

 MQP-CEW-1903

The Internet Connected Project

A Major Qualifying Project submitted to the faculty of Worcester Polytechnic Institute
in partial fulfillment of the requirements for the Degree of Bachelor of Science

Submitted on January 22, 2019

Submitted by:

Jacob Fakult

Kenneth Levasseur

Advised by:

Dr. Craig Wills

Abstract 3

1 - Introduction 4

2 - Background 6
2.1 - Internet Protocols 6
2.2 - Internet Mapping 8
2.3 - IP Address Geolocation 8
2.4 - Mapping via TOR 9
2.5 - Background Summary 10

3 - Approaches 11
3.1 - DNS Cache Manipulation 11
3.2 - Traceroute 13
3.3 - Approaches Summary 15

4 - DNS Cache Manipulation 17
4.1 - Methodology: DNS Cache Manipulation 17
4.2 - Results: DNS Cache Manipulation 23
4.3 - Discussion: DNS Cache Manipulation 28
4.4 - DNS Cache Manipulation Summary 29

5 - Traceroute 30
5.1 - Methodology: Traceroute 30
5.2 - Results: Traceroute 33
5.3 - Traceroute Summary 37

6 - Comparison 38

7 - Conclusions 39

8 - References 40
8.1 - Sources cited 40

Abstract

As the Internet becomes more crucial to the world’s economy, determining relative connectivity

to a given location becomes more important. Associating a connectivity metric with a physical

location can be of use to organizations looking to optimize their Internet traffic. Dynamic routing

protocols and ambiguous mappings between an IP address and a real host make the task

non-trivial. The Internet connected project investigates the effectiveness of DNS cache

manipulation and traceroute as a means of mapping point-to-point Internet connectivity from

specific geographic locations in the United States.

1 - Introduction

The Internet Connected project aims to determine a metric of network connectivity

between a geographically diverse set of hosts within the United States. These data would have

a broad range of uses from businesses looking to host networked services in optimal locations,

to ISPs looking to capitalize on building infrastructure in under-connected regions. Other

organizations have attempted to produce the same data via placement of remotely managed

hosts at known physical locations whereas we focus on measurements from a single physical

location (Worcester, MA). Thus we must rely on hosts and protocols that allow us to exert as

much control as is practical over the endpoints. Selection of endpoints is important; we should

look to measure traffic to hosts that represent locations that real Internet traffic would follow for

a given region. Our definition of connectivity is constrained to the relative latency between other

regions in the U.S., and not related to bandwidth. Several approaches were evaluated to this

end, with DNS (Domain Name System) cache manipulation and traceroute mapping found most

promising. The approaches were implemented separately, and the results show the

effectiveness of each approach. The idea for this project was expanded from a previous study

called the Geoconnected project]. The original project measured expected travel times from one

county to another based on public roads, transit and air travel [22]. The inspiration for both

projects draw on the fundamental importance of understanding how we are connected in a

spread out world.

The remainder of the report is organized as follows. In Chapter 2, the background, we

discuss the technical concepts needed to understand the project’s implementation as well as

alternate paths we explored in order to accomplish the project’s goal. In Chapter 3 we discuss

the approaches that we selected and implemented for this project. In Chapters 4 and 5 we

discuss the implementation of the DNS Cache Manipulation and Traceroute approaches

respectively, and provide rationalization and discussion for each design choice. Chapter 6

compares the results of the two methods. Finally, Chapters 7 provides conclusions and future

work.

2- Background

The Internet is a complex system composed of thousands of organizations with their own

autonomy that must be connected in a standardized manner. Likewise, there are thousands of

protocols that nodes in a network may use, whether it is connecting to to a device next door or

streaming from a service across the world. In attempting to gather accurate metrics of latency

from Internet hosts, and subsequently extract geographic information about the capabilities of

the Internet, it is important to understand how traffic is routed and what causes latency.

2.1 - Internet Protocols

Border Gateway Protocol (BGP) is a routing protocol widely used on the Internet that

allows large groups of routers to act as a single autonomous system, and for organizations to

preferentially advertise routes or accept routes into these systems [15]. The Border Gateway

Protocol will thus control the path that each packet travels from source to destination. The

routers can preference network related metrics, i.e. least number of hops, or they can factor in

geographical, monetary, or political metrics. From a single point of origin on a single Internet

Service Provider (ISP), preferences are transparent; there is no way to tell what routes a remote

host receives on the reverse path to the origin. Preferences are in constant flux as organizations

respond to outages or sub-optimal latency. Routes can also change when ISPs respond to

“route leaks” [17], or the advertisement of illegitimate routes not present in the autonomous

system; BGP itself has no validation for the existence of an advertised route. Organizations

responding to outages, sub-optimal latency, or route leaking creates variation in any latency

data collected at two different points in time.

When considering tools that can be used to monitor latency, it is important to evaluate

the protocols each tool relies on, and what considerations must be made when treating the

values they produce as accurate. Transmission Control Protocol (TCP) makes up the majority of

Internet traffic [1], however to evaluate its latency, a remote server must be configured to

respond via the protocol. TCP is connection-oriented and capable of recovering from packet

loss by resending data. Latency measuring tools must take such retransmissions into account to

prevent time due to packet loss being added to a measurement. User Datagram Protocol(UDP)

in comparison is connectionless, and the sender is not required to handle any data loss via

retransmission. Servers configured to receive UDP packets will not necessarily produce a

response; the protocol has no handshake or other exchange requirements. Both protocols

require either a remote-controlled host or a server running an application that can be

manipulated to reveal latency metrics. Conversely, Internet Control Message Protocol (ICMP) is

a packet protocol that is implemented in the networking stack of most operating systems, used

for sending information and control signals between hosts. The functionality and message types

of this protocol are standardized and not application-dependent; if ICMP is not blocked by a

firewall, it is likely that communication over the protocol can occur between two hosts. The

protocol functions similar to UDP in that there is no retransmission of lost packets, so there is no

need to account for unwanted additional latency. These features make ICMP an ideal protocol

to monitor latency, with a few caveats.

