
Frequency Domain Finite Field Arithmetic
for Elliptic Curve Cryptography

by

Selçuk Baktır

A Dissertation
Submitted to the Faculty

of the

Worcester Polytechnic Institute

in partial fulfillment of the requirements for the
Degree of Doctor of Philosophy

in

Electrical and Computer Engineering

by

April, 2008

Approved:

Dr. Berk Sunar
Dissertation Advisor
ECE Department

Dr. Stanley Selkow
Dissertation Committee
Computer Science Department

Dr. Kaveh Pahlavan
Dissertation Committee
ECE Department

Dr. Fred J. Looft
Department Head
ECE Department

c© Copyright by Selçuk Baktır

All rights reserved.

April, 2008

i

To my family;

to my parents Ayşe and Mehmet Baktır,

to my sisters Elif and Zeynep,

and to my brothers Selim and Oğuz

ii

Abstract

Efficient implementation of the number theoretic transform (NTT), also known as the discrete

Fourier transform (DFT) over a finite field, has been studied actively for decades and found

many applications in digital signal processing. In 1971 Schönhage and Strassen proposed

an NTT based asymptotically fast multiplication method with the asymptotic complexity

O(m log m log log m) for multiplication of m-bit integers or (m − 1)st degree polynomials.

Schönhage and Strassen’s algorithm was known to be the asymptotically fastest multipli-

cation algorithm until Fürer improved upon it in 2007. However, unfortunately, both al-

gorithms bear significant overhead due to the conversions between the time and frequency

domains which makes them impractical for small operands, e.g. less than 1000 bits in length

as used in many applications. With this work we investigate for the first time the practical

application of the NTT, which found applications in digital signal processing, to finite field

multiplication with an emphasis on elliptic curve cryptography (ECC). We present efficient

parameters for practical application of NTT based finite field multiplication to ECC which

requires key and operand sizes as short as 160 bits. With this work, for the first time, the

use of NTT based finite field arithmetic is proposed for ECC and shown to be efficient.

We introduce an efficient algorithm, named DFT modular multiplication, for comput-

ing Montgomery products of polynomials in the frequency domain which facilitates efficient

multiplication in GF (pm). Our algorithm performs the entire modular multiplication, in-

cluding modular reduction, in the frequency domain, and thus eliminates costly back and

forth conversions between the frequency and time domains. We show that, especially in com-

putationally constrained platforms, multiplication of finite field elements may be achieved

more efficiently in the frequency domain than in the time domain for operand sizes relevant

to ECC.

This work presents the first hardware implementation of a frequency domain multiplier

suitable for ECC and the first hardware implementation of ECC in the frequency domain.

i

We introduce a novel area/time efficient ECC processor architecture which performs all finite

field arithmetic operations in the frequency domain utilizing DFT modular multiplication over

a class of Optimal Extension Fields (OEF). The proposed architecture achieves extension

field modular multiplication in the frequency domain with only a linear number of base

field GF (p) multiplications in addition to a quadratic number of simpler operations such as

addition and bitwise rotation. With its low area and high speed, the proposed architecture

is well suited for ECC in small device environments such as smart cards and wireless sensor

networks nodes.

Finally, we propose an adaptation of the Itoh-Tsujii algorithm to the frequency domain

which can achieve efficient inversion in a class of OEFs relevant to ECC. This is the first

time a frequency domain finite field inversion algorithm is proposed for ECC and we believe

our algorithm will be well suited for efficient constrained hardware implementations of ECC

in affine coordinates.

ii

Acknowledgements

This dissertation describes the research I conducted for my Ph.D. at Worcester Polytech-

nic Institute during which I was supported by many people I would like to thank.

Firstly, I am indebted to my advisor Prof. Berk Sunar for his advising and support

throughout my graduate studies. I would like to thank him for helping make my Ph.D. a

very rich and enjoyable experience. I am also honored to have Prof. Stanley Selkow and

Prof. Kaveh Pahlavan in my dissertation committee, and would like to thank them for all

their valuable time and suggestions, and for generously sharing their wisdom with me, which

significantly improved the quality of my dissertation as well as my Ph.D. experience. I would

like to thank Prof. Selkow for always being supportive and encouraging, and Prof. Pahla-

van for all his help including being my honorary advisor during my advisor’s absence on

sabbatical in the 2006/2007 academic year.

I would like to thank every person, with whom I have discussed the ideas presented in

this dissertation, as well as the anonymous reviewers of the papers [68, 66, 69, 64, 70], whose

comments and suggestions helped improve the quality of this dissertation. Any remaining

errors are my own. I would also like to acknowledge the National Science Foundation for

supporting this work through the grants no. NSF-ANI-0112829 and NSF-ANI-0133297.

While pursuing my Ph.D. I have been very fortunate to have opportunities to visit other

research groups and work with many bright and interesting people which helped make my

Ph.D. an exciting and nurturing experience.

I would like to thank Prof. Christof Paar for all his help and for giving me the invaluable

opportunity to visit his research group at Ruhr-University, Bochum, Germany, during the

summers of 2003 and 2005 which resulted in enjoyable and fruitful collaborations. I would like

to thank my collaborators in Prof. Paar’s group Thomas Wollinger, Jan Pelzl and Sandeep

Kumar for all our great work as well as for their friendship and the fun time together.

Our collaboration with Jan and Thomas on Optimal Tower Fields for Hyperelliptic Curve

Cryptosystems resulted in [65], and with Sandeep Kumar on Elliptic Curve Cryptography in

the Frequency Domain resulted in [64]. In Prof. Paar’s research group, I would also like to

thank the team assistant Irmgard Kühn and other fellow researchers HoWon Kim, Marco

Macchetti, Andy Rupp, Axel Poschmann, Marko Wolf, Dario Carluccio, Kai Schramm and

André Weimerskirch for their hospitality and helping make my stay in Bochum an enjoyable

one.

iii

I am grateful for having had the opportunity to do an internship in the Internet Security

Group at IBM T. J. Watson Research Center in Hawthorne, NY, and be acquainted with

many bright and nice people during the summer of 2006. I would like to express my gratitude

to my mentor Dr. Pankaj Rohatgi for giving me the invaluable opportunity to work with him

and for all his help and guidance. I would like to thank Dr. Rohatgi and my other co-author

Dr. Dakshi Agrawal for the great work on Trojan Detection Using IC Fingerprinting which

resulted in [6]. I am also thankful to the other members of the Internet Security Group

Dr. Pau-Chen Cheng, Dr. Suresh Chari, Dr. Charanjit Jutla and Dr. Josyula R. Rao for

their hospitality, valuable suggestions and intellectually stimulating conversations.

I have always been interested in learning new things in diverse fields. During my Ph.D.

I was fortunate to have the opportunity to conduct industrial research on lossless data

compression at Intel Corporation, Hudson, MA, which exposed me to new research problems

and helped broaden my perspective. I would like to thank my manager Paul Posco for giving

me the opportunity to work for him and his guidance. I would also like to thank Vinodh

Gopal for presenting me with some challenging problems in data compression, which gave me

the opportunity to have a fun and productive internship and write seven patent documents.

It was a satisfying experience to see the potential of my ideas to touch people’s lives by

going into products. I would also like to thank the other members of our group Christopher

F. Clark, Wajdi K. Feghali, Robert P. Ottavi, Prashant Paliwal and Gilbert Wolrich for their

company.

I would like to thank all my teachers and professors, from WPI and earlier, who helped

keep me inspired and motivated to pursue the highest academic degree. I would like to

thank the electrical & computer engineering department head Prof. Fred Looft and the

administrative staff Catherine Emmerton, Brenda McDonald and Colleen Sweeney for all

their help and creating a friendly atmosphere in our department. I would also like to thank

the former members of the CRIS laboratory Gunnar Gaubatz, Colleen Marie O’Rourke,

Adam Elbirt, Jens Peter Kaps, Kaan Yüksel, Shiwangi Despande and Serdar Pehlivanoglu,

and the present members Kahraman Akdemir, Berk Birand, Ghaith Hammouri, Yin Hu,

Deniz Karakoyunlu and Erdinç Öztürk for their friendship.

Life is always more meaningful when there are loving and caring people around you. I

would like to thank all friends whose presence helped improve the quality of my life during

my Ph.D.

iv

Finally, and most importantly, I would like to express my deepest gratitude to my dear

parents Ayşe and Mehmet Baktır, my dear sisters Elif and Zeynep, and my dear brothers

Selim and Oğuz. I learned a lot from them, and they have had the greatest influence on me

in good ways. Without their unconditional love and support, this work would not have been

possible. I would especially like to thank my dear father Mehmet Baktır who has encouraged

me the most in my pursuit of having a Ph.D.

Worcester, Massachusetts Selçuk Baktır

April 2008

v

Table of Contents

Abstract i

Table of Contents vi

1 Introduction 1
1.1 Background . 1
1.2 Motivation . 2
1.3 Contribution of the Dissertation . 3
1.4 Outline of the Dissertation . 4

2 Background 6
2.1 Introduction . 6
2.2 Finite Fields and Polynomial Representation 6

2.2.1 Optimal Extension Fields and their Arithmetic 7
2.3 Elliptic Curve Cryptography . 10

2.3.1 Elliptic Curves . 10
2.3.2 Elliptic Curve Cryptography over GF (pm) where p > 3 11

2.4 Number Theoretic Transform . 13
2.4.1 Representing OEF Elements in the Frequency Domain 14

2.5 Conclusion . 15

3 Finite Field Multiplication Using the NTT 16
3.1 Introduction . 16
3.2 Multiplication in GF (pm) Using the NTT 16
3.3 On the Relationship Between the NTT and RNS 18

3.3.1 RNS and the Chinese Remainder Theorem 18
3.3.2 On the Equivalence of the NTT and RNS 19
3.3.3 Polynomial Multiplication Using the RNS 20
3.3.4 On the Equivalence of the Polynomial Multiplication Algorithms Using

the NTT and RNS . 21
3.4 Conclusion . 22

4 NTTs for Efficient Multiplication in GF (pm) for ECC 23
4.1 Introduction . 23
4.2 Mersenne Transform . 23

vi

4.3 Pseudo-Mersenne Transform . 24
4.4 Fermat Transform . 26
4.5 Pseudo-Fermat Transform . 30
4.6 Fast Fourier Transform . 30
4.7 Conclusion . 33

5 Modular Multiplication in the Frequency Domain 34
5.1 Introduction . 34
5.2 Mathematical Notation . 35
5.3 The DFT Modular Multiplication Algorithm 36
5.4 Utilizing Efficient Parameters to Speed up DFT Modular Multiplication . . . 38
5.5 Existence of Efficient Parameters . 38
5.6 Complexity Analysis . 40
5.7 Conclusion . 45

6 ECC in the Frequency Domain 46
6.1 Introduction . 46
6.2 DFT Modular Multiplication . 47
6.3 Implementation of an ECC Processor Utilizing DFT Modular Multiplication 48

6.3.1 Base Field Arithmetic . 50
6.3.2 Polynomial Multiplier . 52
6.3.3 Point Arithmetic . 55

6.4 Performance Analysis . 57
6.5 Conclusion . 59

7 Inversion in the Frequency Domain 60
7.1 Introduction . 60
7.2 Itoh-Tsujii Inversion in the Frequency Domain 61
7.3 Conclusion . 69

8 Conclusion 71
8.1 Summary and Conclusions . 71
8.2 Directions for Future Research . 72

Appendix 74

Bibliography 78

vii

List of Tables

4.1 List of some p = Mn, m, d and r = ±2 values for efficient multiplication in

GF (pm) in the frequency domain for ECC over finite fields of size 143 to 403

bits . 25

4.2 List of some p = Mn/t, m, d and r = ±2 values for efficient multiplication in

GF (pm) in the frequency domain for ECC over finite fields of size 120 to 570

bits . 27

4.3 List of Fermat primes p = Fn = 22n
+ 1 and d, r, m values for efficient

multiplication in GF (pm) in the frequency domain for ECC over finite fields

of size 117 to 544 bits . 29

4.4 List of some p = Fn/t, m, d and r = ±2 values for efficient multiplication in

GF (pm) in the frequency domain for ECC over finite fields of size 128 to 506

bits . 31

5.1 Complexity of multiplication in GF (pm) in terms of the number of GF (p)

operations when f(x) = xm ± 2s0 , p is a Mersenne prime and d ≈ 2m 41

5.2 Complexity of multiplication in GF (pm) in terms of the number of GF (p)

operations when f(x) = xm − 2, p = 2m − 1 is a Mersenne prime and d = 2m 43

5.3 Complexity of multiplication in GF (p13) where f(x) = x13 − 2, p = 213 − 1,

d = 26 and r = −2 . 44

6.1 List of parameters suitable for optimized DFT modular multiplication 48

6.2 Controller Commands of the ECC Processor 56

6.3 Areas (in equivalent gate counts) for the presented ECC processor 57

6.4 Timing measurements (in clock cycles) for the presented ECC processor . . . 58

6.5 Comparisons with other ECC processors for similar application scenarios . . 58

viii

7.1 Short list of efficient parameters for inversion in GF (pm) in the frequency

domain . 62

7.2 Complexities of Algorithm 3, Algorithm 7, and time and frequency domain

Itoh-Tsujii inversion (ITI) in GF (pm) in terms of the number of required

GF (p) multiplications, constant multiplications, additions/subtractions and

rotations, when f(x) = xm − 2, p = (2n − 1)/t, m = n is odd and d = 2m,

(∆ = blog2(m− 1)c+ HW (m− 1)) . 67

7.3 Complexities of Itoh-Tsujii inversion in GF (p13) in the time and frequency

domains in terms of the number of GF (p) operations for f(x) = x13 − 2 and

p = 213 − 1 . 68

8.1 Short list of efficient irreducible polynomials for the construction of the finite

fields listed in Table 4.1 . 74

8.2 Short list of efficient irreducible polynomials for the construction of the finite

fields listed in Table 4.2 . 75

8.3 Short list of efficient irreducible polynomials for the construction of the finite

fields listed in Table 4.3 . 76

8.4 Short list of efficient irreducible polynomials for the construction of the finite

fields listed in Table 4.4 . 77

ix

List of Figures

2.1 Point addition on the elliptic curve E : y2 = x3 − 3x. 11

5.1 Number of required clock cycles for multiplication in GF (pm), where p =

2m − 1, with Algorithm 3 and the classical schoolbook method assuming an

addition or a bitwise-rotation in GF (p) takes a single clock cycle and a GF (p)

multiplication takes k clock cycles . 45

6.1 Base Field Addition Architecture . 50

6.2 Base Field Multiplication with Interleaved Reduction 51

6.3 Processing Cell for the Base Field Multiplier Core 52

6.4 DFT Modular Multiplier Architecture . 52

6.5 Top Level ECC Processor Architecture . 55

7.1 Number of required clock cycles for inversion in GF (pm) in the time and

frequency domains, for p = (2n − 1)/t, m = n and f(x) = xm − 2, assuming

a GF (p) addition or bitwise-rotation takes a single clock cycle while a GF (p)

multiplication takes k clock cycles . 69

x

List of Algorithms

1 Polynomial Multiplication by the Direct Application of the NTT 18

2 RNS Polynomial Multiplication Using the CRT 20

3 DFT modular multiplication algorithm for GF (pm) 36

4 Optimized DFT modular multiplication in GF (pm) for r = −2, d = 2m,

p = 2n − 1, m odd, m = n and f(x) = xm − 2 49

5 Pseudo-code for hardware implementation of DFT modular multiplication . . 53

6 Itoh-Tsujii inversion in GF (pm) in the frequency domain where p = 2n−1, n =

13 and m = n (for A,B ∈ GF (pm) and a positive integer i, FrobeniusMap(A, i)

denotes Api ∈ GF (pm) and DFTmul(A,B) denotes the result of the DFT

modular multiplication of A and B) . 63

7 Frobenius map computation in GF (pm) in the frequency domain when p =

(2n − 1)/t, and the irreducible field generating polynomial is f(x) = xm − 2

(FrobeniusMapCoefficient(i, j) = j(pi−1)
m

mod n) 65

xi

Chapter 1

Introduction

1.1 Background

The use of elliptic curves in public key cryptography was first proposed independently by

Koblitz [35] and Miller [55] in 1980s. Since then, elliptic curve cryptography (ECC) has been

the focus of a lot of attention and gained great popularity due to the current best security

estimates indicating that ECC provides the same level of security with much smaller key

sizes compared with conventional public key cryptosystems [44, 45].

The standard protocols in cryptography that utilize the discrete logarithm problem have

analogues in ECC. The standard discrete logarithm problem has sub-exponential complexity,

e.g. using a general number sieve method a discrete logarithm problem in GF (q)∗ can be

solved in sub-exponential time [54]. Whereas, a discrete logarithm on an elliptic curve

E(GF (q)) has exponential complexity in the size n = dlog2 qe of the field elements, e.g. using

the Pollard’s Rho method, one of the best methods for solving discrete logarithm problem

on elliptic curves, one can solve the discrete logarithm problem only in time O(2
n
2) [15].

Elliptic curve cryptosystems are computationally more efficient and offer better security

with smaller key sizes compared with traditional public key cryptosystems such as RSA [73]

and discrete logarithm based systems such as ElGamal [27] and Diffie-Hellman [24] algo-

rithms. This makes them a better choice especially for constrained environments such as

smart cards and wireless devices where resources such as power, processing time and memory

are limited.

1

CHAPTER 1. INTRODUCTION 2

1.2 Motivation

ECC relies on efficient algorithms for finite field arithmetic operations such as addition,

multiplication and inversion. Optimal Extension Fields (OEF) [9, 8] have been found to

be successful in ECC implementations where resources such as computational power and

memory are constrained [84, 41]. The arithmetic operations in OEFs are much more efficient

than in characteristic two extensions or prime fields due to the use of a large characteristic

base field and the selection of a binomial as the field polynomial.

In the elliptic curve scalar point multiplication, a large number of field multiplications are

computed. Multiplication in GF (pm) is an expensive operation and normally achieved with a

quadratic number of multiplications and additions in the base field GF (p) using the classical

schoolbook method for polynomial multiplication. Integer multiplication is inherently much

more complex than other integer operations such as addition, and it is usually slower and

consumes more power in hardware. This poses a significant problem in constrained environ-

ments such as wireless sensor network nodes and radio frequency identification tags where

computational power is quite limited and the requirement for a large number of complex

operations is not preferred. The Karatsuba algorithm [34] reduces the complexity of multi-

plication in GF (pm) by requiring only a subquadratic number of multiplications in GF (p) in

exchange for an increased number of GF (p) additions. However, the Karatsuba algorithm

is not desirable due to its recursive nature and implementation complexity.

In this dissertation, we address this issue by investigating the practical application of

the number theoretic transform (NTT) based frequency domain multiplication techniques

for operand sizes, as small as 160-bits in length, relevant to ECC. For decades, efficient

implementation of the NTT, also known as the discrete Fourier transform (DFT) over a finite

field, has been an active research venue and found many practical applications in digital signal

processing [72, 71, 2, 3, 4, 48, 58, 1, 20, 52, 10, 40, 57, 14, 76, 46, 42, 85, 39, 25, 50, 49, 79]

and coding theory [81, 17, 39, 51]. Furthermore, the NTT is known to be very efficient

for performing large integer arithmetic. The NTT based multiplication method originally

proposed in 1971 by Schönhage and Strassen [75] for integer multiplication provides an

efficient method with the asymptotic complexity O(m log m log log m), for multiplication

of m-bit integers or (m − 1)st degree polynomials [23]. This algorithm was long known

to be asymptotically the fastest, until Führer improved upon it in 2007 [28]. However,

unfortunately, both methods bear significant overhead due to the conversions between the

CHAPTER 1. INTRODUCTION 3

time and frequency domains which makes them impractical for small operands, e.g. less

than 1000 bits in length as used in many applications. To our knowledge, until our work

no implementation of a cryptosystem had yet been achieved using an NTT based frequency

domain multiplication algorithm. With this dissertation, we investigate for the first time the

practical application of the NTT to a public key cryptosystem, namely ECC and present

efficient parameters for practical application of NTT based finite field multiplication to

the implementation of ECC in constrained environments. This is the first time the use of

NTT based finite field arithmetic is proposed for ECC and shown to be efficient with both

theoretical and hardware implementation results.

1.3 Contribution of the Dissertation

1. The NTT based methods have found many practical applications mostly in digital

signal processing. The asymptotically fastest multiplication algorithms [75, 28] for

integer or polynomial multiplication are also known to be based on the NTT. However,

unfortunately, these methods bear significant overhead due to the conversions between

the time and frequency domains which makes them impractical for small operands,

e.g. less than 1000 bits in length, as used in many applications. In this dissertation,

for the first time, we investigate the application of NTT based multiplication to finite

fields for implementation of ECC in constrained environments with operand sizes as

small as 160 bits in length, and present practical parameters for its efficient application.

This work is published in [68, 66].

2. We introduce an efficient algorithm, named DFT modular multiplication, for computing

Montgomery products of polynomials in the frequency domain. Our algorithm performs

the entire modular multiplication in the frequency domain. It achieves multiplication

in GF (pm) with only a linear number of base field GF (p) multiplications in addition to

a quadratic number of simpler base field operations such as additions/subtractions and

bitwise rotations. We show that, especially in computationally constrained platforms,

multiplication of finite field elements may be achieved more efficiently in the frequency

domain than in the time domain for operand sizes relevant to ECC. This work is

published in [69, 66].

CHAPTER 1. INTRODUCTION 4

3. We present the first hardware implementation of a frequency domain multiplier suit-

able for ECC and the first hardware implementation of ECC in the frequency domain.

We present a novel area/time efficient ECC processor architecture which utilizes DFT

modular multiplication and performs all finite field arithmetic operations in the fre-

quency domain in a class of OEFs GF (pm). Our architecture achieves areas between

25k and 50k equivalent gates for implementations of ECC over OEFs of size 169, 289

and 361 bits. With its low area and high speed, the proposed architecture would be

well suited for ECC in small device environments such as wireless sensor networks.

This work is published in [64].

