:/Users/Kevin/Google%20Drive/MQP/Hufnagle_MQP_Report_5-5-14.docx%23_Toc387115405
file:///C:/Users/Kevin/Google%20Drive/MQP/Hufnagle_MQP_Report_5-5-14.docx%23_Toc387115406

viii

Figure 3-15. Class Diagram for Lighthouse Navigator Data Structures. 82

Figure 3-16. Class Diagram for Lighthouse Navigator Utility Classes. 83

Figure 3-17. Class Diagram of Lighthouse Navigator Interface Adapters. 84

Figure 3-18. Class Diagram of Image-Processing Algorithm Logic Classes. 84

Figure 4-1. Structure of query to Flickr’s API for retrieving geotagged, 110

Figure 4-2. Excerpt of sample geotagged photograph response from Flickr’s API. 111

Figure 4-3. Sample Distribution of Pixels across Several Sub-Images. 119

Figure 5-1. Effects of Image Decomposition, Percentage Inclusion on Algorithm Accuracy. .. 129

Figure 5-2. Effects of Sub-Image Complexity on Image Classification Execution Time. 129

Figure 5-3. Changing Grayscale Intensity Value Affects Color-Based Feature-Matching

Algorithm Accuracy.. 131

Figure 5-4. Moderate Color Difference Tolerance Best for Color-Based Feature-Matching

Algorithm Accuracy.. 132

Figure 5-5. If Small Amount of Image Contains Color, Best to Consider it a Match 132

Figure 5-6. Execution Time of Shape-Based Feature-Matching Algorithm Constant when Using

Single Reference Template. .. 134

Figure 5-7. Very Small Chamfer Match Score Allowances Lead to Accurate Shape-Based

Feature-Matching Algorithm. ... 135

Figure 5-8. Even Smaller Chamfer Match Score Allowances Yield Accurate Shape-Based

Feature-Matching Algorithm Results Given Multiple Reference Templates. 136

Figure 5-9. Shape-Based Feature-Matching Algorithm Using Multiple Reference Templates

Takes Less Time to Execute as Chamfer Match Score Allowance Increasees. 137

file:///C:/Users/Kevin/Google%20Drive/MQP/Hufnagle_MQP_Report_5-5-14.docx%23_Toc387115412
file:///C:/Users/Kevin/Google%20Drive/MQP/Hufnagle_MQP_Report_5-5-14.docx%23_Toc387115413
file:///C:/Users/Kevin/Google%20Drive/MQP/Hufnagle_MQP_Report_5-5-14.docx%23_Toc387115414
file:///C:/Users/Kevin/Google%20Drive/MQP/Hufnagle_MQP_Report_5-5-14.docx%23_Toc387115415
file:///C:/Users/Kevin/Google%20Drive/MQP/Hufnagle_MQP_Report_5-5-14.docx%23_Toc387115416
file:///C:/Users/Kevin/Google%20Drive/MQP/Hufnagle_MQP_Report_5-5-14.docx%23_Toc387115417
file:///C:/Users/Kevin/Google%20Drive/MQP/Hufnagle_MQP_Report_5-5-14.docx%23_Toc387115417
file:///C:/Users/Kevin/Google%20Drive/MQP/Hufnagle_MQP_Report_5-5-14.docx%23_Toc387115418
file:///C:/Users/Kevin/Google%20Drive/MQP/Hufnagle_MQP_Report_5-5-14.docx%23_Toc387115418
file:///C:/Users/Kevin/Google%20Drive/MQP/Hufnagle_MQP_Report_5-5-14.docx%23_Toc387115419
file:///C:/Users/Kevin/Google%20Drive/MQP/Hufnagle_MQP_Report_5-5-14.docx%23_Toc387115420
file:///C:/Users/Kevin/Google%20Drive/MQP/Hufnagle_MQP_Report_5-5-14.docx%23_Toc387115420
file:///C:/Users/Kevin/Google%20Drive/MQP/Hufnagle_MQP_Report_5-5-14.docx%23_Toc387115421
file:///C:/Users/Kevin/Google%20Drive/MQP/Hufnagle_MQP_Report_5-5-14.docx%23_Toc387115421
file:///C:/Users/Kevin/Google%20Drive/MQP/Hufnagle_MQP_Report_5-5-14.docx%23_Toc387115422
file:///C:/Users/Kevin/Google%20Drive/MQP/Hufnagle_MQP_Report_5-5-14.docx%23_Toc387115422
file:///C:/Users/Kevin/Google%20Drive/MQP/Hufnagle_MQP_Report_5-5-14.docx%23_Toc387115423
file:///C:/Users/Kevin/Google%20Drive/MQP/Hufnagle_MQP_Report_5-5-14.docx%23_Toc387115423

1

1. Introducing an Application that Offers Mobile Traveling Experience
 As people travel, they visit landmarks and capture photographs to mark the key moments

along their journeys. Recently, people have begun capturing these memories more frequently on

their smartphones and digital cameras, which offer convenient methods for storing entire scenes

but cannot easily analyze the details within these scenes. Furthermore, these individuals need to

develop an impossibly complex mental model while investigating different aspects of a location

they plan to visit, preventing them from forming effective traveling communities. The

application that I developed for this project presents informational, visual, historical, and

experiential contexts of New England lighthouses. It offers image-processing algorithms for

detecting global classifications as well as local features within images, and it scaffolds the

narrativization of place as a shared experience of place, allowing the application to facilitate the

formation of travel- and preservation-conscious communities.

1.1. Why Humans Enjoy Travel-Based Experiences

 Humans crave interesting and memorable experiences, and by traveling, they can satisfy

this need creatively. From visiting family and friends to embracing new cultures, people form

lasting memories during their traveling adventures. These trips often involve visiting specific

landmarks and capturing photographs, both of which help mark checkpoints along a journey

within travelers’ minds. This section discusses individuals’ motivation for traveling in general

and for consuming landmarks and photographs in particular.

 Traveling in general offers plentiful opportunities for sociocultural exploration and

personal introspection. Ramvie Santiago, Annabel Candy, and Adam Groffman each explore

these ideas further in their respective online articles and blog posts. As people travel, they

encounter opportunities to socialize with familiar faces and to immerse themselves in a different

culture with new acquaintances. Santiago’s article explaining why people travel explains that, in

most cases, travelers wish to spend time with family and friends who have moved a significant

distance away [17]. Adam Groffman’s blog post discussing the traveling lifestyle agrees with

Santiago that people travel to see family and friends, but he also believes that other individuals

visit places to meet new people who offer interesting stories to share [11]. Annabel Candy

expresses views similar to those of Groffman in her reflections on humans’ motivation to travel,

explaining that humans visit places to enjoy experiences that do not exist within their respective

home areas. A particularly rich experience that Candy cites involves viewing new life

2

perspectives by exploring foreign languages and the ideas they express [8]. Santiago adds to this

idea in her article, discussing how exotic cuisines symbolize new cultures abroad [17]. Humans

express excitement with escapes to familiar memories and adventures involving new people and

cultures, explaining their constant desire to travel.

 In addition to experiencing sociocultural richness during their travels, people embark on

journeys to learn more about themselves and to capture aesthetically pleasing spaces and places.

Groffman indicates in his blog that traveling gives people a chance to discover their personalities

in more depth and learn more about human life in general [11]. Candy expands upon this idea in

her article, claiming that some people travel to remote places to experience different, potentially

adverse, living conditions to gain a new perspective on life [8]. Santiago’s article describes

personal journeys in a more concrete manner, citing the scenic beauty that travelers capture as

souvenirs and keepsakes once they return home [17]. Candy also remarks that people visit places

in patterns, seeing variations of their favorite types of landmarks, such as waterfalls [8]. These

types of traveling experiences offer people a welcome change from their daily routines and

present opportunities to relive fond memories and develop new ones.

 As people embrace these new experiences while traveling, they visit various landmarks to

serve as symbols representing key milestones within their journies. Hilleke and Hongkiat Lim

expand upon Santiago’s and Candy’s ideas about landmarks, offering additional perspectives on

their significance with regards to traveling. Hilleke explains in a blog post that landmarks, while

used originally as tools for navigation, now serve as iconic places that tourists can visit and that

others can recognize easily [13]. Lim adds to Hilleke’s discussion within his article, describing

how these places can represent pieces of history, culture, or architecure. Some landmarks, he

claims, even represent important nationalist events and serve as sources of pride for the country

in which they reside [15]. The symbolic weight that these places carry pique travelers’ interests,

motivating them to visit the landmarks.

 While landmarks serve as temporary physical memories of a journey, photographs

represent more persistent, symbolic memories of a traveling experience. Gary Arndt and Kate

Berardo both explore why people capture pieces of their journeys with photographs so

frequently, citing both memory recollection and cultural sharing as key reasons. Arndt explains

in his blog post that, as people travel to new locations, their photographs symbolize the

memories they acquire from a particular journey, allowing them to recall the fun experiences

3

they enjoyed from that trip more easily [5]. He and Berardo reference three key types of

photography that occur during typical travel adventures [5, 6]:

 Event-driven – Some photographs serve simply to remind their owners of key events that

occurred as they traveled, such as visiting monuments and eating ethnic food;

 Art-driven – Other photographs focus on interesting and unusual aspects of different

places’ scenery as their owners travel, serving as useful guides to others who wish to

experience – and capture – these same vistas in the future; and

 Culture-driven – This rare category of photographs captures a collage of people, places,

items related to the culture within a specific place. This approach to capturing a travel

experience, unlike most others, casts the photographer’s self and culture aside and

focuses on the new experiences that the place offers.

No matter the medium or motivation that people use to capture their travel experiences, their

journey artifacts encapsulate and symbolize stories of a traveling experiences that others can

appreciate [6]. Furthermore, photographs can transcend linguistic and cultural barriers more

easily, allowing a larger set of viewers to appreciate the snapshots representing a travel-based

experience.

1.2. Android Smartphone Use Continues to Grow Quickly

 Over the past several years, United States citizens have continued integrating

smartphones into their daily lives. While senior citizens cite the need for assistance to adopt this

new technology, they continue to use smartphones more frequently, as well. The Android

platform enjoys a slight lead over its Apple counterpart in market-, subscriber-, and volume-

based market shares, allowing Android application developers to enjoy a larger user base. These

developers need to consider the variety in operating systems and screen densities that the

Android platform contains, however, in order to offer an optimal experience for users. In this

section, I describe increased smartphone adoption rates, Android’s market share advantages over

its Apple counterparts, and the Android platform’s fragmented market share in order to illustrate

the growing set of financial opportunities and logistical challenges that Android developers face.

1.2.1. Smartphone Penetration Rates in the United States Smallest among Senior Citizens

 Smartphones have continued to grow in popularity within the United States over the past

few years, particularly with older citizens, creating a need for universal usability within the

4

applications that these devices contain. According to the Pew Research Center’s latest report on

Internet use and technological advancement within the United States, 58% of all American adults

own a smartphone, up from 56% in 2013 and 51% in 2012 [18, 20]. Given the country’s

population of almost 318 million (as of May 2014), this finding indicates that about 180 million

individuals use these devices throughout the United States [4]. While smartphone users tend to

achieve more popularity among younger people (83% of United States citizens own a

smartphone), older individuals have also begun adopting the new technology, with 49% of those

aged 50 to 64 using a smartphone [9]. Citizens within this age range have interacted with

computers and smartphones for a smaller portion of their lives relative to their children’s

generation, so smartphone applications need to present user-friendly, easy-to-learn interfaces that

allow them to understand and appreciate the information that these applications offer.

 While smartphones have risen in popularity among working-age citizens of the United

States, senior citizens have not adopted the technology as quickly. The Pew Research Center’s

2014 report on senior citizen technology adoption indicates that only 18% of citizens aged 65 or

older own a smartphone. Part of the reason why this demographic has continued using more

traditional technologies, the center finds, lies in the perceived steep learning curve that

smartphones possess. According to the report, only 18% of senior citizens within the United

States would feel confident in learning how to use a smartphone without assistance while 77% of

them would appreciate help from another person [19]. Smartphone application developers can

use these findings as an opportunity to make their software as user friendly as possible so that,

once these senior citizens have become familiar with smartphones in general, they can learn how

to locate and use information within the application easily.

1.2.2. Market Share by Smartphone Platform

 Android continues to perform well relative to other smartphone platforms, even

considering that market share reporters use multiple metrics to convey a somewhat misleading

sense of competition. During 2013, Android devices surpassed their iOS1 counterparts in sales

share within the United States. According to Matt Hamblen’s report from ComputerWorld,

Android sales increased from 46.2% to 50.6% of all smartphone sales between the final quarter

of 2012 and the final quarter of 2013. Conversely, iOS device sales shares decreased from about

1 Apple’s iOS operating system forms the foundation for the company’s mobile devices, such as the iPhone and

iPad.

5

50% to 43.9% over the same time span [12]. When viewing smartphone platform shares based

on the percentage of users subscribed to a cellular network while owning a particular type of

device, Android performs similarly well relative to iOS devices. According to comScore’s latest

report, Android devices comprise 52.2% of the smartphone subscriber market share for users

aged 13 or older (as of March 2014), up from 51.5% three months earlier. The corresponding

iOS devices, on the other hand, witnessed a decrease in United States subscriber share, from

41.8% to 41.4%, during the same time interval [14].

 These market- and subscriber-share victories for the Android platform cause more

application downloads to occur worldwide on Android devices than their iOS counterparts, and

Apple still dominates the application sales market share, this last remaining market-based

advantage over Android continues to dwindle. In the first quarter of 2014, Android users

downloaded 45% more applications on the Google Play Store than did their iPhone/iPad

counterparts on the Apple App Store [16]. While the Android platform consists of more

application volume, Apple’s devices still enjoy larger application sales, primarily because many

more applications available for iOS devices require payment than those for Android devices.

According to a Flurry study conducted in April 2013, prices of applications developed for iOS

devices continue to decrease steadily – 90% of App Store applications were free in 2013

compared to 80% in 2011. However, Android applications still cost far less on average; the study

explains that Android applications cost $0.06 on average, compared with still-steep prices on

corresponding iPhone and iPad applications, whose costs average $0.19 and $0.50, respectively

[10]. Within the last quarter or so, however, Android users in the United States and United

Kingdom have expressed more willingness to pay for applications and make in-app purchases,

yielding a 55% revenue increase in Google Play revenue during the first quarter of 2014 [16].

This emerging trend indicates that Android application developers could enjoy increased sales to

accompany their existing increased volume over iOS versions of applications as the platforms

continue to evolve.

1.2.3. Android Version Share

 The Android platform releases new versions of its software on a relatively frequent basis,

and vendors continue to create denser screen resolutions for these devices, so application

developers need to understand the relatively fragmented set of software versions and screen

6

densities across the platform’s user base. Table 1-1 below indicates the relative popularity of the

different Android operating systems currently available on the market [2]:

Table 1-1. Distribution of Existing Android Devices by Operating System Version. (Accurate as of May 1, 2014)

Version

User-Friendly

Operating System

Name

API

Level

Percentage of

Devices Running

This Version

2.2 Froyo 8 1.0%

2.3.3-2.3.7 Gingerbread 10 16.2%

3.2 Honeycomb 13 0.1%

4.0.3-4.0.4
Ice Cream

Sandwich
15 13.4%

4.1.x

Jelly Bean

16 33.5%

4.2.x 17 18.8%

4.3 18 8.5%

4.4 KitKat 19 8.5%

As the above table shows, developers can ensure that nearly every Android user can install an

application that works for Android API levels 8 and above. Even if developers chooses to use

features exclusive to Ice Cream Sandwich (and later) versions of the operating system, they can

still target over 80% of Android’s user base. Developers not only need to select a minimum

operating system version to decide which user interface elements and features will appear within

the software, but they also need to design for multiple screen resolutions, as Table 1-2 on the

following page shows [2]. This illustrates the lack of a “typical” screen density on Android

devices; as a result, developers need to create user interface elements and images that can scale

to multiple screen sizes, particularly medium, large, and extra-large ones (which collectively

comprise roughly 77% of all Android devices on the market today).

1.3. Computers Do Not (Yet) Satisfy Expectations Regarding Digital Image Processing

 Digital images now pervade many people’s lives, regardless of whether they own the

devices needed to capture them. Even those who are not professional photographers still interact

with many types of digital images in their professional lives, including blueprints, copies of key

documents, and screen captures [7]. Still, many individuals now own versatile digital cameras

and/or smartphones and can transfer images from these devices onto their powerful personal

7

computers [7]. These devices contain sizeable collections, since many people use them while

traveling and when significant events occur in their lives.

Table 1-2. Distribution of Existing Android Devices by Screen Density.

(Accurate as of May 1, 2014)

Screen Density

Category

Screen Density Range

(in pixels per inch)

Percentage of Devices

with This Screen Density

Low density

(LDPI)
100-140 8.2%

Medium density

(MDPI)
140-200 21.1%

High density

(HDPI)
200-270 34.8%

Extra-high density

(XHDPI)
270-350 20.8%

Extra-extra-high

density (XXHDPI)
350-450 13.5%

 While people appreciate digital cameras’ and smartphones’ ability to capture

photographs, they often express surprise and disappointment at the lack of image analysis

options available on these devices. Members of the general public often underestimate the

difficulty involved with analyzing an image and identifying key elements – such as buildings,

logos, and curves along a road – because the human visual system performs these actions easily

and almost instantaneously [7]. Therefore, they expect the devices with which they interact to

perform these image analysis tasks effectively. For example, many digital cameras and

smartphones support facial recognition and red-eye detection, both of which improve the quality

of digital family portraits.

 Part of the reason why people express surprise at computers’ lack of proficiency in

analyzing images stems from the machines’ relative mastery at textual analysis. For quite some

time now, computers have helped navigate through textual information, identifying patterns and

detecting the presence of certain terms that a document uses. People who view digital

photographs, particularly photographers, would find similar features within image-filtering

8

technology particularly useful since they could then specify the elements of a scene they wish to

capture and compare their ideas with those who have preserved similar types of scenes through

existing photographs.

 Even many though image-processing features still struggle to enter production systems,

the recent advancements in technology allow researchers to perform and evaluate the related

algorithms far more easily. A few decades ago, developers could complete only rudimentary

image-processing operations given the poor operating system and hardware support for

transferring and decoding images. Nowadays, however, they have access to several powerful

high-level languages, including C, C++, and Java, each of which provides application

programming interfaces (APIs) for completing basic but important image-processing tasks on

images. [7]. These tools allow developers to implement more advanced and intricate image-

processing algorithms, increasing the functionality of the digital imaging devices that use them.

1.4. Challenges Associated with Current Options Available

 Prospective travelers have access to the tools and information necessary for them to make

informed decisions regarding the places they visit during a journey, but this information lacks the

necessary organization for them to complete this task quickly or while traveling. In order to

explore the different aspects of a particular place – such as general facts, photographs, historical

events, and other visitors’ experiences – these travelers need to visit a separate website for each

category of information. This disjoint, fragmented research process creates cognitive overload

for these people, preventing them from forming an idea of a location’s “big picture” experience.

Even when using mobile devices, these travelers experience similar problems, particularly since

the applications they use for research contain information from only one source or present only

one piece of information at a time. While a smartphone’s screen size limits the amount of

information visible at any given time, many of these applications make meager attempts to tie

different facts together with advanced navigation tools.

 Even the mobile applications that offer photographs of a specific location tend to display

these images as unordered collections, preventing users from exploring a particular aspect of the

visual context surrounding that place. In particular, most of these applications lack image filters

that show only photographs matching a certain configuration or containing a specific type of

feature. For locations with several characteristic components, users would appreciate being able

9

to explore these parts of a place virtually so that they could embrace the culture and environment

that the place offers once they arrive there physically.

1.5. Addressing These Challenges: Creating the Lighthouse Navigator Application

 To address the drawbacks currently facing prospective travelers who wish to explore a

location they wish to visit more easily, I created an Android smartphone application called the

Lighthouse Navigator. As a proof-of-concept implementation, this application focuses on the 117

coastal lighthouses across New England. The software serves as a centralized repository of

information about a given lighthouse, and it offers filtering options so that prospective visitors

can explore specific components of the scenery surrounding the lighthouse.

1.5.1. High-Level Overview of Application

 The application contains a simple, search-based hierarchy that leads to a series of

content-based information screens. Upon starting the application, users see a “Welcome” screen

that invites them to find lighthouses near their current location or search for a specific lighthouse

after selecting a specific state. After performing either search operation, users see a “Search

Results” screen, displaying the lighthouses that best match their queries. A “View” button

appears next to each lighthouse, allowing users to view more information about that landmark.

This information appears within four separate screens:

 Information – Presents general facts about the given lighthouse, including hours, location,

and visitor access allowances;

 Photographs – Features a gallery of photographs from Flickr’s servers that feature the

given lighthouse, along with a series of filtering options for viewing subsets of this

gallery;

 History – Includes several important historical events regarding the lighthouse; and

 Reviews – Provides users with other visitors’ evaluations of the area surrounding the

lighthouse, courtesy of Yelp and TripAdvisor.

While these screens appear separately, users can change screens easily using a drop-down menu

near the top of the application’s user interface. This connection among screens enhances the

narrative that I convey about lighthouses within the application.

10

1.5.2. Project Goals

 This proof-of-concept application allows users to experience the narrative space

surrounding each New England lighthouse and create shared experiences of that space through

photographs, knowledge of the monuments’ historical events, and visiting experiences. The

application also offers advanced filtering options for photographs featuring these seaside

landmarks in order to simplify prospective visitors’ planning processes for traveling to these

places. The application also serves to raise awareness of the beauty and historical interest that

each lighthouse possesses, potentially inspiring users to join a lighthouse visitor community that

assists local and regional lighthouse societies in preserving these landmarks.

 In order to create as feature-rich and user-friendly of an application as possible, I created

several high-level goals for this project:

 Explore ideas related to concrete places and abstract spaces to present appropriate

contexts for lighthouses within my application;

 Design the user interface using an iterative, audience-involved process to ensure optimal

usability within the target audience;

 Create efficient and easily extensible data structures within the application to allow for

simple updates to the information it presents; and

 Develop a set of image-processing algorithms that can classify photographs of

lighthouses and identify the presence of color- and shape-based features within these

images.

By fulfilling these goals, I created an application that lighthouse visitors express interest in

downloading.

 To further simplify the scope of this project, I worked closely with a regional lighthouse

society – The Lighthouse Preservation Society – to learn more about efforts to maintain

lighthouses in New England and to contact visitors of these coastal landmarks who have joined

this society. Founded in 1983, the organization preserves lighthouses for future generations to

enjoy, opens once-deactivated lighthouses for people to enjoy them now, and records the

histories of buildings and keepers associated with these lighthouses [3]. These lighthouses

represent important landmarks within the New England tourism industry, so maintaining these

monuments benefits the regional economy as a whole. According to the “Accomplishments”

11

page on the organization’s website, the society sponsors National Lighthouse Day and

coordinated 70 coastal lighthouse celebrations during the first installment of this event in 1989. It

has also funded the nomination of Maine’s lighthouses to the National Register of Historic

Places and has restored and relit several lighthouses [1]. Jay Hyland, the president of the society,

continues to monitor the maintenance efforts of New England lighthouses today and also

manages the “Dine at the Top of the Lighthouse” landmark in Newburyport, allowing visitors to

enjoy gourmet meals atop the tower [1]. Each lighthouse in New England appears within a

unique scenic, historic, and experiential space, which map very well to the “Photographs,”

“History,” and “Reviews” screens that my application contains.

1.6. Overview of Report’s Contents

 Throughout the remainder of this report, I describe the process I used to create the

application, from research to development. Each chapter focuses on a specific aspect of the

process. Chapter 2 discusses the features and drawbacks of existing travel-based websites and

applications and presents a high-level overview of ideas related to space and place. Chapter 3

presents the application’s final design and the process involved in creating the different screens

that users see. Chapter 4 describes the application’s high-level implementation structure as well

as the data structures, background threads, and image-processing algorithms that appear within

the application logic. Chapter 5 reports on the key findings from testing the image-processing

algorithms and conducting usability studies with prospective users. Finally, chapter 6 offers

some reflections on the project as a whole and offers recommendations for moving the project

forward.

12

2. Presenting Current Applications, Theoretical Foundation for Work
 Several travel-based websites and applications exist within the market today, but none of

them consolidate all aspects of a certain set of destinations, nor do they offer the immersive

experience that users crave when investigating the spatial narrative of a place. This chapter

discusses the features and drawbacks associated with six websites and eight Android

applications, which collectively contain information, photographs, historical details, and

recollections of experiences. It provides a theoretical foundation for my image-processing

algorithm implementations, and offers some commentary on Henri Lefebvre and Yi-Fu Tuan’s

ideas of space and place.

2.1. Current Websites Each Offer Narrow Scope of Travel-Based Information

 A number of dedicated websites deliver travel-based information to users planning on

visiting specific landmarks, including lighthouses. Each of these websites, however, focuses on a

specific aspect of traveling. Therefore, while website users planning on visiting a specific

location can learn a great deal about, say, the scenery of a given location, they must visit a

variety of websites in order to capture a clear idea of the scenery, key attractions, and visitor

experiences that a particular place has to offer.

 When investigating these travel-based websites, I found that they each discussed

information belonging to one or two specific categories of travel information. Table 2-1 below

maps each website to the category of information it displays. In particular, it illustrates how

some of the websites featured in this section discuss more than one aspect of traveling (such as

pictures and experiences). For the purposes of this review, I have designed a primary category of

information that each website contains. Each of these websites focuses on travel-based

landmarks in general, not any specific categories such as statues, bridges, or lighthouses.

Table 2-1. Primary and Secondary Categories of Information on Travel- and Experience-Based Websites

Website Pictures Locations Experiences

Flickr Primary Secondary ---

Panoramio Primary Secondary ---

Yelp Secondary Primary Secondary

TripAdvisor --- Primary Secondary

Cowbird Secondary --- Primary

Geocaching Secondary Secondary Primary

13

Each website featured in the above table contains a great deal of information belonging to one

category (the “Primary” category) and may contain some information characteristic of other

categories (the “Secondary” categories). This category transcendence shows the versatility that

some of these websites possess. Nevertheless, none of them encapsulate all of the information

that appears within the application I have developed, preventing prospective travelers from

appreciating the entire context of a place from one location in cyberspace. Readers can find a

more detailed discussion of each website in the above table under the heading matching its

primary category.

2.1.1. Organized Digital Photograph Collections Rely on Search & Filter, Not User Popularity

 Pictures showcase the interaction of color and light across a landmark, which viewers can

understand regardless of their cultural and linguistic backgrounds. The following websites, Flickr

and Panoramio, recreate a particular location’s visual element by presenting pictures of a

landmark or monument from a variety of users and viewpoints. On each site, users can examine a

picture’s properties – such as its resolution and location – and can even see how pictures relate to

one another geographically on a virtual map. The layering of locations and photographs allows

visitors of these websites to appreciate the different purposes for traveling to a particular

location, such as viewing interesting scenery or exploring historic landmarks. The method in

which these picture-based websites present photograph information and locations, however,

affects the degree to which Android developers, such as myself, can incorporate this information

into a smartphone application. In particular, Flickr’s API presents location information in a more

organized and fair way than Panoramio’s interactive map and photograph popularity rankings.

Flickr Presents Balanced Searching and Filtering but Favors Developers with Location Information

 Flickr allows end users and application developers alike to search for photographs of a

landmark that satisfy a specific set of criteria. Both sets of users can then view and filter these

results quickly and easily. By affording this functionality, Flickr presents photographs in a fair

and focused manner, honoring all types of photographers and photograph types capturing a

particular place.

14

 Flickr offers general users a convenient two-step search and filter system to find specific

types of photographs quickly, but it requires them to complete an unnecessarily long-winded

scavenger hunt through its website to associate photographs with a particular location. When end

users navigate to Flickr’s main page, they enter a set of words, requesting that all desired

photographs contain at least one of these words in their titles, tags, or descriptions. After

completing a search, end users see the first round of results and select a photograph to view more

Figure 2-1. Flickr's user-level advanced search lacks location-based filtering.

This page, showing every “Advanced Search” option available to general users, lacks a location-based filter despite

including date- and license-based filters.

15

information about it, including the photographer, licensing restrictions, and location (if the

photograph is geotagged). Some users remain satisfied with this general search-and-view

process, and Flickr’s advanced features remain conveniently tucked away for them. Travelers

who use Flickr as “power users,” however, usually like to refine the results even more, and

Figure 2-12 on the previous page shows that Flickr’s “Advanced Search” page does not present

any method of location-based filtering. Instead, users must navigate to the “World Map” page,

located under the “Explore” menu that appears in the top-left corner of every page on Flickr.

 As Figure 2-23 shows, the process for finding a lighthouse is far less intuitive and user-

friendly than it could be. When the page first loads, Flickr populates the map with a seemingly

random assortment of geotagged images from around the world. When users zoom in to a

particular location, they would most likely expect the page to refresh automatically, but it does

not. Instead, they need to select the “Search the map” button, which appears in an inconspicuous

location on the page, then enter in a search term and location within a new navigation bar that

appears, thankfully, in the same relative location on the screen.

 This bar’s transparency, however, forces users to forgo the text box hints because the

suggestions remain too difficult to read. Once users finally figure out how to zoom in on a

location and enter a search term, Flickr offers a good interactive interface, but most “power

users” will likely accumulate too much frustration and confusion to ever reach this part of the

website. I look to present a more satisfying user experience when users of my application search

for photographs by location.

 While Flickr does not present an intuitive interface for finding photographs based on

location to end users, the website’s application programming interface (API) makes this process

far simpler while retaining the simple search and filter operations that general users can

complete. Once developers have obtained an API key from the page entitled “The App Garden:

Create an App,” they can enter URLs with different query strings describing the types of

photographs they wish to view [5]. In order to complete a search for photographs based on

location and licensing restrictions, they can use the flickr.photos.search method, as

described on a page within Flickr’s API documentation [4]. A sample request-response pair

2 Image from https://www.flickr.com/search/advanced/?q=pemaquid%20point%20lighthouse, accessed April 11,

2014.
3 Image from https://www.flickr.com/map, accessed April 11, 2014.

https://www.flickr.com/search/advanced/?q=pemaquid%20point%20lighthouse
https://www.flickr.com/map

16

using this method appears in section 4.5.1, “Structuring Calls to Flickr’s API to Obtain

Geotagged Images,” of this report.

Panoramio Panders to Popularity, Preventing Indie Photographers from Achieving Visibility

 While Flickr presents a method of finding each photograph satisfying a particular set of

geographic and licensing requirements, Panoramio’s search mechanisms support – and favor –

better-known locations. When users wish to explore photographs taken from a specific location,

they can begin entering the name of that location in the search box in the top-center area on

Panoramio’s home page. The website then uses its auto-complete feature to suggest several

popular locations. If users wish to explore a location that Panoramio does not recognize, they

must either (1) search for the area based on tags added to photographs around that location on

Panoramio’s “Tags” page or (2) open a virtual world map and zoom in on the location of interest

on the website’s “Photos of the World” page [28, 29]. The extra steps necessary to find less

common locations cause users to favor more popular locations when searching for photographs,

reducing the likelihood for a developing area to gain visual prominence on the website. After

Figure 2-2. “Search the map” button unnecessarily hidden within Flickr world map.

When users zoom in on a region of interest, the pink dots indicating the relative locations of geotagged photographs

do not refresh, and the “Search the map” button appears in the bottom-center area of the screen (shown with a red

box around it above). This obscure location makes the entire page unnecessarily user-hostile.

17

users complete a search for photographs, they see the search results appear on a virtual map and

as a series of thumbnails, as shown in Figure 2-3 below4:

 By default, the website ranks these search results based on each photograph’s

“popularity.” The website bases an image’s popularity on the following criteria:

 Number of views;

 Number of users who have marked the picture as one of their “favorites;”

 Number of users who have commented on the photograph; and

 Resolution of the photograph.

The most popular photographs appear first in search results, as Panoramio explains on its

“Understanding popularity in Panoramio” page [30]. This “popularity algorithm” transforms

Panoramio from a simple photo-searching website to a significantly more complex “photography

social network,” where the places themselves accrue cultural capital. This ranking mechanism

also reduces the chance that users will find collections from a photographer who is new to

Panoramio, at least initially. New photographers might consider uploading their collections onto

a different website as a result.

4 Screen capture from http://www.panoramio.com/map/#lt=42.203262&ln=-

70.715817&z=3&k=2&a=1&tab=1&pl=all, accessed September 10, 2013

Figure 2-3. Sample Search Results Page on Panoramio

http://www.panoramio.com/map/#lt=42.203262&ln=-70.715817&z=3&k=2&a=1&tab=1&pl=all
http://www.panoramio.com/map/#lt=42.203262&ln=-70.715817&z=3&k=2&a=1&tab=1&pl=all

18

 Even though Panoramio offers a less than ideal method of searching for photographs and

exploring specific locations, the image details screen for each photograph supports some

interesting opportunities for exploring supplementary information about the image. The right-

hand side of the page displays a virtual map indicating the photograph’s location as well as a set

of small thumbnails beneath this map that display nearby photographs. In addition, this right-

hand sidebar displays some of the camera parameters associated with a photograph, such as the

exposure time and focal length for the picture. Aspiring photographers find this information

useful as they determine how best to capture a particular landmark. Panoramio presents this set

of data within a single “details” screen, without forcing users to select multiple links to discover

each image’s location and camera data. Therefore, viewers spend less time gaining a better

understanding and sense of appreciation for the location surrounding a particular photograph.

2.1.2. Locations

 The following websites provide information about the location associated with a

particular landmark. In addition to offering reviews of a point of interest, these websites present

related locations around a monument and suggest similar places for users. While Yelp and

TripAdvisor support searching functionality similar to that in my application, Yelp includes

“elite users” while TripAdvisor ranks nearby attractions, features that my application does not

include.

Yelp Introduces Popularity into Sorting Results, Uses Two-Step Search

 Yelp is an electronic listing website that connects top local businesses with their

customers who use Yelp’s services, according to the website’s “About Us” page. The businesses

themselves can upload paid advertisements onto the website, but Yelp clearly marks these

promotional materials as sponsored, and the site prevents paying advertisers from modifying

reviews that they have already uploaded. In addition, Yelp uses a filtering mechanism to block

comments that seem fabricated automatically [37].

 One of Yelp’s most interesting features involves its set of elite users, each of whom

serves as an ambassador to his or her local area and receives nominations from other users to

attain “elite” status. These “superusers,” with their visible badges on the Yelp website, provide

some of the most influential reviews of places within their respective regions of expertise. They

also receive new friends, invitations to parties at least once a month, and a variety of collectibles

from the Yelp community. Yelp recommends on its “Yelp Elite Squad” page that, if users wish

19

to enjoy this prestigious status, they need to demonstrate an unbiased, supportive set of opinions

about the locations they review and leave comments for landmarks that other users will find

interesting or relevant [36]. By leaving such trustworthy content on the website, these users earn

respect from their peers more easily.

 Yelp offers a good balance of control and usability on the pages with which users interact

in order to conduct and review a search for a particular landmark. To begin the process, users can

enter the name and location of a landmark into the two text boxes that Yelp provides in the top

navigation area on its homepage. Once the user selects one of the relevant search results, the

website loads a summary page for that landmark. This summary page includes photographs and

descriptions of experiences in addition to details about the location itself, as Figure 2-4 shows

below5:

Figure 2-4. Viewing location information, photographs, and user experiences for a point of interest on Yelp.

Within the results page for a particular location, users can (1) view a map of the surrounding area as well as

suggestions for nearby locations, (2) access photographs of the location, and (3) read about other users’ experiences

from visiting the point of interest.

5 Image from http://www.yelp.com/biz/west-quoddy-head-lighthouse-and-visitors-center-lubec, accessed April 9,

2014.

1

2

3

http://www.yelp.com/biz/west-quoddy-head-lighthouse-and-visitors-center-lubec

20

 After this page loads, several thumbnails of the landmark appear. Users can select one of

these thumbnails to view a larger version of the thumbnail as well as dozens of similar

photographs beneath it. The navigation area to the right of the vital information contains a small

map of the area surrounding the landmark and offers suggestions for related places that the user

may want to consider, as well.

 Yelp lists user experiences and reviews, sorted according to “Yelp Sort” by default. This

sorting algorithm takes into account how recently a user posted the review and the extent to

which other users found this review useful. People who examine the user reviews can also

choose to sort them by date and by rating. If a user has signed into Yelp before viewing search

results, (s)he can also filter the results to show only those by “elite” users and Facebook friends.

Each rating consists of a score (on a five-point scale), a date, and a description. The comments

tend to focus on the logistics of visiting the location, the helpfulness of the staff at the landmark,

and how the point of interest reflects the essence and culture of the nearby area.

 Within my application, I provide a similar two-step process that allows users to search for

a lighthouse. Since mobile applications favor interaction with widgets over keyboard typing, the

application directs users to select a state from a list, then select a lighthouse within that state

from a second list. The “Photographs” screen within my application provides the same

geographic context as the map along the right-hand side of Yelp’s landmark information screen,

as well.