Tools that operate over ICMP, such as traceroute [19] and ping [13], are useful as they

enable us to communicate with a larger range of destination hosts. ICMP on routers must be

considered with caution, however, as inbound ICMP traffic is often deprioritized from other

protocols, and given limited bandwidth[7]. Transit traffic that is destined for hosts beyond the

router is forwarded using ASICs(Application-specific integrated circuits). These circuits pass

traffic faster than the device’s CPU, which handles traffic destined to the router itself along with

other OS functions. Tools that measure latency via ICMP packets directed to routers may not

produce measurements consistent with real Internet traffic, and will skew the data to higher

latency values.

2.2 - Internet Mapping

Other attempts to produce maps of Internet hosts with connectivity metrics have made use of

remotely accessible endpoints from which data can be retrieved. Réseaux IP Européens

NCC(RIPE), an organization that handles IP address allocation in continental Europe, has

produced a publicly available atlas of endpoints and their relative connectivity, along with their

online or offline status relative to the service provider[3]. RIPE distributes “probes”, small

network connected devices that reside on an organization or individual’s network and report

back to RIPE. While the organization operates primarily in the European Union, their map does

show a presence of at least one probe per state in the U.S.

The Federal Communications Commission (FCC) has produced national data on bandwidth

through similar means, using “measurement clients” in the homes of a selection of ISP

customers and “measurement servers” residing elsewhere to determine upload and download

speeds [11].

2.3 - IP Address Geolocation

One of our goals is to identify as much information about U.S. Internet traffic metrics from a

single location, without distributing remote hosts. Since we are unable to place physical hosts

ourselves, we require a means of determining the physical location of an Internet host. While

the American Registry for Internet Numbers(ARIN) provides a physical location for the

organization attached to each block of IP addresses, the information is entered manually and

not enforced; each address may move or correspond to hosts outside the given region. Large

organizations may use state or airport code identifiers on publicly accessible infrastructure in

creating aliases for their devices[18]. However, these naming conventions are still inconsistent

and manually entered.

Anycast addressing creates difficulty for geolocation, where a single IP address can be

preferentially routed to two or more different physical hosts depending on the source of traffic

(or other factors). The BGP protocol allows such a behavior because only the preferred route is

shared to avoid conflict. Organizations that operate over large geographical regions can place

several hosts around a region, and route traffic traffic only to the closest one for a given source.

Despite these setbacks, using a geolocation service for IP address lookup is an ideal

solution for our purposes. Services often advertise relationships with large ISPs that enable

them to gather data about address location and anycast mappings that would normally be

unavailable to a client. Many offer APIs that allow for bulk lookups, making them ideal for the

programmatic data collection involved in this project. The service IPStack fits these criteria, and

was selected for use in both DNS cache manipulation and traceroute mapping implementations.

IPStack, among other similar services, are not without fault; if an address cannot be

located, often a point in rural Kansas, representing the geographic center of the U.S., will be

returned [10]. Bad data points, once identified, can be filtered out as is described in the

methodology sections for both DNS cache manipulation and traceroute mapping.

2.4 - Mapping via TOR

In attempting to relate IP addresses to physical locations, other services we could use to

provide similar data were investigated. The TOR(The Onion Router) client is a web browser that

passes web traffic to a server using a technique called “onion routing.”[12] When we will discuss

“nodes” in this context, each is a host running TOR software configured to pass traffic, not

necessarily a router in the general definition. Traffic enters the network via a publicly available

entry node, is encrypted, and then passed through the client relay nodes. Once it reaches an

exit node, the traffic is decrypted and passed to the destination web server.

Initially, it seems possible to find a list of desired exit nodes and pass a ping or other

measurement through the node to a known address. We could measure the latency between

the exit node and our desired host. However, the highest granularity of exit node that can be

requested by the TOR client is destination country. Further, nodes will only pass TCP traffic.

These limitations make TOR less than ideal for precise mapping or using a large set of

uncontrolled hosts.

2.5 - Background Summary

Despite the difficulties outlined above, with the use of proper data sets, accurate

geolocation data, and careful planning, the task can be completed. We took great care to prune

out and manage the inevitable inconsistencies that arise with a project such as this. Chapter 3

discusses the background necessary to understand each approach taken; Chapter 4 will

describe the solutions we implemented to combat the problems.

3 - Approaches

Two approaches to Internet mapping were identified as promising and explored separately.

DNS cache manipulation involves measuring latency via the communication between two

remote DNS servers. Traceroute mapping involves measuring the latency between a single

point of origin and routers discovered along a path to an endpoint. Due to the limitations

discussed previously, TOR as a means of mapping Internet traffic was not used. In succeeding

chapters, we describe how these approaches are employed on this project.

3.1 - DNS Cache Manipulation

The Domain Name System (DNS) exists solely as a translation mechanism between

spoken language and physical addresses. The Domain Name System is composed of many

hierarchical “phonebook” servers. These so-called “nameservers” translate a domain name to

an IP address. Much like a name in a phone book, a domain name, such as google.com, acts

as an easy-to-remember name that corresponds to the physical address of that web page. A

browser will find this physical address by querying a DNS server. The Internet only knows how

to send data between IP addresses, not domain names. Thus the DNS system is used as a

necessary translation service since humans easily remember domain names but have more

difficulty remembering IP addresses. In order to understand how we utilized DNS servers to

estimate traffic latency between arbitrary points on the Internet, we must first describe the

mechanics of the hierarchical nature of the DNS resolution process. This process is visually

demonstrated in Figure 3.1.

