
TESTING SPECT MOTION CORRECTION ALGORITHMS

by

Andrey Sklyar

A Thesis

Submitted to the Faculty of the

WORCESTER POLYTECHNIC INSTITUTE

in partial fulfillment of the requirements for the

Degree of Master of Science

in

Computer Science

April 2010

APPROVED

Professor Michael A. Gennert, Thesis Advisor and Department Head

Professor Mathew O. Ward, Thesis Reader

i

Abstract
Frequently, testing of Single Photon Emission Computed Tomography (SPECT) motion

correction algorithms is done either by using simplistic deformations that do not accurately

simulate true patient motion or by applying the algorithms directly to data acquired from a real

patient, where the true internal motion is unknown. In this work, we describe a way to combine

these two approaches by using imaging data acquired from real volunteers to simulate the data

that the motion correction algorithms would normally observe.

The goal is to provide an assessment framework which can both: simulate realistic SPECT

acquisitions that incorporate realistic body deformations and provide a ground truth volume to

compare against. Every part of the motion correction algorithm needs to be exercised – from

parameter estimation of the motion model, to the final reconstruction results.

In order to build the ground truth anthropomorphic numerical phantoms, we acquire high

resolution MRI scans and motion observation data of a volunteer in multiple different

configurations. We then extract the organ boundaries using thresholding, active contours, and

morphology. Phantoms of radioactivity uptake and density inside the body can be generated

from these boundaries to be used to simulate SPECT acquisitions.

We present results on extraction of the ribs, lungs, heart, spine, and the rest of the soft tissue in

the thorax using our segmentation approach. In general, extracting the lungs, heart, and ribs in

images that do not contain the spine works well, but the spine could be better extracted using

other methods that we discuss.

We also go in depth into the software development component of this work, describing the C++

coding framework we used and the High Level Interactive GUI Language (HLING). HLING

solved a lot of problems but introduced a fair bit of its own. We include a set of requirements to

provide a foundation for the next attempt at developing a declarative and minimally restrictive

methodology for writing interactive image processing applications in C++ based on lessons

learned during the development of HLING.

ii

Acknowledgements
I would like to thank Michael Gennert for his patience and mentoring support through the entire

time of this work. I would like to thank Michael King and the UMass Medical School Nuclear

Science Research Group for the opportunity to be a part of their group and research efforts. I

would also like to thank Jonathan Word for his help in reviewing and polishing this report.

This work was supported in part by the National Institute of Biomedical Imaging and

Bioengineering Grant No. R01 EB001457. The contents are solely the responsibility of the

authors and do not necessarily represent the official views of the National Institutes of Health.

iii

Contents
Abstract.. i

Acknowledgements ... ii

Contents .. iii

Table of Figures .. v

Table of Figures ... vi

1 Background ... 1

1.1 SPECT Acquisition ... 1

1.2 Motion Correction... 2

2 SPECT .. 3

2.1 Cardiac Stress Test ... 3

2.2 Nuclear Stress Test ... 3

2.3 SPECT ... 4

2.3.1 Computed Tomography .. 4

2.3.2 SPECT Acquisition.. 5

2.3.3 SPECT Reconstruction ... 7

2.3.4 Effects of Patient Motion ..12

3 Motion Correction in SPECT ..13

3.1.1 Motion Observations, Modeling, and Correction ...13

3.1.2 Motion Correction Assessment ..14

3.1.3 Typical Assessment Approaches ...15

4 Motion Correction Assessment Framework ..17

4.1 Dynamic Anthropomorphic Numerical Phantoms ..18

4.1.1 Set of Volumes ..19

4.1.2 Set of Deformations ...19

4.1.3 Generate NCAT Phantoms ..20

5 Identifying Organ Boundaries ...21

5.1 Segmentation Techniques ..21

5.1.1 Morphology ..21

5.1.2 Active Contours using Level Sets ...23

5.2 Segmentation Approach ...25

5.2.1 Body ..25

iv

5.2.2 Lung ..25

5.2.3 Ribs and Spine ..26

5.2.4 Heart ..26

5.3 Results ..27

5.3.1 Two Segmented MRI Volumes ..28

6 Implementation ..33

6.1 Requirements ...33

6.1.1 Choice of Libraries and Programming Language ...34

6.2 Overview of Filter Pipelines (ITK and VTK) ...34

6.3 First Pass ..35

6.4 High Level Interactive GUI Language (HLING) ...35

6.4.1 Language Structure ...35

6.4.2 Language Translations ..36

6.4.3 Feature Creep ..38

7 Interactive Image Processing Application Requirements ..39

7.1 High-Level Requirements..39

7.2 Application Layout...40

7.3 Hypothetical Source Code ..40

7.4 Filter Wrapper Requirements ..41

8 Discussion and Future Work ..43

9 Appendix – HLING ...44

9.1 HLING Concrete Syntax Structures ..44

10 Bibliography ...48

v

Table of Figures
Figure 1 SPECT system with three Gamma Cameras .. 1

Figure 2 Computed Tomography Structures .. 4

Figure 3 Parallel Hole Collimators from (4) ... 5

Figure 4 Crosstalk .. 6

Figure 5 Complete Projection for a Fixed Angle (Figure 5.37 from (28) 8

Figure 6 Fourier Slice Theorem .. 8

Figure 7 Ramp Functions from (6) .. 9

Figure 8 Illustration of Filtered Back Projection from (6) ..10

Figure 9 Filtered Back Projection of a Phantom ..11

Figure 10 Motion Assessment Framework ..18

Figure 11 Input Slice (Left) and its segmented organs (Right) ...21

Figure 12 Binary Image (A) and Structuring Element (B) from (47) ...22

Figure 13 Erosion of (A) by (B) from (47) ..22

Figure 14 Dilation of (A) by (B) from (47)...22

Figure 15 Active Contours ...23

Figure 16 Body Region ...25

Figure 17 Body Dilation (Left) and Lung Final Region (Right) ..25

Figure 18 Dilated Body plus Lung (Left), Initial Ribs (Center), Final Ribs (Right)26

Figure 19 Heart Segmentation ..26

Figure 20 Slices 1-4 ..28

Figure 21 Slices 5–8 ...29

Figure 22 Slices 9-12 ..30

Figure 23 Slices 13-16 ..31

Figure 24 Slices 17-20 ..32

Figure 25 Interactive Image Processing GUI Application ...33

Figure 26 Hypothetical Source Code ...41

vi

 Table of Figures
Equation 1 𝐹𝜃

′ (𝑢, 𝑣) A line from 𝐹 𝑢, 𝑣 oriented at angle 𝜃 through the origin 9

Equation 2 𝐹′ 𝑢, 𝑣 Fourier Transform of Back Projected Reconstruction 9

Equation 3 Forward Projection ..11

Equation 4 MLEM Update Step ...12

Equation 5 Sigmoid ...24

Equation 6 Level Set Active Contours Update Step ..24

Equation 7 Active Contour Forces, General Form ...24

Equation 8 Active Contours Forces with Curvature and Propagation Forces Constant25

1

1 Background
Since all the work described in this project is motivated by and pertains to motion correction in

SPECT, this introductory section provides a brief overview of Single Photon Emission

Computed Tomography (SPECT) and SPECT motion correction.

1.1 SPECT Acquisition
Cardiac SPECT is a minimally invasive way to diagnose the severity of Coronary Artery Disease

(CAD) (1) (2). In the procedure, a patient is injected with a radioisotope which travels through

the blood stream and gets absorbed in various concentrations by the patient’s tissue. Regions

of reduced or blocked blood flow will diminish the amount of radioisotope that reaches and gets

absorbed by the tissue; a doctor can use images of the radiation to indirectly locate these

damaged areas and assess the severity of CAD (1) (3) (4) .

The imaging portion of the SPECT procedure takes between 15 and 30 minutes (3) (4) (5),

during which the patient should lie as still as possible on a table in the imaging apparatus.

Images of the radiation are taken from different angles by gamma cameras (as shown in Figure

1), with each exposure taking several seconds to accumulate enough data. The cameras’

locations and orientations are known very precisely for each exposure, making it possible to

reconstruct a 3D rendition of the radiation in the patient’s body (6) (7) given that the patient’s

organs did not move a significant amount during the acquisition.

Figure 1 SPECT system with three Gamma Cameras

Typical SPECT reconstruction algorithms function under the assumption that the structures in

the imaging volume do not deform during the acquisition procedure. Since the procedure is

performed on living people, it is impossible to have all of their organs stay perfectly still. At the

very least, the heart will beat and the lungs will expand and contract during the course of the

acquisition. Their periodic nature, however, makes them less problematic than other types of

motions, since the organs keep coming back to approximately the same location in each cardiac

or respiratory cycle (8).

Motions such as bending, twisting, or any other type of the patient readjustment on the table

cause difficulty since the organs being imaged are no longer in the same location between the

Gamma Camera

Imaging Table

2

different exposures (9). These types of motions can lead to the acquired data being completely

unusable, in which case another acquisition would be required. Even worse, these artifacts may

produce misleading reconstructions resulting in a misdiagnosis (10).

1.2 Motion Correction
SPECT Reconstruction algorithms calculate an estimate of the radiation density in the 3D

volume where the patient was lying using the projection images acquired by the Gamma

Cameras. In an ideal SPECT acquisition an infinite number of projections would be acquired

instantaneously. The reconstruction algorithm would then use these projections combined with

metadata regarding their acquisition (such as the position and imaging properties of the

cameras) to reconstruct the 3D volume that was imaged (6).

Obviously, we cannot take an infinite number of views of a volume instantaneously. Instead, we

have to use a small number of cameras (one, two (11) or three (12)) to acquire a limited number

of views (up to 64). It takes between 15 and 30 minute to acquire these projection images, as

each view requires time to place the camera and to take the exposures (10 to 30 seconds). The

patient is asked to remain still during this lengthy procedure.

While the positioning of the cameras and the dosage of radiation can be controlled very

precisely, the patient frequently does not remain still enough throughout the procedure to obtain

a high quality reconstruction. Motion correction algorithms attempt to improve the quality of the

reconstructed volumes by accounting for the patient's motion during the acquisition (9) (14) (15)

(8) (16) (17). The issue we begin to address in this work is how to assess the quality of this

improvement and how to help algorithm developers pinpoint the specific errors that their

algorithms make, which they can then use to make refinements to their approaches.

3

2 SPECT
We motivate this section by describing one of the most important applications of SPECT:

diagnosing the severity of Coronary Artery Disease. Then we go into the details of regular

SPECT reconstructions, finishing with an overview of why they are inherently unable to account

for patient motion.

2.1 Cardiac Stress Test
One of the simplest methods to assess the heart’s ability to supply blood to the myocardium is

the cardiac stress test. This test frequently referred to as the “treadmill test,” as walking on

treadmill is a common way to stimulate the heart (18). In situations where the patient’s heart is

suspected to be weakened or damaged, performing physical exercise may be too stressful,

possibly leading to death (18). In these cases the patient will have their heart "exercised" by the

injection of chemicals that will make the heart beat faster without requiring physical exercise

(19).

The blood vessels supplying the heart may get obstructed due to the accumulation of plaque or

blocked when a clot or vulnerable plaque breaks free and lodges itself in the vessel (20). One

can assess the presence and/or severity of such blood flow restrictions by observing a patient's

vital signs as the heart is made to work more heavily. This will require more blood to flow to the

myocardium. Under normal conditions, the heart will beat faster and stronger to meet the

body's needs. However, if the heart muscle is not receiving enough oxygenated blood due to

an obstruction or blockage, vital signs will not go up as expected and the patient may feel some

discomfort or chest pain (18).

2.2 Nuclear Stress Test
The cardiac stress test provides an understanding of the heart’s overall condition. Nuclear

imaging enables doctors to determine the specific parts of the heart which are damaged.

In the Nuclear Stress Test, the patient’s heart is exercised similarly to how it is during the

treadmill test. The radiation is injected at the peak of the stress period when blood is flowing the

most rapidly through all the heart (except for in the parts that are blocked). Several minutes

after the injection the regions which are not receiving blood will have observably less radiation

than the healthy regions making it possible to locate arterial obstructions from images of the

radiation (1) (23).

