

Project ID: MXC-0550

INTERSTAATLICHE HOCHSCHULE FÜR TECHNIK BUCHS

 HEAT PUMP DATABASE AND SEARCH TOOL IMPLEMENTATION

A Major Qualifying Project Report

Submitted to the faculty of the

WORCESTER POLYTECHNIC INSTITUTE

In partial fulfillment of the requirements for the

Degree of Bachelor of Science

AUTHORS

Kyle Carrero

Matthew Piazza

Kyle Sposato

FACULTY ADVISOR

Michael J. Ciaraldi

Senior Instructor, Department of Computer Science

Worcester Polytechnic Institute

SPONSOR

Stefan Bertsch, PhD

Head of the Institute for Energy Systems

Interstaatliche Hochschule für Technik Buchs

i

Abstract

This Major Qualifying Project is the creation and deployment of a database management

system and web application for the Institute of Energy Systems (IES) at the Interstaatliche

Hochschule für Technik Buchs (NTB). This database stores the test results and conditions from

the Wärmepumpen-Testzentrum (WPZ), the Heat Pump Test Center. This web application

provides a user-friendly heat pump search and comparison tool for use by homeowners as well as

a graphical database editing tool that allows WPZ technicians to edit and add new test data to the

database with ease. The web application and database were demonstrated by performing user

tests with NTB employees and deploying the web application and database on the NTB website.

ii

Acknowledgements

We would like to acknowledge Worcester Polytechnic Institute for providing us with the

opportunity to complete our MQP at the Switzerland Project Center. We would also like to thank

our advisors Michael Ciaraldi and Dr. Daniel DiMassa, and the Director of the Switzerland

Project Center, Dr. Nancy Burnham, for their guidance throughout the preparation and

completion of this MQP.

We would also like to thank our sponsors at the NTB Interstate University of Applied

Sciences of Technology Buchs for providing us the opportunity to work with them and for their

support throughout the project. Specifically, we want to thank Dr. Stefan Bertsch, Dr. Emine

Cagin Bertsch, Mick Eschmann, and Markus Markstaler for their assistance in guiding our

group.

iii

Executive Summary

Our sponsor, the Wärmepumpen Testzentrum (WPZ), a holder of an ILAC MRA

Accreditation and a Swiss Accreditation, is a member of the Institute of Energy Systems within

the Interstaatliche Hochschule für Technik Buchs (NTB) and is responsible for the testing and

certification of commercial heat pumps against a variety of testing standards developed by

governmental and scientific regulatory organizations. Up until this project, the WPZ had been

using Microsoft Excel files to store and display the results from various tests they performed on

heat pumps. However, they considered this method of data storage inefficient and anticipated

difficulties maintaining it in the future. It also hindered readability due to the overwhelming

amount of data displayed at once and the technical knowledge required to understand it. In order

to address this issue, we created an online database with a more intuitive interface for collecting

and storing data, and we connected it to a web application by which homeowners may find heat

pumps suited to their needs.

A previous graduate student, Fabian Lutz, developed a project known as the Data

Warehouse which acted as a precursor to our database. Though written in software that was

incompatible with our systems and which required some restructuring to suit our needs, his

project gave us a foundation on which to build our database. Acknowledging that regulations and

testing standards would continue to evolve, we designed a schema flexible enough to handle new

testing information without having to edit the existing table structure. We also expanded and

generalized the database from handling a single heat pump type to handling the various types

tested by the WPZ.

Along with moving the primary storage location of the WPZ’s data online, we also

provided a feature to export and download the database as Microsoft Excel spreadsheets for

those still familiar with the old format and for sharing of the test results en masse. With no

guarantee of further maintenance, this feature needed to be flexible in parsing and exporting the

database in order to handle future changes to the test result data as might occur through changes

in the regulations and testing standards. Our database design enabled us to create a reliable,

dynamic system for exporting that could extend itself through reading the database tables, whose

values defined the structure and fields of the test results.

iv

Finally, we created a website to host both a tool for searching and comparing the various

heat pumps and a tool for database maintenance and addition of new test results. The website

was designed to be responsive and viewable regardless of device or screen resolution. Due to

complications with hosting our site on the NTB server, we utilized an external third-party server

and pointed to it with DNS settings from within a subdomain of the NTB website.

We designed our search-and-comparison tool for homeowners looking to install a new

pump within their homes. This tool allows homeowners to search for heat pumps whether they

know the exact specifications required for their home or only the yearly fuel consumption of an

existing heat pump from which they were upgrading. The maintenance section of the website

provided WPZ technicians a simple and user-friendly tool to edit the otherwise complicated

back-end database through a secure login. We also implemented an interface specifically to ease

the process of adding new test results to the database and validate the new data.

In creating the website and database for the WPZ, we addressed the concerns they raised

of data storage efficiency and future maintenance, and we also provided a tool making their

database more readable and useful to public users. The maintenance tool reduces the risk of data

redundancy and relieves the possibility of concurrency and synchronization errors between

machines. We actively avoided introducing significant dangers, such as SQL injection or lack of

authentication, and designed the system to ensure backwards-compatibility through the export

process as well as compatibility with known possible changes to the test result process in the

future. As of project completion, the website was deployed onto the following sub-domain:

“http://wpz.energiewerkbank.ch/”.