Figure 3.1. The step-by-step breakdown of a single DNS query

There are two types of DNS servers: recursive nameservers also known as resolver or

local nameservers, and authoritative nameservers. When a browser performs a DNS lookup it

will ask a recursive nameserver for help. The recursive nameserver will then begin the process

of finding the IP address by performing a reverse zone lookup. The hierarchy of DNS is

demonstrated while performing the reverse zone lookup. Let us examine the typical process to

perform a lookup on “www.example.com.” (notice the trailing dot). The first action taken by the

recursive nameserver is to check its cache to see if www.example.com has previously been

answered. Assuming the cache lookup fails, the recursive nameserver will query a root DNS

server. The root server looks at the top level of the reversed domain, the “.com” part. It will

respond with a list of authoritative nameservers who contain IP information on ony address

ending with “.com”. The recursive nameserver will then choose an authoritative server based on

its admin policy, and query for the next zone: “example.com”. The response from the “.com”

authoritative servers will contain a list of nameservers that contain address information on

“example.com”. The process will repeat, traversing in the reverse direction of the domain name,

from .com to example.com to www.example.com (thus the reverse zone lookup) until a

nameserver that is responsible for managing the domain to IP mapping of the site is found. At

that point the recursive nameserver will discover the IP address that the user is interested in

and return it to the client’s browser, which then directly communicates with the target server,

www.example.com, using the corresponding IP address. It is worth noting that all nameservers

are capable of caching results for time specified by the administrator of the server. In fact any

device from the browser to the root server is capable of caching such responses.

The hierarchical nature of DNS, though seemingly tedious and involved, works incredibly

well for a number reasons. One such reason is that the hierarchy allows for geographical

distribution and master slave servers. Thus DNS servers can be placed closer to end users,

distributing load and reducing response time. Further, if one DNS server fails, a duplicate

backup servers will replace it, causing relatively little issues. A second benefit of the hierarchy is

that each nameserver only has to keep its own records. Otherwise every DNS server would

have to contain the full copy of every domain to IP conversion causing a plethora of technical

problems for implementation, as well as the hassle of maintaining immense lists.

3.2 - Traceroute

Traceroute is a tool that observes the path traffic takes to a given host. Operating systems

implement the traceroute tool differently. The Windows version sends an ICMP echo request to

the endpoint, while the Unix implementation sends a UDP packet to a high numbered port

considered “unlikely” to be hosting an application on the endpoint. However, both

implementations have the same results. For both implementations, a packet will only reach its

destination if the receiving host allows it. Whether or not a host is only blocking ICMP or

blocking all unnecessary ports, some packets may be considered unnecessary and simply get

dropped. The traceroute approach only records data with the routers that respond, making it

compatible with either implementation of the traceroute tool. Due to the existing knowledge base

on Linux systems for project members, the UNIX implementation was chosen.

Figure 3.2 - Traceroute mechanism(UNIX)

Traceroute determines a path by sending packets with increasingly large TTL(Time to Live)

values. The TTL value designates the maximum number of hops, or routers, that the packet

should pass through before it is dropped; this behavior is shown in Figure 3.2. By default, three

packets are sent for each TTL value up to a default maximum of 30 hops, or until it reaches the

host, whichever occurs first. If the packet does reach the host, it is directed to a random port. If

the target port is blocked, no response will be generated from the host itself. For each router or

"hop" the packet encounters, the TTL value is decreased by 1. When a router decreases the

TTL value to 0, it responds with a “TTL Exceeded" message via ICMP, and drops the packet.

Since the initial packet is identified by the router as transit traffic, we partially avoid the delay

from interacting with the control plane. However, because the response occurs via ICMP, we

still incur delay on the return trip, and thus cannot treat the resulting latency as completely

reflective of transit latency.

Using traceroute presents problems relevant to mapping a route and finding latency. As

discussed previously, traffic between two Internet hosts may not follow the same route every

time. Since the "TTL Exceeded" response only provides data about the last hop on that

particular instance of the route, we cannot be sure that the hops used in the previous instance

are still valid. In fact, the Unix implementation of traceroute will denote this information when

showing each of the three packets sent per TTL value as seen below:

 9 ae47.bb02.ord1.tfbnw.net (204.15.20.161) 34.384 ms 96-34-148-35.static.unas.mo.charter.com (96.34.148.35) 49.172 ms 47.886 ms

Here, the first packet reached 204.15.20.161 with a latency of 34.384ms, while the second and

third packets reached 96.34.148.35 with latencies 49.172ms and 47.886ms. The latency value

provided on the last hop is a Round-Trip-Time (RTT) which represents the time between

sending the UDP packet and receiving the ICMP response, as shown in Figure 3.2. Simply

halving the RTT value is not sufficient to describe the forward leg of the path; traffic may take a

different route for each leg. These limitations, while not all solvable, were taken into

consideration when implementing traceroute mapping.

3.3 - Approaches Summary

DNS queries and traceroute are powerful tools because they can acquire data from

specific nodes. A DNS request can pass through a specific nameserver. Given sufficient

knowledge about the geographical location it is simple to then measure point to point latencies.

