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ABSTRACT 

 

 Alzheimer’s disease (AD) is a neurodegenerative disorder that currently affects an 

estimated 4.2 million to 5.8 million Americans.  Although the cause of AD is not fully known, 

the current working model proposes that amyloid precursor protein (APP) is unnaturally cleaved 

by beta and gamma secretases to form the highly neurotoxic peptide beta-amyloid (Aβ) which 

engages cell surface receptors to cause cell death through a series of events involving oxidative 

stress and apoptosis.  An in vitro model for AD uses cultured human SHSY-5Y (commonly 

abbreviated SHSY) neuroblastoma cells treated with Yankner peptide, an 11 amino acid peptide 

representing Aβ residues 25-35 that strongly binds receptor.  Treatment of SHSY cells with 20 

µM Yankner peptide strongly induces cellular apoptosis.   

 Synthetic peptide human ependymin-1 (hEPN-1) is a derivative of a naturally occurring 

protein within the human brain, previously shown by our laboratory to upregulate antioxidative 

enzymes in SHSY cells, and AP-1 transcription factor associated with long-term memory 

formation.  Since hEPN-1 has anti-oxidative potential as a therapeutic, we hypothesized that 

hEPN-1 can reverse the neurotoxic effects of Yankner peptide treatment of cultured human 

SHSY neuronal cells.  Microtiter dishes were plated with SHSY cells under control conditions 

(no Yankner peptide), in the presence of 20 µM Yankner peptide, or in the presence of Yankner 

peptide plus various concentrations of hEPN-1 therapeutic, then cultured for 3 days to 80% 

confluency.  Unattached dying cells were gently washed away, then the residual cells were 

monitored by measuring cell number, cell viability (Trypan blue exclusion), LDH activity per 

mg protein (an indirect measure of cell viability), and nuclear blebbing (a measure of apoptosis).  

Statistical significance was determined using a One Way ANOVA under the LSD stringency, 
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using SPSS.   In three independent trials, average cell numbers per microtiter well decreased 

44.7% (from 3.11 x 10
5
 to 1.72 x 10

5
) in the presence of 20 µM Yankner peptide (p < 0.05 

compared to control), were 2.73 x 10
5
 when 75 µM hEPN-1 was added simultaneously with 

Yankner (p < 0.05 compared to Yankner), and were 2.96 x 10
5
 when 75 µM hEPN-1 was added 

24 hrs post-Yankner (p < 0.05 relative to Yankner alone).  The control mean was not statistically 

distinguishable from either of the hEPN-1-treated samples (p = 0.220 and p = 0.671, 

respectively). 

 With respect to the trypan blue data, in three independent trials, the mean percent viable 

cells (excluding trypan blue) decreased 41.0% (from 68.7% to 40.5%) in the presence of 20 µM 

Yankner peptide (p < 0.001 relative to control), was 60.7% when 75 µM hEPN-1 was added 

simultaneously with Yankner (p < 0.001 relative to Yankner alone), and was 61.4%  when 75 

µM hEPN-1 was added 24 hrs post-Yankner (p < 0.001 relative to Yankner alone).  The control 

mean was not statistically distinguishable from either of the hEPN-1-treated samples (p = 0.013 

and 0.03, respectively).  

 In the LDH activity experiments, in four independent trials, the average LDH OD 

decreased 80.8% (from 0.47 to 0.09) in the presence of 20 µM Yankner peptide (p < 0.001 

relative to control), was 0.47 when 75 µM hEPN-1 was added simultaneously with Yankner (p < 

0.001 relative to Yankner alone), and was 0.48 when 75 µM hEPN-1 was added 24 hrs post-

Yankner (p < 0.001 relative to Yankner alone).  The control mean was not statistically 

distinguishable from either of the hEPN-1-treated samples (p = 0.174 and 0.479, respectively).   