TripAdvisor Associates and Compares Places with Nearby Attractions

 While Yelp focuses on points of interest during a journey, TripAdvisor serves to guide

users through their entire vacations. The latter site offers over 100 million pieces of candid

advice about locations at which to stay and visit, such as hotels and points of interest, and even

provides free travel guides, according to its website [31]. These travel guides include maps for

different cities and present information about the restaurants, attractions, and lodging options in

that city [16]. The guides and the website that provides them provide a more holistic sense of the

location in which a particular landmark is situated.

 TripAdvisor extends this general information approach to its searching process. Users

begin looking for a location by entering a point of interest in the search bar near the top-right

corner of the homepage. A results screen then appears, showing restaurants and hotels in addition

to individual landmarks. Users can search for landmarks only by selecting the Attractions option

21

in the Refine Search box on the left-hand side of the page. In addition to displaying information

about the point of interest, the main summary page displays users’ experiences as well as links to

other attractions, food, and lodging options, as Figure 2-5 shows below:6

 Beneath the vital information near the top, several thumbnails of the point of interest

appear. Users can select any of these thumbnails to open a pop-up window containing a larger

version of the thumbnail as well as a scrollable list of thumbnails along the bottom of the

window. The summary page also displays the ranking of the particular landmark among the other

points of interest in the surrounding area as well as the average review score (out of 5) and the

number of reviews. The individual reviews for the location appear further down on the page. By

default, these ratings are sorted by date and show reviews written in English first. Each review

contains a date, a score (out of 5), a description, and a number of “usefulness” votes from other

users in the TripAdvisor community. These reviews tend to focus on sensory details – in

particular the visual aspects of the location – as well as the overall experience and tips for other

attractions to visit nearby. Finally, the right-hand side of the page contains links to nearby hotels,

other attractions, and restaurants.

Figure 2-5. Viewing location information, photographs, and user experiences for a point of interest on TripAdvisor.

Within the results page for a particular location, users can (1) access photographs of the location, (2) read about other

users’ experiences from visiting the point of interest, and (3) view a map of the surrounding area as well as links to

nearby locations.

6 Image from http://www.tripadvisor.com/Attraction_Review-g60947-d655485-Reviews-

West_Quoddy_Head_Light-Lubec_Maine.html, accessed April 9, 2014.

2

3

1

http://www.tripadvisor.com/Attraction_Review-g60947-d655485-Reviews-West_Quoddy_Head_Light-Lubec_Maine.html
http://www.tripadvisor.com/Attraction_Review-g60947-d655485-Reviews-West_Quoddy_Head_Light-Lubec_Maine.html

22

 Unlike TripAdvisor, my application does not list attractions near a given lighthouse, since

the application serves to place users within the lighthouse’s visual and experiential space instead

of those nearby. Also, since a sizeable distance exists between neighboring lighthouses along a

coastline, I do not compare them directly in the manner that TripAdvisor does.

2.1.3. Experiences

 While websites discussed earlier in this section focus primarily on the physical aspects of

a location, the following websites emphasize the mental and emotional aspects of visiting a

location and interacting with a point of interest on a personal level. The pages on these websites

provide visitors with stories related to visiting a location and how these adventures illuminate the

visitors’ lives. In particular, Cowbird focuses on providing stories that last a long period of time

while Geocaching uses a social treasure hunt to increase the popularity for specific landmarks.

Cowbird Focuses on Timeless Aesthetics

 One website dedicated to experiences, Cowbird, turns the idea of learning about a

location through short, fast-paced bursts of information on its head. According to this website’s

“About” page, it is dedicated instead towards creating and expanding a library of human

experiences, creating a repository of collective wisdom that can grow over the course of

generations. The stories that describe these experiences on Cowbird contain more depth and

enjoy more long-term relevance than most other social media postings, in particular those on

Facebook and Twitter. Cowbird even displays this thoughtful presentation paradigm on its

“About” page, depicting testimonials from users of the website who share their appreciation of

the slower-paced, more intense connections they can form with the more in-depth narratives that

the website offers. Users agree that these stories allow them to categorize their thoughts in

meaningful ways, enriching each of their life experiences [9]. Cowbird’s “Culture” page reminds

users to post original content in a humble manner that respects the diversity of cultures who post

their life stories on the website [10]

 In order to help modern-day Internet users navigate through the unusual cyber-landscape

of thoughtful narratives, Cowbird has published a set of guidelines for finding and crafting

stories on its “Guide” page. The primary posting unit on Cowbird is the “story,” which contains

one page of text, one picture, and (optionally) an audio track.7

7 Cowbird recognizes users who sign up for a paid subscription as “citizens.” These “citizens” can present more than

one page of text and/or multiple pictures in a single story.

23

The textual element of each story must include:

 Characters (“who”);

 Description (“what”);

 Date (“when”); and

 Location (“where”).

Users can find stories satisfying a specific set of criteria – such as location, age range of

storyteller, and category of story – by using Cowbird’s advanced filtering mechanism, shown in

below:8

 Once users have found a particular story to read, they can select the

Connections link on a story to view related ones. They can also retell the

story or create a derivative story by “sprouting” their own narrative from the

one appearing in the search results. Some users work in tandem to create

groups of stories, which Cowbird calls “Projects” [11].

 While Cowbird does not yet have a saga (extensive project) dedicated to

lighthouses, it does allow users to apply a “lighthouse” tag to individual

stories related to these landmarks. These stories tend to focus on the beauty

of the lighthouse and its surrounding landscape as well as on how lighthouse

symbolize navigating through life’s obstacles and the passage of time. A

sample story about lighthouses on Cowbird appears in Figure 2-7 on the

following page.9

8 Image from http://cowbird.com/search/, accessed April 9, 2014.
9 Images from http://cowbird.com/story/40159/Lighthouse_On_Slapton_Sands/, accessed April 9, 2014.

Figure 2-6. Filtering Options within Cowbird.

Cowbird offers a powerful filtering system to

assist users in finding stories that match specific

criteria. These filters include: age range, gender

of storyteller, main character’s role, and location.

http://cowbird.com/search/
http://cowbird.com/story/40159/Lighthouse_On_Slapton_Sands/

24

Figure 2-7. Story about a Lighthouse on Cowbird.

This story discusses the joy of capturing the fleeting flash of the light that the lighthouse lens produce during the

nighttime hours. The photograph (top) complements the story about it (bottom) quite well. As of April 9, 2014, the

story’ statistics include: 27 “loves” (likes or +1’s), 1 “sprout” (this story has inspired one other), 1 “collection”

(compiled into one other user’s compilation of stories (s)he enjoys reading), and 64 “read” (number of users who

have viewed the story).

Geocaching: A Social Treasure Hunt that Increases Popularity of Specific Places

 While Cowbird focuses on the discovery of individuals’ thoughts and feelings,

Geocaching is a website dedicated to finding treasure boxes hidden around the world. According

to the website’s home page, the project involves 2 million locations and 5 million users. These

users embark on a modern-day treasure-hunting experience, searching for a location using

coordinates on a GPS or smartphone and sharing the experience of finding the location with

fellow members of the community online [18]. The project’s parent company, Groundspeak,

aims to bring together online communities in a specific physical space, encouraging more

outdoor exploration and socialization in the process [2].

25

 The “Geocaching 101” page describes the simple process of exchanging ideas and items

using these hidden geocaches. People who find these caches need to sign a log book online,

sharing their experiences of finding the cache with others in the community. These hunters can

take items from the geocache, but they must then leave something of equal or greater value in its

place [17]. Some caches contain special items called “trackables,” which members of the

Geocaching community can follow around the world. Some of these items merely symbolize

users’ traveling experiences, but others contain promotions from Groundspeak that serve as

incentives for users to find [19].

 The website dedicates a page to each cache that players can find using their GPS-enabled

devices. The challenge of finding a particular cache contains three aspects:

 Difficulty (out of 5);

 Terrain (out of 5); and

 Size (out of 4).

After listing this vital information, the page displays a brief description of the cache’s location

that may include an encrypted hint if a player needs extra help finding a particular treasure box.

The bottom of the cache listing includes a log book that contains a set of comments and a gallery

of images, both of which appear in Figure 110 on the following page. The comments for a given

cache tend to focus on the context of the players’ journeys, such as their trips to a set of caches,

and the enjoyment of finding the cache. Two of the most common comments include: “fun find”

and “TFTC,” which stands for “Thanks for the cache.” The images within a cache gallery usually

show people around the cache as well as the landscape surrounding a picturesque treasure box.

10 Images from http://www.geocaching.com/geocache/GC15114_fundy-tides?guid=63b0df25-5359-4c59-8f1d-

958d9a883e19 and http://www.geocaching.com/seek/gallery.aspx?guid=63b0df25-5359-4c59-8f1d-958d9a883e19,

both accessed on April 9, 2014.

http://www.geocaching.com/geocache/GC15114_fundy-tides?guid=63b0df25-5359-4c59-8f1d-958d9a883e19
http://www.geocaching.com/geocache/GC15114_fundy-tides?guid=63b0df25-5359-4c59-8f1d-958d9a883e19
http://www.geocaching.com/seek/gallery.aspx?guid=63b0df25-5359-4c59-8f1d-958d9a883e19

26

2.2. Existing Smartphone Applications Combine to Form Narrative Space

 The Google Play market and Apple’s App Store already feature several applications that

allow users to learn more about specific points of interest. Some of these applications serve as

guides to a particular area while others focus more on the historical or experiential aspect of a

landmark. Table 1 on the following page lists the applications that I discuss in this section, along

with several high-level details about each program. I attempt to weave together a set of

applications that describe location, history, experiences, and lighthouse information, which

appear as content units within my application.

 In general, these applications offer some compelling methods of interacting with the

pieces of information they provide, but they often overestimate users’ abilities to understand the

technological nuances of Android devices, use the application while connected to the Internet,

and interpret ambiguous icons.

2.2.1. Location Guides Compartmentalize Categories of Information

 These applications provide holistic overviews of a particular area for users who wish to

visit that location. These overviews include places to visit and activities to complete while in a

particular area. While the following products contain an abundance of information, users who are

looking for a specific piece of information will likely become frustrated as they navigate through

sections and screens that contain details irrelevant to them.

Figure 2-8. Log book entries and image gallery for the “Fundy Tides” geocache on Geocaching.

These two screenshots illustrate the log book (top) and image gallery (bottom) features that Geocaching

associates with each location that players can find. Note that the log book displays the searching success (or

lack thereof), using a smiley face at the top of each entry, and that the image gallery depicts images of several

landmarks surrounding the cache.

27

Table 2-2. Existing smartphone applications featuring specific points of interest.

The following applications serve a number of different purposes, but each focuses on virtual exploration of an area or place. All statistics shown here are accurate

as of May 5, 2014.

*All rating scores are out of 5.

Name

Publisher Platform Min. Version

Required

Number of

Installations

Average

Rating Score*

Number of Users

Rating App

Date Last Updated

Boston City

Guide

TripAdvisor Android 2.2 50,000 –

100,000

4.7 636 March 7, 2014

NYC Way –

Everything NYC

MyCityWay Android 1.6 100,000 –

500,000

4.1 686 December 10, 2013

HISTORY Here A&E Television

Networks Mobile

Android 2.3 100,000 –

500,000

3.7 624 February 5, 2014

America’s

National Parks

LBS Solutions Android 3.0 10,000 –

50,000

3.5 71 February 8, 2014

My Disney

Experience –

WDW

Disney Android 2.3.3 1,000,000 –

5,000,000

4.0 13,069 April 4, 2014

Foursquare Foursquare Android 2.2 10,000,000 –

50,000,000

4.2 327,633 April 29, 2014

US Lighthouses Lighthouse

Friends.com

Android 4.0 100 – 500 4.8 12 January 16, 2014

Lighthouse

Locator

MapMuse Android 4.0 10 – 50 N/A 0 January 9, 2014

28

Boston City Guide Divides Text into Headings, Allows for Continued App Use during Downloading

 Boston City Guide is one of several city-based products that TripAdvisor publishes to

provide individuals with an electronic pocket guide to an area, including information about

places to visit, eat, and stay. According to the application listing on Google Play, TripAdvisor

members submit descriptions and reviews of Boston-area locations, and professionals then edit

this information before the company publishes it to the application. The application also allows

users to follow several pre-loaded paths and find their respective locations using their phones’

GPS functionality. They can also create journals of their respective journeys, complete with

entries containing photographs and textual descriptions. TripAdvisor even avoids the need for a

constant Internet or data connection; all information about Boston is stored directly on users’

phones after completing an initial update [7].

 The application contains several levels of information that users can access. After it loads

a “welcome” screen, it prompts users to download more detailed maps and reviews, assuring

them that this data-gathering process occurs in the background and that they can still use the

application in the meantime. My application presents a similar mechanism, allowing users to

view details about a particular lighthouse while the application downloads photographs from

Flickr. While waiting for the application to deliver more detailed information to their devices,

users can read information about Boston by following the “Learn About the City” link. This link

leads to a list of links to descriptions about specific aspects of the city, from neighborhoods to

transportation options.

 While the general overview article contains a discouragingly long block of text and the

description of neighborhoods lacks a much-needed table of contents, the transportation page

presents several levels of headings quite nicely, separating types of destinations from modes of

transportation in a very reader-friendly manner. Also, some users have left reviews complaining

that the application does not provide sufficient details about Dorchester or Davis [7]. However,

the former area is probably too dangerous for most tourists to visit, and the latter is in

Cambridge, not Boston, so TripAdvisor need not provide more than minimal information about

either neighborhood.

 Once the application has finished downloading more specific information, users can view

these details from a variety of perspectives. Users can view listings of specific locations, such as

the Neptune Oyster restaurant shown in Figure 2-9 on the following page. They can even select

29

the picture on a given results page to display a larger version of the image and a link to view

additional photographs of the location associated with the listing. Users can also embark on

guided tours that the application calls “itineraries.” An example of one such itinerary appears in

Figure 2-10 below. The application breaks the guided path into a series of waypoints, each of

which contains a textual description taking up one to two times the height of the screen, a

photograph, and the distance from the user’s current location.

Figure 2-9. Sample location listing in Boston City Guide application.

This listing includes vital information and user reviews from TripAdvisor and allows users to select the thumbnail to

view more images of the point of interest.

Figure 2-10. Sample itinerary in Boston City Guide application.

This itinerary shows a list of waypoints as well as the distance from the user’s current location to the beginning of

the guided tour.

30

New York City – Everything NYC Offers Dashboard for Main Menu, Discusses History of Buildings

 Another location guide publisher, MyCityWay, has created an application called “New

York City – Everything NYC,” which presents a dashboard of “mini-apps” that allows users to

view various details about the most populous city in the United States, including navigation to

landmarks and cultural destinations. According to the listing on Google Play, this application

supports check-in and reservation requests from users, as well. In 2010, FOX News touted the

application as one of the five best travel applications available on the smartphone marketplace.

One of its main drawbacks, however, is its inability to load the user’s current location without an

Internet connection [26].

 The application presents a structured but complex set of “mini-applications” for users to

view after it loads. The application starts by displaying a startup splash screen containing a

blurred image of New York City traffic before the main menu loads. This main dashboard

screen, shown in Figure 2-12 on the following page, resembles the home screen on an iPhone.

This screen presents a plethora of possibilities for users, and reviews of this application show

that they appreciate the diversity and currency of information that this product offers [26].

However, the application only partially suggests a possible order for opening these “mini-

applications” by placing them on three separate screens.

 Users can view specific points of interest by searching the search icon on this main

dashboard and entering a search term in the box that appears. The results screen allows the user

to view the search results through a particular lens. For example, tourists can visit the Brooklyn

Bridge as part of a standard journey to the city’s different attractions, or they can travel to a

restaurant containing the phrase “Brooklyn Bridge” as part of a nightlife experience. Once users

have selected a point of interest, a location listing appears in a format similar to that shown in

Figure 2-12 on the following page. This page shows only basic vital information and relies on

links to other applications for users to view more detailed information, such as the phone

application to place a call or the browser application to view user experiences on Yelp,

Cityscape, or Foursquare.

31

 Finally, users view more detailed information about older locations within New York

City. Users start this process by opening the “Tourism” mini-application and selecting the

“Historic Tours” option from inside this screen. They then select the neighborhood or borough of

interest and view a list of historical places. Each of these places contains a listing similar to the

ones that discuss different attractions, but these historical-based descriptions also contain

pictures of the location and a brief description of its journey through time. These stories tend to

emphasize the building process and materials as well as the lore associated with a given location.

My application includes a similar focus on structures and famous stories related to lighthouses

within the “History” screen.

2.2.2. History Exploration Present Stories Well at Cost of Information Volume and Access Speed

 The Android platform includes several applications for viewing historical information

about local landmarks across the United States. Two of these applications – HISTORY Here and

America’s National Parks – present historical information in a conveniently succinct, context-

sensitive manner, but they each present few options for users to specify the type of landmark

they wish to view.

HISTORY Here Presents Good Stories but Lacks Content Volume

 A&E Television Networks Mobile provides an application called HISTORY Here that

presents collections of photographs, videos, and interactive maps. It allows users to explore

Figure 2-12. First screen of main dashboard within

New York City – Everything NYC.

This “home screen” provides a comprehensive – if

overwhelming – perspective on the application’s

capabilities.

Figure 2-11. Sample location listing in New

York City – Everything NYC.

Listings of attractions in and around New York

City rely on links, rather than direct textual

descriptions, to provide users with information

about them.

32

thousands of historic locations across the United States [21]. The application achieves superb

base functionality by presenting context-sensitive historic information effectively, but it offers a

limited variety of content that users cannot easily filter.

 Each landmark contains a focused, context-sensitive historical “story,” making the

application very user-friendly to general audiences. The historical details about a particular

landmark remain short – at most a screen and a half in length – and focus on the events that have

taken place in a landmark in terms of the country’s general history. Furthermore, the application

caters to each location being described, adding a welcome sense of variety for users. After seeing

the beneficial effects of these location-driven information screens, I decided to follow a similar

approach within my own application, including historical events that related to the lighthouse

itself as well as the surrounding region.

 While the details about landmarks featured in the HISTORY Here application present a

welcome sense of relevance, the total scope of information remains somewhat lacking and

difficult to filter. According to reviews on the Google Play Store website from Daniel Thomas

and Stephanie Long, the application does not yet contain enough user-generated content.

Furthermore, since each set of historical details discusses a landmark in a self-contained manner,

the lack of places represented in the application prevents users from appreciating the spatial

context of these landmarks. Also, users have the option to view the landmarks near a specified

location in a “list view,” but they must view the places within this list in order of increasing

distance. The application does not present any other filtering options, limiting users’ ability to

investigate a specific type of landmark, such as a lighthouse. In order to give users a better sense

of control when using my application, I present a variety of sorting options to users when they

see the “search results” for a particular lighthouse query, including distance and name similarity.

America’s National Parks Offer User Journey Feature after Obnoxiously Long Download Process

 Another history-based application, “America’s National Parks” (presented by LBS

Solutions), includes information about hiking trails and recreational activities within each of the

58 national parks in the United States. While the application applies a fairly focused historical

lens on each park and offers offline access to some of its features, the layout and functionality of

its high-level navigation makes it difficult for users to access historical details and create their

own journeys in the first place.

33

 The application’s initial screens do not present an ideal user experience and might even

discourage people from using ti entirely. As soon as the application loads, it displays a list of

each park that the application supports, alphabetized by park name. Users cannot filter this list,

nor can they sort it using any other method, such as by state. Also, the text within the list remains

quite small, especially on my smartphone, where I have the “large text size” option enabled.

Once users have selected a specific park to download, the application displays a message

warning users that the ensuing download operation required to view information about the park

will take a great deal of time. If users agree to continue with the downloading process, they see a

progress dialog box for an unacceptably long period of time, and they cannot proceed within the

application until it has downloaded an archive file containing the park’s information and

“imported” (unzipped) its contents within the application. The one saving grace with this process

is that users can elect to import information from a local, cached archive file should they

interrupt the unzipping process. I made sure that my application avoids such a long, modal

operation by completing photograph downloading tasks as background threads.

 Once users have survived the park selection and download steps, they can then appreciate

the positive aspects of the application, including the focused historical details and well-designed

“user journey” feature. When users view a specific park, they can then select the “Information”

option from another list and view a set of historical events that have taken place at the park.

These details fit within the area of the screen, allowing the user to capture an appreciation for the

historical context of a specific national park without needing to scroll or access additional lists. I

appreciated the ability to view historical details on a single screen; therefore, my own application

presents a given piece of historical information on a single screen, as well. Users can also create

their own “journeys” within a park, annotating a set of trails they wish to explore with

photographs and comments. Users can even choose to save specific tours to their respective

devices so that they can access them later without an Internet connection. This lack of reliance

on a phone’s network status gives the application a key advantage, especially since cell phone

reception within national parks might be suboptimal. Since lighthouses also reside in areas with

poor reception, I include as much offline functionality as possible within my application.

2.2.3. Collecting Experiences: Offering Personal Travel Logs with Technological Drawbacks

 Android users can choose from several applications that enhance their traveling

experiences to iconic landmarks – such as Walt Disney World. While these applications offer a

34

variety of user interaction options, they often contain technological shortcomings, such as

unnecessarily stateless behavior and ambiguous icons.

My Disney Experience – WDW Offers Personalization with a Stateless Server

 As a method of marketing “the happiest place on Earth” to prospective and current

visitors of its theme parks, Disney has created a set of applications that consolidates people’s

travels through these places, aptly entitled “My Disney Experience” collectively. This paper

focuses on the version of the application featuring Walt Disney World in Lake Buena Vista,

Florida. While the application presents a variety of customization options that personalizes user

experiences with the application – as well as their trips to Disney World in general – the

application’s statelessness reduces the rate at which users can navigate through the different

screens featuring elements of the theme park.

 This application contains a great deal of personalization features that gives users the

pleasing sense that Disney cares deeply about them as individual people. Upon selecting an event

taking place at the theme park – such as Illuminations at EPCOT – the application gives users the

option to add it to their “plan” for visiting the park, allowing them to accumulate events of

interest within a personalized itinerary that they can access and share elsewhere within the

application. My application does not support this “wish list” functionality as of yet, but a future

version could allow users to form a lighthouse vacation plan more easily.

 While Disney’s application affords user-based content, it presents this information behind

a stateless server, forcing users to complete some unnecessary steps for accessing the itineraries

that they have formed. Upon first opening, the application asks users if they wish to learn about

its new features, which takes users to a self-contained screen detailing the latest updates to the

application. While some users might enjoy learning about the application’s latest improvements,

most would rather view their itineraries first and instead access this information when they wish

to view it, not when the application wishes them to view it. Also, because the application does

not maintain users’ identities, they must sign in and present their current location over Wi-Fi

continually. This constant user information refreshing process limits the speed at which users can

access their travel details and makes this process impossible in areas lacking a stable Internet or

network connection. In particular, my application caches the photographs for the lighthouse that

the user most recently viewed so that they can access them more quickly and in airplane mode as

desired.

35

Foursquare Offers Great Social Experience, but Icons Not Easy to Comprehend

 This social travel experience application allows users to “check-in” to locations with their

Facebook friends and contacts. Users can also browse recommendations for places to visit from

these trusted companions. The application’s popularity and its prestigious “Editors’ Choice”

designation indicate its influence within the travel experience sharing community.

 Foursquare demonstrates an impressive variety of interactive options, but some of the

visual representations of button options do not seem very clear. The “search results” page

includes several useful filtering options, including sorting by “best match” or by “distance” and

viewing only the places that offer specials or inexpensive services. These filtering options offer

users a more personalized experience with the application, and the photograph filters within the

Lighthouse Navigator allow users of my application to do the same when viewing photographs

of a lighthouse. The information page for a particular landmark includes several sample

photographs and a link to a gallery containing dozens or hundreds more. My application also

benefits from showing small but coherent pieces of a photograph gallery upon loading

information about a lighthouse. The bottom of the screen features some opportunities for users to

share their own experiences of a location. In particular, the “Leave A Tip” and “Suggest an Edit”

buttons include both an icon and text, giving users two modes of recognizing these options.

However, while the presence of icons could help those with good visual memories, this particular

pair features graphics that resemble each other too much for most users to retain their design for

very long. My application sidesteps this potential issue by including only textual buttons within

the different screens that offer users opportunities to share their lighthouse experiences.

2.2.4. Lighthouse Information Dependent on Internet but Rich in User Interface Aesthetics

 Several applications featuring lighthouses already exist within the Google Play Store.

These applications tend to focus on the geographic or historical contexts of the seaside

monuments. While these applications feature some aesthetically appealing user interface

elements, they overvalue good design over extensive functionality in the process.

US Lights Relies Heavily on Internet Connectivity

 This application presents a mobile version of Kraig Anderson’s website,

lighthousefriends.com. As users view information about lighthouses within this

application, they can listen to historical information read to them and keep a “personal journal”

36

of their journeys to different lighthouses, including dates traveled and notes for preserving

memorable experiences from these trips.

 Anderson’s application presents several interesting representations of information but

relies heavily on users’ ability to connect to the Internet while viewing information about

lighthouses. While viewing general information about a specific lighthouse, users can see a

variety of icons near the top menu tabs. These icons present a variety of details, such as

accessibility by car, appearances in pop culture, and types of technology used within the tower.

Even better, users can select an icon to display a pop-up message explaining the meaning of each

icon. This clear text-to-icon correspondence allows users to learn the meaning of the icons that

they find interesting. The “search results” screen features a more subtle but equally effective

visual technique. Each result contains the name of the lighthouse, its location, and a thumbnail of

a photograph taken at that location, organized into a clean information collection. My application

imitates this interface element, providing users with a geographic and visual context for

lighthouses as early in the application experience as possible. The only drawback with the “US

Lights” application involves its offline functionality. Without an Internet connection, users can

view only one photograph and the history of the lighthouse. Since lighthouses do not always

offer reliable phone service, I ensure that my application features substantial offline

functionality, most notably the cache of photographs downloaded from Flickr.

Lighthouse Locator Offers Tabbed Browsing, Crowdsourcing Improvements

 MapMuse’s version of a virtual lighthouse navigation tool allows users to search for

lighthouses on an interactive map or by using a list. Once information about a single lighthouse

appears on the screen, users can view photographs and a brief description of each lighthouse.

 The application features a simple but effective user interface and few key pieces of

auxiliary information that further improve the user experience. The menu tabs (“Map,” “List,”

and “Faves”) near the top of the screen offer a simple method for navigating among the content-

based screens of the application. My application does not include this tabbed structure only

because it features four different content-based screens, and tabs become cumbersome when

trying to display more than three options simultaneously. Also, the application presents an option

inviting users to “Add a Missing Place” if they notice that a monument does not appear within

the application. This crowdsourcing tool allows the application to contain correct, up-to-date

information more reliably. While I do not present an interactive feedback screen within my

37

application, I still include my email address on the “Welcome” screen of my application, which

allows users to offer suggestions for improvement as desired.

2.3. Key Research Involving Images and Image-Processing Algorithms

 The general public tends to use the terms “image processing” and “image editing”

interchangeably when working with digital images. However, image editing (or image

manipulation) involves adjusting an image’s features using commercial software, such as Adobe

Photoshop and the GNU Image Manipulation Program (GIMP). Image processing involves

designing and developing the programs that people use to complete tasks related to image editing

[41]. Numerous programs exist for manipulating images (such as Adobe Photoshop and GIMP)

or processing images (Khoros/VisiQuest, IDL, MATLAB, and ImageMagick). However, few of

these applications allow users to (easily) perform both manipulation and processing tasks

together. ImageJ, on the other hand, combines image manipulation with image processing quite

well. The software includes a number of built-in functions for manipulating images, and its plug-

in architecture allows programmers to implement additional image-processing algorithms [41].

Even better, the ImageJ program contains only Java code, which combines well with the Android

development environment. Most standalone image-processing applications, such as the ones

listed above, use C or C++ instead, so I explain the benefits of using ImageJ within the

Lighthouse Navigator application.Image File Formats Offer Different Levels of Compression; JFIF

Best for Web, Mobile

 Given the variety of uses for photographs on digital machines, programmers have created

several different types of image formats that image processing software can use; the trade-off

usually involves storage space and image resolution. The Portable Network Graphics (PNG)

format supports images containing a depth of 16 bits or less and includes an alpha channel (for

transparency) with each pixel, which can also be up to 16 bits wide. It also supports indexed

images that contain up to 256 colors. The format even supports lossless compression using a

method similar to Phil Katz’s ZIP (PKZIP) [41]. In 1990, the Joint Photographic Experts Group

(JPEG) established a standard for compressing images by a factor of 16. This compression ratio

has since increased to around 25; as a result, the algorithm that the standard uses can now

compress an 8-bit RGB image into one bit per pixel with minimal loss in perceived image quality

[41]. An algorithm defined by the JPEG File Interchange Format (JFIF) transforms the RGB

channels in a color image to the YCbCr space to separate the colors’ hues from their brightness. It

then performs a significantly larger amount of compression on the hue portion of each pixel’s

38

color data because humans can tolerate drastic changes in hue more easily than sharp contrasts in

brightness [41]. While PNG remains the most popular image format on the Web, the large file

sizes that accompany the format make it less desirable in low-storage situations, such as internal

storage space on smartphones. JFIF images, on the other hand, support compression necessary to

save storage space. Therefore, I have chosen to store the images depicting lighthouses in the

JFIF/EXIF format within my application.

2.3.2. Color Histograms Graph Relative Concentrations of Grayscale Intensities

 The histogram corresponding to a given image displays the frequency distribution of the

image’s different levels of intensity. The horizontal axis of these graphs represent different

intensity levels within an image, and the vertical axis represents the number of pixels within an

image that contain a given intensity level [41]. An example histogram appears in Figure 2-13

below:

The photograph’s histogram shows image-processing programmers and algorithms alike that the

image contains fairly equal amounts of darker shades of gray and that a significant percentage

(about 16%) of the image’s pixels contain a specific intensity value of 184 (light gray) [41].

Histograms for color images represent either the corresponding grayscale image using a

Figure 2-13. Sample grayscale image and its corresponding histogram.

Note that the majority of the photograph’s pixels appear in light gray (intensity value of 184), as depicted by

the global maximum near the right-hand side of the histogram, which “graphs” intensity values from black

(intensity value of 0) to white (intensity value of 256) [41].

39

weighted average11 of the color channels’ intensity values to determine the corresponding

grayscale intensity for each pixel, or they display the intensity distribution for each color channel

within the image (such as red, green, and blue). Usually, the latter type of histogram presents

more information about possible saturation and exposure issues with the image [41].

2.3.3. Cumulative Color Histograms Depict Parts of Image Containing Ranges of Intensity Values

 Cumulative histograms represent a sort of integration of the typical histogram. Each

column in the cumulative histogram represents the sum of the number of pixels that contain an

intensity corresponding to that column and the total number of pixels that contain a lower

(darker) intensity value than the one corresponding to the column [41]. A concrete example

appears in Figure 2-14 below:

11 For example, the International Telecommunication Union Radiocommunication Sector (ITU-R) presents

suggested coefficients of R = 0.2125, G = 0.7154, and B = 0.072 for high-definition television sets and digital

images in its Recommendation BT.709 (ITU-R Rec. BT.709). This set of coefficients reflects the relative apparent

brightness of each component color (blue, for example, naturally appears much darker than red and green to the

human eye) 41. Burger, W. and Burge, M.J. Digital Image Processing: An Algorithmic Introduction Using Java.

Springer Science+Business Media, LLC, New York, New York, 2008.

Figure 2-14. Sample grayscale image with its corresponding cumulative histogram.

The slope of an image’s cumulative histogram graph H(i) increases significantly at the intensity values

containing a local maximum within the original histogram h(i). In the image above, these “spikes” in

slope occur at intensity values of about 100 and about 200 [41].

40

As shown in the figure above, the given image contains a significant number of pixels with an

intensity value of about 100, and another large set of pixels contain an intensity value of about

200.

2.3.4. Binary Regions: Locating where Foreground and Background Meet

 A binary region comprises a set of adjacent pixels that each contains the same intensity

value within a binary image. To describe an image in terms of binary regions, image-processing

software needs to determine the number of regions within the image and the set of pixels that

reside within each region. Software can complete this region segmentation process, typically

called region labeling or region coloring, in two primary ways: flood filling and sequential

region marking [41]. I use sequential region marking to identify regions for the color-based

feature-matching algorithm that my application uses (see section 4.7.4, “Identifying Presence and

Absence of Rocks using Color-Based Feature-Matching”).

Flood Filling Explores Regions Outward

 Flood filling takes a pixel containing the “foreground” color as the starting point and

explores neighboring pixels until the algorithm has discovered the entire region that contains the

original pixel [41]. Programmers should use iterative versions of this algorithm so that the

program can store neighboring pixels that it has not yet explored on a heap stack, rather than the

(very limited) call stack [41]. Also, breadth-first variants of the iterative flood-filling algorithm

tend to create smaller stacks than their depth-first counterparts because the breadth-first variants

tend to find the region’s edges at approximately the same time, minimizing the number of

elements allocated to the algorithm’s stack [41].

Sequential Region Marking Processes Each Pixel within Image, Assigns Codes to Regions

 Sequential region marking traverses the image from top-left to bottom-right in row-major

order [41]. For 8-connected image regions (regions where two pixels are connected as long as

they are adjacent vertically, horizontally, or diagonally), the algorithm assigns a given pixel to

the same region as its left, top-left, top, or top-right neighbor. If an edge lies on each of those

four neighboring pixels, then the given pixel becomes the first one in a new image region [41].

 As the algorithm progresses, “image region collisions” can occur, where two neighbors of

a given pixel appear to belong to two different image regions but in fact reside in the same image

“super-region.” If the algorithm encounters such a collision, it notes its presence, then arbitrarily

selects one of the neighbors’ image regions to assign to the pixel at the “collision point” [41].

41

During the second pass through the image, the algorithm examines these “collision points” and

merges the image regions as necessary [41]

 Burger and Burge claim that the breadth-first flood-filling algorithm provides the best

option for large, complex images [41]. However, the images that I use for edge detection are not

that large and contain few distinct regions, which makes sequential region marking a viable

algorithm for me to implement.

2.3.5. Cumulative Histogram Matching: The Cornerstone for Classifying Images

 Image-processing software can execute a histogram matching algorithm to align the

intensity histogram of one image more closely with that of a given “reference image.” The

algorithm completes this process by examining the cumulative histograms of the given image A

and the reference image R (represented as PA and PR, respectively). Section 4.7.3, “Classifying

Images based on Stereotypical Sunny, Cloudy Weather Conditions,” discusses how I use this

algorithm within my application to categorize images based on sky conditions.

 For each intensity value a in the original image (A), the algorithm computes the

proportion of pixels in the image that contain an intensity value of a or less. The algorithm

represents this value as PA(a) or b. The algorithm then examines the cumulative histogram of the

reference image (R) and determines the intensity value aʹ that contains a value of approximately

b. The algorithm represents this second value as PR
-1(b).

 Putting these two equations together, the algorithm can successfully map the intensity

each intensity value a from the cumulative histogram of the original image onto an intensity

value aʹ from the cumulative histogram of the reference image such that PA(a) = PR(aʹ). Solving

for aʹ yields the general histogram matching equation:

aʹ = PR
-1(PA(a))

42

Figure 2-15 below shows a graphical representation of the algorithm’s matching process [41]:

 While the general histogram matching equation works wonderfully well in theory, most

practical applications instead use a variation of this formula when processing two images

containing discrete intensity histograms. The algorithm begins by forming the cumulative

histogram of each image based on its respective intensity histogram. Since the original intensity

histograms contain discrete values, the cumulative histograms remain non-continuous, non-

invertible functions.

 To compensate for this mathematical inconvenience, the algorithm discretizes the process

of mapping the intensity values between the two images. In particular, the algorithm forms

“blocks” for each intensity value a in the original image. Each block’s height represents the

percentage of pixels in the original image that contain the intensity value a. The algorithm then

takes each of these “blocks” and attempts to fit it under the cumulative histogram curve

corresponding to the reference image. The algorithm “pushes” this block right to left under the

curve until the value before the one that would cause the block’s height to exceed the value of PR

at that point. This process continues, with each block “stacked” on top of the blocks that

correspond to lower intensity values of the original image. The resulting mapping of PA(a) →

PR(aʹ) ensures that, for all intensity values a in the original image, PA(a) ≤ PR(aʹ).

Figure 2-15. The general histogram matching algorithm: Mapping cumulative histogram intensity values.

The algorithm takes a given intensity value a from the original image A (right) and determines the proportion of

pixels within A that contain an intensity value of a or less. It then determines the intensity value aʹ within the

reference image R (left) that contains that same proportion such that PA(a) = PR(aʹ). In this manner, the algorithm

maps each a in A to a single value aʹ in R [41].