While we successfully created a system supporting the testing results of heat pumps, our

database was not designed to account for the hot water boilers that are also tested by the WPZ,

and introducing such compatibility will require significant changes to the schema. Our current

user authentication system provides a measure of security for the administration portions of the

website, but integrating the NTB authentication system would provide NTB’s IT department

greater control over the access of those restricted portions. We recommend future efforts be

focused towards redesigning the database schema to be able to store test results for hot water

boilers, creating a corresponding search tool, and integrating the website and database into the

NTB infrastructure.

v

Table of Contents

Abstract .. i

Acknowledgements ... ii

Executive Summary ... iii

Chapter 1: Introduction ... 1

Chapter 2: Background ... 3

2.1 Issues with Data Storage ... 3

Chapter 3: Methodology ... 5

3.1 Design ... 5

3.1.1 Database Considerations .. 5

3.1.2 Exporting Data ... 6

3.1.3 Website .. 8

3.2 Implementation ... 12

3.2.1 Database Iterations ... 13

3.2.2 Exporting Data to Microsoft Excel .. 14

3.2.3 Website .. 16

Chapter 4: Conclusion and Future Work .. 21

References ... 23

Appendix A ... 25

Appendix B ... 27

Appendix C ... 28

Appendix D ... 30

1

Chapter 1: Introduction

The Wärmepumpen-Testzentrum (WPZ) department of the Interstaatliche Hochschule für

Technik Buchs (NTB) university has been utilizing multiple Microsoft Excel files to store data

acquired from various tests performed on different heat pumps. This method of complex data

storage is considered inefficient and difficult to maintain by the NTB Institute of Energy Systems

(IES). Furthermore, this data storage method complicates distribution and interpretation of the

test data. The Microsoft Excel spreadsheets (converted to PDF files) are distributed via the NTB

website, and visitors must then interpret them in order to find which heat pumps suit their

requirements. These spreadsheets are considered difficult to understand for the target audience,

homeowners and industry members, because of the background technical knowledge required in

order to decipher the data. Additionally, the format of the spreadsheets is complicated and

presents the user with an overwhelming amount of data that may not be relevant to their

requirements.

 In order to address the problematic data storage method for the NTB WPZ, we created a

database to more effectively store and maintain the heat pump test data. By addressing the WPZ

data storage problem through the implementation of a database, NTB is now able to easily store

and maintain their heat pump test results with a higher efficiency than that of the previous

Microsoft Excel spreadsheets.

 To make the data easier to interpret for homeowners, we created a web application that

provides multiple methods by which to view the test data in a manner that grants an improved

user experience while interacting with the NTB website. As of project completion, the website

was deployed onto the following sub-domain: “http://wpz.energiewerkbank.ch/”. This

application allows homeowners to input either some data that an installer would provide them or

some information on their current heat pump, and it subsequently presents them with a list of

suggested heat pumps that fit their needs. Given the list of suggested heat pumps, a homeowner

can then select their top choices to compare in more detail in order to make a more informed

decision about the purchase they plan on making. This application will greatly benefit

homeowners by providing a more user-friendly method of finding heat pumps that match their

needs.

2

 In addition to the search and comparison tool, the web application provides a graphical

interface to manage the contents of the database. This allows WPZ technicians to edit, add, or

remove test data from the database. This feature allows them to retain direct control over the data

while having a centralized data storage system. This also reduces data redundancy and improves

data consistency and integration with software and web applications.

 In the following sections, we will introduce some background information about NTB

and the WPZ, after which we will discuss our design and its implementation. Finally, we will

summarize our results and identify areas that would benefit from continued development in

future projects.

3

Chapter 2: Background

The IES is composed of approximately thirty researchers and engineers spanning three

areas of research: Thermal Energy Systems (TES), Electrical Energy Systems (EES), and the

Wärmepumpen Testzentrum. The main focus of the IES is to perform research for small- and

medium-sized enterprises. In addition to their research activities, there are three professors and

one lecturer who teach system engineering and the Master’s degree course, MAS Energy

Systems, at NTB. Those within the TES area of research focus on the development of heat pump

and refrigeration machines, the design of thermal systems, and the simulation of thermal and

fluid systems. The EES’s research focuses on the design and development of power electronics

and circuit design. The WPZ, our sponsor and primary connection within the IES, is responsible

for the testing and certification of commercial heat pumps.

The goal of the WPZ is to test heat pumps against a variety of testing standards that are

developed by government and scientific regulatory organizations. These standards and

regulations must be met before heat pump manufacturers can enter their pumps into market, and

these manufacturers utilize the WPZ in order to certify that their products adhere to all required

standards. With the ILAC MRA Accreditation and Swiss Accreditation that the WPZ holds,

clients can trust that the obtained test data is reliable. In addition to certifying heat pumps, the

WPZ test results provide a basis upon which research can be conducted in order to improve upon

current heat pump technology. During their tests, the WPZ investigates various heat pump

characteristics such as performance, sound levels, heating and cooling capacity, refrigerant types,

and more.

 After a manufacturer’s heat pump is tested by the WPZ, the test results are released to the

public with the manufacturer’s consent. As a result, the WPZ is able to provide homeowners,

business owners, and other customers with data that can assist them in selecting a heat pump that

best fits their requirements. This can significantly help those who are looking to find a reliable

system which meets specific constraints.

2.1 Issues with Data Storage

 Previously, the WPZ stored their testing data within Microsoft Excel spreadsheets. While

this storage method had met their needs, they anticipated difficulties in continuing to keep track

4

of their ever-expanding data. In addition, working off of spreadsheets posed the concern of

concurrent updates. If two technicians were to each begin editing their own copy of the master

spreadsheet, it would be unclear which of their new copies would become the master. This would

also mean that one technician would have to re-enter their data once the master copy is

determined. Duplicated data is also a concern when sharing these spreadsheets across a team. In

addition, there is no central data storage, nor is there much of a backup system other than making

copies of the spreadsheet, which can easily be lost in an unorganized workspace.

 In using spreadsheets to store their testing data, the WPZ also limited their ability to share

said data with homeowners whom this information would help. The WPZ website previously just

hosted copies of the spreadsheets for end users to download and read. The issue with this was

that the spreadsheets are very technical in nature, and only users who had previous knowledge

with the testing information could fully understand what it all meant. This made it more difficult

for end users to be informed about the varying performance between the heat pumps they were

potentially going to purchase.