4. We propose an adaptation of the Itoh-Tsujii algorithm to the frequency domain which

can achieve OEF inversion with only a single inversion, O(m log m) multiplications

and constant multiplications, O(m2 log m) additions and O(m2 log m) fixed bitwise

rotations in the base field GF (p) for a class of OEFs GF (pm). To the best of our

knowledge, this is the first time a frequency domain finite field inversion algorithm

is proposed for ECC. With its low computational complexity, the proposed algorithm

would be well suited especially for efficient low-power hardware implementation of ECC

using affine coordinates in constrained small devices. This work is published in [70].

1.4 Outline of the Dissertation

Chapter 2 reviews OEFs and their arithmetic. It also presents a brief overview of elliptic

curves over OEFs, ECC and the NTT. Furthermore, it explains the NTT for representing

OEF elements in the frequency domain.

Chapter 3 gives an overview of multiplication in GF (pm) using the NTT. It establishes

the relationship between the NTT and the residue number system (RNS), and proves that

multiplication in GF (pm) using the NTT is equivalent to an optimal case of multiplication

in GF (pm) using the RNS.

In Chapter 4 special NTTs are investigated and efficient parameters are presented for

their application to finite field multiplication with small operands, e.g. as small as 160 bits

in length, relevant to ECC.

In Chapter 5, a new algorithm, named DFT modular multiplication, is introduced. It

is shown that DFT modular multiplication improves upon the straightforward NTT based

CHAPTER 1. INTRODUCTION 5

approach presented in Chapter 3 by performing an entire modular multiplication, including

modular reduction, in the frequency domain. It is shown that in constrained platforms

multiplication of finite field elements may be achieved more efficiently in the frequency

domain, using DFT modular multiplication, than in the time domain even for small operands

relevant to ECC.

In Chapter 6, an efficient hardware architecture for the DFT modular multiplication

algorithm is proposed and an efficient elliptic curve cryptographic processor architecture

is presented which utilizes the proposed multiplier and runs completely in the frequency

domain.

Finally, in Chapter 7 an adaptation of the Itoh-Tsujii algorithm is proposed for the

frequency domain. The proposed algorithm achieves efficient inversion in the frequency

domain in a class of OEFs relevant to ECC.

Chapter 2

Background

2.1 Introduction

In this chapter we present some background information on finite fields and the optimal

extension field representation. We describe optimal extension field arithmetic and give a

brief overview on the use of elliptic curves for public key cryptography, with an emphasis

on curves defined over optimal extension fields. Finally, we describe the representation

of optimal extension field elements in the frequency domain using the number theoretic

transform.

2.2 Finite Fields and Polynomial Representation

A field with a finite number of elements is called a finite field or Galois field, denoted by Fq or

GF (q), where q stands for the number of elements in the field [47]. The number of elements

in a finite field is always a prime or a prime power, i.e., q = p or q = pm,where the prime

number p is called the characteristic of the finite field. When q is a prime, i.e. q = p, the

finite field GF (p) is called a prime field. The prime field GF (p) is the field of residue classes

modulo p and its elements are represented by the integers in {0, 1, 2, . . . , p− 1}. When q is a

prime power, i.e. q = pm, the finite field GF (pm) is called an extension field. The extension

field GF (pm) is generated by using an mth degree irreducible polynomial over GF (p) and it

is the field of residue classes modulo the irreducible field generating polynomial. Hence, in

polynomial representation the elements of GF (pm) are represented by polynomials of degree

at most m− 1 with coefficients in GF (p).

6

CHAPTER 2. BACKGROUND 7

2.2.1 Optimal Extension Fields and their Arithmetic

Optimal extension fields (OEF), introduced by Bailey and Paar in [8, 9], are a special class

of finite extension fields which use a field generating polynomial of the form f(x) = xm − w

and have a pseudo-Mersenne prime field characteristic given in the form p = 2n ± c with

log2 c < bn
2
c. Theorem 1 provides a simple means to identify irreducible binomials that can

be used in OEF construction.

Theorem 1 [47] Let m ≥ 2 be an integer and w ∈ GF (p)∗. Then the binomial xm − w is

irreducible in GF (p)[x] if and only if the following three conditions are satisfied:

1. each prime factor of m divides the order e of w in GF (p)∗;

2. the prime factors of m do not divide p−1
e

;

3. p = 1 mod 4 if m = 0 mod 4.

In OEFs the pseudo-Mersenne prime field characteristic allows efficient reduction in the

base field GF (p) operations and the binary field generating polynomial allows for efficient

reduction in the extension field. OEFs are found to be successful in elliptic curve cryp-

tography implementations where resources such as computational power and memory are

constrained [84, 41]. In OEFs, the standard basis is utilized for representing finite field ele-

ments. An OEF element A ∈ GF (pm) is represented in standard basis by a polynomial of

degree at most m− 1 as

A =
m−1∑
i=0

aix
i = a0 + a1x + a2x

2 + . . . + am−1x
m−1,

where ai ∈ GF (p) for 0 ≤ i ≤ m− 1. OEF arithmetic is performed as follows.

Addition/Subtraction:

The addition/subtraction of two field elements A, B ∈ GF (pm) is performed by adding/subtracting

the polynomial coefficients in GF (p) as follows:

A±B =
m−1∑
i=0

aix
i ±

m−1∑
i=0

bix
i =

m−1∑
i=0

(ai ± bi)x
i

CHAPTER 2. BACKGROUND 8

Multiplication:

For A,B ∈ GF (pm), the product C = A ·B is computed in two steps:

1. Polynomial multiplication:

C ′ = A ·B =
2m−2∑
i=0

c′ix
i (2.1)

2. Modular reduction:

C = C ′ mod f(x) (2.2)

=
2m−2∑
i=0

c′ix
i mod xm − w

=
m−1∑
i=0

(c′i + wc′i+m)xi , (2.3)

where c′2m−1 = 0.

In the first step the ordinary product of two polynomials is obtained by computing m2 coef-

ficient multiplications and (m− 1)2 coefficient additions. In the reduction step the binomial

f(x) = xm − w facilitates efficient reduction which may be realized by using only m − 1

constant coefficient multiplications with w and m− 1 additions.

Inversion:

An elegant method for inversion was introduced by Itoh and Tsujii [33]. For A ∈ GF (pm),

where A 6= 0, A−1 is computed in four steps as follows

1. Compute the exponentiation Ae−1 in GF (pm), where e = pm−1
p−1

;

2. Compute the product Ae = (Ae−1) · A;

3. Compute the inversion (Ae)−1 in GF (p);

4. Compute the product Ae−1 · (Ae)−1 = A−1 .

CHAPTER 2. BACKGROUND 9

For the particular choice of

e =
pm − 1

p− 1
,

Ae belongs to the base field GF (p) [47]. This allows the inversion in Step 3 to be computed

in GF (p) instead of the larger field GF (pm). For the exponentiation Ae−1 in Step 1, the

exponent e− 1 can be expanded as follows

e− 1 =
pm − 1

p− 1
− 1 = pm−1 + pm−2 + . . . + p2 + p .

This exponentiation is computed by finding the powers Api
. The original Itoh-Tsujii al-

gorithm proposes to use a normal basis representation over GF (2) which turns the pi-th

power exponentiations into simple bitwise rotations. In [29] this technique was adapted by

Guajardo and Paar to work efficiently in standard basis and it was shown that Ae−1 can

be computed by performing at most blog2(m − 1)c + HW (m − 1) − 1 multiplications and

blog2(m − 1)c + HW (m − 1) pi-th power exponentiations in GF (pm), where HW (m) de-

notes the hamming-weight of m. Api
is the i-th iterate of the Frobenius map where a single

iterate is defined as σ(A) = Ap. Using the properties σ(A + B) = σ(A) + σ(B) for any

A,B ∈ GF (pm) and σ(a) = ap = a for any a ∈ GF (p), the exponentiation Api
= σi(A) can

be simplified as

Api

=

(
m−1∑
j=0

ajx
j

)pi

=
m−1∑
j=0

(ajx
j)pi

=
m−1∑
j=0

ajx
jpi

. (2.4)

Theorem 2 shows that Api
can be computed by a simple scaled permutation of the coefficients

in the polynomial representation of A.

Theorem 2 [63, 67] For an irreducible binomial f(x) = xm − w defined over GF (p), the

following identity holds for an arbitrary positive integer i and A ∈ GF (pm),

Api

=

(
m−1∑
j=0

ajx
j

)pi

=
m−1∑
j=0

(aj csj
)xsj

where sj = jpi mod m and csj
= w

jpi−sj
m . Furthermore, the sj values are distinct for 0 ≤ j ≤

m− 1.

Using the method in Theorem 2, exponentiations of degree pi may be achieved with the help

of a lookup table of precomputed csj
values, using not more than m− 1 constant coefficient

multiplications. When m is prime, Corollary 1 [63, 67] further simplifies this computation

CHAPTER 2. BACKGROUND 10

by showing that sj = jpi mod m in Theorem 2 equals j and hence no permutations occur

for the coefficients of A.

Corollary 1 [63, 67] If f(x) = xm − w is irreducible over GF (p), m is prime, xj ∈
GF (p)[x] and i is an arbitrary positive rational integer, then (xj)pi ≡ wtxj (mod f(x)),

where t = jpi−j
m

.

Proof of Corollary 1 We need to prove that jpi mod m = j, or in other words m|jpi − j.

Since m|(p− 1) is a necessary condition for the existence of the irreducible binomial f(x) =

xm − w over GF (p) for a prime m (see the first condition in Theorem 1), m also divides

jpi − j = j(pi − 1) = j(p− 1)(pi−1 + pi−2 + · · ·+ p + 1). Hence, the proof is complete. 2

2.3 Elliptic Curve Cryptography

In this section we present a brief overview on elliptic curves, with particular interest in curves

over OEFs, and on elliptic curve cryptography (ECC). For detailed information on ECC, the

reader is referred to [15, 30].

2.3.1 Elliptic Curves

An elliptic curve E over a field F is defined by the following Weierstrass equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6 , (2.5)

where a1, a3, a2, a4, a6 ∈ F, and the discriminant of E defined as

∆ = −d2
2d8 − 8d3

4 − 27d2
6 + 9d2d4d6 ,

where

d2 = a2
1 + 4a2 ,

d4 = 2a4 + a1a3 ,

d6 = a2
3 + 4a6 ,

d8 = a2
1a6 + 4a2a6 − a1a3a4 + a2a

2
3 − a2

4 ,

CHAPTER 2. BACKGROUND 11

and ∆ 6= 0. For any extension field K of F, the set of K-rational points on E is

E(K) = {(x, y) ∈ K×K : y2 + a1xy + a3y − x3 − a2x
2 − a4x− a6 = 0} ∪ {O}

where O is the point at infinity. Note that E is defined over F and any extension of it. The

condition ∆ 6= 0 guarantees that the curve is smooth, i.e., there is only a single tangent line

at every point of the curve.

Figure 2.1: Point addition on the elliptic curve E : y2 = x3 − 3x.

2.3.2 Elliptic Curve Cryptography over GF (pm) where p > 3

When the characteristic p of a finite field F is different from 2 and 3, through change of vari-

ables the Weierstrass equation in (2.5), defining an elliptic curve over F , can be transformed

into the curve

y2 = x3 + ax + b

where a, b ∈ F and ∆ = −16(4a3 + 27b2). In this case, for an extension field K of F , E(K)

together with the point O, serving as the identity element, forms an abelian group with the

group law defined as follows.

1. Identity Element: For all P ∈ E(K), P +O = O + P = P and O = −O .

2. Negative of an Element: If P = (x, y) ∈ E(K), −P = (x,−y) ∈ E(K) and (x, y) +

(x,−y) = O .

CHAPTER 2. BACKGROUND 12

3. Point Addition and Doubling: Let P1 = (x1, y1) and P2 = (x2, y2) be points on the

curve E(K). P3 = (x3, y3), where P3 = P1 + P2 and P1 6= −P2, can be found as follows:

x3 = λ2 − x1 − x2 (2.6)

y3 = λ(x1 − x3)− y1 (2.7)

where

λ =





y2−y1

x2−x1
, if P1 6= P2

3x2
1+a

2y1
, if P1 = P2

The elliptic curve group law can be interpreted geometrically as shown in Figure 2.1.

Note here that a straight line crossing an elliptic curve intersects it at no more than

three points and the point addition of these intersection points under the elliptic curve

group law results in the identity element, i.e., the point at infinity O. A straight line

may intersect an elliptic curve in mainly four different ways and the group law may be

interpreted accordingly as follows:

• If a straight line intersects an elliptic curve at a single point T , i.e., if it is tangent,

the intersection point is counted twice and hence 2T = O.

• If a straight line perpendicular to the x axis intersects an elliptic curve at two

points P and P ′, then P + P ′ = O and hence −P = P ′.

• If a straight line intersects an elliptic curve at two points P and S, where S is a

tangent, then P + 2S = O and hence 2S = −P .

• If a straight line intersects an elliptic curve at three points P , Q and R, then

P + Q + R = O and hence Q + R = −P which is the mirror image of P over the

x axis, i.e., P ′ in Figure 2.1.

Elliptic Curve Point Multiplication:

The main operation in an elliptic curve cryptosystem is the point multiplication or scalar

multiplication which is the computation of k ·P where P is a point on an elliptic curve E and

CHAPTER 2. BACKGROUND 13

k is an integer. The security of an elliptic curve cryptosystem relies on the intractability of

solving the additive discrete logarithm problem, i.e., finding the value of k for a given point

k · P , where the point P generates a sufficiently large subgroup over E.

Point multiplication is achieved through repeated point additions and doublings, and

constitutes the majority of the computational workload in public key cryptosystems based

on elliptic curves. For instance, the Diffie-Hellman key exchange algorithm using an elliptic

curve can be achieved as follows. Let Alice and Bob be two parties who want to generate a

common secret key s. They select a random common point P over E. They also choose their

random private keys as positive integers rA and rB, where both rA and rB are less than the

order of P in the additive elliptic curve group, and announce pA = rA · P and pB = rB · P
as their public keys, respectively. In this case, each party can compute the common secret

key by using his/her own private key and the other party’s public key as

rA · pB = rA · rB · P

and

rB · pA = rB · rA · P

which result in the same point on the elliptic curve and both parties can use the x coordinate

of this common point as their common secret key s.

2.4 Number Theoretic Transform

The number theoretic transform (NTT) over a ring, also known as the discrete Fourier

transform (DFT) over a finite field, was introduced by Pollard [62]. The NTT computations

over GF (p) are defined by utilizing a dth primitive root of unity, denoted by r, from GF (p)

or a finite extension of GF (p).

Definition 1 r is a primitive dth root of unity modulo n if rd = 1 (mod n) and rd/t− 1 6= 0

(mod n) for any prime divisor t of d.

For a sequence (a) of length d whose entries are from GF (p), the forward NTT of (a) over

GF (p), denoted by (A), can be computed as

Aj =
d−1∑
i=0

air
ij , 0 ≤ j ≤ d− 1 . (2.8)

CHAPTER 2. BACKGROUND 14

Here we refer to the elements of (a) and (A) by ai and Ai, respectively, for 0 ≤ i ≤ d − 1.

Likewise, the inverse NTT of (A) over GF (p) can be computed as

ai =
1

d
·

d−1∑
j=0

Ajr
−ij , 0 ≤ i ≤ d− 1 . (2.9)

The sequences (a) and (A) are referred to as the time and frequency domain representations,

respectively, of the same sequence.

Note that unlike the complex number r = ej2π/d generally used as the d-th primitive root

of unity in the DFT computations, a finite field or ring element r can be utilized for the same

purpose in an NTT. Choosing r = ±2 turns multiplications with powers of r into simple

shift operations and thus enables very efficient NTT computations. However, we would like

to caution the reader that in an NTT over GF (p), the modulus p and the transform length d

can not be chosen independently of each other. For an NTT of length d to exist over GF (p),

the condition d|p−1 should be satisfied1. Note that, in this case, the equality GCD(d, p) = 1

holds for the greatest common denominator of d and p, and hence the inverse of d in GF (p),

which is needed for the inverse NTT computations, always exists. For further information

on the NTT, we refer the reader to [52, 14, 39] .

2.4.1 Representing OEF Elements in the Frequency Domain

Using the NTT, one can convert an element of an OEF GF (pm), which is a polynomial

of degree at most (m − 1) with coefficients in GF (p), into its frequency domain sequence

representation. For instance, for a(x) ∈ GF (pm) represented as

a(x) = a0 + a1x + a2x
2 + . . . + am−1x

m−1 ,

one can form a d ≥ m element sequence by using its ordered coefficients as

(a) = (a0, a1, a2, . . . , am−1, 0, 0, . . . , 0) , (2.10)

where d−m zeros are appended to the right when d > m. By applying the NTT formula in

(2.8) over the sequence (a), the frequency domain representation (A) of a(x) can be obtained

as the following sequence

1Likewise, if the NTT is performed over a finite ring Zn, i.e. if the transform modulus is a composite
number of the form n = pe1

1 pe2
2 pe3

3 . . . pek

k , where p1, p2, p3, . . . , pk are prime, then d must divide gcd(p1 −
1, p2 − 1, p2 − 1, p3 − 1, . . . , pk − 1) [4].

CHAPTER 2. BACKGROUND 15

(A) = (A0, A1, A2, . . . , Am−1, . . . , Ad−1) . (2.11)

It is possible to achieve finite field arithmetic in the frequency domain by using the frequency

domain representations of OEF elements. In the following chapters, we will present efficient

algorithms which realize OEF arithmetic operations such as multiplication and inversion in

the frequency domain.

2.5 Conclusion

In this chapter we presented an overview on finite fields, OEFs and ECC. Furthermore,

we mentioned about the NTT and the representation of OEF elements in the frequency

domain using the NTT. In Chapter 3, we will prove the connection between the NTT and

the residue number system. Furthermore, we will present a simple algorithm explaining

frequency domain multiplication in GF (pm) using the NTT.

Chapter 3

Finite Field Multiplication Using the

Number Theoretic Transform1

3.1 Introduction

We begin this chapter by presenting a straightforward algorithm for achieving multiplication

in GF (pm) using the number theoretic transform (NTT). Then we show the relationship

between the NTT and the residue number system (RNS) [83, 78, 77] and prove that the

frequency domain representation of a polynomial is equivalent to its RNS representation

provided that the RNS is defined by a special group of modulus polynomials. Furthermore,

we prove that the straightforward NTT based algorithm for multiplication in GF (pm) is

computationally equivalent to an optimal case of multiplication in GF (pm) using the RNS.

3.2 Multiplication in GF (pm) Using the NTT

In Section 2.4, we learned about the NTT which is also known as the DFT over a finite

field. A significant application of the DFT is convolution. Convolution of two d-element

sequences (a) and (b) in the time domain results in another d-element sequence (c) and can

be computed as follows:

ci =
d−1∑
j=0

ajbi−j mod d , 0 ≤ i ≤ d− 1 . (3.1)

1The material presented in this chapter is included in [66].

16

CHAPTER 3. FINITE FIELD MULTIPLICATION USING THE NTT 17

According to the convolution theorem, the above convolution operation in the time domain

is equivalent to the following computation in the frequency domain:

Ci = Ai ·Bi , 0 ≤ i ≤ d− 1 , (3.2)

where (A), (B) and (C) denote the DFTs of (a), (b) and (c), respectively. Hence, convolution

of two d-element sequences in the time domain, with complexity O(d2), is equivalent to

simple pairwise multiplication of the DFTs of these sequences and has a surprisingly low

O(d) complexity. For details of the DFT, convolution theorem and their applications, the

interested reader is referred to [18, 80, 60]. In this dissertation we are interested in the DFT

in the context of finite fields, therefore we will use the terms DFT and NTT interchangeably.

Note that the summation in (3.1) is the cyclic convolution of the sequences (a) and (b).

We have seen in (3.2) that this cyclic convolution can be computed very efficiently in the

frequency domain by pairwise coefficient multiplications. Multiplication of two polynomi-

als, on the other hand, is equivalent to the acyclic (linear) convolution of the polynomial

coefficients. However, if we represent elements of GF (pm), which are at most (m − 1)st

degree polynomials with coefficients in GF (p), with at least d = (2m− 1) element sequences

by appending zeros at the end, then the cyclic convolution of two such sequences will be

equivalent to their acyclic convolution and hence give us their polynomial multiplication.

Remember in (2.10) that one can form sequences by taking the ordered coefficients of

polynomials. For instance,

a(x) = a0 + a1x + a2x
2 + . . . + am−1x

m−1 ,

an element of GF (pm) in polynomial representation, can be interpreted as the following

d ≥ m element sequence after appending d−m zeros to the right:

(a) = (a0, a1, a2, . . . , am−1, 0, 0, . . . , 0) . (3.3)

For a(x), b(x) ∈ GF (pm), and for d ≥ 2m− 1, the cyclic convolution of (a) and (b) yields a

sequence (c) whose first 2m− 1 entries can be interpreted as the coefficients of a polynomial

c(x) such that c(x) = a(x) · b(x). The computation of this cyclic convolution can be per-

formed by simple pairwise coefficient multiplications in the frequency domain. The below

straightforward algorithm, presented as Algorithm 1, realizes the polynomial multiplication

c(x) = a(x) · b(x) in the frequency domain. Note that Algorithm 1 computes the polynomial

product in the frequency domain but the final reduction by the field generating polynomial

CHAPTER 3. FINITE FIELD MULTIPLICATION USING THE NTT 18

remains to be computed in the time domain.

Algorithm 1 Polynomial Multiplication by the Direct Application of the NTT

Input: a(x), b(x) ∈ GF (pm)
Output: c(x) = a(x) · b(x)
1: Interpret a(x) and b(x) as the sequences (a) and (b) with length d ≥ 2m− 1
2: Convert (a) and (b) into (A) and (B) using the NTT as in (2.8)
3: Multiply (A) with (B) to compute (C) as in (3.2)
4: Convert (C) to (c) using the inverse NTT as in (2.9)
5: Interpret the first 2m− 1 coefficients of (c) as the coefficients of c(x) = a(x) · b(x)
6: Return c(x)

3.3 On the Relationship Between the NTT and RNS

In this section we describe the RNS and prove that the NTT is a special case of the RNS.