43

Figure 2-16 below illustrates this “block-stacking” process [41].

2.3.6. Template Matching, A Process to Locate Shape-Based Image Features

 When attempting to locate a feature of known composition within an image,

programmers rely on template-matching algorithms. These programs take a reference image

containing the desired feature and overlay this image on a larger search image of unknown

contents. I use this algorithm within my application to perform the shape-based feature matching

within an algorithm, as described within section 4.7.5, “Determining Presence or Absence of

Lighthouses using Shape-Based Feature-Matching.”

 The algorithm aligns the top-left corner of the reference image with that of the search

image and compares the contents of the overlapping pixels. It then moves the reference image

one pixel to the right, continuing until the right edge of the reference image has “fallen off” the

edge of the search image. This process continues for each of the search image’s rows until the

bottom edge of the reference image has “fallen off” that of the search image. Finally, the

program determines the set of coordinates where the top-left corner of the reference image was

located when the algorithm calculated a maximum amount of similarity between the two images

[41]. A good method of computing the similarity between a reference image R and a search

image I at position (i, j) involves taking the sum of the squares of the 2-dimensional Euclidean

distance between each pair of corresponding pixels in R (r, s) and I (r + i, s + j), as shown below:

Figure 2-16. Discretization of the general histogram matching algorithm: “stacking”

intensity value “blocks” from the original image onto the reference image.

The algorithm takes each intensity value a in the original image A (right) and creates a “block” of size pA, or the

proportion of pixels in the original image that contain an intensity value of exactly a. The algorithm then “pushes”

this “block” from right to left over decreasing intensity values within the reference image R (left) until it reaches an

intensity value b where the proportion of pixels in the reference image containing an intensity value of b or less

(PR(b)) becomes less than the corresponding proportion for point a in A (PA(a)). The algorithm then maps the

intensity value a with b + 1 = aʹ, or one more than the “threshold” intensity value for PR [41].

44

d𝐸
2 = ∑ (𝐼(𝑟 + 𝑖, 𝑠 + 𝑗) − 𝑅(𝑖, 𝑗))

(𝑖,𝑗)∈𝑅

2

= ∑ 𝐼2(𝑟 + 𝑖, 𝑠 + 𝑗) − 2

(𝑖,𝑗)∈𝑅

⋅ ∑ 𝐼(𝑟 + 𝑖, 𝑠 + 𝑗) ⋅ 𝑅(𝑖, 𝑗)

(𝑖,𝑗)∈𝑅

+ ∑ 𝑅2(𝑖, 𝑗)

(𝑖,𝑗)∈𝑅

In the above equations, the limits of each summation ((i, j) ∈R) represent the set of all points (i,

j) that exist within the reference image R. The point of maximum similarity then matches the

point where the square of the Euclidean distance between the two images reaches a minimum

[41].

 The middle term of this “base equation” contains a special name in statistics: the linear

cross correlation between I and R [41]. Unfortunately, the linear cross correlation changes

drastically as the intensity values within the search image I change. Therefore, many programs

use a normalized linear cross correlation, which includes the effects of the intensity values

within both the search image and the reference image. This adjustment changes12 the squared

Euclidean distance equation to:

d𝐸
2 = ∑ 𝐼2

(𝑖,𝑗)∈𝑅

(𝑟 + 𝑖, 𝑠 + 𝑗) −
∑ 𝐼(𝑟 + 𝑖, 𝑠 + 𝑗) ⋅ 𝑅(𝑖, 𝑗)(𝑖,𝑗)∈𝑅

√∑ 𝐼2(𝑟 + 𝑖, 𝑠 + 𝑗)(𝑖,𝑗)∈𝑅 ⋅ √∑ 𝑅2(𝑖, 𝑗)(𝑖,𝑗)∈𝑅

+ ∑ 𝑅2(𝑖, 𝑗)

(𝑖,𝑗)∈𝑅

Note that the R2 term in the above equation is constant for a given reference image R. Also, the

normalization process turns the I2 term into a constant, as well. Therefore, an algorithm can use

only the middle term within the above equation and still compute an accurate metric of similarity

between I and R [41].

 The middle term of the above equation corrects for existing intensity values within I and

R but loses its robustness when considering the relative differences in intensity values between I

12 Note that this modified equation also drops the constant factor “2” from the middle term, as it has no effect on the

relative Euclidean distances for the different points that the algorithm inspects.

45

and R. An equation that introduces the average intensity value of I and R into the equation can

solve this problem:

𝑟 =
∑ (𝐼(𝑟 + 𝑖, 𝑠 + 𝑗) − 𝐼(̅𝑟, 𝑠)) ⋅ (𝑅(𝑖, 𝑗) − 𝑅)̅̅ ̅ (𝑖,𝑗)∈𝑅

√∑ (𝐼(𝑟 + 𝑖, 𝑠 + 𝑗) − 𝐼𝑟̅,𝑠)
2

(𝑖,𝑗)∈𝑅 ⋅ √∑ (𝑅(𝑖, 𝑗) − 𝑅̅)2
(𝑖,𝑗)∈𝑅

 …where…

𝐼𝑟̅,𝑠 =
1

|𝑅|
⋅ ∑ 𝐼(𝑟 + 𝑖, 𝑠 + 𝑗)

(𝑖,𝑗)∈𝑅

 …and…

𝑅̅ =
1

|𝑅|
⋅ ∑ 𝑅(𝑖, 𝑗)

(𝑖,𝑗)∈𝑅

The above equation is set equal to r because it in fact calculates the correlation coefficient

between the two images, which statisticians will recognize. When r = 1, the two images contain

identical intensity values across all pixels, and when r = -1, the two images do not contain any

intensity values in common across their respective pixels [41].

 Since the right-hand term in the denominator is in fact the number of pixels in R times the

variance in that image’s intensity values and the local average of the search sub-image I need not

be computed until the end, it is possible for programs to calculate the correlation coefficient in

Ο(ij) time [41]. More advanced algorithms can even assign weights to certain areas within the

reference image so that, for example, matches with the center quarter of the image receive twice

as much “value” from a correlation perspective [41].

 Nevertheless, the correlation coefficient exhibits only suboptimal robustness when

comparing a reference image to a search image that contains the desired feature at a different

scale or rotation from the original value. Affine matching methods use localized statistical

46

features of images to compensate for any affine transformation differences between the two

images [41].

2.3.7. Chamfer Feature-Matching, An Advanced Form of Template Matching

 Algorithms cannot use direct comparison between a binary reference image and a

corresponding search image because the limited color palette (foreground and background)

creates discretized distance functions that contain many “false positive” maxima [41]. Instead,

they use a function called the distance transform, which calculates the distance from a given

pixel to the nearest pixel containing the foreground color. (If the pixel itself contains the

foreground color, then the distance transform for that location is 0).

 The chamfer algorithm, which Borgefors explores in his paper, calculates the distance

transform (DT) for a given binary image by iterating through the image’s pixels once from top-

left to bottom-right in row-major order, then again from bottom-right to top-left in row-major

order. I use this algorithm to simplify the process of detecting lighthouses within my application,

as discussed in section 4.7.5, “Determining Presence or Absence of Lighthouses using Shape-

Based Feature-Matching.” In his paper, Borgefors analyzes several types of distance transform

(DT) functions and determines the maximum distance error that each DT accumulates relative to

the “ideal” Euclidian distance transform (EDT) function. In particular, he examines the proper

numerical approximations to assign for distances between adjacent pixels, as shown in Figure

2-17 below:

Figure 2-17. Approximation of

Distances from a Pixel to Its 8-

Connected Neighbors (3×3).

For each pixel in a binary image, it is a distance 0 away from

itself, a certain distance a from its vertical and horizontal

neighbors, and a different distance b from its diagonal

neighbors. Borgefors claims that the best integer approximation

47

When using a = 3 and b = 4 instead of a = 1 and b = √2 to approximate 8-connected distances in

a 3×3 neighborhood, the maximum difference between this DT approximation and the “ideal”

EDT becomes slightly smaller, especially for pixels fairly far away from the center reference

pixel for the DT calculation. Therefore, Borgefors recommends using the chamfer 3-4 DT

approximation in 3×3 neighborhood situations [40].

 Borgefors recommends using the chamfer 5-7-11 DT (with a 5×5 neighborhood, as

shown in Figure 2-18 below) when the algorithm needs to compute distances that nearly match

the “correct” EDT function. He adds, however, that the chamfer 3-4 DT (with a 3×3

neighborhood) can provide sufficiently accurate results when the program needs to minimize

computational complexity or take imperfect binary image features (noise) into account [40].

Since I am developing my application for mobile platforms where users expect quick response

times, I have decided to sacrifice accuracy for computational speed and use the chamfer 3-4 DT.

The features in some of the binary images I construct are somewhat noisy, anyway, which

reduces the accuracy benefit that a chamfer 5-7-11 DT would provide.

Figure 2-18. Approximation of Distance from a Pixel

to Its Nearest 24 Neighbors (5×5).

For each pixel in a binary image, it is a distance 0 away from itself,

a certain distance a away from its vertical and horizontal neighbors,

a different distance b from its “short” (adjacent) diagonal neighbors,

and a different distance c from its “long” diagonal neighbors (those

that are one “chess knight move” away from the center reference

pixel). Borgefors claims that the best integer approximation for 5×5

neighbor situations is a = 5, b = 7, and c = 11 (adapted from [40]).

48

Chamfer Value Propagation: How to Tell Where Nearest Foreground Neighbor Is?

 As the chamfer algorithm visits each pixel (in a 3×3 case), it checks the pixel’s left, top,

top-left, and top-right neighbors during the first pass (the same set of neighbors as in the

sequential region marking algorithm) and the pixel’s right, bottom, bottom-left, and bottom-right

neighbors during the second pass. It then sets the pixel’s distance transform value to the

minimum chamfer value among the four neighbors. This chamfer value is equal to the sum of the

DT value for a neighbor pixel and its distance from the pixel currently being examined (one

distance for vertical/horizontal neighbors, and a different distance for diagonal neighbors).13 For

pixels within a search sub-image that align perfectly with foreground pixels in the superimposed

reference image, this chamfer value is 0 [41].

 After computing the chamfer values for a search image I, an algorithm can use chamfer

matching to calculate the similarity between I and a smaller reference image R. This process

examines the chamfer values for all pixels within I that “overlap” the pixels in R containing a

foreground color. The algorithm then takes the arithmetic mean of these chamfer values to

determine the chamfer match score, which the literature traditionally abbreviates as Q:

𝑄(𝑟, 𝑠) =
1

|𝐹𝐺(𝑅)|
⋅ ∑ 𝐷(𝑟 + 𝑖, 𝑠 + 𝑗)

(𝑖,𝑗)∈𝐹𝐺(𝑅)

…where D(r + i, s + j) denotes the chamfer value of the search image pixel located at (r + I, s +

j) and FG(R) is the set of pixels in R that contain the foreground color. The point (r, s) within the

search image that minimizes Q represents the location where the search image and reference

image exhibit the most similarity.

 The chamfer match score exhibits little robustness against affine transformations between

I and R and remains quite sensitive to foreground “noise” (since the score relates directly to the

presence of pixels containing the foreground color at specific locations), but it still works

reasonably well for line images that contain relatively sparse foregrounds [41]. To reduce “false

positive” results, programmers can instruct the algorithm to take the root mean square (rms) of

13 The chamfer value can also use Manhattan (city-block) distances (2 for diagonal neighbors instead of √2), but this

approximation grossly overestimates the distance to foreground pixels on the same diagonal as the pixel currently

being processed.

49

the chamfer values within I that correspond to the foreground-color pixels in R (shown below)

instead of the arithmetic mean [41].

𝑄𝑟𝑚𝑠(𝑟, 𝑠) = √
1

|𝐹𝐺(𝑅)|
⋅ ∑ 𝐷2(𝑟 + 𝑖, 𝑠 + 𝑗)

(𝑖,𝑗)∈𝐹𝐺(𝑅)

2.4. Space and Place: Embedded Comfort Within the Unknown

 While many scholars have discussed the interrelationships between “space” and “place,”

I have chosen to focus on two people who contribute to the cultural geography discipline: Henri

Lefebvre and Yi-Fu Tuan. Lefebvre focuses on the distinction between consumption and

production while Tuan emphasizes the difference between unknown apprehension and known

safety in his work.

2.4.1. Lefebvre Compares Creation and Production, Tuan Focuses on Space and Place

 Henri Lefebvre principally argues in his writing that a creative work portrays an

irreplaceable and unique entity while a produced object represents a commodity that society can

reproduce after performing a series of repetitive acts. Works and products both occupy a space,

he explains to readers, but works fashion a space while products merely circulate within it.

Lefebvre also reminds readers that even the most glamorous locations – the ones that have more

human-built, creative works than most other places – ultimately serve a product-based purpose.

For example, beautiful Venice exists because people have found the port to be a convenient

location for trading produced goods. He argues that nature creates beings that appear

spontaneously, without artificial staging, and that humanity has begun to overrun this

unadulterated beauty by producing objects, where labor predominates, and by creating works,

where labor is secondary (so that these works are less creative than their natural counterparts).

[49]. Every space that humans occupy, therefore, transforms into a series of places that humans

find more useful but also less exciting to experience.

 Lefebvre continues by explaining that this social space forms out of past actions and

permits or prohibits certain future events from taking place in that space, including both the

production and the consumption of products. He further interprets this idea by stating that

society cannot easily take the codes in a space and aggregate them into a “meta-code” because

these codes are each contingent on the social practices between them and their respective

inhabitants [49]. Humans might interpret these codes as indicators of separate identities among

50

societies, but in reality they are all related but incompatible reproductions of the same society.

Similarly, people might consider each lighthouse as a separate entity within a particular section

of the coastline it protects, but people can still reproduce these monuments. Nevertheless, each

lighthouse still maintains its own aesthetic identity, allowing visitors to appreciate the space

surrounding each monument as a creation that they can help shape.

 In his works, Yi-Fu Tuan explains that a place adds a sense of identity to a space.

Humans view open spaces as open, threatening, and representative of movement while they view

contained places as closed, safe, and representative of pause [61]. People naturally gravitate

toward comfort and familiarity when in a location, which they associate with closed, secure,

fixed locations in an otherwise unfamiliar environment. For example, mariners look for a beam

of safety and guidance from a lighthouse – a particular place – when surrounded by a space of

dangerous coastal waters. When examining a scene, Tuan argues, people gaze at points of

interest – places – within that scene or space, pausing for short amounts of time as they process

each place within the space. People subconsciously interpret a location using this process

because nature’s stimuli are too overwhelming for humans to comprehend without placing these

phenomena in an understandable context that human structures provide. Also, people cannot

become emotionally attached to an abstract space the way they can to a concrete object or place

[61]. After all, it is easier to imagine a physical object or location than a fluid, constantly

changing idea.

 Tuan warns architects, however, that a place must convey a general, humanistic message

and a specific, historical one to transcend culture and avoid degenerating into cluttered space.

Without the right guidance or maintenance, a place once esteemed for its permanence can

become a source of irritation or even sadness within a society. One method of preserving a

place’s integrity is to represent its inhabitants’ aspirations immediately [61]. Coastal residents

continue to take pride in their local lighthouses because they have always protected their

neighbors, many of whom once made a living in the unpredictable ocean. Another method of

perpetuating a place’s sense of lore is to associate its construction with a prominent movement.

Tuan explains that nationalist movements in particular encouraged people to create patriotic

works that had a collective identity to represent a particular nation-state [61]. The first set of

lighthouses in the United States served to protect mariners, but these structures also represented

the collective success of cities and ports along the new nation’s coast.

51

2.4.2. Emerging Prominence of Theories

 When people occupy a space, they create personal landmarks to communicate their

thoughts and ideals to other societies; if outside cultures respect the meaning of these places,

they will not misinterpret a society’s motives. Rodríguez de Castro (2012) agrees that Tuan has

introduced moral, affect, and culture into studies of place [55]. This understanding helps people

discover how best to protect and preserve monuments within a society’s space for future

generations to enjoy.

 Once considered scholars for a niche discipline, Lefebvre and Tuan have both become

more popular in recent decades because of growing concerns related to globalization and human

activist movements. Schmid (2008) explains in his commentary on Lefebvre’s ideas that more

people reference the scholar’s main work, The Production of Space, because “new space-time

configurations” have developed during a period of unprecedented urbanization and globalization

[56].These societies, which rely more heavily on produced works, may disregard nature to a

dangerous extent as they continue developing.

 Tuan’s work, on the other hand, appears in a movement called “humanistic geography,”

or the attempt to understand how humans shape the world in which they live. Entrikin and

Tepple (2006) explain in their commentary that humans, as geographical agents, have moral and

cultural goals along with their better-understood economic goals. They also remark that, since

the humanistic geography movement took place simultaneously with the rise of neo-Marxism

and increased social activism, many people over-classify humanistic geography as atheoretical

and apolitical [44]. In fact, humans lay cultural claims to each space they conquer, building

concepts of place within that space to convey their collective mindset symbolically.

 By including references to signs and plaques within the “Photographs” screen of my

application as well as efforts to preserve and protect a lighthouse within the “History” screen, I

convey to users that these lighthouses represent places of real historical significance and that

they should respect lighthouse societies’ efforts to maintain these landmarks for decades and

centuries to come.

52

3. Designing a Compelling Lighthouse Portal Using Audience Feedback
 The most successful applications require a strong design first. This section discusses the

design paradigms from the Android platform that I integrate into my application, along with

several tenets regarding agile design and audience-based, iterative improvement of user

interfaces. I then present the design of the app in its entirety before delving into the specific

considerations and processes that I employed, such as iterative design, audience involvement,

and ethical considerations.

3.1. Android Design Guidelines Stress Simplicity, Usability

 The “Design” section of the Android Developers website describes the best practices

involved with creating a successful application for the platform, placing particularly strong

emphasis on captivating users by appealing to their storied connections with different places and

incorporating interaction standards from the operating system itself. According to the “Creative

Vision” page on the Android Developers website, Android applications should provide pleasing

layouts and transitions, include as simple a set of interaction patterns as possible, and encourage

users to integrate the application into their daily routines and context-sensitive experiences [12].

Beyond this simplicity and ease of use, applications should evolve with the Android operating

system, incorporating new user interface elements and presenting the correct type of feedback

after users perform certain interaction gestures. For example, the “New in Android” page on the

Android Developers website explains that, starting in Android 4.0, a long-tap opens a contextual

action bar within most applications, rather than a contextual pop-up menu [25]. My application

includes simple layouts, such as a grid-like table for displaying search results and an interactive

timeline for presenting historical details for a specific lighthouse. In addition, it includes an

action bar with a drop-down menu for selecting content screens, supporting users’ knowledge of

this user interface element from Android 4.0.

3.1.1. Simple Layouts Lead to Captivating Screens

 Both the “Design” section of the Android Developers website and several Android design

practitioners stress the importance of making each area of a screen’s user interface easy to

understand, allowing a particular screen in an application to seem user-friendly when viewed

from a high-level perspective. Greg Nudelman explains in his book that it is better to include

multiple containers on a single screen than to make one container too long, particularly on

screens containing a large amount of text [54]. The “UI Overview” page on the Android

53

Developers website expands upon this idea, encouraging developers to use a secondary action

bar at the bottom of the screen to present additional options within a particular screen [33]. This

division between the frequently-used and occasionally-used screen options prevents users from

feeling overwhelmed with a screen immediately after it loads. While it’s important to follow

Android’s design guidelines whenever possible, some developers have found that deviating from

the platform’s best practices actually increases the usability of certain applications. For example,

Jason Mark explains in his blog entry “Four Android App Design Guidelines You Should Break”

that action bar options should contain text, not just icons. These icons often present more

confusion, especially to users who have not used the application before or for an extended period

of time [51]. My application divides the frequently-used content screens, such as “Information”

and “Photographs,” into multiple sections so that users can better appreciate how these elements

work together, as shown by the boxes drawn in Figure 3-1 on the following page.

 Beyond presenting several elements on each screen, Android applications should also

make these elements interactive. The “Design Principles” page on the Android Developers

website recommends allowing users to interact directly with the elements on a particular screen,

such as pictures and maps [14]. In addition, Nudelman assures developers that experienced

Android users understand and apply the “act locally, think globally” mindset. They realize that

action bar options and a screen’s title relate to the information on that screen alone, and they

know that they need to press the back menu button in the top-left corner of the screen to view

another section of the application [54]. Several elements within my application respond directly

to users’ feedback, giving them a sense of accomplishment while using the software. These

elements include the phone number and website on the “Information” screen and the

photographs on the right-hand side of the “Photographs” screen. I have also incorporated the

screen-dependent action bar options and a “back button” that returns users to the “Welcome”

screen of the application, allowing them to “act locally” and “think globally.”

54

3.1.2. Keep Screens Simple, but How?

 In designing the Lighthouse Navigator, I adhered to the best practices concerning

simplicity and accessibility. Indeed, Android developers and design practitioners agree that

Android applications should remain as simple as possible so that users can still interact with the

software while distracted or in an unfamiliar environment. In particular, Nudelman advocates

catering to users’ scattered minds by creating a space of interaction with the “real world” within

an application [54]. The “Design Principles” page on the Android Developers website expands

upon this idea, insisting that the application perform complex operations after users complete a

simple interaction with a screen [14]. This feedback allows users to feel like they accomplish

meaningful tasks quickly, providing an increased sense of satisfaction while using an application.

For my application, I present an option for users to “search nearby lighthouses” and have the

application figure out in real-time the set of lighthouses that reside closest to their respective

current locations. I also include a variety of photographs of a particular lighthouse so that users

can develop a sense of place before visiting the lighthouse in person. Both of these examples of

user interaction appear in Figure 3-2 on the following page.

Figure 3-1. Multiple Elements within “Information” and

“Photographs” Screens within Application.

The colored boxes each indicate separate interaction areas within

the “Information” screen (left) and “Photographs” screen (right).

This chunking of content within my application prevents users from

experiencing information overload and affords them a better sense

of control and freedom within the software’s different components.

55

The application automatically determines the lighthouses that appear near the lighthouse,

allowing users to focus on exploring the details of a specific lighthouse that interests them.

 Sometimes, however, practitioners recommend design patterns that differ from Android’s

best practices, leaving developers with a decision to make. For example, the “Application

Structure” page of the Android Developers website recommends that developers incorporate

exactly one navigation tool for viewing the different content screens14 in an application: a set of

tabs, a spinner, or a navigation drawer [6]. Mark, however, recommends using the tabs or spinner

since these tools keep the user focused on the currently-open content screen [51]. Also, the

“Navigating with Back and Up” page of the Android Developers website states that the “back

button” should return users to the main screen of an application if several screens can bring users

to a specific content screen, but Mark recommends against forcing users to “start over” within

the application [24, 51]. For my application, I have chosen to use a spinner for navigating among

the content screens since a group of four tabs would be cramped in a portrait orientation. Since

14 For my application, these “content screens” include the “Information” screen, the “Photographs” screen, the

“History” screen, and the “Reviews” screen. Unlike other screens in the application, each of these screens displays

detailed information about a specific lighthouse.

Figure 3-2. Areas of Screens Affording Real-Time User Interaction.

The “Find nearby lighthouses” button in the “Welcome” screen of the

application (left) and the “Filter Photos” button in the “Photographs”

screen (right) both allow users to accomplish complex tasks with a

single user-interface interaction, giving them a satisfying sense of

power as they navigate through the application’s screens.

56

users can access a given content screen from various other screens, I elected to stick with

Android’s simple solution of returning users to the “Welcome” screen upon selecting the “back

button” in the top-left corner of a content screen.

3.2. Design Paradigms

 In addition to following the guidelines that the Android platform offers, I incorporated

tenets from the Agile development process into my design workflow and implemented Robert

Johnson’s idea of “audience-involved” communication to iteratively improve the design.

3.2.1. Agile Development

 Since I developed this application on a quite limited timescale, I used the Agile

development method to add features to the product. This incremental, iterative approach allowed

me to demonstrate a working version of my application at all times and integrate new features as

soon as I developed them.

 Developers have used the Agile method for over a decade, so it now has a fairly stable set

of tenets. Kent Beck and others stress simplicity in this type of development process “[by]

maximizing the amount of [unnecessary] work not done” and advocate frequent reflection to take

appropriate action based on any shortcomings in the development process [38]. These mindsets

lead to a steadier development pace and an increased ability to change the design of a piece of

software, even late in the long-term development process. Tathagat Varma builds upon these

ideas in his presentation entitled “The Joys of Designing Agile Solutions for New-Age

Problems,” stressing the need to consider relevant customers and to develop software that solves

a specific, single problem that those customers have experienced [62]. Using this development

mindset, Varma argues, the unit of iteration is the validation of an idea through metrics

(emphasis added) [62]. Developers need to design and implement an idea of how an application

might solve a problem for a set of customers, then test that idea using unit tests or, better yet,

interactive customer feedback sessions. The deliverable for each of these iterations is a minimum

viable product (MVP), which contains only the most essential features of the software necessary

for obtaining feedback from prospective end-users. Once developers collect feedback from

customers, they revise their MVP and re-release it for use in a future feedback session [62].

While creating my application, I presented designs, MVPs, then more robust MVPs to visitors of

different lighthouses across New England to ensure that the application solved their information

access problems.

57

 In addition to developing my application using an iterative, customer-driven approach, I

incorporated several other tenets of the Agile mindset in my project. I used Git version control

for both the application itself and this report to document the history of my progress and to create

backups so that I could access code or report details that I removed within a newer version. This

version control system also served to avert disaster should my system or Google’s servers fail at

any point during the project. In addition, I created several versions of an Agile board, including a

physical poster-board representation, to understand the goals and relative time commitments

associated with each of my project tasks for a given week. Finally, I held regular meetings with

both of my advisors, usually on a weekly basis, to serve as feedback sessions for the project as a

whole. After all, my advisors served as key stakeholders for this project and deserved to offer

suggestions regarding the focus of my research and implementation processes.

3.2.2. Audience-Involved: Designing with Iterative User Testing Throughout the Design Process

 From the beginning of the application design process, I remained committed to having

prospective users participate actively in the design’s improvement. Robert Johnson, in his

academic journal article “Audience Involved: Toward a Participatory Model of Writing,”

encourages a participatory, community model of communicating with audiences, specifically

through writing. Rather than invoking audience-addressed communication – where the text

changes audience members’ thoughts as they consume it – or audience-invoked communication –

where the audience is a fictional construct used in the writing processes – authors can

incorporate audience-involved writing by allowing the recipients of their work to participate in

the writing process [48]. In his article, Johnson focuses on how technical writers can complete an

audience-involved documentation process to recognize a technology’s users as part of the text.

Figure 3-3 on the following page shows the relationships that form when writers use such a

process:

58

As the above figure shows, discourse becomes both the result of writers working with users and

the tool with which users interact to acquire knowledge about technology when technical writers

take an audience-involved approach to documentation. Users can then apply this newfound

knowledge to the technology itself, creating an opportunity for them to complete activities with

this technology more easily. Johnson warns readers that by not including users in creating or

explaining technological innovations, they can enable technological determinism, in which users

robotically generate knowledge with the technology rather than actively influence the knowledge

that the technology can produce [48]. If users have no control over the ideas that technology can

enable, it becomes increasingly difficult for technical writers and developers alike to convince

users that this technology can benefit them.

 Nudelman and Varma both apply Johnson’s principles to application development.

Nudelman advocates testing early and often on a viable audience in an appropriate context to

design an application correctly using a problem-solving approach [54]. The audience can also

Figure 3-3. Relationships among Artifacts and Ideas while Using Audience-Involved Communication.

By incorporating Robert Johnson’s ideals within an audience-involved writing process, the writer

works with the intended audience to develop a discourse. The audience can then consume this

discourse more easily to acquire the knowledge necessary to use a piece of technology as a means for

completing a life activity.

59

impart new knowledge about the application that the developer can incorporate in future

versions. This mindset mirrors that of Varma and his MVP-feedback iterations discussed in the

previous section. When developers and users work to improve a software product together, it

becomes easier for this software to produce meaningful knowledge and serve users’ needs.

3.3. Guiding Users through the Application’s Different Screens

 In this section, I analyze each of the different screens within the application from an end-

user’s point of view. I discuss the different components on each screen, my rationale for

selecting different ways of presenting these components, and descriptions of the application’s

reaction to each type of user input.

3.3.1. Screen Navigation Hierarchy

 While this application does not contain that many screens, there is some complexity in

how users can navigate among them. Figure 3-4 below shows the navigation hierarchy among

the application’s different screens. Users can access any other content screen by using the drop-

down spinner in the action bar, or they can return to the “Welcome & Search” screen by

selecting the “up” button in the top-left corner of the screen.

3.3.2. Welcome & Search Offers Multiple Guided Search Options

 The final design of the “Welcome & Search” screen within the application appears in

Figure 3-5 on the following page and features two user-guided options for finding lighthouses

that could interest them. This screen appears after the application finishes loading data about the

lighthouses that the application supports and serves as the “main menu” screen for the

application.

Figure 3-4. Relationship among Screens within Application.

Application users select a method they wish to use for searching, complete a search for a

given lighthouse, and select a result to view detailed information about a lighthouse. This

information appears across four separate screens (known as “content screens”).

60

 In order to acquaint users to the application as quickly as possible, I show the

application’s main functionality in the top half of this screen. I present a brief welcome message,

followed by the two main search activities that they can complete on this screen. My professional

writing advisor recommended that I include the ability to search for nearby lighthouses, and the

Android application “US Lighthouses” features a state-based search, so I include both types of

searching within my application. After speaking with lighthouse visitors, it seems like they

would complete a search for nearby lighthouses more often, so I present that search option first.

When users tap the “Find nearby lighthouses” button, this screen passes their respective current

locations to the “Search Results” activity, and when they tap the “Search” button near the center

of the screen, this screen passes the name of the lighthouse that the user has selected in the drop-

down list to the same “Search Results” activity.

 As a way of thanking the Lighthouse Preservation Society for providing me with key

information and resources related to New England lighthouses during the research phase of my

project, I provide a button that allows users to donate to the organization on this screen. I include

a brief description of the cause above this button to help users understand the purpose and

Figure 3-5. Final Design of “Welcome”

Screen within Application.

61

significance of their generous gesture. When users tap this button, the application redirects to a

website that accepts donations for the Lighthouse Preservation Society.

 Finally, I present the academic context of this application and invite users to provide me

feedback about the application via email. The US Lighthouses application accepts users’

comments and suggestions, so I thought that it would be appropriate to do so in my application,

as well. When users select my email address, the application launches the “email” application

that they have installed on their respective mobile devices.

3.3.3. Search Results Shows Lighthouse with Visual and Geographic Context

 The “Search Results” screen displays each lighthouse’s name, location, and picture

together to help jog users’ memory in a variety of ways and to help them associate each

lighthouse’s appearance with its name. The final design of the screen within the application

appears in Figure 3-6 below. This screen appears after users choose to search for nearby

lighthouses or after they select a state and the name of a lighthouse near the center of the

“Welcome & Search” screen, then select the “Search” button.

Figure 3-6. Final Design of “Search Results”

Screen within Application

62

The name of the lighthouse that appears under the “Best match” heading matches the name of the

lighthouse that users have selected on the “Welcome & Search” screen or the name of the

lighthouses closest to the user’s current location. In this case, users have indicated that they wish

to view more information about a lighthouse in Maine, namely Portland Head Light.

 I present a left-facing arrow next to the application icon in the top-left corner. Users who

tap this arrow can return to the “Welcome & Search” screen to search for a different lighthouse.

This button allows users to recover if they have accidentally searched for a lighthouse other than

the one that currently interests them.

 The two major design components on this screen include the “best match” and a list of

“good matches,” which I have adapted from an application for iOS devices (including the

iPhone, iPad, and iPod Touch) called “Lighthouse Locator.” This iOS application displays the

results for a lighthouse search on a map, indicating the total number of results that appear on the

map. This ability to show multiple search results led me to think of several methods for

displaying “good” matches for users’ lighthouse search queries that could appear under the “You

may also be interested in…” heading. I decided originally to show three types of “good” search

results: lighthouses near users’ current locations, distance from the lighthouse listed under “best

match,” and similarity in name to the lighthouse listed under “best match.” I have kept only the

latter two options in this final design, however, after expanding the “Welcome” screen to include

nearby lighthouse search functionality, as discussed in the previous sub-section.

 In both the “best match” and each “good match” on this screen, I include the name and

location of a given lighthouse along with a small photograph of the landmark. Each search result

in the “US Lighthouses” application includes these three elements, and the juxtaposition of this

information helps users associate these aspects about a particular lighthouse, which they can

recall during a trip to this lighthouse.

 Finally, I include the credits for each lighthouse image that appears on this screen. I did

not take any of these photographs, so I need to provide appropriate credit for these images. Also,

I include only photographs whose licenses allow me to modify and adapt them, as I needed to

crop details out of these images to obtain the correct aspect ratio and display only the upper half

of each lighthouse tower.

63

3.3.4. Information Presents General Facts as Independent Units

 The “Information” screen presents a series of clearly delineated facts, with links included

as needed to simplify the information-gathering process even further. Figure 3-7 below shows

the final design of the “Information” screen within the application. This screen appears after

users select the “View” button next to a search result on the “Search Results” screen. The details

that appear on this screen refer to the lighthouse that the user has chosen to view. In this case,

users have chosen to view more information about Nauset Light in Eastham, Massachusetts.

Users can also return to this screen from one of the other content screens by selecting the title of

the currently opened content screen and choosing the “Information” option within the drop-down

list. In this case, the details on the “Information” screen refer to the same lighthouse as the one

featured on the previous content screen.

 As in the search result screens, the “Information” screen includes an arrow in the top-left

corner. When users select this arrow, they return to the “Welcome & Search” screen. While it

could be convenient for users to return to the “Search Results” screen, the direct link to the

“Welcome & Search” screen makes it easier for users to begin a new search for a different

lighthouse. This simplicity in the application’s navigation also allows users to become familiar

with the application more quickly, as they complete an entire search process each time they

examine details for a particular lighthouse.

Figure 3-7. Final Design of “Information”

Screen within Application

64

 The top navigation area of the screen (known as the action bar on Android smartphones

and tablets) features a heading for the screen, “Information,” that users can select in order to

switch content screens. The arrow beneath and to the right of the screen heading provides a clue

to users that they can tap on the screen name itself to view more information. When users select

the “Information” heading, a drop-down list appears beneath the heading, showing the other

content screens available in the application. Users can then choose which content screen they

wish to open within the application by tapping on the name of the content screen – either

“Photographs,” “History,” or “Reviews.” I use this drop-down list as the primary mechanism for

switching among the application’s content screens instead of two other viable methods for

showing the presence of other screens: (1) tabs beneath the action bar and (2) options that appear

when users press the device’s menu button. The “Tabs” page of the Android Developers website

recommends against using tabs for listing more than three content screens; since my application

features four such screens, I cannot use this user interface element very effectively [32]. I also

choose against displaying the other content screens on the bottom of the “Information” screen

after the user presses the “menu” button for three reasons. By using a bottom context menu:

 The “Information” screen gives no visual cue that users can access other content screens;

 The options for viewing other content screens appear at the bottom of the screen, as far

away from the name of this content screen as possible; and

 Most Android applications reserve the menu button for application-wide screens – such

as help and settings – not for switching among individual screens.

The drop-down list method avoids these inconveniences and cognitive dissonances for users,

making it easier for them to remember how to switch among the application’s content screens.

 Beneath the action bar, I present a photograph of the lighthouse, along with its credits and

license. This visual representation of the lighthouse reassures users that they have chosen the

correct lighthouse to examine, and it presents a snapshot of the scenery surrounding the

lighthouse so that users can identify it more easily when traveling to it.

65

The remaining elements of the screen each present a general fact about the lighthouse. These

details include:

 The website that users can access to learn more about the lighthouse;

 The address of the lighthouse for land navigation purposes;

 The hours during which the lighthouse (or associated museum) is open;

 A phone number users can call to speak to a person who helps preserve the lighthouse;

 Whether visitors can access the lighthouse grounds, tower, and/or dwelling;

 The year when the lighthouse first opened;

 The height of the lighthouse’s main tower; and

 The characteristic light pattern of the lighthouse, which appears at night or in foggy

conditions.

I present this information in a table, with an information category in the left-hand column and the

corresponding fact in the right-hand column. I separate each row of this table with a blue

horizontal line in order for users to understand the pieces of information that belong to a

particular category, especially for facts that contain multiple lines of text. I display a scroll bar to

the right of these pieces of information to show users that some information does not appear on

the screen at first and that they must scroll down to see some of the last few facts about a specific

lighthouse.

 I add special properties to some of the facts that appear on the “Information” screen. The

“address” data contains a button named “Get Directions,” which users can select to open a maps

application on their devices and navigate to that address from their respective current locations.