Although previous reports in the literature indicated LDH expression is constitutive in SHSY 

cells (thus its activity is an indirect measure of cell numbers or viability), it was possible the 

hEPN-1 treatments upregulated LDH activity.  So to ensure our observed changes in LDH 
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activity levels did not represent changes per unit protein, the LDH activity values were divided 

by the mg of protein present in the sample, and all four experimental samples were statistically 

indistinguishable (p values = 0.184, 0.995, 0.872, respectively, relative to control). 

 In the nuclear blebbing experiments, in five independent trials, the mean percent blebbed 

nuclei (a measure of apoptosis) doubled from 7.5% to 16.0% in the presence of 20 µM Yankner 

peptide (p < 0.001 relative to control), was 6.7% when 75 µM hEPN-1 was added 

simultaneously with Yankner (p < 0.001 relative to Yankner alone), and was 6.5% when 75 µM 

hEPN-1 was added 24 hrs post-Yankner (p < 0.001 relative to Yankner alone).  The decreased 

apoptosis observed in the hEPN-1-treated samples was however, not statistically significant (p = 

0.381 and 0.279, respectively).  

Overall, the data suggest that hEPN-1 can protect human neuronal cells from Yankner-

induced cell death, whether added simultaneous to the insult, or 24 hrs post.  Because the 

therapeutic can act 24 hrs post-insult, it may interfere with a late-stage apoptotic event.  As there 

is currently no known drug that blocks Yankner-induced toxicity, the hEPN-1 therapeutic shows 

potential in combating the underlying apoptosis of Alzheimer’s disease. 
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BACKGROUND 

  

 According to the Alzheimer’s Foundation of America (2006), Alzheimer's disease (AD) 

currently affects an estimated 4.2 million to 5.8 million Americans and that one in ten persons 

over age 65, and nearly half of those 85 or older have the disease.  It is projected that the number 

of Americans with AD could reach a high of 16 million by 2050.  Prior to its discovery, AD was 

viewed simply as another form of dementia, considered common for aging individuals.  

However, in 1906, German physician Alois Alzheimer noted extracellular formations 

surrounding the neurons, and tangled fibers within the neurons, while performing an autopsy on 

a woman who had suffered years of mental degradation.  One hundred years later, these same 

two observations still serve as hallmark lesions for the proper diagnosis of the disease. 

 

Alzheimer’s Disease Mechanism 

The cause of AD is unknown, but within the past 10 years a great deal has been learned 

about key events.  The current working model for AD is often termed the “amyloid cascade 

hypothesis” (for reviews see Yuan and Yankner, 2000; Armstrong, 2006).  This model is 

summarized in Figure-1.  Amyloid precursor protein (APP) (shown in the upper left corner of the 

diagram) is a naturally occurring neuronal cell receptor that functions in the transport of β-

secretase and presenillin-1.  During AD, APP undergoes improper cleavage by beta and gamma-

secretases to release a 42 aa length portion of the APP, known as β-amyloid (Aβ, aa 672-713) 

(shown as a yellow box in the diagram).   Aβ monomers assemble into dimers, trimers, and 

higher aggregates, all of which are highly neurotoxic (Walsh et al., 2002).  The aggregates 

eventually form the hallmark extracellular senile plaques (left side of diagram) within the brain 
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parenchyma and leptomeningeal areas, as well as the cortical vascular walls (Chaney et al., 

2005).   Although the presence of visible senile plaques has historically been thought to be 

responsible for the progression of the disease, the plaque precursors (Aβ monomers, dimers, 

trimers, and aggregates) are currently thought to serve as the neurotoxin.  Of these, the dimers 

and trimers are thought to be the most neurotoxic (Walsh et al., 2002).   

Aβ engages a variety of neuronal cell surface receptors (including the receptor for 

advanced glycation end products (RAGE), the NGF receptor p75, and TNFR (discussed below), 

to generate reactive oxidative stress (ROS), increase Ca
++
 flow into the cell, increase caspase 

activation, and cellular apoptosis.  ROS also leads to the hyperphosphorylation of Tau protein 

(center of the diagram) that destabilizes microtubules.  This process eventually forms 

intracellular neurofibrillary tangles, the second observable hallmark pathology of AD.  

