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Abstract 
Frequently, testing of Single Photon Emission Computed Tomography (SPECT) motion 

correction algorithms is done either by using simplistic deformations that do not accurately 

simulate true patient motion or by applying the algorithms directly to data acquired from a real 

patient, where the true internal motion is unknown.  In this work, we describe a way to combine 

these two approaches by using imaging data acquired from real volunteers to simulate the data 

that the motion correction algorithms would normally observe. 

The goal is to provide an assessment framework which can both: simulate realistic SPECT 

acquisitions that incorporate realistic body deformations and provide a ground truth volume to 

compare against.  Every part of the motion correction algorithm needs to be exercised – from 

parameter estimation of the motion model, to the final reconstruction results. 

In order to build the ground truth anthropomorphic numerical phantoms, we acquire high 

resolution MRI scans and motion observation data of a volunteer in multiple different 

configurations.  We then extract the organ boundaries using thresholding, active contours, and 

morphology.  Phantoms of radioactivity uptake and density inside the body can be generated 

from these boundaries to be used to simulate SPECT acquisitions. 

We present results on extraction of the ribs, lungs, heart, spine, and the rest of the soft tissue in 

the thorax using our segmentation approach.  In general, extracting the lungs, heart, and ribs in 

images that do not contain the spine works well, but the spine could be better extracted using 

other methods that we discuss. 

We also go in depth into the software development component of this work, describing the C++ 

coding framework we used and the High Level Interactive GUI Language (HLING).  HLING 

solved a lot of problems but introduced a fair bit of its own.  We include a set of requirements to 

provide a foundation for the next attempt at developing a declarative and minimally restrictive 

methodology for writing interactive image processing applications in C++ based on lessons 

learned during the development of HLING. 
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1 Background 
Since all the work described in this project is motivated by and pertains to motion correction in 

SPECT, this introductory section provides a brief overview of Single Photon Emission 

Computed Tomography (SPECT) and SPECT motion correction. 

1.1 SPECT Acquisition 
Cardiac SPECT is a minimally invasive way to diagnose the severity of Coronary Artery Disease 

(CAD) (1) (2).  In the procedure, a patient is injected with a radioisotope which travels through 

the blood stream and gets absorbed in various concentrations by the patient’s tissue.  Regions 

of reduced or blocked blood flow will diminish the amount of radioisotope that reaches and gets 

absorbed by the tissue; a doctor can use images of the radiation to indirectly locate these 

damaged areas and assess the severity of CAD  (1) (3) (4) . 

The imaging portion of the SPECT procedure takes between 15 and 30 minutes (3) (4) (5), 

during which the patient should lie as still as possible on a table in the imaging apparatus.  

Images of the radiation are taken from different angles by gamma cameras (as shown in Figure 

1), with each exposure taking several seconds to accumulate enough data.  The cameras’ 

locations and orientations are known very precisely for each exposure, making it possible to 

reconstruct a 3D rendition of the radiation in the patient’s body (6) (7) given that the patient’s 

organs did not move a significant amount during the acquisition. 

 

Figure 1 SPECT system with three Gamma Cameras 

Typical SPECT reconstruction algorithms function under the assumption that the structures in 

the imaging volume do not deform during the acquisition procedure.  Since the procedure is 

performed on living people, it is impossible to have all of their organs stay perfectly still.  At the 

very least, the heart will beat and the lungs will expand and contract during the course of the 

acquisition.  Their periodic nature, however, makes them less problematic than other types of 

motions, since the organs keep coming back to approximately the same location in each cardiac 

or respiratory cycle (8). 

Motions such as bending, twisting, or any other type of the patient readjustment on the table 

cause difficulty since the organs being imaged are no longer in the same location between the 

Gamma Camera 

Imaging Table 
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different exposures (9).  These types of motions can lead to the acquired data being completely 

unusable, in which case another acquisition would be required.  Even worse, these artifacts may 

produce misleading reconstructions resulting in a misdiagnosis (10). 

1.2 Motion Correction 
SPECT Reconstruction algorithms calculate an estimate of the radiation density in the 3D 

volume where the patient was lying using the projection images acquired by the Gamma 

Cameras. In an ideal SPECT acquisition an infinite number of projections would be acquired 

instantaneously.  The reconstruction algorithm would then use these projections combined with 

metadata regarding their acquisition (such as the position and imaging properties of the 

cameras) to reconstruct the 3D volume that was imaged (6). 

Obviously, we cannot take an infinite number of views of a volume instantaneously.  Instead, we 

have to use a small number of cameras (one, two (11) or three (12)) to acquire a limited number 

of views (up to 64).  It takes between 15 and 30 minute to acquire these projection images, as 

each view requires time to place the camera and to take the exposures (10 to 30 seconds).  The 

patient is asked to remain still during this lengthy procedure. 

While the positioning of the cameras and the dosage of radiation can be controlled very 

precisely, the patient frequently does not remain still enough throughout the procedure to obtain 

a high quality reconstruction.  Motion correction algorithms attempt to improve the quality of the 

reconstructed volumes by accounting for the patient's motion during the acquisition (9) (14) (15) 

(8) (16) (17).  The issue we begin to address in this work is how to assess the quality of this 

improvement and how to help algorithm developers pinpoint the specific errors that their 

algorithms make, which they can then use to make refinements to their approaches. 
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2 SPECT 
We motivate this section by describing one of the most important applications of SPECT: 

diagnosing the severity of Coronary Artery Disease.  Then we go into the details of regular 

SPECT reconstructions, finishing with an overview of why they are inherently unable to account 

for patient motion. 

2.1 Cardiac Stress Test 
One of the simplest methods to assess the heart’s ability to supply blood to the myocardium is 

the cardiac stress test.  This test frequently referred to as the “treadmill test,” as walking on 

treadmill is a common way to stimulate the heart (18).  In situations where the patient’s heart is 

suspected to be weakened or damaged, performing physical exercise may be too stressful, 

possibly leading to death (18).  In these cases the patient will have their heart "exercised" by the 

injection of chemicals that will make the heart beat faster without requiring physical exercise 

(19). 

The blood vessels supplying the heart may get obstructed due to the accumulation of plaque or 

blocked when a clot or vulnerable plaque breaks free and lodges itself in the vessel (20).  One 

can assess the presence and/or severity of such blood flow restrictions by observing a patient's 

vital signs as the heart is made to work more heavily.  This will require more blood to flow to the 

myocardium.  Under normal conditions, the heart will beat faster and stronger to meet the 

body's needs.  However, if the heart muscle is not receiving enough oxygenated blood due to 

an obstruction or blockage, vital signs will not go up as expected and the patient may feel some 

discomfort or chest pain (18). 

2.2 Nuclear Stress Test 
The cardiac stress test provides an understanding of the heart’s overall condition.  Nuclear 

imaging enables doctors to determine the specific parts of the heart which are damaged. 

In the Nuclear Stress Test, the patient’s heart is exercised similarly to how it is during the 

treadmill test.  The radiation is injected at the peak of the stress period when blood is flowing the 

most rapidly through all the heart (except for in the parts that are blocked).  Several minutes 

after the injection the regions which are not receiving blood will have observably less radiation 

than the healthy regions making it possible to locate arterial obstructions from images of the 

radiation (1) (23). 

Nuclear imaging of the heart can also be performed as a reset study, without having the patient 

undergo stress.  However, due to the decreased volume of blood flowing to the vessels the 

contrast between obstructed (as compared to blocked) blood flow and regular blood flow will be 

small, possibly even imperceptible.  Since the stress acquisition does not suffer from this 

contrast reduction, the stress test results are more informative; if there are no obstructions 

during the stress study, then it is very unlikely that any will appear during the rest study.  On the 

other hand if obstructions were found during a stress study, then a follow-up rest study can 

further explain their severity (24). 
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2.3 SPECT 
There are several ways in which images of the radiation in a nuclear study can be acquired and 

used.  With planar imaging (22), for example, the doctor examines the images of the radiation 

directly.  In SPECT, a true 3D rendition of the radiation is generated by incorporating data from 

multiple views.  As compared to planar imaging, slices extracted from SPECT reconstructions 

provide better localization of the radiation in the heart allowing doctors to better discriminate 

among the different types of coronary problems (25).  In the rest of this section we describe the 

SPECT acquisition and reconstruction procedures in as much detail as is necessary to 

understand the rest of this report.  For deeper understanding of SPECT, refer to (3) or (4). 

2.3.1 Computed Tomography 

SPECT is a type of Computed Tomography (CT) or Tomographic Reconstruction.  Tomographic 

reconstruction is a process by which to generate a 3D rendition of a volume from 2D projections 

of that volume at known angles (25). X-ray CT (the modality commonly associated with CT) 

uses images of transmitted X-rays.  Since denser tissue blocks more X-rays, X-ray CT 

reconstructions represent the spatially varying density inside the imaging volume.  The 

projection images in SPECT come from observing photons emitted by the radionuclides that 

were injected into the patient’s body.  Consequently, the resulting reconstructions represent the 

radionuclide absorption densities by the patient’s organs. 

Though each modality has its own special characteristics that can be exploited during the 

acquisition and reconstruction stages, Computed Tomography has a very concrete high level 

structure. The acquisition process takes in the 3D volume of intensities (corresponding to tissue 

density in X-ray CT or concentration or radionuclides in SPECT) and produces a set of 2D 

projection images of the 3D volume at known angles.  The reconstruction process takes in this 

set of 2D projections and produces a reconstructed 3D volume that estimates of locations of the 

intensities in the imaging volume.  It is important to note that the imaging volume is only 

indirectly associated with a patient’s organs.  The reconstruction process executes irrespective 

of what was present in the imaging volume, and normal Computed Tomography reconstruction 

algorithms (including SPECT) assume this volume to be a stationary, rigid object. 