The “US Lighthouses” application includes a “Directions” option on the action bar of its

lighthouse content screen with similar functionality. The “phone number” listed on the screen

appears as a hyperlink; when users tap on it, the phone application opens with this phone number

pre-dialed. The user simply needs to press the “send” button on the phone keypad to place a call

to the lighthouse. Finally, not all lighthouses have consistent hours, and some do not provide

hours at all. In that case, I include the text “Seasonal – contact lighthouse” in the “hours” fact.

This piece of information prompts users to call the lighthouse or visit its website to learn more

about when they can visit.

66

3.3.5. Photographs Features an Interactive Gallery

 The “Photographs” screen features both an interactive map and a gallery where users can

view each of the images associated with a particular lighthouse, allowing them to appreciate the

geographic and visual contexts of the lighthouse once again. The final design of the

“Photographs” screen within the application appears in Figure 3-8 on the following page. Users

can navigate to this screen from another content screen by selecting the name of that content

screen, then by choosing the “Photographs” option in the drop-down list. The images that appear

on the screen depend on the lighthouse that users have chosen to view. In this example, users

have opted to view more information about Old Scituate Light in Scituate, Massachusetts.

As in the “Information” screen, the “Photographs” screen includes a left-facing arrow in the top-

left corner and the screen’s name in the action bar. By selecting the arrow, users can return to the

“Welcome & Search” screen within the application, and by selecting the name of the content

screen, users see a drop-down list featuring the names of the other content screens. They can then

choose the content screen they wish to view next by selecting it from this list.

 The left-hand side of the main area on this screen features one of the images associated

with the lighthouse that users have chosen to view in more detail. Some of the photographs that I

Figure 3-8. Final Design of “Photographs” Screen

within Application.

67

include in the application have unusual aspect ratios that do not match the one in this section of

the screen. In these cases, I shrink the entire image so that its longest dimension fills the area of

the screen and its shorter dimension contains extra padding. For example, the “main image” in

the figure below contains extra padding along its horizontal axis. I employ this “fit to section of

the screen” algorithm to avoid cropping the edges along the image’s longer dimension.15 When

users select an image along the right-hand side of the screen, it appears in the top-left corner of

the screen in place of the image that resided there before. Beneath the image that appears in the

top-left area of the screen, I include the photograph’s credits and licensing guidelines. These

pieces of information update when users select another image along the right-hand side of the

screen. Therefore, these credits always refer to the photograph that currently appears in the top-

left area of the screen.

 In the bottom-left area of the screen, beneath the “main image” and its associated credits,

I include an interactive map that shows the location of the lighthouse as well as the relative

locations of the photographs associated with this lighthouse. Users can select this map to open a

full-screen version within a “maps” application installed on their respective devices. I include a

lighthouse icon on the map that corresponds with the location of the lighthouse. I also show the

approximate location of the image that currently appears in the top-left corner of the screen by

adding a dashed red box around the icon on the map whose location most closely matches that of

the “main image.” The “US Lighthouses” application includes a similar map for displaying the

relative locations of lighthouses on a “Search Results” screen. By displaying collections of

photographs in my application using such a map, I show users the places around the lighthouse

that likely offer particularly scenic views, allowing them to enjoy their visit even more. I also

include the direction that the photograph faces on this map. This element of the map mirrors a

feature in the “Photo Tourism” research application by Snavely et al. (2006), which indicates the

direction that that an image faces in addition to its location [58]. I indicate this direction with a

red arrow pointing from the camera icon that represents the approximate location of the “main

image” currently shown in the top-left corner of the screen. This map does not display each

photograph’s relative location; each camera icon on the map represents a group of photographs

taken at similar locations. I organize the images using this method because users can select these

15 In fact, some photographs that I include in the application prohibit me from altering their contents in this way. I

cannot crop any image with a license that includes “no derivatives,” for instance.

68

camera icons to activate a location-based image filter, which future versions of the application

could support. By adding extra negative space among the icons shown on the map, users can

select one of the icons without tapping a different icon by mistake.

 The right-hand side of the screen shows a gallery of images that photographers have

taken of the lighthouse currently being showcased. When users have activated a filter by tapping

a camera icon or by selecting one from a list that appears after selecting the “Filter Photos”

button, only the images that satisfy this filter appear in this area of the screen. In cases where this

area of the screen cannot show each picture in the gallery at once – which happens most of the

time when users interact with this screen – a scrollbar appears to inform users that they can scroll

down to view additional photographs. I present a gallery in the main “Photographs” screen so

that users can view more than one photograph of the lighthouse at once. This combination of

visual elements gives users a better sense of the space and scenery surrounding the lighthouse,

allowing this space to feel more like a place when they visit the lighthouse in person, even for

the first time.

 The bottom of the screen features two buttons that allow users to add a photograph to the

gallery of images appearing along the right-hand side of the screen or to view subsets of this

gallery. I originally presented these buttons as icons in the top-right corner of the screen, but

after several studies with prospective users, I discovered that these users tend to look for possible

actions to complete on a screen near the bottom of that screen and that they could recognize

textual buttons more quickly and accurately than their iconic representations. When users select

the “Upload Photo” button, another screen loads, allowing them to browse to the images that

they have taken on their smartphone and select one to add to the gallery. By selecting the “Filter

Photos” button, users see a pop-up dialog, where they can select one or more filters to apply to

the gallery. These two buttons allow users to customize the types of images that appear in the

gallery, allowing the application to cater to a particular user’s image-viewing preferences.

3.3.6. History Presents Lighthouse Facts One Year at a Time

 I present historical details for a lighthouse one fact at a time, allowing users to browse a

lighthouse’s narrative at their own pace. Figure 3-9 on the following page presents the final

design of the “History” screen within the application. The details that appear on this screen

depend on the lighthouse that users have chosen to examine in more detail. In this example, the

screen shows historic details about Cape Cod (Highland) Lighthouse in Truro, Massachusetts.

69

Users can navigate to this screen from another content screen by tapping on the name of that

content screen in the top action bar, then by choosing the “History” option in the drop-down list

that appears.

 As in the “Information” and “Photographs” screen, the “History” screen features a left-

facing arrow in the top-left corner and the name of the screen in the action bar. Users can return

to the “Welcome & Search” screen by selecting the arrow, and they can navigate to a different

content screen by selecting the “History” screen title and choosing a screen from the drop-down

list.

 Beneath the action bar, I include an area of text that gives credit to Jeremy D’Entremont.

Mr. D’Entremont kindly agreed to let me reference his research on this screen, and he deserves

prominent recognition since he has worked for decades to compile different facts and images of

lighthouses across New England. Beneath these credits, I include a historic photograph of the

lighthouse from Mr. D’Entremont’s collection. I add a light blue frame around the image because

most historical photographs appear in grayscale, and a white sky does not appear well, if at all,

next to the white background on each of the content screens within my application. Most historic

Figure 3-9. Final Design of “History” Screen

within Application.

70

photographs feature lighthouses in their original form, which helps users of the application

appreciate the extent to which a given lighthouse has changed since its original construction.

 Below this photograph, I include a year indicator with arrows on either side of the year

provided. These arrows allow users to navigate through time in either direction to view each of

the historical facts about the lighthouse that this application includes. If users have reached the

first fact or most recent fact for a given lighthouse, one of the arrows appears faded to indicate

that users should not expect the screen’s contents to change should they select the faded arrow.

After users have navigated to a given year, they see two pieces of information beneath it and the

arrows:

 The number of events associated with a given year; and

 A set of descriptions describing the events themselves.

One of the subjects at a post-design usability study suggested that I include the number of events

corresponding to each event marker, which motivated me to include it before the event

descriptions. Some years correspond with more information than can fit in the bottom area of the

screen all at once. When this problem occurs, a scroll bar appears next to the “number of events”

heading and event descriptions to alert users that they need to scroll down to read about each of

the events that took place during a specific year.

3.3.7. Reviews Present Visual Summaries of Visitors’ Experiences

 This screen shows icons symbolizing visitors’ general opinion about the area surrounding

the lighthouse, presenting the review sources in a glance-friendly format. The final design of the

“Reviews” screen within the application appears in Figure 3-10 on the following page. The

reviews that appear on this screen refer to the lighthouse that users have chosen to examine more

closely. For example, the following figure shows reviews for the Cape Neddick “Nubble”

Lighthouse in York, Maine. Users can navigate to this screen from another content screen by

selecting the name of that content screen, then choosing the “Reviews” option in the drop-down

list.

71

 As in each of the other content screens, the “Reviews” screen includes a left-facing arrow

in the top-left corner of the screen and a heading in the action bar indicating the name of the

screen. By selecting the arrow, users can return to the “Welcome & Search” screen within the

application, and by selecting the “Reviews” heading, users see a drop-down list featuring the

names of the other content screens. They can choose the content screen they wish to view next

by selecting it from this list.

 Underneath the action bar, I include summary information about reviews from two

popular websites documenting traveling experiences: Yelp and TripAdvisor. Underneath each

website’s logo, I present a visual representation of the average rating, which is easier for users to

recognize quickly than a textual equivalent – such as 4.5 out of 5. To show the strength of the

review score, I also indicate the number of people who have uploaded a review onto the website

whose logo appears above the average rating. I then provide the URL for the page containing

more information about the lighthouse location on the travel experience website so that users can

select the link and view the web page itself. Because of Yelp’s stringent branding guidelines, I

could not include actual reviews on this screen. a heading that indicates the website containing

Figure 3-10. Final Design of “Reviews” Screen within

Application.

72

the reviews that currently appear on the screen. Users can select the name of the website to view

a drop-down list, where they can choose the name of a different website to view other reviews of

the lighthouse. This version of the application can display reviews from Yelp or TripAdvisor.

Presenting users with several sources for reviews helps reduce the biases inherent in each of the

websites, such as the types of details that the reviews usually contain and the demographics of

the travelers who post the reviews. Also, while Yelp encourages its reviewers to post about short

visits to a location, TripAdvisor focuses more on extended stays at a particular destination,

usually associating attractions with a particular lodging option.

 Finally, users can select the “Upload Review” button at the very bottom of the screen to

share their own experiences about visiting a particular lighthouse. The application asks users

which website they wish to use for uploading a review, then takes users to that website to

complete the uploading process. As with the buttons at the bottom of the “Photographs” screen,

potential users of this application recognize action buttons best when they include text and when

they appear at the bottom of the screen, which is why the “Upload Review” contains both of

these user interface characteristics.

3.4. Improving Design using Iterative, Audience-Based Process

 The compelling, user-friendly screens described in the previous section required a great

deal of interactive feedback and iterative improvement to create. I used a pre-design survey to

direct the application’s initial design, then shared this design with prospective users at various

lighthouses in New England to determine the interaction patterns I could include or change to

maximize the application’s usability. Figure 3-11 on the following page illustrates the iterative,

audience-driven process I completed to mold the application’s design into its final form.

Figure 3-11. Application Design Process.

After creating a high-fidelity paper prototype of the application based on pre-design survey feedback, I completed several rounds of usability studies to improve

the paper prototype iteratively. I then completed the same process after building the beta version of the application (exact implementation details described in

next chapter).

3.4.1. Pre-Design Surveys Indicate Prospective Audience’s Interest in Application, Photographs

 The feedback I received from the surveys at Cape Neddick (“Nubble Point”) Lighthouse

in York, ME during early June 2013 (see Appendix D: Survey for Visitors of Cape Neddick

Lighthouse) assured me that visitors expressed a significant amount of interest in using a

lighthouse traveling application, especially since many of them own smartphone devices

themselves. Of the 40 visitors who responded to the survey, 27 of them (68%) indicated that they

own iPhone and Android devices. Furthermore, 19 of these 27 respondents (70%) who own an

Android or iPhone expressed that they would be “very likely” or “extremely likely” to download

my application. However, 17 of the 25 respondents (68%) who answered the question regarding

application use frequency expressed that they would use it occasionally or less often. Therefore,

these infrequent users would benefit from a user interface that offers enough simplicity and

intuition for them to retain the application’s basic functionality. They could also take part in

optional tutorials within the application to (re-)learn the essential pieces of functionality within

the software.

 These surveys also show that visitors to lighthouses remain cognizant of the visual space

surrounding the lighthouse and appreciate opportunities to capture or view photographs. Of the

24 respondents who answered the question regarding lighthouse research activities, 17 of them

(71%) indicated that they view photographs when discovering information about a particular

lighthouse. Also, 30 of the 41 total respondents (73%) “always” take pictures when visiting

lighthouses. Even more interesting, 19 of these respondents (46%) expressed that they visit a

lighthouse “to appreciate the scenery that surrounds [it].” Clearly, these visitors appreciate the

visual aesthetics of the lighthouse’s surroundings, so I realized after receiving these results that

my application needed to offer users clear and plentiful options for interacting with photographs.

3.4.2. Initial Design Presented Hard-to-Use Search Options, Features in Photographs Screen

 The initial version of the application design featured a less guided “Welcome” screen. In

particular, the earliest version of this activity lacked an option for users to find lighthouses near

their current location. Instead, I presented an input text box, allowing users to enter the name of a

lighthouse they wish to view. Figure 3-12 on the following page shows this different set of

options relative to the working beta version of the application.

75

This interface element assumes that users have a good sense of lighthouse names, and when they

travel to new lighthouses or ones they visit only occasionally, it’s possible for them to not know

the official name of the monument.

 Based on the responses I received from the pre-design surveys, I created a feature-rich

“Photographs” screen within the initial design. Figure 3-13 on the following page depicts the

earliest version of this activity. While creating a gallery with eight images visible at any given

time would have offered more visual context to users, I soon discovered that Android devices’

screen width restrictions would prevent me from displaying more than one column of

photographs at a time. In addition, I included several icons with a “clip art” style in the top-right

corner of the screen. These icons, in fact, represent the different content-based activities within

the application (Information, History, Reviews16). Upon interacting with prospective users in

future studies and learning more about Android’s design paradigms, I discovered that – not only

do these icons break the guideline of creating a menu-based activity selector element within the

16 I called this activity “Stories” when I first designed the application, which gives the book icon a more sensible

connotation.

Figure 3-12. Initial Design of “Welcome”

Screen within Application.

76

interface – these icons lack the flat design that Android supports to such a great extent. These

“clip art” symbols would not render well on smartphones, particularly ones with low screen

densities.

3.4.3. Post-Design Usability Studies Called for User-Guided “Welcome” Options, Limited Icons

 In order to create valid and helpful feedback from the usability studies that I conducted, I

set up a table to attract interest from visitors and created a script for guiding them through the

different features of the application. I placed this “usability study station” outside of the

lighthouse’s gift shop. This station featured a picture frame advertising the study, a clipboard for

me to record subjects’ results, a binder containing the study script and written out questions for

subjects, and a photo book in which I placed index cards containing printouts of my application’s

design. While I refrained from reading the script verbatim in a robotic manner for most of the

study sessions, I did rely on its structure to keep the presentation of the study consistent among

subjects. This control over the studies’ progression offered more consistent feedback for me to

consider while creating the next iteration of the application. More details concerning the usability

setup and progression appear in Appendix F: Usability Study Materials.

Figure 3-13. Initial Design of

"Photographs" Screen within Application.

77

 My first study, conducted at Cape Neddick Lighthouse once again, focused on the

application’s high-level navigation and the interactive features that I offered within the

“Welcome,” “Information,” and “Photographs” screens. Of the 6 subjects who took part in the

study, 5 of them (83%) expressed that they would prefer to search for a lighthouse using a guided

list than typing in the name of a lighthouse within the “Welcome” screen. In fact, many of them

expressed disdain towards this manual entry option completely, with several of them suggesting

that I include a “find nearby lighthouses” button. Based on this overwhelmingly consistent

perception, I completed this user interface element switch. While these subjects appreciated the

options available on the “Photographs” screen, 2 of them (33%) wished to see even more

interactivity with the map; they envisioned the map expanding to fill the device’s screen

whenever they selected it from this activity. Since I could implement this feature surprisingly

easily, I introduced this functionality in future versions of the application. Several subjects also

requested that I add a “nearby attractions” field within the list of general facts about the

lighthouse. I refrained from including this piece of information because it would have been

difficult to categorize the attractions in a manner that made sense to users. I would have needed

extra usability studies focusing on this feature alone.

 The following study, which took place at Old Scituate Light in Scituate, MA during

early-August 2013, focused on different types of interaction affordances within my application,

particularly the icons that appeared within the “Photographs” screen. I soon discovered that the

subjects demonstrated dismally low comprehension rates for these icons. Of the 10 subjects at

this study, 2 of them (20%) could correctly identify the “upload photo” icon (a camera with an

up-facing arrow next to it) and only 1 (10%) could identify the “filter photo” icon (a funnel).

These results indicated indisputably that these buttons required text instead of icons. This study

also focused on the possible methods for switching among the application’s content-based

activities, either a drop-down list at the top of the screen or a pop-up menu near the bottom. After

examining these options, 8 of the 10 subjects (80%) indicated a preference for the drop-down

functionality, which I introduced into the application once I finished developing this screen. As

for the “Welcome” screen options, I showed the newly-placed “find nearby lighthouses” button

alongside the list-based searching for states and lighthouses. The subjects expressed interestingly

split opinions regarding this functionality; 3 of the subjects (30%) would select the “find nearby

lighthouses” button, 4 of them (40%) would search with the list more often, and the other 3

78

(30%) would select an option based on the situation in which they used the application. Given

this indecisiveness on the subjects’ part, I kept both option in the “Welcome” screen.

3.4.4. Post-Implementation Usability Studies Solidified Content-Based Screen Navigation

 After implementing a beta version of my application, I conducted two further usability

studies during the late summer months of 2013. These studies used a similar setup, except these

subjects could interact directly with the application that I had installed on my Android device.

 The first of these post-implementation studies took place at Highland “Cape Cod”

Lighthouse in Truro, MA in late August 2013. This session focused on users’ ability to master

the application’s high-level navigation functionality quickly. One of the most significant hurdles

that these subjects faced involved transitioning from the “Information” screen to the

“Photographs” screen. Each of the 7 participants attempted to select the photograph that appears

near the top of the “Information” screen to complete the activity transition. Based on this

perceived misunderstanding, I introduced a pop-up message informing users of the proper

interaction strategy within future versions of this application. A more promising result, however,

occurred when I instructed the subjects to view additional facts about the lighthouse. Every one

of them understood that not all details about the lighthouse appear “above the fold” on the

“Information” screen and instinctively scrolled down to view the remaining pieces of

information. Therefore, I did not need to adjust the scrolling functionality within my application.

 The final study for this project occurred several weeks later at Nauset Light in Eastham,

MA. During this session, I tested the pop-up help message that I added to the “Information”

screen and inquired about possible filters to include within the “Photographs” screen.

Unfortunately, the cool weather and Sunday afternoon tour sessions limited the turnout to this

study, but I still received valuable feedback from 4 hardy subjects. The “micro-tutorial” for

navigating to the “Photographs” screen taught the subjects effectively, as 3 of them navigated to

the second content-based activity with minimal assistance from me. These promising results

assured me that this pop-up message offered useful guidance to new users who could become

confused while attempting to switch among the content-based activities. These subjects also

shared with me their interest in filters involving different parts of a lighthouse, weather

conditions, time of day, and background content. I introduced some of these wishes into my

image-processing algorithms, which classify images based on weather conditions and detect the

79

presence of rocks (arguably a piece background content) and lighthouse towers within images

downloaded from Flickr.

3.5. Designing Universally Effective Application Involves Consideration of Market

 In an ideal development environment, I could have focused exclusively on creating an

interface that presents information and navigation elements that appeal most to the prospective

audience. Market realities, however, forced me to develop interfaces that also conform to

Android- and sponsor-specific guidelines. In particular, I needed to:

 Create an interface that can scale appropriately to the wide variety of screen sizes used in

devices that support the Android platform; and

 Obey the branding specifications for any company whose information they plan on

incorporating into the application.

3.5.1. Presenting Screen Flexibility and Limiting Dependencies on Other Applications

 In stark contrast to Apple’s mobile devices – such as the iPhone and iPad – Android

devices lack a universal hardware design, forcing me to form an interface that strikes an optimal

compromise between universality and scalability. While a limited personal budget prevented me

from testing the application on an extensive variety of physical devices, I used various Android

virtual devices to ensure that the application remains usable on multiple types of smartphones.17 I

maximized the baseline usability of my application by introducing graceful degradation on each

screen. By using sizes of elements relative to the screen’s dimensions – rather than absolute

dimensions – I ensured that the elements on the different screens of my application would scale

appropriately to any Android smartphone screen size. I also used a scalable action bar – the

collection of top and bottom bars on the application’s screens – that automatically introduces an

“overflow” button when the button text cannot fit across the width of a user’s device. An ellipsis

appears instead, and the user can select this ellipsis button to display a drop-down menu

containing the names of the buttons that would have appeared on the action bar had more room

been available.

In addition to introducing these scalable interface elements, I kept my application as self-

contained as possible. Links to external applications included only a map-based application, such

as Google Maps, and a browser application, such as Mozilla Firefox or Google Chrome. I added

17 For the sake of limiting the project’s scope, I chose not to optimize my application for Android tablets. Using the

principles discussed in this section, however, I could extend the application’s interface flexibility so that tablet users

could also enjoy the Lighthouse Navigator application.

80

these links to my application with the confidence that most Android smartphones possess both a

mapping application and a browser. When using these design principles to present a scalable

interface that achieved independence from most external application, I gave myself more up-

front work. I could then, however, add additional elements to the different content screens

whenever user requests demanded me to do so, without fear that I would wreck the clean and

consistent interface I had created.

3.5.2. Abiding by Branding Guidelines forms Important Ethical Foundation

 Just as Android’s hardware fragmentation guided my design of my application’s

interface, the branding guidelines of various websites – including Flickr and Yelp – and requests

from Jeremy D’Entremont affected how I present the content within the application’s different

screens. In addition to presenting photographs that contain only Creative Commons licenses

within my application, I included attribution to the photographer and the license itself near each

image, abiding by the brand guidelines for both Flickr and Creative Commons. Yelp contains

such a stringent content-based branding guideline that the website practically created the content

layout on the “Reviews” screen of my application for me. In particular, I could not display

numerical representations of the average review score, the reviews themselves, or reviews from

another source before those from Yelp. While TripAdvisor’s guidelines contain far fewer

restrictions, I present reviews from this alternative website beneath those from Yelp in the same

manner to keep my interface consistent.

After discovering the wealth of content related to New England lighthouses on Jeremy

D’Entremont’s websites, and contacting him for permission to use excerpts of his research about

lighthouse facts and historical details, he kindly obliged and even allowed me to present the

content in a manner that I had determined would look best within my application. This freedom

in designing the content layout on the “Information” and “History” screens within my

application complemented the regulatory structure of the “Photographs” and “Reviews” screens.

When Android designers develop applications of their own, they need to keep the branding

guidelines and content attribution requests of their sponsors in mind. Of course, an ideal scenario

would occur when a company’s employees create an application for that company; in this case,

employees can rely exclusively on internal branding guidelines, rules they probably understand

well.

81

3.6. Presenting the Modular Structure of the Android and Image-Processing Projects

 After spending the last few sections discussing the application from the end-user’s

perspective, I focus on the developer’s perspective of the project in this section. I present class

diagrams illustrating the structure and relationships among the application’s key modules and

offer remarks on the most significant components within each piece of the application. I also

present more extensive details about the application’s internal data structures and logic in the

following chapter.

3.6.1. Android Application Complex Enough to Warrant Separate Class Diagrams

 The Lighthouse Navigator application contains such a complex internal structure that a

single class diagram would present an overwhelmingly confusing schematic of the relationships

among the classes I have developed for the software. Therefore, I illustrate the application’s

structure across four class diagrams: the application logic within the user interface screens, the

data structures for storing lighthouse information, the utility classes for completing downloading

and parsing tasks, and the adapters for displaying complex user interface elements.

Photographs Screen Dominates Application Logic Complexity

 While each screen within the Lighthouse Navigator application presents a significant

amount of information, only the “Photographs” screen contains a substantially complex internal

structure. Figure 3-14 on the following page indicates how the PhotographsActivity class

serves as the gateway to the application’s lower-level logic, particularly the background threads

for completing the Flickr photograph downloading process.18 In addition, both the

PhotographsActivity and the ReviewsActivity reference the data structures

corresponding with these screens’ names, forming a sensible relationship between a category of

lighthouse information and the screen on which these elements appear.

18 Note that this class diagram omits relationships among the activities themselves; since I discuss the related

interdependencies earlier in this chapter, presenting them in an illustration would create unnecessary clutter.

82

Figure 3-14. Class Diagram for Lighthouse Navigator User Interface Screens.

Lighthouse Data Structure Contains All Other In-Memory Objects within Application

 Since the application uses lighthouses as a proof-of-concept implementation, the central

in-memory data structure, Lighthouse, represents one of these seaside landmarks. As Figure

3-15 below shows, this data structure in fact contains all other objects, which in turn collect

subsets of information regarding lighthouses, such as the physical or geographic address of a

tower. Also, the Photograph class forms the only connection to the ActivityVisible

enumeration within the project; the Lighthouse class in fact maps an ActivityVisible

value to a set of Photograph objects to determine the screen on which these images appear.

Figure 3-15. Class Diagram for Lighthouse Navigator Data Structures.

83

Download Handler Serves as Main Utility Manager within Application

 The application’s utility classes, which provide the background downloading and parsing

functionality for organizing lighthouse information and photographs from Flickr, rely on the

FlickrDownloadHandler class to regulate their execution. The handler class in this project

manages the application’s multithreading functionality, in particular monitoring the progress of

the FlickrPhotoDownloadThread and starting execution of the FlickrParseOutputXMLThread

once the application has successfully received images and photograph metadata for all pictures

stored on Flickr’s servers. Besides depicting the central functionality of the handler, Figure 3-16

below shows that these utility classes reference Photograph and Lighthouse objects

frequently, which seems sensible considering that these two data structure represent the

application’s focal points.

Figure 3-16. Class Diagram for Lighthouse Navigator Utility Classes.

Image Adapters Stay Simple in This Application

 For this project, I introduce two adapters into my application, which present collections

of specific data structures and therefore retain simple internal structures. As Figure 3-17 on the

following page illustrates, both of these adapters contain a collection-based field storing

information about the data structures they display and little else. The ReviewImageAdapter

class also references the ReviewSource enumeration, which allows the adapter to display

information about the correct website within a specific location on the “Reviews” screen.

84

Figure 3-17. Class Diagram of Lighthouse Navigator Interface Adapters.

3.6.2. Class Diagram for Image-Processing Algorithms Includes Minimal Coupling

 As discussed within section 4.7.1, “Discovering inability to Use ImageJ Directly with

Android,” I could not integrate the image-processing algorithms I developed for this project into

my application; as a result, I created a separate project that expresses the relatively simple

internal structure that this collection of algorithms possesses. Figure 3-18 below shows that these

image-processing algorithms remain mostly self-contained, allowing me to run and test them

independently more easily. The only interdependency stems from convenience. The

LighthouseFeatureFinder class, which performs a series of transformations on a test image

of unknown contents to detect a specific feature shape, clamps the 90th percentile of intensity

values to 255 during one step. Since the ImageClassifier class already creates a cumulative

distribution function of intensity values, I used this method to locate, and clamp, the top 10%

brightest pixels in a grayscale, transformed version of the test image for shape-based feature-

matching purposes. I add more subtle program integrity by creating

ChamferNeighborDistances and ChamferAnalysisDirection enumeration objects

within the FeatureShapeMatcher class. I introduce these symbolic constants to counteract the

algorithmic complexity that the shape matcher contains, improving the class’s maintainability.

Figure 3-18. Class Diagram of Image-Processing Algorithm Logic Classes.

85

4. Structure and Strategies for Implementing Application
 After completing a preliminary design for the Lighthouse Navigator application and

testing its feasibility within a survey and two usability studies, I developed the application logic

and data structures necessary for presenting information shown in the design storyboards. I soon

discovered that this complex application would require a well-structured code hierarchy, so I

separated the project’s source code files into multiple packages based on their different roles. I

used several built-in Android tools – including the SparseArray data structure and XmlPullParser

interface – as well as my own data structures to achieve code clarity and simplicity. These in-

memory data structures contained only text, however, so I created several adapters for converting

the textual data to compound user interface elements that users would find visually pleasing. The

photograph gallery within the application’s “Photographs” screen represents a cornerstone

feature, so I used Flickr’s API to search for as many geotagged photographs of a particular

lighthouse as possible and organize the information that Flickr embeds in search results. I then

created a set of background threads to copy this data into the application’s resource files. Flickr’s

elegant API inspired me to develop an XML file of my own; this document encapsulated the

different pieces of lighthouse information that the application’s different content-based screens

present. To provide even more persistent data, I created a photograph cache that allows users to

view photographs of a lighthouse from Flickr consecutive times without having to contact

Flickr’s servers to download the images each time. Once I organized the set of photographs for a

particular lighthouse, I created a set of image-processing algorithms that filter the photographs

by weather conditions, presence of rocks, and presence of lighthouse towers. Finally, I created

several sets of training data to test these algorithms and evaluate their performance, as discussed

in section 5.1, “Findings from Image-Processing Algorithm Testing.” This chapter discusses

each of the above implementation steps in more detail.

4.1. Preparing Development Environment: Eclipse and ADT

 When developing the Lighthouse Navigator application, I used the Eclipse integrated

development environment (IDE) to achieve a simpler and more customizable programming

experience. Eclipse offers real-time tools that assist with Java development, such as syntax

highlighting, method suggestions, and real-time compilation checking. These features allowed

me to focus on solving the high-level design problems that I faced while developing the

application. The software also includes a handy refactoring feature, which allowed me to change

86

the names and locations of the different classes that comprise the project with ease. Eclipse

automatically updates all references to a class whose attributes change, encouraging me to use an

appropriate set of class names and a programmer-friendly class structure at all times throughout

the development process. Eclipse also allowed me to customize my project settings extensively. I

could specify a specific set of formatting rules for my source code, which Eclipse applied every

time I saved a source code file within my project. Therefore, I achieved a uniform style across

each of these source files. Also, I adjusted the syntax structures that triggered compilation errors

or warnings, preventing me from introducing subtle bugs into my project files. Such errors

include memory leaks, unintended fall-through between cases of a switch statement, and

attempted null-pointer access.

 Eclipse offers an Android-based plug-in called the Android Development Tools (ADT),

which offers the same real-time development features for Android that Eclipse has normally for

Java in addition to several other useful debugging tools. By integrating ADT into Eclipse, I

received useful real-time feedback as I developed my application, including warnings about

deprecated methods and suggestions for methods to use within a particular context. ADT also

includes a tool called the Dalvik Debug Monitor Server (DDMS), which emulates an Android

device’s virtual machine once it begins communicating with a computer running Eclipse and

ADT. DDMS includes a tool of its own called LogCat. This feature, which appears in a pane

within the Eclipse workbench, displays log messages sent to an Android device. I used LogCat to

display console assurance messages, such as reaching a particular point in a method, and to view

exception messages to help direct me to the source of any run-time errors I had introduced into

my code during a programming session.

4.2. Presenting an Overview of Lighthouse Navigator Application

 A project as large and complex as this application requires a stable, easy-to-follow code

structure. Therefore, I divided the project’s source code into different packages based on each

file’s role. Similarly, I distributed the application’s resource files across several folders. I also

created a consistent activity (screen) hierarchy within my application so that users could

understand the application’s high-level navigational structure as quickly as possible. Finally, I

needed to include several supporting projects to simplify my application’s code and make the

project as a whole more backwards-compatible. I describe each of these high-level elements of

my source code within the sub-sections of this section.

87

4.2.1. Dividing Source Code into Various Role-Based Categories

 In order to achieve code understandability and scalability, I divided the source code files

within my project into role-based packages. While each file contributes towards the application’s

functionality, each one encapsulates a specific category of responsibilities. Each package

represents one of these categories. The role-based division of source files also makes it easier for

other programmers and me to extend the functionality of this application in the future.

 In particular, I divided the source code files within my project into the following five

packages:

 Base folder (edu.wpi.khufnagle.lighthousenavigator) – Contains activity logic

for each of the different screens that appears as users interact with my application;

 Data (edu.wpi.khufnagle.lighthousenavigator.data) – Contains custom data

structures that I use for organizing and accessing in-memory information about the

lighthouses that the application features. I discuss these data structures in more detail

within section 4.4, “Creating New Data Structures for Organizing Run-Time Application

Data;”

 List (edu.wpi.khufnagle.lighthousenavigator.list) – Contains custom

enumerations for expressing categories of options more clearly within the other source

code files of the project. I describe each of these lists within section 4.4.3; “Review Data

Structure Organizes Visitors’ Experiences of Lighthouses;”

 Util (edu.wpi.khufnagle.lighthousenavigator.util) – Contains the utility

classes needed for downloading and processing the lighthouse information that I retrieve

from existing websites. I describe the operations within these classes in more detail

within section 4.5, “Using Flickr’s API and Android Multithreading to Download

Photographs;” and

 View (edu.wpi.khufnagle.lighthousenavigator.view) – Contains classes

representing collections of user interface objects that I add as units within several screens

of the application. I describe these custom user interface in more depth within section

4.4.5, “Creating Custom User Interface Objects to Encapsulate Lighthouse Information.”

88

 The image-processing classes appear within a separate project in my source code since I

provide only a proof-of-concept implementation demonstrating their functionality. I discuss this

section of code in more detail within section 4.7, “Constructing Image Processing Algorithms

with ImageJ.”

4.2.2. Arranging Resource Files using Android Guidelines

 I distribute the different types of visual resources featured in the application across

several folders so that I can locate and update these files more easily and see the interdependence

among the different files more clearly. This folder hierarchy also matches Android’s general

guidelines. Each type of resource appears in a folder that describes the resource’s role within the

project.

 In particular, my application projects contains five different categories of resources. I

represent each of these categories with a folder; a more detailed description of their contents

appears below.

Drawable

 This folder contains each of the images that appear on at least one screen within the

application. These images include navigation icons like buttons and arrows as well as the

photographs that the application can display without an Internet connection. This folder also

includes several XML files that cause the application to display different versions of a particular

image based on users’ actions, such as selecting a particular image.

 I apply a specific set of naming conventions for the photographs of lighthouses that

appear within this folder, which appear in Table 4-1 on the following page. The data structures

that I create (and describe in section 4.4, “Creating New Data Structures for Organizing Run-

Time Application Data”) depend on the images containing this exact naming structure.

89

Table 4-1. Naming Convention of Lighthouse Photographs Appearing within “Drawable” Resource Folder.

Role of Image Naming Structure Example

Thumbnail within

“Search Results” screen

"searchresults_

<modified_name_of_lighthouse>.png"
“searchresults_pemaquidpointlight.png”

Header image within

“Information” screen

"information_

<modified_name_of_lighthouse>.png"
“information_pemaquidpointlight.png”

Gallery image along

right-hand side of

“Photographs” screen

"photographs_

<modified_name_of_lighthouse>_

<flickr-id>.png"

“photographs_pemaquidpointlight_2708085451.png”

Header image within

“History” screen

"history_

<modified_name_of_lighthouse>.png"
“history_pemaquidpointlight.png”

90

In the above table, “modified name of lighthouse” refers to the name of the lighthouse with all

spaces removed and all characters converted to lower-case letters. Also, the Flickr ID refers to

the unique ID number assigned to the photograph on Flickr’s servers; I introduce this value to

ensure that all images within my application contain unique file names. I use a naming

convention as consistent as possible so I can extend the application’s functionality more easily in

the future.

 This folder in fact appears as five separate ones within the application’s resource

hierarchy. Each folder represents a different screen density. By including images of an

appropriate size for each of these resolutions, I can ensure that each Android smartphone using

my application will render these images correctly, without distortion or scaling artifacts.

Layout

 This folder features XML files that describe the visual structure of the different user

interface elements on each screen within the application. These XML files closely resemble

HTML files describe each page on a website. This folder also contains XML files describing the

layout of the more complex user interface elements, such as the dropdown list allowing users to

select a content-based activity and the list depicting lighthouse search results.

Menu

 This folder includes an XML file that describes the layout of the bottom action bar on the

“Photographs” screen, specifying the location of each action button that appears within this user

interface element.

Values

 This folder contains four XML files that specify constant values used within the XML

files representing other project resources. These files include:

 Colors – Lists the names and values of each custom color used within the application,

such as the background color for buttons on the different screens;

 Dimens – Lists the names and dimensions of the different text sizes and screen margins

featured within the application;

 Strings – Lists the different pieces of text that appear within the application, including

sub-headings within the different screens and paragraphs that appear regardless of the

lighthouse users have chosen to view; and

91

 Styles – Lists the set of custom styles that I created for the different user interface

elements on the application’s screens. These styles, which resemble CSS rules quite

closely, allow me to make changes to a particular style and propagate these changes

across each of the user interface elements that use that style. This file also makes the

XML files found in the “Layout” folder less verbose and repetitive, since I can express a

screen element’s appearance with a single style instead of a collection of attribute

assignments.