 For these reasons, the WPZ requested that we develop a database and search tool that

could be implemented into their website and would solve these issues. Database systems provide

a central storage solution, preventing the issue of data redundancy. They can also handle multiple

commands at a time, preventing the issue of concurrent updates. Some database systems also

allow for automatic backup of the data stored within, protecting their data in case of failure. It is

also very easy to integrate a database system into website, therefore providing a greater amount

of control over the data and how it is presented to the end user. This means that the homeowners

looking for information on heat pumps can be presented with the data in a more easily

understood and user-friendly format.

5

Chapter 3: Methodology

3.1 Design

 In order to accomplish our end goal of creating a web application for homeowners to

search for the heat pump that best suits their needs, we developed three objectives. First, we

would create a database for the test results after exploring the advantages and disadvantages of

different possible approaches. Next, we would implement a feature to export our database to

Microsoft Excel spreadsheets for simple viewing and sharing. Finally, we would upload our web

application to a server after exploring various hosting options.

3.1.1 Database Considerations

 In order to plan out the structure of the database, we first needed to understand the

current structure of the data and how each entry in the Microsoft Excel spreadsheets related to

one another. After conferring with Dr. Stefan Bertsch, he explained to us the testing process for

the heat pumps that the WPZ uses as well as what specific data is collected. We discussed with

Dr. Bertsch the different use cases for the program we would be writing, and together we

analyzed the data that was currently being collected and what was and was not necessary for our

application moving forward. These use cases included information such as what types of

searches should be available (e.g. the installer information search and fuel consumption search,

discussed later), what data needed to be provided by the user for each type of search, and the

workflow that the user should follow when searching for heat pumps.

A student working under Dr. Bertsch, Fabian Lutz, completed a similar project only days

before we arrived. He created a relational database and import tool for the data; however, it did

not meet all the needs the WPZ had in regards to this database and search tool. We were given

permission by Dr. Bertsch to use what we could from his report. Mr. Lutz had already created the

necessary schema and import tool, but it was unlikely that the IT department at NTB would be

able to install and prepare the necessary components of his project in time for us to utilize them

in our work. In addition, Mr. Lutz had used Microsoft SQL Server, a database software designed

exclusively for Microsoft Windows. As such, we decided to build our own database and import

tool using Mr. Lutz’s work as a template. We came to the decision that we would edit his

6

existing database schema, add and remove fields as necessary, and finally translate that schema

to a database system that would be more agnostic of operating systems.

 We looked into several different database management systems to see which would work

better for this project. A comparison of these database management systems can be found in

Appendix A, Table 1. We decided to translate the schema to work with MySQL (MySQL AB,

1995), a relational database management system that was already in use at NTB. There were

several members of the WPZ staff who were very familiar with MySQL, so we were certain that

the database could be maintained after this project came to an end. In addition, MySQL also runs

on a plethora of operating systems and is free to use.

The import tool, however, would be not be used in our final product. The Microsoft Excel

sheets that were previously used by the WPZ contained slight differences that would make

creating a generic import tool very difficult to achieve. After analyzing these spreadsheets, we

came to the conclusion that in creating an import tool, we would have to set a rigid set of

guidelines that would have to be adhered to by all of the technicians in the WPZ. This would

make the spreadsheets the “master” copy of the data, rather than the database, and would not

solve the current issue that they were facing. This would merely make the database a backup in

case they ever lost the “master” copy of the data, which was not its intended purpose. In addition,

we felt that this would eventually lead to a scenario where the regulations and testing standards

used would evolve in such a way that would require the set of guidelines for the import tool to be

altered. These rigid guidelines would not allow for such edits without the import tool needing to

be heavily edited and tested to conform to this new structure.

Instead, we decided that the technicians should insert their test data directly into the

database, removing the need for an import tool altogether. We would build this functionality into

the website through a database maintenance tool, hidden behind a user authentication service.

The WPZ technicians could enter the same information into the database through this tool as

they would have previously entered into the Microsoft Excel spreadsheets.

3.1.2 Exporting Data

Alongside creating a web application to display the heat pumps online, we also created a

tool to export the test results from the MySQL database to Microsoft Excel spreadsheets for

sharing, analysis, and simulation purposes. Spreadsheets are the most familiar and compact

7

format for the technicians to view the results in, but to achieve an easily comprehensible format

requires processing and conversion to synthesize all the data from the various database tables

together. In preparing to export the test result data, we explored a number of possible

approaches, separated primarily by compatibility with the system through which we would

develop the web application.

 As we began our research we explored options within JavaScript (Eich, 1995) and jQuery

(The jQuery Foundation, 2006) due to their natural role in web development and ease of

integration into a website. Within the available jQuery libraries, however, we did not find

modules for this specific type of data transformation. While JavaScript also did not contain

modules for this complete transformation from SQL to Microsoft Excel, it did contain a variety

of similar libraries for each half of the conversion; namely, from SQL to JavaScript arrays and

from JavaScript arrays to Microsoft Excel. Since we found that JavaScript facilitated the

conversion most efficiently when writing to CSV files, and because we were given freedom to

modify the layout of the spreadsheets, we explored the possibility of exporting using CSV.

However, we decided against it primarily because it would prevent styling the spreadsheets,

which we desired to do in order to maintain continuity with the appearance of the sheets

previously used by the technicians.

 Following research on JavaScript and jQuery, we turned to Python (Python Software

Foundation, 2001) with its multitude of advanced plugins, object-oriented classes, and minimal

syntactic overhead, using the working assumption during this design phase that even though

Python is not native to all systems, it and any requisite modules would be able to be installed on

the server we chose to host our web application on. After comparing file format compatibilities

of various modules along with intuitiveness and unique features of the interfaces, we settled on

the Pandas module (PyData, 2016) as our primary data management system within Python. A

comparison of module compatibilities with varying file formats may be found in Appendix A,

Table 2. Pandas offered the ability to export standard Microsoft Excel sheets instead of

exclusively the CSV format that many of the other modules we researched were restricted to, and

it also provided a simple and concise interface capable of handling both sides of the data

conversion between MySQL and Microsoft Excel files.