 

 

 

 

 

 

 

 

 

 Figure 1 - Schematic of Alzheimer’s Disease.  The abnormal 

cleavage of Aβ from APP (upper left of diagram) is thought to initiate 

cellular events leading to neuronal apoptosis (Calbiochem, 2000).   
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Aβ Signal Transduction 

 

 The interaction of Aβ with a variety of cell surface receptors is thought to be the key 

trigger initiating signal transduction events leading to neuronal apoptosis.  Aβ has been shown to 

engage receptors with high affinity, such as the receptor for advanced glycation end products 

(RAGE), p75, and TNF-R (Figure 2).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 – Engagement of Receptors by Aβ.  Aβ (upper center of diagram) has 

been shown to have high affinity for a variety of cell surface receptors that induces 

signal transduction events leading to neuronal apoptosis (Yuan and Yankner, 

2000). 

 

 The interaction with the RAGE receptor has been especially well characterized. 

RAGE is a 404 aa long member of the immunoglobulin (Ig) superfamily of cell surface 

molecules that contains a single transmembrane domain and an N-terminal signal sequence of 22 
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aa (Bucciarelli et al., 2002).  The receptor shows a high similarity with neural cell adhesion 

molecules (NCAMs) and induces Aβ-mediated cell adhesion and the induction of oxidative 

stress in microglia (Yan et al., 1996; Mackie et al., 1998).  As Aβ engages RAGE, reactive 

oxidative stress (ROS) increases both inside the cell and within the cell membrane (Mattson and 

Rydel, 1996).  When the ROS occurs within the cell, proteins, lipids, and DNA undergo damage 

that eventually leads to cell death.  Inside the cell membrane itself, the ROS causes sodium and 

calcium ions to leave the cell, leading in turn to a depolarization of the membrane.  Calcium 

sequentially floods the cell across the glutamate receptor, eventually causing additional damage 

to the DNA, proteins, and lipids.  When Aβ activates microglia, it induces cytokine secretion that 

has cytotoxic proinflammatory effects (Chaney et al., 2005).  The Aβ/RAGE interaction has 

further been shown to “elicit neuronal NF-κB transcription factor mediated secretion of 

macrophage colony stimulating factor (M-CSF)” (Chaney et al., 2005) which interacts with its 

receptor C-fms on microglial surfaces causing a number of responses including microglial 

chemotaxis, cell proliferation, increased scavenger receptors, and apolipoprotein-E expression, 

as well as oxidative stress.          

 The oxidative stress caused by Aβ activates the extrinsic p38/c-Jun N-terminal kinase 

(JNK) pathway, which culminates in the activation of transcription factor NF-κB and apoptosis 

(Morishima et al., 2001; Marques et al., 2003; Onyango et al., 2005).   Antibodies against RAGE 

block the Aβ-induced activation of the p38/JNK pathway (Onyango et al., 2005).  Aβ17-42 (a 

peptide that includes the 25-35 toxic portion of Aβ has also been shown to activate initiator 

caspase 8, a key component of the extrinsic apoptotic pathway (Wei et al., 2002).  In an elegant 

study, caspase 12-deficient cortical neurons were shown to be deficient in Aβ-induced apoptosis 

(Nakagawa et al., 2000), but not by staurosporine treatment or trophic factor deprivation.  Thus 
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Aβ-induced apoptosis involves a variety of caspase enzymes.  Further elucidation of the steps 

involved in Aβ-induced neuronal cell death will eventually provide more points for potential 

therapeutic intervention in Alzheimer’s disease.   