Traceroute will provide a list of unknown middle-point routers that can be manipulated to obtain

geographical data, as well as in between time measurements. Both approaches, although

different in method, show promise in their ability to perform the functions necessary to complete

this project

4 - DNS Cache Manipulation

To ensure a pure network environment, all data collection processes were run on a Fedora linux

esxi virtual machine with 8 cores and 6GB of memory, residing on a Charter residential Internet

connection. The server is located in Worcester, Massachusetts and has access to 100Mbps

down/10Mbps up bandwidth.

4.1 - Methodology: DNS Cache Manipulation

In the following sections we will demonstrate how to utilize the mechanics of DNS

queries to direct traffic between arbitrary nameserver nodes and measure the latency between

them. In the latency measurements, the recursive nameserver acts as the “from” node, and the

destination authoritative nameserver will be the “to” node. The client sends its DNS query to a

recursive nameserver, which subsequently communicates with authoritative nameservers. We

exploit this mechanism to take latency measurements. If the recursive nameserver is configured

to accept requests from clients outside its local network, then we can send a DNS query to it

from our testing server in Worcester, Massachusetts. If we know the geographic location of the

recursive DNS server and destination authoritative nameserver, then we can subtract the

latency from our client server to the local DNS from the total time of the request, thus giving the

time between the recursive DNS server and the authoritative nameserver.

This is the basis for which we generate latency data using DNS queries. We store the

data in a two dimensional grid where the value in each cell shows our calculated latency from

the corresponding recursive DNS to the authoritative DNS. To implement our latency

measurements we used the Unix built-in “dig” tool, a command line tool that performs DNS

queries and returns responses as well as latency [6]. It also includes a feature that directs

queries through a specific recursive nameserver. The general command format used can be

seen in the code snippet below. The “+noall” tells the nameserver to remove nearly all overhead

data. The “+time=4” means that the server will wait for at most 4 seconds before timing out. The

“+tries=2” means that if there is a timeout, the server will try one more time. Finally, the “+stats”

tells the dig to just return the response time statistics.

> dig @8.8.8.8 $subdomain.example.com +noall +time=4 +tries=2 +stats

To gather latency data across the Internet we first begin by assembling two lists: one for

authoritative nameservers, and one for recursive nameservers. For the authoritative

nameservers we worked with a collection of approximately 7700 college and university domain

names [4]. We wrote several python scripts to collect their authoritative nameservers and run

the data through an step-by-step process to create a distilled table containing domain name,

authoritative nameserver, IP address, geographic coordinates, and county for each nameserver.

The first step generates a list of nameservers for each school domain name using dig. The next

step removed redundant authoritative nameservers that were used by multiple schools. The

step after that uses ping to collect the IP addresses of each domain name and their authoritative

nameservers. Once the IP data is collected, we used the IPStack API, as described in Section

2.3, to determine the geographic coordinates of each authoritative nameserver. After trimming

the results based out of the United States or other invalid locations (refer to Section 2.3), we

used the haversine formula to determine the nearest county to the data point [20]. Note that the

nearest county may place the data point in the county that it actually exists in, rather it will put it

in the county whose geographic center is nearest to the data point. The final step involved

pruning the nameservers residing in the same county, in order to gather one data point per

county. We decided to use servers at the county granularity for multiple reasons. One reason

being that graphing data points at a county level is simple and provides easily understood

information. A second reason was that the number of counties, approximately 3300, would give

us a large dataset, but the data collection phase could be done in a reasonable amount of time,

i.e less than a few days to complete. After distilling and finalizing that list we ended up with less

than one server per county, only finding 787 authoritative nameservers in unique counties. We

used two methods to collect the list of recursive nameservers. We started by checking to see if

the authoritative nameservers collected in the previous step acted as recursive nameservers as

well. We checked this by querying the finalized list of authoritative nameservers and as if they

were recursive, and comparing their responses. In the end, it turned out that only about 12

schools had public authoritative nameservers that also acted as recursive nameservers. We

later supplemented that list with a list of nameservers found from multiple online lists [14]. After

distilling the list in a similar multi-step process to the one described above, we ended up with

405 recursive nameservers.

Using these two datasets, we began to perform “to-from” lookups, from the recursive

nameservers to the authoritative nameservers. Each latency measurement consisted of three

phases: the cache priming phase, the calibration phase, and the measurement phase. The

purpose of the priming phase, seen in the code snippet below, was to groom the cache of the

recursive DNS server to ensure that the target server previously exists. The priming is run twice

to ensure that the value is cached.

> dig @8.8.8.8 $subdomain.example.com +noall +time=4 +tries=2 +stats

> dig @8.8.8.8 $subdomain.example.com +noall +time=4 +tries=2 +stats

The calibration phase, shown below, sends eight DNS requests for the cached value, thereby

allowing us to measure the latency from our server to the recursive nameserver. The grep and

awk commands are simple text parsers that, in this case, remove all text except for the

millisecond latency value given by dig.

> dig @8.8.8.8 $subdomain.example.com +noall +time=4 +tries=2 +stats | grep Query | awk '{print $4}'

#find and return the latency of the request in milliseconds

The measurement phase, seen in below, then sends eight more DNS requests to the recursive

nameserver. However, these requests query a random subdomain of the target server, that is

unlikely to have been asked before, and will thus not be cached at the recursive nameserver.

The value we associate with the domain we then chose to be the median of the measured

values.