3.3.1 RNS and the Chinese Remainder Theorem

An RNS [83, 78, 77] can represent a large polynomial using a set of smaller polynomials. For

a polynomial a(x) and a modulus polynomial

P (x) =
d−1∏
i=0

pi(x) ,

made up of relatively prime factors pi(x), for 0 ≤ i ≤ d− 1, a(x) mod P (x) can be uniquely

represented by its residues modulo the polynomials pi(x), for 0 ≤ i ≤ d− 1, which define an

RNS. Hence, provided that

deg(a(x)) < deg(P (x))

holds for the degrees of a(x) and P (x), a(x) can be uniquely represented in this RNS by its

residues given as (〈a(x)〉p0(x), 〈a(x)〉p1(x), . . . , 〈a(x)〉pd−1(x)

)
, (3.4)

where 〈a(x)〉pi(x) denotes a(x) mod pi(x).

CHAPTER 3. FINITE FIELD MULTIPLICATION USING THE NTT 19

Using the Chinese Remainder Theorem (CRT), the conversion from the RNS represen-

tation back to the normal polynomial representation can be achieved as

a(x) =
d−1∑
i=0

〈a(x)〉pi(x) · Pi(x) , (3.5)

where

Pi(x) =

(
P (x)

pi(x)

)
·
((

P (x)

pi(x)

)−1

mod pi(x)

)
, 0 ≤ i ≤ d− 1 . (3.6)

3.3.2 On the Equivalence of the NTT and RNS

With Theorem 3, we show that the NTT is a special case of the RNS.

Theorem 3 Computing the d-element NTT of the sequence (a) corresponding to a(x) ∈
GF (pm), as described with (2.11) where d ≥ m, is equivalent to computing the RNS represen-

tation of a(x), as described in (3.4), in the RNS with the modulus polynomials pi(x) = x−ri,

for 0 ≤ i ≤ d− 1, where r is the dth primitive root of unity used for the NTT.

Proof of Theorem 3 Let (A), with elements Ai for 0 ≤ i ≤ d− 1, denote the NTT of (a)

corresponding to a(x), and let
(〈a(x)〉p0(x), 〈a(x)〉p1(x), . . . , 〈a(x)〉pd−1(x)

)
, with pi(x) = x− ri

for 0 ≤ i ≤ d − 1, denote the RNS representation of a(x). We need to show that Ai =

〈a(x)〉pi(x). Remember in (2.8) that the coefficients of (A) are computed as follows

Ai =
d−1∑
j=0

ajr
ji , 0 ≤ i ≤ d− 1 . (3.7)

Likewise, for a(x) represented as

a(x) =
m−1∑
j=0

ajx
j

in standard basis, the ith residue of a(x), modulo pi(x) = x − ri, for 0 ≤ i ≤ d − 1, can be

computed as

〈a(x)〉pi(x) = a(x) mod (x− ri)

= a(ri)

=
m−1∑
j=0

ajr
ji

=
d−1∑
j=0

ajr
ji , (3.8)

CHAPTER 3. FINITE FIELD MULTIPLICATION USING THE NTT 20

where aj = 0 for m ≤ j ≤ d− 1. Since the summations in (3.7) and (3.8) are equivalent, the

NTT and RNS representations of a(x) are equivalent. 2

3.3.3 Polynomial Multiplication Using the RNS

The RNS representation facilitates a divide-and-conquer method for polynomial multipli-

cation. If the degree of a product polynomial c(x) = a(x) · b(x) is less than the degree

of an RNS modulus P (x), then the multiplication of a(x) and b(x) can be achieved in the

RNS representation by simply multiplying their corresponding residues. The computation

of c(x) = a(x) · b(x) can be conducted in the RNS representation as

(〈c(x)〉p0(x), 〈c(x)〉p1(x), . . . , 〈c(x)〉pk−1(x)

)
,

where

〈c(x)〉pi(x) = 〈 〈a(x)〉pi(x) · 〈b(x)〉pi(x) 〉pi(x) .

Thus, multiplication of two polynomials can be achieved in a completely parallel manner with

minimal effort using the RNS representation. If the modulus polynomials pi(x), for 0 ≤ i ≤
d−1, defining the RNS are all first degree binomials, then polynomial multiplication using the

RNS representation can be achieved with the minimal number of coefficient multiplications

which is only linear in the number of polynomial coefficients.

The following algorithm achieves polynomial multiplication of a(x), b(x) ∈ GF (pm) using

the RNS representation. We would like to note that, similar to Algorithm 1, Algorithm 2

achieves only the polynomial multiplication of the finite field elements and the final modular

reduction by the field generating polynomial remains to be computed.

Algorithm 2 RNS Polynomial Multiplication Using the CRT

Input: a(x), b(x) ∈ GF (pm)
Output: c(x) = a(x) · b(x)
1: Obtain 〈a(x)〉pi(x) and 〈b(x)〉pi(x), for 0 ≤ i ≤ d− 1, where d ≥ 2m− 1
2: Compute 〈c(x)〉pi(x) = 〈a(x)〉pi(x) · 〈b(x)〉pi(x), for 0 ≤ i ≤ d− 1
3: Obtain c(x) from 〈c(x)〉pi(x), for 0 ≤ i ≤ d− 1, using the CRT as described in (3.5)
4: Return c(x)

CHAPTER 3. FINITE FIELD MULTIPLICATION USING THE NTT 21

3.3.4 On the Equivalence of the Polynomial Multiplication Algo-

rithms Using the NTT and RNS

In Section 3.3.2 we saw the relationship between the NTT and RNS. Now, we will prove with

Theorem 5 that Algorithm 1 which utilizes the NTT using a dth primitive root of unity r is

equivalent to Algorithm 2, which performs multiplication in GF (pm) utilizing the RNS and

CRT, when the modulus polynomials defining the RNS in Algorithm 2 are the first degree

binomials pi(x) = x − ri, for 0 ≤ i ≤ d − 1. We first present the following theorem which

will be used in the proof of Theorem 5.

Theorem 4 For a dth primitive root of unity r, the following equality holds:

xd − 1 = (x− r0)(x− r1)(x− r2) · · · (x− rd−1) (3.9)

Proof of Theorem 4 Any polynomial of degree d is uniquely identified by its d roots.

Hence, it suffices to show that xd − 1 and (x − r0)(x − r1)(x − r2) · · · (x − rd−1) have the

same roots in order to prove that they are equivalent. Clearly, since r is a dth primitive root

of unity, ri is a distinct root of (x−r0)(x−r1)(x−r2) · · · (x−rd−1) for i = 0, 1, 2, · · · , d−1.

Furthermore, again since r is a dth primitive root of unity, rd = 1 and (ri)d− 1 = (rd)i− 1 =

1i − 1 = 0 for i = 0, 1, 2, · · · , d − 1. Hence, ri is also a root of the polynomial xd − 1 for

i = 0, 1, 2, · · · , d − 1. Thus, since the two polynomials xd − 1 and (x − r0)(x − r1)(x −
r2) · · · (x− rd−1) have the same roots, they are equivalent. 2

Theorem 5 describes the relationship between Algorithm 2, which uses the RNS and CRT,

and Algorithm 1 which uses the NTT.

Theorem 5 Algorithm 1, which utilizes the NTT with a primitive root of unity r of order

d ≥ 2m− 1 for multiplication in GF (pm), is equivalent to Algorithm 2 which realizes multi-

plication in GF (pm) utilizing the RNS defined by the relatively prime binomials x−r0, x−r1,

x− r2, . . . , x− rd−1.

Proof of Theorem 5 Due to the convolution theorem [18, 60], pairwise multiplication of

the elements of two d-element sequences in the frequency domain corresponds to the cyclic

convolution of the two sequences in the time domain. Hence, by pairwise multiplying the

CHAPTER 3. FINITE FIELD MULTIPLICATION USING THE NTT 22

frequency domain representations of two input polynomials, Algorithm 1 yields a product

which is the cyclic convolution of the input polynomials and thus equals a(x)·b(x) mod xd−1.

On the other hand, Algorithm 2 computes a(x)·b(x) mod P (x), where P (x) =
∏

0≤i≤d−1

(x−ri),

which is equal to a(x) · b(x) mod xd − 1 due to Theorem 4. Hence, Algorithms 1 and 2 are

equivalent. 2

3.4 Conclusion

In this chapter, we established the relationship between the NTT and RNS, and proved that

the NTT is a special case of the RNS. The NTT based method for finite field multiplication in

GF (pm), presented with Algorithm 1, or the equivalent RNS based method presented with

Algorithm 2, has only O(m) complexity in terms of the required GF (p) multiplications,

ignoring the conversions which have O(m2) complexity. In the next chapter, we will provide

efficient parameters for Algorithm 1 which facilitate extremely efficient conversions between

the time and frequency domains, and thus help meet the minimal theoretical bound of 2m−1

for the number of required multiplications in GF (p) to achieve a multiplication in GF (pm)

where p is an odd prime [83].

Chapter 4

Number Theoretic Transforms for

Efficient Multiplication in GF (pm) for

Elliptic Curve Cryptography1

4.1 Introduction

Frequency domain finite field multiplication, as described with Algorithm 1 in Chapter 3,

can be sped up by using special parameters for the NTT computations. In this chapter, we

present an overview of specialized NTTs and provide lists of efficient parameters, relevant

to ECC, for their application to multiplication in GF (pm) using Algorithm 1.

4.2 Mersenne Transform

An NTT of special interest is the Mersenne transform, which is an NTT with arithmetic

modulo a Mersenne number of the form Mn = 2n − 1 [71]. The Mersenne transform allows

for very efficient forward and inverse NTT operations for r = ±2. Multiplication of an n-

bit number with integer powers of 2 modulo Mn can be achieved with a simple bitwise left

rotation of the n-bit number, e.g. multiplication of an n-bit number with 2i modulo Mn can

be achieved with a simple bitwise left rotation by i mod n bits. Similarly, multiplication of

an n-bit number with integer powers of −2 modulo Mn can be achieved with a simple bitwise

left rotation of the number, in addition to a negation if the power of −2 is odd. Also, note

1The material presented in this chapter is included in [68, 66].

23

CHAPTER 4. NTTS FOR EFFICIENT MULTIPLICATION IN GF (PM) FOR ECC 24

that negation of an n-bit number modulo Mn can simply be achieved by flipping all n bits

of the number. Hence, when r = ±2 all of the multiplications by powers of r in the forward

and inverse NTT computations in a Mersenne transform can be achieved with simple bitwise

rotations. In this case, for a transform length of d, the forward NTT computation can be

achieved with only (d−1)2 simple rotations and d(d−1) additions/subtractions avoiding any

multiplications. For the inverse NTT computation additional d constant multiplications with

1/d mod Mn are required. Hence, when p is a Mersenne prime, multiplication in GF (pm)

using Algorithm 1 has only O(m) complexity in terms of GF (p) multiplications and O(m2)

complexity in terms of GF (p) additions/subtractions and rotations. For a more detailed

complexity analysis and efficient implementation ideas for the Mersenne transform, we refer

the interested reader to [71].

Remember that, as in all number theoretic transforms, in a Mersenne transform the val-

ues of the sequence length d and the dth primitive root of unity r are dependent on each

other and can not be chosen independently. In a Mersenne transform over GF (p), where

p = Mn = 2n − 1 is a Mersenne prime, and for r = ±2, the following equalities hold deter-

mining the relationship between d and r:

d =





n , r = 2

2n , r = −2

In Table 4.1, we provide a list of parameters for utilizing the Mersenne transform which may

yield efficient multiplication in GF (pm) in the frequency domain, e.g. by using Algorithm 1

in Chapter 3, for operand sizes relevant to ECC. Note that when p = Mn = 2n − 1, r = 2,

d = n and m = (n + 1)/2, Algorithm 1 performs multiplication in GF (pm) meeting the

minimal theoretical bound of 2m− 1 for the number of required GF (p) multiplications [83].

4.3 Pseudo-Mersenne Transform

Similar to the Mersenne transform achieved modulo a Mersenne number, an NTT modulo

an integer submultiple of a Mersenne number, e.g., Mn/t = (2n − 1)/t for an integer t >

1, can also be performed efficiently and is called the pseudo-Mersenne transform [58]. In

a pseudo-Mersenne transform all arithmetic operations can be achieved using Mersenne

number arithmetic modulo the Mersenne number Mn and only the final result needs to

be reduced modulo Mn/t. Hence, the pseudo-Mersenne transform, similar to the Mersenne

CHAPTER 4. NTTS FOR EFFICIENT MULTIPLICATION IN GF (PM) FOR ECC 25

p = Mn = 2n − 1 m d r equivalent binary field size

213 − 1 11 26 −2 ∼ 2143

213 − 1 12 26 −2 ∼ 2156

213 − 1 13 26 −2 ∼ 2169

217 − 1 9 17 2 ∼ 2153

217 − 1 11 34 −2 ∼ 2187

217 − 1 12 34 −2 ∼ 2204

217 − 1 13 34 −2 ∼ 2221

217 − 1 14 34 −2 ∼ 2238

217 − 1 15 34 −2 ∼ 2255

217 − 1 16 34 −2 ∼ 2272

217 − 1 17 34 −2 ∼ 2289

219 − 1 10 19 2 ∼ 2190

219 − 1 11 38 −2 ∼ 2209

219 − 1 12 38 −2 ∼ 2228

219 − 1 13 38 −2 ∼ 2247

219 − 1 14 38 −2 ∼ 2266

219 − 1 15 38 −2 ∼ 2285

219 − 1 16 38 −2 ∼ 2304

219 − 1 17 38 −2 ∼ 2323

219 − 1 18 38 −2 ∼ 2342

219 − 1 19 38 −2 ∼ 2361

231 − 1 11 31 2 ∼ 2341

231 − 1 12 31 2 ∼ 2372

231 − 1 13 31 2 ∼ 2403

Table 4.1: List of some p = Mn, m, d and r = ±2 values for efficient multiplication in
GF (pm) in the frequency domain for ECC over finite fields of size 143 to 403 bits

CHAPTER 4. NTTS FOR EFFICIENT MULTIPLICATION IN GF (PM) FOR ECC 26

transform, allows for very efficient forward and inverse NTT operations for r = ±2, since

intermediary multiplications with integer powers of ±2 can be achieved using arithmetic

modulo Mn, rather than Mn/t, with a simple bitwise rotation, in addition to a negation if

the power of r = −2 is odd. Also, remember that negation of an n-bit number modulo Mn

can simply be achieved by flipping all n bits of the number. Thus, for a transform length of d,

the forward NTT computation can be achieved with only (d−1)2 simple rotations and d(d−
1) additions/subtractions avoiding any multiplications. For the inverse NTT computation

additional d constant multiplications with 1/d mod Mn/t are required. Hence, when p is a

pseudo-Mersenne prime, multiplication in GF (pm) using Algorithm 1 in Chapter 3 has only

O(m) complexity in terms of GF (p) multiplications and O(m2) complexity in terms of GF (p)

additions/subtractions and rotations. We will see in Section 4.6 that for the cases when

p = Mn/t is a Fermat prime, with the use of the fast Fourier transform, this complexity can

be further reduced to O(m log m) in terms of the number of required additions/subtractions

and rotations. Although the pseudo-Mersenne transform increases the number of available

transform lengths for the Mersenne transform, it has the downside of increasing the word

size for the intermediary arithmetic operations from n − log2 t to n for a pseudo-Mersenne

transform modulo Mn/t = (2n − 1)/t. In Table 4.2, we provide a list of parameters for

utilizing the pseudo-Mersenne transform which may yield efficient multiplication in GF (pm)

in the frequency domain, e.g. by using Algorithm 1 in Chapter 3, for operand sizes relevant

to ECC.

4.4 Fermat Transform

A positive integer of the form Fn = 22n
+ 1, where n > 0, is called a Fermat number.

Fermat numbers which are prime are called Fermat primes. Similar to Mersenne primes,

Fermat primes are popular choices as finite field characteristics since modular reductions

by them can be achieved with simple addition/subtraction and shift operations. A number

theoretic transform with arithmetic modulo a Fermat number is called the Fermat Transform

[72, 71, 2, 3]. Fermat transforms were first defined and proposed for fast convolution and

digital filtering by Agarwal and Burrus [2, 3]. In this work, we provide efficient parameters

for their use in finite field multiplication, e.g. as with Algorithm 1 in Chapter 3, which may

find applications in cryptography.

The Fermat transform allows for very efficient forward and inverse NTT computations for

CHAPTER 4. NTTS FOR EFFICIENT MULTIPLICATION IN GF (PM) FOR ECC 27

p = Mn/t = (2n − 1)/t m d r equivalent binary field size

(215 − 1)/217 15 30 −2 ∼ 2120

(223 − 1)/47 9 23 2 ∼ 2162

(223 − 1)/47 10 23 2 ∼ 2180

(223 − 1)/47 11 23 2 ∼ 2198

(223 − 1)/47 12 23 2 ∼ 2216

(223 − 1)/47 17 46 −2 ∼ 2306

(223 − 1)/47 18 46 −2 ∼ 2324

(223 − 1)/47 19 46 −2 ∼ 2342

(223 − 1)/47 20 46 −2 ∼ 2360

(223 − 1)/47 21 46 −2 ∼ 2378

(223 − 1)/47 22 46 −2 ∼ 2396

(223 − 1)/47 23 46 −2 ∼ 2414

(227 − 1)/511 11 27 2 ∼ 2209

(227 − 1)/511 12 27 2 ∼ 2228

(227 − 1)/511 13 27 2 ∼ 2247

(227 − 1)/511 14 27 2 ∼ 2266

(232 − 1)/65535 13 32 2 ∼ 2221

(232 − 1)/65535 14 32 2 ∼ 2238

(232 − 1)/65535 15 32 2 ∼ 2255

(232 − 1)/65535 16 32 2 ∼ 2272

(233 − 1)/14329 17 33 2 ∼ 2340

(237 − 1)/223 11 37 2 ∼ 2330

(237 − 1)/223 12 37 2 ∼ 2360

(237 − 1)/223 13 37 2 ∼ 2390

(237 − 1)/223 14 37 2 ∼ 2420

(237 − 1)/223 15 37 2 ∼ 2450

(237 − 1)/223 16 37 2 ∼ 2480

(237 − 1)/223 17 37 2 ∼ 2510

(237 − 1)/223 18 37 2 ∼ 2540

(237 − 1)/223 19 37 2 ∼ 2570

Table 4.2: List of some p = Mn/t, m, d and r = ±2 values for efficient multiplication in
GF (pm) in the frequency domain for ECC over finite fields of size 120 to 570 bits

CHAPTER 4. NTTS FOR EFFICIENT MULTIPLICATION IN GF (PM) FOR ECC 28

r = 22k
, where k is a non-negative integer. For a Fermat prime p = 22n

+1, 22n+1 ≡ 1 (mod p)

and r = 2 is a dth primitive root of unity where d = 2n+1. Likewise, r = 22k
, for k ≤ n+1, is

a dth primitive root of unity where d = 2n+1−k. Thus, since d is a power of 2 in this case, as

we will see in Section 4.6 the fast Fourier transform [21] can be applied very efficiently for the

NTT computations which significantly reduces the complexity of Algorithm 1 in Chapter 3.

Also, all modular multiplications by powers of r = 22k
can be achieved by simple shift and

subtraction operations. In this case, a modular multiplication by a power of r is slightly

more complex than that in the Mersenne transform where the same operation can be achieved

with a mere bitwise rotation. However, since Fn = 22n
+ 1 = 22n+1−1

22n−1
, the Fermat transform

modulo Fn = 22n
+ 1 is equivalent to the corresponding pseudo-Mersenne transform modulo

M2n+1/(22n − 1) = 22n+1−1
22n−1

and can be achieved via Mersenne number arithmetic modulo the

Mersenne number 22n+1 − 1. Thus, one can achieve all multiplications by powers of r = 22k

with simple bitwise rotations. The advantage of this approach compared with the Fermat

transform using the Fermat number arithmetic is that modular multiplications with powers

of r become mere rotations and can be achieved very easily, however it has the drawback

of having almost the twice increase in the word size of the operands. Hence, when p is a

Fermat number, the complexity of multiplication in GF (pm) using the Fermat transform

is only O(m) multiplications and O(m log m) additions/subtractions and shifts in terms of

GF (p) operations. In Table 4.3, we present a list of some Fermat primes and values for d

and m that allow for application of the fast Fourier transform (see Section 4.6) and thus

possibly efficient multiplication in GF (pm) in the frequency domain, e.g. as with Algorithm 1

in Chapter 3, for operand sizes relevant to ECC.

Efficient Fermat transform is also possible with a dth primitive root of unity of the form

r = (
√

2)k, for a positive integer k, thanks to the following relationship

√
2 ≡ 2e/4(2e/2 − 1) (mod 2e + 1) .

Thus, when r = (
√

2)k in a Fermat transform modulo Fn = 22n
+ 1 or a pseudo-Fermat

transform modulo Fn/t = 22n
+1

t
(see Section 4.5), r = (

√
2)ki = 2a − 2b for some positive

integers a and b, and hence all multiplications by powers of r = (
√

2)k can be carried out

with at most two shifts/rotations and a subtraction.