Nuclear imaging of the heart can also be performed as a reset study, without having the patient

undergo stress. However, due to the decreased volume of blood flowing to the vessels the

contrast between obstructed (as compared to blocked) blood flow and regular blood flow will be

small, possibly even imperceptible. Since the stress acquisition does not suffer from this

contrast reduction, the stress test results are more informative; if there are no obstructions

during the stress study, then it is very unlikely that any will appear during the rest study. On the

other hand if obstructions were found during a stress study, then a follow-up rest study can

further explain their severity (24).

4

2.3 SPECT
There are several ways in which images of the radiation in a nuclear study can be acquired and

used. With planar imaging (22), for example, the doctor examines the images of the radiation

directly. In SPECT, a true 3D rendition of the radiation is generated by incorporating data from

multiple views. As compared to planar imaging, slices extracted from SPECT reconstructions

provide better localization of the radiation in the heart allowing doctors to better discriminate

among the different types of coronary problems (25). In the rest of this section we describe the

SPECT acquisition and reconstruction procedures in as much detail as is necessary to

understand the rest of this report. For deeper understanding of SPECT, refer to (3) or (4).

2.3.1 Computed Tomography

SPECT is a type of Computed Tomography (CT) or Tomographic Reconstruction. Tomographic

reconstruction is a process by which to generate a 3D rendition of a volume from 2D projections

of that volume at known angles (25). X-ray CT (the modality commonly associated with CT)

uses images of transmitted X-rays. Since denser tissue blocks more X-rays, X-ray CT

reconstructions represent the spatially varying density inside the imaging volume. The

projection images in SPECT come from observing photons emitted by the radionuclides that

were injected into the patient’s body. Consequently, the resulting reconstructions represent the

radionuclide absorption densities by the patient’s organs.

Though each modality has its own special characteristics that can be exploited during the

acquisition and reconstruction stages, Computed Tomography has a very concrete high level

structure. The acquisition process takes in the 3D volume of intensities (corresponding to tissue

density in X-ray CT or concentration or radionuclides in SPECT) and produces a set of 2D

projection images of the 3D volume at known angles. The reconstruction process takes in this

set of 2D projections and produces a reconstructed 3D volume that estimates of locations of the

intensities in the imaging volume. It is important to note that the imaging volume is only

indirectly associated with a patient’s organs. The reconstruction process executes irrespective

of what was present in the imaging volume, and normal Computed Tomography reconstruction

algorithms (including SPECT) assume this volume to be a stationary, rigid object.

Figure 2 Computed Tomography Structures

𝜃 = 0°

𝜃 = 180°
…

Imaging Volume Projection Images Reconstruction Volume

Acquisition Reconstruction

5

2.3.2 SPECT Acquisition

The SPECT imaging process has several sources of degradation. Collimation decreases the

number of photons that reach the imaging sensor in exchange for being able to reason as to

where the photons came from. Attenuation reduces the number of photons that reach the

gamma camera from tissue deeper inside of the patient’s body. Scattering deflects photons

from their original path, adding additional noise to the acquisition image. Crosstalk blurs the

image at the collimator, while distance dependent spatial resolution makes structures further

away from the gamma camera fuzzier. Understanding and accounting for the effects of these

phenomena is necessary in order to perform the most accurate reconstructions possible.

Collimator

As the radioactive material in the patient’s body decays, photons get emitted in random

directions. This makes it impossible to tell which part of the body they came from using a photo-

sensitive sensor alone. A parallel hole collimator attempts to filter out the photons coming in at

non-perpendicular angles to the gamma camera by putting a lead plate with thousands of

cylindrical holes in front of the photosensitive locations of the sensor (4) (3). Lead’s high atomic

weight and correspondingly large nuclei allow it to block photons that are not aligned with the

orientation of the collimator holes, providing better localization of where they could have come

from at the cost of filtering out more photons.

Figure 3 Parallel Hole Collimators from (4)

The photons that make it through the collimator do not, however, all originate from the same line

perpendicular to the camera’s surface. Since the cylinders have a finite radius and a finite

height, photons slightly off axis from the ray going through the center of the cylinder also get

observed by the same region of the imaging sensor (Error! Reference source not found.).

ecreasing the radius or increasing the height of the cylinder narrows the spread of this cone and

gives more localized information at the cost of filtering out more photons. Increasing the radius

or decreasing the height of the cylinder increases the number of photons that can reach the

imaging sensor but also increases the spread of the contributing cone and the probability that

incoming photons came in off axis.

6

Crosstalk and Distance Dependent Spatial Resolution

Sometimes, photons that should have been detected in one bin get detected in a nearby bin

instead. This situation is referred to as crosstalk. There are two primary ways that crosstalk

can occur. In the first, a photon coming in off-axis through the collimator can get detected by an

adjacent bin if the distance between the end of the collimator and the spacing of the bins is just

right. The second contributions to crosstalk are the few photons that manage to penetrate the

lead of the collimator without getting attenuated. Crosstalk causes blurring in the acquired

images.

Figure 4 Crosstalk

Another consequence of the cone-shaped contribution volume permitted by collimation is that

spatial resolution decreases for sources further away from the collimator. The distance

dependent spatial resolution can be modeled by blurring the reconstruction volume with a

Gaussian kernel of increasing 𝜍 at distances further away from the gamma camera. It also

complicates reconstruction of the heart because it may be a different distance away from the

camera at different angles, requiring the reconstruction algorithm to take these different

resolutions into account.

Attenuation and Scattering

As a photon travels through imaging volume, it may interact with the nuclei of the other atoms

that are in its path. Upon colliding with a nucleus, a photon may get absorbed (attenuated) and

possibly re-emitted (scattered) at a longer wavelength (lower energy) and a different angle.

Attenuation reduces the number of photons that reach the gamma camera. Scatter can either

increase or decrease the counts depending on whether the re-emitted photon’s orientation lines

up with the collimator.

The amount of attenuation that occurs is directly proportional to the number and density of

nuclei on the path to the gamma camera. Thus, an X-ray CT scan of a patient can be used to

construct an attenuation map of the imaging volume. This attenuation map can then be used by

reconstruction algorithms to account for this type of degradation.

Correct Bin

Wrong Bin
Photon at an extreme angle

passed through collimator

hole into the wrong bin

Photon did not get attenuated

by the lead collimator and was

detected

Collimator

7

One can account for scatter by using an imaging sensor that can distinguish between energy

levels of primary (non-scattered) and scattered photons (3).

2.3.3 SPECT Reconstruction

Reconstruction uses the projection images combined with models of the phenomena described

in the Acquisition section to generate an estimate of the radioactivity distribution that was

imaged. There are many reconstruction algorithms that have been developed and used in both

research and the clinical setting (7) (6). Analytical, single pass algorithms are inherently fast,

but they are limited in how much they can model and account for image degradation effects.

Iterative algorithms can model and account for these factors, but require more computation.

This section will review two of the most common reconstruction algorithms used in both

research and the clinical setting - filtered back projection (single pass) and Maximum Likelihood

Expectation Maximization (MLEM, iterative).

Filtered back projection has traditionally been used in clinical settings due to its fast

reconstruction times. MLEM, however, provides better reconstruction results and can account

for the degradation factors discussed in the Acquisition section. Even so, it has taken some

time for MLEM to become prevalent in the clinical setting, despite formal recommendations and

definitive evidence that doing attenuation correction significantly increases reconstruction quality

(25).

Filtered Back Projection

Filtered Back Projection provides an exact analytical solution to the problem of reconstructing

the imaging volume from ideal projection images (no attenuation, no scattering, etc.). We will

describe at a high level the mathematical considerations involved in reconstructing a single 2D

slice of the imaging volume. Refer to (28) for a full treatment of the subject. Reconstruction of

the full volume may be seen as repeating this process for the remaining slices in the volume.

The value of a point (bin) 𝜌 in a 1D projection image taken at a specific angle 𝜃 can be seen as

a 1D integral taken through the 2D imaging slice 𝑓(𝑥, 𝑦) (Figure 5 illustrates why 𝜌 can be

thought of as the location of a bin). By repeating this integration for all bins at all angles, we get

the full projection image 𝑔 𝜌, 𝜃 , also known as the Radon Transform or Sinogram. as follows.

8

Figure 5 Complete Projection for a Fixed Angle (Figure 5.37 from (28)

The Radon transform provides a mapping from 𝑓 to 𝑔. The task at hand is derive the inverse

Radon transform, mapping 𝑔 back onto 𝑓. The key property which leads to the Filtered Back

Projection reconstruction algorithm comes from the Fourier Slice Theorem. We refer the reader

to (28) for a full derivation and treatment of Fourier Slice Theorem and only use the results here.

The Fourier Slice Theorem states that the 1D Fourier Transform of the projection image 𝑔 𝜌, 𝜃

at angle 𝜃, 𝐺 𝜔, 𝜃 , is exactly equal to the line of intensities passing through the origin at that

same exact 𝜃 in the 2D Fourier Transform of 𝑓 𝑥, 𝑦 , 𝐹 𝑢, 𝑣 . We can use this relationship to

come up with a mapping from 𝑔 𝜌, 𝜃 onto 𝐹 𝑢, 𝑣 . We can then reconstruct 𝑓 𝑥, 𝑦 from 𝐹 𝑢, 𝑣

by applying the inverse Fourier Transform,

Figure 6 Fourier Slice Theorem

9

Let 𝐹′𝜃 𝑢, 𝑣 be the function defined by the thick black line in Figure 6

𝐹′𝜃 𝑢, 𝑣 =
𝐺 𝜔, 𝜃 𝑖𝑓 𝑢 sin𝜃 + 𝑣 cos𝜃 = 0

0 𝑜𝑡𝑒𝑟𝑤𝑖𝑠𝑒

Equation 1 𝑭′𝜽 𝒖, 𝒗 A line from 𝑭 𝒖, 𝒗 oriented at angle 𝜽 through the origin

If we integrate 𝐹 ′
𝜃 𝑢, 𝑣 with respect to 𝜃, we end up with 𝐹 ′ 𝑢, 𝑣 – a version of 𝐹 𝑢, 𝑣 where

intensities closer to the origin (the lower frequency components) are over emphasized.

𝐹′ 𝑢, 𝑣 = 𝐹′𝜃 𝑢, 𝑣

2𝜋

0

𝑑𝜃

Equation 2 𝑭′ 𝒖, 𝒗 Fourier Transform of Back Projected Reconstruction

We can correct for this over-emphasis by applying an infinite ramp filter in the Fourier domain to

obtain the exact Fourier Transform. Taking the inverse Fourier Transform of this filtered version

of 𝐹′ 𝑢, 𝑣 produces the original image 𝑓 𝑥, 𝑦 . Alternatively, one can take the inverse Fourier

Transform of 𝐹′ 𝑢, 𝑣 to get 𝑓′ 𝑥, 𝑦 and convolve it with the inverse Fourier Transform of the

ramp filter to obtain the same results since multiplication in the Fourier domain is a convolution

in the spatial domain. The intermediate 𝑓′ 𝑥, 𝑦 will be a blurry version of 𝑓 𝑥, 𝑦 because of the

overemphasis of the lower frequency components.

In reality, we cannot multiply a function by an infinite ramp filter. We similarly cannot take the

inverse Fourier Transform of an infinite ramp filter. Thus, we have to use a clipped version of

the ramp filter. In order to remove the ringing artifact that comes from taking a Fourier

Transform of a non-smooth function, a smoothed out version of the ram filter, as illustrated in

Figure 7, is used. However, using these non-ideal filters inherently blurs the resulting

reconstruction.

Figure 7 Ramp Functions from (6)

Generating 𝐹′ and taking its inverse Fourier Transform as described above is a computationally

intensive procedure. Fortunately, there exists an alternative procedure to generate 𝐹′ from the

10

projection images by back projecting them into the reconstruction volume. As illustrated in

Figure 8 B, back projection copies the intensity values from one angle of the Sinogram into the

reconstruction generating a smeared version of the one projection image. All the projections

are incorporated into the reconstruction by adding their streaked images. If too few projections

are used, a star artifact may appear (Figure 8 E). These smeared reconstructions approach 𝐹′

as the number of projections goes to infinity. Convolving with the inverse Fourier Transform of

the smoothed ramp filter takes care of the excessive blurring seen in these images.

Figure 8 Illustration of Filtered Back Projection from (6)

Figure 9 illustrates the Filtered Back Projection process, from acquisition through reconstruction.