 

Yankner Peptide Aβ Mimetic 

Various portions of the 42aa Aβ peptide have been tested for receptor-binding activity 

and neurotoxicity.  An 11 aa portion Aβ25-35 (more commonly termed the “Yankner peptide” 

after its discoverer Bruce Yankner of Harvard University) is the known minimal neurotoxic 

portion of Aβ (Yankner et al., 1990) (Figure-3).  When added to cultured cells, the Yankner 

peptide has been shown to induce neuronal cell death with the same specific activity as Aβ (Yan 

et al., 1996; Misiti et al., 2005).  PC12 neuronal cells treated with Yankner peptide show an 

increased cytosolic calcium concentration and a marked decrease in key metabolic enzyme 

activities (Bielarczyk et al., 2003; Ba et al., 2004).  In human primary midbrain astrocytes, the 

Yankner peptide upregulates Cox 2 and increases the cellular release of inflammatory 

prostaglandin-2 via a protein kinase-C (PKC) pathway (Hull et al., 2006). 
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Figure 3 – The Yankner Peptide.  The upper horizontal line denotes the full-length 

APP protein; the Aβ portion is denoted by a red box.  The lower horizontal line denotes 

a portion of the APP amino acid sequence.  Aβ25-35 (Yankner peptide) is delineated by a 

box.  The sequence also shows the cut sites for α, β, and γ secretases. 
 

Cellular Apoptosis  

 Uncovering the various steps of Aβ-induced apoptosis is critical for providing steps for 

therapeutic intervention in Alzheimer’s disease.  Because these steps are still being elucidated, a 

comparison to what is generally known about cellular apoptosis may provide a background for 

expanding our knowledge of Aβ signal transduction.  Apoptosis is a type of programmed cell 

death exhibiting a distinct set of morphological and biochemical features, such as: cell shrinkage, 

caspase activation, chromatin condensation, nuclear breakdown followed by DNA fragmentation 

(Kerr et al., 1972).  An increasing amount of evidence documents the role of apoptotic cell death 

in a large number of neurodegenerative diseases including Alzheimer’s disease, Parkinson’s 

disease, Huntington’s disease, and amyotrophic lateral sclerosis (Holtzman and Deshmukh, 

1997; Lunkes and Mandel, 1998; Namura et al., 1998).   

 The regulation of apoptosis has been extensively investigated, and is incredibly complex, 

however it usually occurs by two distinct converging pathways: the cell extrinsic pathway, and 

the cell intrinsic pathway (Green and Evan, 2002).  In the former pathway, activation of cell 
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surface receptors such as the tumor necrosis factor receptor (TNFR) superfamily causes the 

activation of death “initiator” caspases 8 and 10, but can also stimulate survival factors such as 

nuclear factor kappa-B (NF-κB).  If the balance of death signals overrides the survival signals, 

“effector” caspases (caspase 3, 6, and 7) become activated, causing chromosome condensation, 

DNA fragmentation, cell shrinkage, membrane blebbing, and cell death.   

 In either pathway, caspase enzymes are the critical mediators of cell death (Cohen, 1997; 

Nakagawa et al., 2000).  This family of enzymes has been shown to play a number of roles in 

cellular apoptosis, including: the mediation of signal transduction downstream of death receptors 

located on the plasma membrane (caspases 8 and 10) (extrinsic pathway) (Muzio et al., 1996), 

mediation of apoptotic signals after mitochondrial damage (caspase 9) (intrinsic pathway) (Li et 

al., 1997), and mediation of apoptosis through ER stress (caspase 12) (ER pathway). 

 In the intrinsic apoptotic pathway, cellular stress such as oncogene activation causes 

activation of the tumor suppressor p53 (Ryan et al., 2001), which results in the upregulation of 

pro-apoptotic proteins (e.g. Bax) or the inhibition of anti-apoptotic proteins (e.g. Bcl-2 family) 

causing changes in the mitochondrial membrane potential. These membrane changes cause the 

release of pro-apoptotic cytochrome-C, SMAC (Diablo), and apoptosis inducing factor (AIF).  

The pro-apoptotic factors induce cell death by activating caspase 9, or apoptotic protease-

activating factor-1 (APAF-1), or by inhibiting inhibitor of apoptosis proteins (IAP’s).  The 

intrinsic pathway is regulated in part by a balance of signals coming from receptor tyrosine 

kinases (RTKs).  Not all cell death situations use the classic extrinsic and intrinsic pathways, for 

example increases in endoplasmic reticulum stress uses neither (Trapani and Smyth, 2002). 