> dig @8.8.8.8 $random_subdomain.example.com +noall +time=4 +tries=2 +stats | grep Query | awk

'{print $4}' #find and return the latency of the request in milliseconds

Thus we can measure response time as the RTT value of the path from our server, to the

recursive nameserver, and finally to the authoritative nameserver, and back. By subtracting the

result of the calibration phase from the measurement phase, we can determine the latency

between the recursive nameserver and the target authoritative nameserver. Using this

mechanism we can measure latency between any recursive and authoritative nameservers on

the Internet. We stored our results in a two-dimensional matrix, a sample can be seen below in

Figure 4.1. The value in each cell represents the measured latency from the county in the row to

the county in the column. It is important to note that generating these matrices requires millions

of lookups. On our sample 400 by 787 node dataset, we are sending nearly 5.5 million dig

queries, or a runtime of about 60-80 hours. Fortunately, as network requests such as dig are I/O

bound tasks, they require little CPU time, making it an easy opportunity to parallelize the tasks.

After testing the system, we found that running somewhere between 20-25 threads provided an

optimal balance of a steady CPU load while using less then ~60% of the available bandwidth in

our experiment environment. We found that using about 60% of bandwidth available accounted

for random network fluxuations. Other optimizations included giving lookups a maximum number

of attempts before assuming that one of the servers is down, and skipping those lookups.

Figure 4.1. Sample DNS Matrix output.

Once the matrix is generated, we use the Javascript D3 library to plot the data on a map.

Because we only collect data points for the nameservers on our list, there are inevitably multiple

counties that have no data associated with them. For the sake of appearance we perform a

linear interpolation across the map in order to show expected latency data, however, we realize

that these interpolated values are estimates, and do not necessarily reflect the latency

measurements we might find in each specific county. To interpolate the data we implemented

the numpy GridData function, which creates a three-dimensional interpolated grid given a set of

(x, y, z) value pairs, with longitude being x, latitude being y, and the measured latency being z

[15]. We then found the projected latency value at the coordinates of each county, and plotted

those values. Naturally, we show two graphs for each dataset, one with interpolated values and

one without. We can also generate a map for each county with measured latency values,

showing the latency from that county to every other county. For counties without measured

latencies, we could attempt to estimate interpolated values based on its neighbors, but this data

would not be of much use due to its lack of real data measurements. We also generate a graph

showing the average latency from one county to every other county, seen in Figure 4.2.

4.2 - Results: DNS Cache Manipulation

Using our list of 405 recursive DNS servers and 787 authoritative DNS servers we

generated a 405x787 matrix of latency values between each pair. The graph in Figure 4.6

shows, for each recursive DNS server, the average latency to all authoritative servers.

Figure 4.2. A map showing the average latency to all other authoritative nameservers from each

recursive nameserver.

The figure clearly displays the geographical distribution of the recursive nameservers used in

the test as well as their average latency to all other counties. The average latency refers to the

mean time from a particular recursive nameserver to all other authoritative nameservers. For

example, in Yolo County, California, our calculated value of 73.81 ms means that the average

latency from Yolo County to all 787 authoritative nameservers was measured to be 73.81 ms.

Interestingly, the geographical center point of all collected nameservers lies in eastern Missouri,

close to the mean population center of the contiguous United States. To help better visualize

this dataset across the entirety of the United States, we interpolated values from the above

Figure onto the entire country, seen in Figure 4.3. As mentioned previously, only the counties

with data measurements taken from them are accurate in Figure 4.3. All interpolated values are

mathematically estimated, and not necessarily accurate. There are, however, some benefits to

interpolating our data in such a way.

Figure 4.3. The values from the above map were taken and interpolated

This Figure demonstrates the connectivity of various regions. Many major cities can be

observed as having lower latencies in their connectivity. Places such as Denver, Colorado,

Dallas, Texas, Raleigh, North Carolina, Cleveland, Ohio, Buffalo and Manhattan, New York, and

their surrounding areas show low latency values measured. More remote regions such as

Montana, Nevada, Idaho, rural New York and northern Maine clearly reside in locations with

slower connectivity. Some unexpected outliers appear in these graphs, such as the low latency

measurements between Wyoming and North Dakota, or the high latency measured in the San

Diego County region. Explanations for outliers will be explained in the discussion section.

Figure 4.4. Latency increases (Y-axis, milliseconds) as distance to the mean population center

of the United States increases (X-axis, miles)

Figure 4.4 demonstrates our latency measurements in terms of distance. As distance increases,

we observe a “connectivity cone” shape starting to form. Other than the sparse outliers in the

top left, the points all lie within the connectivity cone. The points on the bottom line, an

approximation of the speed of light, translated on the Y-axis to fit the bottom of the cone, clearly

demonstrate close connectivity to backhaul fiber. As distance increases, these points tend to

increase in latency at a rate nearly proportional to the speed of light in a fiber optic cable. For

example, Niagara County, New York (data point: 1300 miles, 39ms latency), sits right outside of

Buffalo, New York. It can be surmised that Buffalo particular location must be connected near a

backhaul fiber network. In fact, Buffalo is a particularly well connected hub not only with regard

to Internet connectivity, but also roadway and railway infrastructure [8]. Figure 4.4 shows an

estimate of the approximate connectivity of each point based on how far it lies above the speed

of light line. In Figure 4.4 below we see a number of outliers in the top left portion. Figure 4.5

shows those outlier points plotted on a map.

Figure 4.5. A graph of the outlier nodes from Figure 4.4

Overall there does not appear to be any interesting pattern coming from the outliers shown. It

can thus be inferred that these nameservers have higher latencies due to poorer connection or

another independant issue. In Figures 4.6 and 4.7 below, we attempted to plot the data in terms

of closeness to large cities. Unexpectedly, we could not find strong correlation between the

outlier data points based on their location.