In a real acquisition 𝑓 𝑥, 𝑦 would never actually be available, with the reconstructed 𝑓′ 𝑥, 𝑦

being the only view into the patient’s body. When no degradation sources are present, FBP

performs as expected, generating a very adequate reconstruction with some blurring.

Illustration of star (or streak) artifact. (A)

Slice used to create projections. (B–G) 1,

3, 4, 16, 32, and 64 projections equally

distributed over 360° are used to

reconstruct slice using backprojection

algorithm. Activity in reconstructed image

is not located exclusively in original

source location, but part of it is also

present along each line of

backprojection. As number of projections

increases, star artifact decreases.

11

Figure 9 Filtered Back Projection of a Phantom

Maximum Likelihood Expectation Maximization

Using all the understanding of the physics of the projection process, one can develop an

accurate forward-projection matrix mapping the radioactivity in the voxels onto intensity values

in the projection bins (3). Iterative algorithms use this projection system information to improve

the estimate of the activity distribution in the imaging volume.

To model attenuation, one can weigh the contributions of each voxel based on the amount and

density of tissue that is in the way from that voxel to the gamma camera. This attenuation map

can be estimated from an X-Ray CT scan of the patient. The expected effects of scattering and

distance dependent resolution can also be incorporated into the system matrix using this

weighting approach.

Since all of the output of imaging process (the two dimensional images) can be modeled as

weighted sums of the input (the three dimensional voxels), the entire process is linear and can

be thought of as a matrix multiplication.

𝑝 = 𝐴𝑣

Equation 3 Forward Projection

Where 𝑣 is the vector of n voxel intensities, 𝑝 is the vector of 𝑚 bin intensities, and 𝐴 is the

𝑚 × 𝑛 system matrix. Each element 𝑎𝑖𝑗 represents the probability that a photon emitted from

Image 𝑓 𝑥, 𝑦

𝑓′ 𝑥, 𝑦
Back Projection

Sinogram

𝑔 𝜌, 𝜃

𝑓′ 𝑥, 𝑦

Filtered Back
Projection

12

voxel 𝑗 is observed by bin 𝑖. The MELM algorithm uses the system matrix to generate the

simulated projections.

The MLEM algorithm iteratively improves the estimate of the reconstructed volume (6). If 𝑣 𝑘

represents the estimate of the intensities in the voxels at iteration k of the MLEM algorithm,

𝑝 𝑘 = 𝐴𝑣 𝑘 is the simulated projection image at iteration k. If we call the bin values observed

during the physical scan of the patient 𝑝 , then the value of each voxel in the next iteration

computed by:

𝑣𝑗
𝑘+1 = 𝑣𝑗

𝑘

 𝑎𝑖𝑗

𝑚

𝑖=1

𝑝𝑖

𝑝𝑖
𝑘

 𝑎𝑖𝑗

𝑚

𝑖=1

Equation 4 MLEM Update Step

This formula maximizes the log of the likelihood when modeling the radioactive decay process

as a Poisson distribution (6) (7). It makes intuitive sense too: this can be interpreted as

updating the value of the voxel by the amount that all the bins that it contributes to were off by

from the true observation. In the case that there is no error,
𝑝𝑖

𝑝𝑖
𝑘 = 1 and the entire expression

simplifies to 𝑣𝑗
𝑘+1 = 𝑣𝑗

𝑘 . In reality, this update step is performed several times, but must be

halted before convergence, as those reconstructions tend to incorporate too much of the noise

present in the true projection operation back into the reconstruction volume (6). Instead a

predefined stopping criterion, such as a number of iteration, is used.

2.3.4 Effects of Patient Motion

The system matrix describes what stationary voxels contribute to which collector bins in the

projections. If the patient were to remain perfectly still during the acquisition, then the system

matrix could be used directly to perform an accurate reconstruction. If the patient were to

reposition him or herself during the acquisition, then photons that were emitted from the same

relative location in the patient’s body would have originated from different points in 3D space.

The end result of this discrepancy is that the reconstructed volume does not accurately

approximate the imaging volume.

Depending on the severity, direction, and duration of motion, false features called artifacts can

appear in the 3D reconstruction. In some cases, especially related to large motions, the shape

and size of the artifact is easily identifiable as being caused by motion (10). In those cases, a

repeats study would be performed and the new set of projection images would be acquired.

When the displacement is less pronounced, however, the artifacts can look like a valid organ

structures and lead to a misdiagnosis (26). If the patient were actually healthy but was

diagnosed as sick, then unneeded medical expenses would be incurred. On the other hand, a

sick patient being diagnosed as healthy would delay treatment and allow a serious problem to

be unattended.

13

3 Motion Correction in SPECT
There are three categories of patient motion that are common during SPECT: rigid body motion,

periodic local deformations, and non-local deformations. Rigid body motions are those that

could be performed if we assume that the patient is made of rigid substance. The only possible

motions are translation and rotation in three dimensions (9) (27). Breathing (8) and heart

beating (14) are periodic local deformations in the sense that the body deforms, but it follows

the same relative path throughout the acquisition. Non-periodic non-rigid body deformations,

however, are not constrained to return to the same relative location during the course of the

acquisition that cannot be modeled using rigid body motion. An example would be twisting or

bending on the table in order to get more comfortable (16).

Roughly speaking, rigid body motion is the easiest to correct because the motion model is so

simple and, if the patient really did undergo rigid body motion, the motion parameters can be

acquired in a straightforward way. On the other hand, not accounting for rigid body motion

during reconstruction can lead to very severe motion artifacts (10). Periodic local deformations

are harder to model and correct since they involve the body deforming repeatedly over the

course of the acquisition. If uncorrected, their effects on image reconstruction, however, are

primarily to blur the boundaries of the organ undergoing periodic motion, making the

reconstructions slightly harder to interpret, but still useful in diagnose (8) (14). Finally, non-

periodic non-rigid deformations are the hardest to model and have the most varying effects on

image reconstruction. In the best case, the motion can occur in another part of the body and

not affect the organ of interest, such as can happen if the patient were to move the arms without

disturbing the torso during a cardiac SPECT procedure (28). In the worst case, the patient may

bend or twist at the waist and readjust the shoulders to get more comfortable (16), disturbing

exactly the region of interest.

3.1.1 Motion Observations, Modeling, and Correction

A series of observations over the course of the acquisition are used to derive model parameters

that represent the patient's motion. The types of observations performed include: motion

evident from the projection data alone or monitoring the output of sensors attached to the

patient’s body

An example of motion that is evident from the projection data alone is a translation up or down

the table. The projection images from adjacent angles should contain approximately the same

structures in the same horizontal locations. If a global translation and horizontal direction leads

to a better horizontal alignment between the structures in the two different projections, then the

patient has most likely performed a global shift (31).

Some examples of external sensors used to collect motion data are an EKG to monitor

heartbeat, which can be used to account for its periodic motion (14). Similarly, an elastic strap

that measures chest expansion can be used to track the patient's breathing (8). Retroreflective

markers on the patient's surface observed by a visual tracking system can be used to obtain the

parameters for rigid body motion, respiration, and deformation (30).

14

These observations are then used to estimate the parameters of a motion model that the

correction algorithm assumes. These include

 translation (31)

 six degree of freedom rigid body motion (translation and rotation) (9)

 affine transformation (12 degrees of freedom) (15)

 parameterized deformation (bending and twisting) (16)

 interpolated between table and patient’s surface (31)

 freeform deformation (32)

Motion data is incorporated into the reconstruction one of two ways: by deforming the

projections and perform regular reconstruction (15), or by deforming the reconstruction volume

during projection and back projection (9) (16) (33). The end goal is to get a stationary volume

that most accurately represents the activity distribution within the patient's stationary body.

In order for a motion correction approach to be useful, its motion model needs to be

 Expressive enough to capture the types of motions that would arise in real studies and

 Have parameters that can be approximated accurately based on the observations

In general, the fewer the number of parameters, the more accurately they can be approximated

(e.g. rigid body motion). Conversely, the larger the number of parameters, the more expressive

the model can be (e.g. freeform deformations). This might seem to suggest that freeform

deformation cannot be usefully corrected based. It could be if appropriate observation data were

available. For example, a joint SPECT/MRI of the torso would provide the necessary data to

perform non-rigid registration (32) (42) on the organs in the MRI volumes, which could then be

applied to correct a cardiac SPECT reconstruction. SPECT/MRI systems have recently been

developed for small animal imaging (36) (37), but are not yet available for human use.

3.1.2 Motion Correction Assessment

The assessment tools available to motion correction algorithm developers are physical

phantoms (31) (9), numerical phantoms (34) (35) (36), or live patients. A positive feature of

phantoms is that they provide a ground truth to compare one's results directly to. Numerical

phantoms can model anatomy very accurately (34) (36), but the projection data has to be

simulated. In both cases, incorporating realistic motion into the stationary phantoms is difficult.

Live patient data provides the most accurate anatomy, projection physics, and motion, but the

ground truth is not known.

Physical phantoms tend to be rigid water-filled structures with a simplified anatomical model.

The types of motions that they can simulate are similarly limited - one can simulate rigid body

motion accurately by moving the phantom (31) (9). Respiratory motion can also be crudely

simulated by periodic translation of the phantom up-and-down the imaging table (33) (31). The

projection physics, however, are exactly the same as would be expected in real captures, since

the real radioactive material is observed using the real imaging apparatus.

15

Mathematical numerical phantoms such as the Mathematical Cardiac Torso (MCAT) Phantom

(35) use simple mathematical formulas to model organs and their motions. Organs would be

modeled using simple shapes such as cylinders and ellipses, and motion would be modeled by

varying their parameters. Since the shapes are explicitly controlled by the parameters, one can

easily determine corresponding regions between different motion states.

In order to generate more realistic organs, one can extract organ boundaries by segmenting

volumetric images of patients, such as can be attained with MRI (36). This procedure produces

stationary voxelized anthropomorphic phantoms. Developing even one such stationary

phantom is usually a very time intensive procedure.

The NURBS-Based Cardiac Torso (NCAT) Phantom strikes an impressive balance between

being anthropomorphic and mathematical (34). It is based on voxelized segmentations of MRI,

but the organ boundaries are then modeled using Non-Uniform Rational B-Splines (NURBS)

(42), giving them an infinite resolution, smooth, parametric model. This effectively makes it an

anthropomorphic mathematical Phantom, since the parameters of the NURBS can be modified

to place the model into different motion states. The NCAT Phantom incorporates models of

heart beating and breathing based on real patient data (37). It does not, however, incorporate

other types of deformations, such as bending and twisting.

3.1.3 Typical Assessment Approaches

In most cases, the assessment of the motion correction algorithm is limited to a motion model

validation followed by an analysis of the algorithm's performance on clinical data containing

motion (8) (9) (38). The motion model validation demonstrates that the algorithm can correct

the type of motions for which it was designed. This is usually done by deforming a numerical

phantom using the same motion model that the correction algorithm uses and then applying the

correction algorithm to the doctored data (17). In the case of rigid body motion, one can also

use a physical phantom in this check (9).

One way to provide a ground truth for non-periodic motion (the heart will beat and the patient

will breathe) in a patient study is to perform a second acquisition with the same patient during

which they wouldn't move (39). The two volumes would not necessarily be registered, but at

least there would be a real basis for comparison of accuracy.

Another way to provide the ground truth is to use a dynamic anthropomorphic phantom that can

simulate the type of realistic motion that the algorithm is attempting to address (40) (41). The

NCAT phantom can simulate heart beating and breathing. (37). Since these deformations are

actually based on real human motion, then running the correction algorithm with these data

actually says something about how they would do on real patients.

Another benefit of using anthropomorphic numerical phantoms which incorporate realistic

motion is that the observation data, such as the motion of markers on the patient's chest and

abdomen, may be simulated as well and used to assess the quality of the parameter estimation.

This differs from the validation described earlier, where the motion model parameters are

usually specified directly.

16

Frequently, however, a ground truth is not available for the performance analysis (8) (9) (38). In

those cases, the only comparison that can be made is between a usually unintelligible standard

reconstruction and motion corrected output of the algorithm (38). At best, one can claim that the

corrected results look like they have fewer detectable artifacts than the uncompensated ones,

but since there is no ground truth to compare against, one cannot substantiate any claims about

the correction approach’s effects on reconstruction accuracy.