In addition to its capabilities in the area of converting, the Pandas module provided

support for styling Microsoft Excel files while writing data to them. Though the styling feature

8

of the Pandas module itself was experimental and did not provide us the full suite of necessary

options, the module also provided wrappers to integrate smoothly with the XlsxWriter module

(McNamara, 2013), which offered broader functionality and all the styling features we required.

This guaranteed that as we exported our data to the spreadsheets, we would be able to maintain a

similar style to the formatting system familiar to the WPZ technicians.

During the design process we encountered an issue in deciding how to read and store the

data in a conversion layer within Python before writing it to the spreadsheets. It would be simple

to read the tables from the database and just write each one to its own sheet in a Microsoft Excel

workbook, but due to the desired spreadsheet format of grouping the information by the heat

pump which the data referred to, this would not satisfy the objectives of intuitively displaying the

test results. Despite the encapsulation and interfaces provided by the Pandas module, mapping

the table data into the format for the spreadsheets would not be possible without the aid of a

medium in which to store the parsed data. Knowing that there were different forms of test

procedures and results for each of the various types of heat pumps, we designed a class structure

containing an abstract class for the heat pumps and concrete classes for each of the three

different variations. The class diagram is shown in Appendix B, Figure 1. Beyond defining some

common attributes and methods for the concrete classes to use within themselves, the abstract

class also provided a place for methods that were used by the top-level executing script to handle

a collection of heat pumps regardless of their specific type. The primary goal in this design was

to promote a consistent structure for the data and consistent sharing of common functionality

across the various heat pumps, easing the processing and formatting of the data.

3.1.3 Website

3.1.3.1 Hosting

 During our investigation of the NTB website and IT infrastructure, several issues were

discovered that introduced the possibility for the web application and database to be hosted by a

third party. As a result of the encountered complications, the website and database were decided

to be hosted by a third-party company.

 There were two main reasons that led to utilizing an external host. First, the NTB website

used a content management system called Typo3 (Skårhøj, 2005) that constrained its ability to

9

utilize the technologies necessary to implement our design for the database and website. The

second concern was that we would have to request many back-end modifications to the NTB

website in order to deploy the database and application. This process was considered to be time-

consuming and would have significantly delayed the development of the database and web

application. Lastly, when our team arrived to NTB, our IT contact, who manages the website,

was noted to be absent from the NTB campus for several weeks. Therefore, we were unable to

determine the details required to host the database and web application on the NTB IT

infrastructure.

To determine which external website hosting platform best suited the project, we created

a list of hosting requirements.. The requirement list that we developed included: hosted in

Switzerland, includes a domain, PHP, Python, MySQL, Shell access, FTP/SSH connections, and

automated backups. We researched seven third-party hosts in total, which are listed along with

their available features in Appendix A, Table 3.

Based on Appendix A, Table 3, DjangoEurope was considered to be the best external host

for this project. The features deemed most vital, which this host provides, are shell access, the

ability to use the Python language, and a MySQL database. After conferring with Dr. Stefan

Bertsch, we were informed that our maximum budget for any services that must be used by the

university for this project is Fr. 500/year. DjangoEurope (DjangoEurope, 2009) hosting was

estimated to cost approximately Fr. 90/year. A dedicated IP address or domain name was not

required for this project. A canonical name record was added to the NTB DNS settings to point

to the third-party host’s server. DjangoEurope guarantees that the IP address of the server does

not change. In total, hosting the project on a third-party server costs approximately Fr. 90/year.

3.1.3.2 User Experience

 This section describes how users were expected to interact with the front-end designs.

Additionally, this section provides a general flow of events for each major feature on the

website.

Heat Pump Search Methods (Appendix D, Figure 1)

In order to search for heat pumps, the desired heat pump type must be selected.

Afterwards, two separate methods were developed to search for heat pumps. The first method,

10

the “Installer” search, would be used when the user has been provided information (i.e. heat

pump type, power consumption, outside temperature, and the building’s heating system) by an

installer. The second method, the “Fuel Consumption” search, would be utilized by users who

already know what power output is needed in addition to how much fuel is supplied to the heat

pump.

Heat Pump Comparison (Appendix D, Figures 2, 3, 4)

The heat pump comparison page was created to display attributes of heat pumps that were

selected on the search results page. This feature was designed to compare a limited number of

heat pumps whose identifiers are maintained in a “comparison list”. After users select heat

pumps to compare, the heat pump identifier is stored, and a separate “comparison” page lists the

attributes of the heat pumps that appear in the “comparison list”. In order to change the selected

heat pumps, users must either start a new search or navigate back to the search results page.

When navigating back to the search results page, the previously selected heat pump checkboxes

are already checked. When unchecked, the heat pump is removed from the “comparison list”.

Executing a new search clears the entirety of the “comparison list”. Lastly, each heat pump’s full

test results can be viewed from the search results page by clicking on a heat pump’s test number.

Database Management (Appendix D, Figure 5)

The database management section of the website allows WPZ technicians to modify the

back-end database. This section is accessible through a user login which requests a username and

password. Tables in the database that would need to be modified in the future would become

accessible upon logging in and can be manipulated with three basic operations: create, update,

and delete.

Test Result Input (Appendix D, Figure 6)

 The test result input page was designed to provide WPZ Technicians a simple means of

adding new test results to the database. This section is accessible through a user login that

requests a username and password. The form was designed to capture all of the data necessary to

create a new test result and verify that the data is correct. User feedback was important in this

process considering the form is dynamic and consists of over twenty inputs. The form was

11

designed to provide feedback to the user if an input was left empty or invalid. Additionally, the

server was configured to give feedback based on the success or failure of inserting the test result

data.