CHAPTER 4. NTTS FOR EFFICIENT MULTIPLICATION IN GF (PM) FOR ECC 29

p = Fn = 22n
+ 1 m d r equivalent binary field size

223
+ 1 13 32

√
2 117

223
+ 1 14 32

√
2 126

223
+ 1 15 32

√
2 135

223
+ 1 16 32

√
2 144

224
+ 1 7 16 22 119

224
+ 1 8 16 22 136

224
+ 1 13 32 2 221

224
+ 1 14 32 2 238

224
+ 1 15 32 2 255

224
+ 1 16 32 2 272

224
+ 1 29 64

√
2 478

224
+ 1 30 64

√
2 495

224
+ 1 31 64

√
2 512

224
+ 1 32 64

√
2 544

Table 4.3: List of Fermat primes p = Fn = 22n
+ 1 and d, r, m values for efficient multi-

plication in GF (pm) in the frequency domain for ECC over finite fields of size 117 to 544
bits

CHAPTER 4. NTTS FOR EFFICIENT MULTIPLICATION IN GF (PM) FOR ECC 30

4.5 Pseudo-Fermat Transform

An NTT can also be efficiently performed modulo a pseudo-Fermat prime of the form

Fn/t = 2n+1
t

for a positive integer t, and is called the pseudo-Fermat transform [59]. In

a pseudo-Fermat transform, all intermediary arithmetic operations can be carried out us-

ing Fermat number arithmetic modulo 2n + 1 or Mersenne number arithmetic modulo the

Mersenne number Mn+1 = 2n+1 − 1 = (2n + 1) · (2n − 1) and only the final result needs to

be reduced modulo Fn/t = 2n+1
t

. Hence, the pseudo-Fermat transform retains some of the

computational advantages of the Mersenne transform and introduces further variety in the

available transform lengths in the expense of increasing the word size for the intermediary

arithmetic operations from n + 1 − log2 t to n + 1 for a pseudo-Fermat transform modulo

Fn/t = 2n+1
t

. In Table 4.4, we present a list of pseudo-Fermat primes and corresponding

transform parameters suitable for finite field multiplication in GF (pm), e.g. as with Algo-

rithm 1 of Chapter 3, relevant to ECC.

4.6 Fast Fourier Transform

An extremely efficient method for computing the DFT is the fast Fourier transform (FFT) [31,

21, 82]. The FFT algorithm works by exploiting the symmetry of the DFT computation and

the periodicity of the dth primitive root of unity r when the sequence length d is a composite

number. For instance, if a sequence is of even length, i.e. if its length d is divisible by

two, then by applying the FFT the DFT computation of this d-element sequence is basically

reduced to the DFT computations of two (d/2)-element sequences, namely the sequence com-

prising only the even indexed elements of the original sequence and the sequence comprising

only the odd indexed elements of the original sequence. The DFT of a d-element sequence

(a), where d is divisible by 2, can be expressed as follows:

Aj =
d−1∑
i=0

air
ij , 0 ≤ j ≤ d− 1

=

d
2
−1∑

i=0

a2ir
2ij +

d
2
−1∑

i=0

a2i+1r
(2i+1)j , 0 ≤ j ≤ d− 1

=

d
2
−1∑

i=0

a2i(r
2)ij + rj

d
2
−1∑

i=0

a2i+1(r
2)ij , 0 ≤ j ≤ d− 1 . (4.1)

CHAPTER 4. NTTS FOR EFFICIENT MULTIPLICATION IN GF (PM) FOR ECC 31

p = Fn/t = (2n + 1)/t m d r equivalent binary field size

(213 + 1)/3 13 26 2 ∼ 2156

(215 + 1)/99 15 30 2 ∼ 2135

(217 + 1)/3 17 34 2 ∼ 2272

(219 + 1)/3 19 38 2 ∼ 2342

(219 + 1)/3 10 19 22 ∼ 2180

(220 + 1)/17 8 16 (
√

2)5 ∼ 2128

(220 + 1)/17 20 40 2 ∼ 2320

(220 + 1)/17 10 20 22 ∼ 2160

(221 + 1)/387 21 42 2 ∼ 2273

(222 + 1)/1985 22 44 2 ∼ 2264

(222 + 1)/1985 11 22 22 ∼ 2132

(223 + 1)/3 23 46 2 ∼ 2506

(227 + 1)/1539 27 54 2 ∼ 2459

(227 + 1)/1539 9 18 23 ∼ 2153

(228 + 1)/17 14 28 22 ∼ 2336

(228 + 1)/17 7 14 24 ∼ 2168

(232 + 1)/641 16 32 22 ∼ 2368

(232 + 1)/641 8 16 24 ∼ 2184

Table 4.4: List of some p = Fn/t, m, d and r = ±2 values for efficient multiplication in
GF (pm) in the frequency domain for ECC over finite fields of size 128 to 506 bits

CHAPTER 4. NTTS FOR EFFICIENT MULTIPLICATION IN GF (PM) FOR ECC 32

Note that when r is a dth primitive root of unity, r2 is a (d
2
)th primitive root of unity. Hence,

the above d-element DFT computation of Aj, for 0 ≤ j ≤ d− 1, can be performed with two

(d
2
)-element DFTs which are the DFTs of the (d

2
)-element sequences consisting of the even

indexed elements and the odd indexed elements of (a). In (4.1), the first and the second

summations correspond to the (d
2
)-element DFTs of the sequences comprising the even and

odd indexed elements of (a), respectively. Here, Aj needs to be computed for 0 ≤ j ≤ d− 1,

not for 0 ≤ j ≤ d
2
− 1. However, (r2)j is periodic with d

2
for a dth primitive root of unity r

and d even, and hence rj+ d
2 = −rj. Thus, the equalities

d
2
−1∑

i=0

a2i(r
2)i(j+ d

2
) =

d
2
−1∑

i=0

a2i(r
2)ij

and

rj+ d
2

d
2
−1∑

i=0

a2i+1(r
2)i(j+ d

2
) = −rj

d
2
−1∑

i=0

a2i+1(r
2)ij

hold. Therefore, once Aj is computed for 0 ≤ j ≤ d
2
− 1 as in (4.1) by performing two

(d
2
)-element DFTs, d

2
− 1 multiplications for multiplications of the second summations by

rj (for j = 0 no multiplication is necessary for a multiplication by rj) and d
2

additions for

merging the two summations together, we can compute Aj for d
2
≤ j ≤ d − 1 immediately

by using the same already computed summations and with only additional d
2

subtractions

for merging the two summations. The inverse FFT can be computed in a similar manner

as the forward FFT with the exception of the minus signs in front of the powers of r and d

additional constant multiplications due to the multiplications with d−1. When d is a power

of two, the same approach can easily be applied recursively, surprisingly reducing the O(d2)

complexity of the DFT computation to O(d log2 d). Likewise, if d is a power of three, a

similar approach could be be applied recursively to reduce the O(d2) complexity of the DFT

computation to O(d log3 d). As shown in [82], the symmetry of the DFT and the periodicity

of r can similarly be exploited recursively whenever d is a composite number.

Unfortunately, the full recursive application of the FFT to NTT, for multiplication in

GF (pm) using Algorithm 1, would find limited application since there are only a limited

number of cases in Tables 4.1, 4.2, 4.3 and 4.4 where the available sequence length d is

highly composite, e.g. a power of 2 or another small prime number. Application of the

FFT to NTT, and thus to Algorithm 1, is most suited when the field characteristic is a

Fermat prime or a pseudo-Fermat prime, as for the cases presented with Tables 4.3 and 4.4.

CHAPTER 4. NTTS FOR EFFICIENT MULTIPLICATION IN GF (PM) FOR ECC 33

However, in applications of Algorithm 1 utilizing the Mersenne transform, where arithmetic

operations can be performed more efficiently modulo a Mersenne prime Mn = 2n − 1, the

allowable sequence length d is either the prime number n (for r = 2) or 2n (for r = −2).

Hence, either d = n is prime and the FFT algorithm can not be applied at all or d = 2n and

only a single level of recursion is allowed in the FFT operations which would have limited

computational advantage.

In the next chapter, we introduce the DFT modular multiplication algorithm which

achieves both multiplication and modular reduction in the frequency domain and could

be more efficient than Algorithm 1 of Chapter 3 or other efficient methods, especially for

multiplication in Mersenne fields.

4.7 Conclusion

In this chapter, we presented special parameters which speed up the NTT computations,

and thus multiplication in GF (pm) using Algorithm 1, for operand sizes relevant to ECC.

Many of the presented parameters help Algorithm 1 meet the minimal theoretical bound

of 2m − 1 for the number of required GF (p) multiplications to achieve a multiplication in

GF (pm) when p is an odd prime [83]. In Chapter 5, we will present a non-trivial algorithm,

named DFT modular multiplication, for multiplication in GF (pm) which utilizes the same

parameters presented in this chapter and may achieve multiplication more efficiently than

Algorithm 1.

Chapter 5

Modular Multiplication in the

Frequency Domain1

5.1 Introduction

In many finite field applications, a chain of arithmetic operations need to be performed,

rather than a solitary one. For example, in elliptic curve cryptography (ECC) a scalar point

product is computed by applying a chain of finite field additions, subtractions, multiplica-

tions, squarings and inversions on the input point coordinates [15, 30]. The Montgomery

residue representation has proven to be useful in this computation [56, 36]. In using this

method, first the operands are converted to their respective Montgomery residue represen-

tations, then utilizing Montgomery arithmetic the desired computation is implemented, and

finally the result is converted back to the normal integer or polynomial representation. If

there are a large number of operations performed in the Montgomery domain, due to the

efficiency of the intervening computations, the forward and backward conversion operations

become affordable. We introduce the same notion for frequency domain arithmetic. We

present an arithmetic operation in the frequency domain that is equivalent to Montgomery

multiplication in the time domain. Due to the linearity property of the discrete Fourier

transform (DFT) [18, 60], operations in the time domain such as addition/subtraction and

multiplication by a scalar directly map to the frequency domain, i.e., for any two sequences

(a) and (b) representing elements of GF (pm) in the time domain and for any two scalars

1The material presented in this chapter is included in [69, 66].

34

CHAPTER 5. MODULAR MULTIPLICATION IN THE FREQUENCY DOMAIN 35

y, z ∈ GF (p),

DFT(y · (a) ± z · (b)) = y ·DFT((a)) ± z ·DFT((b)) .

Hence, if a modular multiplication algorithm in the frequency domain can also be utilized,

then all finite field operations such as addition/subtraction and multiplication can be per-

formed in the frequency domain, and thus a finite field application such as ECC can be

achieved completely in the frequency domain, assuming also that for inversion a Fermat-like

inversion algorithm consisting of multiplications is utilized and/or projective coordinates are

used to avoid inversions. In the remainder of this section, we introduce the DFT modular

multiplication algorithm which allows for both polynomial multiplication and Montgomery

modular reduction operations in the frequency domain.

5.2 Mathematical Notation

The DFT modular multiplication algorithm runs in the frequency domain, and therefore

the parameters used in the algorithm are represented in their frequency domain sequence

representations using the NTT as explained in Section 2.4.1. These parameters are the ir-

reducible field generating polynomial f(x), the normalized irreducible field generating poly-

nomial fN(x) = f(x)/f(0), the sequence length d, the indeterminate x, the input operands

a(x), b(x) ∈ GF (pm), and the result c(x) = a(x) · b(x) · x−(m−1) ∈ GF (pm). The time do-

main sequence representations of the polynomial parameters are (f), (fN), (x), (a), (b) and

(c), respectively, and their frequency domain sequence representations, i.e. the DFTs of the

time domain sequence representations, are (F), (FN), (X), (A), (B) and (C). We will denote

the elements of a sequence with the name of the sequence and a subscript for showing the

location of the particular element in the sequence, e.g. for the indeterminate x represented

as the following d-element sequence in the time domain

(x) = (0, 1, 0, 0, · · · , 0) ,

the NTT of (x) is computed as the following d-element sequence

(X) = (1, r, r2, r3, r4, r5, . . . , rd−1)

whose first and last elements are denoted as X0 = 1 and Xd−1 = rd−1, respectively. Remem-

ber that r, defined as in Section 2.4, is the dth primitive root of unity needed for the NTT

CHAPTER 5. MODULAR MULTIPLICATION IN THE FREQUENCY DOMAIN 36

computations and d ≥ 2m− 1 is a required condition for successfully achieving polynomial

multiplication in the frequency domain, as explained in Section 3.2.

5.3 The DFT Modular Multiplication Algorithm

DFT modular multiplication presented with Algorithm 3 consists of two parts: multiplica-

tion (Steps 1− 3) and Montgomery reduction (Steps 4− 13). Multiplication is performed by

simple pairwise multiplication of the coefficients of the frequency domain sequence represen-

tations of the input operands. Reduction is more complex and performed by Montgomery

reduction in the frequency domain. In the reduction process the normalized field generating

polynomial fN(x) = f(x)/f0 mod p is used. Hence, fN(x) is equivalent to f(x) but normal-

ized to have fN(0) = 1 and thus fNi
= fi/f0 mod p and FNi

= Fi/f0 mod p , for 0 ≤ i ≤ d−1.

Algorithm 3 DFT modular multiplication algorithm for GF (pm)

Input: d ≥ 2m− 1, (FN) ≡ fN(x), (X) ≡ x, (A) ≡ a(x) ∈ GF (pm), (B) ≡ b(x) ∈ GF (pm)
Output: (C) ≡ a(x) · b(x) · x−(m−1) ∈ GF (pm)
1: for i = 0 to d− 1 do
2: Ci ← Ai ·Bi

3: end for
4: for j = 0 to m− 2 do
5: S ← 0
6: for i = 0 to d− 1 do
7: S ← S + Ci

8: end for
9: S ← −S/d

10: for i = 0 to d− 1 do
11: Ci ← (Ci + FNi

· S) ·X−1
i

12: end for
13: end for
14: Return (C)

Proof of Correctness:

DFT modular multiplication is a direct adaptation of Montgomery multiplication for the fre-

quency domain. Polynomial multiplication part of the algorithm (Steps 1− 3) is performed

via simple pairwise multiplications. As a result, the polynomial c(x) = a(x)·b(x) is obtained.

In the modular reduction part (Steps 4−13), S is computed such that (c(x)+ fN(x) ·S) is a

multiple of x. This is accomplished by computing −c0, the negative of the first coefficient in

CHAPTER 5. MODULAR MULTIPLICATION IN THE FREQUENCY DOMAIN 37

the time domain sequence (c), and then by making c0 zero by adding (FN) · S to (C) in the

frequency domain. Then again in the frequency domain, (c(x) + fN(x) · S) is divided by x

and the result, which is congruent to c(x) ·x−1 modulo f(x) in the time domain, is obtained.

This division of (c(x) + fN(x) ·S) by x is accomplished in the frequency domain by dividing

(C) + (FN) · S by (X) (in Step 11). By repeating Steps 5− 12 of the algorithm m− 1 times

the final result (C), which represents a(x) ·b(x) ·x−(m−1) ∈ GF (pm) in the frequency domain,

is obtained.

2

The inputs of the DFT modular multiplication algorithm presented with Algorithm 3 are

the sequence length d ≥ 2m− 1 and the DFTs (A) and (B) of the d-element sequences (a)

and (b) which represent a(x), b(x) ∈ GF (pm), respectively. The output of the algorithm is

(C), the DFT of the sequence (c), where (c) represents the d-element sequence for c(x) =

a(x) · b(x) · x−(m−1) ∈ GF (pm). The extra x−(m−1) factor shows that the DFT modular

multiplication algorithm actually computes the Montgomery product of input polynomials

in the frequency domain. Hence, the input polynomials a(x) and b(x) may be viewed as the

Montgomery residue representations of two polynomials u(x) and v(x) such that

a(x) = u(x) · xm−1 ∈ GF (pm)

and

b(x) = v(x) · xm−1 ∈ GF (pm) .

With DFT modular multiplication the residue representation is kept intact, i.e.,

a(x) · b(x) · x−(m−1) = (u(x) · v(x)) · xm−1

which allows for further computations in the frequency domain.

For d ≈ 2m, modular multiplication in GF (pm) with the DFT modular multiplication

algorithm requires only 2m multiplications in addition to 4m2 − 3m − 1 constant multipli-

cations and 4m2 − 5m + 1 additions in the base field GF (p), while the classical schoolbook

method, given in (2.1), requires m2 multiplications and (m− 1)2 additions ignoring the cost

of modular reduction given in (2.2). In the next section, we will see that this complexity of

DFT modular multiplication may be improved dramatically by using special values for p, r,

d and the irreducible field generating polynomial f(x).

CHAPTER 5. MODULAR MULTIPLICATION IN THE FREQUENCY DOMAIN 38

5.4 Utilizing Efficient Parameters to Speed up DFT

Modular Multiplication

Using the smallest possible sequence length d, satisfying d ≥ 2m − 1, will lead to the

smallest number of arithmetic operations in the computation of DFT modular multiplication.

Optimally, d = 2m− 1 will lead to the least number of arithmetic operations.

As mentioned in Section 4.2, using a Mersenne prime as the modulus and selection of

r = ±2 will allow for extremely efficient modular multiplications with ri = ±2i for integer

values of i. This modular multiplication can be achieved with a simple bitwise rotation (in

addition to a negation when r = −2 and i is odd) which is inexpensive. In the DFT modular

multiplication algorithm, this property may be exploited if the field characteristic p is chosen

as a Mersenne prime and r is chosen as r = ±2. In that case, in Step 11 of the algorithm,

multiplications with X−1
i = r−i = (±2)−i = (±1)i · 2−i mod d become simple (−i mod d)-bit

left-rotations (in addition to a negation when r = −2 and i is odd), which have negligible

cost compared to a regular multiplication. Also, note that when p is a Mersenne prime,

negation of an element of GF (p) can be achieved by simply flipping its bits. Multiplications

with FNi
in Step 11 can also be avoided in a similar fashion for special f(x). For instance,

for the binomial f(x) = xm ± rs0 with s0 an integer, FNi
= ±rmi−s0 mod d + 1 and hence

for r = ±2 multiplications with FNi
can be achieved with only one bitwise rotation and

one addition/subtraction. Likewise, for the trinomial f(x) = xm ± rsm′xm′ ± rs0 or f(x) =

xm∓rsm′xm′±rs0 , where s′m and s0 are integers, FNi
= ±rmi−s0 mod d +rm′i+sm′−s0 mod d +1 or

FNi
= ±rmi−s0 mod d − rm′i+sm′−s0 mod d + 1, respectively, and hence multiplications with FNi

can be achieved with only two bitwise rotations and two additions/subtractions. Finally, we

would like to caution the reader that all these parameters p, d, r and f(x) are dependent on

each other and can not be chosen independently.

5.5 Existence of Efficient Parameters

In Tables 4.1, 4.2, 4.3 and 4.4, we gave lists of parameters that would yield efficient mul-

tiplication in GF (pm) using Algorithm 1 in Chapter 3 for operand sizes relevant to ECC.

These same parameters can also be used for efficient multiplication in GF (pm) using the

DFT modular multiplication algorithm. For each parameter listed in these tables, one can

verify that there exist many special irreducible binomials of the form xm ± 2s, or trinomials

CHAPTER 5. MODULAR MULTIPLICATION IN THE FREQUENCY DOMAIN 39

of the form xm ± rs1x1 ± rs0 or xm ± rs1x1 ∓ rs0 , as field generating polynomials that would

allow for efficient DFT modular multiplication. For some of these cases there exist efficient

irreducible binomials which we present with Theorem 7 and with Tables 8.1, 8.2 and 8.4

in Appendix, whereas for other cases we were not able to find such binomials and included

lists of efficient irreducible trinomials instead (see Tables 8.1, 8.2, 8.3 and 8.4 in Appendix).

However, as shown in Theorem 7, for the computationally more desirable cases of d = 2m,

m = n and p = 2n−1, where r = 2, there always exist efficient irreducible binomials for finite

fields practically relevant to ECC. We would like to first present Theorem 6 and Definition 2,

which will be used in the proof of Theorem 7.

Theorem 6 [53] Let α, β ∈ GF (p) and α = βi. The orders of α and β are related as

ord(α) =
ord(β)

gcd(i, ord(β))
,

where ord(a) denotes the order of field element a and gcd(a, b) denotes the greatest common

denominator of a and b.

Definition 2 A Wieferich prime is an odd prime p which satisfies 2p−1 = 1 mod p2.

Theorem 7 For a Mersenne prime p = 2n − 1 and for m = n, a binomial of the form

xm ± 2s, where s is an integer not congruent to 0 modulo n, is irreducible in GF (p)[x] if m

is not a Wieferich prime.

Proof of Theorem 7 For a binomial of the form xm ± 2s to be irreducible in GF (p)[x],

it needs to satisfy all three conditions of Theorem 1. The third condition is satisfied since

m = n is a prime number and the condition m = 0 mod 4 never holds. For the first and

second conditions, we consider the cases xm − 2s and xm + 2s separately.

Let us first consider the binomials xm − 2s. When p is a Mersenne prime of the form

p = 2n − 1 the order of 2 in GF (p) is n = m since 2n = 1 (mod p) and 2i 6= 1 (mod p) for

i < n. Due to Theorem 6 the order of 2s in GF (p) is ord(2)
gcd(s,ord(2))

= m
gcd(s,m)

= m. The only

prime factor of m, which is itself, divides m and hence the first condition of Theorem 1 is

satisfied. The second condition of Theorem 1 is satisfied since m|2m−2
m

never holds unless m

is a Wieferich prime.

Now, let us consider the binomials xm + 2s = xm − (−2s). Let us first find the order

of (−2s) in GF (p), i.e., the smallest positive integer k such that (−2s)k = 1 (mod p). The

equality (−2s)k = (−1)k · (2s)k = 1 (mod p) can hold true in only two cases:

CHAPTER 5. MODULAR MULTIPLICATION IN THE FREQUENCY DOMAIN 40

• Case 1: The integer k is odd, thus (−1)k = −1 (mod p), and (2s)k = −1 (mod p)

• Case 2: The integer k is even, thus (−1)k = 1 (mod p), and (2s)k = 1 (mod p)

We have −1 mod p = 2n − 2 = 2(2n−1 − 1) and (2s)k mod p = 2sk mod n. The equality

2(2n−1−1) = 2sk mod n never holds for any positive integer k. Hence, the equality “(2s)k = −1

(mod p)” in Case 1 can not hold and Case 1 is not possible. So, the integer k, which

is the order of (−2s) in GF (p), satisfies Case 2, i.e., it is even and the smallest positive

integer that satisfies (2s)k = 1 (mod p). Since in GF (p) ord(2s) = m and m is odd, the

smallest even k which satisfies (2s)k = 1 (mod p) is 2m. Hence 2m is the order of (−2s)

in GF (p). The first condition of Theorem 1 is satisfied for the irreducible binomials of the

form xm + 2s = xm− (−2s) since the only prime factor of m, which is itself, divides 2m, the

order of (−2s) in GF (p). The second condition of Theorem 1 is also satisfied since m|2m−2
2m

never holds unless m is a Wieferich prime. 2

The only known Wieferich primes are 1093 and 3511. It is also known that there are no

other Wieferich primes less than 4×1012 [22]. Hence, for the more efficient cases in Table 4.1

where the field characteristic p = Mn = 2n − 1 is a Mersenne prime and m = n, mth degree

irreducible binomials of the form xm ± 2s, for a nonzero integer s, always exist.