17

4 Motion Correction Assessment Framework
The goal of this work is to create anthropomorphic numerical phantoms based on real human

data that can be used to simulate non-periodic non-rigid body deformations. This framework will

need to be able to exercise all parts of the SPECT motion correction - from parameter

estimation, to motion corrected reconstruction, to quantitative assessment of reconstruction

accuracy compared to a ground truth. Most importantly, since we intend to generate the test

data MRI images of real human volunteers performing real deformations, the performance

measures attained with these data can actually be used to substantiate claims about clinical

performance.

Since the reconstruction procedure produces a numerical voxelized volume, the ground truth

data has to at least be a voxel-based anthropomorphic numerical phantom with as fine or finer

resolution. In order to simulate motion, these will have to be dynamic phantoms which can be

deformed into several configurations. Since numerical phantoms will be used, we will need a

model of the acquisition system (as described in the SPECT Reconstruction section) to

generate projection data. Finally, we will need a method to generate the observation data

needed by the motion correction portion of the reconstruction algorithm.

Figure 10 illustrates the steps involved in developing a motion simulation system from

volumetric images for the purpose of testing SPECT motion correction algorithms. It is

partitioned into two high level steps: Acquisition of the patient models and true internal motion

and Simulation of the patient motion for use in assessing a motion estimation algorithm. The

central section is the data that the Acquisition section provides to the Simulation section.

In the Acquisition section, volumetric images of the patient in different configurations are

acquired via Magnetic Resonance Imaging along with the corresponding motion observation

data (such as the 3D locations of markers on the patient's body). The volumes are then

partitioned into different tissue types during segmentation, providing the boundaries of the

organs as output. These boundaries are used to develop different phantoms of the patient,

such as an organ density map and a model of the uptake of radioactivity in the body. These

data combined with a forward projection procedure that models the equipment to be used in real

acquisitions (not shown in diagram) provide all the necessary information to simulate a moving

patient and be able to run the motion correction algorithm. Comparing the motion corrected

reconstruction to the ground truth models used to generate the projection data provide a way to

measure the accuracy of the algorithm.

18

Figure 10 Motion Assessment Framework

4.1 Dynamic Anthropomorphic Numerical Phantoms
One can simulate motion by projecting from different stationary phantoms of the same person at

different times during the simulated acquisition. The MCAT and NCAT Phantoms generate this

set and any corresponding observation data by varying the parameters of their mathematically

represented organ structures (35) (37). When such a mathematical model is not available, one

can generate a set of voxelized numerical phantoms for the activity distribution and attenuation

map based on segmented organ boundaries from high-resolution MRI images of the same

volunteer in different configurations, as we do in this work. In that case, the observation data

will have to be acquired at the same time as the volumetric images, since there will not be any

explicit numerical deformations with which to generate the data.

Acquisition

Volumetric

Image(s)

Segmentation

Modeling

Simulation
Motion

Correction
Assessment

Organ

Boundaries

Activity Distribution Attenuation Map

Organ Densities

Organ Models

Focus of

this Project

Reconstruction

Volume

Organ Positions

Projection Data

Marker Positions

19

4.1.1 Set of Volumes

In order to generate a set of anthropomorphic numerical phantoms, we start by acquiring a set

of high resolution MRI scans of a real volunteer in various poses. We then segment the organ

boundaries using techniques described later in this report. If we assume that the segmentations

are accurate, each of the volumes in this set can be considered to be a deformed version of any

of the other volumes. Since the deformations are caused by the volunteer’s real motion, the

resulting set of volumes incorporates realistic patient motion.

Since the actual deformations are not known, the observation data, such as the position of

external markers on the patient's surface, will have to be captured at the same time as the

volumetric images from which the phantoms will be generated. These data can then be

associated with the phantom corresponding to that specific body configuration.

The voxelized numerical phantoms with the corresponding observation data are enough to

generate all the data that the motion correction reconstruction algorithm needs to generate its

results. Specifically, the projection model can be used in conjunction with the phantoms to

generate the projection data, and the observations can be fed in as is. This is the version of

Dynamic Anthropomorphic Numerical Phantoms we begin to implement in this work.

4.1.2 Set of Deformations

In addition to just segmenting the organ boundaries, one can also attempt to determine voxel

correspondences between the pairs of different volumes in the set using non-rigid registration

(32) (42). This data could then be used to refine the organ boundary segmentation by

incorporating data from the other volumes (43) as well as provide a way to generate the motion

observation data directly, without having to capture it with the volumetric images.

Each pair of volumetric images, 𝐴 𝑥 and 𝐵 𝑥 , of the same volunteer provides a view of the

same organs and slightly altered configurations. Non-rigid registration provides a deformation

𝑊 𝐵
𝐴 𝑥 mapping voxels in volume 𝐴 onto voxels in volume 𝐵, while segmentation extracts the

organ boundaries 𝑆𝐴 𝑥 and 𝑆𝐵 𝑥 from each volume individually. Ideally, 𝑆𝐵 𝑥 = 𝑆𝐴 𝑊 𝐵
𝐴 𝑥

(applying the deformation computed during the registration stage to the organ boundaries in one

volume should exactly map them onto the organ boundaries in the registered volume). If we

assume that the segmentations are exactly accurate, then we can use the difference between

these two organ boundaries to refine the registration and make it more accurate. On the other

hand, if we assume that the registration is perfect, then we can use the misalignment of the

boundaries to refine segmentation. In reality, neither the registration nor the segmentation will

be exactly perfect. Optimizing both at once can provide more data than doing either one alone

and in theory lead to both a better registration and segmentation (43).

When both accurate segmentations and registrations mapping the different volumes into each

other are accessible, then one can, in addition to assessing reconstruction accuracy, also

measure the accuracy of the motion estimates generated by the motion correction algorithm.

20

4.1.3 Generate NCAT Phantoms

A voxelized representation of an organ boundary can be fitted with a NURBS mesh. Since

NURBS are parameterized by the locations of their tie points, the deformation functions

computed in the registration step can be applied directly to generate deformed models in

different configurations.

21

5 Identifying Organ Boundaries
This section focuses on the acquisition and segmentation of realistic organ data that will be

used during the proposed testing procedure, and the results that we obtained using software we

developed.

We segment the body based on the properties of the organs of interest. In these images, the

blood in the heart is bright, the air in the lungs is black, and muscle is gray. The ribs are the

dark region contained between the lungs and the soft tissue. After the image is denoised using

anisotropic diffusion (44), sets of connected components are extracted using thresholding.

These represent the initial, rough boundaries for the organs of interest. They are subsequently

refined using morphology (45) and active contours (46). This leads to the “threshold and refine”

approach that we follow to extract the organs on a slice-by-slice basis from the MRI volumes.

Figure 11 Input Slice (Left) and its segmented organs (Right)

5.1 Segmentation Techniques
Morphological dilation thickens a boundary while erosion cuts away at it from the borders.

Active contours refine a boundary by applying three forces over a specified number of iterations.

The balloon force either pushes the boundary outward when it is positive, or shrinks it inward

when it is negative. The advection slows the boundary’s propagation around image edges, and

the curvature force acts to smooth out the boundary.

5.1.1 Morphology

Morphological operations are performed by translating a structuring element over the image

region and performing a set operation (45). One can represent regions using binary images

with pixel values of {0, 1}; A pixel whose value is 1 is considered part of the region, and a 0 pixel

represents the background. Morphology uses two binary images – the image on which the

morphological operation will be performed, and the structuring element that is used to perform it.

A structuring element is a binary image that has an origin. If we let 𝐵 be the set of on pixels in a

structuring element, then we can define an image 𝐵𝑧 that is the same structuring element

translated so that its center is at pixel 𝑧. This gives us the foundation to define morphological

operations.

22

Figure 12 Binary Image (A) and Structuring Element (B) from (47)

An erosion of region A by structuring element 𝐵 is the set of all 𝑧’s where 𝐵𝑧 is a subset of A.

The set of all 𝑧’s can itself be represented as a binary image. Erosion can be thought of as

carving away the borders of region 𝐴 using 𝐵. It can be used to separate regions that are

connected by a thin connection.

Figure 13 Erosion of (A) by (B) from (47)

A dilation of region 𝐴 by structuring element 𝐵 is the set of all 𝑧’s where 𝐵𝑧 intersects 𝐴. It can

be thought of as enlarging region 𝐴 using 𝐵 and can be used to connect regions together.

Figure 14 Dilation of (A) by (B) from (47)

Binary Image 𝐴

Structuring Element 𝐵 with the

origin (red pixel) at center

(Above). 𝐵𝑧 (Right) is an image

the size of 𝐴 (Left) with

structuring element 𝐵 centered

at the pixel 𝑧. Here, 𝑧 = 3,4 .

𝐵 3,4

23

In our work, we used square structuring elements with the origin at the center. This produces

very rough boundaries. However, this was not an issue as they always would be refined by

active contours which produce smooth boundaries.

5.1.2 Active Contours using Level Sets

Active Contours are a general method for iteratively improving a boundary estimate (46) (48). In

the Level Sets formulation (46), the boundaries are implicitly defined inside of a scalar field the

size of the image being segmented. The boundaries are defined as the set of points where this

field is equal to zero with negative regions correspond to region interiors, and positive regions to

the exteriors. Even though only the region of the boundary is of interest, the entire field gets

updated every iteration.

The initial estimate of the boundary should be close to object boundary, though the forces that

act on it during the iterations will move it to new locations, with the goal of providing a better

final segmentation. The update step uses forces derived from the image being segmented to

guide the boundaries to the object(s) of interest.

Since the boundaries are expressed implicitly as the set of zero crossings in the scalar field,

topological changes are also naturally and implicitly handled. Thus, boundaries can merge or

split as necessary.

Figure 15 Active Contours

(A) Input Image (B) Speed Image

(C) Seed Region (E) Final Region

(D) Forces act on Active Contour…

24

Forces

The advection 𝐴 force is also called the Speed Image (Figure 15 (B)). Its role is to stop or slow

down boundary propagation at the borders of objects (edges) and to move the boundary more

quickly in smooth regions (which are not of interest). Edges should have speed values close to

0, stopping the boundary, while the smooth regions that are of no interest should have speed

values close to 1. One can generate the speed image by apply sigmoid to the gradient image.

Using a sigmoid also allows one to choose control the contrast between regions of varying

gradient intensities.

𝑠𝑖𝑔𝑚𝑜𝑖𝑑 𝐼 =
1

1 + 𝑒
−

𝐼−𝛽
𝛼

Equation 5 Sigmoid

Where 𝐼 is the pixel intensity in the input image and 𝛼 and 𝛽 are parameters the user gets to

specify. 𝛼 effects how sharply the image intensities are condensed, while 𝛽 controls the value

around which the function is centered.

The propagation (balloon) force 𝑃 expands or shrinks the boundary. It is constantly acting, but

can be spatially varying. For our purposes, 𝑃 is always a positive constant when the boundary

should inflate, and a negative constant when it should contract.

The curvature 𝑍 force controls how rapidly the boundary can vary. It helps keep the boundary

together and smooth even in noisy data. It can be spatially varying, but is usually set to a non-

negative constant.

Update Equation

The forces are applied in the direction of the gradient. This amounts to propagating the contour

in the normal direction. Since forces applied in the direction of the contour on the other

parameterized curve but do not change the shape, all such forces can be discarded in this

implicit, nonparametric, framework (46). The formula below describes how the scalar field 𝛷 at

time 𝑖 is updated to produce the field for iteration 𝑖 + 1.

𝛷𝑖+1 = 𝛷𝑖 − 𝐹 𝛻𝛷𝑖

Equation 6 Level Set Active Contours Update Step

In this equation, 𝛷 is the scalar field containing the implicit boundary. 𝐹 is the combined force

applied to the boundary – it is a linear combination of the advection, propagation, and curvature

forces.

𝐹 = 𝛼
𝐴 𝑥 ∙ 𝛻𝛷

 𝛻𝛷
+ 𝛽𝑃 𝑥 − 𝛾𝑍 𝑥 𝜅 𝑥

Equation 7 Active Contour Forces, General Form

Where κ is the curvature of the level set field. Since the propagation and curvature forces are

constant, this equation simplifies to:

25

𝐹 = 𝛼
𝐴 𝑥 ∙ 𝛻𝛷

 𝛻𝛷
− 𝑧𝜅 𝑥 , 𝑡 + 𝑝

Equation 8 Active Contours Forces with Curvature and Propagation Forces Constant

Where a lower case 𝑧 and 𝑝 have been used to signify that these forces are kept constant.