XML

 The XML file in this folder lists the general facts, photograph details, historical events,

and user review metadata for each lighthouse that the application features. I discuss this file in

more depth within section 4.6.1, “Creating an XML File Structure that Allows for Simple

Additions and Updates.”

4.2.3. Creating an Appropriate Metadata Structure

 Within my application’s manifest file (AndroidManifest.xml), I select attributes for

the application’s activities that simplify the screens’ interfaces and the navigation among the

application’s screens. The “label” attribute, which usually presents the name of the screen to

users, is blank for my application’s content-based activities because this name actually appears

within the content-activity drop-down list that I include within the screen’s top action bar. Since

I automatically mark the correct element within this list as active (and visible to users) based on

the screen shown, this list element effectively forms the title of the activity instead. Each activity

in the application descends directly from the “Welcome” activity, except for the “Welcome”

activity itself. Users trigger this functionality by selecting the “up” button in the top-left corner

of any screen within the application. This simple activity hierarchy gives users one-touch access

to the application’s main menu on every screen, allowing them to become familiar with the

application’s screen-based navigation more quickly.

 In addition to presenting a clear, simple navigation system within my application, I

require users to consent to as few permissions as possible when installing the application so that

they can maintain their privacy and personal security on their phones. Nonetheless, some

features within my application require special permissions, which I enumerate and describe

below:

92

 READ_GSERVICES and MAPS_RECEIVE – Allows the application to display the location

of a lighthouse within an embedded Google Maps object on the “Photographs” screen;

 ACCESS_COARSE_LOCATION and ACCESS_FINE_LOCATION – Grants the application

permission to find lighthouses near the user’s current location;

 ACCESS_NETWORK_STATE and INTERNET – Allows the application to determine

whether the user is connected to a network or Wi-Fi Internet service; if so, the application

can use this connection to download photographs from Flickr for viewing within the

application; and

 WRITE_EXTERNAL_STORAGE – Grants the application permission to store information

related to Google Maps fragments on the smartphone’s external storage device.

 Since some users of my application might use older Android smartphones than others, I

allow my application to run on as many versions of the Android operating system as possible,

maximizing its backwards-compatibility potential. I have designed my application to run on the

newest version of Android (SDK level 19, or version 4.4 “KitKat”), but the application can also

run on operating systems as old as SDK level 8 (version 2.2 “Froyo”). According to the Android

Developers site, devices with an older operating system version than “Froyo” accounted for less

than 1% of check-ins to Google’s servers in August 2013, so it’s safe to assume that my

application is available to about 99% of the current Android smartphone user base [13]. In order

for the application to use some of the newest user interface features on older phones, I use

Android’s “support” libraries within my application project. I discuss the libraries that I include

in more detail within the following sub-section.

4.2.4. Introducing External Packages into Project

 In order for older Android smartphones to render the user interface elements within my

application correctly, I include several Java archive files (those with a *.jar extension) from

Android’s support libraries as part of my application project. Version 4 of the support library (the

one whose classes run successfully on all Android devices with an SDK level of 4 or greater)

contains classes that allow Google Maps fragments to display correctly within application

screens, such as the “Photographs” screen within the Lighthouse Navigator application. I use the

files from version 7 of the support library even more extensively; this set of source code allows

the action bar to appear at the top of each activity within my application. The action bar includes

93

the drop-down list, allowing users to select a specific content-based screen when viewing

information about a lighthouse.

 In addition to integrating some of Android’s support libraries into my application, I also

use version 2.4 of Apache’s Commons IO library to express web-based input/output

functionality more concisely. In particular, the transferURLToFile() method within the

WebDataExtractor class of my application project contains a call to the Apache Commons IO

method copyURLToFile(), allowing me to take the HTML source code from a website and

transfer it to a file within the phone’s internal storage with a single line of code.

4.3. Using Existing Data Structures and Packages to Enhance Application Efficiency

 As I developed the Lighthouse Navigator application, I used several existing software

data structures and packages. These tools simplified the application logic for storing and

transferring data, allowing me to focus on the best methods for gathering and designing the

information within the application instead. In particular, I used the SparseArray class for storing

historical events and the XmlPullParser interface for processing XML documents containing

structured lighthouse information; both of these tools reduce the amount of memory that my

application consumes while running. I also included the Apache Commons IO package, which

features a conveniently concise method for transferring web contents to a file within an Android

device’s internal storage space. I describe each of these software tools within the following sub-

sections.

4.3.1. Sparse Array Data Structure Trades Access Time for Efficient Memory Use

 In the LighthouseData class, I use a special type of map called a SparseArray to

maximize the space efficiency of the historical data that I associate with each lighthouse featured

in the application. The structure and interface of this Android-specific collection mirror those of

a HashMap in Java, but the data structure uses less memory space at the cost of a slight decrease

in performance. According to the Android Developers guide for the SparseArray class, the

class maps primitive int types, rather than the wrapper Integer class, to values of type

Object. Since SparseArray keys do not need to be auto-boxed and can fit in four or five bytes

(depending on the type of machine in use), they consume less memory. On the other hand, access

to elements in a SparseArray is slightly slower because value access relies on a binary search

and because element insertion or removal requires the traversal of a linear array structure. The

Android Developers guide assures programmers, however, that the performance decrease for

94

SparseArray objects with less than a few hundred elements is at most 50% [59]. Since I

associate only a half-dozen or so historical pieces of information with each lighthouse, I can

safely assume that this data structure marginally reduces the application’s overall performance.

4.3.2. XML Pull Parser Offers Event-Driven Processing of Lighthouse Data

 The XML PULL API offers an event-driven model for processing XML documents that

offers convenience for programmers and memory efficiency for devices. The API processes one

element of an XML file at a time, so I could create separate handlers for each type of element

and build the appropriate in-memory data structures within my application more easily. This type

of parser, like the Simple API for XML (SAX), stores the contents of the XML file as a single

string [34, 57]. This storage strategy uses far less memory on the device than does the Document

Object Model (DOM) method of processing an XML file, which creates entire Node and

NodeList objects to represent different XML elements. This event-based API requires that I

process the elements in the order that they appear within the file. Since the data structures I

create within my application project mirror those found in the XML file anyway, however, this

restriction does not adversely affect my ability to extract information from the file.

 The XML PULL API offers a simple abstraction of well-formed XML documents to

complement its good performance. According to the creator of the API, Aleksander Slominski,

objects using this API recognize five different types of XML elements [57]:

 START_DOCUMENT – The beginning of the XML file, which parsers always select

automatically when they begin processing a document;

 START_TAG – The opening tag of an XML element;

 TEXT – The contents between tags delimiting an XML element;

 END_TAG – The closing tag of an XML element; and

 END_DOCUMENT – The end of the XML file, indicating that the parser has now processed

the entire document.

 A well-formed XML document always contains TEXT elements between START_TAG

elements and END_TAG elements. Also, tags nest properly, with all [START_TAG, TEXT,

END_TAG] element groups contained completely within other element groups. Since I use well-

formed documents within this project, I can use data structures that rely on the parser’s ability to

95

process elements in sequence and nested elements (elements that appear within other elements)

from the inside out.

 Within my application, I use Android’s implementation of the XML PULL API to

download images from Flickr and organize the images’ respective metadata in a convenient

manner. In order to use the XmlPullParser interface, I create a new instance of the

XmlPullParserFactory class. Since the Android implementation of this interfaces locates the

appropriate parsing class automatically by searching though the device’s CLASSPATH

environment variable, I do not need to locate the class myself [35]. The parser examines the

elements’ start tags in the order in which they appear within the document, capturing each of the

relevant attributes as needed. For example, when I begin processing the START_TAG of a PHOTO

element, I need to capture the id, url_z, ownername, and license attributes that Flickr

includes with this start tag. (An explanation of these attributes appears in section 4.5.1,

“Structuring Calls to Flickr’s API to Obtain Geotagged Images.”) I use these attribute values to

create an appropriate name for the image that I download from Flickr into the internal storage

space of the Android device. Once I have processed the corresponding END_TAG event of the

PHOTO element, I place these attributes into an in-memory data structure that I call a

Photograph. I use this type of object within the LighthouseImageAdapter class (discussed

in section 4.4.6, “Converting a List of Photograph Data into a Collection of Images”) to maintain

the connection between an image’s metadata and its contents. As the parser continues to process

the different elements within the XML document containing the Flickr API response, I place the

elements currently being processed on a stack, using a custom object called a

FlickrOutputXMLTag to represent each element and the plain text with which it corresponds.

This stack allows me to extract information from nested elements in the proper order based on

the document’s structure.

 Since my own XML file containing general lighthouse information appears as a resource

file within my project, I use a similar process but a different implementation of the XML PULL

API to extract information from this document. Instead of using the standard XmlPullParser, I

use the XmlResourceParser to indicate that the XML document to parse appears within the

project as a resource file. As I process the END_TAG event of a PHOTOGRAPH element within this

document, I use the getIdentifier() method to associate the resource ID of an image

(pointing to the image itself) with a Photograph object containing that image’s metadata. This

96

process and its purpose mirror those of mapping downloaded Flickr images to their respective

pieces of metadata.

4.3.3. File Utilities from Apache Commons IO Drastically Simplify Extracting URL Contents

 When retrieving image data from Flickr, including the images themselves, I rely on the

FileUtils class in the Apache Commons IO library (version 2.4) to complete the web response

transfer in a simple and efficient manner. According to the Apache Commons website, this utility

library comprises six packages, including: reading files using Java’s Reader classes, writing

files using Java’s Writer classes, filtering files, and comparing files. The library also includes a

group of utility classes for performing operations, including the transfer of web data [8].

 As I looked for assistance on downloading and saving web response data using Java, I

stumbled upon a StackOverflow “answer” from Shengyuan Lu, who suggests using the Apache

Commons IO library to complete the transfer to a local file in a single line of code using the

copyURLToFile() method. Even handier, the users whose comments appear below Lu’s

answer remind developers to also include timeout parameters [43]. These time parameters

prevent the method from blocking indefinitely by setting a maximum amount of time for

connecting to the website and for extracting the website’s data. By incorporating this library and

its useful functionality into my project, I could express the extraction process from the website to

a local file using simpler code and fewer exception-handling cases. This streamlined code

decreased both developing and debugging time.

4.4. Creating New Data Structures for Organizing Run-Time Application Data

 The data structures and packages discussed in the previous section provided simple,

elegant tools for storing and transferring data within my application, but I still created my own

data structures that cater to the problem domain associated with this project: lighthouses and

their photographic and experiential contexts. I introduced three large data structures –

Lighthouse, Photograph, and Review – to encapsulate the different types of information

about lighthouses so that I could access this domain-specific data within other areas of the

application in as convenient and flexible a manner as possible. I also formed several

enumerations to represent sets of categories more robustly. I describe these custom data

structures in depth within the following sub-sections.

97

4.4.1. Lighthouse Data Structure Contains Information for Content-Based Activities

 The Lighthouse data structure forms an in-memory container for each piece of

information available about a particular lighthouse that my application features. Some fields

within this data structure remain simple enough to require primitive or standard-library typing.

The name, phone number, website, and light pattern fields for a given lighthouse are strings since

they contain alphanumeric characters and several other symbols, such as (,), and _. I express

the phone number as a string in order to create a standard format across all lighthouses visible

within the application. Similarly, I use integers to express the year built and height fields of the

lighthouse since these facts express exclusively quantitative information.

 Other details about the lighthouse contain additional complexity and, therefore, require

data structures of their own to express their contents clearly. Each lighthouse’s address,

geographic coordinates, hours of operation, and visitor access details reside in compound data

structures. Each data structure contains a descriptive name and a set of embedded pieces of

information:

 Location – Represents a physical address. Contains strings representing the street and

city name and a value of the State enumeration class for the state;

 Geolocation – Represents a set of geographic coordinates. Includes two double-

precision floating-point numbers, one for the latitude and one for the longitude. These

coordinates indicate the lighthouse tower’s precise location;

 HoursOfOperation – Represents a collection of information about the times of day and

seasons when the lighthouse museum or visitors’ center is open. Contains three strings:

one for number of days during the week when the lighthouse is open, one for the time

interval when the lighthouse visiting area is open (such as 8:00 AM – 5:00 PM), and one

for the range of months when this area is open (such as May – September); and

 Status – Represents a collection of information regarding the extent to which visitors

can explore the lighthouse. Include three strings: one indicating whether the general

public can access the grounds surrounding the lighthouse, one indicating whether the

general public can climb to the top of the lighthouse tower, and one describing

miscellaneous facts and details, such as visitors’ ability to eat meals in the lighthouse

tower or stay for a night or week inside the keeper’s cottage.

98

 The Lighthouse object even includes several collections, which I express using maps and

lists. I use a HashMap object to organize the set of photographs (or the “album”) containing

images of the lighthouse. Each element within this album maps an enumeration value (of type

ActivityVisible) representing an application screen to an ArrayList of Photograph

objects describing the images that appear within that application screen. Each Photograph

object includes metadata about an image as well as a reference to the image itself. To provide an

ordered and organized collection of historical events that have taken place at the lighthouse, I

place these data into a SparseArray object (described in more detail within section 4.3.1,

“Sparse Array Data Structure Trades Access Time for Efficient Memory Use”). This object maps

a year to an ArrayList of strings that describe the set of events that occurred during that year at

the lighthouse. Finally, I combine the sets of information regarding visitors’ experiences of

lighthouses from different websites into an ArrayList of Review objects. I use a list collection

instead of a set because Yelp’s branding guidelines indicate that reviews from that website

should always appear first. By using a list with information from Yelp as the first element, I can

guarantees that Yelp will appear at the top of the screen every time the “Reviews” activity loads.

 The Lighthouse object also contains a static utility method called

constructDirectoryFriendlyLighthouseName(). This method transforms the format of

a lighthouse name for use within a file name on a device’s internal storage drive or in the

project’s resource files. In particular, it removes the spaces within the name of the lighthouse

since computers do not always exhibit consistent behavior when processing file names that

contain spaces. This method also converts all characters to their lower-case equivalents because

Android runs a distribution of Linux; as such, file names are case-sensitive from a processing

perspective.

4.4.2. Photo Album Data Structure Encapsulates Photograph Information

 The Photograph object incorporates the metadata associated with an image appearing

within the Lighthouse Navigator application, such as the photographer and the Creative

Commons license associated with the image. Unlike the Lighthouse object, the Photograph

object uses mostly primitive and standard-library types to describe its attributes.

99

These attributes include:

 Strings to describe the Flickr username of the person who uploaded a photograph to

Flickr, the URL to the website where the photograph resides, and the location within the

Android device’s internal storage where other activities can locate the downloaded

version of the photograph;

 A long integer representing the unique ID that Flickr’s servers have provided to a specific

photograph;19 and

 An integer representing the ID that the application has assigned a photograph that appears

as a project resource. Note that this “resource ID” can – and usually does – differ from

the “Flickr ID” of the same photograph.

 Only the photograph’s license type appears within a special type,

CreativeCommonsLicenseType. This enumeration associates the license type “code” that

appears within Flickr’s API responses with the actual Creative Commons license to which it

refers. By using this enumeration, I could create two methods within the Photograph object –

getLicenseType() and getLicenseTypeAbbreviation() – to convert the enumerated

license type into a descriptive string or an abbreviated version of this string, respectively. The

output from these special accessor methods appears within the “Information” and “Photograph”

screens of the application. For more information on Flickr’s integer-to-license-type mapping, see

section 4.5.1, “Structuring Calls to Flickr’s API to Obtain Geotagged Images.”

 Since some photographs already exist as image files on the device when users install the

application, not all Photograph objects contain the same in-memory representation; as a result,

I overloaded the object’s constructor to handle each type of photograph that the application

features. I include a “base” constructor that contains all six object attributes as input parameters.

All other constructors call this constructor implicitly. For photographs from Flickr that reside

within the application project’s resource files, which users can access immediately after

installing Lighthouse Navigator, I create a constructor that does not include parameters for the

photograph’s source website, since its Flickr ID provides enough information, and for the

photograph’s location within the device’s internal storage, since the photograph does not appear

19 Integers in Java can contain only 9 base-ten digits; since some Flickr IDs contain more, I needed to use the long

type instead.

100

there. After downloading photographs from Flickr within the application, I initialize the

associated Photograph objects with a constructor with every field except the source website as

the input parameters. As with the photographs that reside within the device’s resource files, these

“downloaded” images contain a Flickr ID, which serves as a unique reference to that photograph.

Finally, the historical photographs need references only to the image’s resource ID, the URL of

the website where it appears, and the name of the owner (Jeremy D’Entremont in all cases). As a

result, the constructor for creating historical photographs contains only those three fields as input

parameters. I associate the photograph with its original website to provide appropriate attribution

to the image when it appears within the “History” screen of my application.

4.4.3. Review Data Structure Organizes Visitors’ Experiences of Lighthouses

 The Review object features information about user reviews from a particular travel

experience website. I use only primitive types and a simple enumeration to express this review

metadata. I use a pair of strings to represent the name of the attraction listed on the travel

experience website that features the lighthouse as well as a code that uniquely identifies the

attraction (used on TripAdvisor only). I also include the average rating for the lighthouse-based

attraction inside a double-precision floating-point integer to account for half-points in some of

the scores, and I place the number of reviews that users have uploaded in an integer. Finally, I

present the source of the travel experience website within an enumeration called

ReviewSource, which represents either “Yelp” or “TripAdvisor” for this version of the

application.

 The string-based values within the Review object help me construct the URLs that users

see on the “Reviews” screen within the application. Table 4-2 on the following page shows the

structure of these URLs, which I construct in the generateURL() method of the Review class:

101

Table 4-2. Structure of URLs for Travel Experience Websites Featuring Lighthouses.

Travel

Experience

Website

URL Structure Example

Yelp
"http://m.yelp.com/biz/

<attraction-name>"

http://m.yelp.com/biz/pemaquid-

point-lighthouse-bristol

TripAdvisor

"http://www.tripadvisor.com/

Attraction_Review-

<attraction-code>-Reviews-

<attraction-name>.html"

http://www.tripadvisor.com/

Attraction_Review-g40533-

d1102612-Reviews-

Pemaquid_Point_Lighthouse-

Bristol_Maine.html

Within the “Reviews” screen, users see these websites as links, allowing them to access them

within the browser application on their respective devices to learn more about visitors’

experiences at a particular lighthouse.

4.4.4. Enumerations Give Meaning to Lists within Application

 The Lighthouse Navigator contains several sets of categorical information; since Java

allows programmers to represent each element in this type of set as an integer with a symbolic

name, I incorporate this feature into as many of these sets as possible. The symbolic names allow

me to use switch statements instead of the slightly less-efficient if statements, and by using

these categorical values as enumerations, I generate compilation errors instead of logic errors

when I misspell a category’s name, making the application more robust and reliable. I list the

name, purpose, location, and elements of each enumeration within Table 4-3 on the following

page.

102

Table 4-3. Descriptions of Enumerated Lists within Application.

Enumeration Containing Class Purpose Elements (Values)*

ActivityVisible ActivityVisibilityList

Indicates the name of

the screen within the

application where a

particular photograph

appears.

SEARCH_RESULTS,

INFORMATION, PHOTOGRAPHS,

HISTORY

ContentActivityList ContentActivityList

Maps each content-

based screen within the

application to the index

of the drop-down list

that appears within the

top action bar on each

of the content-based

screens, allowing users

to switch among these

screens as desired.

INFORMATION (0),

PHOTOGRAPHS (1),

HISTORY (2),

REVIEWS (3)

CreativeCommonsLicenseType CreativeCommonsLicenseTypeList

Maps each integral

code that Flickr assigns

to a Creative Commons

(2.0) license type to the

name of that license

type.

ATTRIBUTION_NONCOMMERCIAL_

SHARE_ALIKE (1),

ATTRIBUTION_NONCOMMERCIAL

(2), ATTRIBUTION (4),

ATTRIBUTION_SHARE_ALIKE

(5), NO_RESTRICTIONS (7)

103

FlickrOutputXMLTag FlickrParseOutputXMLThread

Contains the tag names

of the elements that

appear within the

response from Flickr’s

API after requesting

geotagged photograph

information.

RSP("rsp"), PHOTOS

("photos"), PHOTO("photo")

HistoricalArrowListenerType HistoryActivity

Lists how the “History”

activity could navigate

through the list of

historical events after

users select one of the

arrows

PREVIOUS, NEXT, NO_ACTION

LighthouseXMLTag LighthouseDataParser

Contains the tag names

of the elements within

the XML document

that organizes all

lighthouse information

appearing within the

application.

LIGHTHOUSES

("lighthouses"), LIGHTHOUSE

("lighthouse"), NAME

("name"), ADDRESS

("address"), STREET

("street"), CITY ("city"),

STATE ("state"),

COORDINATES

("coordinates"), LATITUDE

("latitude"), LONGITUDE

("longitude"), PHONE_NUMBER

("phone-number"), WEBSITE

("website"), HOURS

("hours"), FREQUENCY

("frequency"), TIME

("time"), SEASON

("season"), VISITOR_ACCESS

("visitor-access"), GROUNDS

104

("grounds"), TOWER

("tower"), OTHER("other"),

YEAR_BUILT ("year-built"),

HEIGHT ("height"),

LIGHT_PATTERN ("light-

pattern"), PHOTOGRAPHS

("photographs"), PHOTOGRAPH

("photograph"), ID ("id"),

ACTIVITY ("activity"),

OWNER ("owner"), LICENSE

("license"), SOURCE_WEBSITE

("source-website"),

HISTORICAL_EVENTS

("historical-events"),

HISTORICAL_EVENT

("historical-event"),

YEAR("year"), DETAILS

("details"), REVIEW_SOURCES

("review-sources"),

REVIEW_SOURCE ("review-

source"), SOURCE_NAME

("source-name"),

BUSINESS_NAME ("business-

name"), ATTRACTION_CODE

("attraction-code"),

AVG_RATING ("avg-rating"),

NUM_REVIEWS ("num-reviews")

105

ReviewSource Review

Represents the different

travel experience

websites from which I

obtained lighthouse

review information.

YELP("Yelp"), TRIP_ADVISOR

("TripAdvisor"), NONE("")

State StateList

Contains the different

geographic states

(within the United

States) represented in

the application,

including the “select a

state” placeholder that

appears within the

“Welcome” screen.

SELECT_A_STATE

("Select a state"),

MAINE("Maine"),

NEW_HAMPSHIRE

("New Hampshire"),

MASSACHUSETTS

("Massachusetts"),

RHODE_ISLAND

("Rhode Island"),

CONNECTICUT

("Connecticut")

*Values indicated in parenthesis where applicable.

106

The “values” that appear in the right-hand column of the above table represent fields that a

certain enumeration contains. This field allows me to switch between a symbolic name for an

integer and the integer or string itself that the symbol represents as needed. This dual expression

of the enumerations’ elements allows me to update an enumeration assignment more easily,

particularly when processing XML documents.

 In addition to using the above enumerations, I create a “fake” enumeration for use

primarily within the FlickrDownloadHandler class. This “set of elements” assigns a

descriptive symbol to integer codes of messages that the handler receives. Based on the code of

the message, the handler can determine whether the application has finished downloading or

parsing the XML document containing the Flickr API response. A more detailed discussion of

the asynchronous downloading of Flickr photograph data appears in section 4.5.2, “Creating

Background Threads to Complete Photograph Downloading Operation.”

4.4.5. Creating Custom User Interface Objects to Encapsulate Lighthouse Information

 While the custom data structures described in the above section present collections of

information about lighthouses in a form that the application to process, these text-based

structures would overwhelm users accustomed to a substantial amount of graphics within a

smartphone screen’s layout. To address this need for a more graphically-friendly user interface, I

created two adapter classes that convert the text-based information into user interface units that

contain human-friendly graphics and layouts. These classes include the

LighthouseImageAdapter class that converts a list of photograph details into a gallery of

images within the “Photographs” activity and the ReviewItemAdapter class that arranges

review details from a particular website into a standardized layout structure within the

“Reviews” activity. I describe both of these classes in more detail within the sub-sections of this

section.

4.4.6. Converting a List of Photograph Data into a Collection of Images

 The LighthouseImageAdapter class converts an array of photograph data into a user

interface element comprising the images that the data represent. The class keeps close track of

the photographs’ origin – whether they represent downloaded images from Flickr or static

resource images – in order to render the photographs properly both initially and after users

interact with the gallery’s photographs regardless of whether the smartphone possesses an

107

Internet connection. The class’s constructor takes in not only the application context and the list

of photographs to convert to images, but it also accepts a Boolean value indicating whether the

application has downloaded the list of photographs from Flickr. If the smartphone running the

application is connected to the Internet, then the photograph data does indeed refer to Flickr

photographs, and the adapter should display the images stored in the lighthouse photograph

cache. Otherwise, the adapter should display the thumbnails that appear within the

/res/drawable/ folder of the project. This Internet connectivity distinction determines the

method used to display the image itself within the getView() method of the class. The

application renders photographs downloaded from Flickr and stored in the smartphone’s internal

storage using the setImageDrawable() method while it uses setImageResource() instead

to display images from the project’s resource files when in offline situations. The adapter class

also keeps track of the correspondence between the index of a photograph within the data array

and the contents of the photograph itself. This connection between data structures allows the

GridView object within the “Photographs” activity to display the correct image in the top-left

corner of the screen after users select a specific one from the gallery on the right-hand side of

that screen.

 Besides displaying the photographs correctly, this class adds an aesthetic touch to create

eye-pleasing whitespace around each image. In particular, I added a vertical padding of 10

density pixels and a horizontal padding of 5 density pixels to each photograph. Therefore,

consecutive photographs within the gallery contained a total of 20 density pixels of padding, and

the gallery itself contained a spacing of 5 density pixels between it and the content on the left-

hand side of the “Photographs” screen.

4.4.7. Displaying Review Details as a Single User Interface Unit

 The ReviewItemAdapter class encapsulates the review metadata about a specific

lighthouse from a certain website – such as the average review score and number of reviewers

for Pemaquid Point Lighthouse on Yelp – into a single user interface object. This object in turn

contains embedded groups of user interface objects as well as a connection with a layout

structure defined in an XML file. The adapter’s constructor references a resource ID. Unlike the

photograph image adapter, this adapter associates its layout with a relative layout defined in the

/res/layout/ folder of the project. This XML resource file presents the structure for each set

of user interface objects corresponding to a particular review source. The adapter can use the

108

names given to user interface elements within this XML file to access the elements directly,

modifying these elements’ contents according to the details within the currently active Review

object. The top-most element of the “review source” list item contains a TextView object

indicating the website from which I originally retrieved the reviews. This element features a

compound drawable, an Android construct that allows me to attach the appropriate logo directly

to the TextView itself. To ensure that the logo does not appear distorted, I first create a

container for the logo that matches the size of the logo itself before adding this container as a

compound drawable to the TextView object. To make the adapter class more maintainable, I

assign constant integer variables to the dimensions of the Yelp and TripAdvisor logos that this

class adds to the “Reviews” screen. Finally, I make sure to display the proper noun plurality

within the TextView object that shows the number of reviews that form the average score. If a

particular reviews website features only one review, then the text should say, “Based on 1

review,” not “Based on 1 reviews.”

4.5. Using Flickr’s API and Android Multithreading to Download Photographs

 Flickr offers an API for identifying geotagged photographs from a specified location and

including a certain subject, such as lighthouses. I used this API within my application to identify

and organize a set of images containing a specific lighthouse. Once I found the photographs that

Flickr makes available for use within my application, I downloaded them to an Android device’s

internal storage, where the application’s image adapter classes can easily find them for

rendering. In order to complete such a complex, network-intensive task, however, I needed to

execute a series of background tasks that run asynchronously relative to the application’s main

thread with which the user interacts directly. In particular, I created a handler object to ensure

that the application could download and process the correct photograph information from Flickr

in the proper order. I describe the Flickr API protocol as well as the interdependence of the

classes providing background threading within this section.

4.5.1. Structuring Calls to Flickr’s API to Obtain Geotagged Images

 When my application detects an Internet connection, it downloads geotagged, Creative

Commons-licensed images of a lighthouse when users elect to view the “Photographs” screen for

that lighthouse. I constructed a detailed request to Flickr’s API to select and download the

correct set of photographs for a given lighthouse. The request uses Flickr’s flickr.photos.search

API method to find geotagged photographs of lighthouses that contain a Creative Commons

109

license, rather than a full copyright restriction. Within the FlickrPhotoDownloadThread

class, I assemble the URL to pass to Flickr’s APIs. Figure 4-1 on the following page illustrates

the call itself and describes the constituent components of the request. Once Flickr’s servers

process this request for photographs, it responds with an XML file containing information about

each photograph satisfying the API request. An excerpt of a sample response from this API call

appears in Figure 4-2 on the page following Figure 4-1.

4.5.2. Creating Background Threads to Complete Photograph Downloading Operation

 Since Android applications do not allow network access to occur on the main user

interface thread and the platform’s design guidelines strongly discourage programmers from

introducing long-lasting blocking operations on this thread, I completed the Flickr photograph

downloading and information parsing as two separate background, asynchronous threads. I

created classes encapsulating the background downloading and processing functionality and

named these files FlickrPhotoDownloadThread and FlickrParseOutputXMLThread,

respectively. I could not use Android’s built-in AsyncTask handler since the important progress

dialog updates occur during events within the parsing thread, and AsyncTask objects cannot

easily present updates on a background thread that a different background thread starts.

 The application logic for executing these background threads begins in the

PhotographsActivity class. First, the activity checks to see if the user is connected to the

Internet or if the lighthouse being examined already exists within the photograph cache

(discussed within section 4.6.2, “Adding a Cache to Preserve Existing Photographs for One

Lighthouse”); if either condition is true, then the activity skips the asynchronous processing tasks

completely as the application no longer needs to complete them. Otherwise, however, the activity

checks to see if the downloading thread has already begun; if not, it loads a ProgressDialog

user interface element within the “Photographs” screen, alerting users that the application has

begun downloading images and their respective metadata from Flickr’s servers into the device’s

internal storage. Finally, the activity creates the handler used to manage the background threads

and allows the downloading thread to begin execution in the background.

110

Request to Flickr’s API

http://ycpi.api.flickr.com/services/rest/?

method=flickr.photos.search&api_key=<my-API-key>&

text=lighthouse&license=1,2,4,5,7&content_type=1&

has_geo&lat=<lighthouse-latitude>&lon=<lighthouse-

longitude>&radius=1&extras=url_z,owner_name,license

Explanation of Request Query String

 text = lighthouse – Search for photographs that contain the word

“lighthouse” within the title, description, and/or tags;

 license=1,2,4,5,7 – Find photographs that contain only Creative

Commons license that allow me to share the images freely with

attribution, or photographs that have no restrictions at all (type 7);

 content_type=1 – The response from Flickr should contain only

photographs (no videos);

 has_geo – Implicitly set to true. Each photograph should be geotagged;

 lat and lon – The geographic coordinates at the center of the search

circle for geotagged photographs, set to the location of the lighthouse

tower within the Lighthouse object (discussed within section REF

_Ref386590579 \r \h * MERGEFORMAT 2.4.1, “ REF _Ref386590579

\h * MERGEFORMAT Lighthouse Data Structure Contains Information

for Content-Based Activities”);

 radius=1 – The search circle extends 1 kilometer from the (lat, lon)

geographic pair denoted in the previous request attribute; and

 extras=url_z,owner_name,license – The response from Flickr

should include a direct link to a version of the photograph that can fit in a

640 × 640 pixel square, the username of the Flickr user who uploaded the

photograph, and the photograph licensing code (referenced within the
Figure 4-1. Structure of query to Flickr’s API for retrieving geotagged,

Creative Commons-licensed photographs of lighthouses.

111

 While the PhotographsActivity class starts the background threads’ execution, most

of the threading logic takes place within the FlickrDownloadHandler class, which manages

thread execution and message handling. In particular, this handler ensures that the

FlickrParseOutputXMLThread class does not begin execution until

FlickrPhotoDownloadThread class has finished writing to the local output.xml file,

which contains the response from Flickr’s API (as described in the previous sub-section). This

Response within Flickr’s API

<rsp stat="ok">

 <photos page="1" pages="1" perpage="250" total="244">

 <photo id="7261109726" owner="7327243@N05"

 secret="12b7500630" server="7235" farm="8"

 title="Pemaquid Point Lighthouse - Maine"

 ispublic="1" isfriend="0" isfamily="0" license="5"

 ownername="Dougtone" url_z="http://

 farm8.staticflickr.com/7235/

 7261109726_12b7500630_z.jpg" height_z="640"

 width_z="480"/>

 [243 results omitted]

 </photos>

</rsp>

Explanation of Response XML Elements

 rsp stat="ok" – The API responded with an “OK” code;

 photos total="244" – 244 photographs stored on Flickr’s servers

satisfy the request criteria; and

 photo id="7261109726" … license="5"

ownername="Dougtone" url_z="http://

farm8.staticflickr.com/7235/

7261109726_12b7500630_z.jpg" height_z="640"

width_z="480"/> – The first photograph in the results list contains a

Figure 4-2. Excerpt of sample geotagged photograph response from Flickr’s API.

112

serialized threading procedure, while unconventional, ensures that the XML parsing thread

processes the information related to the correct lighthouse, avoiding data inconsistencies within

the application. The handler also receives a progress message from a

FlickrPhotoDownloadThread object each time it finishes processing a START_TAG event for

a PHOTO element within the Flickr response XML file. Once the handler receives this message, it

relays it to the ProgressDialog object created within the PhotographsActivity class,

allowing the text on this dialog to update and inform the user that the application has begun

processing metadata for another photograph of the lighthouse. Once the application has finished

parsing Flickr’s XML response, the handler deletes the existing collection of Photograph

objects, which refer to images stored in the application’s resource files, and loads metadata for

new Photograph objects from the photograph cache within the device’s internal storage. This

deletion process prevents the images that come installed with the application from appearing

twice when users download images from Flickr. Finally, the handler restarts the

PhotographsActivity in order for the application to render the newly downloaded images.

 The background thread handler’s features allow the threads themselves to contain

relatively straightforward functionality, making these hard-to-debug threads less error-prone.

The FlickrPhotoDownloadThread initiates the request to Flickr’s API to locate relevant

photographs on the website’s servers – as described in section 4.5.1, “Structuring Calls to

Flickr’s API to Obtain Geotagged Images” – then copies the XML file that Flickr provides as a

response to the device’s internal storage using the Apache Commons IO package, as discussed in

section 4.3.3, “File Utilities from Apache Commons IO Drastically Simplify Extracting URL

Contents.” In order to prevent the parser thread from processing the wrong Flickr response, this

downloading thread deletes the existing output.xml file and creates a new one with up-to-date

information from Flickr’s servers. Once the downloading thread has finished executing, the

FlickrParseOuputXMLThread uses the XmlPullParser interface (described in section

4.3.2, “XML Pull Parser Offers Event-Driven Processing of Lighthouse Data”) to process the

elements within Flickr’s response XML file one element at a time. In particular, after this thread

processes each of the attributes of a PHOTO element within the file, it uses the Apache Commons

IO package to transfer the contents of the image itself to the device’s internal storage directly,

then notifies the FlickrDownloadHandler class that the application has finished processing

another photograph and should update the ProgressDialog object within the

113

PhotographsActivity class accordingly. The orchestrated execution among these

interdependent data-processing classes makes the application more responsive from users’

perspectives as they witness the ProgressDialog updating on a regular basis. Users can even

leave the “Photographs” screen and examine other pieces of information about the lighthouse

while the downloading and parsing threads continue executing.

4.6. Creating a Flexible Back End: XML File and Photograph Cache

 The application requires persistent storage of lighthouse information to achieve

consistency between use sessions as well as temporary storage of photographs from Flickr to

offer flexibility for users lacking a consistent Internet connection. I created an XML file to store

the different pieces of information about each lighthouse within the application; this

semantically-rich document allowed me to update and add fields to existing elements of

lighthouse data as necessary. With the application’s photograph cache, users can view

photographs for a particular lighthouse from Flickr multiple times consecutively without needing

to download these images repeatedly, saving valuable processing time and reducing the need to

rely on Internet connectivity for application functionality.