5.6 Complexity Analysis

In this section, we present the complexity of DFT modular multiplication for a practical

set of parameters relevant to ECC and compare it with the classical schoolbook method,

given with (2.1) and (2.3), and the NTT based method presented with Algorithm 1. In our

complexity analysis we assume the use of a Mersenne prime as the finite field characteristic

p, an irreducible field generating binomial of the form f(x) = xm± 2s0 , a d-th primitive root

of unity r = ±2 and a sequence length as d ≈ 2m. The field parameters we use, such as the

low Hamming weight field generating polynomial and Mersenne prime field characteristic,

lead to efficient implementation of multiplication for all methods. Therefore, for the selected

parameters, we can safely assume that our comparisons are fair. In Table 5.1, we present

the complexities of multiplication in GF (pm) in terms of GF (p) operations for the classical

school book method, given with (2.1) and (2.3), Algorithm 1 and Algorithm 3 when such

ideal parameters are used. Note that the astonishingly low O(m) complexity of Algorithms 1

CHAPTER 5. MODULAR MULTIPLICATION IN THE FREQUENCY DOMAIN 41

and 3 in terms of the number of GF (p) multiplications is achieved under the ideal conditions

with the efficient field parameters together with the choice of r = ±2.

Schoolbook Algorithm 1 Algorithm 3

Multiplications m2 ≈ 2m ≈ 2m
Constant Multiplications – ≈ 2m− 1 m− 1
Additions/Subtractions m2 −m ≈ 8m2 − 7m ≈ 6m2 − 7m + 1
Rotations m− 1 ≈ 8m2 − 11m + 3 ≈ 4m2 − 4m

Table 5.1: Complexity of multiplication in GF (pm) in terms of the number of GF (p) opera-
tions when f(x) = xm ± 2s0 , p is a Mersenne prime and d ≈ 2m

One could argue that for a Mersenne transform modulo a Mersenne prime p = 2n − 1,

where r = −2 and d = 2n is composite, it is possible to utilize the FFT [21] for one

level and obtain faster computations of the forward and inverse NTT in Algorithm 1 for

multiplication in GF (pm). We present the equivalent single level FFT computation for the

forward NTT operation, as used in Step 2 of Algorithm 1 for obtaining the frequency domain

representations of a(x), b(x) ∈ GF (pm), with (5.1) and (5.2) exemplarily for a(x).

Aj =

m−1
2∑

i=0

a2ir
2ij + rj

m−3
2∑

i=0

a2i+1r
2ij , 0 ≤ j ≤ m− 1 (5.1)

Aj+m =

m−1
2∑

i=0

a2ir
2ij − rj

m−3
2∑

i=0

a2i+1r
2ij , 0 ≤ j ≤ m− 1 (5.2)

Similarly, for the inverse NTT operation, as used in Step 4 of Algorithm 1 for obtaining

the time domain representation of c(x) = a(x) · b(x), the equivalent single level inverse FFT

computation is presented with (5.3), (5.4) and (5.5).

ci =
1

d
·
(

m−1∑
j=0

C2jr
−2ij + r−i

m−1∑
j=0

C2j+1r
−2ij

)
, 0 ≤ i ≤ m− 2 (5.3)

ci+m =
1

d
·
(

m−1∑
j=0

C2jr
−2ij − r−i

m−1∑
j=0

C2j+1r
−2ij

)
, 0 ≤ i ≤ m− 2 (5.4)

cm−1 =
2

d

m−1∑
j=0

C2jr
−2(m−1)j (5.5)

CHAPTER 5. MODULAR MULTIPLICATION IN THE FREQUENCY DOMAIN 42

Note that the equations (5.1) and (5.2) in the forward FFT computation, and similarly

(5.3) and (5.4) in the inverse FFT computation, are the same except for the sign between

the two summations. Using (5.1) and (5.2), the frequency domain representation of each

one of a(x) and b(x), as in Step 2 of Algorithm 1, can be obtained with only around m2

additions/subtractions and m2 − 2m + 1 bitwise rotations in GF (p). Similarly, using (5.3),

(5.4) and (5.5), the time domain sequence representation (c) of the product c(x) = a(x)·b(x),

as in Step 4 of Algorithm 1, can be obtained with only around 2m−1 constant multiplications

by d−1, 2m2 −m− 1 additions/subtractions and 2m2 − 4m + 2 bitwise rotations in GF (p).

Thus, the complexity of Algorithm 1 is effectively reduced to 2m multiplications, 2m − 1

constant multiplications, 4m2 −m− 1 additions and 4m2 − 8m + 4 rotations in GF (p).

On the other hand, similar improvements also exist for DFT modular multiplication. For

instance, for DFT modular multiplication in GF (pm) where p = 2n − 1, m = n and r = −2,

f(x) = xm−2 is always irreducible (see Theorem 7) and could be used as the field generating

polynomial. In this case, the normalized irreducible polynomial would be fN(x) = −1
2
·xm+1

and the following equality would hold in GF (p):

FNi
= −1

2
· (−2)mi + 1 =





−1
2

+ 1 = 1
2

, i even

1
2

+ 1 , i odd

(5.6)

since

(−2)mi ≡ (−2)ni ≡ (−1)ni · (2n)i ≡ (−1)ni (mod p) .

Note in (5.6) that FNi
has only two distinct values, namely 1

2
and 1

2
+ 1. Hence, FNi

· S in

Step 11 of Algorithm 3 can attain only two values for any distinct value of S and these values

can be precomputed outside the loop avoiding all such computations inside the loop. The

precomputations can be achieved very efficiently with only one bitwise rotation and one addi-

tion. With the suggested improvement, both the number of base field additions/subtractions

and the number of base field bitwise rotations required to perform an extension field multi-

plication are reduced by (d− 1) · (m− 1) = (2m− 1) · (m− 1) = 2m2 − 3m + 1.

In Table 5.2, we present the new complexities for multiplication in GF (pm) when the

single level FFT is used for Algorithm 1 and the above mentioned improvement is utilized

for the DFT modular multiplication algorithm presented with Algorithm 3.

CHAPTER 5. MODULAR MULTIPLICATION IN THE FREQUENCY DOMAIN 43

Schoolbook Algorithm 1 Algorithm 3
(with FFT) (improved)

Multiplications m2 2m 2m
Constant Multiplications – 2m− 1 m− 1
Additions/Subtractions m2 −m 4m2 −m− 1 4m2 − 4m
Rotations m− 1 4m2 − 8m + 4 2m2 −m− 1

Table 5.2: Complexity of multiplication in GF (pm) in terms of the number of GF (p) opera-
tions when f(x) = xm − 2, p = 2m − 1 is a Mersenne prime and d = 2m

Clearly, the complexity of DFT modular multiplication (Algorithm 3) is an improvement

upon the straightforward NTT based approach (Algorithm 1). Moreover, since it requires

a significantly less number of complex operations such as multiplication and constant mul-

tiplication, its overall performance is better than the classical schoolbook method (given in

(2.1) and (2.3)) especially for computationally constrained platforms where multiplication is

significantly more expensive compared to simpler operations such as addition, subtraction

or bitwise rotation.

Multiplication operation is inherently more complex than addition, subtraction or bit-

wise rotation and usually takes more clock cycles to run in hardware. In many modern

microprocessors, in order to achieve higher clock rates, deeper pipelines are designed in the

processor microarchitectures which results in significant differences in the number of clock

cycles needed for different instructions. For instance, in the processor microarchitecture of

Pentium 4 the latency is only half a clock cycle for a simple 16-bit integer addition, 1 clock

cycle for a 32-bit integer addition and 14 clock cycles for a 32-bit integer multiplication [32].

As shown in Table 5.2, there is a tradeoff between Algorithm 3 and the schoolbook method

in terms of the numbers of complex and simpler operations. Algorithm 3 requires compu-

tation of only a linear number of base field multiplications while in the classical schoolbook

method a quadratic number of base field multiplications are performed. On the other hand,

the number of simpler base field operations such as additions and rotations are significantly

higher in Algorithm 3. Therefore, it may be more desirable to use Algorithm 3 in computa-

tional environments where multiplication is expensive compared with other operations such

as addition and bitwise rotation.

In specialized hardware implementations, a multiplier circuit either runs much slower

CHAPTER 5. MODULAR MULTIPLICATION IN THE FREQUENCY DOMAIN 44

than an adder or it is designed significantly larger in area to run as fast. In extremely

constrained environments, such as wireless sensor network nodes which may be running

using the constrained energy harnessed from the environment, the execution time may not

be critical, but the available power may be tightly constrained. In this case, it may be

desirable to have a simple low power/small area implementation of an n-bit multiplier which

achieves an n-bit multiplication via n additions and n shift operations. Therefore, in a

simple serialized hardware implementation the complexity of an n-bit multiplication may be

assumed to be roughly equal to the complexity of n additions and n shift operations. Under

these assumptions, Table 5.3 presents the complexities of modular multiplication in GF (p13)

for both Algorithm 3 and the classical schoolbook method when p = 213 − 1 and GF (p13) is

constructed using the irreducible binomial f(x) = x13 − 2. The table also includes the total

number of clock cycles for a single multiplication in GF (pm) with each method, assuming

addition/subtraction and shift/rotation operations take a single clock cycle. Note that this

finite field has size ∼ 2169 and is chosen to be representative for ECC. It is clear in Table 5.3

that Algorithm 3 would perform better in this scenario for the given parameters.

Schoolbook Algorithm 3 (improved)

#Multiplications 169 26
#Constant Multiplications − 12
#Additions/Subtractions 156 624
#Rotations 12 324
#Total Clock Cycles 4562 1936

Table 5.3: Complexity of multiplication in GF (p13) where f(x) = x13−2, p = 213−1, d = 26
and r = −2

In order to see the crossover points between the performances of Algorithm 3 and the

classical schoolbook method for different multiplication/addition latency ratios k and differ-

ent field extension degrees m, in Figure 5.1 we graph the total number of clock cycles it takes

to achieve multiplication with both methods assuming a base field addition/subtraction or

bitwise-rotation operation takes only 1 clock cycle to complete and a base field multiplication

operation takes k clock cycles. Here we assume the use of optimal parameters as mentioned

earlier such as a Mersenne prime field characteristic p, f(x) = xm − 2 and d = 2m. As

we can see in Figure 5.1, for very small multiplication/addition latency ratios the school-

book method performs better, however the crossover point is around k = 4 and for k ≥ 4

CHAPTER 5. MODULAR MULTIPLICATION IN THE FREQUENCY DOMAIN 45

Algorithm 3 performs clearly better.

Figure 5.1: Number of required clock cycles for multiplication in GF (pm), where p = 2m−1,
with Algorithm 3 and the classical schoolbook method assuming an addition or a bitwise-
rotation in GF (p) takes a single clock cycle and a GF (p) multiplication takes k clock cycles

5.7 Conclusion

We introduced the DFT modular multiplication algorithm which performs modular multi-

plication in the frequency domain using Montgomery reduction. By allowing for modular

reductions in the frequency domain, the costly overhead of back and forth conversions be-

tween the frequency and time domains is avoided, and thus efficient finite field multiplication

is made possible for cryptographic operand sizes. We have shown that with the utilization

of DFT modular multiplication, especially in computationally constrained platforms, finite

field multiplication could be achieved more efficiently in the frequency domain than in the

time domain for even small finite fields, e.g. ∼ 160 bits in length, relevant to ECC.

Chapter 6

Implementing Elliptic Curve

Cryptography in the Frequency

Domain1

Acknowledgement: The material presented in this chapter is the result of a joint work

with Sandeep Kumar and Prof. Christof Paar at the Communication Security Group, Ruhr-

University Bochum, Germany.

6.1 Introduction

Elliptic curve cryptosystems [35, 55] are favorable choices for asymmetric data encryption

compared to other popular algorithms such as RSA [73] mainly due to their requirement

for smaller key sizes. According to the current best security estimates, the same level of

security provided by a 1024-bit key in RSA can be achieved with only a 160-bit key in

elliptic curve cryptography (ECC) [44, 45]. The key size determines the size of the operands

over which finite field arithmetic operations are performed and consequently the efficiency of

the cryptosystem [15, 54]. A comprehensive overview for hardware implementations of RSA

and ECC are provided in [11].

Efficiency of an elliptic curve cryptosystem is highly dependent on the underlying finite

field arithmetic. Multiplication in GF (pm) can be achieved with a quadratic number of

multiplications and additions in the base field GF (p) using the classical schoolbook method

1The material presented in this chapter is included in [64].

46

CHAPTER 6. ECC IN THE FREQUENCY DOMAIN 47

of polynomial multiplication. In the base field, the multiplication operation is inherently

much more complex than other operations such as addition, therefore it is desirable that

one performs as small a number of base field multiplications as possible for achieving an

extension field multiplication. Discrete Fourier transform (DFT) modular multiplication,

introduced in Chapter 5, achieves multiplication in GF (pm) in the frequency domain with

only a linear number of base field GF (p) multiplications in addition to a quadratic number

of simpler base field operations such as additions/subtractions and bitwise rotations. In this

chapter, we prove with our hardware implementation results that by using the DFT modular

multiplication algorithm one can achieve efficient finite field multiplication in the frequency

domain for small operands, e.g. as small as 160 bits in length, relevant to ECC.

In an ECC processor the multiplier unit usually consumes the most area on the chip,

therefore it is crucial that one uses an area/time efficient multiplier, particularly in con-

strained environments, such as smart cards, wireless sensor network nodes or radio fre-

quency identification tags, where resources are precious. In this work we address this issue

by proposing an area/time efficient ECC processor architecture utilizing the DFT modu-

lar multiplication algorithm in a class of optimal extension fields (OEF) [8, 9] with the

Mersenne prime field characteristic p = 2n − 1 and the extension degree m = n. The pro-

posed ECC processor architecture utilizes a hardware-optimized version of the DFT modular

multiplication algorithm and requires an area ranging between 25k to 50k equivalent gates

for implementations over OEFs of size 169, 289 and 361 bits.

In Section 6.2, we briefly review the DFT modular multiplication algorithm. In Sec-

tion 6.3, we present an efficient elliptic curve cryptographic processor design which utilizes

an optimized DFT modular multiplier architecture over GF ((213 − 1)13), GF ((217 − 1)17)

and GF ((219− 1)19) for an ASIC implementation using AMI Semiconductor 0.35µm CMOS

technology. Finally, in Section 6.4 we present our implementation results.

6.2 DFT Modular Multiplication

Remember in Chapter 5 that for the frequency domain representations of the inputs a(x) ·
xm−1 and b(x) ·xm−1, both in GF (pm), the DFT modular multiplication algorithm, presented

with Algorithm 3, computes the frequency domain representation of a(x) · b(x) · xm−1 ∈

CHAPTER 6. ECC IN THE FREQUENCY DOMAIN 48

GF (pm). Hence, it keeps the Montgomery residue representation intact and allows for con-

secutive multiplications in the frequency domain using the same algorithm.

n p = 2n − 1 m d r equivalent binary field size

13 8191 13 26 −2 ∼ 2169

17 131071 17 34 −2 ∼ 2289

19 524287 19 38 −2 ∼ 2361

Table 6.1: List of parameters suitable for optimized DFT modular multiplication

As shown in Table 5.2 of Section 5.6, when r = −2, p = 2n − 1, the field generating

polynomial is f(x) = xm−2, m is odd and m = n, the complexity of Algorithm 3 can be im-

proved by simple precomputations. We present the optimized algorithm for this special case

with Algorithm 4 and in Table 6.1 we suggest a list of parameters for implementation of the

optimized algorithm over finite fields of different sizes. Note that the listed parameters are

perfectly suited for ECC. In Section 6.4, we will provide hardware implementation results for

all the finite fields listed in Table 6.1 and thus show the relevance of the optimized algorithm

for area/time efficient hardware implementation of ECC in constrained environments.

6.3 Implementation of an ECC Processor Utilizing DFT

Modular Multiplication

In this section we present a hardware implementation of an ECC processor which uses

the DFT modular multiplication algorithm introduced with Algorithm 3 in Chapter 5 and

optimized with Algorithm 4 in this chapter. The DFT modular multiplication algorithm

trades off computationally expensive modular multiplication operations for simple bitwise

rotations which can be achieved practically for free in hardware by proper rewiring. We

exemplarily use the field GF ((213− 1)13) to explain our design, although the design is easily

CHAPTER 6. ECC IN THE FREQUENCY DOMAIN 49

Algorithm 4 Optimized DFT modular multiplication in GF (pm) for r = −2, d = 2m,
p = 2n − 1, m odd, m = n and f(x) = xm − 2

Input: d = 2m, (A) ≡ a(x) ∈ GF (pm), (B) ≡ b(x) ∈ GF (pm)
Output: (C) ≡ a(x) · b(x) · x−(m−1) ∈ GF (pm)
1: for i = 0 to d− 1 do
2: Ci ← Ai ·Bi

3: end for
4: for j = 0 to m− 2 do
5: S ← 0
6: for i = 0 to d− 1 do
7: S ← S + Ci

8: end for
9: S ← −S/d

10: Shalf ← S/2
11: Seven ← Shalf

12: Sodd ← S + Shalf

13: for i = 0 to d− 1 do
14: if i mod 2 = 0 then
15: Ci ← Ci + Seven

16: else
17: Ci ← −(Ci + Sodd)
18: end if
19: Ci ← Ci/2

i

20: end for
21: end for
22: Return (C)

CHAPTER 6. ECC IN THE FREQUENCY DOMAIN 50

extendable for the other parameter sizes mentioned in Table 6.1 and the implementation

results for all the parameter sizes are given in Section 6.4.

We first describe the implementation of the base field arithmetic in GF (213−1) and then

make parameter decisions based on Algorithm 4 to implement an efficient DFT modular

multiplier. Then we present the overall processor design to compute the ECC scalar point

multiplication operation.

6.3.1 Base Field Arithmetic

Base field arithmetic consists of addition, subtraction (addition with a negation) and multi-

plication in GF (213 − 1). We design our arithmetic architectures here to ensure area/time

efficiency.

Base Field Addition

Addition in the base field is implemented using a ripple carry adder. Reduction with the

Mersenne prime p = 213− 1 is just an extra addition of the carry generated. This additional

addition is always hard wired, independent of the value of the carry, to avoid any timing

related attacks. Figure 6.1 shows the design of the base field adder built using half adders

and full adders.

FAFAFA HA

a0b0a1b1a2b2a12b12

c�1c�2c�12 c�0

HAHAHAHA

c1c2c12 c0

ca1ca2ca12

ca13

ca13

0

Figure 6.1: Base Field Addition Architecture

CHAPTER 6. ECC IN THE FREQUENCY DOMAIN 51

Base Field Negation

Negation in the base field is extremely simple to implement with a Mersenne prime p as the

field characteristic. Negation of B ∈ GF (p) is normally computed as B′ = p−B. However,

when p is a Mersenne prime, it is easy to see from the binary representation of p = 213 − 1

(which is all 1’s) that this subtraction is equivalent to flipping (NOT) of the bits of B. Hence,

subtraction in this architecture can be implemented by using the adder architecture with an

additional bitwise NOT operation on the subtrahend.

HA

Multiplication core

Ripple carry adder

HAHA

HA HA HA

HA

FAFAFA

FA FA FA

FAFAFA

FA FA

Figure 6.2: Base Field Multiplication with Interleaved Reduction

Base Field Multiplication

Base field multiplication is a 13 × 13-bit integer multiplication followed by a modular re-

duction with p = 213 − 1. Since p is a Mersenne prime, an efficient way to implement this

operation is to do an integer multiplication with interleaved reduction. Figure 6.2 shows the

design of our base field multiplier architecture. It consists of the multiplication core, which

performs integer multiplication with interleaved reduction of the carry, and a reduction unit

CHAPTER 6. ECC IN THE FREQUENCY DOMAIN 52

for the final reduction of the result which is performed using a ripple carry adder.

FA

ai b(i+k)mod13

ca(i,k)

ca((i+1)mod13,

k+1)

c�k

c�(k+1)

Figure 6.3: Processing Cell for the Base Field Multiplier Core

The processing cell of the multiplier core, which is shown in Figure 6.3, is built with a

full adder. Here, ai and bi represent the inputs, cai represents the carry, and i and k are the

column and row numbers, respectively, in Figure 6.2.

red

o_e

o_e

Ci

SoddSeven

S

rot

regreg

reg

Ci

0

0

0

1

1

1

FIFO

cyclic

register

block

MUL

red

red

-1/d

Ai

Bi

S

0 1

10

Figure 6.4: DFT Modular Multiplier Architecture

6.3.2 Polynomial Multiplier

Finite field multiplication of polynomials in an extension field, with coefficients in the base

field, is computed using a polynomial multiplier. Using an extension field GF (pm), one can

CHAPTER 6. ECC IN THE FREQUENCY DOMAIN 53

reduce the area of a finite field multiplier in a very natural way, since in this case only

a smaller base field multiplier is required. For instance, for performing multiplication in

GF ((213 − 1)13), only a 13 × 13-bit base field multiplier is needed. However, an imple-

mentation in the time domain has the disadvantage of having a quadratic time complexity,

because a total number of 13× 13 = 169 base field multiplications need to be computed. In

our design, we save most of these base field multiplications by utilizing DFT modular mul-

tiplication which requires performing only a linear number of 26 base field multiplications

(see Steps 1− 3 in Algorithm 4).