5.2 Segmentation Approach
In this section, we describe the specific procedures used to extract each of the organs.

5.2.1 Body

Figure 16 Body Region

We extract the body region using thresholding and connected components. The threshold is

chosen such that it includes as much as possible of the gray soft tissue in the image, but high

enough that the noise in the background does not significantly distort the body contour. The

largest connected component is extracted and used to represent the body. In later steps, the

heart and ribs will be extracted from this region as well.

5.2.2 Lung

Figure 17 Body Dilation (Left) and Lung Final Region (Right)

The lung is the black region inside the body. Frequently, this region is connected to the dark

region outside of the body due to the dark air in the stomach, the MRI’s restricted field of view,

and noise present in the image. We close these gaps in the body by dilating it with a structuring

26

element whose radius is selected to be just large enough to close these gaps. This also has the

effect of eroding the dark region inside the body corresponding to the lungs. We blow that

region back up using active contours with a positive propagation force. The advection and

curvature forces are chosen such that the boundary doesn’t leak too much into the ribs, but still

gets into the sharp corners above the diaphragm and near the heart.

5.2.3 Ribs and Spine

Figure 18 Dilated Body plus Lung (Left), Initial Ribs (Center), Final Ribs (Right)

The ribs are the dark regions in the body just outside of the lungs. We obtain an initial region for

the ribs by extracting the dark region between the lungs and the body within a user specified

number of pixels of the lung’s border. A different version of the body is used in this case,

thresholded at a higher value in order to expose more of the dark ribs.

This initial region is refined using active contours to smooth out the boundaries. The final ribs

are extracted from all the remaining connected components by specifying a smallest and largest

size for the ribs and then manually removing spurious features that fall within that range.

Parts of the spine are extracted using the same approach, relying solely on the proximity to the

lungs and the darkness of the vertebrae in the MRI images.

5.2.4 Heart

Figure 19 Heart Segmentation

27

The blood inside the heart is brighter than the rest of the soft tissue around it. This allows us to

use a high threshold value to separate the blood from the rest of the body. We then dilate that

region and mask the original input image to extract the tissue around the blood. This allows for

a lower threshold to be used, which captures more of the soft tissue of the heart. The largest

component is extracted, but the boundary is still rough, so we smooth it out using active

contours.

5.3 Results
We tested our segmentation approach on data acquired in an earlier study aimed at assessing

the effects of patient motion on the location of the heart (49). Volunteers held their breath and

two cardiac triggered MRI acquisitions were performed one after another. This assured that the

heart was at the same location in the cardiac cycle in each slice and the lung volume was the

same in both poses. The MRI volumes spanned the part of the thorax containing the heart.

Each volume was made up of 20 sagittal slices, each 4mm thick with a 2mm gap between

slices. Each slice image is 256x256 pixels, with 1.367mm2 pixels. The segmentation results

are provided at in section 5.3.1. Each segmentation took approximately 3 hours to perform on

a Dell XPS M1330 Laptop, most of the time coming from manual manipulation of parameters.

This approach does fairly well on slices that only contain lung, heart, body, and ribs (1-9 in the

volume A and 1-8 in B). In slices where the larger vasculature appears, it becomes difficult to

separate the heart from the aorta and the vena cava, which should be segmented as separate

regions from the heart (11-13 in the first volume and 10-13 in the second).

Extracting the spine using this method is less reliable. It is extracted using the same approach

as for the ribs, looking for the "dark region inside the body close to the lungs." Thus, if there are

no lung or trachea regions near the spine in a specific slice, the current approach will not find

the spine regions (13-17 in volume, finding no spine at all, and 13-17 in B, with some partial

segmentation). In slices 18-20, the air in the trachea gets classified as lung and acts as the

starting region for the spine segmentation.

28

5.3.1 Two Segmented MRI Volumes

Figure 20 Slices 1-4

MRI
A

Organ
Regions

A

MRI
B

Organ
Regions

B

29

Figure 21 Slices 5–8

MRI
A

Organ
Regions

A

MRI
B

Organ
Regions

B

30

Figure 22 Slices 9-12

MRI
A

Organ
Regions

A

MRI
B

Organ
Regions

B

31

Figure 23 Slices 13-16

MRI
A

Organ
Regions

A

MRI
B

Organ
Regions

B

32

Figure 24 Slices 17-20

MRI
A

Organ
Regions

A

MRI
B

Organ
Regions

B

33

6 Implementation
In order to extract the organ boundaries, we needed software that would allow us to ingest

volumetric images produced by the MRI scans and perform the segmentation steps described

above. We decided to implement the software ourselves using available open-source software

libraries.

Figure 25 Interactive Image Processing GUI Application

Figure 25 shows the final application developed for performing the image processing required in

this project. The main portion of the program window is taken up by the visualization

component and the rest of the program window consist of the interactive GUI widgets for

parameter specification. Widgets are grouped according to which filter they provide the

interface to. In the rest of this section, we describe the engineering efforts that went into

developing the software framework that was used to create application.

6.1 Requirements
An interactive image processing and segmentation program needs at least three components:

 an image processing library that implements the filters we intend to use,

 an interactive image display that would could visualize the image processing effects, and

 a graphical user interface by which to specify filter parameter values.

34

The image processing library needs to support multiple step pipelines (e.g. denoise an image,

threshold it, perform some morphological operations, then run active contours). It needs to

provide a way to save and load the values of the parameters specified to the filters in order to

be able to reuse the hand tuned values in later segmentations. Finally, in addition to being able

to visualize intermediate outputs, the application should also be able to save them to disk for

offline use in presentations and reports.

6.1.1 Choice of Libraries and Programming Language

The choice of programming language to use for this project was driven by the existence of

publically available libraries that met the above requirements. File input/output and graphical

user interface libraries are available in many general purpose programming languages and did

not provide any strong constraints for programming language selection. For visualization, we

found an excellent open-source library - The Visualization Toolkit (VTK) (53) - implemented in

C++ with bindings in Python and Java. The same company (54) that produced VTK also

provides an open-source image processing library - Insight into Segmentation and Registration

Toolkit (ITK) (55). It implements many current segmentation and registration techniques and is

currently only available in C++. This decided the programming language to use for this project.

Finally, we chose to use wxWidgets (56) for the graphical user interface component because

there was already an interface developed for displaying a VTK window in wxWidgets

applications called wxVTK (57).

6.2 Overview of Filter Pipelines (ITK and VTK)
The fundamental building blocks of ITK and VTK applications are filters. A transform filter takes

in an image, does some processing, and produces an image. A source filter produces an image

but takes no inputs, and a sink filter takes in an image but produces an output. Source filters

are used to implement things such as loading an image from disk, sink filters are used for

saving files and displaying output to the screen, and transform filters perform the image

processing operations.

ITK is purely focused on image processing, so it does not have any display filters. VTK is all

about visualization and provides many different ways of visualizing and processing data for

visualization. There exists a Filter that converts ITK image types to a format that VTK can use,

allowing us to build image processing pipelines using ITK and display them using VTK

visualizers.

In addition to taking images as inputs, filters usually also need to have different parameter

values specified in order to perform the appropriate operation desired by the user. ITK and VTK

provide setter and getter methods for these properties, but leave it up to the programmer to

specify them at runtime. For interactive applications, these parameter values come from GUI

widgets, so that moving a slider that provides a parameter to a transform filter would modify the

visualization output in real time.

35

6.3 First Pass
The first application that we developed using these libraries was a tool for active contours

segmentation of 2D images. It exercised all the requirements specified above and provided a

straightforward coding framework for writing interactive image processing applications.

The framework consisted of three distinct subsystems - the image processing subsystem, the

display, and the parameter specification GUI. Each of these subsystems was encapsulated in

its own class, using getter and setter methods to pass parameter values to the image

processing filters and to retrieve filter outputs for display. Since wxWidgets is an event driven

GUI library, each text box and slider that was used to specify parameter values needed its own

callback function which would in turn call setter method on the image processing subsystem.

This approach generates a lot of code, most of which is associated with filter parameter

specification. But that is the most fundamental and most frequently used component of an

interactive image processing application. There needed to be a better way for application

developers to write these sorts of programs that would be less distracting and time-consuming,

allowing one to focus on the high-level tasks of putting filters together rather than on the low-

level tasks of wiring the callbacks for the input widgets.

6.4 High Level Interactive GUI Language (HLING)
Rather than discard a working software development framework, we developed the High Level

Interactive GUI Language (HLING) that allows one to express the high level image processing

ideas succinctly. It then gets compiled down into the corresponding C++ implementation

described above. Most significantly, it removes the details of event driven GUI programming,

providing a more straightforward way to write image processing filters with interactive filter

parameter inputs.

The language itself was written using PLT Scheme (58) using the Programming Language:

Application and Interpretation module. It was not intended to alleviate the programmer from

knowing C++, but is rather a tool intended to simplify development for this specific type of C++

coding framework.

6.4.1 Language Structure

Programs written in HLING are divided into three high-level sections: filter type definitions, filter

object definitions, and state transition specification. In the filter type definition section, the

programmer first defines and names the pixel types (integer, short, float, double, etc.) that will

be used to represent data in the images. Image types are defined using these pixel types and

the number of dimensions of the image (two or three in this case). Filter types are split into

three categories: source, transform, and sink and are parameterized on the input and output

image types.

The filter object section is where the interactive portion of the application is defined. A filter

object is an instance of the specified filter type defined above. It provides a short description for

the filter, which will be displayed in the GUI, as well as the specifications for all of the interactive

parameters.

36

The parameters are integer or floating point numbers entered through a text box or a slider.

The language compiler takes care of creating the callback functions and creating the widgets. If

there is a setter function whose value is directly specified by the value of the widget, the

application developer doesn't have to write any C++ code (e.g. an upper threshold on a

threshold filter). If the value needs to be processed before being passed on to the setter, the

application developer can also write C++ code that calls the filter’s setters after performing

some computations (e.g. calling a function to create a morphological structuring element before

passing it to the dilation filter).

The second part of the filter object section describes how filter objects connect to one another.

It uses a straight forward functional syntax to specify which filters are inputs to what other filters

in the graph. It also provides syntax for multiple outputs.

The state transition section specifies which filters are active at what points during the program's

execution. It is intended to prevent the system from trying to perform computation when no

image data are loaded. State transitions are triggered by the user opening the necessary input

files required by the specific filters.

6.4.2 Language Translations

HLING is implemented in three layers, requiring two translations. The first two layers - user-

spec and application – each have a syntax tree defined in Scheme (definitions included in the

section Appendix – HLING). The final layer is C++ code, which gets generated directly from the

application layer. The user-spec provides the highest level of the abstraction by providing

shorthands for specifying different parts of the interactive application. The application level

expands all of these shorthands into a common syntax structure that can be used directly to

generate C++ code.

Translating a user-spec to an application

The most notable shorthands provided at the user-spec level were those for input/output types

of the filters and shorthand for specifying whether to permit displaying and saving of a filter’s

image output.

For virtually all of the image processing filters that we used, the input image data was specified

by calling SetInput() on the filter, and the output image was gotten by calling the GetOutput()

method. Thus, in order to express that "filterA acts on filterB’s output”, one would have to write

filterB->SetInput(filterA->GetOutput())

functional notation already provides the semantics, but is much more compact and familiar.

filterB(filterA)

thus, we decided to provide the shorthand of not having to explicitly specify the names of the

output and input functions, except for when the default assumptions of SetInput and GetOutput

were inaccurate (such as when specifying two different images as the input of the active

contours filter - one being the feature image and the other the initial level set).

37

We also wanted to be able to save and display the outputs of different filters. This required

creating ITK sink filters for writing the image to disk and converting it to the format that VTK

could handle for display. But these filters would all be very similar for all the different filters

whose outputs we wanted to display or save, the variation being in the different image types that

they would produce. There is no reason that somebody writing an image processing application

should have to worry about this level of detail. Thus, the user was able to specify whether they

wanted to be able to display the image, save the image, both, or neither. The application layer

took care of performing the type inference and generating the structured representation of the

image writer and display filters.