4.6.1. Creating an XML File Structure that Allows for Simple Additions and Updates

 My application project contains an XML file called lighthousedata.xml, which

stores lighthouse information and metadata that the application uses. The document simplifies

the information updating process and offers a convenient connection to the in-memory data

structures with which the document and application interact. I created a <lighthouse> element

within the document to represent each monument featured within the application and contain all

relevant pieces of information about a particular lighthouse. By placing data about different

lighthouses within separate XML elements, I can update the application to support new

lighthouses without disturbing the manner in which the LighthouseDataParser class

(discussed in section 4.3.2, “XML Pull Parser Offers Event-Driven Processing of Lighthouse

Data”) interacts with information regarding existing lighthouses. Within each <lighthouse>

element, I created an element hierarchy for a particular lighthouse’s facts. This hierarchy’s

structure closely mirrors the in-memory data structures that I created for storing lighthouse

information as the application executes. (More detailed descriptions of these custom data

structures appear in section 4.4, “Creating New Data Structures for Organizing Run-Time

Application Data.”) Furthermore, these inner elements’ names match (or nearly match) the

114

names of the fields within the Lighthouse, Photograph, and Review classes. This correspondence

between XML document contents and application class hierarchy allows me to change a piece of

information for a given lighthouse with the confidence that the application’s screens will present

this change correctly. Whenever I add an element representing a new piece of lighthouse

information, I simply need to:

1. Create a new entry within the LighthouseXMLTag enumeration;

2. Add a field to the data structure corresponding with the new element’s parent element in

the XML document, such as Lighthouse; and

3. Assign the contents of the new element (from step 1) to the new field of the data structure

(from step 2) within the LighthouseDataParser class.

This simple updating process allows me to change the types of information that the application

displays to users without having to complete an extensive refactoring process.

4.6.2. Adding a Cache to Preserve Existing Photographs for One Lighthouse

 To allow users of my application to access photographs more quickly and reliably, I

created a cache for images that the application downloads from Flickr’s servers into the device’s

internal storage. This cache stores photographs from Flickr featuring a single lighthouse,

allowing the application to display these images instantly – without having to download them

from Flickr again – upon subsequent requests to view these images. Therefore, users can search

for a lighthouse they wish to visit and download the photographs of that lighthouse from Flickr

while at home or in a location with a strong Internet connection, then view these images at the

lighthouse itself, where a network connection may be unavailable.

 The application uses a simple file transfer method and a parametric file naming system to

create a cache quickly and preserve the images’ metadata. After the

FlickrParseOutputXMLThread processes the attributes for a particular photograph from

Flickr, the object transfers the image itself from Flickr to the cache using the Apache Commons

IO package (described in section 4.3.3, “File Utilities from Apache Commons IO Drastically

Simplify Extracting URL Contents”). The file name for the cached photograph contains its

metadata, including a “directory-friendly” version of the lighthouse name (as described in

section 4.4.1, “Lighthouse Data Structure Contains Information for Content-Based Activities”)

as well as the photographer’s name with all spaces replaced with ‘~’ characters. This parametric

115

naming system allows other pieces of the application to access a cached image’s metadata by

examining a particular piece of its file name.

 The application’s main logic ensures that the cache’s photographs appear only when

appropriate, simplifying the LighthouseImageAdapter class that renders these images. The

PhotographsActivity contains a Boolean method called photoCacheExists(), which

determines whether the cache contains photographs for the lighthouse currently featured within

the “Photographs” screen. This method creates the directory containing the photograph cache if it

does not already exist within the device’s internal storage, then checks to see if the cache is

empty or contains photographs depicting a different lighthouse. If either of these two cases is

true, then the method concludes that the lighthouse’s photographs do not appear in the cache and

instructs the application to call Flickr’s API and download the photographs from the Internet, as

described in section 4.5, “Using Flickr’s API and Android Multithreading to Download

Photographs.” The LighthouseImageAdapter class renders a lighthouse’s images within the

“Photographs” screen after the application checks the presence of a cache and completes any

necessary updates, so the adapter can access and display images from this cache whenever the

application detects an Internet connection.

4.7. Constructing Image Processing Algorithms with ImageJ

 Some users of my application might enjoy viewing the entire gallery of photographs

available from Flickr’s servers, but others may want to view photographs that satisfy a particular

criterion, such as those containing a lighthouse tower or those taken on a sunny day. I addressed

this functionality request by creating three different image-processing algorithms. The

ImageClassifier class assigns an image to a “stereotype” category, such as sunny or cloudy

weather conditions. The FeatureColorMatcher algorithm identifies the presence of a specific

range of grayscale intensity values within a photograph. Finally, the FeatureShapeMatcher

class uses distance transform functions and chamfer match scores to determine the presence of a

particular shape feature within an image. Before I describe each of these algorithms, however, I

discuss an unfortunate situation regarding my inability to integrate these filters directly into my

application and offer a high-level overview of the filtering project’s structure.

4.7.1. Discovering inability to Use ImageJ Directly with Android

 A few weeks before I completed this project, I discovered that ImageJ’s in-memory

objects do not always load correctly within Android devices, preventing me from integrating the

116

image-processing algorithms that I discuss in this section into my application. ImageJ’s base

image-processing classes use Java’s built-in java.awt.Image objects for organizing different

graphics files. Android devices, on the other hand, store images as resource files and render them

as View objects. Since these two representations of images contain some incompatibilities, it is

currently impossible to embed native ImageJ code within Android projects.

 Several solutions exist for mitigating this integration issue, but each has sizeable

drawbacks. I could modify the lower-level classes of ImageJ to reference Android-compatible

representations of images, allowing the device to access these objects efficiently. This process

would take a considerable amount of time, however, as I would need to learn about the

operations ImageJ uses to convert image bytes into Java objects and change this conversion

process to a more Android-friendly one. I could also use different image-processing software,

such as OpenCV for Android, which has already addressed the underlying issues with combining

Java- and Android-based image objects. OpenCV uses C++, however, so I would need to make

sure that I incorporated features that Android’s Java-based libraries support, as well. Finally, I

could implement a client-server model where my application runs on a client Android devices

and contacts a server whenever users wish to complete photograph filtering operations. The

major drawback with this solution involves the dependence on an Internet connection. While

using the application in an offline setting, users could no longer complete filtering operations,

hindering their ability to customize the visual context of the lighthouse they wish to explore

within the application.

4.7.2. Describing the Structure of the Image Processing Java Project

 The image-processing filters that I created appear under the base package name

edu.wpi.khufnagle.ij within a project entitled “ImageJProcessor.” As with my Android

application, I divide the classes used to support the different types of filters into different

packages, each representing a different category. These packages include:

 Algos – Contains the main logic for completing the three different image-processing

algorithms that I developed for this project;

 Drivers – Contains “test” programs that allow me to evaluate the algorithms’ accuracy

and execution time;

 Error – Contains custom Exception classes for handling run-time errors that occur from

misusing the algorithm-based classes and their associated utility classes; and

117

 Util – Contains utility classes for completing lower-level operations within the different

algorithms as well as classes representing in-memory data structures. I discuss these

utility classes with the algorithms they support in the following sub-sections.

4.7.3. Classifying Images based on Stereotypical Sunny, Cloudy Weather Conditions

 ImageClassifier objects determine the relative similarity between two images by

comparing their cumulative distributions of intensity values and determining the number of

pixels that would need to change intensity values within one image to cause these two

cumulative distributions to (nearly) match. The ImageClassifier constructor accepts a “test”

image of unknown contents and a “reference” image with a known category. The algorithm then

constructs two cumulative histograms, one for the test image and the other for the reference

image. The y-axis value of each intensity value within these cumulative histograms indicates the

proportion of pixels within the entire image that contain the given intensity value or less (darker).

After creating the two histograms, I loop through each intensity value within the test histogram.

For each value IT, I determine the reference intensity value IR such that the cumulative histogram

function (cdf()) of the test function marginally exceeds that of the reference image. That is, I find

the maximum value IR such that:

cdf(IT) > cdf(IR)

After determining the maximal value IR that satisfies the above equation, I create a new

histogram called an “adjusted test histogram.” I add the number of pixels at intensity value IT

within the original histogram to the number of pixels at intensity value IR within the adjusted test

histogram. This assignment ensures that the adjusted test histogram and the reference histogram

contain as similar a pair of cumulative distribution functions as possible and measures the

amount of “effort” needed to have the contents of the test image match those of the reference

image. Finally, the algorithm compares the test image’s original histogram with its adjusted

histogram, counting the total number of pixels that change intensity values between the two

histograms. The algorithm then divides this value by 2 (since a simple swap between two

intensity values counts as two changes in the above step) and divides this halved value by the

total number of pixels in the test image. This proportion, which serves as the algorithm’s return

118

value, represents the similarity between the test image and the reference image; smaller numbers

indicate a closer match.

 To make this classifying algorithm more accurate from the driver’s perspective, I employ

a utility class called ImageRegionDecomposer, which divides an image into several (nearly)

equally-sized sub-images. I use ImageJ’s setRoi() method to select a region of interest within

the original image to become a sub-image, then call the library’s crop() method. This latter

method creates a new image, which contains a subset of the pixels within the original image.

These new images form the original image’s “sub-images.” The most complex part of this class

involves selecting the sub-images that will contain extra pixels when the original image does not

divide perfectly evenly. To complete this operation, I use a method called

calculateSubimageLengths(), which assigns the center sub-images with the first leftover

pixel, then works to the image’s sides, favoring the image’s right and bottom halves. Figure 4-3

on the following page offers an example of the image division process within this method.

119

Original image contains a width of 103 pixels; attempting to

divide image into 5 sub-images

Index 0 1 2 3 4

Pixels 20 20 20 20 20

Evenly distribute as many pixels as possible.

Index 0 1 2 3 4

Pixels 20 20 21 20 20

Assign the first leftover pixel to the center sub-image (index

2).

Index 0 1 2 3 4

Pixels 20 20 21 21 20

Assign the second leftover pixel to the sub-image

immediately to the right of center (index 3, or +1 relative to

the previous index).

Index 0 1 2 3 4

Pixels 20 21 21 21 20

Assign the final leftover pixel to the sub-image immediately

to the left of center (index 1, or -2 relative to the previous

index).

Pix

els

20 20 21 20 20

In

dex

0 1 2 3 4

Figure 4-3. Sample Distribution of Pixels across Several Sub-Images.

120

In order to favor the image’s left and top halves, instead, I simply need to change the statement:

 if (indexToAssignNextPixel <= numSegments / 2)

to

 if (indexToAssignNextPixel < numSegments / 2).

 Within my driver class, I decompose the images and apply a set of comparisons to

determine the correct classification for a test image relative to several reference images featuring

“stereotype” weather conditions. I call the ImageRegionDecomposer class to divide the test

and reference images, then compare the contents within these sub-images. This image division

process ensures that an unusual section of a test image does not cause the influence the driver

into categorizing the image incorrectly. If the driver classifies a majority of sub-images within a

particular “stereotype” category, then I consider the image as a whole to satisfy that “stereotype.”

In the case of a tie, I examine the sub-image that is most similar to one stereotype and compare

this value to the similarity between another sub-image and the other stereotype. The sub-image

with the most similarity – that is, the sub-image whose adjusted test histogram contains the least

number of intensity value adjustments relative to its corresponding original test histogram –

determines the image’s classification.

4.7.4. Identifying Presence and Absence of Rocks using Color-Based Feature-Matching

 I created a FeatureColorMatcher class that determines whether an image of unknown

contents contains a sizeable amount of a specific color, expressed as a grayscale intensity value.

The constructor accepts a color to find within an image, the acceptable error in the color value

expressed as a proportion of the intensity value spectrum (0-255), and the minimum proportion

of the image that the regions need to occupy within the image needed for the algorithm to

conclude that a sufficiently large part of the image contains the desired color. Once an

ImageEdgeSegmenter object (discussed below) divides the image into edge-separated regions,

the color matcher calculates the average color within each region. If the color matches the

desired color to within the given error tolerance, then the color matcher adds the number of

121

pixels in the region to the total number of pixels within the image containing the desired color.

The class then computes the proportion of the image containing the desired color (total number

of pixels of regions containing the desired color as the average color divided by the number of

pixels within the image). If this proportion equals or exceeds the desired “minimum image

proportion” value, then the algorithm concludes that the image contains features with the desired

color.

 I use an optimized version of the iterative neighbor-finding algorithm to segment an

image into regions separated by its edges. The segmentImage() method of the class examines

each pixel of the image sequentially in row-major order. At each pixel location, the method

determines whether the left, top, top-left, or top-right neighbors of the pixel represent edges. If

all four of these pixels contain edges, then the pixel being examined becomes the first pixel of a

new image region. Otherwise, the pixel becomes part of the image region of the adjacent non-

edge neighboring pixel. Within this method, I use two complementary Map objects. The first

data structure maps an image region number to the set of pixels that the region contains, and the

other structure associates an image pixel with the image region number that the class assigns to

the pixel. This second Map object allows the method to determine the region number of a

neighboring pixel in O(1) time, rather than O(n) time, significantly speeding up the image

segmentation process. Unlike many examples of this iterative edge-find algorithm in the

literature, this implementation completes only one pass through the image. As a result, the class

treats different portions of a connected area as different regions. This optimization does not

affect the color-matching algorithm, however, since it takes into account the total number of

pixels containing the desired color. If the different sections of a connection component each

contain an average color matching the desired one, the color-matching algorithm will detect this

match regardless of whether the component appears as one region or several distinct ones within

the “image segments” data structure.

 The driver that tests this algorithm, which attempts to locate the presence of rock-colored

features within lighthouse photographs, offers several parameters that I can adjust to affect the

algorithm’s performance. These variables include:

 The RGB values of the color to detect within the image, which the FeatureColorMatcher

class then converts to a grayscale intensity value;

122

 The color error tolerance that allows the algorithm to “count” near-matches as regions

containing the desired color; and

 The minimum proportion of the image that needs to include the desired color – or one

close to it – for the algorithm to consider the color as present within the image.

Section 5.1.2, “Color-Based Feature Matching Requires Delicate Balance of Parameters,”

summarizes how changes to these parameters affect the algorithm’s accuracy.

4.7.5. Determining Presence or Absence of Lighthouses using Shape-Based Feature-Matching

 The FeatureShapeMatcher class detects the presence of a known feature within a test

image of unknown contents. The constructor for the class accepts a test image of unknown

contents, a reference “template” image that contains an area significantly smaller than that of the

test image, and a value indicating the highest acceptable “chamfer match score ratio” (I describe

this metric below) for the algorithm to conclude that the photograph features a lighthouse. The

class’s computeDistanceTransformValue() method begins by completing two sequential

passes through the image, once from top-left to bottom-right and another time from bottom-right

to top-left. During both passes, the algorithm processes the pixels in row-major order. For each

pixel, the method first assigns a ridiculously high distance transform value to the pixel

(Integer.MAX_VALUE). The algorithm then determines whether the pixel contains a foreground

color; if so, the pixel’s distance transform value becomes 0. Otherwise, the method checks the

distance transform values of the pixel’s neighbors that the “pass” has already processed; for

example, during the forward pass, the method checks the left, top, top-left, and top-right

neighbors. The algorithm then calculates the sum of the neighbor’s distance transform value and

the “cost” of reaching this neighbor from the current pixel. For this algorithm, I use distance

costs of 3 for one city block (horizontal and vertical) and 4 for two city blocks (diagonal). If the

minimum sum among the pixel’s neighbors is less than the pixel’s current distance transform

value, the pixel’s value changes to match this “neighbor sum.” Once the method has assigned the

proper distance transform value to each pixel within the image, the algorithm overlays the

reference template image atop the test image at every possible location. For each overlay

position, the algorithm determines the distance transform value of each pixel within the test

image that lies “underneath” a foreground pixel within the reference image. The sum of these

distance transform values, known as the chamfer match score, determines the relative similarity

123

between the reference template image and a specific sub-image of the test image. The algorithm

locates the sub-image within the test image where this chamfer match score reaches a minimum,

indicating a very close match. It then divides this match score into the maximum possible match

score for that overlay position20 and determines whether this quotient is less than or equal to the

maximum allowed chamfer match score ratio. If the algorithm calculates a small enough actual

ratio, it concludes that the image contains the feature depicted within the reference template

image.

 The shape-based feature-matching algorithm performs best when examining binary

images, so I apply a series of transformations that exaggerate the edges within the test image and

maximize the chances that the algorithm will find the presence of the desired feature when

appropriate. Table 4-4 on the following page illustrates the process that I perform within the

LighthouseFeatureFinder utility class to prepare the test image for feature-based

comparison.

 The transformed images depends only on the image’s original contrast, not the colors it

contains. Therefore, the transformation works equally well on light features against a darker

background and dark features within a brighter scene.

20 For a given test-reference image overlay, the chamfer match score reaches a maximum when one image contains

one foreground pixel at its center and the other image contains one foreground pixel in a corner. In order to reach

this corner, the reference image must “walk” diagonally n steps to an edge of the test sub-image, then follow that

edge to the corner by taking another m steps. The distance transform value and the chamfer match score then

become 4n + 3m.

124

Table 4-4. Process of Transforming Test Image used in Shape-Based Feature-Matching Algorithm.

Step Image Description

0

Original test image.

1

Map the intensity range

[175, 255] to [0, 255]

for the red and blue

channels.

2

Perform a 3 × 3

neighborhood

smoothing twice.

3

Apply ImageJ’s built-in

Sobel edge-detection

algorithm.

4

Convert the image to

grayscale.

5

Assign the 90th

percentile intensity

values and above to 255

(increase contrast).

125

6

Clamp all intensity

value of 254 or less to 0.

Test image now ready

for comparison.

4.8. Preparing Image-Processing Algorithms for Testing

 For this project, I wished to investigate the performance of the image-processing

algorithms that I created and described in section 4.7, “Constructing Image Processing

Algorithms with ImageJ.” In order to run as controlled of an experiment as possible, I sampled

carefully a set of geotagged images of New England lighthouses as “training galleries” for the

algorithms, fixed my system’s conditions as much as possible while executing the algorithms,

and used simple, consistent metrics for measuring the algorithms’ accuracy and speed.

4.8.1. Selecting Training Data for Algorithms

 Since I plan on filtering images from my application with these image-processing

algorithms, I used the set of all 1,080 geotagged images of New England lighthouses (as of

February 2014) as my training data. For each algorithm, I created three different random samples

of 50 images from this training set and applied the algorithm to each sample. Note that, since I

completed the sampling events independently of one another, some images appear in multiple

samples.

4.8.2. Creating an Environment for Conducting Testing

 As I tested the image-processing algorithms, I created as consistent a set of system

environment conditions as possible. For testing, I used my Dell Studio 1737 laptop, which

contains 3.99 GiB21 of RAM and a dual-core, 2.66 GHz Intel® Core™ 2 Duo CPU T9550. I

created and ran the programs within Eclipse Kepler Service Release 2 (build ID 20140224-

0627). The contents of the training data folder did not change for the duration of the tests, and I

closed all programs except for Eclipse and Microsoft Excel when running the image-processing

programs.

21 1 GiB, a “gibibyte,” equals 230 bytes (as opposed to 1 GB, or “gigabyte,” which represents 1 billion bytes).

126

4.8.3. Measuring Image-Processing Algorithm Effectiveness: Speed and Accuracy

 I evaluated the different filtering algorithms by measuring their classification or feature-

identification accuracies as well as their execution time as measures of algorithm performance

and speed. In order to determine each algorithm’s accuracy, I classified the different samples of

training data by hand to develop a set of “correct” answers for the algorithms to find. I then

compared the algorithms’ classifications or feature recognition results with my own for each

image to determine the methods’ accuracies. For measuring execution time, I used Java’s built-in

currentTimeMillis() method. I called this method immediately before the algorithm began

processing the first image – after the driver class set parametric variables and initialized training

image sample IDs – and again after the program computed the algorithm’s accuracy. I took the

difference between these two timestamps to determine the number of seconds, to two decimal

places, that elapsed as the algorithm completed execution. Since these algorithms require at least

250 milliseconds to process each training image sample, I determined that I did not need a

higher-precision method of tracking system time.

127

5. Reflecting on Algorithm Performance and Application Usability
 I ran a series of tests on the image-processing algorithms I developed for this project,

evaluating each program’s accuracy and speed and discovering the relationships between

variations in algorithm input parameter values and these performance metrics. I also examined

the improvements I made to the application’s design, finding trends among pieces of feedback

from the usability studies I conducted at several lighthouses across New England. This chapter

presents a detailed description of these algorithm performance results and describes the three

most important considerations for this application’s design.

5.1. Findings from Image-Processing Algorithm Testing

 As I implemented this project, I created three different image-processing algorithms for

filtering the set of photographs that appears for a given lighthouse within the application. These

programs include:

 An image classifier that determines whether an image contains sunny or cloudy skies;

 A color-based feature matcher that detects the presence of rock-colored details; and

 A shape-based feature matcher that detects the presence of lighthouse towers.

After developing these image-processing algorithms, I evaluated their performance by running

the “driver” class corresponding with each algorithm, as discussed within section 4.7.2,

“Describing the Structure of the Image Processing Java Project.” To complete these evaluations,

I selected 50 random geotagged images of New England lighthouses from Flickr and used this

set of images as input for each algorithm. I needed to check the algorithm’s consistency and

robustness, so I used two other sets of random geotagged images as additional input to the

algorithm, averaging the results I received across all three trials. This section presents the

accuracy and speed that each image-processing algorithm can achieve after tuning each

program’s input parameters to their respective optimal values.

5.1.1. Image Classification Performs best with Moderate Image Decomposition

 After running the image classification algorithm using different amounts of image

decomposition and examining different “cutoff points” within these images, I discovered that a

moderate amount of image decomposition offers additional accuracy and speed for this

algorithm. Figure 5-1 on the page following this page illustrates the influence of image

decomposition rates and cutoff amounts on the algorithm’s accuracy across three separate sets of

128

training images. The algorithm performs fairly well under all tested conditions, easily surpassing

the baseline accuracy of 50%, but it shows particularly strong results for cases involving the top

half or so of the image and 4 or 5 decompositions along each axis. To help determine which set

of parameters offers the optimal solution, I consulted the relationship between the number of

sub-images created from the original image and the algorithm’s execution time, as illustrated in

Figure 5-2 on the following page. This graph shows a noticeably steep incline between 8 sub-

images (4 × 4 decomposition with the top half considered) and 15 sub-images (5 × 5

decomposition with the top 60% considered). The 45% time penalty for using a 5 × 5

decomposition strategy over its 4 × 4 counterpart overshadows any marginal increase in accuracy

that might occur. Therefore, I recommend using a 4 x 4 image decomposition when classifying

photographs based on weather conditions, examining only the sub-images corresponding to the

top half of the original image.

 This algorithm performs reasonably well given the proper input parameters, but

interestingly, it could perform even better if these images did not introduce such a significant

level of subjectivity into the classification process. Quite a few images within the training data

sets contain sky conditions characteristic of both sunny and cloudy weather, leading to uncertain

human classifications. The image-processing algorithm cannot resolve this ambiguity elegantly,

either, which explains the “accuracy ceiling” of about 75% for this algorithm.

129

Figure 5-2. Effects of Sub-Image Complexity on Image

Classification Execution Time.

Figure 5-1. Effects of Image Decomposition, Percentage Inclusion on Algorithm

Accuracy.

130

5.1.2. Color-Based Feature Matching Requires Delicate Balance of Parameters

 The color-based feature-matching algorithm contains the most complex and

interdependent set of parameters, making it difficult to determine each variable’s optimal value

for typical cases. My strategy for finding the best set of parameters involved tuning one

parameter at a time, finding the maximum possible algorithm accuracy for that parameter. As a

proof of concept, this algorithm detects the presence of rocks by finding a characteristic

grayscale intensity value within a given image. The sets of training images contain interestingly

different proportions of photographs containing rocks, from 38% in the first set to 64% in the

third set. These significant deviations likely cause the inconsistencies in algorithm performance

across the different data sets.

 I began evaluating the algorithm by examining the optimal grayscale intensity value for

detecting rocks within images and discovered that intensity values between 40 and 70 (out of

255) yield increasingly higher detection accuracies, following by a precipitous drop in algorithm

performance. As I tested different grayscale intensity values, I fixed the color difference

tolerance – the proportion of the intensity value spectrum that an image region’s average

intensity value can differ from the desired intensity value and still consider the region a

“matching segment” of the image – at 0.10, and I kept the minimum image proportion – the

proportion of the image required to contain the desired intensity value (to within the color

difference tolerance) for the algorithm to consider the rocks as “present” within the image –

constant at 0.20. Figure 5-3 on the following page shows the relationship between intensity value

and algorithm accuracy. Note that the third set of training data caused the algorithm to perform

best at the maximum intensity value used for this experiment: 100. Since this set of photographs

contains an unusually high percentage of “rock images,” the additional instances of those

grayscale intensities within the set might have created fewer false positives on the upper end of

the intensity value spectrum tested, driving the accuracy upward. Despite this potential

advantage for the third data set, the algorithm still finds rocks within images most reliably when

looking for a grayscale intensity value of 75.

131

 With the grayscale intensity value now fixed at an optimal level, I then focused on the

color difference tolerance, discovering that moderate values for this variable offer the best

overall results. As Figure 5-5 on the following page shows, the third set of training data yielded

optimal accuracy values for fairly large color difference tolerances, deviating curiously from the

trend expressed in the other two sets. The better-behaved first set of training data, however,

showed a relatively steep decline in algorithm accuracy once the color difference tolerance

passed 0.15. Since I consider most tolerances higher than this value to be too permissive of

intensity variations, anyway, I elected to choose a low-moderate value of 0.14 as the ideal

tolerance margin for detecting the presence of rocks within images.

 With two parameters for the color-based feature-matching algorithm now fixed at optimal

values, I could turn to the final variable, the minimum proportion of the image that should

contain the desired intensity value (or one close to it). Figure 5-4 on the following page shows an

intriguing phenomenon; this graph presents a near-mirror image of the graphs for the other two

parameters for the algorithm.

Figure 5-3. Changing Grayscale Intensity Value Affects Color-Based

Feature-Matching Algorithm Accuracy.

132

Figure 5-4. Moderate Color Difference Tolerance Best for Color-Based

Feature-Matching Algorithm Accuracy.

Figure 5-5. If Small Amount of Image Contains Color, Best to Consider it

a Match

133

This trend reversal could occur because the third set of training images, while plentiful in

occurrences of rocks, contains mostly photographs depicting small areas of rocks. Therefore,

when the algorithm applied higher “minimum image proportion” parameters on this third set, the

program falsely assumed that certain images contain too few instances of rock-colored features

for these structures to appear in the photographs. To mitigate this situation and minimize false

positive results, I propose a fairly low minimum image proportion value, 0.15, for this type of

color-matching algorithm. After completing all three parameter optimizations, I achieved a

maximum average algorithm accuracy of 63%, yielding a p-value of about 0.064 since 51% of

the training images contain rocks.

 As I discovered the relationship between changing parameter values and accuracy for the

color-based feature-matching algorithm, I also measured the program’s speed. Interestingly, this

execution time – about 5 seconds for classifying 50 images – remained constant across all cases

within each of the tests I administered. The third set of images yielded a marginal increase in

execution time, perhaps because these images contained more complexity or a larger overall

image size. Otherwise, however, I found no discernable association between changing parameter

values and algorithm speed.

5.1.3. Shape-Based Feature-Matching Algorithm Performs Best with Multiple Templates

 Interestingly, the most complex image-processing algorithm, which detects the presence

of a specific shape within images, such as lighthouse towers, produced the most consistent

results. The transformations that I applied to each image, as discussed in section 4.7.5,

“Determining Presence or Absence of Lighthouses using Shape-Based Feature-Matching,” likely

yielded simpler, more homogeneous conditions for the algorithm, which led to the impressively

consistent accuracy trends. Figure 5-6 on the following page depicts the well-formed relationship

between the maximum chamfer match score – the maximum allowed deviation between the

foreground pixel locations of a reference image and those of an overlaid test sub-image – and the

algorithm’s accuracy when using a single reference template of medium size. In particular, the

accuracy increased quite rapidly as the maximum allowed chamfer match score increased, then

leveled off somewhat as the maximum score continued to increase. The algorithm’s false

negative rate approached 0% for chamfer match scores of 0.007 or greater, which causes the

diminishing returns on program performance. Since roughly 67% of images across the three sets

of training images contain lighthouses, this algorithm also outperformed a “dummy” program

134

that blindly assumes the presence of a lighthouse in each photograph. A 73% average accuracy

for the ideal maximum chamfer match score of 0.006 yields a p-value of about 0.23, a

respectably low value for an algorithm as intricate as this one.

 When using a single reference template to detect the presence of lighthouses within the

various test images, the shape-based feature-matching algorithm’s speed remained relatively

constant. Figure 5-7 on the following page depicts this uniform result across different chamfer

match scores. Note, however, that this algorithm’s execution time – about 60 seconds for

processing 50 images – represents more than an order-of-magnitude increase relative to the other

two algorithms, indicating this program’s significant complexity. The algorithm’s speed

remained consistently high since it needed to check the similarity between the reference template

image and every possible contiguous sub-image of the test image that matched the reference

template’s size. The resulting large number of overlays – almost 20,000 for a 20 × 50 reference

image and a 150 × 200 test image – causes the relatively slow execution speed.

Figure 5-6. Execution Time of Shape-Based Feature-Matching Algorithm

Constant when Using Single Reference Template.

135

 When comparing images against two reference template images to detect a specific

feature shape, the algorithm performed slightly better compared to the single-template case but

required an even smaller maximum chamfer match score to achieve the optimal accuracy. Figure

5-8 on the following page shows that the multiple-template algorithm’s accuracy diminished

gradually as the maximum allowed chamfer match score increased beyond 0.005. At the slightly

lower value of 0.003, the algorithm achieved its maximum average accuracy, 76%. The resulting

p-value, about 0.11, indicates the slight increase in algorithm performance relative to using a

single reference template. The increased accuracy occurred since the multiple-template version

of the algorithm needs to detect the presence of a desired feature within an image using a small

reference image or a large reference image. For images where the lighthouse consumes a

significant area of the photograph, the comparison against a small reference image will fail, but

the same type of comparison against a large reference image will succeed, informing the

algorithm that the image does indeed contain a lighthouse. Since the algorithm requires only one

successful comparison with a reference template to indicate the presence of a feature shape, the

maximum allowed chamfer match score needs to decrease slightly. Otherwise, too many checks

against the small reference template, which occurs first in the algorithm, would succeed, forcing

Figure 5-7. Very Small Chamfer Match Score Allowances Lead to Accurate

Shape-Based Feature-Matching Algorithm.

136

the algorithm to rely on comparisons with the large reference template to reject candidate images

that contain features similar to those of a lighthouse but do not actually feature a lighthouse.

 While the multiple-template version of the shape-based feature-matching algorithm

yielded higher accuracies with lower maximum permissible chamfer match scores, its execution

time decreased as the maximum chamfer match scores increased, creating a trade-off between

speed and accuracy with this version of the algorithm. Figure 5-9 on the following page shows

the gradual decline in execution time as I allowed the algorithm to accept less precise matches

with the pair of reference templates.

 Note too that the execution time for very low maximum allowed chamfer match scores

exceeded that of the single-template variant by up to 65%. This trend in algorithm speed

occurred because it uses short-circuit logic to evaluate the presence of a lighthouse within an

image. In particular, if the algorithm determines that the feature depicted within the small

reference template occurs within the test image, then it decides at that moment that the image

contains a lighthouse, skipping the comparison against the large reference template altogether.

As the maximum allowed chamfer match score increased, the algorithm performed short-circuit

logic increasingly often, yielding significant time savings. Some of the speed enhancement also

occurred because the small reference image takes less time to traverse than a medium-sized one,

Figure 5-8. Even Smaller Chamfer Match Score Allowances Yield Accurate Shape-

Based Feature-Matching Algorithm Results Given Multiple Reference Templates.

137

allowing the algorithm to complete all of the necessary comparisons with the test image more

quickly. The smaller maximum chamfer match score values created a significant speed reduction

for the algorithm because it needed to compare almost every test image with both reference

templates. While comparisons with the small reference template occur fairly quickly, those with

its larger counterpart take a significantly longer period of time to complete, so the combined time

to complete the feature detection process with both reference template images accumulates

quickly. In order to reduce these time-consuming operations, I recommend using a maximum

allowed chamfer match score of 0.005 when using two reference templates. Even with this

compromise for the sake of speed, the algorithm still achieved a reliably high accuracy (73%, p-

value = 0.15) when tested with this maximum chamfer match score.

5.2. Presenting User-Friendly Elements in Mobile Application Increases its Appeal

 When designing the Lighthouse Navigator application, I needed to determine not only

how to present location-specific information, but I also needed to design the user interface

carefully so that users could interact with my application seamlessly and readily absorb the

information that it delivers. Without an aesthetically appealing interface, users can still learn a

few aspects of a particular lighthouse, but they cannot fully appreciate how it interacts with the

surrounding scenery nor will they retain the significance of the landmark itself. When designing

Figure 5-9. Shape-Based Feature-Matching Algorithm Using Multiple Reference

Templates Takes Less Time to Execute as Chamfer Match Score Allowance

Increasees.

138

the Lighthouse Navigator application and presenting it to prospective users during usability study

sessions, I found that users:

 Understand textual buttons better than their iconic counterparts;

 Appreciate occasional pop-up hints and subtle navigational cues for navigating the

application’s different content screens; and

 Prefer multiple avenues for accessing similar content within the application.

5.2.1. Textual Buttons Easier to Understand Than Iconic Ones

 Despite Android’s strong penchant for iconic buttons – due in part to the lack of screen

space offered on most of the platform’s devices – users still find textual buttons far more user-

friendly than an iconic representation of this button. The usability studies that I conducted at

different lighthouses across New England revealed that users initially misunderstood most of the

icons that I presented in early iterations of the Lighthouse Navigator application. Some of their

initial interpretations of these icons deviated from their intended motif by a considerable margin,

such as assuming that a funnel-shaped icon resembled a martini glass more than a filter. Even

worse, when these users interpreted the icons, they could not easily “unlearn” their incorrect

assumptions, so they tended to make similar interaction errors repeatedly across the application’s

different content screens. This lack of retraining ability frustrated users quickly and would likely

cause them to reconsider opening the application during appropriate times during their traveling

experiences in the first place. The textual-based buttons, on the other hand, offer language- and

cultural-specific cues that users correctly interpreted almost instantly, allowing them to interact

with a particular content screen easily and effectively. More importantly, users retained the

proper interaction patterns and applied them to other content screens that offer similar user

interface options, which allowed users to develop accurate and refreshingly simple mental

models of the application that they could apply to future journeys to lighthouses.

 While the textual buttons provide additional appeal for the application from each user’s

perspective, they hinder my ability to create truly global travel-based applications. Since text

forces an application to use a specific language, I would need to localize the application. As any

linguistics practitioner knows all too well, however, language-specific terminology does not

always translate well to other cultures. Therefore, even if I offered a setting to change the

application language, I could still confuse users who speak a more obscure language if I did not

139

understand the language’s subtleties well enough to present a translation that fits the context of

the screen. This misinterpretation of the application’s functionality could cause users who

identify with different cultures to create separate – potentially conflicting – senses of the space

surrounding a lighthouse, which would hinder the application’s ultimate goal of offering a

universal appreciation for the unified yet unique feel that a seaside space should provide any

world citizen.

5.2.2. Users Appreciate Occasional and Helpful Navigational Cues

 While users generally appreciated self-explanatory elements within the Lighthouse

Navigator application, they still tended to appreciate navigational cues, even ones as intrusive as

pop-up hints. One of the simplest methods I used for integrating interactive assistance into an

application involved dimming navigational elements that users should not select, or ones that

would have no effect on the information appearing within a screen upon user selection. For

example, the “arrow” buttons within the “History” screen appear dimmed when users have

reached either the oldest or newest historical fact corresponding to the lighthouse that they have

chosen to view. Without this visual reminder, users would most likely believe (falsely) that they

could navigate to facts older than the oldest fact provided or ones more recent than the newest

fact provided and would become frustrated quickly when the application appeared to not update

at all upon selecting the un-dimmed arrow. They would probably assume that the application had

become unresponsive in some way and would attempt to close it.

Similarly, I made an effort to indicate clearly when user interface elements exist beyond the

currently-visible edges of a given screen with a scroll bar. The lack of screen space on Android

devices prevents all but the simplest screens from fitting entirely “above the fold.” By presenting

a scroll bar immediately after a given screen loads, I helped users realize that additional details

reside off the edge of the screen and invited them to tap and drag the screen with their finger or

stylus to view this additional information. Without the scroll bar guidance, users might have

missed important details related to a particular content-based screen within my application and

complain about the seemingly incomplete information that it presented. They would then most

likely look for a different application about lighthouses that could present the same information

more effectively.

 A more complex situation occurred when users interacted with an element on a screen

that appeared when the screen loaded and responded to user input, but the result of this

140

interaction deviated from the user’s expectations. A key example of this phenomenon within the

Lighthouse Navigator application occurred when users viewed the “Information” screen after

selecting a particular lighthouse to view. When users attempted to view photographs of the

lighthouse, they instinctively selected the photograph that appears on the “Information” screen.