 



 15 

Ependymin 

 

 Neurotrophic factors (NTFs) are proteins that stimulate neuronal growth and 

regeneration, thus they may have therapeutic applications for Alzheimer’s disease.  First 

discovered in the goldfish brain in the “zona ependyma” (Shashoua and Benowitz, 1977), 

ependymin (EPN) is a 216 aa neurotrophic factor (shown to function in long term memory 

potentiation and neuronal regeneration) that is secreted in both the extracellular fluid and 

cerebrospinal fluid.  Existing in two forms, a β and γ version (molecular weights 37,000 and 

31,000), the β form is glycosylated, whereas the γ form is not (Shashoua, 1976; Shashoua, 1985; 

Konigstorfer et al., 1989; Shashoua et al., 1990).  The Adams and Shashoua labs have 

collaborated for over 15 years on projects to develop small synthetic peptide mimetics to 

neurotrophic factors that, unlike the parent protein, can cross the highly impenetrable blood brain 

barrier if delivered intravenously.   

 Peptide 8933 is an 8 amino acid synthetic portion of full-length goldfish ependymin, with 

the sequence KKETLQFR.  Peptide hEPN-1 is a 14 amino acid synthetic portion of human 

ependymin, containing the entire analogous 8933 location plus flanking sequence, with the 

sequence KQCSKMTLTQPWDP.  These synthetic peptides have been shown to mimic many of 

the signal transduction events of full-length ependymin, as shown in Figure-4.  Peptide 8933 

(shown as a green circle in the upper part of the figure) added to cultured neuronal cells activates 

the JNK pathway (middle part of the figure) and transcription factor AP-1 (a key mediator of 

long-term memory formation) (Adams et al., 2003).  JNK pathway activation was shown to 

include an increase in JNK enzymatic activity, an increase in JNK phosphorylation, an increase 

in c-Jun phosphorylation, and an increase the cellular titers of c-Jun and c-Fos mRNAs (Ibid.).  

Peptide 8933 was also shown to upregulate antioxidative enzymes superoxide dismutase (SOD), 
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catalase (CAT), and glutathione peroxidase (GPX) (lower part of the diagram) (Shashoua et al., 

2004).  Activation of AP-1 was shown to be a required step for the upregulation of SOD by 8933 

(Saif, 2004).  Full-length ependymin has also been shown to activate the JNK pathway (Kaska, 

2003), and has been shown to engage a putative EPN receptor located on the neuronal membrane 

(unpublished data).   Human peptide hEPN-1 has been shown to upregulate SOD and growth 

related mRNAs for L-19, EF-2, ATP synthase in mouse neuroblastoma cells (Saif, 2004), and S-

19 and S-12 in human neuroblastoma cells (Arca, 2005). 

 

 

 

 

 

 

 

 

 

 

Figure 4 – Our Laboratory’s Proposed Mechanism of Action of Ependymin (Saif, 2004).
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THESIS PURPOSE 
 

 As discussed in the Background section, the treatment of SHSY human neuronal cells 

with 20 µM Yankner peptide (the minimal toxic portion of Aβ) has been shown to induce 

neuronal oxidative stress that causes apoptosis.  Data from our laboratory indicates that treatment 

of SHSY cells with ependymin neurotrophic factor mimetic hEPN-1 upregulates several anti-

oxidative enzymes, thus it was surmised that hEPN-1 may help block Yankner-induced neuronal 

apoptosis.  Such a therapeutic substance might help serve as an effective therapy against 

Alzheimer’s disease.  The goal of this thesis was to demonstrate that addition of hEPN-1 peptide 

to SHSY cells in culture can block some of the measurable neurotoxic effects of the Yankner 

peptide, including the induced decrease in viable cells, and an increase in nuclear blebbing as a 

measure of apoptosis.  In addition an attempt was made to determine how late the therapy could 

be administered post-Yankner peptide addition to prevent apoptosis.      
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MATERIALS AND METHODS 

SHSY-5Y Human Neuroblastoma Culture 

Human SH-SY5Y (SHSY) neuroblastoma cells were purchased from ATCC.  Complete 

growth medium consisted of 500 ml D-MEM / F-12 (Dulbecco’s Modified Eagle’s Medium, 