As a benefit of having the user-spec syntax structure explicitly at our disposal, merging

applications was really easy. All that had to be done was just to copy all of the types, filters

objects, state transitions, etc. into the same corresponding list to generate a new user-spec that

now contained two different subgraphs. All that the programmer had to do was add another

connection from the output of one of the filters in one graph to the input of the filters in the other

graph. The two pipelines were linked without having to re-write the code of either one. This

was especially useful for filters and subgraphs that were commonly reused, including

thresholding, active contours, and connected component extraction.

Translating an application to C++

After the user-spec is expanded to an application, the application is compiled to C++

code. This is where the declarative syntax of the application is converted to the imperative

syntax of using callbacks in C++. Different parts of the application syntax tree get extracted

in order generate different parts of the source code. For example, in order to generate all the

callback functions for the input widgets, the syntax tree was mapped and filtered to extract the

filter names, input names, and other necessary data. These data were then used to generate

callback functions with appropriate type signatures that would call the proper setter functions on

the filters. Similar code had to be present in the instantiation of the GUI widgets in the GUI

subsystem’s constructor, and thus used a similar subset of the syntax tree to generate the C++

code.

A specifically intricate example of converting the declarative syntax to the callback-based

implementation is the case when a filter’s setter method needed two or more input values. In

this case, the values of two widgets have to be accessed and passed whenever either one of

them was modified. A straightforward way to implement this is to create one function that takes

no parameters and reads the values of all the widgets involved in this parameter update and call

the filter’s setter method. Each widget’s callback would just call this thunk whenever its value

updated. This is exactly what happens when the C++ code is generated. On the other hand,

when only one value needs to get passed to the filter, the most straightforward thing to do is to

just forward the value passed to the callback function without reading an specific widget’s value.

Since this single parameter specification is more common, coming up with the architecture for

the two or more input case took some extra care.

38

6.4.3 Feature Creep

As we began to write applications using HLING, a number of additional features that were not

anticipated at the onset of the language implementation were added as their need became

apparent. A large part of these additions were related to dynamically updating slider minimum

and maximum values. Another was the need to specify non-image types as parameters to

filters as well as import helper C++ files. This section describes the details of these additions.

Minimum and Maximum from Widgets

The first addition that became necessary was to provide a way by which to assure that a

parameter whose value was semantically larger than another one, such as the maximum and

minimum values for a threshold, could never be specified erroneously. All that the program had

to do was to update the minimum value of the maximum threshold whenever the minimum

threshold is moved, and vice versa. Since the user can only move one slider at a time, no race

conditions were introduced.

Minimum and Maximum from Filters

Creating a slider for choosing a slice in a dynamically loaded MRI file, or selecting a specific

connected component from an image required a value from the image processing layer (number

of MRI slices or number of connected components in these cases) to be propagated to the GUI

layer. In the MRI slices case, the operation is started by the user opening a file from the GUI,

providing a specific event after which to sample the desired filter parameter. The number of

connected components in the thresholded image, however, could change due to events

happening in other filters upstream from the connected component extractor in the graph.

The correct way to think about the data flow in this situation is that slider's minimum or

maximum value comes from the filter. This is completely analogous to the filter’s parameter

value coming from a GUI widget. Thus, they received the same syntax: when specifying a

slider, the programmer may specify a constant value for the minimum or maximum, or they may

specify that it comes directly from a getter method on the associated filter. They may also

specify their own C++ function that takes zero formal parameters and returns the same type as

the slider takes (integer or float). These getter functions get called every time any widget’s

callback gets called – since updating another filter may have effects on the desired filter’s output

values.

Non-Image-Type Filter Type Parameters

Another feature that had to be added was being able to specify non-image types as parameters

to the filter types. Specifically, the morphological operators required that the type of the

structuring element (the Neighborhood type in ITK, which is not an Image type) be specified as

well as the input and output image types. We created a set of helper C++ function for

generating rectangular neighborhoods to be used as structuring elements for erosion and

dilation and needed to be able to include the header file in which we defined them. This did not

fit nicely into the framework, which assumed that the only included header files were those for

image and filter types. We resolved this by providing a “helper-type” section that could be used

specifically to specify additional non-filter non-image include files.

39

7 Interactive Image Processing Application Requirements
In this section we discuss the lessons learned from the software development process of this

project by laying out a set of requirements for interactive image processing applications written

in C++ using ITK, VTK, and a GUI library.

We implemented HLING in order to provide a more intuitive way to write the GUI component of

the applications. It wasn’t intended to completely abstract the C++ implementation of the

applications. As such, someone developing an interactive image processing application with

HLING needed to both understand its syntax as well as be proficient in C++. Since application

developers should already be familiar with C++, making this GUI writing layer in C++ would

alleviate application developers from having to learn, use, and further develop HLING.

7.1 High-Level Requirements
There are several guiding principles that should be followed when developing the interactive

GUI framework. Most of these points find their roots in declarative programming paradigms and

the programming languages that implement them (58) (61) (62) (63), though one need not be

familiar with these programming languages to understand these guiding principles. The aim is

to simplify how programs are written and debugged while exposing all of the available tools and

power of ITK to the programmer.

1.) Programs should be written as declaratively as possible

It is natural to think of image processing applications as "filters chained together into

pipelines with parameter values coming in through a GUI." ITK already provides a

declarative syntax for specifying the image processing pipelines. It was the wxWidgets

GUI implementation that used imperative C++, which significantly increased the amount

of code necessary to express the "values coming in through a GUI" component.

The approach taken in this work to resolve this problem was to write a high-level,

declarative language that the programmer could use to specify the GUI which would

then get compiled down to the spaghetti code of a callback-based program. Alternatives

exist that use straight C++, though, and should be preferred. The QT GUI library (59),

for example, uses slots to provide a declarative syntax for specifying widget value

propagation through the program and should be considered for the next iteration.

2.) The programmer should be able to use all available components of ITK

In writing the high-level programming language used in this iteration of the software

development we had to add new structures to the language in order to allow access to

the existing functionality in ITK. This overhead could be avoided by using C++ directly.

There are components that will require non-image inputs and produce non-image

outputs, the neighborhood structure, for example; image statistics are also a useful

feature that can be used in the future. Since these parts of ITK are already written in

C++, no additional program structure needs to be added to use it.

40

3.) The programmer usually shouldn’t have to think about pixel and image types when

writing pipelines

Since ITK relies heavily on C++ templates, it is necessary to specify all of the image and

pixel types for every filter when composing ITK filter graphs at compile-time. Many

times, though, default types can be safely assumed and used for different types of filters.

Similarly, if two filters are linked, the input type of the receiving filter will have to match

the output type of the producing filter. Using a combination of reasonable default types

combined with a static type inference mechanism can make the graph building process a

lot less verbose. At the same time, the default type values can be superseded to fit the

program developer’s needs.

4.) Filter pipelines and GUIs should be easily reusable

Putting together different pipelines and their associated GUIs should be as straight

forward as it was in HLING. This was not possible to do using the C++ coding

framework developed in this work, as each widget of every filter needed its own global

callback function. HLING enabled this functionality by concretely representing the

program structure at a higher level, where they could be easily combined. It then

generated the necessary C++ code that implemented them. Future implementations

may be able to forego the need to have a callback function for every single widget in the

application, which would enable C++ programs to be combined at a high level as well.

7.2 Application Layout
The application layout in the current implementation was very intuitive (Figure 25). We suggest

that it be reused, with some minor additions, for the next iteration. The user interface could also

provide a way to collapse the widget group associated with a specific filter. Since the filters are

organized into pipelines, it may also be useful to be able to collapse the set of filters making up

a pipeline. This would be especially useful if the application were made up of a number of

independent pipelines whose outputs all fed into a final filter or pipeline that combined the

results.

7.3 Hypothetical Source Code
The hypothetical source code below should generate a full interactive image processing

application that implements the basic segmentation method used in this work (threshold then

refine using active contours). The programmer need only specify the types of the filters to be

used in the application using the filter wrappers, which encapsulate the interactive GUI and ITK

filter graph building tasks. Thus, the most attention should be placed on coming up with a good

way to write these filter wrapper classes.

// Filter Wrapper classes. They implement the GUI components

// for individual ITK filter types.

#include <ImageReader.hpp>

#include <Denoiser.hpp>

#include <Thresholder.hpp>

#include <Gradient.hpp>

#include <Sigmoid.hpp>

#include <ActiveContours.hpp>

41

#include <Application.hpp>

using namespace igw; // Interactive GUI Wrappers

// ...

// A developer would use this sort of syntax to specify

// an interactive image processing application.

Denoiser denoised(ImageReader());

Thresholder intialRegion(denoised);

Sigmoid speedImage(Gradient(denoised));

ActiveContours contour(initialRegion, speedImage);

// The interactive application containing the display and

// input widgets for all of the filters that contour depends on.

Application thresholdRefineApp(contour);

// ...

// Or, naming fewer of the filter wrapper objects

Denoiser denoised(ImageReader());

ActiveContours contour(Thresholder(denoised), Sigmoid(Gradient(denoised)));

Application thresholdRefineApp(contour);

// ...

Figure 26 Hypothetical Source Code

7.4 Filter Wrapper Requirements
The only thing the Application needs to know about filter wrappers is how to get their renderer

and the widget group used to specify parameter values to the filter. The choice of which

renderer use, which parameters to expose using which widgets, and how the parameter input

components are laid out should be left entirely up to the author of the filter wrapper.

Since we are using VTK for visualizing and rendering the data, there are many different

visualizers to choose from. In fact, an elaborate graph of VTK filters can be created (53) to

visualize the results of one ITK filter.

The filter wrapper should also expose the ITK filter directly. ITK has a powerful data flow

infrastructure with an intuitive interface for linking filters into pipelines. The wrappers are only

intended to automate parameter specification and the other tasks outlined in this section, not to

provide an opaque interface to the underlying image processing pipeline. The functional style

constructor illustrated in the hypothetical syntax would just be convenient shorthand for

specifying the filter connections. Most notably, linking multiple outputs from a single filter is

most effectively done using the output getter methods that ITK already provides.

It will be important to support the use of widget inputs to control widget values, such as is

needed to ensure that the minimum threshold that a user can specify can never be larger than

the maximum threshold for the same image.

A more intricate requirement will be the ability to use filter values to control widget values. This

becomes necessary when making a slider for selecting a slice out of an MRI volume or a

specific connected component from a thresholded image. Neither of these values are known

when the application is written, and the number of connected components can change based on

the threshold value specified through another filter in the pipeline.

42

The filter wrappers should handle saving and loading parameter values specified through the

GUI. This is a very simple requirement to implement, but it is largely what makes the entire

interactive parameter specification process worthwhile. As a very simple example, one can use

parameter values saved in an earlier run of the program as a starting point for analyzing new

data.

Finally, one can determine whether or not the filter should be enabled by checking whether all of

the source filters further upstream from it have loaded data. There should be no need to

explicitly specify the state transitions, as had to done in the current coding framework.

43

8 Discussion and Future Work
We have demonstrated the first steps in automating the phantom generation process from MRI

volumes of real volunteers. Having a fast and accurate segmentation process is going to be

essential for generating the libraries of segmentations that will be necessary for generating the

dynamic anthropomorphic phantoms needed to perform motion simulation and testing. The

myriad of image processing filters that ITK provides combined with the next iteration of the

Interactive GUI framework for ITK filters will make developing such elaborate segmentation

applications tractable.

Future directions include increasing the accuracy and reducing the time necessary to segment

the volumes by using more sophisticated segmentation and image processing techniques. We

can use a database of previously preformed segmentations of the organs and look for them in

the most probable places (50). We can explicitly look for specific structures within the volumes,

since, for example, we know there should be twelve ribs in the body that attach to the vertebrae

in known locations. This would really help for the thin front ribs, which are missed in most of the

demonstrated segmentations. It would also complete the spine segmentation we partially

accomplish in this work.

The "threshold then refine" method discussed in this work doesn’t work well for segmenting the

spine; it is made up of multiple intensities in these images, making it difficult to generate an

initial contour. Fortunately, there are other structures and features that can be used to segment

the spine: the structure of the spine can be summed up as a curved column of vertebrae

separated by spinal discs. In the MRI, this looks like a curve of dark squares separated by light

lines. One can use a technique that can exploit these features directly to improve the spine

segmentation (51). One can also use the locations of the ribs from previous slices as a starting

point. Additionally, 3D segmentation can try to extract the ribs and vertebrae as one three-

dimensional region (52).