Figure 4.6. How latency measurements change as the data point is physically closer to a large

city

Figure 4.7. How latency measurements change compared to the size of the nearest large city

We chose 140,000 as the lower limit of our definition of a “large city” because approximately

300 U.S cities have a population of 140,000 or more, the number of cities cited in the article by

the census bureau. We would have loved to see some stronger correlation in Figures 4.6 and

4.7. It is possible that our data was just inaccurate enough to provide clear patterns in these

particular graphs. Figure 4.7 shows what appears to be a slight decrease in latency as

population of the nearest city rises, however the data are too weak to give any certainty to the

claim.

4.3 - Discussion: DNS Cache Manipulation

The data collected via the DNS nameserver method closely resembles what we expected to see

in many facets. In Figure 4.3 we saw a map of the United States with faster latencies tending to

lie in densely populated areas. In Figure 4.3 we can reasonably agree with data points such as

Buffalo New york having good connectivity speeds as discussed in the results section. We see

unusual data in other places that we might not expect to see, such as the low latency

measurements of the entire section between eastern Wyoming and North Dakota and the high

latency measurements in San Diego County, California. Many of these irregularities can be

explained because of a lack of data points in terms of both regional data point density and

geographical point density. In the case of San Diego county, the DNS approach estimates an

average latency of 150-170 milliseconds, while the traceroute method shows a near

cross-country latency value of 80-100 milliseconds. The discrepancy in measured values can be

attributed to any of the data inconsistencies noted in our discussion of the methods we used. If

our controlled environment was not in error, then the outlier county shows untrustable data

because we extrapolated the average latency for the entire county based on one recursive

nameserver alone. It is possible that the nameserver in question may have one or more of the

following: poor Internet connectivity, packets deprioritization from external networks, and

inconsistent reporting timing metrics. The lack of sample server density per county easily skews

the data we collect to represent the unique values of the data points we have gathered. In the

end, we cannot recommend that the data we have collected through the DNS cache

manipulation method be used as source for estimating latencies between regions of the United

States. However, given a sufficiently large dataset of local and authoritative nameservers as

well as extremely accurate geolocation measurements, the DNS cache manipulation method

may be a viable way to measure latencies across the Internet from a single point of

transmission.

4.4 - DNS Cache Manipulation Summary

The results of the DNS cache manipulation approach are very promising. The values returned

showed a level of accuracy and consistency that we expected. Although it is believed that there

were a few steps that reduced the precision of our measurements. The first being small

nameserver datasets. The next being inaccurate geolocation information. And the last being

collecting sample sizes of only eight queries for each nameserver. The data generated provides

much insight into the state of the Internet geographically in terms of latency and closeness to

backhaul fiber. These results could be cross referenced with information from ISPs to increase

the accuracy. They can also be cross-referenced with the results of the traceroute approach

whose data has different inferences.

5 - Traceroute

The traceroute-based mapping implementation operated on a dataset of 1000 U.S based

university websites[4]. All scripts ran on the same host as specified for DNS cache manipulation.

Data was acquired from an origin host in Worcester, MA on a Charter residential connection.

5.1 - Methodology: Traceroute

The dataset used for traceroute mapping is useful not only as a set of publicly accessible

endpoints that can be expected to receive regular TCP traffic, but as a means of finding metrics

on routers that would normally be uncontactable. Many routers block direct ICMP traffic

altogether along with traffic to other ports that would normally be used by traceroute probes; the

only way to measure their latency is through transit traffic that experiences an exceeded TTL.

A Java application was written to programmatically run traceroute over the dataset. For

each hop, previously unseen routers were logged along with their RTT value. For routers that

were encountered multiple times per hop, only the lowest RTT value was taken. As neither the

forward or reverse path costs can be individually derived from a Round-Trip-Time alone, no

modifications to the value are made.

The same routers are often encountered several times over the course of multiple

traces. For each router entry, the endpoints which it routes to are recorded, and a count for

each router is produced. New RTT values are only taken if they are lower than a previous

instance. Further, it is not useful to run the program over the full set of 7700 hosts, as the

number of new routers encountered drops over multiple runs.

A geolocation lookup was then performed on the resolved address of each router, using

IPStack’s web api. This service will return a point close to the U.S geographical center if it is

unable to retrieve a valid latitude and longitude for the address. Addresses that resolve to this

point are removed from the dataset.

From here, the haversine formula is used to approximate a distance between the origin

and the latitude and longitude of the address. For the distance found, a lower bound for latency

can be derived. This is twice the time required for light to travel along a fiber optic cable run

from source to destination. The speed of light in a vacuum is 299,792,458m/s. Fiber used for

long run over 2km, the majority of the makeup of our measurements, is primarily single mode.

The refractive index for single mode fiber is 1.44475. Dividing our speed gives us:

207, 10, 06m/s1.44475
299792458 = 1 5

Or 128.69 miles per millisecond. Dividing each calculated distance by this value and multiplying

the result by 2 gives us a minimum theoretical RTT for the router. If the observed latency is

below this value, we can conclude the latitude and longitude produced by IPStack are likely

incorrect, and the result can be discarded. While it is still possible that values above the

minimum theoretical latency are derived from incorrect geolocations, we can reduce the amount

of noise in our data by eliminating values below the minimum.

Attempts were made to make use of the path data collected by traceroute. Connections

between routers were represented as edges in a graph, weighted by the RTT value. As multiple

routers are often acquired per TTL value, this quickly creates a large number of variant paths

that traffic could have taken. Certain paths were determined unlikely to have occurred, and

dropped, using a method shown in Figure 5.1 below. The red dotted line shows a path that

would have been removed between R1 and R4.

Figure 5.1 - Traceroute unlikely path removal

Since an RTT value for a given TTL contains the latency of the previous hop, paths where the

RTT decreases are identified as unlikely. Graphing the data this way was eventually abandoned

due to the untrustworthiness of the data; traceroute provides no confirmation that the routers

traversed in a previous hop were traversed for the current hop.