Ham’s Nutrient Mixture F12, 1:1) (ATCC), 50 ml fetal bovine serum (FBS) (10% final 

concentration), and 0.25 ml of 10 mg/ml Gentamicin (Invitrogen Life Technologies, #15710064) 

(5 µg/ml final concentration).  The FBS and Gentamicin were both pipetted into the 500 ml D-

MEM / F-12 bottle, and swirled to mix.  The mixture was then filter sterilized using a 0.2-micron 

filter, and stored at 4°C.   

Upon thawing, the 1 ml ATCC sample in freezing medium was pipetted into a 15ml 

conical tube and brought to 10 ml with the addition of complete culture medium (see below).  

The sample was then centrifuged for 5 minutes at 1500 rpm to pellet the cells.  After 

centrifugation, the supernatant was siphoned to remove any residual DMSO from the freezing 

medium.  The cell pellet was then resuspended in 1 ml of complete medium and transferred to a 

T-25 flask.  An additional 4 ml complete medium was added to the flask, then the flask was 

placed in an upright incubator and kept at 36°C and 5% CO2.  Flasks were split approximately 

every 3-4 days once they reached 80% confluency.  Typically 1:2 splits were performed to 

prevent the cells from entering lag phase. 

 

Yankner Peptide 

Yankner peptide (Aβ25-35) (Tocris Bioscience #1429, MW 1060.27) was stored at -20º C 

as a 1 mg vial of dry powder.  The 1 mg peptide (943 nmol) was reconstituted into 0.94 ml of 
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filter sterilized serum-free D-MEM to create a 1 mM stock.  The stock was aliquoted into several 

eppendorf tubes to prevent repeated cycles of freezing and thawing with each use, then stored at 

-20º C.  For culture stimulations, 20 µl of 1 mM stock was added per 1 ml medium in a 24-well 

microtiter dish to make a 20 µM final concentration. 

   

hEPN-1 Peptide 

 The human ependymin based mimetic peptide hEPN-1 powder was received from Victor 

Shashoua at Biotherapeutix (Waltham, MA), and stored at -20˚C.  The peptide was reconstituted 

into filter sterilized 1x PBS at a concentration of 1 mg/ml (3.75 mM), and stored at -20˚C.  For 

culture stimulations, 20 µl of 3.75 mM stock was added per 1 ml medium in a 24-well microtiter 

dish to make a 75 µM final concentration. 

 

Microtiter Dish Plating 

 

 After plating SHSY cells at 4x10
5
 cells / ml in a 24-well microtiter dish, cells were 

allowed to incubate for 3 days in a 36ºC incubator in an atmosphere of 5% CO2.  Cells were 

plated in 4 sets: a control (not treated with any peptide), Yankner (treated with 20 µM Yankner 

peptide with no hEPN-1), simultaneous therapeutic treatment (20 µM Yankner peptide plus 75 

µM hEPN-1 added at the same time as the Yankner peptide), and 24 hr post (20 µM Yankner 

peptide plus 75 µM hEPN-1 added 24 hours post Yankner challenge).   

 

Cell Viability Determination 

 At the end of the 3-day culture incubation time, cells were trypsinized using 100 µl 

Trypsin-EDTA (Invitrogen Life Technologies).  Mictotiter dishes were allowed to sit for 30 
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seconds; the supernatant was then removed and placed in a 15ml conical tube, to which 9 ml of 

complete medium was added.   The tube was then centrifuged for 5 minutes at 5,000 rpm, and 

the supernatant was discarded.  The cell pellet was resuspended in 1 ml of complete medium, and 

100 µl of the cell suspension was removed and placed in a 1.5ml eppendorf tube.  A 100 µl 

volume of Trypan Blue (Sigma-Aldrich, MW 960.81, 0.4% stock concentration) was added to 

the 100 µl of cell suspension, and the tube was inverted to mix.  This sample was used to load a 

standard hemocytometer that was viewed at 400x magnification to perform standard cell counts 

of viable cells (trypan blue excluded) as a percentage of total cells.   