Algorithm 5 Pseudo-code for hardware implementation of DFT modular multiplication

Input: d = 2m, (A) ≡ a(x) ∈ GF (pm), (B) ≡ b(x) ∈ GF (pm)
Output: (C) ≡ a(x) · b(x) · x−(m−1) ∈ GF (pm)
1: S ← 0
2: for i = 0 to d− 1 do
3: Ci ← Ai ·Bi

4: S ← S + Ci

5: end for
6: for j = 0 to m− 2 do
7: S ← −S/d
8: Seven ← S/2
9: Sodd ← S + S/2

10: S ← 0
11: for i = 0 to d− 1 do
12: if i mod 2 = 0 then
13: Ci ← Ci + Seven

14: else
15: Ci ← −(Ci + Sodd)
16: end if
17: Seven ← Seven/2
18: Sodd ← Sodd/2
19: for k = i + 1 to d− 1 do
20: Ck ← Ck/2
21: end for
22: S ← S + Ci

23: end for
24: end for
25: Return (C)

CHAPTER 6. ECC IN THE FREQUENCY DOMAIN 54

DFT Modular Multiplication

For the application of DFT modular multiplication, Algorithm 4 is modified for an opti-

mized hardware implementation. The main design decision here is to use a single base field

multiplier to perform Step 2 (for pairwise coefficient multiplications) and Step 9 (for mul-

tiplications with the constant −1/d). Next, the two loops Steps 6 − 8 (for accumulating

Ci’s) and Steps 13 − 20 (for computing Ci’s) were decided to be performed in parallel si-

multaneously. The final design that emerged is as shown in Figure 6.4 and the functionality

is represented by the pseudo-code in Algorithm 5. During Steps 2 − 5 (Algorithm 5) the

multiplexer select signal red is set to 0 and later it is set to 1 for the remaining steps. This

allows MUL (the base field multiplier) to be used for the initial multiplication, with the

proper results accumulated in the register S. The registers Seven and Sodd cyclically rotate

their contents every clock cycle for performing Steps 17 and 18 (Algorithm 5), respectively.

Step 19 in Algorithm 4, which involves different amounts of cyclic rotations for different

Ci, would normally be inefficient to implement in hardware. In this work, this problem

is solved in a unique way with the FIFO (First-In First-Out) cyclic register block. This

temporary memory location for storing Ci values pushes in values till it is completely full.

In the next loop, as the values are moved out of the FIFO, each of them is cyclically rotated

at each clock cycle as they move up. Hence the different Ci values are cyclically rotated by

different number of bits with no extra cost. The pseudo-code which shows the functionality

of the memory block is given with Steps 19−21 of Algorithm 5. Steps 14−18 in Algorithm 4

are implemented using the two multiplexers with the select signal o e.

Thus, based on an iterative study of different architectures we investigated, in Algorithm 5

we show the steps of an optimized version of the original DFT modular multiplication al-

gorithm presented in Chapter 5 with Algorithm 3. Algorithm 5 is a hardware optimized

and reordered version of Algorithm 3, which is fine tuned to generate a hardware efficient

architecture. Due to its regular design, the proposed DFT modular multiplier architecture

is easy to layout. The area is optimized by reusing the various components. Also, since all

the bus signals are 13-bits wide, signal routing is made extremely easy in the design.

CHAPTER 6. ECC IN THE FREQUENCY DOMAIN 55

DFT
MUL

ADD

Control

Unit

rst start

rst

start

done

Dout

load

Din

addr

Memory

Arithmetic

Unit

done

A

B

C

Figure 6.5: Top Level ECC Processor Architecture

6.3.3 Point Arithmetic

The overall architecture of the ECC processor is shown in Figure 6.5. The Arithmetic Unit

consists of the DFT modular multiplier unit, and the base field adder unit which has a

negation unit on one of its inputs for performing also the subtraction. All the necessary

point variables are stored in the Memory component. We use FIFO registers here, because

DFT modular multiplication and addition/subtraction operate only on 13 bits of the data at

each clock cycle. This enables our processor to use 13-bit wide buses throughout the design,

resulting in easy routing with reduced power consumption. To avoid losing the contents of

the memory when being read out, they are looped back in the FIFO block, if new values are

not being written in.

The Control Unit is the most important component which performs point arithmetic by

writing the required variables onto the A and B busses, performing the required operations

on them and storing the result back to the proper memory register. The Control Unit is also

responsible for interacting with the external world by reading in inputs and writing out the

results. The instruction set of the Control Unit is given in Table 6.2.

In our design, ECC point arithmetic is performed using mixed Jacobian-affine coordi-

nates [54] and thus inversions are avoided. Here, we assume the utilized elliptic curve is of

the form y2 = x3 − 3x + b. We use the binary NAF method (Algorithm 3.31 in [54]) with

mixed coordinates to perform point multiplication. Point arithmetic is performed in such a

way that the least amount of temporary storage is required. Since the point multiplication

algorithm allows overwriting of the inputs while performing point doubling and addition,

it requires only three extra temporary memory locations. The point doubling operation

CHAPTER 6. ECC IN THE FREQUENCY DOMAIN 56

is performed in Jacobian coordinates and requires 8 DFT modular multiplications and 12

sequence additions (or subtractions). Point addition is performed in mixed Jacobian-affine

coordinates and requires 11 DFT modular multiplications and 7 additions. Point subtrac-

tion (for the binary NAF method) is easily implemented in exactly the same way as point

addition with the exception of flipping the bits of y2, the y-coordinate of the point to be

subtracted. The Memory unit therefore consists of eight FIFO register blocks, one for each

sequence, and has the total size of 26× 13× 8 = 2704 bits.

Command Action

LOAD [addr] Load data into the register [addr]

READ [addr] Read data from the register [addr]

DFT MULT [addrA] [addrB] [addrC] Perform DFT modular multiplication on
the sequences in [addrA] and [addrB],
and store the result in [addrC]

ADD SEQ [addrA] [addrB] [addrC] Perform base field addition on the
sequences in [addrA] and [addrB], and
store the result in [addrC]

SUB SEQ [addrA] [addrB] [addrC] Perform base field subtraction on the
sequences in [addrA] and [addrB],
and store the result in [addrC]

MOVE SEQ [addrA] [addrB] Move data from the register [addrA]
to the register [addrB]

DFT SEQ [addr] Convert the data sequence in [addr]
to the frequency domain

TIME SEQ [addr] Convert the data sequence in [addr]
to the time domain

Table 6.2: Controller Commands of the ECC Processor

CHAPTER 6. ECC IN THE FREQUENCY DOMAIN 57

The inversion operation required for the final conversion from projective to affine coor-

dinates is performed using Fermat’s Little Theorem. The conversion from the time to the

frequency domain, and vice-versa, is achieved by simple rotations which are performed using

the FIFO cyclic register block inside the DFT modular multiplier unit.

Field Arithmetic Unit Control Unit Memory Total Area

GF ((213 − 1)13) 5537.06 351.26 18768.66 24754.62
GF ((217 − 1)17) 6978.95 362.56 31794.52 39243.00
GF ((219 − 1)19) 10898.82 362.89 39586.72 50959.02

Table 6.3: Areas (in equivalent gate counts) for the presented ECC processor

6.4 Performance Analysis

In this section, we present the implementation results for our ECC processor design for three

different finite fields: GF ((213− 1)13), GF ((217− 1)17) and GF ((219− 1)19). For our perfor-

mance measurements, we synthesized for a custom ASIC design using AMI Semiconductor

0.35µm CMOS technology using the Synopsys Design Compiler tools. Timing measurements

were performed using the Modelsim simulator against test vectors generated with Maple. Ta-

ble 6.4 presents the number of clock cycles required for DFT modular multiplication and

ECC point arithmetic. It also shows the maximum clock frequency of the processor and the

total time required to perform a point multiplication. Table 6.3 shows the area requirements

for the ECC processor in terms of the equivalent number of NAND gates. The areas required

for each of the three main components of the processor are also shown individually.

Although there are numerous ECC hardware implementations which are openly available

in the literature, in Table 6.5 we attempt to compare our results only to VLSI implemen-

tations of ECC oriented towards similar application scenarios requiring small area with

moderate speed. To the best of our knowledge, the only OEF implementation in hardware

is presented by Lee et al. [43]. The authors present an FPGA implementation of ECC over

GF (pm), where p = 231 − 1 and m = 7, which is comparable to our implementation over

GF ((217 − 1)17). The best design mentioned here has a gate count of 228k and performs a

CHAPTER 6. ECC IN THE FREQUENCY DOMAIN 58

DFT Point Point Maximum Point
Field Multiplication Double Addition Frequency Multiplication

(MHz) (avg. ms)

GF ((213 − 1)13) 354 3180 4097 238.7 3.47
GF ((217 − 1)17) 598 5228 6837 226.8 10.33
GF ((219 − 1)19) 744 6444 8471 221.7 16.34

Table 6.4: Timing measurements (in clock cycles) for the presented ECC processor

Implementation Field Size Area Maximum Point
(equiv. binary) (equiv. kgates) Frequency Multiplication

(MHz) (avg. ms)

Lee et. al. [43] ∼ 2217 228 26 11
Öztürk et. al. [61] ∼ 2165 30 100 6.3
Satoh and Takano [74] ∼ 2160 28 364 7.5

Ours ∼ 2169 24.8 238.7 3.47
∼ 2289 39.2 226.8 10.33
∼ 2361 50.9 221.7 16.34

Table 6.5: Comparisons with other ECC processors for similar application scenarios

scalar point multiplication in 11 ms at a maximum possible clock frequency of 26 MHz. The

huge area is due to the inversion unit that is used as an alternative to projective coordinates

used in our design. This leads to our design being a factor of 5.8 smaller than the only known

OEF hardware implementation but still being able to provide the same timing performance.

We would like to compare our results also to ECC implementations over other fields for

similar applications. An implementation of ECC over the prime field GF ((2167+1)/3), which

has a comparable key length with our implementation over GF ((213 − 1)13), is presented in

[61]. This design occupies an area of around 30k gates and achieves a point multiplica-

tion in 6.3 ms at 100 MHz clock frequency. Our design is 20% smaller than this design

and still efficient in performance. Finally, we compare our design to the scalable dual-field

based implementation presented by Satoh and Takano [74]. For the 160-bit field size, this

CHAPTER 6. ECC IN THE FREQUENCY DOMAIN 59

implementation has an area of 28k gates and achieves a point multiplication in 7.5 ms at

the maximum clock frequency of 364 MHz. Our implementation over GF ((213 − 1)13), with

the same field size, is more efficient in terms of both area and time. Based on these obser-

vations, we can easily confirm that the proposed implementation is area efficient without

compromising on speed.

6.5 Conclusion

In this chapter, we presented the first hardware implementation of a frequency domain

multiplier suitable for ECC and the first hardware implementation of ECC in the frequency

domain. We proposed a novel area/time efficient ECC processor architecture which performs

all finite field arithmetic operations in the frequency domain. The proposed architecture

utilizes the DFT modular multiplication algorithm in a class of OEFs GF (pm) where the

field characteristic is a Mersenne prime p = 2n − 1 and m = n. The main advantage of our

architecture is that it achieves extension field modular multiplication in the frequency domain

with only a linear number of base field GF (p) multiplications in addition to a quadratic

number of simpler operations such as addition and bitwise rotation. We synthesized our

architecture for custom VLSI CMOS technology to estimate the area and time performance,

and showed that the proposed ECC processor is time/area efficient and would be useful in

resource constrained applications.

Chapter 7

Inversion in the Frequency Domain1

7.1 Introduction

In Chapter 5, we introduced an efficient method, named DFT modular multiplication, for

computing the Montgomery product of finite field elements in the frequency domain. With

this method, we showed that multiplication in GF (pm) can be achieved with only a linear

number of base field GF (p) multiplications in addition to a quadratic number of simpler

base field operations such as addition and fixed bitwise rotation for practical values of p and

m relevant to elliptic curve cryptography (ECC). In Chapter 6, we introduced an efficient,

low-area implementation of an ECC processor architecture which utilizes the DFT modular

multiplication algorithm and operates in the frequency domain. The introduced architecture

performed all finite field arithmetic operations in the frequency domain, however it avoided

inversions through the use of the projective coordinates. Even though the proposed architec-

ture proved efficient for hardware implementations of ECC, the memory required for storing

the projective point coordinates constituted a large amount of the circuit area. Projective

coordinate representation requires three coordinate values to represent a point, while affine

coordinate representation requires only two, and this may be a drawback for projective co-

ordinate implementations of ECC in tightly constrained devices. Therefore, it is important

to have a frequency domain inversion algorithm in order to realize ECC in affine coordinates

potentially yielding lower storage requirement and power consumption. In this chapter, we

introduce an adaptation of the Itoh-Tsujii inversion algorithm, described in Chapter 2, to the

frequency domain for a class of OEFs GF (pm) where the field characteristic is a Mersenne

1The material presented in this chapter is included in [70].

60

CHAPTER 7. INVERSION IN THE FREQUENCY DOMAIN 61

prime p = 2n − 1 or a Mersenne prime divisor p = (2n − 1)/t for a positive integer t and

m = n. Our algorithm achieves an extension field GF (pm) inversion with only a single

inversion, O(m log m) multiplications and constant multiplications, O(m2 log m) additions

and O(m2 log m) fixed bitwise rotations in the base field GF (p).

7.2 Itoh-Tsujii Inversion in the Frequency Domain

We propose a direct adaptation of the Itoh-Tsujii algorithm to the frequency domain for

inversion in OEFs. As described in Section 2.2.1 of Chapter 2, Itoh-Tsujii inversion involves

a chain of multiplications and Frobenius map computations in GF (pm) in addition to a single

inversion in the base field GF (p). For the required GF (pm) multiplications, we propose using

DFT modular multiplication introduced in Chapter 5. Since Frobenius map computations

can be achieved very easily in the time domain with simple pairwise multiplications, we pro-

pose performing the required Frobenius map computations in the time domain by applying

the inverse NTT. Hence, back and forth conversions are needed between the frequency and

time domains for the Frobenius map computations.

For efficient computation of the required DFT modular multiplications and Frobenius

map computations in GF (pm), we propose using efficient parameters such as the irreducible

field generating binomial f(x) = xm − 2 for constructing GF (pm), the dth primitive root of

unity as r = −2, and the field characteristic as the Mersenne prime divisor p = (2n − 1)/t

for a positive integer t, where n is odd and equals the field extension degree m. In this case,

r = −2 ∈ GF (p) is a primitive root of unity of order 2m and hence d = 2m. Theorem 7 in

Chapter 5 proved that for p = (2n − 1) and m = n, f(x) = xm − 2 is irreducible over GF (p)

for all practical values of p relevant to ECC. Furthermore, in Appendix a list of relevant

binomials of the form f(x) = xm − 2 are presented and shown to be irreducible over GF (p)

for many values of p = (2n − 1)/t.

As noted in Chapters 4 and 5, when r = −2 and p = (2n − 1)/t for a positive integer t,

a modular multiplication in GF (p) with a power of r can be achieved very efficiently with a

simple bitwise rotation in addition to a negation if the power is odd. It was also shown in

Chapter 5 that for r = −2, m odd and n = m, the DFT modular multiplication algorithm

can be optimized by precomputing some intermediary values in the algorithm. Remember

that when the field generating polynomial is f(x) = xm − 2, r = −2, p = (2n − 1)/t for

a positive integer t, and m is odd and equal to n, i.e. when the bit length of the field

CHAPTER 7. INVERSION IN THE FREQUENCY DOMAIN 62

characteristic p = 2n − 1 is equal to the field extension degree, the complexity of the DFT

modular multiplication algorithm is only 2m multiplications, m−1 constant multiplications,

4m2 − 4m additions/subtractions and 2m2 − m − 1 bitwise rotations in terms of GF (p)

operations, as presented in Table 7.2. A list of such efficient parameters suited for ECC is

given in Table 7.1.

n p = (2n − 1)/t m d r equivalent binary field size

13 8191/1 13 26 −2 ∼ 2169

17 131071/1 17 34 −2 ∼ 2289

19 524287/1 19 38 −2 ∼ 2361

23 8388607/47 23 46 −2 ∼ 2401

Table 7.1: Short list of efficient parameters for inversion in GF (pm) in the frequency domain

In Algorithm 6, we present the frequency domain Itoh-Tsujii algorithm exemplarily for

the finite field GF (pm) with p = 213 − 1 and m = 13. Note in Algorithm 6 that, for

A,B ∈ GF (pm) and a positive integer i, FrobeniusMap(A,i) denotes the ith Frobenius map

of A and equals Api
, and DFTmul(A,B) denotes the DFT modular multiplication of A and

B. Ae−1 is computed in Steps 2−10 of the algorithm with four DFT modular multiplications

and five pi-th power exponentiations in GF (pm), by using two temporary variables. However,

there is a trade-off between the amount of temporary storage requirement and the required

number of multiplications and Frobenius map computations. In the computation of Ae−1,

one can always minimize the number of required temporary variables to one by using an alter-

nating chain of p-th power exponentiations and multiplications with A, e.g., in Algorithm 6

Ae−1 can be computed with the following chain of computations T1 = A(10)p , T1 = A(11)p ,

T1 = A(110)p , T1 = A(111)p , T1 = A(1110)p , T1 = A(1111)p , T1 = A(11110)p , T1 = A(11111)p ,

T1 = A(111110)p , T1 = A(111111)p , T1 = A(1111110)p , T1 = A(1111111)p , T1 = A(11111110)p , T1 =

A(11111111)p , T1 = A(111111110)p , T1 = A(111111111)p , T1 = A(1111111110)p , T1 = A(1111111111)p ,

T1 = A(11111111110)p , T1 = A(11111111111)p , T1 = A(111111111110)p , T1 = A(111111111111)p and

T1 = A(1111111111110)p by performing eleven multiplications with A and twelve p-th power

exponentiations in GF (pm). We would like to note here that DFT modular multiplica-

tions in Algorithm 6 keep the Montgomery residue representation intact, but each Frobenius

CHAPTER 7. INVERSION IN THE FREQUENCY DOMAIN 63

Algorithm 6 Itoh-Tsujii inversion in GF (pm) in the frequency domain where p = 2n − 1,
n = 13 and m = n (for A,B ∈ GF (pm) and a positive integer i, FrobeniusMap(A, i) denotes
Api ∈ GF (pm) and DFTmul(A,B) denotes the result of the DFT modular multiplication of
A and B)

Input: (A) ≡ a(x) · xm−1 ∈ GF (pm)
Output: (B) ≡ a(x)−1 · xm−1 ∈ GF (pm)
1: // Compute M · a(x)e−1 · xm−1 ∈ GF (pm), where e = pm−1 + pm−2 + pm−3 + · · ·+ p + 1
2: T1 ← FrobeniusMap(A, 1) // A(10)p

3: T1 ← DFTmul(T1, A) // A(11)p

4: T2 ← FrobeniusMap(T1, 2) // A(1100)p

5: T1 ← DFTmul(T1, T2) // A(1111)p

6: T2 ← FrobeniusMap(T1, 4) // A(11110000)p

7: T1 ← DFTmul(T1, T2) // A(11111111)p

8: T2 ← FrobeniusMap(T1, 4) // A(111111110000)p

9: T1 ← DFTmul(T2, T1) // A(111111111111)p

10: T2 ← FrobeniusMap(T1, 1) // A(1111111111110)p

11: // Compute M · a(x)e · xm−1 ∈ GF (pm)
12: T1 ← DFTmul(T2, A)
13: // Compute M−1 · (a(x)e)−1 ∈ GF (p)
14: A−e ← T1−1

0

15: // Compute a(x)−1 · xm−1 ∈ GF (pm)
16: for i = 0 to d− 1 do
17: Bi ← A−e · T2i

18: end for
19: Return (B)

CHAPTER 7. INVERSION IN THE FREQUENCY DOMAIN 64

map computation adds an additional factor to the result. However, we will see in detail in

in the remainder of this section that these additional factors cancel out within the algorithm.

Frobenius Map Computations:

We have seen in Section 2.2.1 of Chapter 2 that, when the field extension degree m is prime

and the field generating polynomial f(x) is a binomial, a Frobenius map computation in

GF (pm) in the time domain is a simple fixed pairwise multiplication of the polynomial coef-

ficients. Therefore, in our frequency domain Itoh-Tsujii algorithm we propose to perform the

Frobenius map computations in the time domain. In order to do so, we will convert a fre-

quency domain sequence to the time domain before computing its Frobenius endomorphism

and come back to the frequency domain afterwards as shown in Algorithm 7. For d = 2m,

since the time domain sequences have zeros as their higher ordered m elements, the NTT

computations in Algorithm 7 can be simplified. Furthermore, since d = 2m is composite, the

performance of the NTT can be improved by utilizing the fast Fourier transform (FFT) [21]

for a single level. We present the equivalent single level FFT computation for the inverse

NTT operation with (7.1), and for the forward NTT computation with (7.2) and (7.3). Note

that (7.2) and (7.3) are equivalent, except for the sign between the two summations.

ai =
2

d
·

m−1∑
j=0

A2jr
−2ij , 0 ≤ i ≤ m− 1 (7.1)

Aj =

m−1
2∑

i=0

a2ir
2ij + rj

m−3
2∑

i=0

a2i+1r
2ij , 0 ≤ j ≤ m− 1 (7.2)

Aj+m =

m−1
2∑

i=0

a2ir
2ij − rj

m−3
2∑

i=0

a2i+1r
2ij , 0 ≤ j ≤ m− 1 (7.3)

As described with Theorem 2 and Corollary 1 in Chapter 2, when m is prime and f(x) =

xm − w is irreducible over GF (p), the equality (xj)pi
= wtxj (mod f(x)), where t = jpi−j

m
,

holds. Hence, the Frobenius coefficients do not need to be permuted. Furthermore, when

p = (2n − 1)/t, m = n is prime and f(x) = xm − 2, the following equality holds for the jth

CHAPTER 7. INVERSION IN THE FREQUENCY DOMAIN 65

coefficient of the ith iterate of the Frobenius map

wt = 2
jpi−j

m = 2
j(pi−1)

m = 2j(pi−1+pi−2+···+p+1) p−1
m .