5.2 - Results: Traceroute

Output addresses from the traceroute mapping application were fed into the FCC’s area API[2]

to produce an associated FIPS code. These codes are used here to identify a unique county in

the United States, however they can also identify other geographic entities[20]. The data were

then mapped along with the RTT values discovered for each address.

Figure 5.2 - Traceroute latency map

This map was produced using D3js with the additional TopoJSON block[5]. TopoJSON takes in

a two column tab-separated values file mapping each FIPS code to a numerical value, in this

case latency in milliseconds.

Several routers had particularly high latency for their region. In Volusia, Florida, a router

owned by Level 3 Communications presented at 100.86ms, relative to sub 70ms values in

surrounding counties. The device was encountered 3 times throughout all traces. An Amazon

router in Webster, Iowa reported a latency of 121.9ms, and was only encountered once. Low

latency outliers show similarly low frequency. A Comcast router in Knox, Tennessee reported

55.15ms, but was only encountered once. A Hurricane Electric router in Fresno, California

reported 55.41ms with a single encounter. Based on the distribution of these outliers on the

map, few are high latency and low distance; most stand out due to low latency at high distance.

This could be an indication that the quality of long-distance network infrastructure is the deciding

factor in a location’s relative latency.

When plotting latency against distance we find what we might expect; as distance

increases, so does latency(Figure 5.3). With the amount of variation present in this graph it can

be difficult to assign a particular latency to a location. However, a few routers are encountered

more often than others. The graph below plots distance against the number of endpoints that

produces each router at least once on a trace. The graph is zoomed to a region showing

Loudoun, VA, at approximately 420 miles from origin, with the shaded regions showing routers

owned by the two largest organizations found in the region(Amazon and Charter.)

 Figure 5.3 under zoom - Frequency of Charter/Amazon routers

For both organizations, it appears that only a few routers are absorbing the majority of traffic.

Organizations with the largest total number of routers found are shown below in Figure

5.4. Given that the endpoints used are web servers, it is unsurprising to see hosting providers

among these organizations.

 ​Figure 5.4 - traceroute organization frequency

This data however does not take into account where the majority of traffic routes. While major

routing hubs closer to the origin will receive more traffic, there are clear traffic preferences even

when location is isolated. Below, the frequency of encounter for each block of Amazon and

Charter routers can be seen. In the location Loudon, VA at a distance of 420.26 miles from our

origin, a total of 169 routers owned by Charter and 33 owned by Amazon are found. Charter’s

exhibit a variation of between a minimum of 17 encounters and a maximum of 872 encounters.

Amazon’s routers show a variation of between 1 and 25 encounters. Further, when we compare

latency to endpoint count in Loudoun for each organization(Figure 5.5 and 5.6):

Figure 5.5 - Charter latency v. encounter frequency for Loudon, VA

Figure 5.6 - Amazon latency v. encounter frequency for Loudon, VA

For Charter and ISPs in general, a possible explanation for this is that high frequency, low

latency routers are ISP-owned infrastructure, while low frequency, high latency routers are other

organizations that have bought service and addresses from Charter. These organizations would

only receive traffic to their endpoints, in this case any university websites, and would likely have

slower last-mile infrastructure compared to larger ISPs.

In King County, Washington, almost exclusively Amazon routers are found; 295 of the

302 devices are owned by the organization. These routers exhibit a variation of between 1 and

13 endpoints encountered. There does not appear to be a significant correlation here between

frequency of encounter and latency in this region.

Figure 5.7 - Amazon latency v. encounter frequency for King, WA

Figure 5.8 shows the most connected regions relative to the origin(Worcester, MA) by

frequency(Total Endpoints). Note that this is the total number of endpoints routed over all

routers in the region, and will contain duplicates across the dataset. Also shown is the median

latency for that region.

 ​Figure 5.8 - Most frequently encountered regions

Only two regions (Loudoun VA, New Haven CT) appear under the most connected regions by

median latency.

Figure 5.9 - Most and least connected regions

5.3 - Traceroute Summary

Even though the traceroute method was restricted to a single point of origin and its path data

deemed to inaccurate for use, the data produced insights on traffic flow and major ISP and

hosting infrastructure. Router load balancing was also apparent, especially in the case of

Amazon’s hub in Washington. The data suffered from limited interpolation potential between

non-origin routers; this could be resolved by performing the method from multiple locations.

6 - Comparison

Both methods of mapping produced data that correlated increased distance with

increased latency. However, data acquired via DNS cache manipulation results in generally

lower latency values, as the method acquires data from multiple points of origin to multiple

endpoints. This also makes the data more conducive to interpolation and determining network

connectivity from any point in the geographical U.S. Traceroute data was acquired from a single

point of origin on the east coast of the U.S.; this results in generally larger latency

measurements with limited potential for interpolation.

The ability of DNS cache manipulation to perform multi-origin data collection may have

also influenced outliers. Outliers found through this method were more often high latency and

low distance, whereas traceroute discovered mostly low latency, high distance outliers.

Overall, DNS cache manipulation produced metrics more applicable to determining

point-to-point connectivity between regions, while the traceroute data revealed primary hubs

that Internet traffic follows.

7 - Conclusions

The data collected by both the DNS cache manipulation method and the traceroute

method proved promising for their potential in gathering Internet latency metrics from a single

location. The DNS cache manipulation demonstrates geographical regions of Internet

“hotspots”, giving insight into general connectivity based on location. The traceroute data gives

interesting insight into the structure of Internet routers and how Internet Service Provider

manage and load balance them.