3.1.3.3 User Interfaces

This section describes the front-end designs of major features of the website. In general,

the website was designed to be responsive. This allows the website to be viewed on any device

or screen resolution. Responsivity was achieved through the use of Cascading Style Sheets (CSS)

media queries and Bootstrap’s (Bootstrap, 2011) mobile-first design. Media queries provided the

ability to apply specific styles based on the users device type and screen resolution. Lastly, form

validation was an important aspect of the user interfaces throughout the website. If the server

detected invalid form input, a proper message was returned and displayed to the user in a red box

with an appropriate error message.

Heat Pump Search Methods

The two search methods were designed to be accessed through simple forms contained in

an “Accordion” dropdown on the index page. The “Installer” search method requires the

following inputs: heat pump type, power consumption, outside temperature, and type of building

heating system. The “Fuel Consumption” search method required the following inputs: heat

pump type, fuel type, fuel consumption, building heating system, and whether or not a hot water

system already exists. The inputs required to complete these searches were designed to be

entered in the form of text boxes, selection dropdowns, and radio buttons.

Heat Pump Comparison

After users executed a search and received results, each heat pump listing was designed

to display data pertinent to each heat pump such as manufacturer, model, heating type, and

heating power. Additionally, a checkbox at the bottom of each heat pump listing was used to add

heat pumps to, or remove from, the comparison list. A separate page was created for users to

view and compare attributes of the selected heat pumps. On this page, a table was designed to list

the selected heat pumps, where each row was an attribute of the heat pumps such as sound level,

refrigerant type, test number, and power consumption.

12

Database Management

The database management interface (DBM) was designed to be a simple and user-

friendly tool to edit the otherwise complicated back-end database. The DBM design consists of a

list of all the tables in the database. From this interface, WPZ technicians can select which table

they wish to modify which redirects to a page that displays the contents of the selected table.

Each row of the displayed table has buttons for deleting and editing. Additionally, there is an

“Insert” button which adds new rows to the table. Both the “Insert” and “Edit” buttons utilize a

modal form that display the necessary inputs.

Test Result Input

The test result input interface was designed as a form with a variety of input types.

Additionally, the form had to be dynamic, considering one test result could have multiple test

conditions. This form was designed to be several groups of text boxes, selection dropdowns, and

a single radio button to contain all of the information necessary to insert a new test result into the

database. In order to account for the case where there were multiple test conditions, buttons were

added to enable the addition and deletion of additional test condition inputs.

3.2 Implementation

With the design phase completed, we set out to implement our designs. We began by

altering and improving the database schema provided to us by Fabian Lutz. After transferring the

WPZ’s data into the database, we set out to accurately export the data as Microsoft Excel

spreadsheets in the same format as they were given to us. Finally, we created a website to host

the search and comparison tools, as well as tools for insertion of new test data into and

maintenance of the database, which became the WPZ’s primary repository for both new and

previous heat pump test results. The source code for the database, website, and export tool is

located on Github at the following URL: “https://github.com/SwitzerlandMQP-

A17/WPZ_Website_and_DB”.

https://github.com/SwitzerlandMQP-A17/WPZ_Website_and_DB
https://github.com/SwitzerlandMQP-A17/WPZ_Website_and_DB

13

3.2.1 Database Iterations

 As discussed earlier, much of the work in designing the schema was completed by Fabian

Lutz prior to our arrival. However, it was written in Microsoft SQL Server syntax, and therefore

had to be changed to be more operating system agnostic. The conversion between Microsoft

SQL Server and MySQL syntax was fairly trivial, only requiring the replacing of some

keywords. There were, however, several quirks that we had to address in his implementation.

Mr. Lutz had only designed his database around a single type of heat pump, the “Air/Water”, or

“Luftwasser”, style of heat pump. This meant that when trying to input data from the other two

styles of heat pump, there would occasionally be some issues. Due to evolving regulations and

testing standards, we also needed to implement a system which would be flexible enough to

handle new testing information without having to edit the existing table structure. To remedy

this, we edited his original design to be more agnostic of specific heat pump types, and we

attempted to make the schema as flexible as possible around the types of data that were expected

to change, as shown in Appendix C.

 To make the schema more pump-agnostic, as well as more easily understood, we altered

the names and types of certain fields in order to make it more easily understood what each table

was for. For example, the Lufttemperatur field, meaning “Air Temperature”, in the Bedingung

table was changed to be Umgebungstemperatur, meaning “Ambient Temperature”, which was

seen to be a more agnostic name for that field, since not all pumps used air. The Fakten table,

meaning “Fact”, was also changed to be named Verbindung, meaning “Link” or “Connection”,

to reflect its purpose as a linking table. We also removed several unnecessary columns from the

schema, such as the Norm_Typ column from the Bedingung table, the Resultat_Part2_ID field

from the Fakten table, and the Referenzwert_Low and Referenzwert_Medium columns from the

Info table. We felt that removing these unnecessary and unused fields would remove any

unnecessary bloat from the database.

 In order to make the schema more flexible for future testing standards, we needed to edit

how the database linked these standards to the test results. New standards can get added, older

standards get updates every few years, and a test can have multiple standards that it is testing for.

In Mr. Lutz’s design, the testing standards, or Norms, were being stored in a one-to-one

relationship with each set of test results. This would not work, as we needed a one-to-many

relationship between test results and the testing standards. So to accomplish this one-to-many

14

relationship, we removed the NormID field from the Fakten table and instead created a

NormInfo table that would link together NormID’s with any InfoID’s that use them. This would

allow the set of tests for a given heat pump, unified under a single InfoID, to have any number of

testing standards linked to it in this table, thus providing that one-to-many relationship.

 Once we finished editing the schema, we imported the rest of the data from the

spreadsheets using a piece of software that we wrote to generate the insert statements from the

Microsoft Excel spreadsheets containing the test data. However, we felt that this piece of

software was not reliable enough to allow the university to use it in production. We also had

decided that the entering of any new data would be handled on the website. Therefore, after

importing all of the existing data and ensuring that it was correctly imported, we did not continue

to work on the import tool.