Due to the first condition of Theorem 1 (in Chapter 2), since f(x) = xm− 2 is irreducible in

GF (p), m|ord(2) and hence m|(p − 1). Thus, the above Frobenius map coefficients are all

powers of 2 and multiplications by these coefficients can be achieved with m−1 simple bitwise

rotations as shown in Step 5 of Algorithm 7. In Algorithm 7, FrobeniusMapCoefficient(i, j)

equals j(pi−1)
m

mod n and denotes the amount of bitwise left-rotations to be performed on the

jth coefficient of the time domain sequence to achieve the ith iterate of the Frobenius map.

With all the above mentioned optimizations utilized, the complexity of Algorithm 7 in terms

of GF (p) operations is m constant multiplications, m2 − 2m + 1 fixed bitwise rotations and

m2 − m additions for the inverse NTT computation, m2 − 2m + 1 fixed bitwise rotations

and m2 additions/subtractions for the forward NTT computation and m − 1 fixed bitwise

rotations for the Frobenius map computation in the time domain, totaling m constant mul-

tiplications, 2m2 − 3m + 1 fixed bitwise rotations and 2m2 −m additions/subtractions, as

given in Table 7.2.

Algorithm 7 Frobenius map computation in GF (pm) in the frequency domain when
p = (2n − 1)/t, and the irreducible field generating polynomial is f(x) = xm − 2

(FrobeniusMapCoefficient(i, j) = j(pi−1)
m

mod n)

Input: i, (A) ≡ a(x) · xm−1 ∈ GF (pm)
Output: (B) ≡ (a(x) · xm−1)pi ∈ GF (pm)
1: // Compute the time domain representation (a) of (A) using the inverse NTT
2: (a) ← InverseNTT((A))
3: // Perform pairwise multiplications through simple bitwise rotations
4: for j = 1 to m− 1 do
5: aj ← aj << FrobeniusMapCoefficient(i, j) // left rotate the bits of aj

6: end for
7: // Compute the frequency domain representation (A) of (a) using the NTT
8: (A) ← NTT((a))
9: Return ((A))

Note that, in Algorithm 6, DFTmul(A,B) function which computes the DFT modular

multiplication of (A) and (B) keeps the Montgomery representation with the multiplicative

factor xm−1 intact, however FrobeniusMap(A, i) function which computes the ith iterate of

the Frobenius endomorphism on (A) adds an additional term to the multiplicative factor

CHAPTER 7. INVERSION IN THE FREQUENCY DOMAIN 66

xm−1. Remember in Corollary 1 (Chapter 2) that when m is prime and f(x) = xm − 2,

the ith iterate of the Frobenius endomorphism on xm−1 results in (xm−1)pi
= 2txm−1 where

t = (m−1)pi−(m−1)
m

. Through the Frobenius map computations in Algorithm 6, the addi-

tional multiplicative factors 2t accumulate to some value M until the computation of Ae−1

in Step 10. Thus, in Step 12, the computed value T1 corresponds to some time domain

value M · a(x)e · xm−1. Note that the ith coefficient of the NTT of M · a(x)e · xm−1 is equal

to T1i = M · a(x)e · ri(m−1) and thus T10 = M · a(x)e. Hence, M · a(x)e ∈ GF (p) can

be obtained by looking at the 0th coefficient of T1. In Step 14, by taking the inverse of

T10, T1−1
0 = M−1 · a(x)−e, rather than the desired value a(x)−e, is obtained. However,

the M−1 factor cancels out in the last step, i.e. in Step 17, when this false value of A−e

corresponding to M−1 · a(x)−e is multiplied with the false value of Ae−1 in T2 corresponding

to M · a(x)e−1 · xm−1 to give us the expected correct result which is the frequency domain

representation of a(x)−1 · xm−1 ∈ GF (pm).

Inversion in GF (p):

We propose using Fermat inversion for performing the single inversion in GF (p) required in

Step 14 of Algorithm 2. For an n-bit prime p, this inversion can be conducted by taking

the (p− 2)nd power of the operand through a square-and-multiply chain with no more than

n− 1 multiply and n− 1 square operations in GF (p).

Complexity of Itoh-Tsujii Inversion in the Frequency Domain:

As described with Algorithm 6 for the exemplary finite field GF (pm) with p = 213 − 1 and

m = 13, Itoh-Tsujii algorithm achieves inversion utilizing a chain of multiplications and

Frobenius map computations. Remember in Section 2.2.1 of Chapter 2 that in order to com-

pute Ae−1, e.g. in Steps 1 − 10 of Algorithm 6, one needs to perform ∆ − 1 multiplications

and ∆ Frobenius map computations in GF (pm), where ∆ = blog2(m − 1)c + HW (m − 1).

For inversion in the frequency domain, we propose to use the DFT modular multiplication

algorithm (Algorithm 3) for the required multiplications and Algorithm 7 for the required

Frobenius map computations. Ae can be computed with an additional DFT modular multi-

plication in the frequency domain, as in Step 12 of Algorithm 6. The single GF (p) inversion

CHAPTER 7. INVERSION IN THE FREQUENCY DOMAIN 67

A−e, as in Step 14 of Algorithm 6, can be computed using Fermat inversion with no more

than n− 1 multiplications and n− 1 squarings in GF (p) for p = (2n − 1)/t. Finally, A−1 is

computed, as in Steps 16− 18 of Algorithm 6, with 2m multiplications in GF (p). We have

seen that when the field generating polynomial is f(x) = xm−2, p = (2m−1)/t, d = 2m and

r = −2 is used as the dth primitive root of unity, DFT modular multiplication (Algorithm 3)

and Frobenius endomorphism (Algorithm 7) operations can be achieved extremely efficiently

with the complexities given in Table 7.2. Thus, the total complexity of Itoh-Tsujii inversion

in the frequency domain for such parameters is 2m∆ + 4m − 2 multiplications, 2m∆ − ∆

constant multiplications, 6m2∆ − 5m∆ additions and 4m2∆ − 4m∆ bitwise rotations in

GF (p) as given in Table 7.2.

#M #CM #A/S #R

Algorithm 3 2m m− 1 4m2 − 4m 2m2 −m− 1

ITI (frequency) 2m∆ + 4m− 2 2m∆−∆ 6m2∆− 5m∆ 4m2∆− 4m∆

Algorithm 7 − m 2m2 −m 2m2 − 3m + 1

ITI (time) m2∆−m2 − m2∆−m2 2m∆−m
+4m− 2 −m∆ + 2m− 1 −2∆ + 2

Table 7.2: Complexities of Algorithm 3, Algorithm 7, and time and frequency domain Itoh-
Tsujii inversion (ITI) in GF (pm) in terms of the number of required GF (p) multiplications,
constant multiplications, additions/subtractions and rotations, when f(x) = xm − 2, p =
(2n − 1)/t, m = n is odd and d = 2m, (∆ = blog2(m− 1)c+ HW (m− 1))

In the time domain the same Itoh-Tsujii inversion is achieved with slight differences. In

this case, for multiplications in GF (pm) the classical schoolbook method, as described with

(2.1) and (2.3), is used with the complexity of m2 multiplications, m2 − m additions and

m−1 bitwise rotations in GF (p). Furthermore, Frobenius map computations in GF (pm) are

achieved with the complexity of only m−1 bitwise rotations in GF (p). Since a(x)e is known

to be in GF (p), the multiplication a(x)e−1 · a(x) can be achieved by finding only the first

coefficient of the product with only m multiplications, m−1 additions and 1 bitwise rotation

CHAPTER 7. INVERSION IN THE FREQUENCY DOMAIN 68

in GF (p). The single GF (p) inversion, for computing (a(x)e)−1, can be achieved with 2(m−1)

multiplications and the product a(x)e−1 · a(x)−e can be computed with m multiplications in

GF (p). Thus, the total complexity of Itoh-Tsujii inversion in the time domain, for the same

parameters, is m2∆−m2 +4m− 2 multiplications, m2∆−m2−m∆+2m− 1 additions and

2m∆−m− 2∆ + 2 rotations in GF (p). The complexity of Itoh-Tsujii inversion both in the

frequency and time domains are presented in Table 7.2.

Frequency Domain Time Domain

#Multiplications 180 726
#Constant Multiplications 125 −
#Additions/Subtractions 4745 636
#Fixed Rotations 3120 109

Table 7.3: Complexities of Itoh-Tsujii inversion in GF (p13) in the time and frequency do-
mains in terms of the number of GF (p) operations for f(x) = x13 − 2 and p = 213 − 1

Multiplication operation is inherently more complex and usually takes more clock cycles

to run in hardware. In many modern microprocessors, in order to achieve higher clock rates,

deeper pipelines are designed in the processor microarchitectures which results in significant

differences in the number of clock cycles needed for different instructions. For instance,

in the processor microarchitecture of Pentium 4 the latency is only half a clock cycle for

a simple 16-bit integer addition, 1 clock cycle for a 32-bit integer addition and 14 clock

cycles for a 32-bit integer multiplication [32]. As shown in Table 7.3 for the exemplary

finite field GF ((213−1)13), Itoh-Tsujii algorithm requires a dramatically less number of base

field multiplications in the frequency domain than in the time domain. Therefore, it may

be desirable to utilize frequency domain inversion in computational environments where

multiplication is expensive compared with other operations such as addition and bitwise

rotation.

In order to see the crossover points between the performances of time and frequency

domain Itoh-Tsujii algorithms for different multiplication/addition latency ratios k and dif-

ferent field extension degrees m, in Figure 7.1 we present the total number of clock cycles it

takes to achieve inversion with both methods assuming a base field addition/subtraction or

CHAPTER 7. INVERSION IN THE FREQUENCY DOMAIN 69

Figure 7.1: Number of required clock cycles for inversion in GF (pm) in the time and frequency
domains, for p = (2n−1)/t, m = n and f(x) = xm−2, assuming a GF (p) addition or bitwise-
rotation takes a single clock cycle while a GF (p) multiplication takes k clock cycles

bitwise-rotation operation takes only 1 clock cycle to complete and a base field multiplication

operation takes k clock cycles. As we can see in the graph, for small multiplication/addition

latency ratios inversion in the time domain performs clearly better. For the field extension

degree of m = 13, the crossover point is at around k = 14, and hence the latency ratio

k should be at least 14 for Itoh-Tsujii inversion in GF (p13) to perform better in the fre-

quency domain. As the field extension degree m gets larger, frequency domain inversion

starts performing better at smaller latency ratios.

7.3 Conclusion

In this chapter, the known first frequency domain finite field inversion algorithm is proposed

for ECC. The proposed algorithm is an adaptation of the Itoh-Tsujii algorithm for OEFs to

the frequency domain, and can achieve inversion in the extension field GF (pm) with only

CHAPTER 7. INVERSION IN THE FREQUENCY DOMAIN 70

a single inversion, O(m log m) multiplications and constant multiplications, O(m2 log m)

additions and O(m2 log m) fixed bitwise rotations in the base GF (p) for a class of OEFs

where the field characteristic p is a prime number of the form p = (2n − 1)/t, for a positive

integer t, and m = n. With its low computational complexity, i.e. O(m log m) in terms of

the required base field multiplications in addition to O(m2 log m) base field additions and

fixed bitwise rotations, the proposed algorithm would be well suited especially for efficient

low-power constrained hardware implementation of ECC using the affine coordinates.

Chapter 8

Conclusion

8.1 Summary and Conclusions

We investigated the application of the number theoretic transform (NTT) based multiplica-

tion, which found many applications in digital signal processing for multiplication of very

long sequences, e.g. with at least a few thousand elements, to finite fields with an emphasis

on elliptic curve cryptography (ECC), and presented practical parameters for its efficient

implementation. We showed the relationship between the NTT and the residue number

system (RNS) and proved that the frequency domain representation of a polynomial using

the NTT is equivalent to the RNS representation of the same polynomial provided certain

conditions are satisfied on the modulus polynomials defining the RNS. Hence we showed that

multiplication in GF (pm) using the NTT is equivalent to an optimal case of multiplication

in GF (pm) using the RNS in terms of the number of required GF (p) multiplications.

Furthermore, we introduced the DFT modular multiplication algorithm which performs

modular multiplication in the frequency domain using Montgomery reduction. By allowing

for modular reductions in the frequency domain the costly overhead of back and forth con-

versions between the frequency and time domains is avoided, and thus more efficient finite

field multiplication is made possible for cryptographic operand sizes. We showed that with

the utilization of the NTT in general, and with the DFT modular multiplication method in

particular, especially in computationally constrained platforms finite field multiplication can

be achieved more efficiently in the frequency domain than in the time domain for even small

finite fields, e.g. ∼ 160 bits in length, relevant to ECC.

We proposed a novel area/time efficient ECC processor architecture which utilizes DFT

71

CHAPTER 8. CONCLUSION 72

modular multiplication and performs all finite field arithmetic operations in the frequency

domain using the projective coordinates. We implemented our architecture in hardware and

synthesized it for custom VLSI CMOS technology to estimate the area and time performance.

We showed that the proposed ECC processor is time/area efficient and useful in resource

constrained environments such as wireless sensor networks. This work presented the first

hardware implementation of a frequency domain multiplier suitable for ECC and the first

hardware implementation of ECC in the frequency domain.

Without an efficient inversion algorithm, it is more preferable to implement an elliptic

curve cryptosystem using the projective coordinates, even though this may require more

storage and possibly result in degraded performance. We proposed an adaptation of the

Itoh-Tsujii inversion algorithm to the frequency domain which will make affine coordinate

implementation of ECC feasible in the frequency domain, and potentially result in less

storage requirement and improved performance. To the best of our knowledge, this is the

first time a frequency domain inversion algorithm is proposed for the implementation of ECC

in the frequency domain using affine coordinates.

8.2 Directions for Future Research

1. We identify the investigation of hardware architectures for efficient implementation of

the frequency domain inversion algorithm proposed in Chapter 7, and thus efficient

hardware implementation of ECC in the frequency domain using affine coordinates,

as a subject for further investigation. Research in this direction may result in ECC

processor architectures which may require less storage and yield better efficiency by

avoiding the use of projective coordinates.

2. A new normal form for elliptic curves, called Edwards curves, was introduced recently

by Harold M. Edwards in [26]. Edwards curves are shown to simplify the elliptic

curve group law significantly and hence improve the performance of an elliptic curve

cryptosystem [13, 12]. We believe using Edwards curves will improve the performance

of an elliptic curve cryptosystem operating in the frequency domain.

3. In this work, efficient finite field arithmetic operations using the NTT are investigated

mainly for efficient hardware implementation of ECC using OEFs. Arithmetic algo-

rithms similar to those introduced in this work may be investigated for normal bases,

CHAPTER 8. CONCLUSION 73

binary fields, i.e. GF (2m), or prime fields as well which will be also valuable in en-

abling the utilization of frequency domain finite field arithmetic for other cyptographic

algorithms such as RSA [73].

4. While widely used cryptographic algorithms are known to be strong against the com-

putational resources of an attacker, the real threat to cryptographic systems come from

the fault attacks [7, 16] which try to extract the cryptographic key by deliberately in-

jecting faults into a cryptosystem or side-channel attacks which utilize the side-channel

information such as timing [37], power dissipation [38, 19], thermal noise or electromag-

netic emanation [5], where the attacker utilizes the flaws in the implementation of a

cryptographic algorithm rather than the algorithm itself. We identify the investigation

of tamper resistance characteristics and possible strengths and/or weaknesses of the

algorithms and architectures presented in this dissertation, and of frequency domain

finite field arithmetic in general, against side-channel cryptanalysis as a direction for

further investigation.

5. We introduced frequency domain finite field arithmetic algorithms for ECC and pre-

sented a hardware implementation of ECC in the frequency domain. Efficient im-

plementation of frequency domain finite field arithmetic for ECC in general purpose

microprocessors is a direction for further study.

Appendix

Finite Field f(x)

GF ((213 − 1)11) x11 + 22x3 + 1, x11 + 23x2 + 1, x11 + 26x5 + 1
GF ((213 − 1)12) x12 + 25x5 + 1, x12 + 28x5 + 1, x12 + 25x7 + 1
GF ((213 − 1)13) x12 ± 2s0 , for 1 ≤ s0 ≤ 12
GF ((217 − 1)9) x9 + 26x + 1, x9 + 29x + 1, x9 + 211x2 + 1
GF ((217 − 1)11) x11 + 28x3 + 1, x11 + 213x3 + 1, x11 + 25x4 + 1
GF ((217 − 1)12) x12 + x + 1, x12 + x11 + 1, x12 + 29x5 + 1
GF ((217 − 1)13) x13 + 2x + 1, x13 + 22x + 1, x13 + 2x2 + 1
GF ((217 − 1)14) x14 + x2 + 1, x14 + x6 + 1, x14 + x8 + 1
GF ((217 − 1)15) x15 + 24x + 1, x15 + 25x2 + 1, x15 + 26x4 + 1
GF ((217 − 1)16) x16 + 25x5 + 1, x16 + 25x11 + 1, x16 + 216x5 + 216

GF ((217 − 1)17) x17 ± 2s0 , for 1 ≤ s0 ≤ 16
GF ((219 − 1)10) x10 ± 2s0 , for 1 ≤ s0 ≤ 18
GF ((219 − 1)11) x11 + 29x + 1, x11 + 213x + 1, x11 + 22x2 + 1
GF ((219 − 1)12) x12 + 211x + 1, x12 + 214x + 1, x12 + 210x5 + 1
GF ((219 − 1)13) x13 + 24x + 1, x13 + 24x2 + 1, x13 + 26x2 + 1
GF ((219 − 1)14) x14 + 23x + 1, x14 + 217x + 1, x14 + 23x2 + 1
GF ((219 − 1)15) x15 + 29x + 20, x15 + 218x + 1, x15 + x2 + 1
GF ((219 − 1)16) x16 + 218x3 + 1, x16 + 215x7 + 1, x16 + 215x9 + 1
GF ((219 − 1)17) x17 + x3 + 1, x17 + x14 + 1, x17 + 25x + 1
GF ((219 − 1)18) x18 + x8 + 1, x18 + x10 + 1, x18 + 22x + 1
GF ((219 − 1)19) x19 ± 2s0 , for 1 ≤ s0 ≤ 18
GF ((231 − 1)11) x11 + 220x + 1, x11 + 229x + 1, x11 + 25x4 + 1
GF ((231 − 1)12) x12 + 221x + 1, x12 + 223x + 1, x12 + 230x + 1
GF ((231 − 1)13) x13 + 28x + 1, x13 + 212x + 1, x13 + 215x + 1

Table 8.1: Short list of efficient irreducible polynomials for the construction of the finite
fields listed in Table 4.1

74

CHAPTER 8. CONCLUSION 75

Finite Field f(x)

GF ((215−1
217

)15) x15 + 22x3 + 22, x15 + 23x2 + 23, x15 + 24x3 + 24

GF ((223−1
47

)9) x9 + 22x + 1, x9 + 26x + 1, x9 + 29x + 1

GF ((223−1
47

)10) x10 + 28x + 1, x10 + 211x3 + 1, x10 + 218x3 + 1

GF ((223−1
47

)11) x11 + x5 + 1, x11 + x6 + 1, x11 + 24x + 1

GF ((223−1
47

)12) x12 + 22x + 1, x12 + 23x3 + 1, x12 + 27x3 + 1

GF ((223−1
47

)17) x17 + 215x + 1, x17 + 217x3 + 1, x17 + 25x4 + 1

GF ((223−1
47

)18) x18 + 29x + 1, x18 + 215x + 1, x18 + 27x3 + 1

GF ((223−1
47

)19) x19 + 216x4 + 1, x19 + 22x6 + 1, x19 + 215x8 + 1

GF ((223−1
47

)20) x20 + 211x7 + 1, x20 + 217x9 + 1, x20 + 217x11 + 1

GF ((223−1
47

)21) x21 + 29x + 1, x21 + 24x2 + 1, x21 + 26x7 + 1

GF ((223−1
47

)22) x22 + 217x3 + 1, x22 + 215x5 + 1, x22 + 25x7 + 1

GF ((223−1
47

)23) x23 ± 2s0 , for 1 ≤ s0 ≤ 22

GF ((227−1
511

)11) x11 + x3 + 1, x11 + x8 + 1, x11 + 225x + 1

GF ((227−1
511

)12) x12 + 24x + 1, x12 + 213x + 1, x12 + 222x + 1

GF ((227−1
511

)13) x13 + 25x3 + 1, x13 + 27x3 + 1, x13 + 2x5 + 1

GF ((227−1
511

)14) x14 + 225x + 1, x14 + 214x5 + 1, x14 + 214x9 + 1

GF ((232−1
65535

)13) x13 + 25x3 + 1, x13 + 211x3 + 1, x13 + 215x5 + 1

GF ((232−1
65535

)14) x14 + 22x3 + 1, x14 + 24x3 + 1, x14 + 211x5 + 1

GF ((232−1
65535

)15) x15 + 29x4 + 1, x15 + 25x7 + 1, x15 + 25x8 + 1

GF ((232−1
65535

)16) x16 + 212x11 + 212, x16 + x3 + 23, x16 + x11 + 23

GF ((233−1
14329

)17) x17 + 28x + 1, x17 + 29x2 + 1, x17 + 215x2 + 1

GF ((237−1
223

)11) x11 + 219x + 1, x11 + 231x + 1, x11 + 232x + 1

GF ((237−1
223

)12) x12 + 217x + 1, x12 + 219x + 1, x12 + 225x + 1

GF ((237−1
223

)13) x13 + 22x + 1, x13 + 224x + 1, x13 + 228x + 1

GF ((237−1
223

)14) x14 + 25x + 1, x14 + 221x3 + 1, x14 + 230x3 + 1

GF ((237−1
223

)15) x15 + 27x + 1, x15 + 222x + 1, x15 + 227x + 1

GF ((237−1
223

)16) x16 + 222x + 1, x16 + 23x3 + 1, x16 + 219x3 + 1

GF ((237−1
223

)17) x17 + 27x + 1, x17 + 211x2 + 1, x17 + 212x2 + 1

GF ((237−1
223

)18) x18 + x + 1, x18 + x17 + 1, x18 + 215x + 1

GF ((237−1
223

)19) x19 + x6 + 1, x19 + x13 + 1, x19 + 2x3 + 1

Table 8.2: Short list of efficient irreducible polynomials for the construction of the finite
fields listed in Table 4.2