 

Figure 2 Computed Tomography Structures 

𝜃 = 0° 

𝜃 = 180° 
… 

Imaging Volume Projection Images Reconstruction Volume 

Acquisition Reconstruction 
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2.3.2 SPECT Acquisition 

The SPECT imaging process has several sources of degradation.  Collimation decreases the 

number of photons that reach the imaging sensor in exchange for being able to reason as to 

where the photons came from.  Attenuation reduces the number of photons that reach the 

gamma camera from tissue deeper inside of the patient’s body.  Scattering deflects photons 

from their original path, adding additional noise to the acquisition image.  Crosstalk blurs the 

image at the collimator, while distance dependent spatial resolution makes structures further 

away from the gamma camera fuzzier.   Understanding and accounting for the effects of these 

phenomena is necessary in order to perform the most accurate reconstructions possible. 

Collimator 

As the radioactive material in the patient’s body decays, photons get emitted in random 

directions.  This makes it impossible to tell which part of the body they came from using a photo-

sensitive sensor alone.  A parallel hole collimator attempts to filter out the photons coming in at 

non-perpendicular angles to the gamma camera by putting a lead plate with thousands of 

cylindrical holes in front of the photosensitive locations of the sensor (4) (3).  Lead’s high atomic 

weight and correspondingly large nuclei allow it to block photons that are not aligned with the 

orientation of the collimator holes, providing better localization of where they could have come 

from at the cost of filtering out more photons. 

 

Figure 3 Parallel Hole Collimators from (4) 

The photons that make it through the collimator do not, however, all originate from the same line 

perpendicular to the camera’s surface.  Since the cylinders have a finite radius and a finite 

height, photons slightly off axis from the ray going through the center of the cylinder also get 

observed by the same region of the imaging sensor (Error! Reference source not found.). 

ecreasing the radius or increasing the height of the cylinder narrows the spread of this cone and 

gives more localized information at the cost of filtering out more photons.  Increasing the radius 

or decreasing the height of the cylinder increases the number of photons that can reach the 

imaging sensor but also increases the spread of the contributing cone and the probability that 

incoming photons came in off axis.  
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Crosstalk and Distance Dependent Spatial Resolution 

Sometimes, photons that should have been detected in one bin get detected in a nearby bin 

instead.  This situation is referred to as crosstalk.  There are two primary ways that crosstalk 

can occur. In the first, a photon coming in off-axis through the collimator can get detected by an 

adjacent bin if the distance between the end of the collimator and the spacing of the bins is just 

right.  The second contributions to crosstalk are the few photons that manage to penetrate the 

lead of the collimator without getting attenuated.  Crosstalk causes blurring in the acquired 

images. 

 

Figure 4 Crosstalk 

Another consequence of the cone-shaped contribution volume permitted by collimation is that 

spatial resolution decreases for sources further away from the collimator.  The distance 

dependent spatial resolution can be modeled by blurring the reconstruction volume with a 

Gaussian kernel of increasing 𝜍 at distances further away from the gamma camera.  It also 

complicates reconstruction of the heart because it may be a different distance away from the 

camera at different angles, requiring the reconstruction algorithm to take these different 

resolutions into account. 

Attenuation and Scattering 

As a photon travels through imaging volume, it may interact with the nuclei of the other atoms 

that are in its path.  Upon colliding with a nucleus, a photon may get absorbed (attenuated) and 

possibly re-emitted (scattered) at a longer wavelength (lower energy) and a different angle.  

Attenuation reduces the number of photons that reach the gamma camera.  Scatter can either 

increase or decrease the counts depending on whether the re-emitted photon’s orientation lines 

up with the collimator. 

The amount of attenuation that occurs is directly proportional to the number and density of 

nuclei on the path to the gamma camera.  Thus, an X-ray CT scan of a patient can be used to 

construct an attenuation map of the imaging volume.  This attenuation map can then be used by 

reconstruction algorithms to account for this type of degradation. 

Correct Bin 

Wrong Bin 
Photon at an extreme angle 

passed through collimator 

hole into the wrong bin 

Photon did not get attenuated 

by the lead collimator and was 

detected 

Collimator 
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One can account for scatter by using an imaging sensor that can distinguish between energy 

levels of primary (non-scattered) and scattered photons (3). 

2.3.3 SPECT Reconstruction 

Reconstruction uses the projection images combined with models of the phenomena described 

in the Acquisition section to generate an estimate of the radioactivity distribution that was 

imaged.  There are many reconstruction algorithms that have been developed and used in both 

research and the clinical setting (7) (6).  Analytical, single pass algorithms are inherently fast, 

but they are limited in how much they can model and account for image degradation effects.  

Iterative algorithms can model and account for these factors, but require more computation.  

This section will review two of the most common reconstruction algorithms used in both 

research and the clinical setting - filtered back projection (single pass) and Maximum Likelihood 

Expectation Maximization (MLEM, iterative). 

Filtered back projection has traditionally been used in clinical settings due to its fast 

reconstruction times.  MLEM, however, provides better reconstruction results and can account 

for the degradation factors discussed in the Acquisition section.  Even so, it has taken some 

time for MLEM to become prevalent in the clinical setting, despite formal recommendations and 

definitive evidence that doing attenuation correction significantly increases reconstruction quality 

(25). 

Filtered Back Projection 

Filtered Back Projection provides an exact analytical solution to the problem of reconstructing 

the imaging volume from ideal projection images (no attenuation, no scattering, etc.).  We will 

describe at a high level the mathematical considerations involved in reconstructing a single 2D 

slice of the imaging volume.  Refer to (28) for a full treatment of the subject.  Reconstruction of 

the full volume may be seen as repeating this process for the remaining slices in the volume. 

The value of a point (bin) 𝜌 in a 1D projection image taken at a specific angle 𝜃 can be seen as 

a 1D integral taken through the 2D imaging slice 𝑓(𝑥, 𝑦) (Figure 5 illustrates why 𝜌 can be 

thought of as the location of a bin).  By repeating this integration for all bins at all angles, we get 

the full projection image 𝑔 𝜌, 𝜃 , also known as the Radon Transform or Sinogram. as follows. 
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Figure 5 Complete Projection for a Fixed Angle (Figure 5.37 from (28) 

The Radon transform provides a mapping from 𝑓 to 𝑔.  The task at hand is derive the inverse 

Radon transform, mapping 𝑔 back onto 𝑓.  The key property which leads to the Filtered Back 

Projection reconstruction algorithm comes from the Fourier Slice Theorem.  We refer the reader 

to (28) for a full derivation and treatment of Fourier Slice Theorem and only use the results here. 

The Fourier Slice Theorem states that the 1D Fourier Transform of the projection image 𝑔 𝜌, 𝜃  

at angle 𝜃, 𝐺 𝜔, 𝜃 , is exactly equal to the line of intensities passing through the origin at that 

same exact 𝜃 in the 2D Fourier Transform of 𝑓 𝑥, 𝑦 , 𝐹 𝑢, 𝑣 .  We can use this relationship to 

come up with a mapping from 𝑔 𝜌, 𝜃  onto 𝐹 𝑢, 𝑣 .  We can then reconstruct 𝑓 𝑥, 𝑦  from 𝐹 𝑢, 𝑣  

by applying the inverse Fourier Transform, 

 

Figure 6 Fourier Slice Theorem 
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Let 𝐹′𝜃 𝑢, 𝑣  be the function defined by the thick black line in Figure 6 

𝐹′𝜃 𝑢, 𝑣 =   
𝐺 𝜔, 𝜃   𝑖𝑓 𝑢 sin𝜃 +  𝑣 cos𝜃 = 0

0 𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒
  

Equation 1 𝑭′𝜽 𝒖, 𝒗  A line from 𝑭 𝒖, 𝒗  oriented at angle 𝜽 through the origin 

If we integrate 𝐹 ′
𝜃 𝑢, 𝑣  with respect to 𝜃, we end up with 𝐹 ′ 𝑢, 𝑣  – a version of 𝐹 𝑢, 𝑣  where 

intensities closer to the origin (the lower frequency components) are over emphasized. 

𝐹′ 𝑢, 𝑣 =  𝐹′𝜃 𝑢, 𝑣 

2𝜋

0

𝑑𝜃 

Equation 2 𝑭′ 𝒖, 𝒗  Fourier Transform of Back Projected Reconstruction 

We can correct for this over-emphasis by applying an infinite ramp filter in the Fourier domain to 

obtain the exact Fourier Transform.  Taking the inverse Fourier Transform of this filtered version 

of 𝐹′ 𝑢, 𝑣  produces the original image 𝑓 𝑥, 𝑦 .  Alternatively, one can take the inverse Fourier 

Transform of 𝐹′ 𝑢, 𝑣  to get 𝑓′ 𝑥, 𝑦  and convolve it with the inverse Fourier Transform of the 

ramp filter to obtain the same results since multiplication in the Fourier domain is a convolution 

in the spatial domain. The intermediate 𝑓′ 𝑥, 𝑦  will be a blurry version of 𝑓 𝑥, 𝑦  because of the 

overemphasis of the lower frequency components. 

In reality, we cannot multiply a function by an infinite ramp filter.  We similarly cannot take the 

inverse Fourier Transform of an infinite ramp filter.  Thus, we have to use a clipped version of 

the ramp filter.  In order to remove the ringing artifact that comes from taking a Fourier 

Transform of a non-smooth function, a smoothed out version of the ram filter, as illustrated in 

Figure 7, is used.  However, using these non-ideal filters inherently blurs the resulting 

reconstruction. 

 

Figure 7 Ramp Functions from (6) 

Generating 𝐹′ and taking its inverse Fourier Transform as described above is a computationally 

intensive procedure.  Fortunately, there exists an alternative procedure to generate 𝐹′ from the 
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projection images by back projecting them into the reconstruction volume. As illustrated in 

Figure 8 B, back projection copies the intensity values from one angle of the Sinogram into the 

reconstruction generating a smeared version of the one projection image.  All the projections 

are incorporated into the reconstruction by adding their streaked images.  If too few projections 

are used, a star artifact may appear (Figure 8 E).  These smeared reconstructions approach 𝐹′ 

as the number of projections goes to infinity.  Convolving with the inverse Fourier Transform of 

the smoothed ramp filter takes care of the excessive blurring seen in these images. 

 

Figure 8 Illustration of Filtered Back Projection from (6) 

Figure 9 illustrates the Filtered Back Projection process, from acquisition through reconstruction.  

In a real acquisition 𝑓 𝑥, 𝑦  would never actually be available, with the reconstructed 𝑓′  𝑥, 𝑦  

being the only view into the patient’s body.  When no degradation sources are present, FBP 

performs as expected, generating a very adequate reconstruction with some blurring. 

 

 

 

 

Illustration of star (or streak) artifact. (A) 

Slice used to create projections. (B–G) 1, 

3, 4, 16, 32, and 64 projections equally 

distributed over 360° are used to 

reconstruct slice using backprojection 

algorithm. Activity in reconstructed image 

is not located exclusively in original 

source location, but part of it is also 

present along each line of 

backprojection. As number of projections 

increases, star artifact decreases. 
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Figure 9 Filtered Back Projection of a Phantom 

Maximum Likelihood Expectation Maximization 

Using all the understanding of the physics of the projection process, one can develop an 

accurate forward-projection matrix mapping the radioactivity in the voxels onto intensity values 

in the projection bins (3).  Iterative algorithms use this projection system information to improve 

the estimate of the activity distribution in the imaging volume.   

To model attenuation, one can weigh the contributions of each voxel based on the amount and 

density of tissue that is in the way from that voxel to the gamma camera.  This attenuation map 

can be estimated from an X-Ray CT scan of the patient.  The expected effects of scattering and 

distance dependent resolution can also be incorporated into the system matrix using this 

weighting approach. 

Since all of the output of imaging process (the two dimensional images) can be modeled as 

weighted sums of the input (the three dimensional voxels), the entire process is linear and can 

be thought of as a matrix multiplication. 

𝑝 = 𝐴𝑣  

Equation 3 Forward Projection 

Where 𝑣  is the vector of n voxel intensities, 𝑝  is the vector of 𝑚 bin intensities, and 𝐴 is the 

𝑚 × 𝑛 system matrix.  Each element 𝑎𝑖𝑗  represents the probability that a photon emitted from 

Image 𝑓 𝑥, 𝑦  

𝑓′ 𝑥, 𝑦  
Back Projection  

Sinogram 

𝑔 𝜌, 𝜃  

𝑓′  𝑥, 𝑦  

Filtered Back 
Projection  



12 
 

voxel 𝑗 is observed by bin 𝑖.  The MELM algorithm uses the system matrix to generate the 

simulated projections. 

The MLEM algorithm iteratively improves the estimate of the reconstructed volume (6).  If 𝑣 𝑘  

represents the estimate of the intensities in the voxels at iteration k of the MLEM algorithm, 

𝑝 𝑘 = 𝐴𝑣 𝑘   is the simulated projection image at iteration k.  If we call the bin values observed 

during the physical scan of the patient 𝑝 , then the value of each voxel in the next iteration 

computed by: 

𝑣𝑗
𝑘+1 = 𝑣𝑗

𝑘

 𝑎𝑖𝑗

𝑚

𝑖=1

𝑝𝑖

𝑝𝑖
𝑘

 𝑎𝑖𝑗

𝑚

𝑖=1

 

Equation 4 MLEM Update Step 

This formula maximizes the log of the likelihood when modeling the radioactive decay process 

as a Poisson distribution (6) (7).  It makes intuitive sense too: this can be interpreted as 

updating the value of the voxel by the amount that all the bins that it contributes to were off by 

from the true observation.  In the case that there is no error, 
𝑝𝑖

𝑝𝑖
𝑘 = 1 and the entire expression 

simplifies to 𝑣𝑗
𝑘+1 = 𝑣𝑗

𝑘 .  In reality, this update step is performed several times, but must be 

halted before convergence, as those reconstructions tend to incorporate too much of the noise 

present in the true projection operation back into the reconstruction volume (6).  Instead a 

predefined stopping criterion, such as a number of iteration, is used. 

2.3.4 Effects of Patient Motion 

The system matrix describes what stationary voxels contribute to which collector bins in the 

projections.  If the patient were to remain perfectly still during the acquisition, then the system 

matrix could be used directly to perform an accurate reconstruction.  If the patient were to 

reposition him or herself during the acquisition, then photons that were emitted from the same 

relative location in the patient’s body would have originated from different points in 3D space.  

The end result of this discrepancy is that the reconstructed volume does not accurately 

approximate the imaging volume. 

Depending on the severity, direction, and duration of motion, false features called artifacts can 

appear in the 3D reconstruction.  In some cases, especially related to large motions, the shape 

and size of the artifact is easily identifiable as being caused by motion (10).  In those cases, a 

repeats study would be performed and the new set of projection images would be acquired.  

When the displacement is less pronounced, however, the artifacts can look like a valid organ 

structures and lead to a misdiagnosis (26).  If the patient were actually healthy but was 

diagnosed as sick, then unneeded medical expenses would be incurred.  On the other hand, a 

sick patient being diagnosed as healthy would delay treatment and allow a serious problem to 

be unattended. 
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3 Motion Correction in SPECT 
There are three categories of patient motion that are common during SPECT: rigid body motion, 

periodic local deformations, and non-local deformations.  Rigid body motions are those that 

could be performed if we assume that the patient is made of rigid substance.  The only possible 

motions are translation and rotation in three dimensions (9) (27).  Breathing (8) and heart 

beating (14) are periodic local deformations in the sense that the body deforms, but it follows 

the same relative path throughout the acquisition.  Non-periodic non-rigid body deformations, 

however, are not constrained to return to the same relative location during the course of the 

acquisition that cannot be modeled using rigid body motion.  An example would be twisting or 

bending on the table in order to get more comfortable (16). 

Roughly speaking, rigid body motion is the easiest to correct because the motion model is so 

simple and, if the patient really did undergo rigid body motion, the motion parameters can be 

acquired in a straightforward way.  On the other hand, not accounting for rigid body motion 

during reconstruction can lead to very severe motion artifacts (10).  Periodic local deformations 

are harder to model and correct since they involve the body deforming repeatedly over the 

course of the acquisition.  If uncorrected, their effects on image reconstruction, however, are 

primarily to blur the boundaries of the organ undergoing periodic motion, making the 

reconstructions slightly harder to interpret, but still useful in diagnose (8) (14).  Finally, non-

periodic non-rigid deformations are the hardest to model and have the most varying effects on 

image reconstruction.  In the best case, the motion can occur in another part of the body and 

not affect the organ of interest, such as can happen if the patient were to move the arms without 

disturbing the torso during a cardiac SPECT procedure (28).  In the worst case, the patient may 

bend or twist at the waist and readjust the shoulders to get more comfortable (16), disturbing 

exactly the region of interest. 

3.1.1 Motion Observations, Modeling, and Correction 

A series of observations over the course of the acquisition are used to derive model parameters 

that represent the patient's motion.  The types of observations performed include: motion 

evident from the projection data alone or monitoring the output of sensors attached to the 

patient’s body 

An example of motion that is evident from the projection data alone is a translation up or down 

the table.  The projection images from adjacent angles should contain approximately the same 

structures in the same horizontal locations.  If a global translation and horizontal direction leads 

to a better horizontal alignment between the structures in the two different projections, then the 

patient has most likely performed a global shift (31). 

Some examples of external sensors used to collect motion data are an EKG to monitor 

heartbeat, which can be used to account for its periodic motion (14).  Similarly, an elastic strap 

that measures chest expansion can be used to track the patient's breathing (8).  Retroreflective 

markers on the patient's surface observed by a visual tracking system can be used to obtain the 

parameters for rigid body motion, respiration, and deformation (30). 
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These observations are then used to estimate the parameters of a motion model that the 

correction algorithm assumes.  These include 

 translation (31) 

 six degree of freedom rigid body motion (translation and rotation) (9) 

 affine transformation (12 degrees of freedom) (15) 

 parameterized deformation (bending and twisting) (16) 

 interpolated between table and patient’s surface (31) 

 freeform deformation (32) 

Motion data is incorporated into the reconstruction one of two ways: by deforming the 

projections and perform regular reconstruction (15), or by deforming the reconstruction volume 

during projection and back projection (9) (16) (33).  The end goal is to get a stationary volume 

that most accurately represents the activity distribution within the patient's stationary body. 

In order for a motion correction approach to be useful, its motion model needs to be  

 Expressive enough to capture the types of motions that would arise in real studies and 

 Have parameters that can be approximated accurately based on the observations 

In general, the fewer the number of parameters, the more accurately they can be approximated 

(e.g.  rigid body motion).  Conversely, the larger the number of parameters, the more expressive 

the model can be (e.g. freeform deformations).  This might seem to suggest that freeform 

deformation cannot be usefully corrected based. It could be if appropriate observation data were 

available.  For example, a joint SPECT/MRI of the torso would provide the necessary data to 

perform non-rigid registration (32) (42) on the organs in the MRI volumes, which could then be 

applied to correct a cardiac SPECT reconstruction.  SPECT/MRI systems have recently been 

developed for small animal imaging (36) (37), but are not yet available for human use. 

3.1.2 Motion Correction Assessment 

The assessment tools available to motion correction algorithm developers are physical 

phantoms (31) (9), numerical phantoms (34) (35) (36), or live patients.  A positive feature of 

phantoms is that they provide a ground truth to compare one's results directly to.  Numerical 

phantoms can model anatomy very accurately (34) (36), but the projection data has to be 

simulated.  In both cases, incorporating realistic motion into the stationary phantoms is difficult.  

Live patient data provides the most accurate anatomy, projection physics, and motion, but the 

ground truth is not known. 

Physical phantoms tend to be rigid water-filled structures with a simplified anatomical model.  

The types of motions that they can simulate are similarly limited - one can simulate rigid body 

motion accurately by moving the phantom (31) (9).  Respiratory motion can also be crudely 

simulated by periodic translation of the phantom up-and-down the imaging table (33) (31).  The 

projection physics, however, are exactly the same as would be expected in real captures, since 

the real radioactive material is observed using the real imaging apparatus.   
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Mathematical numerical phantoms such as the Mathematical Cardiac Torso (MCAT) Phantom 

(35) use simple mathematical formulas to model organs and their motions.  Organs would be 

modeled using simple shapes such as cylinders and ellipses, and motion would be modeled by 

varying their parameters.  Since the shapes are explicitly controlled by the parameters, one can 

easily determine corresponding regions between different motion states. 

In order to generate more realistic organs, one can extract organ boundaries by segmenting 

volumetric images of patients, such as can be attained with MRI (36).  This procedure produces 

stationary voxelized anthropomorphic phantoms.  Developing even one such stationary 

phantom is usually a very time intensive procedure. 

The NURBS-Based Cardiac Torso (NCAT) Phantom strikes an impressive balance between 

being anthropomorphic and mathematical (34).  It is based on voxelized segmentations of MRI, 

but the organ boundaries are then modeled using Non-Uniform Rational B-Splines (NURBS) 

(42), giving them an infinite resolution, smooth, parametric model.  This effectively makes it an 

anthropomorphic mathematical Phantom, since the parameters of the NURBS can be modified 

to place the model into different motion states.  The NCAT Phantom incorporates models of 

heart beating and breathing based on real patient data (37).  It does not, however, incorporate 

other types of deformations, such as bending and twisting. 

3.1.3 Typical Assessment Approaches 

In most cases, the assessment of the motion correction algorithm is limited to a motion model 

validation followed by an analysis of the algorithm's performance on clinical data containing 

motion (8) (9) (38).  The motion model validation demonstrates that the algorithm can correct 

the type of motions for which it was designed.  This is usually done by deforming a numerical 

phantom using the same motion model that the correction algorithm uses and then applying the 

correction algorithm to the doctored data (17).  In the case of rigid body motion, one can also 

use a physical phantom in this check (9). 

One way to provide a ground truth for non-periodic motion (the heart will beat and the patient 

will breathe) in a patient study is to perform a second acquisition with the same patient during 

which they wouldn't move (39).  The two volumes would not necessarily be registered, but at 

least there would be a real basis for comparison of accuracy. 

Another way to provide the ground truth is to use a dynamic anthropomorphic phantom that can 

simulate the type of realistic motion that the algorithm is attempting to address (40) (41).  The 

NCAT phantom can simulate heart beating and breathing.  (37).  Since these deformations are 

actually based on real human motion, then running the correction algorithm with these data 

actually says something about how they would do on real patients. 

Another benefit of using anthropomorphic numerical phantoms which incorporate realistic 

motion is that the observation data, such as the motion of markers on the patient's chest and 

abdomen, may be simulated as well and used to assess the quality of the parameter estimation.  

This differs from the validation described earlier, where the motion model parameters are 

usually specified directly. 



16 
 

Frequently, however, a ground truth is not available for the performance analysis (8) (9) (38).  In 

those cases, the only comparison that can be made is between a usually unintelligible standard 

reconstruction and motion corrected output of the algorithm (38).  At best, one can claim that the 

corrected results look like they have fewer detectable artifacts than the uncompensated ones, 

but since there is no ground truth to compare against, one cannot substantiate any claims about 

the correction approach’s effects on reconstruction accuracy. 
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4 Motion Correction Assessment Framework 
The goal of this work is to create anthropomorphic numerical phantoms based on real human 

data that can be used to simulate non-periodic non-rigid body deformations.  This framework will 

need to be able to exercise all parts of the SPECT motion correction - from parameter 

estimation, to motion corrected reconstruction, to quantitative assessment of reconstruction 

accuracy compared to a ground truth.  Most importantly, since we intend to generate the test 

data MRI images of real human volunteers performing real deformations, the performance 

measures attained with these data can actually be used to substantiate claims about clinical 

performance. 

Since the reconstruction procedure produces a numerical voxelized volume, the ground truth 

data has to at least be a voxel-based anthropomorphic numerical phantom with as fine or finer 

resolution.  In order to simulate motion, these will have to be dynamic phantoms which can be 

deformed into several configurations.  Since numerical phantoms will be used, we will need a 

model of the acquisition system (as described in the SPECT Reconstruction section) to 

generate projection data.  Finally, we will need a method to generate the observation data 

needed by the motion correction portion of the reconstruction algorithm. 

Figure 10 illustrates the steps involved in developing a motion simulation system from 

volumetric images for the purpose of testing SPECT motion correction algorithms.  It is 

partitioned into two high level steps: Acquisition of the patient models and true internal motion 

and Simulation of the patient motion for use in assessing a motion estimation algorithm.  The 

central section is the data that the Acquisition section provides to the Simulation section. 

In the Acquisition section, volumetric images of the patient in different configurations are 

acquired via Magnetic Resonance Imaging along with the corresponding motion observation 

data (such as the 3D locations of markers on the patient's body).  The volumes are then 

partitioned into different tissue types during segmentation, providing the boundaries of the 

organs as output.  These boundaries are used to develop different phantoms of the patient, 

such as an organ density map and a model of the uptake of radioactivity in the body.  These 

data combined with a forward projection procedure that models the equipment to be used in real 

acquisitions (not shown in diagram) provide all the necessary information to simulate a moving 

patient and be able to run the motion correction algorithm.  Comparing the motion corrected 

reconstruction to the ground truth models used to generate the projection data provide a way to 

measure the accuracy of the algorithm. 
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Figure 10 Motion Assessment Framework 

4.1 Dynamic Anthropomorphic Numerical Phantoms 
One can simulate motion by projecting from different stationary phantoms of the same person at 

different times during the simulated acquisition.  The MCAT and NCAT Phantoms generate this 

set and any corresponding observation data by varying the parameters of their mathematically 

represented organ structures (35) (37).  When such a mathematical model is not available, one 

can generate a set of voxelized numerical phantoms for the activity distribution and attenuation 

map based on segmented organ boundaries from high-resolution MRI images of the same 

volunteer in different configurations, as we do in this work.  In that case, the observation data 

will have to be acquired at the same time as the volumetric images, since there will not be any 

explicit numerical deformations with which to generate the data. 
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4.1.1 Set of Volumes 

In order to generate a set of anthropomorphic numerical phantoms, we start by acquiring a set 

of high resolution MRI scans of a real volunteer in various poses.  We then segment the organ 

boundaries using techniques described later in this report.  If we assume that the segmentations 

are accurate, each of the volumes in this set can be considered to be a deformed version of any 

of the other volumes.  Since the deformations are caused by the volunteer’s real motion, the 

resulting set of volumes incorporates realistic patient motion. 

Since the actual deformations are not known, the observation data, such as the position of 

external markers on the patient's surface, will have to be captured at the same time as the 

volumetric images from which the phantoms will be generated.  These data can then be 

associated with the phantom corresponding to that specific body configuration. 

The voxelized numerical phantoms with the corresponding observation data are enough to 

generate all the data that the motion correction reconstruction algorithm needs to generate its 

results.  Specifically, the projection model can be used in conjunction with the phantoms to 

generate the projection data, and the observations can be fed in as is.  This is the version of 

Dynamic Anthropomorphic Numerical Phantoms we begin to implement in this work. 

4.1.2 Set of Deformations 

In addition to just segmenting the organ boundaries, one can also attempt to determine voxel 

correspondences between the pairs of different volumes in the set using non-rigid registration 

(32) (42).  This data could then be used to refine the organ boundary segmentation by 

incorporating data from the other volumes (43) as well as provide a way to generate the motion 

observation data directly, without having to capture it with the volumetric images. 

Each pair of volumetric images, 𝐴 𝑥   and 𝐵 𝑥  , of the same volunteer provides a view of the 

same organs and slightly altered configurations.  Non-rigid registration provides a deformation 

𝑊    𝐵
𝐴 𝑥   mapping voxels in volume 𝐴 onto voxels in volume 𝐵, while segmentation extracts the 

organ boundaries 𝑆𝐴 𝑥   and 𝑆𝐵 𝑥   from each volume individually. Ideally, 𝑆𝐵 𝑥  = 𝑆𝐴  𝑊    𝐵
𝐴 𝑥    

(applying the deformation computed during the registration stage to the organ boundaries in one 

volume should exactly map them onto the organ boundaries in the registered volume).  If we 

assume that the segmentations are exactly accurate, then we can use the difference between 

these two organ boundaries to refine the registration and make it more accurate.  On the other 

hand, if we assume that the registration is perfect, then we can use the misalignment of the 

boundaries to refine segmentation.  In reality, neither the registration nor the segmentation will 

be exactly perfect.  Optimizing both at once can provide more data than doing either one alone 

and in theory lead to both a better registration and segmentation (43). 

When both accurate segmentations and registrations mapping the different volumes into each 

other are accessible, then one can, in addition to assessing reconstruction accuracy, also 

measure the accuracy of the motion estimates generated by the motion correction algorithm. 
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4.1.3 Generate NCAT Phantoms 

A voxelized representation of an organ boundary can be fitted with a NURBS mesh.  Since 

NURBS are parameterized by the locations of their tie points, the deformation functions 

computed in the registration step can be applied directly to generate deformed models in 

different configurations. 
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5 Identifying Organ Boundaries 
This section focuses on the acquisition and segmentation of realistic organ data that will be 

used during the proposed testing procedure, and the results that we obtained using software we 

developed. 

We segment the body based on the properties of the organs of interest.  In these images, the 

blood in the heart is bright, the air in the lungs is black, and muscle is gray.  The ribs are the 

dark region contained between the lungs and the soft tissue.  After the image is denoised using 

anisotropic diffusion (44), sets of connected components are extracted using thresholding.  

These represent the initial, rough boundaries for the organs of interest.  They are subsequently 

refined using morphology (45) and active contours (46).  This leads to the “threshold and refine” 

approach that we follow to extract the organs on a slice-by-slice basis from the MRI volumes. 

 

Figure 11 Input Slice (Left) and its segmented organs (Right) 

5.1 Segmentation Techniques 
Morphological dilation thickens a boundary while erosion cuts away at it from the borders.  

Active contours refine a boundary by applying three forces over a specified number of iterations.  

The balloon force either pushes the boundary outward when it is positive, or shrinks it inward 

when it is negative.  The advection slows the boundary’s propagation around image edges, and 

the curvature force acts to smooth out the boundary. 

5.1.1 Morphology 

Morphological operations are performed by translating a structuring element over the image 

region and performing a set operation (45).  One can represent regions using binary images 

with pixel values of {0, 1}; A pixel whose value is 1 is considered part of the region, and a 0 pixel 

represents the background.  Morphology uses two binary images – the image on which the 

morphological operation will be performed, and the structuring element that is used to perform it. 

A structuring element is a binary image that has an origin.  If we let 𝐵 be the set of on pixels in a 

structuring element, then we can define an image 𝐵𝑧  that is the same structuring element 

translated so that its center is at pixel 𝑧.  This gives us the foundation to define morphological 

operations. 
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Figure 12 Binary Image (A) and Structuring Element (B) from (47) 

An erosion of region A by structuring element 𝐵 is the set of all 𝑧’s where 𝐵𝑧  is a subset of A.  

The set of all 𝑧’s can itself be represented as a binary image.  Erosion can be thought of as 

carving away the borders of region 𝐴 using 𝐵.  It can be used to separate regions that are 

connected by a thin connection. 

 
Figure 13 Erosion of (A) by (B) from (47) 

A dilation of region 𝐴 by structuring element 𝐵 is the set of all 𝑧’s where 𝐵𝑧  intersects 𝐴.  It can 

be thought of as enlarging region 𝐴 using 𝐵 and can be used to connect regions together. 

 
Figure 14 Dilation of (A) by (B) from (47) 

Binary Image 𝐴 

Structuring Element 𝐵 with the 

origin (red pixel) at center 

(Above).  𝐵𝑧  (Right) is an image 

the size of 𝐴 (Left) with 

structuring element 𝐵 centered 

at the pixel  𝑧.  Here, 𝑧 =  3,4 .   

 

𝐵 3,4  
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In our work, we used square structuring elements with the origin at the center.  This produces 

very rough boundaries.  However, this was not an issue as they always would be refined by 

active contours which produce smooth boundaries. 

5.1.2 Active Contours using Level Sets 

Active Contours are a general method for iteratively improving a boundary estimate (46) (48).  In 

the Level Sets formulation (46), the boundaries are implicitly defined inside of a scalar field the 

size of the image being segmented.  The boundaries are defined as the set of points where this 

field is equal to zero with negative regions correspond to region interiors, and positive regions to 

the exteriors.  Even though only the region of the boundary is of interest, the entire field gets 

updated every iteration. 

The initial estimate of the boundary should be close to object boundary, though the forces that 

act on it during the iterations will move it to new locations, with the goal of providing a better 

final segmentation.  The update step uses forces derived from the image being segmented to 

guide the boundaries to the object(s) of interest. 

Since the boundaries are expressed implicitly as the set of zero crossings in the scalar field, 

topological changes are also naturally and implicitly handled.  Thus, boundaries can merge or 

split as necessary. 

 

Figure 15 Active Contours 

(A) Input Image (B) Speed Image 

(C) Seed Region (E) Final Region 

(D) Forces act on Active Contour… 
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Forces 

The advection 𝐴 force is also called the Speed Image (Figure 15 (B)).  Its role is to stop or slow 

down boundary propagation at the borders of objects (edges) and to move the boundary more 

quickly in smooth regions (which are not of interest).  Edges should have speed values close to 

0, stopping the boundary, while the smooth regions that are of no interest should have speed 

values close to 1.  One can generate the speed image by apply sigmoid to the gradient image.  

Using a sigmoid also allows one to choose control the contrast between regions of varying 

gradient intensities. 

𝑠𝑖𝑔𝑚𝑜𝑖𝑑 𝐼 =
1

1 + 𝑒
− 

𝐼−𝛽
𝛼

 
 

Equation 5 Sigmoid 

Where 𝐼 is the pixel intensity in the input image and 𝛼 and 𝛽 are parameters the user gets to 

specify.  𝛼 effects how sharply the image intensities are condensed, while 𝛽 controls the value 

around which the function is centered. 

The propagation (balloon) force 𝑃 expands or shrinks the boundary.  It is constantly acting, but 

can be spatially varying.  For our purposes, 𝑃 is always a positive constant when the boundary 

should inflate, and a negative constant when it should contract.  

The curvature 𝑍 force controls how rapidly the boundary can vary.  It helps keep the boundary 

together and smooth even in noisy data.  It can be spatially varying, but is usually set to a non-

negative constant. 

Update Equation 

The forces are applied in the direction of the gradient.  This amounts to propagating the contour 

in the normal direction.  Since forces applied in the direction of the contour on the other 

parameterized curve but do not change the shape, all such forces can be discarded in this 

implicit, nonparametric, framework (46).  The formula below describes how the scalar field 𝛷 at 

time 𝑖 is updated to produce the field for iteration 𝑖 + 1. 

𝛷𝑖+1 = 𝛷𝑖 − 𝐹 𝛻𝛷𝑖   

Equation 6 Level Set Active Contours Update Step 

In this equation, 𝛷 is the scalar field containing the implicit boundary.  𝐹 is the combined force 

applied to the boundary – it is a linear combination of the advection, propagation, and curvature 

forces. 

𝐹 = 𝛼
𝐴  𝑥  ∙ 𝛻𝛷

 𝛻𝛷 
+ 𝛽𝑃 𝑥  − 𝛾𝑍 𝑥  𝜅 𝑥   

Equation 7 Active Contour Forces, General Form 

Where κ is the curvature of the level set field.  Since the propagation and curvature forces are 

constant, this equation simplifies to: 
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𝐹 = 𝛼
𝐴  𝑥  ∙ 𝛻𝛷

 𝛻𝛷 
− 𝑧𝜅 𝑥 , 𝑡 + 𝑝 

Equation 8 Active Contours Forces with Curvature and Propagation Forces Constant 

Where a lower case 𝑧 and 𝑝 have been used to signify that these forces are kept constant. 

5.2 Segmentation Approach 
In this section, we describe the specific procedures used to extract each of the organs. 

5.2.1 Body 

 

Figure 16 Body Region 

We extract the body region using thresholding and connected components.  The threshold is 

chosen such that it includes as much as possible of the gray soft tissue in the image, but high 

enough that the noise in the background does not significantly distort the body contour.  The 

largest connected component is extracted and used to represent the body.  In later steps, the 

heart and ribs will be extracted from this region as well. 

5.2.2 Lung 

 

Figure 17 Body Dilation (Left) and Lung Final Region (Right) 

The lung is the black region inside the body.  Frequently, this region is connected to the dark 

region outside of the body due to the dark air in the stomach, the MRI’s restricted field of view, 

and noise present in the image.  We close these gaps in the body by dilating it with a structuring 
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element whose radius is selected to be just large enough to close these gaps.  This also has the 

effect of eroding the dark region inside the body corresponding to the lungs.  We blow that 

region back up using active contours with a positive propagation force.  The advection and 

curvature forces are chosen such that the boundary doesn’t leak too much into the ribs, but still 

gets into the sharp corners above the diaphragm and near the heart. 

5.2.3 Ribs and Spine 

 

Figure 18 Dilated Body plus Lung (Left), Initial Ribs (Center), Final Ribs (Right) 

The ribs are the dark regions in the body just outside of the lungs.  We obtain an initial region for 

the ribs by extracting the dark region between the lungs and the body within a user specified 

number of pixels of the lung’s border.  A different version of the body is used in this case, 

thresholded at a higher value in order to expose more of the dark ribs.   

This initial region is refined using active contours to smooth out the boundaries.  The final ribs 

are extracted from all the remaining connected components by specifying a smallest and largest 

size for the ribs and then manually removing spurious features that fall within that range. 

Parts of the spine are extracted using the same approach, relying solely on the proximity to the 

lungs and the darkness of the vertebrae in the MRI images. 

5.2.4 Heart 

 

Figure 19 Heart Segmentation 
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The blood inside the heart is brighter than the rest of the soft tissue around it.  This allows us to 

use a high threshold value to separate the blood from the rest of the body.  We then dilate that 

region and mask the original input image to extract the tissue around the blood.  This allows for 

a lower threshold to be used, which captures more of the soft tissue of the heart.  The largest 

component is extracted, but the boundary is still rough, so we smooth it out using active 

contours.   

5.3 Results 
We tested our segmentation approach on data acquired in an earlier study aimed at assessing 

the effects of patient motion on the location of the heart (49).  Volunteers held their breath and 

two cardiac triggered MRI acquisitions were performed one after another.  This assured that the 

heart was at the same location in the cardiac cycle in each slice and the lung volume was the 

same in both poses.  The MRI volumes spanned the part of the thorax containing the heart.  

Each volume was made up of 20 sagittal slices, each 4mm thick with a 2mm gap between 

slices.  Each slice image is 256x256 pixels, with 1.367mm2 pixels.  The segmentation results 

are provided at in section 5.3.1.   Each segmentation took approximately 3 hours to perform on 

a Dell XPS M1330 Laptop, most of the time coming from manual manipulation of parameters. 

This approach does fairly well on slices that only contain lung, heart, body, and ribs (1-9 in the 

volume A and 1-8 in B).  In slices where the larger vasculature appears, it becomes difficult to 

separate the heart from the aorta and the vena cava, which should be segmented as separate 

regions from the heart (11-13 in the first volume and 10-13 in the second). 

Extracting the spine using this method is less reliable.  It is extracted using the same approach 

as for the ribs, looking for the "dark region inside the body close to the lungs." Thus, if there are 

no lung or trachea regions near the spine in a specific slice, the current approach will not find 

the spine regions (13-17 in volume, finding no spine at all, and 13-17 in B, with some partial 

segmentation).  In slices 18-20, the air in the trachea gets classified as lung and acts as the 

starting region for the spine segmentation. 
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5.3.1 Two Segmented MRI Volumes 
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6 Implementation 
In order to extract the organ boundaries, we needed software that would allow us to ingest 

volumetric images produced by the MRI scans and perform the segmentation steps described 

above.  We decided to implement the software ourselves using available open-source software 

libraries. 

 

Figure 25 Interactive Image Processing GUI Application 

Figure 25 shows the final application developed for performing the image processing required in 

this project.  The main portion of the program window is taken up by the visualization 

component and the rest of the program window consist of the interactive GUI widgets for 

parameter specification.  Widgets are grouped according to which filter they provide the 

interface to.  In the rest of this section, we describe the engineering efforts that went into 

developing the software framework that was used to create application. 

6.1 Requirements 
An interactive image processing and segmentation program needs at least three components:  

 an image processing library that implements the filters we intend to use, 

 an interactive image display that would could visualize the image processing effects, and 

 a graphical user interface by which to specify filter parameter values.   
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The image processing library needs to support multiple step pipelines (e.g.  denoise an image, 

threshold it, perform some morphological operations, then run active contours).  It needs to 

provide a way to save and load the values of the parameters specified to the filters in order to 

be able to reuse the hand tuned values in later segmentations.  Finally, in addition to being able 

to visualize intermediate outputs, the application should also be able to save them to disk for 

offline use in presentations and reports. 

6.1.1 Choice of Libraries and Programming Language 

The choice of programming language to use for this project was driven by the existence of 

publically available libraries that met the above requirements.  File input/output and graphical 

user interface libraries are available in many general purpose programming languages and did 

not provide any strong constraints for programming language selection.  For visualization, we 

found an excellent open-source library - The Visualization Toolkit (VTK) (53) - implemented in 

C++ with bindings in Python and Java.  The same company (54) that produced VTK also 

provides an open-source image processing library - Insight into Segmentation and Registration 

Toolkit (ITK) (55).  It implements many current segmentation and registration techniques and is 

currently only available in C++.  This decided the programming language to use for this project.  

Finally, we chose to use wxWidgets (56) for the graphical user interface component because 

there was already an interface developed for displaying a VTK window in wxWidgets 

applications called wxVTK (57). 

6.2 Overview of Filter Pipelines (ITK and VTK) 
The fundamental building blocks of ITK and VTK applications are filters.  A transform filter takes 

in an image, does some processing, and produces an image.  A source filter produces an image 

but takes no inputs, and a sink filter takes in an image but produces an output.  Source filters 

are used to implement things such as loading an image from disk, sink filters are used for 

saving files and displaying output to the screen, and transform filters perform the image 

processing operations. 

ITK is purely focused on image processing, so it does not have any display filters.  VTK is all 

about visualization and provides many different ways of visualizing and processing data for 

visualization.  There exists a Filter that converts ITK image types to a format that VTK can use, 

allowing us to build image processing pipelines using ITK and display them using VTK 

visualizers. 

In addition to taking images as inputs, filters usually also need to have different parameter 

values specified in order to perform the appropriate operation desired by the user.  ITK and VTK 

provide setter and getter methods for these properties, but leave it up to the programmer to 

specify them at runtime.  For interactive applications, these parameter values come from GUI 

widgets, so that moving a slider that provides a parameter to a transform filter would modify the 

visualization output in real time. 
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6.3 First Pass 
The first application that we developed using these libraries was a tool for active contours 

segmentation of 2D images.  It exercised all the requirements specified above and provided a 

straightforward coding framework for writing interactive image processing applications.   

The framework consisted of three distinct subsystems - the image processing subsystem, the 

display, and the parameter specification GUI.  Each of these subsystems was encapsulated in 

its own class, using getter and setter methods to pass parameter values to the image 

processing filters and to retrieve filter outputs for display.  Since wxWidgets is an event driven 

GUI library, each text box and slider that was used to specify parameter values needed its own 

callback function which would in turn call setter method on the image processing subsystem. 

This approach generates a lot of code, most of which is associated with filter parameter 

specification.  But that is the most fundamental and most frequently used component of an 

interactive image processing application.  There needed to be a better way for application 

developers to write these sorts of programs that would be less distracting and time-consuming, 

allowing one to focus on the high-level tasks of putting filters together rather than on the low-

level tasks of wiring the callbacks for the input widgets. 

6.4 High Level Interactive GUI Language (HLING) 
Rather than discard a working software development framework, we developed the High Level 

Interactive GUI Language (HLING) that allows one to express the high level image processing 

ideas succinctly.  It then gets compiled down into the corresponding C++ implementation 

described above.  Most significantly, it removes the details of event driven GUI programming, 

providing a more straightforward way to write image processing filters with interactive filter 

parameter inputs.   

The language itself was written using PLT Scheme (58) using the Programming Language: 

Application and Interpretation module.  It was not intended to alleviate the programmer from 

knowing C++, but is rather a tool intended to simplify development for this specific type of C++ 

coding framework. 

6.4.1 Language Structure 

Programs written in HLING are divided into three high-level sections: filter type definitions, filter 

object definitions, and state transition specification.  In the filter type definition section, the 

programmer first defines and names the pixel types (integer, short, float, double, etc.) that will 

be used to represent data in the images.  Image types are defined using these pixel types and 

the number of dimensions of the image (two or three in this case).  Filter types are split into 

three categories: source, transform, and sink and are parameterized on the input and output 

image types.   

The filter object section is where the interactive portion of the application is defined.  A filter 

object is an instance of the specified filter type defined above.  It provides a short description for 

the filter, which will be displayed in the GUI, as well as the specifications for all of the interactive 

parameters. 
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The parameters are integer or floating point numbers entered through a text box or a slider.  

The language compiler takes care of creating the callback functions and creating the widgets.  If 

there is a setter function whose value is directly specified by the value of the widget, the 

application developer doesn't have to write any C++ code (e.g. an upper threshold on a 

threshold filter).  If the value needs to be processed before being passed on to the setter, the 

application developer can also write C++ code that calls the filter’s setters after performing 

some computations (e.g.  calling a function to create a morphological structuring element before 

passing it to the dilation filter). 

The second part of the filter object section describes how filter objects connect to one another.  

It uses a straight forward functional syntax to specify which filters are inputs to what other filters 

in the graph.  It also provides syntax for multiple outputs. 

The state transition section specifies which filters are active at what points during the program's 

execution.  It is intended to prevent the system from trying to perform computation when no 

image data are loaded.  State transitions are triggered by the user opening the necessary input 

files required by the specific filters. 

6.4.2 Language Translations 

HLING is implemented in three layers, requiring two translations.  The first two layers - user-

spec and application – each have a syntax tree defined in Scheme (definitions included in the 

section Appendix – HLING).  The final layer is C++ code, which gets generated directly from the 

application layer.  The user-spec provides the highest level of the abstraction by providing 

shorthands for specifying different parts of the interactive application.  The application level 

expands all of these shorthands into a common syntax structure that can be used directly to 

generate C++ code. 

Translating a user-spec to an application 

The most notable shorthands provided at the user-spec level were those for input/output types 

of the filters and shorthand for specifying whether to permit displaying and saving of a filter’s 

image output. 

For virtually all of the image processing filters that we used, the input image data was specified 

by calling SetInput() on the filter, and the output image was gotten by calling the GetOutput() 

method.  Thus, in order to express that "filterA acts on filterB’s output”, one would have to write 

filterB->SetInput(filterA->GetOutput()) 

functional notation already provides the semantics, but is much more compact and familiar. 

filterB(filterA) 

thus, we decided to provide the shorthand of not having to explicitly specify the names of the 

output and input functions, except for when the default assumptions of SetInput and GetOutput 

were inaccurate (such as when specifying two different images as the input of the active 

contours filter - one being the feature image and the other the initial level set). 
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We also wanted to be able to save and display the outputs of different filters.  This required 

creating ITK sink filters for writing the image to disk and converting it to the format that VTK 

could handle for display.  But these filters would all be very similar for all the different filters 

whose outputs we wanted to display or save, the variation being in the different image types that 

they would produce.  There is no reason that somebody writing an image processing application 

should have to worry about this level of detail.  Thus, the user was able to specify whether they 

wanted to be able to display the image, save the image, both, or neither.  The application layer 

took care of performing the type inference and generating the structured representation of the 

image writer and display filters. 

As a benefit of having the user-spec syntax structure explicitly at our disposal, merging 

applications was really easy.  All that had to be done was just to copy all of the types, filters 

objects, state transitions, etc.  into the same corresponding list to generate a new user-spec that 

now contained two different subgraphs.  All that the programmer had to do was add another 

connection from the output of one of the filters in one graph to the input of the filters in the other 

graph.  The two pipelines were linked without having to re-write the code of either one.  This 

was especially useful for filters and subgraphs that were commonly reused, including 

thresholding, active contours, and connected component extraction. 

Translating an application to C++ 

After the user-spec is expanded to an application, the application is compiled to C++ 

code.  This is where the declarative syntax of the application is converted to the imperative 

syntax of using callbacks in C++.  Different parts of the application syntax tree get extracted 

in order generate different parts of the source code.  For example, in order to generate all the 

callback functions for the input widgets, the syntax tree was mapped and filtered to extract the 

filter names, input names, and other necessary data.  These data were then used to generate 

callback functions with appropriate type signatures that would call the proper setter functions on 

the filters.  Similar code had to be present in the instantiation of the GUI widgets in the GUI 

subsystem’s constructor, and thus used a similar subset of the syntax tree to generate the C++ 

code. 

A specifically intricate example of converting the declarative syntax to the callback-based 

implementation is the case when a filter’s setter method needed two or more input values.  In 

this case, the values of two widgets have to be accessed and passed whenever either one of 

them was modified.  A straightforward way to implement this is to create one function that takes 

no parameters and reads the values of all the widgets involved in this parameter update and call 

the filter’s setter method.  Each widget’s callback would just call this thunk whenever its value 

updated.  This is exactly what happens when the C++ code is generated.  On the other hand, 

when only one value needs to get passed to the filter, the most straightforward thing to do is to 

just forward the value passed to the callback function without reading an specific widget’s value.  

Since this single parameter specification is more common, coming up with the architecture for 

the two or more input case took some extra care. 
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6.4.3 Feature Creep 

As we began to write applications using HLING, a number of additional features that were not 

anticipated at the onset of the language implementation were added as their need became 

apparent.  A large part of these additions were related to dynamically updating slider minimum 

and maximum values.  Another was the need to specify non-image types as parameters to 

filters as well as import helper C++ files. This section describes the details of these additions. 

Minimum and Maximum from Widgets 

The first addition that became necessary was to provide a way by which to assure that a 

parameter whose value was semantically larger than another one, such as the maximum and 

minimum values for a threshold, could never be specified erroneously.  All that the program had 

to do was to update the minimum value of the maximum threshold whenever the minimum 

threshold is moved, and vice versa.  Since the user can only move one slider at a time, no race 

conditions were introduced. 

Minimum and Maximum from Filters 

Creating a slider for choosing a slice in a dynamically loaded MRI file, or selecting a specific 

connected component from an image required a value from the image processing layer (number 

of MRI slices or number of connected components in these cases) to be propagated to the GUI 

layer.  In the MRI slices case, the operation is started by the user opening a file from the GUI, 

providing a specific event after which to sample the desired filter parameter.  The number of 

connected components in the thresholded image, however, could change due to events 

happening in other filters upstream from the connected component extractor in the graph. 

The correct way to think about the data flow in this situation is that slider's minimum or 

maximum value comes from the filter.  This is completely analogous to the filter’s parameter 

value coming from a GUI widget.  Thus, they received the same syntax: when specifying a 

slider, the programmer may specify a constant value for the minimum or maximum, or they may 

specify that it comes directly from a getter method on the associated filter.  They may also 

specify their own C++ function that takes zero formal parameters and returns the same type as 

the slider takes (integer or float).  These getter functions get called every time any widget’s 

callback gets called – since updating another filter may have effects on the desired filter’s output 

values. 

Non-Image-Type Filter Type Parameters 

Another feature that had to be added was being able to specify non-image types as parameters 

to the filter types.  Specifically, the morphological operators required that the type of the 

structuring element (the Neighborhood type in ITK, which is not an Image type) be specified as 

well as the input and output image types.  We created a set of helper C++ function for 

generating rectangular neighborhoods to be used as structuring elements for erosion and 

dilation and needed to be able to include the header file in which we defined them.  This did not 

fit nicely into the framework, which assumed that the only included header files were those for 

image and filter types.  We resolved this by providing a “helper-type” section that could be used 

specifically to specify additional non-filter non-image include files. 
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7 Interactive Image Processing Application Requirements 
In this section we discuss the lessons learned from the software development process of this 

project by laying out a set of requirements for interactive image processing applications written 

in C++ using ITK, VTK, and a GUI library. 

We implemented HLING in order to provide a more intuitive way to write the GUI component of 

the applications.  It wasn’t intended to completely abstract the C++ implementation of the 

applications.  As such, someone developing an interactive image processing application with 

HLING needed to both understand its syntax as well as be proficient in C++.  Since application 

developers should already be familiar with C++, making this GUI writing layer in C++ would 

alleviate application developers from having to learn, use, and further develop HLING. 

7.1 High-Level Requirements 
There are several guiding principles that should be followed when developing the interactive 

GUI framework.  Most of these points find their roots in declarative programming paradigms and 

the programming languages that implement them (58) (61) (62) (63), though one need not be 

familiar with these programming languages to understand these guiding principles.  The aim is 

to simplify how programs are written and debugged while exposing all of the available tools and 

power of ITK to the programmer. 

1.) Programs should be written as declaratively as possible 

It is natural to think of image processing applications as "filters chained together into 

pipelines with parameter values coming in through a GUI." ITK already provides a 

declarative syntax for specifying the image processing pipelines.  It was the wxWidgets 

GUI implementation that used imperative C++, which significantly increased the amount 

of code necessary to express the "values coming in through a GUI" component. 

The approach taken in this work to resolve this problem was to write a high-level, 

declarative language that the programmer could use to specify the GUI which would 

then get compiled down to the spaghetti code of a callback-based program.  Alternatives 

exist that use straight C++, though, and should be preferred.  The QT GUI library (59), 

for example, uses slots to provide a declarative syntax for specifying widget value 

propagation through the program and should be considered for the next iteration. 

2.) The programmer should be able to use all available components of ITK 

In writing the high-level programming language used in this iteration of the software 

development we had to add new structures to the language in order to allow access to 

the existing functionality in ITK.  This overhead could be avoided by using C++ directly.   

There are components that will require non-image inputs and produce non-image 

outputs, the neighborhood structure, for example; image statistics are also a useful 

feature that can be used in the future.  Since these parts of ITK are already written in 

C++, no additional program structure needs to be added to use it. 
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3.) The programmer usually shouldn’t have to think about pixel and image types when 

writing pipelines 

Since ITK relies heavily on C++ templates, it is necessary to specify all of the image and 

pixel types for every filter when composing ITK filter graphs at compile-time.  Many 

times, though, default types can be safely assumed and used for different types of filters.  

Similarly, if two filters are linked, the input type of the receiving filter will have to match 

the output type of the producing filter.  Using a combination of reasonable default types 

combined with a static type inference mechanism can make the graph building process a 

lot less verbose.  At the same time, the default type values can be superseded to fit the 

program developer’s needs. 

4.) Filter pipelines and GUIs should be easily reusable 

Putting together different pipelines and their associated GUIs should be as straight 

forward as it was in HLING.  This was not possible to do using the C++ coding 

framework developed in this work, as each widget of every filter needed its own global 

callback function.  HLING enabled this functionality by concretely representing the 

program structure at a higher level, where they could be easily combined.  It then 

generated the necessary C++ code that implemented them.  Future implementations 

may be able to forego the need to have a callback function for every single widget in the 

application, which would enable C++ programs to be combined at a high level as well. 

7.2 Application Layout 
The application layout in the current implementation was very intuitive (Figure 25).  We suggest 

that it be reused, with some minor additions, for the next iteration.  The user interface could also 

provide a way to collapse the widget group associated with a specific filter.  Since the filters are 

organized into pipelines, it may also be useful to be able to collapse the set of filters making up 

a pipeline.  This would be especially useful if the application were made up of a number of 

independent pipelines whose outputs all fed into a final filter or pipeline that combined the 

results. 

7.3 Hypothetical Source Code 
The hypothetical source code below should generate a full interactive image processing 

application that implements the basic segmentation method used in this work (threshold then 

refine using active contours).  The programmer need only specify the types of the filters to be 

used in the application using the filter wrappers, which encapsulate the interactive GUI and ITK 

filter graph building tasks.  Thus, the most attention should be placed on coming up with a good 

way to write these filter wrapper classes. 

// Filter Wrapper classes.  They implement the GUI components 

// for individual ITK filter types. 

#include <ImageReader.hpp> 

#include <Denoiser.hpp> 

#include <Thresholder.hpp> 

#include <Gradient.hpp> 

#include <Sigmoid.hpp> 

#include <ActiveContours.hpp> 
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#include <Application.hpp> 

 

using namespace igw; // Interactive GUI Wrappers 

 

// ... 

// A developer would use this sort of syntax to specify  

// an interactive image processing application. 

 

Denoiser denoised(ImageReader()); 

Thresholder intialRegion(denoised); 

Sigmoid speedImage(Gradient(denoised)); 

ActiveContours contour(initialRegion, speedImage); 

// The interactive application containing the display and 

// input widgets for all of the filters that contour depends on. 

Application thresholdRefineApp(contour); 

 

// ... 

// Or, naming fewer of the filter wrapper objects 

Denoiser denoised(ImageReader()); 

ActiveContours contour(Thresholder(denoised), Sigmoid(Gradient(denoised))); 

Application thresholdRefineApp(contour); 

 

// ... 

 

Figure 26 Hypothetical Source Code 

7.4 Filter Wrapper Requirements 
The only thing the Application needs to know about filter wrappers is how to get their renderer 

and the widget group used to specify parameter values to the filter.  The choice of which 

renderer use, which parameters to expose using which widgets, and how the parameter input 

components are laid out should be left entirely up to the author of the filter wrapper. 

Since we are using VTK for visualizing and rendering the data, there are many different 

visualizers to choose from.  In fact, an elaborate graph of VTK filters can be created (53) to 

visualize the results of one ITK filter. 

The filter wrapper should also expose the ITK filter directly.  ITK has a powerful data flow 

infrastructure with an intuitive interface for linking filters into pipelines.  The wrappers are only 

intended to automate parameter specification and the other tasks outlined in this section, not to 

provide an opaque interface to the underlying image processing pipeline.  The functional style 

constructor illustrated in the hypothetical syntax would just be convenient shorthand for 

specifying the filter connections.  Most notably, linking multiple outputs from a single filter is 

most effectively done using the output getter methods that ITK already provides. 

It will be important to support the use of widget inputs to control widget values, such as is 

needed to ensure that the minimum threshold that a user can specify can never be larger than 

the maximum threshold for the same image. 

A more intricate requirement will be the ability to use filter values to control widget values.  This 

becomes necessary when making a slider for selecting a slice out of an MRI volume or a 

specific connected component from a thresholded image.  Neither of these values are known 

when the application is written, and the number of connected components can change based on 

the threshold value specified through another filter in the pipeline. 
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The filter wrappers should handle saving and loading parameter values specified through the 

GUI.  This is a very simple requirement to implement, but it is largely what makes the entire 

interactive parameter specification process worthwhile.  As a very simple example, one can use 

parameter values saved in an earlier run of the program as a starting point for analyzing new 

data. 

Finally, one can determine whether or not the filter should be enabled by checking whether all of 

the source filters further upstream from it have loaded data.  There should be no need to 

explicitly specify the state transitions, as had to done in the current coding framework. 
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8 Discussion and Future Work 
We have demonstrated the first steps in automating the phantom generation process from MRI 

volumes of real volunteers.  Having a fast and accurate segmentation process is going to be 

essential for generating the libraries of segmentations that will be necessary for generating the 

dynamic anthropomorphic phantoms needed to perform motion simulation and testing.  The 

myriad of image processing filters that ITK provides combined with the next iteration of the 

Interactive GUI framework for ITK filters will make developing such elaborate segmentation 

applications tractable. 

Future directions include increasing the accuracy and reducing the time necessary to segment 

the volumes by using more sophisticated segmentation and image processing techniques.  We 

can use a database of previously preformed segmentations of the organs and look for them in 

the most probable places (50).  We can explicitly look for specific structures within the volumes, 

since, for example, we know there should be twelve ribs in the body that attach to the vertebrae 

in known locations.  This would really help for the thin front ribs, which are missed in most of the 

demonstrated segmentations.  It would also complete the spine segmentation we partially 

accomplish in this work. 

The "threshold then refine" method discussed in this work doesn’t work well for segmenting the 

spine; it is made up of multiple intensities in these images, making it difficult to generate an 

initial contour.  Fortunately, there are other structures and features that can be used to segment 

the spine: the structure of the spine can be summed up as a curved column of vertebrae 

separated by spinal discs.  In the MRI, this looks like a curve of dark squares separated by light 

lines.  One can use a technique that can exploit these features directly to improve the spine 

segmentation (51).  One can also use the locations of the ribs from previous slices as a starting 

point.  Additionally, 3D segmentation can try to extract the ribs and vertebrae as one three-

dimensional region (52). 

In future work, we plan to develop ways to extract other structures present in thorax, such as the 

scapula, sternum, and collar bone.  There also seems to be enough contrast between the blood 

and the muscles in the heart in these images to extract the heart walls.  Some of these 

structures can be extracted using the threshold and refine approach used in this work, while 

others will require a more sophisticated approach. 
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9 Appendix – HLING 
HLING uses two concrete syntax trees used to represent applications.  The user-spec defines 

the syntax we used to write interactive GUI programs in this work.  The user-spec gets 

translated into an application which expands all of the shorthands used in the user-spec into 

a form that can be used directly to generate a set of C++ files implementing the application.  

The C++ code is compiled into the final executable we used to generate our segmentation 

results. 

The language grammars are structures with fields whose types are specified using Scheme 

contracts.  The basic structure of a program is defined by the app-TYPE, filterT (filter type), and 

filterO (filter object) types.  The filterO’s use the callback type provide a declarative syntax 

(despite their name) for specifying what input widgets’ values feed into which formal parameters 

of the filter’s setter methods. 

The filters which we referred to as “transform filters” are actually called just “filters” in ITK.  This 

naming convention makes the term “filter” ambiguous, and so we renamed it in the body of the 

report.  In this grammar, however, we follow ITK’s convention, overloading the word to mean 

both the general unit of the ITK framework (source, transform, and sink) or only the transform 

filter.  The intended meaning should be evident from context. 

9.1 HLING Concrete Syntax Structures 
;; variable and function names have to comply with C++ format 

(define var-exp  #rx"^[a-zA-z][a-zA-Z0-9]*$") 

 

;; a lot of things have names which one needs to get at easily 

(define (named item-type?) 

  (cons/c var-exp item-type?)) 

 

(define-type app-TYPE 

 

  ;; the abstract syntax for what the user types 

  (user-spec (title string?) 

             (pixel-types (listof (named pixelT?))) 

             (image-types (listof (named imageT?))) 

             (source-types (listof (named filterT?))) 

             (filter-types (listof (named filterT?))) 

             (sink-types (listof (named filterT?))) 

             ;; the type name, the include, and the typedef 

             (helper-types (listof (named (cons/c string? string?)))) 

             (filter-objects (listof (named filterO?))) 

             (connections (listof connection?)) 

             ;; list of the states 

             (states (listof var-exp)) 

             ;; a transition is either 

             ;; ((filter-name callback-name param-name) . added-state-name) 

             ;;   Adds added-state-name to the state when the filter's callback 

             ;;   parameter is set successfully. Only the names of (open-file) 

             ;;   callbacks are valid for callback-name. 

             ;; (filter-name . added-state-name) 

             ;;   expands to the above form by finding the first (open-file)  

             ;;   callback in the filter 

             (state-transitions  

               (listof  
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                 (or/c  

                   (cons/c  

                     (cons/c var-exp (cons/c var-exp (cons/c var-exp empty))) 

                      var-exp) 

                   (cons/c var-exp var-exp)))) 

             ;; the states for which the specified filters are activated 

             ;; (((state-name ...) (filter-name ...)) ...) 

             (state-filters (listof (cons/c (listof var-exp) (listof var-exp))))) 

 

  ;; The abstract syntax from which the application is compiled.   

  ;; Produced by (pre)processing the user-spec. 

  ;; filterT* and filterO* are the expanded versions of  

  ;; their counterparts in the user-spec. 

  (application (title string?) 

               (pixel-types (listof (named pixelT?))) 

               (image-types (listof (named imageT?))) 

               (source-types (listof (named filterT*?))) 

               (filter-types (listof (named filterT*?))) 

               (sink-types (listof (named filterT*?))) 

               (helper-types (listof (named (cons/c string? string?)))) 

               ;; automatically generated types for displaying in VTK  

               ;; and saving ITK filters’ outputs 

               (display-types (listof (named filterT*?))) 

               (writer-types (listof (named filterT*?))) 

               (filter-objects (listof (named filterO*?))) 

               ;; automatically generated display and writer objects 

               (display-objects (listof (named filterO*?))) 

               (writer-objects (listof (named filterO*?))) 

               (connections (listof connection*?)) 

               ;; automatically generated filter connections for 

               ;; the displays and writers 

               (display-cons (listof connection*?)) 

               (writer-cons (listof connection*?)) 

               (states (listof var-exp)) 

               (state-transitions  

                 (listof  

                   (cons/c  

                     (cons/c var-exp (cons/c var-exp (cons/c var-exp empty))) 

                     var-exp))) 

               (state-filters (listof (cons/c (listof var-exp) (listof var-exp)))))) 

 

 

(define-type program-TYPES 

  (pixelT (base-type string?)) 

  (imageT  

   ;; the ITK image class 

   (template var-exp)  

   ;; the pixel-type can only be one of the defined pixel types 

   (pixel-type var-exp) 

   (dimensions exact-positive-integer?)) 

  (filterT 

   ;; the ITK filter type  

   (template var-exp) 

   ;; The filter's parameter types, and the functions they are associated with. 

   ;; The types specified as strings are not checked to be valid image types. 

   ;; The types specified using the (listof var-exp) construct are of the form 

   ;; '(type-name func1-name func2-name ...) 

   ;; type-name is checked to be a valid image type.  The func-names are then 

   ;; bound to having that (input or output) type. 

   ;; Most filters will just use the 'SetInput and 'GetOutput 

   ;; The first two types may be specified using a single type, with no associated 

   ;; functions.  For sources, the first type specified is assumed to be for 

   ;; GetOutput.  For sinks, the first type specified is assumed to be for SetInput. 
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   ;; For filters, the first type is for SetInput and the second is for GetOutput. 

   (type-args (listof (or/c var-exp (cons/c var-exp (listof var-exp))))) 

   ;; specification of which of the above typed functions are inputs or outputs 

   (inputs (listof var-exp)) 

   (outputs (listof var-exp))) 

  ;; sources, filters, and sinks are treated differently, 

  ;; but specified in the same way 

  (filterO  

   ;; the one of the defined filter types that this object realizes 

   (type var-exp) 

   ;; short, descriptive label 

   (label string?) 

   ;; code will be run once to initialize a filter object. 

   (init string?) 

   ;; the functions that define interaction with this class 

   (parameters (listof (named callback?))) 

   ;; adds the default functionality  

   (auto-sinks  

     (listof  

       (or/c 'none 'all  

             (listof  

               (or/c (or/c 'display (cons/c 'display string?)) 

                     (or/c 'writer (cons/c 'writer string?)))))))) 

  (connection 

   ;; a connection specifies all the inputs for a specific filter 

   ;; in the order they are listed in the filter type 

   (filter-name var-exp) 

   ;; a list of output functions from other filters corresponding 

   ;; to the inputs listed in the filter type definition 

   ;; The (cons symbol symbol) form represents (filter-name function-name) 

   ;; for the input 

   ;; The var-exp form represents the input filter's name and expands to 

   ;; (filter-name 'GetOutput) 

   (inputs (listof (or/c var-exp (cons/c var-exp var-exp))))) 

  ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

  ;; types that enforce constraints valid after preprocessing 

  (filterT* 

   (template var-exp) 

   ;; all type args are in the (image-type func1 ...) format 

   (type-args (listof (cons/c var-exp (listof var-exp)))) 

   (inputs (listof var-exp)) 

   (outputs (listof var-exp))) 

  (filterO*  

   (type var-exp) 

   (label string?) 

   (init string?) 

   (parameters (listof (named callback?))) 

   (display-labels (listof (or/c string? 'none))) 

   (writer-labels (listof (or/c string? 'none)))) 

  (connection* 

   (filter-name var-exp) 

   ;; all inputs are in the (filter-name func-name) form 

   (inputs (listof (cons/c var-exp var-exp)))) 

  ;; 

  (callback (header (listof (named (cons/c string? input?)))) 

            (body cb-body?))) 

 

(define-type cb-body 

  ;; the method-name is the same as a setter method for the specific filter 

  ;; that takes the specified inputs 

  (setter) 

  ;; the method-name does not (necessarily) correspond to a specific setter 

  ;; within the class.  Instead, the behavior is specified in the body string 
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  ;; as C++ code. 

  (stub (body string?))) 

 

(define-type input 

  ;; a labeled text-box that takes in numbers of the specified type 

  (text (type input-type?)) 

  ;; a labeled slider that enumerates the numbers of the specified type in the given 

range 

  (slider (type input-type?)  

          ;; min and max can either have a static value the entire time, or 

          ;; they can get their value from a getter.  In that case, a default 

          ;; value is specified until the field is enabled, after which point 

          ;; the getter function's output is used as the value. 

          ;; (cons default-value getter) 

          (min (or/c number? (cons/c number? (named getter-stub?)))) 

          (max (or/c number? (cons/c number? (named getter-stub?)))) 

          (val number?) 

          ;; disregarded for integer type 

          (num-values exact-positive-integer?)) 

  ;; a boolean input value 

  (check-box) 

  ;; for readers only. 

  (open-file) 

  (open-directory) 

  ;; for writers only 

  (save-file)) 

 

(define-type getter-TYPE 

  (getter) 

  (getter-stub (body string?))) 

 

;; the types of values an input field generates or takes in 

(define input-type? 

  (or/c 'int 'float)) 
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