 Finally, with all of the data properly loaded into the database, we created the stored

procedures that we would use on the website to access the correct information. We decided to

use stored procedures as they were much more similar to how object-oriented or functional

programming languages worked. The ability to create a function that could perform multiple

SQL queries in the background after calling a single command was preferable to manually

constructing multiple insert and select statements when interacting with the database from the

website.

3.2.2 Exporting Data to Microsoft Excel

As we began to develop our method of exporting data to Microsoft Excel files from the

MySQL database, we used the Python 3 programming language for its many easily-installed

modules and minimal overhead involved in object-oriented development. We also used the

previously discussed Pandas module to handle both the querying of our database and the

exporting and styling of this data to Microsoft Excel spreadsheets.

Connecting to the MySQL database required the installation of both the SQLAlchemy

(Bayer, 2016) and PyMySQL (Naoki, 2009) supplemental modules, but executing database

queries became trivial upon supplying these helpers. Creating styled Microsoft Excel files also

required the integration of another module, XlsxWriter, which provided vital formatting features,

such as column spacing or text rotation, along with other useful tools such as image insertion.

15

The greatest difficulty in exporting the data came in implementing the conversion layer in

which to store the heat pump characteristics and test results. Beyond just storing the data, this

layer also needed to be flexible in parsing and exporting the data in order to handle future

changes to the test result data as might occur through changes in the regulations and testing

standards. With the aid of our sponsors in determining the possible categories that these changes

could occur within, we wrote a system that dynamically parsed these sections of data by reading

the tables which defined the data structure. It then used this information to store the actual test

result values in an extendable format that could be iterated through during export reliably,

regardless of the possible changes.

This flexibility of parsing and storing the data also created a fortunate side effect. Instead

of a single abstract class and three concrete classes, as the conversion layer had originally been

designed with, we were able to refactor the implementation of the single “AirWaterPump” class

to manage all the varieties of heat pump test results. This occurred because of how dynamically

the code read the data and because of the similarities in the generic categories of test result data

between the various types of heat pumps. In the end, the same principles and methods from this

one class implementation were able to be reapplied with some minor improvements in logic in

order to perfectly handle all the required sets of test result data.

Alongside the dynamic storage of the test result data, we also implemented a procedure

of exporting the data which would remain reliable in the future as well. The Microsoft Excel

workbooks were divided into sheets by the category of heat pump type. Doing this allowed us to

group the heat pumps by a static category, keeping the spreadsheets organized in a manner that

was subject to less change than if they had been grouped by testing standard, as they had been in

the original spreadsheet format. Because not all testing standards produce the same data fields,

the columns of each sheet cannot be constant, but by dynamically parsing the test results we

were able to create a column for each field and design a flexible format independent of any

particular testing standard. However, despite ensuring uniformity among results and

compatibility with both future and past test results, this method came with a drawback: one

column was displayed for each attribute regardless of whether that data was present in the group

of queried heat pumps or not. The sheer number of columns necessary grew such that we were

concerned with the ability of a user to view and easily absorb the presented data. However, in the

final stage of styling the exported spreadsheets, we polished this flaw away. At the last step of

16

writing the Microsoft Excel files, our export script evaluated all columns to check if any data

was actually present in them, and if a column was empty then it would be hidden. This greatly

aided the usability and user experience of our design because while the data storage class would

expand as necessary for all possible fields, the actual spreadsheets themselves shrank the

collection of visible fields down to only those which were actually helpful to a user.

3.2.3 Website

3.2.3.1 Server Side

 For server-side processing, we chose to implement the web-server using the Node.js

(Joyent, 2009) JavaScript runtime environment. This software was chosen primarily because

Node.js can easily execute server-side Python scripts, which were used for importing to and

exporting from the database. Furthermore, Node.js includes the open-source Node Package

Manager (NPM) which is “The world’s largest software registry” (NPM, 2011). Several modules

available in the NPM were used to simplify many parts of the server itself, such as HTTP

requests and responses, sessions, templating, MySQL database interaction, form validation,

logging, and more. The following modules from the NPM were utilized throughout the website:

Body-Parser (NodeJS Foundation, 2011), Express (NodeJS Foundation, 2011), Express-Session

(NodeJS Foundation, 2011), Express-Validator (Tavan, 2011), Embedded JavaScript Templates

(EJS) (Eernisse, 2014), Forever (Robbins, 2010a), MySQL (Wilson, 2011), Path (Jinder, 2014),

Python-Shell (Mercier, 2013), and Winston (Robbins, 2010a). A brief explanation of each

module and their functionality in the website is provided below.

Body-Parser

 This module is middleware software that parses incoming request bodies sent to the

server before the response is handled. Given a specific set of options, Body-Parser will take

incoming requests and parse their data accordingly. For example, this server utilizes the

JavaScript Object Notation (JSON) format to transfer data between the client and the server.

When sending JSON data to the server, Body-Parser will intercept the request and parse the data

as JSON such that when the data is passed to the route handler, the data is already parsed and

easily accessible. Route handlers were used throughout the server to handle specific user

requests, such as navigating between pages or submitting a form.

17

Express

 Express is the standard web-framework for Node.js applications that simplifies many

aspects of a web-server. While not a server in and of itself, Express is most commonly used to

simplify HTTP requests and responses, headers, routing, and templating. Furthermore, Express

assists in implementing a server-side Model-View-Controller (MVC) design pattern.

 Express was utilized throughout the entirety of the server’s implementation. It provides

the basis by which client requests are handled by declaring specific route handlers such as

“GET” and “POST”. Additionally, Express provides templating support, which allows the

server to render dynamic templates which serve front-end interfaces. The use of templates by the

server is further explained in the “EJS” section below.

Express-Session

 The Express-Session module was used to store user session data. Express-Session

simplifies the process of storing, modifying, and reading session variables.