CHAPTER 8. CONCLUSION 76

Finite Field f(x)

GF ((223
+ 1)13) x13 + 28x + 1, x13 + 215x + 1, x13 + 23x3 + 1

GF ((223
+ 1)14) x14 + 26x + 1, x14 + 214x + 1, x14 + 215x + 1

GF ((223
+ 1)15) x15 + 212x + 1, x15 + 213x + 1, x15 + 24x7 + 1

GF ((223
+ 1)16) x16 + 25x7 + 25, x16 + 211x9 + 211, x16 − 25x7 + 25

GF ((224
+ 1)7) x7 + 25x + 1, x7 + 215x + 1, x7 + 216x + 1

GF ((224
+ 1)8) x8 + x3 + 1, x8 + x5 + 1, x8 + 24x3 + 1

GF ((224
+ 1)13) x13 + 229x + 1, x13 + 25x3 + 1, x13 + 211x3 + 1

GF ((224
+ 1)14) x14 + 22x3 + 1, x14 + 24x3 + 1, x14 + 220x3 + 1

GF ((224
+ 1)15) x15 + 29x4 + 1, x15 + 229x2 + 1, x15 + 230x7 + 1

GF ((224
+ 1)16) x16 + 227x7 + 227, x16 + 229x5 + 229, x16 + 229x13 + 229

GF ((224
+ 1)29) x29 + x11 + 1, x29 + x18 + 1, x29 + 28x2 + 1

GF ((224
+ 1)30) x30 + 27x7 + 1, x30 + 223x7 + 1, x30 + 230x9 + 1

GF ((224
+ 1)31) x31 + 230x3 + 1, x31 + 231x3 + 1, x31 + 223x + 1

GF ((224
+ 1)32) x32 + 210x + 210, x32 + 225x5 + 225, x32 + 227x5 + 227

Table 8.3: Short list of efficient irreducible polynomials for the construction of the finite
fields listed in Table 4.3

CHAPTER 8. CONCLUSION 77

Finite Field f(x)

GF ((213+1
3

)13) x13 ± 2s0 , for 1 ≤ s0 ≤ 12

GF ((215+1
99

)15) x15 + 2, x15 + 22, x15 + 24

GF ((217+1
3

)17) x17 ± 2s0 , for 1 ≤ s0 ≤ 16

GF ((219+1
3

)19) x19 ± 2s0 , for 1 ≤ s0 ≤ 18

GF ((219+1
3

)10) x10 + 25x + 1, x10 + 224x + 1, x10 + 2x2 + 1

GF ((220+1
17

)20) x20 + 22x + 22, x20 + 216x + 216, x20 + 22x5 + 22

GF ((220+1
17

)10) x10 + 27x + 27, x10 + 215x + 215, x10 + 2x3 + 2

GF ((221+1
387

)21) x21 + 23x + 23, x21 + 2x7 + 2, x21 + 23x + 23

GF ((222+1
1985

)22) x22 + 26x + 26, x22 + 224x + 224, x22 + 223x3 + 223

GF ((222+1
1985

)11) x11 ± 2s0 , for 1 ≤ s0 ≤ 21

GF ((223+1
3

)23) x23 ± 2s0 , for 1 ≤ s0 ≤ 22

GF ((227+1
1539

)27) x27 ± 2s0 , for 1 ≤ s0 ≤ 8

GF ((227+1
1539

)9) x9 ± 2s0 , for gcd(s0, 3) = 1

GF ((228+1
17

)14) x14 + 26x + 26, x14 + 211x + 211, x14 + 216x + 216

GF ((228+1
17

)7) x7 ± 2s0 , for gcd(s0, 7) = 1

GF ((232+1
641

)16) x16 + 22x + 22, x16 + 211x + 211, x16 + 235x + 235

GF ((232+1
641

)8) x8 + 25x + 25, x8 + 26x + 26, x8 + 218x + 218

Table 8.4: Short list of efficient irreducible polynomials for the construction of the finite
fields listed in Table 4.4

Bibliography

[1] R. Agarwal and J. Cooley. New Algorithms for Digital Convolution. Acoustics, Speech,

and Signal Processing, IEEE Transactions on, 25(5):392–410, Oct 1977.

[2] R. C. Agarwal and C. S. Burrus. Fast Digital Convolution Using Fermat Transforms.

In Southwest IEEE Conf. Rec., pages 538–543, Houston, Texas, USA, April 1973.

[3] R. C. Agarwal and C. S. Burrus. Fast Convolutions Using Fermat Number Transforms

with Applications to Digital Filtering. IEEE Transactions on Acoustics, Speech, and

Signal Processing, ASSP-22(2):87–97, April 1974.

[4] R. C. Agarwal and C. S. Burrus. Number Theoretic Transforms to Implement Fast

Digital Convolution. Proceedings of the IEEE, 63(4):550–560, April 1975.

[5] D. Agrawal, B. Archambeault, J. R. Rao, and P. Rohatgi. The EM Side-Channel(s). In

Cryptographic Hardware and Embedded Systems - CHES 2002, volume 2523 of Lecture

Notes in Computer Science (LNCS), pages 29–45. Springer, 2003.

[6] D. Agrawal, S. Baktır, D. Karakoyunlu, P. Rohatgi, and B. Sunar. Trojan detection

using ic fingerprinting. Security and Privacy, 2007. SP ’07. IEEE Symposium on, pages

296–310, 20-23 May 2007.

[7] R. Anderson and M. Kuhn. Tamper Resistance: A Cautionary Note. In WOEC’96:

Proceedings of the 2nd conference on Proceedings of the Second USENIX Workshop on

Electronic Commerce, pages 1–1, Berkeley, CA, USA, 1996. USENIX Association.

[8] D. V. Bailey and C. Paar. Optimal Extension Fields for Fast Arithmetic in Public-Key

Algorithms. In H. Krawczyk, editor, Advances in Cryptology — CRYPTO ’98, volume

LNCS 1462, pages 472–485, Berlin, Germany, 1998. Springer-Verlag.

78

BIBLIOGRAPHY 79

[9] D. V. Bailey and C. Paar. Efficient Arithmetic in Finite Field Extensions with Appli-

cation in Elliptic Curve Cryptography. Journal of Cryptology, 14(3):153–176, 2001.

[10] A. Baraniecka and G. Jullien. Hardware Implementation of Convolution Using Number

Theoretic Transforms. volume 4, pages 490–493, Apr 1979.

[11] L. Batina, S. B. Örs, B. Preneel, and J. Vandewalle. Hardware Architectures for Public

Key Cryptography. INTEGRATION, the VLSI journal, 34(6):1–64, 2003.

[12] D. J. Bernstein, P. Birkner, M. Joye, T. Lange, and C. Peters. Twisted Edwards

Curves. In Progress in Cryptology - AFRICACRYPT 2008, volume 5023 of Lecture

Notes in Computer Science (LNCS), pages 389–405. Springer, 2008.

[13] D. J. Bernstein and T. Lange. Faster Addition and Doubling on Elliptic Curves. In

Advances in Cryptology ASIACRYPT 2007, volume 4833 of Lecture Notes in Computer

Science (LNCS), pages 29–50. Springer, 2007.

[14] R. E. Blahut. Fast Algorithms for Digital Signal Processing. Addison-Wesley, Reading,

Massachusetts, USA, 1985.

[15] I. Blake, G. Seroussi, and N. Smart. Elliptic Curves in Cryptography. Cambridge

University Press, London Mathematical Society Lecture Notes Series 265, 1999.

[16] D. Boneh, R. A. DeMillo, and R. J. Lipton. On the Importance of Checking Cryp-

tographic Protocols for Faults. In Advances in Cryptology EUROCRYPT 97, volume

1233 of Lecture Notes in Computer Science (LNCS), pages 37–51. Springer, 1997.

[17] S. Boussakta, A. Y. M. Shakaff, F. Marir, and A. G. J. Holt. Number Theoretic Trans-

forms of Periodic Structures and Their Applications. IEE Proceedings on Circuits,

Devices and Systems, 135(2):83–96, Apr 1988.

[18] C. S. Burrus and T. W. Parks. DFT/FFT and Convolution Algorithms. John Wiley &

Sons, 1985.

[19] S. Chari, J. R. Rao, and P. Rohatgi. Template Attacks. In Cryptographic Hardware and

Embedded Systems - CHES 2002, volume 2523 of Lecture Notes in Computer Science

(LNCS), pages 51–62. Springer, 2003.

BIBLIOGRAPHY 80

[20] P. Chevillat and F. Closs. Signal Processing with Number Theoretic Transforms and

Limited Word Lengths. volume 3, pages 619–623, Apr 1978.

[21] J. W. Cooley and J. W. Tukey. An Algorithm for the Machine Calculation of Complex

Fourier Series. Mathematics of Computation, 19:297–301, 1965.

[22] R. Crandall, K. Dilcher, and C. Pomerance. A Search for Wieferich and Wilson Primes.

Mathematics of Computation, 66(217):433–449, 1997.

[23] R. Crandall and C. Pomerance. Prime Numbers. Springer-Verlag, New York, NY, USA,

2001.

[24] W. Diffie and M. E. Hellman. New Directions in Cryptography. IEEE Transactions on

Information Theory, IT-22:644–654, 1976.

[25] V. S. Dimitrov, T. V. Cosklev, and B. Bonevsky. Number Theoretic Transforms over the

Golden Section Quadratic Field. IEEE Transactions on Signal Processing, 43(8):1790–

1797, Aug 1995.

[26] H. M. Edwards. A Normal Form for Elliptic Curves. Bulletin (New Series) of the

American Mathematical Society, 44(3):393–422, July 2007.

[27] T. ElGamal. A Public-Key Cryptosystem and a Signature Scheme Based on Discrete

Logarithms. IEEE Transactions on Information Theory, IT-31(4):469–472, 1985.

[28] Martin Fürer. Faster integer multiplication. In STOC ’07: Proceedings of the thirty-

ninth annual ACM symposium on Theory of computing, pages 57–66, New York, NY,

USA, 2007. ACM.

[29] J. Guajardo and C. Paar. Itoh-Tsujii Inversion in Standard Basis and Its Application

in Cryptography. Design, Codes, and Cryptography, (25):207–216, 2002.

[30] D. Hankerson, A. J. Menezes, and S. Vanstone. Guide to Elliptic Curve Cryptography.

Springer, 2004.

[31] M. Heideman, D. Johnson, and C. Burrus. Gauss and the History of the Fast Fourier

Transform. ASSP Magazine, IEEE, 1(4):14–21, Oct 1984.

BIBLIOGRAPHY 81

[32] G. Hinton, D. Sager, M. Upton, D. Boggs, D. Carmean, A. Kyker, and P. Roussel. The

Microarchitecture of the Pentium 4 Processor. Intel Technology Journal, Q1 2001.

[33] T. Itoh and S. Tsujii. A Fast Algorithm for Computing Multiplicative Inverses in

GF (2m) Using Normal Bases. Information and Computation, 78:171–177, 1988.

[34] A. Karatsuba and Y. Ofman. Multiplication of Multidigit Numbers on Automata. Sov.

Phys. Dokl. (English translation), 7(7):595–596, 1963.

[35] N. Koblitz. Elliptic Curve Cryptosystems. Mathematics of Computation, 48:203–209,

1987.

[36] Ç. K. Koç and T. Acar. Montgomery Multplication in GF (2k). Design, Codes, and

Cryptography, 14(1):57–69, 1998.

[37] P. C. Kocher. Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and

Other Systems. In Advances in Cryptology CRYPTO 96, volume 1109 of Lecture Notes

in Computer Science (LNCS), pages 104–113. Springer, 1996.

[38] P. C. Kocher, J. Jaffe, and B. Jun. Differential Power Analysis. In Advances in Cryptol-

ogy CRYPTO 99, volume 1666 of Lecture Notes in Computer Science (LNCS), pages

388–397. Springer, 1999.

[39] H. Krishna, B. Krishna, K. Lin, and J. Sun. Computational Number Theory and Digital

Signal Processing: Fast Algorithms and Error Control Techniques. Macmilian, 1967.

[40] T. Kriz and D. Bachman. A Number Theoretic Transform Approach to Image Rotation

in Parallel Array Processors. volume 5, pages 430–433, Apr 1980.

[41] S. Kumar, M. Girimondo, A. Weimerskirch, C. Paar, A. Patel, and A. S. Wander. Em-

bedded End-to-end Wireless Security with ECDH Key Exchange. Circuits and Systems,

2003. MWSCAS ’03. Proceedings of the 46th IEEE International Midwest Symposium

on, 2:786–789 Vol. 2, 27-30 Dec. 2003.

[42] B. Lawrence. Application of the Fast Fourier Number Theoretic Transform to Radar.

Radar Conference, 1991., Proceedings of the 1991 IEEE National, pages 137–141, 12-13

Mar 1991.

BIBLIOGRAPHY 82

[43] M-K. Lee, K. T. Kim, H. Kim, and D. K. Kim. Efficient Hardware Implementation

of Elliptic Curve Cryptography over GF (pm). In Proceedings of the 6th International

Workshop on Information Security Applications (WISA 2005), volume 3786 of Lecture

Notes in Computer Science (LNCS), pages 207–217. Springer, 2006.

[44] A. K. Lenstra and E. R. Verheul. Selecting Cryptographic Key Sizes. In Public Key

Cryptography PKC 2000, volume 1751 of Lecture Notes in Computer Science (LNCS),

pages 446–465. Springer, 2000.

[45] A. K. Lenstra and E. R. Verheul. Selecting Cryptographic Key Sizes. Journal of

Cryptology, 14:255–293, 2001.

[46] W. Li. The Modified Fermat Number Transform and Its Application. pages 2365–2368

vol.3, 1-3 May 1990.

[47] R. Lidl and H. Niederreiter. Finite Fields, volume 20 of Encyclopedia of Mathematics

and its Applications. Addison-Wesley, Reading, Massachusetts, USA, 1983.

[48] K. Y. Liu, I. S. Reed, and T. K. Truong. Fast Number-theoretic Transforms for Digital

Filtering. Electronics Letters, 12(24):644–646, November 25 1976.

[49] G. Madre, E. H. Baghious, S. Azou, and G. Burel. Design of a Variable Rate Algorithm

for CS-ACELP Coder. volume 1, pages 600–604 vol.1, 11-15 May 2003.

[50] G. Madre, E. H. Baghious, S. Azou, and G. Burel. Fast Pitch Modelling for CS-ACELP

Coder Using Fermat Number Transforms. pages 765–768, 14-17 Dec. 2003.

[51] G. Madre, E. H. Baghious, S. Azou, and G. Burel. Linear Predictive Speech Coding

Using Fermat Number Transform. volume 2, pages 607–612 vol.2, 2-5 July 2003.

[52] J. H. McClellan and C. M. Rader. Number Theory in Digital Signal Processing. Prentice-

Hall, Englewood Cliffs, NJ, 1979.

[53] R. J. McEliece. Finite Fields for Computer Scientists and Engineers. Kluwer Academic

Publishers, 2nd edition, 1989.

[54] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone. Handbook of Applied Cryptog-

raphy. CRC Press, Boca Raton, Florida, USA, 1997.

BIBLIOGRAPHY 83

[55] V. Miller. Uses of Elliptic Curves in Cryptography. In H. C. WIlliams, editor, Advances

in Cryptology — CRYPTO ’85, volume LNCS 218, pages 417–426, Berlin, Germany,

1986. Springer-Verlag.

[56] P. L. Montgomery. Modular Multiplication without Trial Division. Mathematics of

Computation, 44(170):519–521, April 1985.

[57] Y. Morikawa and H. Hamada. Implementation for Two-dimensional FIR Filters Using

the Number Theoretic Transform. volume 8, pages 1248–1251, Apr 1983.

[58] H. J. Nussbaumer. Digital Filtering Using Complex Mersenne Transforms. IBM Journal

of Research and Development, 20(5), September 1976.

[59] H. J. Nussbaumer. Digital Filtering Using Pseudo Fermat Number Transforms. IEEE

Transactions on Acoustics, Speech and Signal Processing, ASSP-25:79–83, February

1977.

[60] A. V. Oppenheim, R. W. Schafer, and J. R. Buck. Discrete-Time Signal Processing.

Prentice-Hall, Upper Saddle River, New Jersey, USA, 2nd edition, 1999.

[61] E. Öztürk, B. Sunar, and E. Savas. Low-Power Elliptic Curve Cryptography Using

Scaled Modular Arithmetic. In Proceedings of the Workshop on Cryptographic Hard-

ware and Embedded Systems (CHES 2004), volume 3156 of Lecture Notes in Computer

Science (LNCS), pages 92–106. Springer, 2004.

[62] J. M. Pollard. The Fast Fourier Transform in a Finite Field. Mathematics of Compu-

tation, 25:365–374, 1971.

[63] S. Baktır. Efficient Algorithms for Finite Fields, with Applications in Elliptic Curve

Cryptography. Master’s thesis, ECE Department, Worcester Polytechnic Institute,

Worcester, Massachusetts, USA, April 2003.

[64] S. Baktır, S. Kumar, C. Paar, and B. Sunar. A State-of-the-art Elliptic Curve Crypto-

graphic Processor Operating in the Frequency Domain. Mobile Networks and Applica-

tions (MONET), 12(4):259–270, September 2007.

[65] S. Baktır, J. Pelzl, T. Wollinger, B. Sunar, and C. Paar. Optimal tower fields for

hyperelliptic curve cryptosystems. Signals, Systems and Computers, 2004. Conference

Record of the Thirty-Eighth Asilomar Conference on, 1:522–526 Vol.1, 7-10 Nov. 2004.

BIBLIOGRAPHY 84

[66] S. Baktır and B. Sunar. Frequency Domain Finite Field Arithmetic for Elliptic Curve

Cryptography. To be Published.

[67] S. Baktır and B. Sunar. Optimal tower fields. IEEE Transactions on Computers,

53(10):1231–1243, 2004.

[68] S. Baktır and B. Sunar. Achieving Efficient Polynomial Multiplication in Fermat Fields

Using the Fast Fourier Transform. In ACM-SE 44: Proceedings of the 44th annual

Southeast regional conference, pages 549–554, New York, NY, USA, 2006. ACM.

[69] S. Baktır and B. Sunar. Finite Field Polynomial Multiplication in the Frequency Do-

main with Application to Elliptic Curve Cryptography. In Computer and Information

Sciences ISCIS 2006, volume 4263 of Lecture Notes in Computer Science (LNCS),

pages 991–1001. Springer, 2006.

[70] S. Baktır and B. Sunar. Optimal Extension Field Inversion in the Frequency Domain.

In International Workshop on the Arithmetic of Finite Fields WAIFI 2008, Lecture

Notes in Computer Science (LNCS). Springer, 2008.

[71] C. M. Rader. Discrete Convolutions via Mersenne Transforms. IEEE Transactions on

Computers, C-21(12):1269–1273, December 1972.

[72] C. M. Rader. The Number Theoretic DFT and Exact Discrete Convolution. In IEEE

Arden House Workshop on Digital Signal Processing, Harriman, NewYork, January

1972.

[73] R. L. Rivest, A. Shamir, and L. Adleman. A Method for Obtaining Digital Signatures

and Public-Key Cryptosystems. Communications of the ACM, 21(2):120–126, February

1978.

[74] A. Satoh and K. Takano. A scalable dual-field elliptic curve cryptographic processor.

Computers, IEEE Transactions on, 52(4):449–460, April 2003.

[75] A. Schönhage and V. Strassen. Schnelle Multiplikation großer Zahlen. Computing,

7:281–292, 1971.

BIBLIOGRAPHY 85

[76] A. Y. Md. Shakaff, A. Pajayakrit, and A. G. J. Holt. Practical Implementations of

Block-mode Image Filters Using the Fermat Number Transform on a Microprocessor-

based System. IEE Proceedings Circuits, Devices and Systems, 135(4):141–154, Aug

1988.

[77] A. Skavantzos and F. J. Taylor. On the Polynomial Residue Number System. IEEE

Transactions on Signal Processing, 39(2):376–382, February 1991.

[78] F. J. Taylor. Residue Arithmetic A Tutorial with Examples. IEEE Computer, 17(5):50–

62, May 1984.

[79] T. Toivonen and J. Heikkila. Video Filtering with Fermat Number Theoretic Transforms

Using Residue Number System. Circuits and Systems for Video Technology, IEEE

Transactions on, 16(1):92–101, Jan. 2006.

[80] R. Tolimieri, M. An, and C. Lu. Algorithms for Discrete Fourier Transform and Con-

volution. Springer-Verlag, 1989.

[81] P. K. S. Wah and T. Siegenthaler. Practical Transform Techniques for Error and Erasure

Correction. Electronics Letters, 18(10):432–434, May 13 1982.

[82] S. Winograd. On Computing the Discrete Fourier Transform. Proc. Nat. Acad. Sci. USA,

73(4):1005–1006, April 1976.

[83] S. Winograd. Some Bilinear Forms whose Multiplicative Complexity Depends on the

Field of Constants. Mathematical Systems Theory, 10:169–180, 1977.

[84] A. Woodbury, D. V. Bailey, and C. Paar. Elliptic Curve Cryptography on Smart Cards

without Coprocessors. In IFIP CARDIS 2000, Fourth Smart Card Research and Ad-

vanced Application Conference, Bristol, UK, September 20–22 2000. Kluwer.

[85] S. Xu, L. Dai, and S. C. Lee. Autocorrelation Analysis of Speech Signals Using Fermat

Number Transform (FNT). IEEE Transactions on Signal Processing, 40(8):1910–1914,

Aug 1992.