In reality, however, this photograph appears simply to provide visual context for the textual

information that appears beneath it. In order to direct users to the proper interaction element, I

presented a pop-up textbox when users select this photograph on the “Information” screen,

instructing them to select the word “Information” that appears in the top bar (known to

developers as the “action bar”) of the screen. Upon selecting this word, a list of other screens

appeared, and users usually recognized that this list provides the interaction mechanism for

switching among the application’s content screens. This interaction element, while somewhat

counterintuitive for most users, remained simple enough for them to remember to perform the

same action on a different content screen, giving them control over the application quickly and

affording a pleasant user experience. Application developers should introduce similar

functionality for the interface elements that beta testers find difficult to use properly at first, but

they should use this particular tool sparingly. Users tend to eschew – rather than embrace –

frequent intrusive help messages that delay interaction within the application as it represents an

annoyingly familiar parallel with pop-up advertisements on websites.

5.2.3. Present Empowering Choices for Users

 When developing my application, I strove to present interfaces that give users choices for

navigating to a particular piece of information whenever possible. I realized that, while text-

based icons and navigational hints offer users good guidance on completing individual

interactions within an application, they alone do not provide the holistic appeal that multiple

interaction options offer. Besides rendering some of the aforementioned navigational cues

unnecessary, this flexibility in high-level navigation gave users a stronger sense of control over

using the application, making its use a more enjoyable, fun experience for them. Given the sheer

volume of applications available to users on Android platforms alone, I would imagine that users

remember applications they find easiest to use and turn to those applications more frequently

when faced with a need to find information. By taking the time and effort to provide a

navigationally flexible application, I make my application more appealing to users, which would

most likely translate into more downloads and more positive feedback should the application

141

ever appear on the Google Play Store. The main menu of an application presented easiest and

most obvious location for me to include multiple navigation options. During my usability

studies, I found that users would search generally for nearby lighthouses or specifically for a

given lighthouse they wished to visit equally often; some even explained that they would use

both in the long-term, selecting the one that corresponded best to their particular needs at a given

time. Therefore, I elected to keep both options available on the “Welcome” screen of the

Lighthouse Navigator, which prospective users appreciated. I needed to guard against

introducing ambiguous navigation patterns within my application however. In particular, I

needed to ensure that users could “backtrack” out of a content screen in the same way regardless

of how they navigated to that screen. I achieve this unified “back navigation” functionality by

having the “up” button in the top-left corner of a content screen take users back to the

“Welcome” screen. This rapid return to the main menu sidesteps the “Search Results” screen,

which appears differently to users based on the option they select on the “Welcome” screen.

142

6. Reflecting on the Project’s Takeaways and Future Trajectories
 I achieved several key successes within this project, most notably creating a user-friendly

application that lighthouse visitors express interest in downloading and implementing image-

processing algorithms that exceed blind-chance expectations. I also succeeded in creating a

simple and extensible back-end structure for storing lighthouse information and in developing a

shared narrative experience across the application’s content screens. Despite these achievements,

I encountered difficulties that limit the application’s current functionality. This chapter describes

the application’s usability but narrow culture focus, the image-processing algorithms’ accuracy

but narrow domain focus, and ideas for extending the application’s functionality and projecting

real lighthouse experiences in the future.

6.1. Application Attained Usability Goal, but Cross-Cultural Narratives Tough to Create

 The application that I developed satisfied the usability goal I presented within the

Introduction chapter, and prospective visitors expressed excitement about the application’s

eventual availability within the Google Play Store. This application satisfied users’ needs since it

presents features users care about, such as finding nearby lighthouses, displaying photographs of

a given lighthouse, and offering directions to the grounds at or near a lighthouse. Prospective

users could also view different aspects of the lighthouse – such as general facts and historical

events – in an interface that they found easy to use. This level of control that users command

over the application’s interface allows them to create a shared narrative experience with other

lighthouse visitors and with the societies responsible for maintaining these landmarks more

easily, which will help them preserve the seaside monuments for generations to come.

 As I designed and tested the application’s user interface, I discovered a source of tension

between creating a shared, cross-cultural experience and using interface elements that

prospective users could comprehend. Ideally, the “Photographs” screen within the application

would include only symbolic information that users from any demographic could understand and

appreciate, allowing the narrative that the content-based screens create to transcend cultural

boundaries. I found in my usability studies, however, that prospective users could not understand

the purpose of the iconic buttons I attempted to use for the “upload photo” and “filter photos”

operations. Therefore, I needed to resort to a culture-specific visual language – namely, textual

buttons – to maximize my application’s usability. This decision prevents me from transitioning

this application into a different cultural domain without significant adjustments to the user

143

interface options. Thankfully, the Android platform provides built-in support for multiple

languages, making the cross-cultural transition easier.

6.2. Image-Processing Algorithms Achieved High Accuracy, but Tough to Generalize

 As discussed in the Results chapter above, all three image-processing algorithms

exceeded the baseline “blind chance” accuracy expectations, so this feature successfully assists

users who enjoy viewing specific types of photographs while remaining invisible to those who

wish to view entire photograph galleries instead. To satisfy the computer science research

requirements for this project, I devoted a great deal of focus and effort toward these algorithms

as I developed the application. I needed to isolate several parameters for each operation in order

to maximize each algorithm’s accuracy, which offered me insight into each program’s inner

workings. For example, I discovered that color-based feature-matching algorithms perform

significantly better when searching for a range of colors instead of a specific hue. Since

prospective users indicated during the final usability study (at Nauset Light) and the survey from

the Lighthouse Preservation Society that they would appreciate the ability to categorize

photographs based on weather conditions and the amount of the lighthouse visible. Therefore, I

can speculate that actual users would appreciate the image-processing algorithms that I have

developed. Future usability studies could confirm that users enjoy these types of photograph

filters.

 The successful image-processing algorithms that I developed for this project nevertheless

contain enough complexity to show that it is still difficult to classify images and detect features

within them. These images possess a very temperamental structure; any transformations or

recoloring applied to the image drastically reduces the performance of the algorithms used to

analyze it. In order to create better-behaved algorithms, I needed to tune the parameters for each

program carefully, then perform either a simplified operation on the original images (classify the

top half of each image to detect weather conditions) or the original algorithm on simplified

images (applying the transformations to a test image so that the shape-based feature-matching

algorithm would detect lighthouse shapes successfully). Such simplifications cause the

algorithms to work under narrow criteria; more mathematically intelligent methods for analyzing

the image could help generalize these operations.

144

6.3. Completing App Functionality, Adding Filters, Investigating Simulacra in Future

 The image filtering functionality remains disappointingly absent within the current

version of the application, but developers could apply one of several models to introduce these

operations in a future version. The simplest conceptual model involves creating middleware to

associate ImagePlus and ImageProcessor objects from ImageJ’s library with the

representations of images that Android uses natively. This middleware would need to execute

quickly and take up little storage space on users’ devices, however, to keep the application from

becoming too bloated. Furthermore, developers would need an extensive understanding of the

low-level structures comprising both ImageJ image objects and Android image views to integrate

this middleware successfully. A more complex but less programmatically daunting method

features the client-server model. For this application, the image-processing code could execute as

a Java program on a server machine, and the client Android application could contact the server

whenever users requested a “filter photos” operation. The main drawback with this approach

involves the need for consistent Internet connectivity. Users would not be able to filter

photographs in an area containing no service. Another challenge lies in the ability to marshal and

unmarshal the Photograph objects successfully so that the filtered subset of photographs

computed on the server (Java) side matches the “gallery subset” displayed on the client

(Android) side after completing a filtering operation.

 The application also contains several pieces of incomplete functionality that future

projects could address. The most significant unimplemented feature involves the ability to “find

nearby lighthouses.” The application would need to calculate the user’s current location, then

compute the set of lighthouses closest to that user. Developers would need to decide how to

calculate location, using the simpler “as the crow flies” distance calculations or the more realistic

“driving distance” calculations. The application could also display information about more

lighthouses. Developers can find information regarding these seaside monuments easily by

consulting Jeremy D’Entremont’s book [1]. Once these developers identify the pieces of

information they wish to add to the application, they can insert these data into the

lighthousedata.xml document quickly and easily given its screen-based organization, and

they can extend the existing LighthouseDataParser class to extract any new fields that they

develop. Future developers could also incorporate the “donate” functionality that appears on the

“Welcome” screen within the current application, setting up online accounts with organizations

145

like the Lighthouse Preservation Society. The application’s users could then contribute directly

towards maintaining the seaside landmarks. Finally, the application could introduce several more

filters that prospective users have requested, such as classifying indoor and outdoor photographs

and identifying the season depicted within a given photograph. These additional image-

processing algorithms would allow users to view images containing only the features that interest

them.

 Finally, future research could also consider Jean Baudrillard’s idea of simulacra, or a

false sense of reality within copies of an artifact. This idea appears within the pieces of

information that I present for the different lighthouses within my application, particularly the

images that appear on the “Photographs” screen. These details form a representation of reality,

rather than the reality itself. As users of the application consume this information, they could

form false expectations of the lighthouse’s visual and experiential contexts, leading to

disappointment when the actual monument does not meet these ideals.

 The application has already garnered plentiful support from the New England lighthouse

community and demonstrates several modern approaches to analyzing images. Future

improvements to the application would only further improve lighthouse visitors’ ability to

immerse themselves in a shared narrative experience of these seaside places.

146

7. References

1. "911 Wireless Services," Federal Communications Commission, n.d. From

http://www.fcc.gov/guides/wireless-911-services, accessed June 10, 2013.

2. "About: Mission," Groundspeak, Inc., 2013. From

http://www.groundspeak.com/about.aspx#Mission, accessed May 13, 2013.

3. "Accomplishments of The Lighthouse Preservation Society," Lighthouse Preservation

Society, 2013. From http://www.lighthousepreservation.org/accomplishments.php,

accessed June 26, 2013.

4. "The App Garden: API Documentation: flickr.photos.search," Yahoo! Inc., 2013. From

http://www.flickr.com/services/api/flickr.photos.search.html, accessed September 9,

2013.

5. "The App Garden: Create an App," Yahoo! Inc., 2013. From

http://www.flickr.com/services/apps/create/apply/?, accessed September 9, 2013.

6. "Application Structure," Android, n.d. From

http://developer.android.com/design/patterns/app-structure.html, accessed July 17, 2013.

7. "Boston City Guide," Google, 2013. From https://play.google.com/store/apps/details?

 id=com.tripadvisor.android.apps.cityguide.boston&feature=search_result#?t=W251bGws

MSwyLDEsImNvbS50cmlwYWR2aXNvci5hbmRyb2lkLmFwcHMuY2l0eWd1aWRlL

mJvc3RvbiJd, accessed May 17, 2013.

8. "Commons IO," The Apache Software Foundation, 2014. From

http://commons.apache.org/proper/commons-io/, accessed April 29, 2014.

9. "Cowbird: About," Cowbird, n.d. From http://cowbird.com/about/, accessed May 13,

2013.

10. "Cowbird: Culture," Cowbird, n.d. From http://cowbird.com/culture/, accessed May 13,

2013.

11. "Cowbird: Guide," n.d. From http://cowbird.com/guide/, accessed May 13, 2013.

12. "Creative Vision," Android, n.d. From http://developer.android.com/design/get-

started/creative-vision.html, accessed June 11, 2013.

13. "Dashboards," Android, n.d. From

http://developer.android.com/about/dashboards/index.html?utm_source=ausdroid.net,

accessed May 4, 2014.

14. "Design Principles," Android, n.d. From http://developer.android.com/design/get-

started/principles.html, accessed June 11, 2013.

15. "Dining at The Lighthouse Preservation Society," 2013. From

http://www.lighthousepreservation.org/dining.php, accessed June 26, 2013.

16. "Free Travel Guides," TripAdvisor LLC, 2013. From

http://www.tripadvisor.com/TravelGuides, accessed May 13, 2013.

17. "Geocaching 101," Groundspeak, Inc., 2013. From

http://www.geocaching.com/guide/default.aspx, accessed May 13, 2013.

18. "Geocaching - The Official Global GPS Cache Hunt Site," Groundspeak, Inc., 2013.

From http://www.geocaching.com/, accessed May 13, 2013.

19. "Geocaching: Trackables," Groundspeak, Inc., 2013. From

http://www.geocaching.com/track/default.aspx, accessed May 13, 2013.

147

20. "Geotagging: Do More with your Images and Videos," Nikon Inc., 2013. From

http://www.nikonusa.com/en/Learn-And-Explore/Article/gwur7o4y/geotagging-do-more-

with-your-images-and-videos.html, accessed June 10, 2013.

21. "HISTORY Here," Google, 2013. From https://play.google.com/store/apps/details?

 id=com.aetn.history.android.historyhere&feature=search_result#?t=W251bGwsMSwxL

DEsImNvbS5hZXRuLmhpc3RvcnkuYW5kcm9pZC5oaXN0b3J5aGVyZSJd, accessed

May 17, 2013.

22. "The Lighthouse Preservation Society," Lighthouse Preservation Society, 2013. From

http://www.lighthousepreservation.org/, accessed June 26, 2013.

23. "National Lighthouse Day," American Lighthouse Foundation, 2010. From

http://www.lighthousefoundation.org/museum/natllighthouseday_info.htm, accessed June

26, 2013.

24. "Navigation with Back and Up," Android, n.d.

Fromhttp://developer.android.com/design/patterns/navigation.html, accessed September

3, 2013.

25. "New in Android," Android, n.d. From

http://developer.android.com/design/patterns/new.html, accessed July 17, 2013.

26. "NYC Way -- Everything NYC," Google, 2013. From

https://play.google.com/store/apps/details?id=com.newnycway&feature=search_result#?t

=W251bGwsMSwyLDEsImNvbS5uZXdueWN3YXkiXQ.., accessed May 20, 2013.

27. "Opportunities for Investment," Lighthouse Preservation Society, 2013. From

http://www.lighthousepreservation.org/opportunities-for-investment.php, accessed June

26, 2013.

28. "Panoramio -- Photos of the World," Google, 2012. From

http://www.panoramio.com/map#lt=28.000000&ln=-

33.000000&z=15&k=1&a=1&tab=1&pl=all, accessed May 13, 2013.

29. "Panoramio -- Tags," Google, n.d. From http://www.panoramio.com/tags, accessed May

13, 2013.

30. "Panoramio help: Understanding popularity in Panoramio," Google, n.d. From

http://www.panoramio.com/help/understanding_popularity, accessed May 13, 2013.

31. "Reviews of Hotels, Flights and Vacation Rentals - TripAdvisor," TripAdvisor LLC,

2013. From http://www.tripadvisor.com/, accessed May 13, 2013.

32. "Tabs," Android, n.d. From http://developer.android.com/design/building-

blocks/tabs.html, accessed July 17, 2013.

33. "UI Overview," Android, n.d. From http://developer.android.com/design/get-started/ui-

overview.html, accessed July 17, 2013.

34. "XmlPullParser," Android, 2014. From http://developer.android.com/reference/org/

 xmlpull/v1/XmlPullParser.html, accessed April 29, 2014.

35. "XmlPullParserFactory," Android, 2014. From http://developer.android.com/reference/

 org/xmlpull/v1/XmlPullParserFactory.html, accessed April 29, 2014.

36. Yelp Elite Squad, Yelp Inc., 2013.

37. Yelp: About Us, Yelp Inc., 2013.

38. Beck, K., et al. Principles behind the Agile Manifesto, Agile Manifesto, 2001.

39. Bobbitt, R. "Photographers Have Several Camera Options for Geotagging Pictures with

GPS Points," 2009. From http://www.directionsmag.com/articles/photographers-have-

148

several-camera-options-for-geotagging-pictures-with-gps-/122479, accessed June 10,

2013.

40. Borgefors, G. Distance Transformations in Digital Images. Computer Vision, Graphics,

and Image Processing, 34 (3). 344-371.

41. Burger, W. and Burge, M.J. Digital Image Processing: An Algorithmic Introduction

Using Java. Springer Science+Business Media, LLC, New York, New York, 2008.

42. Cristoforetti, A., Gennai, F. and Rodeschini, G. Home sweet home: The emotional

construction of places. Journal of Aging Studies, 25 (3). 225-232.

43. echoblaze, S.L. "How to download and save a file from Internet using Java?," Stack

Exchange, Inc., 2014. From http://stackoverflow.com/questions/921262/how-to-

download-and-save-a-file-from-internet-using-java, accessed April 29, 2014.

44. Entrikin, J.N. and Tepple, J.H. Humanism and Democratic Place-Making. in Aitken, S.

and Valentine, G. eds. Approaches to Human Geography, SAGE Publications, London,

England, 2006, 30-41.

45. Gardiner, M. Everyday Utopianism: Lefebvre and his critics. Cultural Studies, 18 (2).

228-254.

46. Genachowski, J. Second Report and Order: In the Matter of Wireless E911 Location

Accuracy Requirements, Washington, D. C., 2010.

47. Hyland, J. Hufnagle, K. ed., 2013.

48. Johnson, R.R. Audience Involved: Toward a Participatory Model of Writing. Computers

and Composition, 14. 361-376.

49. Lefebvre, H. The Production of Space. Blackwell Publishers Ltd., Oxford, United

Kingdom, 1991.

50. Luo, J., Joshi, D., Yu, J. and Gallagher, A. Geotagging in multimedia and computer

vision -- a survey. Multimedia Tools and Applications, 51 (1). 187-211.

51. Mark, J. "Four Android App Design Guidelines You Should Break," Fast Company Labs,

2013. From http://www.fastcolabs.com/3012752/four-android-app-design-guidelines-

you-should-break, accessed July 17, 2013.

52. Massara, F. and Severino, F. Psychological Distance in the Heritage Experience. Annals

of Tourism Research, 42. 108-129.

53. Nadal-Melsió, S. Lessons in Surrealism. in Goonewardena, K., Kipfer, S., Milgrom, R.

and Schmid, C. eds. Space, Difference, Everyday Life: Reading Henri Lefebvre,

Routledge, New York, New York, 2008, 161-175.

54. Nudelman, G. Android Design Patterns: Interaction Design Solutions for Developers.

John Wiley & Sons, Inc., Indianapolis, Indiana, 2013.

55. Rodríguez de Castro, A. Tuan, Premio vautrin lud de geografía. Didática Geográfica, 13.

155-160.

56. Schmid, C. Henri Lefebvre's Theory of the Production of Space: Towards a three-

dimensional dialectic. in Goonewardena, K., Kipfer, S., Milgrom, R. and Schmid, C. eds.

Space, Difference, Everyday Life: Reading Henri Lefebvre, Routledge, New York, New

York, 2008, 27-45.

57. Slominski, A. Quick Introduction to XMLPULL V1 API, High Performance Distributed

and Parallel Systems Research, Department of Computer Science, Indiana University,

2005.

149

58. Snavely, N., Seitz, S.M. and Szeliski, R. Photo Tourism: Exploring Photo Collections in

3D. ACM Transactions on Graphics -- Proceedings of ACM SIGGRAPH 2006, 25 (3).

835-846.

59. SparseArray. Android, 2014. From

http://developer.android.com/reference/android/util/SparseArray.html, accessed April 29,

2014.

60. Spencer, C. "How to Geotag Images," Digital Photography School, 2008. From

http://digital-photography-school.com/how-to-geotag-images, accessed June 10, 2013.

61. Tuan, Y.-F. Space and Place: The Perspective of Experience. University of Minnesota

Press, Minneapolis, Minnesota, 1977.

62. Varma, T. The Joys of Designing Agile Solutions for New-Age Problems, 24-7

Innovation Labs, Pune, India, 2013.

A-1

Appendix A: Instructions for Installing Project Files (README)

Kevin Hufnagle (WPI username = khufnagle)

May 6, 2014

Major Qualifying Project – “Lighthouse Navigator” Android Application

Guide to Setting Up Development Environment

Table of Contents

1. Brief Overview of Application

2. Components to Install on Machine

3. Steps for Executing the “Lighthouse Navigator” Application

4. Steps for Executing the Image-Processing Algorithms

5. Steps for Gaining Access to Flickr APIs within Application

6. Steps for Gaining Access to Google Maps APIs within Application

1. Brief Overview of Application

This Android application enhances travel experiences to lighthouses across New England, both

before and during trips. Within this app, users can view:

 General facts about different lighthouses;

 Photographs that people have taken of the lighthouses;

 Historical events that have taken place at the lighthouses; and

 Reviews of the lighthouse sites from visitors.

In particular, the application comes bundled with an advanced set of image-processing

algorithms, which users could execute to filter the photographs that appear within the

application.

2. Components to Install on Machine

 Java Development Kit (JDK) -- Includes Java Runtime Environment (JRE) as well as

debugging and development tools.

http://www.oracle.com/technetwork/java/javase/downloads/index.html?ssSourceSiteId=o

tnjp

 Android Software Development Kit (SDK) -- Includes Android’s APIs and Android SDK

Manager, a portal for downloading additional Android tools.

 http://developer.android.com/sdk/index.html?hl=sk

http://www.oracle.com/technetwork/java/javase/downloads/index.html?ssSourceSiteId=otnjp
http://www.oracle.com/technetwork/java/javase/downloads/index.html?ssSourceSiteId=otnjp
http://developer.android.com/sdk/index.html?hl=sk

A-2

 Eclipse -- IDE for Java and Android development.

https://www.eclipse.org/downloads/

 Android Development Tools (ADT) Plug-In for Eclipse -- Offers more powerful Android

development functionality within Eclipse.

 http://developer.android.com/sdk/installing/installing-adt.html

 Files for the application itself -- The most recent copy of my application.

 https://github.com/Kbhredsox/lighthousenavigator

 Android emulator or (better yet) a physical Android device -- For running the application.

 http://developer.android.com/tools/devices/managing-avds.html

3. Steps for Executing the “Lighthouse Navigator” Application

1. Go to GitHub and download the most up-to-date version of the application (by selecting

the “Download ZIP” button along the right-hand side of the page. Remember where you

save the ZIP file on your local machine.

2. Open Eclipse and select the workspace where you would like the application files to

reside. (Create a new workspace if this is your first time using Eclipse on this machine.)

3. Navigate to File > Import. The “Import” dialog appears.

4. Choose General, then Existing Projects into Workspace. Click Next.

5. Near the top of this window, make sure the Select archive file radio button is enabled,

then click Browse and find the ZIP file you downloaded in step 1. The projects

associated with the application should appear in the “Projects” area of the window

automatically.

6. Click Finish. Eclipse imports the project files. Note that, because of the project’s

extensive size, this process could take a few minutes.

7. Expand the “LighthouseNavigator” project to view the application’s files.

8. Right-click the “LighthouseNavigator” project and select Run As > Android

Application. The “Android Device Chooser” dialog appears.

9. Select the device or virtual device you wish to use to run the application, then click OK.

The application’s “Welcome” screen should appear on the device you selected.

10. As you interact with the application, you will notice that the “Photographs” screen does

not load correctly. Complete procedures (5) and (6) within this guide to fix this issue.

https://www.eclipse.org/downloads/
http://developer.android.com/sdk/installing/installing-adt.html
https://github.com/Kbhredsox/lighthousenavigator
http://developer.android.com/tools/devices/managing-avds.html

A-3

4. Steps for Executing the Image-Processing Algorithms

1. Complete steps 1-6 from the above set of directions.

2. Expand the “ImageJProcessor” project, then expand the “src” folder and the

 edu.wpi.khufnagle.ij.drivers package.

3. Right-click the driver corresponding to the image-processing algorithm you wish to demo

and select Run As > Java Application. The program’s output appears in the “Console”

pane near the bottom of the Eclipse Workbench.

5. Steps for Gaining Access to Flickr APIs within Application

Warning: It appears as though the method I used for authenticating with Flickr’s APIs has been

deprecated. The steps below might still work, but it is advised to follow the most recent set of

directions on Flickr’s website.

1. Obtain an API key by completing step 1 at the following website:

https://www.flickr.com/services/api/auth.howto.web.html

 You will need to log into your Yahoo!, Facebook, or Google account to continue.

2. On the page that loads after logging in, decide whether you wish to apply for a non-

commercial key or a commercial one. (Note: Since I intend to offer this application for

free to the general public, I applied for a non-commercial key.)

3. Another page loads, prompting you to enter the name of the app (“Lighthouse

Navigator”) and explain in as much detail as possible how you are extending or using the

functionality of the application.

 In a little while, you should receive an email allowing you to access your API key for this

 specific application only.

4. Complete steps 1-7 for executing the Android application associated with this project if

necessary. (If you have already loaded the project into a workspace, simply open Eclipse

and navigate to that workspace.)

5. Open the FlickrPhotoDownloadThread.java file within the

edu.wpi.khufnagle.lighthousenavigator.util package and navigate to line 95

within this file. This line should include the following section of a URL:

 &api_key=3ea8366b020383eb91f170c6f41748f5

 Replace this API key with the one you received from Flickr in step 3.

https://www.flickr.com/services/api/auth.howto.web.html

A-4

6. You should now be able to run the Lighthouse Navigator application (as explained in

steps 8 and 9 within the procedure for running the application for the first time) and be

able to download photographs from Flickr’s servers.

6. Steps for Gaining Access to Google Maps APIs within Application

1. Navigate to https://console.developers.google.com. Sign into your Google account (or

create a new one) if necessary.

2. Click Create Project near the top-left corner of the page. The “New Project” pop-up

dialog appears.

3. Within this dialog, enter a descriptive name for the project (such as “Lighthouse

Navigator”) and change the product ID if desired. Enable or disable the checkboxes

beneath these two text fields to your liking, then click Create. The project appears within

your Google Developers Console dashboard.

4. Click the name of the project you just created, then select the APIs & auth option along

the left-hand navigation bar. A list of APIs you can use should appear.

5. Scroll down to “Google Maps Android API v2” (being careful to not select “Google

Maps Engine API” or something similar) and press the OFF toggle button directly to the

right of the API label. The button should turn green and display ON.

6. Next, select the Credentials sub-option beneath the APIs & auth option along the left-

hand navigation bar. The credentials page loads.

7. Under “Public API access,” select Create New Key. The “Create a new key” pop-up

dialog appears.

8. Select Android key from the list of options. The “Create an Android key and configure

allowed Android applications” dialog appears.

9. In the text box near the bottom of this dialog, enter the SHA1 certificate fingerprint

corresponding to your app, followed by a semicolon, followed by your project's package

name (such as edu.wpi.khufnagle.lighthousenavigator).

 You can find your SHA1 certificate by opening a terminal or command prompt and

 navigating to the “bin” directory under your Java directory (such as C:\Program

 Files\Java\jdk1.7.0_51\bin), then executing the following command:

 keytool -list -v keystore <path-to-your-keystore> -alias

 androiddeugkey -storepass android -keypass android

 The path to your keystore is C:\Users\<your-windows-username>\

 .android\debug.keystore by default (or ~/.android/debug.keystore on

 Linux machines).

https://console.developers.google.com/

A-5

 Part of the output should display the MD5, SHA1, and SHA256 certificate fingerprints on

 consecutive rows. The SHA1 certificate, which should appear in the middle, is the

 fingerprint you want to enter into the dialog from the beginning of this step.

10. Click Create. The “Credentials” page should now show an area titled “Key for Android

applications.” The top line within this area, labeled “API key,” contains the value you

will need in a few steps.

11. Complete steps 1-7 for executing the Android application associated with this project if

necessary. (If you have already loaded the project into a workspace, simply open Eclipse

and navigate to that workspace.)

12. Navigate to the AnroidManifest.xml file, which should appear in the root directory of

the LighthouseNavigator Java project folder. Within the <application> element of

this XML file, there exists a <meta-data> element with a “name” attribute of

com.google.android.maps.v2.API_KEY. Change the corresponding value to the

API key that you generated in step 10.

13. You should now be able to run the Lighthouse Navigator application (as explained in

steps 8 and 9 within the procedure for running the application for the first time) and be

able to view maps from Google Maps within the “Photographs” screen successfully.

A-6

Appendix B: Version History

Version

Number

Date Comment

21 May 6, 2014 Added class diagrams of application within Design &

Methodology chapter

20 May 5, 2014 Completed Introduction and Conclusion chapters; revised

entire report; added appendices

19 May 2, 2014 Completed Results chapter

18 May 1, 2014 Completed Implementation chapter; cleaned up Literature

Review and Design & Methodology chapters

17 April 30, 2014 Added description of back-end data structures (XML file,

photograph cache) within Implementation chapter

16 April 29, 2014 Added discussions about data structures and Flickr

photograph acquisition within Implementation chapter

15 April 28, 2014 Added details about the application project’s high-level

layout; began discussing custom data collections within the

Implementation chapter

14 April 21, 2014 Began drafting the Design & Methodology chapter

13 April 12, 2014 Added coherent headings to Literature Review chapter;

converted all CS-based literature review topics to prose;

made small adjustments to existing “Space and Place” prose

to address Prof. deWinter’s feedback; began converting

“Existing Smartphone Applications” section outline to

prose

 12 April 11, 2014 Rewrote beginning of “Current Websites” section within

Literature Review chapter to include more obvious claim-

based structure; removed references to irrelevant details

11 April 9, 2014 Adjusted presentation of claims in “Current Websites”

section of Literature Review chapter based on feedback

from advisors

10 April 7, 2014 Revised “user-friendly elements” section of Results chapter

9 March 31, 2014 Created high-level draft of Results chapter

8 February 17, 2014 Added information from seminal article (Borgefors) about

chamfer feature-matching distance transforms within

Literature Review

7 February 12, 2014 Added information about template-matching algorithms to

Literature Review chapter

A-7

6 February 11, 2014 Added descriptions about contour detection and elementary

image region shape descriptions within Literature Review

chapter

5 February 7, 2014 Edited and completed existing outline of cumulative

histogram comparison method within Design &

Methodology chapter

4 February 3, 2014 Added explanation of general and discretized cumulative

histogram matching algorithms within Literature Review

chapter

3 January 27, 2014 Added extensive description of grayscale histograms and

the characteristic image properties and flaws apparent with

them within the Literature Review chapter – also began to

add paragraph on adjusting an image’s cumulative

histogram to an arbitrary reference cumulative histogram

2 January 24, 2014 Added discussion of different file formats and background

information on ImageJ to Literature Review chapter

1 January 22, 2014 Added explanations of SparseArray object and the

FileUtils library within the Implementation chapter

A-8

Appendix C: Interview with Jay Hyland

Questions for Interview

1. In what direction are you currently taking preservation efforts? Are you looking to restore

a specific set of lighthouses, make a certain type of improvement to all lighthouses, or

some other initiative?

2. What types of people typically visit the lighthouses your organization helps preserve?

Are they young/old, from the United States/international travelers, male/female, outdoor

enthusiasts?

3. Why do people (such as those from question 2) visit lighthouses? What is their primary

purpose for visiting lighthouses (aesthetic appeal, waterfront view, historical knowledge,

cultural knowledge)?

4. Do you think these “main visitors” to lighthouses look up information about the

landmarks before visiting them?

5. Do you think these “main visitors” to lighthouses record their experiences (written

documents, pictures)?

6. Would these “main visitors” (or family/friends of them) be interested in using an Android

(smartphone) application to tour these lighthouses virtually and learn more about their

respective histories?

7. How should I present this application? Should I encourage users to preserve individual

lighthouses, or should I cultivate a cultured knowledge of lighthouses and their

importance as navigation tools?

8. What resources should I consult to learn more about this organization and about

lighthouses in general?

A-9

Interview Minutes

Attendees: Kevin Hufnagle, Jay Hyland (president/founder, Lighthouse Preservation Society)

Location: Newburyport Rear Range Lighthouse, Newburyport, MA

Date: April 3, 2013

I. Improve Both Individual Aspects of Lighthouses and Lighthouse Network as a Whole

A. Look at “Accomplishments” page on website (e.g. grant from National Parks Service)

– “mansion” category

B. Lots of matching on part of societies – grant program has proven to be very effective

1. Only small government grant necessary for non-profit groups to begin

contributing

C. Important first step was getting lighthouses on the National Register of Historic Places

in 1980s

II. History of Lighthouse Preservation Society

A. Created in 1983

B. Started out as grant to document lighthouses

C. Slide photographs

D. Survey of lighthouses around country – started with Pequot Lighthouse in New

London, CT

E. Hyland originally involved with grants in Hull in 1982 (New England lighthouses) –

got “pass” from U. S. Coast Guard to get in various buildings across the region

F. Lighthouses were being automated as part of national initiative to get them all

automated by 1990

G. Hyland documented “what was going on” as automation process continues – noticed

that places boarded up too tight (peeling paint from moisture content) – loom siding

just a “band-aid” solution

1. Realized lack of tractable plan, funds, mission for historic preservation

2. Maintainers = college-age people – not very experienced with building upkeep

(e.g. putting vinyl on all surfaces!?)

H. Spoke with a neighbor in his North Shore community (Harvard professor in

government department; her father was part of Department of Transportation in

Washington, D. C.)

1. Encouraged Hyland to bring issue to Congress – she joined him in creating Board

of Directors to lobby Congress to receive funding – went door-to-door in D. C.

2. Brought about Congressional hearing – Admiral of Aids and Navigation cited $7

million deficit in maintenance – story went “viral” (circa 1986)

A-10

I. Lighthouse stamps (Howard Paine, artist = Howard Koslow from NJ)

1. Series since 1980s

2. Issue stamps that include an iconic lighthouse from each state

3. New England lighthouses featured on 5 stamps (one per state) in summer of 2013

III. My Application Merges Technology and Communication

A. American Lighthouses book = good reference

B. Keeper’s log in Newburyport lighthouse

1. Goes back three years

2. Much like a guest book at a cottage/condo

IV. Allure to Lighthouses – Visitors

A. Can depend on lighthouse (Newburyport one in particular is quite romantic, allowing

wealthy couples (ages = mid-20s and older) to dine at the top)

B. People of all ages (children to retired individuals) visit museums for lighthouses

V. Popularity of Lighthouses

A. Reasons for visiting

1. Beauty (photographers, artists visit for this reason)

2. Location

3. Architecture

a. These “characters of the coast” are each a little different

b. Even standardized structures have different paint jobs!

c. Varied sequence of flashes, foghorns

4. Romance (lighthouses in U. S. equivalent to castles in Europe)

5. Lifestyles of keepers (as it relates to modern life)

6. Spiritual

a. “Light in the darkness”

b. “Gives us direction”

c. Literature, hymns, poems reference lighthouses (e.g. Longfellow wrote

about Portland Head Light)

B. Curricula based on lighthouses

1. Navigation (distance from ship to lighthouse)

2. History lessons (e.g. Bob Gallagher at Old Scituate Lighthouse in Scituate, MA)

C. First public works act of Congress (signed by George Washington)

1. Considered to be the “First Great Work of the American People”

2. Goal = always be in range of at least one lighthouse along U. S. coastline

3. Sometimes, building them was dangerous (e.g. Minot Point in Cohasset, MA) –

big engineering achievement to create a stable one there

D. Europe took inspiration and modeled their lighthouses after U. S. ones

A-11

VI. Information Available to Visitors

A. New England lighthouse guides

1. Scans of paper brochures by state online (no longer printed because not cost-

effective anymore) – listing of lighthouses

a. Keep in mind that at least half of lighthouses are off-shore – should my

project focus on just the easily-accessible lighthouses? Probably…

2. Virtual map of lighthouses (more informational, akin to Google Maps)

B. Personal accounts

1. Internet?

2. Keeper’s logs

VII. Smartphone Use among Visitors

A. Lots of visitors (Hyland estimates at least half) use smartphones – e.g. Hyland takes

pictures of couples dining at Newburyport Rear Range Lighthouse using their

smartphones

VIII. Emphasis on Individual vs. General Information about Lighthouses in Application

A. Discuss unique feel of individual lighthouses – break down by state at least

B. Follow lead of lighthouse publications!

IX. Tour Guides at Lighthouses

A. Not many tour guides, but museums have them

1. Stonington Harbor (Stonington, CT) – Louise Pitaway

2. Portland Head Light (Portland, ME)

3. Is this application a way for me to inspire more lighthouse museums in New

England?

X. Resources to Consult

A. Films (Several about the Newburyport lighthouses) – careful with copyright!

B. User videos on YouTube – careful with copyright!

C. Two episodes of Chronicle from WCVB-TV – cannot post this anywhere (WCVB

guards rights to episode decades later)

D. Hyland willing to share his slides/photographs with me at no cost (from Dover, NH)

A-12

Appendix D: Survey for Visitors of Cape Neddick Lighthouse

May 25, 2013

Dear Sir or Madam,

For my senior project at Worcester Polytechnic Institute, I intend to develop an Android

application that allows people who visit lighthouses in New England (such as yourself) to learn

more about these landmarks. When using this application, you will be able to (1) view

photographs of different lighthouses, (2) explore the history of these lighthouses, and (3) read

about other visitors’ experiences and stories from exploring these lighthouses.

This short survey will gauge your experience with smartphones and your interest in the

application I am developing. I would appreciate you taking the time to complete and return it.

Once you have completed this survey, please place it in the bin labeled “Completed Lighthouse

Surveys.”

If you have any questions about this survey or my project, please feel free to contact myself

(contact information listed at the bottom of this page) or my co-advisor, Professor Jennifer

deWinter. You can reach her by phone at (508) 831-6679, by email at jdewinter@wpi.edu, or by

mail at Attn: Prof. Jennifer deWinter, Department of Humanities & Arts, Worcester Polytechnic

Institute, 100 Institute Road, Worcester, MA 01609.