Session variables are significant to the overall function of the website considering there

are multiple user specific variables that must persist on different pages. For example, a session

variable was used to store a list of heat pump identifiers that were selected by the user on the

“Search Results” page. This list of identifiers was used to populate the “Compare” page, such

that only the user-selected heat pumps are displayed. Session variables are also utilized to

maintain “logged-in” user information to determine if users are authorized to access certain

pages. Lastly, session variables were used to store information such as the name of the table

being edited in the Database Management Interface and the currently selected heat pump type for

searches.

Express-Validator

 The Express-Validator module provides a means of server-side input validation. This

module was used to validate user input for both search methods. Express-Validator allows

validation procedures to be given to a route signature. A function call to this module executes the

given procedures against the data that was passed to the route. This function returns a list of

18

customizable error messages. This module was useful for providing users with accurate error

responses in order to complete a valid search.

EJS

 The server’s primary task is to send content to the client after it has processed the client’s

request. In order to provide the client with content, the server “renders” templates using the EJS

module. EJS allows JavaScript to be embedded into HTML documents in order to form a

template. This allows the server to render pages by passing variables or any other necessary data

to the template. These variables can then be accessed in the template and processed by

supplementary JavaScript. The output is then embedded into the template as valid HTML.

Finally, the completed template, now a valid HTML document, is sent to the user by the server.

Forever

 This module is used to indefinitely run the server. Additionally, Forever automatically

attempts to restart the server five times should it ever crash.

MySQL

 The MySQL NPM module is a driver that allows for interaction with a MySQL database

via Node.js. This module provides several features that were significant to the development of

the website, such as connection pooling and parameterized queries.

 The server utilizes the process of connection pooling in order to execute queries on the

MySQL database. This process involves establishing a single “pool” connection to the MySQL

database and checking out “clients” which are then used to execute queries. When a client is

finished executing its queries, it can be released back to the pool. The benefit of using this

process is that connections to the MySQL database do not need to be reopened. Connection

pooling eliminates the time necessary to establish a connection to the database and leads to

overall lower response times.

 This module also incorporates the concept of parameterized queries. These queries are

utilized in order to prevent SQL injection attacks. Parameterized queries involve pre-compiled

SQL statements with parameters that are inserted at run-time. As a result, user input will always

19

be used as a parameter of the original query, instead of modifying the original query, which is

the goal of SQL injection attacks.

Path

The Path module provides a means of working with files and directories on the server. It

allowed the server to establish a base directory such that the use of relative file paths was

possible. The Path module is by default available in the NPM registry and does not require any

separate installation, unlike the rest of the modules used by the server.

Python-Shell

Python-Shell allows Node.js to reliably interact with Python scripts. This module is used

to execute the Python scripts that export the database to Microsoft Excel files (See section 3.2.2).

Winston

 The Winston module provides the server with an advanced logging system. Additionally,

it simplifies writing to and reading from files. The server uses Winston to log a variety of

information from the server into two separate files for errors and general information.

Furthermore, Winston is able to catch and log uncaught exceptions. This is significant

considering Winston will prevent the server from crashing in the event that an unforeseen

exception is generated. Lastly, Winston logs interactions performed by authorized users. This

information can be used in order to identify website interactions by users. These logs were saved

in the same directory location as the server and could be accessed via File-Transfer-Protocol

(FTP) to the DjangoEurope server.

3.2.3.2 Client Side

Bootstrap

 Bootstrap is a front-end development framework that provides pre-made CSS, HTML

structure, and interactive elements such as modals. Additionally, Bootstrap enforces the concept

of mobile-first development such that the front-end is responsive. This ensures that the website

can be used on any device at any resolution.

20

jQuery

 jQuery is a JavaScript framework that simplifies event delegation, animation, Document

Object Model (DOM) traversal, asynchronous requests, and more JavaScript functionalities.

Additionally, this framework is compatible across platforms and browsers. The use of this

framework was significant in the website, considering the website makes a multitude of

asynchronous requests. For example, in the technician test result input, an asynchronous request

is used to attempt to submit the form data. This asynchronous behavior is important, considering

the form will maintain the currently entered data even if an error is generated. Additionally, this

behavior prevents the form from being cleared when an error occurs, which would require the

user to re-enter their data.

I18N

 jQuery.I18n (Wikimedia, 2012) is a jQuery plugin that allows for easy

internationalization of websites through the use of JSON and its data API. All translations

between languages are stored in their appropriate JSON files as key-value pairs. Every language

should have the same keys, with differing values depending on the text in that language. Their

Data API allows for easy swapping between languages. By adding a “data-i18n” tag to any DOM

element, the text within that element can be easily replaced by whatever value goes along with

the key specified in the tag.

21

Chapter 4: Conclusion and Future Work

 In creating the website and database for the WPZ, we have successfully remedied all of

the concerns that we discussed earlier. Though hosting the website has added a small cost to the

WPZ’s budget, it has also made their test results more accessible to the public, providing a user-

friendly tool that allows homeowners to easily find technical information about heat pumps and

determine the one best suited to their needs, without the need of any extensive technical

knowledge pertaining to heat pumps. Through transferring the WPZ test results to an online

database and creating a tool for its future maintenance and growth, we provided protection

against data redundancy, concurrency issues, and loss of data. This transference also improved

the WPZ’s ability to easily store and maintain their heat pump test results over that of the

previous Microsoft Excel spreadsheets, and it enabled future integration with other software and

web applications. Though moving to an online server does introduce new risks, we actively

avoided introducing significant dangers such as SQL injection or lack of authentication. By

including a feature for exporting the database as Microsoft Excel spreadsheets, we preserved the

WPZ’s previous data storage method’s strength of being easily shared and viewed as a whole,

and we also provided backwards-compatibility for any systems or users that would need or desire

the previous version. We also designed the system to accommodate changes in testing standards

and regulations, future-proofing the database and providing a measure of protection against

possible changes in heat pump testing requirements.