In future work, we plan to develop ways to extract other structures present in thorax, such as the

scapula, sternum, and collar bone. There also seems to be enough contrast between the blood

and the muscles in the heart in these images to extract the heart walls. Some of these

structures can be extracted using the threshold and refine approach used in this work, while

others will require a more sophisticated approach.

44

9 Appendix – HLING
HLING uses two concrete syntax trees used to represent applications. The user-spec defines

the syntax we used to write interactive GUI programs in this work. The user-spec gets

translated into an application which expands all of the shorthands used in the user-spec into

a form that can be used directly to generate a set of C++ files implementing the application.

The C++ code is compiled into the final executable we used to generate our segmentation

results.

The language grammars are structures with fields whose types are specified using Scheme

contracts. The basic structure of a program is defined by the app-TYPE, filterT (filter type), and

filterO (filter object) types. The filterO’s use the callback type provide a declarative syntax

(despite their name) for specifying what input widgets’ values feed into which formal parameters

of the filter’s setter methods.

The filters which we referred to as “transform filters” are actually called just “filters” in ITK. This

naming convention makes the term “filter” ambiguous, and so we renamed it in the body of the

report. In this grammar, however, we follow ITK’s convention, overloading the word to mean

both the general unit of the ITK framework (source, transform, and sink) or only the transform

filter. The intended meaning should be evident from context.

9.1 HLING Concrete Syntax Structures
;; variable and function names have to comply with C++ format

(define var-exp #rx"^[a-zA-z][a-zA-Z0-9]*$")

;; a lot of things have names which one needs to get at easily

(define (named item-type?)

 (cons/c var-exp item-type?))

(define-type app-TYPE

 ;; the abstract syntax for what the user types

 (user-spec (title string?)

 (pixel-types (listof (named pixelT?)))

 (image-types (listof (named imageT?)))

 (source-types (listof (named filterT?)))

 (filter-types (listof (named filterT?)))

 (sink-types (listof (named filterT?)))

 ;; the type name, the include, and the typedef

 (helper-types (listof (named (cons/c string? string?))))

 (filter-objects (listof (named filterO?)))

 (connections (listof connection?))

 ;; list of the states

 (states (listof var-exp))

 ;; a transition is either

 ;; ((filter-name callback-name param-name) . added-state-name)

 ;; Adds added-state-name to the state when the filter's callback

 ;; parameter is set successfully. Only the names of (open-file)

 ;; callbacks are valid for callback-name.

 ;; (filter-name . added-state-name)

 ;; expands to the above form by finding the first (open-file)

 ;; callback in the filter

 (state-transitions

 (listof

45

 (or/c

 (cons/c

 (cons/c var-exp (cons/c var-exp (cons/c var-exp empty)))

 var-exp)

 (cons/c var-exp var-exp))))

 ;; the states for which the specified filters are activated

 ;; (((state-name ...) (filter-name ...)) ...)

 (state-filters (listof (cons/c (listof var-exp) (listof var-exp)))))

 ;; The abstract syntax from which the application is compiled.

 ;; Produced by (pre)processing the user-spec.

 ;; filterT* and filterO* are the expanded versions of

 ;; their counterparts in the user-spec.

 (application (title string?)

 (pixel-types (listof (named pixelT?)))

 (image-types (listof (named imageT?)))

 (source-types (listof (named filterT*?)))

 (filter-types (listof (named filterT*?)))

 (sink-types (listof (named filterT*?)))

 (helper-types (listof (named (cons/c string? string?))))

 ;; automatically generated types for displaying in VTK

 ;; and saving ITK filters’ outputs

 (display-types (listof (named filterT*?)))

 (writer-types (listof (named filterT*?)))

 (filter-objects (listof (named filterO*?)))

 ;; automatically generated display and writer objects

 (display-objects (listof (named filterO*?)))

 (writer-objects (listof (named filterO*?)))

 (connections (listof connection*?))

 ;; automatically generated filter connections for

 ;; the displays and writers

 (display-cons (listof connection*?))

 (writer-cons (listof connection*?))

 (states (listof var-exp))

 (state-transitions

 (listof

 (cons/c

 (cons/c var-exp (cons/c var-exp (cons/c var-exp empty)))

 var-exp)))

 (state-filters (listof (cons/c (listof var-exp) (listof var-exp))))))

(define-type program-TYPES

 (pixelT (base-type string?))

 (imageT

 ;; the ITK image class

 (template var-exp)

 ;; the pixel-type can only be one of the defined pixel types

 (pixel-type var-exp)

 (dimensions exact-positive-integer?))

 (filterT

 ;; the ITK filter type

 (template var-exp)

 ;; The filter's parameter types, and the functions they are associated with.

 ;; The types specified as strings are not checked to be valid image types.

 ;; The types specified using the (listof var-exp) construct are of the form

 ;; '(type-name func1-name func2-name ...)

 ;; type-name is checked to be a valid image type. The func-names are then

 ;; bound to having that (input or output) type.

 ;; Most filters will just use the 'SetInput and 'GetOutput

 ;; The first two types may be specified using a single type, with no associated

 ;; functions. For sources, the first type specified is assumed to be for

 ;; GetOutput. For sinks, the first type specified is assumed to be for SetInput.

46

 ;; For filters, the first type is for SetInput and the second is for GetOutput.

 (type-args (listof (or/c var-exp (cons/c var-exp (listof var-exp)))))

 ;; specification of which of the above typed functions are inputs or outputs

 (inputs (listof var-exp))

 (outputs (listof var-exp)))

 ;; sources, filters, and sinks are treated differently,

 ;; but specified in the same way

 (filterO

 ;; the one of the defined filter types that this object realizes

 (type var-exp)

 ;; short, descriptive label

 (label string?)

 ;; code will be run once to initialize a filter object.

 (init string?)

 ;; the functions that define interaction with this class

 (parameters (listof (named callback?)))

 ;; adds the default functionality

 (auto-sinks

 (listof

 (or/c 'none 'all

 (listof

 (or/c (or/c 'display (cons/c 'display string?))

 (or/c 'writer (cons/c 'writer string?))))))))

 (connection

 ;; a connection specifies all the inputs for a specific filter

 ;; in the order they are listed in the filter type

 (filter-name var-exp)

 ;; a list of output functions from other filters corresponding

 ;; to the inputs listed in the filter type definition

 ;; The (cons symbol symbol) form represents (filter-name function-name)

 ;; for the input

 ;; The var-exp form represents the input filter's name and expands to

 ;; (filter-name 'GetOutput)

 (inputs (listof (or/c var-exp (cons/c var-exp var-exp)))))

 ;;;

 ;; types that enforce constraints valid after preprocessing

 (filterT*

 (template var-exp)

 ;; all type args are in the (image-type func1 ...) format

 (type-args (listof (cons/c var-exp (listof var-exp))))

 (inputs (listof var-exp))

 (outputs (listof var-exp)))

 (filterO*

 (type var-exp)

 (label string?)

 (init string?)

 (parameters (listof (named callback?)))

 (display-labels (listof (or/c string? 'none)))

 (writer-labels (listof (or/c string? 'none))))

 (connection*

 (filter-name var-exp)

 ;; all inputs are in the (filter-name func-name) form

 (inputs (listof (cons/c var-exp var-exp))))

 ;;

 (callback (header (listof (named (cons/c string? input?))))

 (body cb-body?)))

(define-type cb-body

 ;; the method-name is the same as a setter method for the specific filter

 ;; that takes the specified inputs

 (setter)

 ;; the method-name does not (necessarily) correspond to a specific setter

 ;; within the class. Instead, the behavior is specified in the body string

47

 ;; as C++ code.

 (stub (body string?)))

(define-type input

 ;; a labeled text-box that takes in numbers of the specified type

 (text (type input-type?))

 ;; a labeled slider that enumerates the numbers of the specified type in the given

range

 (slider (type input-type?)

 ;; min and max can either have a static value the entire time, or

 ;; they can get their value from a getter. In that case, a default

 ;; value is specified until the field is enabled, after which point

 ;; the getter function's output is used as the value.

 ;; (cons default-value getter)

 (min (or/c number? (cons/c number? (named getter-stub?))))

 (max (or/c number? (cons/c number? (named getter-stub?))))

 (val number?)

 ;; disregarded for integer type

 (num-values exact-positive-integer?))

 ;; a boolean input value

 (check-box)

 ;; for readers only.

 (open-file)

 (open-directory)

 ;; for writers only

 (save-file))

(define-type getter-TYPE

 (getter)

 (getter-stub (body string?)))

;; the types of values an input field generates or takes in

(define input-type?

 (or/c 'int 'float))

48

10 Bibliography
1. Prognostic utility of the exercise thallium-201 test in ambulatory patients with chest pain:

comparison with cardiac catheterization. S Kaul, DR Lilly, JA Gascho, DD Watson, RS

Gibson, CA Oliner, JM Ryan and GA Beller. s.l. : American Heart Association , 1988,

Circulation, Vol. Vol 77, pp. 745-758.

2. Inflammation, Atherosclerosis, and Coronary Artery Disease. Hansson, Göran K. 16, s.l. :

The New England Journal of Medicine, April 21, 2005, Vol. 352.

3. Michael A. King, Stephen J. Glick, P. Hendrik Pretorius, R. Glenn Wells, Howard C.

Gifford, Manoj V. Narayanan, and Troy Farncombe. Attenuation, Scatter, and Spatial

Resolution Compensation in SPECT. [book auth.] Aarsvold J. N. Wernick M. N. Emission

Tomography: The Fundamentals of SPECT and PET. 1st ed. San Diego, CA : Elsevier, 2004,

pp. 473–498.

4. Cullom, S. James. Principles of Cardiac SPECT. [ed.] Ernest V. Garcia, Daniel Sholom

Berman E. Gordon DePuey. Cardiac SPECT Imaging. 2001.

5. Exercise Myocardial Perfusion SPECT in Patients Without Known Coronary Artery Disease.

Rory Hachamovitch, MD, et al. Orlando, Fla : American Heart Association, June 1994,

Circulation, pp. 905-914.

6. Analytic and Iterative Reconstruction Algorithms in SPECT. Bruyant, Philippe P. 10, s.l. :

Journal of Nuclear Medicine, 1993, Vol. 43, pp. 1343-1358.

7. Maximum Liklihood Reconstruction for Emission Tomography. Vardi, L. A. Shepp and Y. 2,

October 1982, IEEE Transactions on Medical Imaging, Vol. 1.

8. Correction of Heart Motion Due to Respiration in Clinical Myocardial Perfusion SPECT Scans

Using Respiratory Gating. Gil Kovalski, Ora Israel, Zohar Keidar, Alex Frenkel, Jonathan

Sachs and Haim Azhari. 4, 2007, Journal of Nuclear Medicine, Vol. 48, pp. 630-636.

9. Use of three-dimensional Gaussian interpolation in the projector/backprojector pair of iterative

reconstruction for compensation of known rigid-body motion in SPECT. B. Feng, H. Gifford, R.

Beach, G. Boening, M. Gennert, and M. King,. July 2006, IEEE Transactions on Medical

Imaging, Vol. 25, pp. 838-844.

10. A Quantitative Assessment of Patient Motion and Its Effect on Myocardial Perfusion SPECT

Images. Elias H. Botvinick, YuYing Zhu, William J. O'Connell and Michael W. Dae. 2, 1993,

The Journal of Nuclear Medicine, Vol. 34, pp. 303-310.

11. Single- vs. dual-head SPECT for detection of myocardial ischemia and viability in a large

study population. J. Bucerius, A. Joe, I. Lindstaedt, A. Manka-Waluch, K. Reichmann, S.

Ezziddin, H. Palmedo, H. Biersack. 4, July 2007, Clinical Imaging, Vol. 31, pp. 228-233.

49

12. Dynamic Acquisition with a Three-Headed SPECT System: Application to Technetium 99m-

SQ30217 Myocardial Imaging. Kenichi Nakajima, Junichi Taki, Hisashi Bunko, Masamichi

Matsudaira, Akira Muramori, Ichiro Matsunari, Kinichi Hisada and Takashi Ichihara. No. 6,

1991, The Journal of Nuclear Medicine, Vol. 32, pp. 1273-1277 .