Thank you for your time and interest in this project.

Sincerely,

Kevin Hufnagle

Worcester Polytechnic Institute

Computer Science and Professional Writing, Class of 2013

(617) 549-2933

khufnagle@wpi.edu

A-13

Instructions: For each question, fill the bubble(s) next to EACH response that applies to you.

Some questions may require more than one answer.

There are 13 questions in this survey (only the final question is open-ended) and should take no

more than 5 minutes to complete.

The following questions ask you to describe your traveling and picture-taking tendencies

while visiting lighthouses.

1. What is the most common reason that you travel to a given lighthouse? (Fill in ONE

response.)

o To learn about the history of the lighthouse

o To appreciate the architecture of the lighthouse

o To appreciate the scenery that surrounds the lighthouse

o To spend quality time with a family member, close friend, and/or significant other

o To visit other landmarks near that lighthouse

o To enjoy nearby dining and/or entertainment options

o Other (please specify) _____________________

2. How often do you take photographs of lighthouses when you visit them?

o Always

o Most of the time

o Sometimes

o Rarely

o Never

If you answered “Never” for question 2, skip to question 4 on the following page.

Otherwise, continue to question 3.

3. What device do you typically use to take photographs of lighthouses?

o Smartphone (iPhone, Android, Blackberry, etc.)

o Digital camera

o Film (non-digital) camera

o Other (please specify) _____________________

A-14

The following questions ask you to describe your access to smartphones and your use of

them.

4. Do you own or have regular access to a smartphone?

o Yes, an Android

o Yes, an iPhone

o Yes, a Blackberry

o Yes, another type of smartphone (please specify) _____________________

o Not sure

o No

If you answered “No” or “Not sure” for question 4, skip to question 13 on page 5.

Otherwise, continue to questions 5 and 6, then to the questions on the next page.

5. Do you take your smartphone with you when you travel to a lighthouse?

o Yes

o Sometimes

o No

6. Can you access websites and download data from the Internet using your smartphone when

you travel to a lighthouse?

o Yes

o Sometimes

o No

Questions continue on the following page.

A-15

The following questions ask you to describe your behavior when visiting websites that

contain information about locations and/or online photographs.

7. How often do you visit websites that contain information about a lighthouse (such as Yelp or

TripAdvisor) before or while you travel to that lighthouse?

o Always

o Most of the time

o Sometimes

o Rarely

o Never

If you answered “Never” for question 7, skip to question 9. Otherwise, continue to

question 8.

8. What do you typically look at on websites that contain information about a lighthouse? (Fill

in ALL responses that apply.)

o Hours of the lighthouse

o Cost of visiting the lighthouse

o Contact information for the lighthouse

o Address/directions for the lighthouse

o Visitors’ reviews of the lighthouse

o Photographs of the lighthouse

o Other locations similar to the lighthouse

o Other (please specify) _____________________

9. How often do you visit websites that contain online photographs of a lighthouse (such as

Google Images, Flickr, or Instagram) before or while you travel to that lighthouse?

o Always

o Most of the time

o Sometimes

o Rarely

o Never

A-16

The following questions ask you to evaluate a lighthouse application that you could use on

your smartphone.

10. How likely would you be to download a FREE smartphone application that would allow you

to view photographs, history, and user experiences of a lighthouse?

o Extremely likely

o Very likely

o Somewhat likely

o Not very likely

o Not at all likely

If you answered “Not at all likely” for question 10, skip to question 13 on the

following page. Otherwise, continue to questions 11 and 12.

11. How often would you use the lighthouse application after installing it on your smartphone?

o Very often

o Often

o Occasionally

o Almost never

12. What features would you like to see in the lighthouse application? (Fill in ALL responses

that apply.)

o View key information (location, hours, contact phone number)

o Show dining and/or entertainment options near a given lighthouse

o Search for a specific lighthouse

o Upload your photographs for a given lighthouse

o Dedicate separate sections of the application to photographs, history, and visitors’

experiences

o Filter photograph results by different camera settings (resolution, date taken) within

“photographs” section

o Change text settings (color, size) within “history” and “visitors’ experiences” sections

o Upload your visiting experience(s) for a given lighthouse

o Other (please specify) _____________________

A-17

13. Thank you for taking the time to complete this survey. Please provide any additional

comments or ideas in the box below. We will consider these responses during the design

process to create an application that satisfies your needs.

A-18

Appendix E: Survey for Lighthouse Preservation Society Members

The Lighthouse Preservation Society

11 Seaborne Drive

Dover, NH 03820

March 3, 2014

Dear Sir or Madam,

For my senior project at Worcester Polytechnic Institute, I am developing an Android application that

allows people who visit lighthouses in New England (such as yourself) to learn more about these

landmarks. When using this application, you will be able to (1) view photographs of different lighthouses,

(2) explore the history of these lighthouses, and (3) read about other visitors’ experiences and stories from

exploring these lighthouses.

This short survey gauges your use of smartphones and travel-based websites and has you evaluate the

application design. I would appreciate you taking the time to complete and return it.

You can complete this survey electronically at the following link, or you can mail it back to the

Lighthouse Preservation Society address (given at the top of this page).

https://www.surveymonkey.com/s/lighthouse-app-feedback

If you have any questions about this survey or my project, please feel free to contact myself (contact

information listed at the bottom of this page) or my co-advisor, Jennifer deWinter.

You can reach her by phone at (508) 831-6679, by email at jdewinter@wpi.edu, or by mail at Attn: Prof.

Jennifer deWinter, Department of Humanities & Arts, Worcester Polytechnic Institute, 100 Institute

Road, Worcester, MA 01609.

Please complete this survey by Thursday, April 3. Thank you for your time and interest in this project.

Sincerely,

Kevin Hufnagle

Worcester Polytechnic Institute

Computer Science and Professional Writing, Class of 2014

(617) 549-2933

khufnagle@wpi.edu

Note: The original version of this cover letter appeared in a 12-point font.

mailto:khufnagle@wpi.edu

A-19

Instructions: For each question, fill in the bubble(s) next to EACH response that applies to you.

Some questions may require more than one answer.

There are 11 questions in this survey (only the final question is open-ended) and should take no

more than 5 minutes to complete.

The first question asks you to describe

your access to smartphones.

1. Do you own or have regular access to a

smartphone?

o Yes, an Android

o Yes, an iPhone

o Yes, a Blackberry

o Yes, another type of smartphone

(please specify below)

o Not sure

o No

If you answered “No” or “Not sure”

for question 1, skip to question 11 on

page 3. Otherwise, continue to

question 2 below.

The next two questions ask you to identify

your use of websites related to travel.

2. Which of the following websites do you

access most of the time before or during

your trip to visit a lighthouse?

 (Fill in ALL responses that apply.)

o Flickr

o Google Images

o Instagram

o TripAdvisor

o Yelp

3. How often do you upload photographs of

lighthouses onto Flickr for other people

to see and share?

o All the time

o Often

o Not very often

o Never

The next four questions ask you to

describe your expected experience with

the application I am developing.

Question 4 is based on the image below,

which shows part of the “welcome” screen

that appears within the application:

4. Which of the two search methods shown

in the screen above would you consider

using?

 (Fill in ALL responses that apply.)

o Find lighthouses near you

(first option on screen)

o Search for a lighthouse from a list

after picking a state

(second option on screen)

A-20

Questions 5 and 6 are based on the image

below, which shows part of a sample

“search results” screen that appears within

the application:

5. In what way(s) would you expect to be

able to sort the results that appear under

the heading labeled “Good Matches”?

 (Fill in ALL responses that apply.)

o Distance from the lighthouse listed

under “best match”

o Similarity in name compared to the

one listed under “best match”

o Another method of sorting

(please specify below)

6. After selecting the “View” button to the

right of a search result, which of the

following screens should appear next?

 (Fill in ONE response.)

o General information about the

lighthouse (address, hours, height)

o Photographs of the lighthouse and a

map showing where other people

have taken pictures of that lighthouse

o Historical facts about the lighthouse

o Visitors’ experiences from exploring

the lighthouse

Question 7 is based on the image below,

which shows a sample “photographs” screen

that appears within the application:

7. After selecting the “Filter Photos” button

in the bottom-right corner of this screen,

what options should appear on the

screen? These options allow you to view

photographs that fit specific criteria.

 (Fill in ALL responses that apply.)

o Time of day (day, twilight, night)

o Time of year (winter, summer)

o Location (inside, outside)

o Type of background (water, land)

o Amount of lighthouse visible

(entire structure, tower only)

o Another type of filter

(please specify below)

A-21

The final four questions ask you to

evaluate the application as a whole, based

on the descriptions and images in the

previous questions.

8. How visually appealing is the

application?

o Very appealing

o Appealing

o Unappealing

o Very unappealing

9. Based on the screens shown in the

previous questions, how useful would it

be for this application to include an

optional tutorial where you could learn

how to find information on each screen?

o Very useful

o Useful

o Not very useful

o Not at all useful

10. How likely would you be to download

this FREE smartphone application,

which would allow you to view the

photographs, history, and visitor

experiences of a lighthouse?

o Extremely likely

o Very likely

o Not very likely

o Not at all likely

11. Thank you for taking the time to

complete this survey. Please provide any

additional comments or ideas in the box

below. We will consider these responses

during the development process to create

an application that satisfies your needs.

A-22

Appendix F: Usability Study Materials

Preamble (Used in all usability studies)

Hi there, how are you doing today? Could I have a few minutes of your time to help me with a

school research project about lighthouses?

Thank you for your willingness to participate in this study. During this session, I will be asking

you several questions about your smartphone use and about the Android app that I am

developing for my senior research project at Worcester Polytechnic Institute. The purpose of this

project is to create an app that allows lighthouse visitors (such as yourself) the opportunity to (1)

examine general information about lighthouses in New England, (2) view photographs of these

lighthouses, (3) explore the history of these lighthouses, and (4) read about other visitors’

experiences and stories from exploring these lighthouses.

I will be publishing this research online, and by participating, your responses may appear in this

publication. Your response will remain anonymous, however, and I will not publish any

personally identifiable information in the paper.

The purpose of this study in particular is to evaluate the usability of the app I am developing and

to determine the pieces of information that should be most prominent within it. It should take no

longer than 5 minutes to complete. You will not encounter any significant risks during this study,

your participation is completely voluntary, and you may stop at any time.

Before we begin, do you have any questions for me?

A-23

Poster (Used in all usability studies)

Use a new Android app to

guide you to lighthouses

across New England!

Talk to this student to help create

an app that allows you to explore

more of these beautiful landmarks!

A-24

Cape Neddick (“Nubble Point”) Lighthouse – July 19, 2013

Script

We will begin the study with a couple of general questions about your smartphone use.

1. Do you use or have regular access to a smartphone?

a. If so, what type?

b. If so, how long have you used it?

c. If not, do you plan on gaining access to one within the next 6 months?

If the answer to both (1) and (b) is “no,” the participant is disqualified from the study. I will say, “Thank

you for your interest in this project. For the purposes of this study, however, we are looking for active or

prospective smartphone users to evaluate this app. You are free to go and enjoy the rest of your time

here.”

2. What types of information do you look up, either online or through phone calls, before you travel

to a lighthouse?

Excellent. I will now show you “paper” versions of several screens from the app that I am developing. For

each screen that I show you, I will ask you a few questions about it. Feel free to interact with this paper

design as if it were an actual app on your smartphone. Also, feel free to ask questions at any time as I

show you the different screens.

Show the participant the “splash screen” for the application.

3. What is going on with the app when this screen appears?

4. How long would you expect this screen to appear on your smartphone?

Let’s assume that the app has finished loading and is now displaying this screen. Show the participant the

“welcome” screen for the application.

5. What can you do from this screen?

a. Anything else?

6. Which type of search would you rather complete (enter the name of a lighthouse manually, or

find its name in a list)?

Say you begin entering the name of a lighthouse and press the “p” key on your keyboard. Show the

participant the “welcome – search in progress” screen for the application.

7. What should happen when you select one of the options that appears below the letter “p”?

You have finished typing the word “pemaquid” on the welcome screen and have pressed the “Search”

button. Now the following screen appears. Show the participant the “search results” screen for the

application. Ask questions 8 and 9.

A-25

8. Can you identify the lighthouse that best matches your search term?

9. What should happen when you click the “View” button?

Let’s say you searched for West Quoddy Head Lighthouse in Lubec, ME and pressed the “View” button

in the search results screen that I just showed you. The following screen then appears. Show the

participant the “general information” screen for the application. Ask questions 10 and 11.

10. What screen should appear if you tap the arrow next to the lighthouse icon in the top-left corner?

11. There is more information about the lighthouse that does not appear on this screen right away.

How can you see this extra information?

Now, let’s say I tapped the camera icon (point to the icon on the screen) to view photographs of the

lighthouse. The following screen appears. Show the participant the “photographs” screen for the

application. Ask questions 12-14.

12. What should happen when you select each of the arrows that you see near the main picture? Point

to the picture in the top-left corner of the screen.

13. Should the map appear more zoomed in, more zoomed out, or is it fine as it is on this screen?

14. It is possible to upload a photograph from this screen?

a. If so, how would you expect to complete this process? If not, why not?

When I want to view the history of a lighthouse, a screen similar to the one I am showing you now

appears. Show the participant the “history” screen for the application. Ask question 15.

15. When you select a dot on the timeline, a fact about the lighthouse appears in the bottom part of

the screen. Sometimes, a dot represents more than one fact. When you select one of these dots,

one of two events could occur. Show the two “timeline pop-up” history screens (screens 8 and 9

in the “Screen Design” section). Either a pop-up dialog appears where you can select a fact to

display in the bottom part of the screen, or both facts appear in the bottom part of the screen.

(You may have to scroll to see the entire second fact.) Which event makes more sense to you?

Returning to our West Quoddy Head Light example from before, let’s look at a screen that displays

visitors’ reviews of the lighthouse. Show the participant the “reviews” screen for the application. Ask

questions 16 and 17.

16. It is possible to upload a review from this screen. How would you expect to begin this process?

17. What should happen when you select the “Vote Helpful” or “Respond” icon?

This concludes the app walkthrough part of the study. I will now ask several questions about the app as a

whole.

1. How likely would you be to download this app?

a. If so, why would you use the app? Describe a situation where you would use it.

b. If not, why not?

2. How user-friendly is this app?

A-26

3. Do you have any additional questions for me?

Thank you again for your participation. You are free to go and enjoy the rest of your time here.

A-27

Paper Prototype Screens

Splash Screen

Welcome & Search

Search in Progress

Search Results

Information

Photographs

History

History – Pop-up

History – multiple facts

Reviews

Lighthouse
Navigator

Virtually Explore New England’s
Lighthouses

Loading…

Photo credits: Luca Zappa

Licensed under Creative Commons
Attribution-NonCommercial-ShareAlike
2.0 Generic

Lighthouse Navigator

Welcome to the Lighthouse Navigator!
You can:
1. Search for a specific lighthouse or
2. Select one from a list after picking a

state

Select a state…

Select a lighthouse…

Enter the name of a lighthouse… SEARCH

You can donate to the Lighthouse Preservation
Society by selecting the button below. Your
contribution will help maintain these beautiful and
important coastal landmarks.

This app created by Kevin Hufnagle as part of a
Major Qualifying Project for Worcester Polytechnic
Institute in the summer of 2013.

You can provide feedback about this app by
contacting Kevin at khufnagle@wpi.edu.

SEARCH

DONATE

Lighthouse Navigator

Welcome to the Lighthouse Navigator!
You can:
1. Search for a specific lighthouse or
2. Select one from a list after picking a

state

Select a state…

Select a lighthouse…

p SEARCH

You can donate to the Lighthouse Preservation
Society by selecting the button below. Your
contribution will help maintain these beautiful and
important coastal landmarks.

This app created by Kevin Hufnagle as part of a
Major Qualifying Project for Worcester Polytechnic
Institute in the summer of 2013.

You can provide feedback about this app by
contacting Kevin at khufnagle@wpi.edu.

SEARCH

DONATE

Portland Head Light
Portland, ME

Pemaquid Point Light
Damariscotta, ME

Race Point Light
Provincetown, MA

Lighthouse Navigator

Found 6 results for search term:
“pemaquid”

Pemaquid Point Light
Damariscotta, ME

VIEW
BEST MATCH

You may also be interested in…
Sorted by: Distance from current location

Hendricks Head Light
Southport, ME

Monhegan Island Light
Monhegan Island, ME

Marshall Point Light
Port Clyde, ME

Seguin Island Light
Georgetown, ME

Doubling Point Light
Bath, ME

VIEW

VIEW

VIEW

VIEW

VIEW

Photo credits: The B’s (CC BY-NC 2.0), Ted Kerwin (CC BY 2.0),
Timothy Valentine (CC BY-NC-SA 2.0), cmh2315fl (CC BY-NC
2.0), Charlie Kellogg (CC BY-NC-SA 2.0), wolftone (CC BY-NC-
SA 2.0)

West Quoddy Head Light
Lubec, ME

ADDRESS Quoddy Head Road
Lubec, ME 04652

GET DIRECTIONS

PHONE
NUMBER

(207) 733-2180

CALL

WEBSITE http://www.westquoddy.com

STATUS

Grounds open

Tower closed

Dwelling open in-season
(mid-May to mid-October)

HOURS Daily: 10:00 AM – 4:00 PM

Photo by: J Labrador License: CC BY 2.0

West Quoddy Head Light
Lubec, ME

View map as: Roads

Photo by: Brent Danley

License: CC BY-NC-SA 2.0

Thumbnail photo credits: wonder_al (CC BY-NC 2.0), wonder_al (CC BY-
NC 2.0), Numan (CC BY-NC-SA 2.0), Numan (CC BY-NC-SA 2.0), Muffet
(CC BY 2.0), chm2315fl (CC BY-NC 2.0), wonder_al (CC BY-NC 2.0)

Old Scituate Light
Scituate, MA

Displaying years between: 1810 2013and

1800 1835 1870 1905 1940 1975 2010

Photo by: kirinqueen
License: CC BY-SA 2.0

Old Scituate Light
Scituate, MA

1810
Congress provides $4,000 to build a
lighthouse at the entrance to Scituate
Harbor.

Select fact to display

1810 Congress provides $4,000 to
build a lighthouse…

1811 The lighthouse building
process completes…

1800 1835 1870 1905 1940 1975 2010

Old Scituate Light
Scituate, MA

1810
Congress provides $4,000 to build a
lighthouse at the entrance to Scituate
Harbor.

1811

1800 1835 1870 1905 1940 1975 2010

Displaying years between: 1810 2013and

Photo by: kirinqueen
License: CC BY-SA 2.0

Very pretty lighthouse. Amazing spot on the
coast. Very accessible, 1 minute walk from a
fairly small parking lot.

Note: If you have an RV, probably best to go
very early so you can turn around. If you have
an RV and are towing something-it may be
tricky but not impossible. …

Score: 5.0 / 5.0

West Quoddy Head Light
Lubec, ME

View stories from: Yelp

Average score: 5.0 / 5.0

Gorgeous. Simply gorgeous. Not only an
incredible place, filled with an amazing history,
but staffed with just about the friendliest,
knowledgeable folks around. If you make it to
the easternmost point of our nation, I'll assume
you'll head here. If you fail to do so if you're in
the area, you really have no excuse.

John Paul G. | October 2, 2011

VOTE
HELPFUL

RESPOND

Score: 5.0 / 5.0

UPLOAD REVIEW

Jason P. | September 29, 2011

A-28

Response Sheet

Access to smartphone? Yes No Type ___________________ Time _________________

Pieces of information examined before traveling to lighthouse:

Splash Screen

App behavior when screen appears:

Length of time that screen should appear:

Questions: Interaction:

Welcome

Things to do on screen:

Type of search to complete: Enter lighthouse name Find name in list

Behavior upon selecting auto-complete option:

Questions: Interaction:

Search Results

Identify “best match?” Yes No Action upon “View” select:

Questions: Interaction:

Information

“Back” screen: How to see extra info:

Questions: Interaction:

Photographs

Select arrows action: Map zoom: Zoom out Zoom in Just fine

Possible to upload photos? Yes No Action to complete/why not:

Questions: Interaction:

History

Interaction event: Pop-up dialog Both facts appear

Questions: Interaction:

Reviews

Process for uploading review:

Action upon selecting “Vote Helpful” or “Respond:”

Questions: Interaction:

Likeliness of downloading app:

Situation/why not:

User-friendliness:

Additional questions:

A-29

Old Scituate Lighthouse – August 2, 2013

Script

Pre-Survey Questions

We will begin the study with a couple of general questions about your smartphone use.

1. Do you use or have regular access to a smartphone?

a. If so, what type?

b. If so, how long have you used it?

c. If not, do you plan on gaining access to one within the next 6 months?

If the answer to both (1) and (b) is “no,” the participant is disqualified from the study. I will say,

“Thank you for your interest in this project. For the purposes of this study, however, we are

looking for active or prospective smartphone users to evaluate this app. You are free to go and

enjoy the rest of your time here.”

2. How often do you visit lighthouses?

3. What types of information do you look up, either online or through phone calls, before

you travel to a lighthouse?

Survey Questions

Excellent. I will now show you “paper” versions of several screens from the app that I am

developing. For each screen that I show you, I will ask you a few questions about it. Feel free to

interact with this paper design as if it were an actual app on your smartphone. Also, feel free to

ask questions at any time as I show you the different screens.

Show the participant the “splash screen” for the application. This screen appears for a few

moments while the app loads information about local lighthouses. Now, let’s assume that the app

has finished loading and is now displaying this screen. Show the participant the “welcome”

screen for the application.

4. Which type of search would you rather complete (find a nearby lighthouse, or search by

state)? Show the participant the “nearby search results” and “state-based search

results” screens to show results from searching.

Let’s say you searched for Old Scituate Lighthouse in Scituate, MA and pressed the “View”

button in one of the search results screens that I just showed you. The following screen then

appears. Show the participant the “general information” screen for the application. Ask question

5.

A-30

5. It is possible to see other pieces of information about this lighthouse, such as more

photographs and historical facts. Android allows you to see these other screens either by

selecting the title of the screen you are in and displaying a drop-down menu (show the

“general information drop-down” screen) or by pressing the “menu” button and

selecting an option from the bottom of the screen (show the “general information menu”

screen). Which action would make more sense for you to take?

Now, let’s say I pressed the “Photographs” option. The following screen appears. Show the

participant the “photographs” screen for the application. Ask questions 6 and 7.

6. What should happen when you select one of the icons in the top-right corner of the

screen? Point to the icons in the top-right corner of the “Photographs” activity screen.

7. What should happen when you select each of the arrows that you see near the main

picture? Point to the picture in the top-left corner of the screen.

When I want to view the history of a lighthouse, a screen similar to the one I am showing you

now appears. Show the participant the “history” screen for the application.

Finally, let’s look at a screen that displays visitors’ reviews of the lighthouse. Show the

participant the “reviews” screen for the application. Ask questions 8 and 9.

8. What should happen when you select the icon in the top-right corner of this screen? Point

to the icons in the top-right corner of the “History” activity screen.

9. What should happen when you select the “Vote Helpful,” “Vote Unhelpful,” or

“Respond” icons?

Post-Survey Questions

This concludes the app walkthrough part of the study. I will now ask several questions about the

app as a whole.

1. How likely would you be to download this app?

a. If so, why would you use the app? Describe a situation where you would use it.

b. If not, why not?

2. What further improvements to the app would you suggest? If no response right away, ask

about the icon design and color scheme.

Thank you again for your participation. You are free to go and enjoy the rest of your time here.

A-31

Paper Prototype Screens

Welcome Screen

Nearby Search Results

State-Based Search Results

Information

Information (Drop-Down)

Information (Menu Button)

Photographs

History

Reviews

A-32

Response Sheet

Access to smartphone? Yes No Type ___________________ Time _________________

Frequency of traveling to lighthouses ______________________

Pieces of information examined before traveling to lighthouses _________________________

Welcome

Type of search to complete: Find nearby lighthouses Find name in list

Questions: Interaction:

Search Results:

Questions: Interaction:

Information

Type of method to access other content screens: Spinner list at top Menu items at bottom

Questions: Interaction:

Photographs

Select arrows action:

Purpose of left action bar icon: Purpose of right action bar icon:

Questions: Interaction:

History

Questions: Interaction:

Reviews

Purpose of action bar icon:

Action upon selecting button under a review:

Questions: Interaction:

Likeliness of downloading app:

Situation/why not:

Suggestions:

A-33

Highland (“Cape Cod”) Lighthouse – August 31, 2013

Script

Pre-Study Questions

We will begin the study with a couple of questions about your smartphone and computer use.

1. Do you own a computer (that isn’t a smartphone, such as a desktop, laptop, or tablet)?

2. If so, how many hours per day do you spend using it?

a. Less than 30 minutes

b. At least 30 minutes but less than 1 hour

c. At least 1 hour but less than 2 hours

d. At least 2 hours but less than 4 hours

e. At least 4 hours

3. Do you own a smartphone?

If the answer to question 3 is “no,” the participant is disqualified from the study. I will say,

“Thank you for your interest in this project. For the purposes of this study, however, we are

looking for active smartphone users to evaluate this app. You are free to go and enjoy the rest of

your time here.”

4. What type of smartphone do you have?

5. How long (in months) have you used a smartphone that is the same type as your current

smartphone (e.g. if you currently have a Samsung Galaxy S4, how long have you used

Android smartphones in general)?

6. About how many minutes per day do you use your smartphone?

a. Less than 30 minutes

b. At least 30 minutes but less than 1 hour

c. At least 1 hour but less than 2 hours

d. At least 2 hours but less than 4 hours

e. At least 4 hours

7. What is your age, to the nearest decade (20s, 40s, 70s, etc.)?

Finally, I will ask a few questions about your typical lighthouse travel plans.

8. Did you plan your trip to this lighthouse?

a. If so, how many days in advance did you plan it?

A-34

9. Did you look up any information about the lighthouse before visiting today?

a. If so, what types of information did you look up? There can be multiple answers.

i. Location

ii. Hours

iii. Age or history

iv. Public vs. private

v. Other

b. If so, how many websites did you visit to find this information?

c. If so, how many phone calls did you make to find this information?

d. If so, did you find all the information you were looking for?

10. How many times have you visited a lighthouse so far this year?

Study Tasks

Excellent. I will now present to you the app that I am developing on my Android smartphone. I

will give you several tasks to complete within this app. I will watch as you interact with the app

and try to complete each task. Please know that there is no one “right” way to complete some of

the tasks that I will present you. Feel free to ask questions if you get lost or stuck while trying to

complete a task.

Open the app on my smartphone and navigate to the “Welcome” screen for the application.

Have the participant complete the first three tasks below.

1. Determine the lighthouses in Maine that you can learn more about in this app.

2. Identify the lighthouse that is closest to your current location.

3. Navigate to a screen that shows general information about the lighthouse that is closest to

your current location. The lighthouse being emphasized here is notated as “this

lighthouse” in future tasks.

If the participant cannot navigate to the “Information” screen successfully, open it for them and

note on the response form that the application’s usability is poor within the “Welcome” and/or

“Search Results” screen(s). Have the participant complete the next two tasks.

4. Identify the height of this lighthouse.

5. Navigate to a screen that shows pictures other people have taken of this lighthouse.

If the participant cannot navigate to the “Photographs” screen successfully, open it for them and

note on the response form that the application’s usability is poor within the “Information”

screen. Have the participant complete the next four tasks.

6. Determine the number of photographs of this lighthouse that the app includes.

7. Try to upload a photograph of the lighthouse that you have taken on your smartphone. I

specify “try to upload” since the uploading functionality itself is still a work in progress.

8. Show me how you would filter the photographs that appear on this screen (for example,

by time of day or by the direction that the photographer is facing).

9. Navigate to a screen that shows historical facts about the lighthouse.

A-35

If the participant cannot navigate to the “History” screen successfully, open it for them and note

on the response form that the application’s usability is poor within the “Photographs” screen.

Have the participant complete the next task. (There is no specific task on this screen since it is

still a work in progress.)

10. Navigate to a screen that shows visitors’ reviews for this lighthouse.

If the participant cannot navigate to the “Reviews” screen successfully, open it for them and

note on the response form that the application’s usability is poor within the “History” screen.

Have the participant complete the final two tasks.

11. Try to upload a review of the lighthouse. I specify “try to upload” since the uploading

functionality itself is still a work in progress.

12. Return to the main menu of the app.

Post-Study Questions

This concludes the app navigation part of the study. I will now ask several questions about the

app as a whole.

1. How likely would you be to download this app?

a. Very likely

b. Likely

c. Unlikely

d. Very unlikely

2. Ask if the participant answers (a) or (b) for question 1. How often would you use the

app?

a. Every week

b. Less than once per week but at least once per month

c. Less than once per month but at least once per year

d. Less than once per year

3. Ask if the participant answers (a) or (b) for question 1. In which of the following

situations would you use it? There could be multiple answers.

a. While in the middle of a road trip (at most one day in any one location)

b. While on vacation in a specific location (at least two days in a specific location)

c. As inspiration for art (photography, painting, etc.)

d. Other

4. Ask if the participant answers (c) or (d) for question 1. Why would you not download

this app?

5. What further improvements to the app would you suggest?

Thank you again for your participation. You are free to go and enjoy the rest of your time here.

A-36

Response Form

Demographics

Own computer? Y N Time spent __________ Age ___________ Gender M F

Own smartphone? Y N Type _______ Time owned (mos) ____Time spent ____________

Plan trip? Y N Info. looked up _________ # Websites _____ # Calls _____ # Trips _____

Welcome and Search Results Completed Completed with help Not completed

Determine lighthouses in Maine 4 3 2 1

Identify nearby lighthouses 4 3 2 1

Navigate to “Information” screen 4 3 2 1

Interaction notes:

Information

Identify lighthouse height 4 3 2 1

Navigate to “Photographs” screen 4 3 2 1

Interaction notes:

Photographs

Determine number of photographs 4 3 2 1

Upload photograph 4 3 2 1

Filter photographs 4 3 2 1

Navigate to “History” screen 4 3 2 1

Interaction notes:

History

Navigate to “Reviews” screen 4 3 2 1

Interaction notes:

Reviews

Upload review 4 3 2 1

Return to main menu 4 3 2 1

Interaction notes:

Likeliness of downloading app __________ How often will app be used _____________

Situations for using app _______________ Why unlikely to download app ________________

Further improvements:

A-37

Nauset Lighthouse – September 8, 2013

Script

Pre-Study Questions

We will begin the study with a couple of questions about your smartphone and computer use.

1. Do you own a computer (that isn’t a smartphone, such as a desktop, laptop, or tablet)?

2. If so, how many hours per day do you spend using it?

a. Less than 30 minutes

b. At least 30 minutes but less than 1 hour

c. At least 1 hour but less than 2 hours

d. At least 2 hours but less than 4 hours

e. At least 4 hours

3. Do you own a smartphone?

If the answer to question 3 is “no,” the participant is disqualified from the study. I will say,

“Thank you for your interest in this project. For the purposes of this study, however, we are

looking for active smartphone users to evaluate this app. You are free to go and enjoy the rest of

your time here.”

4. What type of smartphone do you have?

5. How long (in months) have you used a smartphone that is the same type as your current

smartphone (e.g. if you currently have a Samsung Galaxy S4, how long have you used

Android smartphones in general)?

6. About how many minutes per day do you use your smartphone?

a. Less than 30 minutes

b. At least 30 minutes but less than 1 hour

c. At least 1 hour but less than 2 hours

d. At least 2 hours but less than 4 hours

e. At least 4 hours

7. What is your age, to the nearest decade (20s, 40s, 70s, etc.)?

Finally, I will ask a few questions about your typical lighthouse travel plans.

8. Did you plan your trip to this lighthouse?

a. If so, how many days in advance did you plan it?

A-38

9. Did you look up any information about the lighthouse before visiting today?

e. If so, what types of information did you look up? There can be multiple answers.

i. Location

ii. Hours

iii. Age or history

iv. Public vs. private

v. Other

f. If so, how many websites did you visit to find this information?

g. If so, how many phone calls did you make to find this information?

h. If so, did you find all the information you were looking for?

10. Including this trip, how many times have you visited a lighthouse so far this year?

Study Tasks

Excellent. I will now present to you the app that I am developing on my Android smartphone. I

will give you several tasks to complete within this app. I will watch as you interact with the app

and try to complete each task. Please know that there is no one “right” way to complete some of

the tasks that I will present you. Feel free to ask questions if you get lost or stuck while trying to

complete a task.

Open the app on my smartphone and navigate to the “Welcome” screen for the application.

Have the participant complete the first two tasks below.

1. Determine the lighthouses in Maine that you can learn more about in this app.

2. Navigate to a screen that shows general information about the lighthouse that is closest to

your current location. The lighthouse being emphasized here is notated as “this

lighthouse” in future tasks.

If the participant cannot navigate to the “Information” screen successfully, open it for them and

note on the response form that the application’s usability is poor within the “Welcome” and/or

“Search Results” screen(s). Have the participant complete the next task.

3. Navigate to a screen that shows pictures other people have taken of this lighthouse.

If the participant cannot navigate to the “Photographs” screen successfully, open it for them and

note on the response form that the application’s usability is poor within the “Information”

screen. Have the participant complete the next four tasks, along with two questions.

4. Determine the number of photographs of this lighthouse that the app includes.

5. Try to upload a photograph of the lighthouse that you have taken on your smartphone. I

specify “try to upload” since the uploading functionality itself is still a work in progress.

6. Show me how you would filter the photographs that appear on the screen so you can see

certain types of photographs that people have taken of this lighthouse.

7. What types of filters would you find useful within this application?

A-39

8. One type of filter would entail placing camera icons on the map in the bottom-left corner

of this screen. Were you to select these camera icons, only photographs from that general

area around the lighthouse would appear along the right-hand side of the screen. I will be

illustrating this idea through gestures so that the following question makes sense to

visitors. On a scale of 1 to 4 (with 1 being “not at all useful” and 4 being “very useful”),

how useful would you find these camera icons?

9. Navigate to a screen that shows historical facts about the lighthouse.

If the participant cannot navigate to the “History” screen successfully, open it for them and note

on the response form that the application’s usability is poor within the “Photographs” screen.

Have the participant complete the next task. (There is no specific task on this screen since it is

still a work in progress.)

10. Navigate to a screen that shows visitors’ reviews for this lighthouse.

If the participant cannot navigate to the “Reviews” screen successfully, open it for them and

note on the response form that the application’s usability is poor within the “History” screen.

Have the participant complete the final two tasks.

11. Try to upload a review of the lighthouse. I specify “try to upload” since the uploading

functionality itself is still a work in progress.

12. Return to the main menu of the app.

Post-Study Questions

This concludes the app navigation part of the study. I will now ask several questions about the

app as a whole.

1. How likely would you be to download this app?

a. Very likely

b. Likely

c. Unlikely

d. Very unlikely

2. Ask if the participant answers (a) or (b) for question 1. How often would you use this

application while planning a trip to a lighthouse or traveling to one?

a. Almost always

b. Often

c. Not often

d. Almost never

A-40

3. Ask if the participant answers (a) or (b) for question 1. In which of the following

situations would you use it? There could be multiple answers.

a. While in the middle of a road trip (at most one day in any one location)

b. While on vacation in a specific location (at least two days in that specific

location)

c. As inspiration for art (photography, painting, etc.)

d. Other

4. Ask if the participant answers (c) or (d) for question 1. Why would you not download

this app?

5. What further improvements to the app would you suggest?

Thank you again for your participation. You are free to go and enjoy the rest of your time here.

A-41

Response Form

Demographics

Own computer? Y N Time spent __________ Age ___________ Gender M F

Own smartphone? Y N Type _______ Time owned (mos) ____Time spent ____________

Plan trip? Y N Info. looked up _________ # Websites _____ # Calls _____ # Trips _____

Found all information looking for? Y N

Welcome and Search Results Completed Completed with help Not completed

Determine lighthouses in Maine 4 3 2 1

Navigate to “Information” screen 4 3 2 1

Interaction notes:

Information

Identify lighthouse height 4 3 2 1

Navigate to “Photographs” screen 4 3 2 1

Interaction notes:

Photographs

Determine number of photographs 4 3 2 1

Upload photograph 4 3 2 1

Filter photographs 4 3 2 1

Navigate to “History” screen 4 3 2 1

Types of Useful Filters:

Usefulness of camera icons on map:

Interaction notes:

History

Navigate to “Reviews” screen 4 3 2 1

Interaction notes:

Reviews

Upload review 4 3 2 1

Return to main menu 4 3 2 1

Interaction notes:

Likeliness of downloading app __________ Freq. of using app during lighthouse travel _______

Situations for using app _______________ Why unlikely to download app ________________

Further improvements:

