

lbex: Robotic Mining Platform

Nikhil Castelino (CS/RBE), Thomas Hagen (RBE), Rayyan Khan (RBE), Kushagra Kumar (RBE), Parmenion Patias (RBE)

Advisors: Professor Michael Ciaraldi, Professor Kenneth Stafford

XXXXXX

Abstract

The use of resources in foreign environments is essential to the success of manned missions to Mars. This project explores the different ways a rover can mine and deliver resources in a simulated Martian environment. This robot is capable of autonomously excavating the simulated ice chunks 30 cm (11 in) below the surface and driving to a collection station to unload the material it has collected. This project was inspired by the NASA Robotic Mining Competition which established a set of rules for how the robot was to be constructed.

Autonomous Operation

Control Station GUI

- Sends messages from the control station to the robot in a queue
- Recovery Stack runs functions to get out of hazardous situations
- Ability to switch between autonomous and teleoperated control

Computer Vision

- Localization using OpenCV to determine starting orientation
- Compares perceived areas of the targets in relation to camera rotation
- Centers with target when returning to the collection bin by comparing the perceived areas

Target Image Processing

Electronic Components

- Battery: 12V 18Ah
- Power Distribution Panel
- Fanless Embedded Microbox PC (Linux)
- Motors; (2 CIM's, 2 Globes, 1 VEX 775pro)
- 5 Talon SRX's
- Motor Controller: HERO Board
- Sensor Board: Arduino Uno

Flow Chart of Autonomous Operation

Excavation Method

- 3-step digging process
 - Start scoops
 - Extend downwards
 - Drive backwards
- Scoop connections protect the chain from jamming
- Dynamic chain system allows synchronous movement of upper and lower carriages of the excavation system up to 45 cm (17 in)
- Advantages of angled digging;
 - · No material falls inside the hole from the front of the robot
 - Loosens material to facilitate digging
 - Decreases amount of force applied on the scoops

Material Deposition

- Conveyor belt bucket system
 - o Belt angle: 32°
 - o Volume: 0.25 m³ (8 ft³)
 - o Capacity: 55 kg (120 lbs) of ice chunks
 - Belt grousers ensure efficient unloading
 - Lifts collected material 0.6 m (2 ft)

Manufacturing

- Water jet 3.2 mm (1/8 in) thick aluminum sheets for the chassis
- Manufactured 40+ parts (3D printing, laser cutting, milling and lathing)