While we did actively seek to design this system with robustness and comprehensiveness

in mind, there are still several limiting factors with our implementation that should be expanded

upon for future work. The greatest limiting factor we have discerned is the expandability of our

database. While this schema works for the heat pump test results being stored, it does not

account for the hot water boilers that are also tested by the WPZ. We were unaware that hot

water boilers, while outside the scope of our project, were also tested until we were nearing the

completion of the schema implementation. Our current implementation is only designed to store

information about heat pumps, and thus, it will need an overhaul in order to be able to store the

water boiler test results.

 We are currently limited by our user authentication system as well. We implemented a

basic user login section to hide the administration portions of the website from the public;

22

however, this was a temporary fix. Only a single account, an administrator, was created and the

password was unencrypted. We were not able to integrate our system with NTB’s central

authentication system in the time provided for the project; however, we highly recommend that

this integration be implemented if possible. Doing so would provide NTB’s IT department

greater control over who can access those restricted portions of the site, making it much more

secure.

 We recommend future projects redesign the database schema to be able to store test

results for hot water boilers. We also recommend the creation of a corresponding search tool

with which homeowners can search for the hot water boiler that best suits their needs. Future

projects should also integrate the website and database into the NTB infrastructure to allow IT to

more easily maintain this application in the future.

23

References

Bayer, M. (2011). SQLAlchemy. Retrieved from https://www.sqlalchemy.org/

Bootstrap. (2011). Bootstrap. Retrieved from https://getbootstrap.com/

DjangoEurope. (2009). Django europe. Retrieved from https://djangoeurope.com/

Eernisse, M. (2014). Ejs. Retrieved from http://ejs.co

Eich, B. (1995). JavaScript. Retrieved from https://www.javascript.com/

Jinder. (2014). Path. Retrieved from https://github.com/jinder/path

Joyent. (2009). NodeJS. Retrieved from https://nodejs.org/en/

Lutz, F. (2017). Aufbau eines data warehouse für wärmenpumpen. ().

McNamara, J. (2013). XlsxWriter. Retrieved from http://xlsxwriter.readthedocs.io/

Mercier, N. (2013). Python-shell. Retrieved from https://github.com/extrabacon/python-shell

Microsoft. (2017). Microsoft SQL server. Retrieved from https://www.microsoft.com/en-us/sql-

server/sql-server-2017

MySQL AB. (1995). MySQL. Retrieved from https://www.mysql.com/

Naoki, I. (2009). PyMySQL. Retrieved from https://github.com/PyMySQL/PyMySQL

NodeJS Foundation. (2011). Express JS. Retrieved from https://expressjs.com/

NPM. (2011). Node package manager. Retrieved from https://www.npmjs.com/

PyData. (2016). Pandas. Retrieved from https://pandas.pydata.org/

Python Software Foundation. (2001). Python. Retrieved from https://www.python.org/

Robbins, C. (2010a). Forever. Retrieved from https://github.com/foreverjs/forever

Robbins, C. (2010b). Winston. Retrieved from https://github.com/winstonjs/winston

Skårhøj, K. (2005). Typo3. Retrieved from https://typo3.org/

https://www.sqlalchemy.org/
https://www.sqlalchemy.org/
https://getbootstrap.com/
https://getbootstrap.com/
https://djangoeurope.com/
https://djangoeurope.com/
http://ejs.co/
https://www.javascript.com/
http://ejs.co/
http://ejs.co/
https://github.com/jinder/path
https://github.com/jinder/path
https://nodejs.org/en/
https://nodejs.org/en/
http://xlsxwriter.readthedocs.io/
http://xlsxwriter.readthedocs.io/
https://github.com/extrabacon/python-shell
https://github.com/extrabacon/python-shell
https://www.microsoft.com/en-us/sql-server/sql-server-2017
https://www.microsoft.com/en-us/sql-server/sql-server-2017
https://www.mysql.com/
https://github.com/PyMySQL/PyMySQL
https://www.microsoft.com/en-us/sql-server/sql-server-2017
https://www.microsoft.com/en-us/sql-server/sql-server-2017
https://expressjs.com/
https://expressjs.com/
https://www.npmjs.com/
https://www.npmjs.com/
https://pandas.pydata.org/
https://pandas.pydata.org/
https://www.python.org/
https://www.python.org/
https://github.com/foreverjs/forever
https://github.com/foreverjs/forever
https://github.com/winstonjs/winston
https://github.com/winstonjs/winston
https://typo3.org/

24

Tavan, C. (2011). Express validator. Retrieved from https://github.com/ctavan/express-validator

The jQuery Foundation. (2006). jQuery. Retrieved from http://jquery.com/

Wikimedia. (2012). jQuery.I18N. Retrieved from https://github.com/wikimedia/jquery.i18n

Wilson, D. (2011). MySQL JS. Retrieved from https://github.com/mysqljs/mysql

https://github.com/ctavan/express-validator
https://github.com/ctavan/express-validator
http://jquery.com/
http://jquery.com/
https://github.com/wikimedia/jquery.i18n
https://github.com/mysqljs/mysql
https://github.com/wikimedia/jquery.i18n
https://github.com/wikimedia/jquery.i18n

25

Appendix A

Table 1: SQL Database Features

Table 2: Data Migration Module Features

26

Table 3: External Host Features

27

Appendix B

Figure 1: Original Design for Test Result Storage During Export Process

28

Appendix C

Figure 1: Fabian Lutz’s Database Schema

Figure 2: Our Database Schema in German

29

Figure 3: Our Database Schema in English

30

Appendix D

Figure 1: Landing Page and Search Methods

31

Figure 2: Search Results Listing Four Heat Pumps

32

Figure 4: Comparison Page with Three Heat Pumps Being Compared

33

Figure 3: Complete Heat Pump Test Results

Figure 5: Database Management Interface

34

Figure 6: Technician Test Result Input Interface