13. Fully 4D motion-compensated reconstruction of cardiac SPECT images. Erwan Gravier,

Yongyi Yang, Michael A King and Mingwu Jin. 18, 2006, Physics in Medicine and Biology,

Vol. 51.

14. 4D Affine Registration Models for Respiratory-Gated PET. GJ Klein, BW Reutter, and RH

Huesman. 2000. IEEE Nuclear Science Symposium. Vol. 15, pp. 41-45.

15. Gu, Songxiang. Body Deformation Correction for SPECT Imaging. Computer Science,

Worcester Polytechnic Institute. 2009. Ph. D. Dissertatoin.

16. Body Deformation Correction for SPECT Imaging. Songxiang Gu, Joseph E. McNamara,

Joyeeta Mitra, Howard C. Gifford, Karen Johnson, Michael A. Gennert and Michael A.

King. 2007. Medical Imaging Conference.

17. HeartSite.com. Treadmill Stress Test . [Online]

http://www.heartsite.com/html/regular_stress.html.

18. Pharmacologic stress testing for coronary disease diagnosis: A meta-analysis. Kim C,

Kwok YS, Heagerty P, Redberg R. 6, December 2001, American Heart Journal, Vol. 142, pp.

934-944.

19. Dipyridamole-Thallium Imaging: The Lazy Man's Stress Test. Leppo, Jeffrey A. 3, 1989,

The Journal of Nuclear Medicine, Vol. 30, pp. 281-287.

20. From Vulnerable Plaque to Vulnerable Patient. Morteza Naghavi, MD, et al. 2003,

Circulation, pp. 1664-1672.

21. Robert Bonow, M.D. ABC News. What Is A Nuclear Stress Test? [Online] February 6,

2008. http://abcnews.go.com/Health/HeartDiseaseScreening/story?id=4222350.

22. Normal stress-only versus standard stress/rest myocardial perfusion imaging: similar patient

mortality with reduced radiation exposure. Chang SM, Nabi F, Xu J, Raza U, Mahmarian JJ. 3,

January 19, 2010, Journal of the American College of Cardiology, Vol. 55, pp. 231-233.

23. SPECT Tutorial. Acquisition Protocols. [Online]

http://www.physics.ubc.ca/~mirg/home/tutorial/acquisition.html.

24. Comparison of planar imaging and single-photon emission computed tomography for the

detection and localization of coronary artery disease. J. P. Hacot, M. Bojovic, J. Delonca1, B.

Meier and A. Righetti. 2, June 1993, The International Journal of Cardiac Imaging, Vol. 9.

25. Slaney, A. C. Kak and Malcolm. Principles of Computerized Tomographic Imaging. s.l. :

IEEE Press, 1988. Available in electronic form at http://www.slaney.org/pct/.

50

26. Quantitative SPECT Imaging: A Review and Recommendations by the Focus Committee of

the Society of Nuclear Medicine Computer and Instrumentation Council. M.S. Rosenthal, J.

Cullom, W. Hawkins, S.C. Moore, B.M.W. Tsui and M. Yester. 8, 1995, The Journal of

Nuclear Medicine, Vol. 36, pp. 1489-1513.

27. Image Reconstruction from Projections. [book auth.] Rafael C. Gonzalez and Richard E.

Woods. Digital Image Processing. 3. 2008, pp. 362-375.

28. Quantitative Analysis of the Tomographic Thallium-201 Myocardial Bullseye Display: Critical

Role of Correcting for Patient Motion. Robert Eisner, André Churchwell, Till Noever, Dave

Nowak, Karen Cloninger, Daniel Dunn, Wilma Carlson, Joel Oates, Janie Jones, Douglas

Morris, Henry Liberman and Randolph Patterson. 1, 1988, The Journal of Nuclear Medicine,

Vol. 29, pp. 91-97 .

29. A Hybrid 3D Reconstruction Registration Algorithm for Correction of Head Motion in

Emission Tomography. B. F. Hutton, A. Z. Kyme, Y. H. Lau, D. W. Skerrett, and R. R. Fulton.

1, February 2002, IEEE Transactions on Nuclear Science, Vol. 49.

30. Pattern Independent Deformation Estimation Illustrated by MRI. Songxiang Gu, Joseph E.

McNamara, Joyeeta Mitra, Howard C. Gifford, Andrey V. Sklyar, Karen Johnson, Michael

A. Gennert, Michael A. King. 2008. Medical Imaging Conference.

31. Comparison of Four Motion Correction Techniques in SPECT Imaging of the Heart: A

Cardiac Phantom Study. Michael K. O'Connor, Kalpana M. Kanal, Mark W. Gebhard and

Philip J. Rossman. 12, 1998, The Journal of Nuclear Medicine, Vol. 39, pp. 2027-2034 .

32. Motion Capture of Chest and Abdominal Markers Using a Flexible Multi-Camera Motion-

Tracking System for Correcting Motion-Induced Artifacts in Cardiac SPECT. Joseph. E.

McNamara, Bing Feng, Karen Johnson, Songxiang Gu, Michael A. Gennert, Michael A.

King. 2007. Medical Imaging Conference.

33. Patient Motion Correction in Computed Tomography by Reconstruction on a Moving Grid.

Rostyslav Boutchko, Karthikayan Balakrishnan, Bryan W. Reutter, Grant T. Gullberg.

2007. IEEE Nuclear Science Symposium.

34. Automatic nonrigid registration of whole body CT mice images. Xia Li, Thomas E.

Yankeelov, Todd E. Peterson, John C. Gore, Benoit M. Dawant. 4, March 2008, Medical

Physics, Vol. 35, pp. 1507–1520.

35. Theoretical and Numerical Study of MLEM and OSEM Reconstruction Algorithms for Motion

Correction in Emission Tomography. King, Joyoni Dey and Michael A. 5, October 2009, IEEE

Transactions of Nuclear Science, Vol. 56, pp. 2739-2749.

36. Multimodality Image Registration by Maximization of Mutual Information. Frederik Maes,

Andre Collignon, Dirk Vandermeulen, Guy Marchal, and Paul Suetens. 2, April 1997, IEEE

Transactions on Medical Imaging, Vol. 16.

51

37. SPECT Low-Field MRI System for Small-Animal Imaging. Christian Goetz, Elodie Breton,

Philippe Choquet, Vincent Israel-Jost and André Constantinesco. 1, 2007, Journal of

Nuclear Medicine, Vol. 49, pp. 88-93.

38. Initial Investigation of preclinical integrated SPECT and MR imaging. Hamamura MJ, Ha S,

Roeck WW, Wagenaar DJ, Meier D, Patt BE, Nalcioglu O. 1, Feb 2010, Technology in cancer

research & treatment, Vol. 9, pp. 21-28.

39. Segars, W.P. Development and application of the new dynamic NURBS-based cardiac-

torso (NCAT) phantom. Biomedical Engineering, University of North Carolina: Chapel Hill. 2001.

40. Modeling respiratory mechanics in the MCAT and spline-based MCAT phantoms. Segars,

W.P., D.S. Lalush, and B.M.W. Tsui. 1, 2001, IEEE Transactions on Nuclear Science, Vol. 48,

pp. 89-97.

41. Voxel-Based Computational Models of Real Human Anatomy: A Review. Coan, M. 2003,

Journal of Radiation and Environmental Biophysics, Vol. 42, pp. 229-235.

42. Altmann, Markus. About Nonuniform Rational B-Splines - NURBS. [Online]

http://web.cs.wpi.edu/~matt/courses/cs563/talks/nurbs.html.

43. Study of the efficacy of respiratory gating in myocardial SPECT using the new 4-D NCAT

phantom. Segars, W.P. and B.M.W. Tsui. 3, 2002, IEEE Transactions on Nuclear Science, Vol.

49, pp. 675-679.

44. Quantitative Assessment of Motion Artifacts and Validation of a New Motion-Correction

Program for Myocardial Perfusion SPECT. Naoya Matsumoto, Daniel S. Berman, Paul B.

Kavanagh, James Gerlach, Sean W. Hayes, Howard C. Lewin, John D. Friedman and

Guido Germano. 5, 2001, Journal of Nuclear Medicine, Vol. 42, pp. 687-694.

45. A flexible multi-camera visual-tracking system for detecting and correcting motion-induced

artifacts in cardiac SPECT slices. McNamara JE, Pretorius PH, Johnson K, Mitra J, Dey J,

Gennert MA, King MA. 2009, Medical Physics, Vol. 36, pp. 1913-1923.

46. Modeling the Respiratory Motion of Solitary Pulmonary Nodules for Investigating SPECT

Tumor Imaging. Smyczynski MS, King MA, Narayanan MV, Pretorius PH, Gifford HC,

Farncombe TH, Hoffman EA, Segars WP, and Tsui. 2001. Nuclear Science Symposium and

Medical Imaging Conference.

47. A study of the effect of cardiac gating in myocardial SPECT using the 4D NCAT phantom.

Lee TS, Segars WP, and Tsui. 2003. Nuclear Science Symposium and Medical Imaging

Conference.

48. A Variational Framework for Joint Segmentation and Registration. Zöllei, L., Yezzi, A., and

Kapur, T. 2001. IEEE Workshop on Mathematical Methods in Biomedical Image Analysis.

49. Variable-Conductance, Level-Set Curvature for Image Denoising. Xue, R. Whitaker and X.

2001, International Conference on Image Processing, Vol. 3, pp. 142-145.

52

50. Image analysis using mathematical morphology. Haralick, R. M., Sternberg, S. R.,

Zhuang, X. 4, 1987 , IEEE Pattern Analysis and Machine Intelligence, Vol. 9, pp. 532-550.

51. Geodesic Active Contours. V. Caselles, R. Kimmel and G. Sapiro. 1997, International

Journal on Computer Vision, Vol. 22, pp. 61-97 .

52. Morphology. [Online] http://homepages.inf.ed.ac.uk/rbf/HIPR2/morops.htm.

53. Deformable meshes with automated topology changes for coarse-to-fine three-dimensional

surface extraction. Montanvert, J. Lachaud and A. September 1998, Medical Image Analysis,

Vol. 3, pp. 187-207.

54. MRI Based Assessment of the Extent to Which Stereo-Tracking of Markers on the Chest

can Predict Motion of the Heart. Michael A. King, Joyoni Dey, Joseph E. McNamara,

Joyeeta Mitra, Karen Johnson, Andrey Lehovich, Songxiang Gu, J. C. Ford. 2008. Medical

Imaging Conference.

55. The Visualization Toolkit. [Online] http://www.vtk.org/.

56. Kitware. [Online] http://www.kitware.com/.

57. Segmentation and Registration Toolkit. [Online] http://www.itk.org/.

58. wxWidgets. [Online] http://www.wxwindows.org/.

59. Yet Another Port of wxVTKRenderWindowInteractor. [Online] http://wxvtk.sourceforge.net/.

60. PLT Scheme. [Online] http://www.plt-scheme.org/.

61. FranTk - A declarative GUI language for Haskell. Sage, Meurig. 2000, ACM International

Conference on Functional Programming, pp. 106 - 117.

62. Krishnamurthi, Gregory Cooper and Shriram. FrTime: Functional Reactive Programming

in PLT Scheme. Computer Science, Brown University. 2004. Technical Report.

63. HaskellWiki. [Online] http://www.haskell.org/.

64. Qt - A cross-platform application and UI framework. [Online] http://qt.nokia.com/products.

65. Statistical Shape Influence in Geodesic Active Contours. Michael E. Leventon, W. Eric , W.

Eric L. Grimson , Olivier Faugeras. 2000, IEEE Computer Society Conference on Computer

Vision and Pattern Recognition, Vol. 1.

66. Adaptive template moderated spatially varying statistical classification. Simon K. Warfield,

Michael Kaus, Ferenc A. Jolesz and Ron Kikinis. 1998, Medical Image Computing and

Computer-Assisted Interventation, Vol. 1496, pp. 431-438.

67. 3D active contours. V. Caselles, R. Kimmel, G. Sapiro3 and C. Sbert. 1996, International

Conference on Analysis and Optimization of Systems Images, Vol. 219, pp. 43-49.

53

68. Issues regarding radiation dosage of cardiac nuclear and radiography procedures. Cullom,

Randall C. Thompson and S. James. New York : s.n., October 13, 2008, Journal of Nuclear

Cardiology, pp. 19-23.