 For cell count experiments in which loosely attached dying cells were not to be scored, 

several washes were performed post incubation.  After 3 days, the microtiter dish was removed 

from the incubator, and the medium was removed from all wells.  Using 1x PBS, 0.5 ml was 

pipetted into each well, and the dish was vigorously shaken back and forth for 10 seconds.  The 

supernatant was removed, and this procedure was repeated twice to remove all loosely bound 

dying cells.  The remaining viable cells were trypsinized according to the same procedure 

detailed above.  As there were only viable cells remaining, the use of Trypan Blue was not 

employed, and the hemocytometer was loaded directly with the cell suspension after 

resuspending into 1 ml of complete media.  Cells were viewed in the hemocytometer under 400x 

magnification.  P-values were obtained using a One Way ANOVA test in the SPSS program with 

an LSD stringency parameter.  

  

Lactate Dehydrogenase Assay 

 

Cells were plated into a 24-well microtiter dish in the four experimental groups described 

above in “Mictotiter Dish Plating”.  At the end of the incubation period, the loosely bound dying 
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cells were removed using 1x PBS washes as described above for cell count experiments.  After 

removing all of the PBS from the wells, 100 µl of 10% Triton X-100 was added to each well and 

allowed to incubate at room temperature for 30 minutes to lyse the cells.  After 30 minutes, the 

100 µl of cell lysate was removed from each well and placed in 1.5ml microcentrifuge tubes.  

Tubes were spun for 5 minutes at 10,000 x g.  Upon completion of centrifugation, 50 µl of the 

cleared supernatant from each tube was removed and placed in a second set of tubes, to which an 

equal volume (50 µl) of the substrate mix (Promega #G1780, Cytotox 96
®
 Non-Radioactive 

Cytotoxicity Assay Kit) was added.  After a brief mixing and centrifugation, the tubes were 

allowed to incubate at room temperature for 30 minutes to complete the reaction.  At the end of 

the incubation period, 50 µl of stop solution (included in the Promega kit) was added to each 

tube along with 850 µl of sterile dH2O, to bring total volume to 1 ml.  After a brief inversion, the 

OD of the samples was read at 490nm.  

 

Total Protein Measurement 

 

 When measuring total cellular protein, the same procedure as the LDH assay was 

followed, except 2 µl of the 100 µl cleared 10% Triton X-100 cell lysate was placed in a quartz 

cuvette along with 1 ml dH2O.  The OD of each sample was then read at 280 nm. 

 

Nuclear Blebbing 

 

 Using a 24 well microtiter dish, SHSY cells were plated at 4x10
5
 cells / ml on a circular 

cover slip placed in the center of the microtiter wells, using the same experimental groups as 

described in the Microtiter Dish Plating section.  After a three-day incubation period in a 36ºC 



 22 

5% CO2 incubator, the cells were stained for one to two minutes with 1:10,000 acridine orange in 

culture medium, adding approximately 4 drops per microtiter well.  After allowing the staining to 

set in, the cover slip was removed from the microtiter dish and placed upside down on a 

microscope slide.  Though acridine orange differentially stains RNA and DNA under a 

fluorescence microscope, the staining method also allows easy visualization of nuclear blebbing, 

a hallmark of cellular apoptosis.  The stained cells were viewed with an AO Photostar 

microscope with mercury vapor illumination and an epifluorescence filter set appropriate for 

acridine orange fluorescence.  The excitation wavelength was 490 nm, and the barrier filter was 

520 nm, thus permitting observation of both orange and green fluorescence of RNA and DNA, 

respectively.  In order to quantify nuclear blebbing events, 5 representative fields were chosen 

per slide.  For each representative field, total cells and cells undergoing blebbing were 

quantified. 
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RESULTS 

 

Microscopy 

 The purpose of this thesis was to determine whether the treatment of human neuronal 