Both methods could benefit from improved geolocation accuracy and comparison of data

collected at different points in time. Internet connectivity may be worse during peak activity.

Traceroute suffered from an inability to make accurate assumptions from path data; a means of

ensuring measurement probes traverse the same path each time is necessary.

For traceroute, future work should focus on a means of distributing the methodology

used to acquire this data to other remote hosts, in order to determine the effect of asymmetric

reverse routes. In addition, efforts should be made to determine more accurate ways of

determining the geolocation of an IP address. The DNS cache manipulation method would

greatly benefit from large datasets of recursive and authoritative nameservers.

8 - References

8.1 - Sources cited

1. “Analyzing UDP Usage in Internet Traffic.” ​CAIDA​, 2018,

https://www.caida.org/research/traffic-analysis/tcpudpratio/

2. “Area API.” ​FCC​, https://geo.fcc.gov/api/census/#!/area/get_area

3. “Atlas Project.” ​RIPE NCC​, ​https://atlas.ripe.net/about/

4. College Scorecard Data. (n.d.). Retrieved September, 2018, from

https://collegescorecard.ed.gov/data/

5. D3 TopoJSON ​https://bl.ocks.org/almccon/410b4eb5cad61402c354afba67a878b8

6. “Dig”, ​Linux Manual Page​, 2018, ​https://linux.die.net/man/1/dig

7. Dugal, Dave, et al. “Protecting the Router Control Plane.” ​IETF​, 2011,

https://tools.ietf.org/html/rfc6192

8. Durairajan, Ramakrishnan, et al. “InterTubes.” 2015,

http://pages.cs.wisc.edu/~pb/tubes_final.pdf

9. “Geographic Terms and Concepts”, ​United States Census Bureau, ​2010

https://www.census.gov/geo/reference/gtc/gtc_codes.html#fips

10. Hill, K. (2017, July 24). How an internet mapping glitch turned a random Kansas farm

into a digital hell. Retrieved October, 2018, from

https://splinternews.com/how-an-internet-mapping-glitch-turned-a-random-kansas-f-1793

856052

https://www.caida.org/research/traffic-analysis/tcpudpratio/
https://atlas.ripe.net/about/
https://bl.ocks.org/almccon/410b4eb5cad61402c354afba67a878b8
https://linux.die.net/man/1/dig
https://tools.ietf.org/html/rfc6192
http://pages.cs.wisc.edu/~pb/tubes_final.pdf
https://www.census.gov/geo/reference/gtc/gtc_codes.html#fips
https://splinternews.com/how-an-internet-mapping-glitch-turned-a-random-kansas-f-1793856052
https://splinternews.com/how-an-internet-mapping-glitch-turned-a-random-kansas-f-1793856052

11. “Measuring Fixed Broadband.” ​FCC​, 2016,

https://www.fcc.gov/reports-research/reports/measuring-broadband-america/measuring-f

ixed-broadband-report-2016

12. Onion Routing. (2005). Retrieved August, 2018, from ​https://www.onion-router.net/

13. “Ping”, Linux Manual Page, ​Linux Manual Page​, 2018,

http://man7.org/linux/man-pages/man8/ping.8.html

14. Public DNS Information. (n.d.). Retrieved September, 2018, from ​https://public-dns.info/

15. Rekhter, Yakov, et al. “Application of the Border Gateway Protocol in the Internet.”, ​IETF​,

1995, ​https://tools.ietf.org/html/rfc1772

16. Scipy -- Interpolate.Griddata. (n.d.). Retrieved October, 2018, from

https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.griddata.html

17. Sriram, Kotikalapudi, et al. “Problem Definition and Classification of BGP Route Leaks”,

IETF​, 2016, ​https://tools.ietf.org/html/rfc7908

18. Steenbergen, Richard “Troubleshooting with Traceroute.” 2009,

https://www.nanog.org/meetings/nanog45/presentations/Sunday/RAS_traceroute_N45.p

df

19. “Traceroute”, ​Linux Manual Page​, 2018,

http://man7.org/linux/man-pages/man8/traceroute.8.html

20. U.S. Gazetteer: 2010, 2000, and 1990. (2012, September 01). Retrieved September, 2018,

from https://www.census.gov/geo/maps-data/data/gazetteer.html

21. Van Brummelen, Glen Robert (2013). Heavenly Mathematics: The Forgotten Art of

Spherical Trigonometry. Princeton University Press. Retrieved October, 2018 from

https://books.google.com/books?id=0BCCz8Sx5wkC&pg=PR7#v=onepage&q&f=false

https://www.fcc.gov/reports-research/reports/measuring-broadband-america/measuring-fixed-broadband-report-2016
https://www.fcc.gov/reports-research/reports/measuring-broadband-america/measuring-fixed-broadband-report-2016
https://www.onion-router.net/
http://man7.org/linux/man-pages/man8/ping.8.html
https://public-dns.info/
https://tools.ietf.org/html/rfc1772
https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.griddata.html
https://tools.ietf.org/html/rfc7908
https://www.nanog.org/meetings/nanog45/presentations/Sunday/RAS_traceroute_N45.pdf
https://www.nanog.org/meetings/nanog45/presentations/Sunday/RAS_traceroute_N45.pdf
http://man7.org/linux/man-pages/man8/traceroute.8.html
https://books.google.com/books?id=0BCCz8Sx5wkC&pg=PR7#v=onepage&q&f=false

22. Wills, C. (2017, June). Geographical Connectivity In the United States. Retrieved

September, 2018, from ​https://web.cs.wpi.edu/~cew/papers/tr1701.pdf

https://web.cs.wpi.edu/~cew/papers/tr1701.pdf