SHSY cells with hEPN-1 peptide (a human neurotrophic factor mimetic) can block the 

neurotoxic effects of Yankner peptide (an Alzheimer’s disease Aβ mimetic).  SHSY cells were 

plated into a 24-well microtiter dish in medium containing no peptide addition (control), 20 µM 

Yankner peptide (a concentration previously shown in the literature to strongly induce SHSY 

apoptosis; Yankner et al., 1990), or 20 µM Yankner peptide plus 75 µM hEPN-1 peptide (a 

concentration chosen from our preliminary experiments, data not shown).  After incubation for 3 

days, dying loosely bound cells were washed off the wells, and an inverted microscope was used 

as an initial visual comparison between the samples (Figure-5).   

 

 

 

 

 

 

 

 

Figure 5 – Microscopy of Human SHSY Cells Treated with Yankner and/or 

hEPN-1 Peptides for 3 Days.  Following 3 days of culture, loosely bound cells were 

removed by washes, then remaining cells viewed by microscopy.  Upper and lower 

rows denote duplicate sets of representative fields.  The left panels show control 

cells.  The center panels show cells treated with 20 µM Yankner peptide.  Right 

panels show cells treated with 20 µM Yankner peptide + 75 µM hEPN-1 peptide 

added simultaneously.  Panels are viewed at 400x.  
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Viewed at a magnification of 400x, two sets of representative fields (upper and lower rows) were 

photographed for the control cells (left panels), Yankner peptide treated (middle panels), and 

Yankner + hEPN-1 added simultaneously (right panels).  While control cells obtained 

approximately 80% confluency during the 3-day culture period, the 20 µM Yankner challenged 

cells show a visibly reduced confluency, and the cell size was somewhat smaller.  However, 

when hEPN-1 peptide was added simultaneously with the Yankner peptide, the cells appeared 

completely normal. 

 

Measurement of Cell Numbers and Viability 

 Cell counts were performed on treated cultures using a standard hemocytometer (Figure 

6), following a series of washes to remove dying cells.  In three independent trials, average cell 

numbers per microtiter well decreased 44.7% (from 3.11 x 10
5
 to 1.72 x 10

5
) in the presence of 

20 µM Yankner peptide (p < 0.05 compared to control), and were 2.73 x 10
5
 when 75 µM hEPN-

1 was added simultaneously with Yankner (p < 0.05 relative to Yankner alone).  When the 

hEPN-1 was added 24 hrs post-Yankner (to determine whether it could be beneficial after the 

onset of early apoptotic signal transduction events), the cell numbers were 2.96 x 10
5
 (p = 0.005 

relative to Yankner alone).  The control mean was not statistically distinguishable from either of 

the hEPN-1-treated samples (p = 0.220 and p = 0.671, respectively).    Thus, when assaying cell 

numbers that remain attached to the wells after the 3-day treatments, the addition of hEPN-1 

peptide appears to nearly completely block the toxic effect of the Yankner peptide. 
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Figure 6 – Cell Counts of Human SHSY Cells Treated with Yankner and/or 

hEPN-1 Peptides for 3 Days.   Cultures were treated with no peptides (control), 20 

µM Yankner peptide (second histobar), 20 µM Yankner peptide + 75 µM hEPN-1 

peptide added simultaneously (third histobar), or 20 µM Yankner peptide + 75 µM 

hEPN-1 peptide added 24 hrs post-Yankner (fourth histobar).  Following 3 days of 

culture, loosely bound cells were removed by washes, and remaining cells counted in 

a hemocytometer.  Each histobar represents the mean of three independent 

determinations.  Error bars denote one standard deviation.  

 

 

 In order to determine total viable cells as a percent of the total cells present, a second set 

of cell counts was performed using Trypan Blue exclusion as a measure of viability (Figure-7).  

These experiments were performed as described above, except no cell washes were performed to 

remove dying cells.  In three independent trials, the mean completely block the toxic effect of the 

Yankner peptide. 
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Figure 7 – Percent Viable Cells as Measured by Trypan Blue Exclusion for SHSY 

Cells Treated with Yankner and/or hEPN-1 Peptides for 3 Days.   Cultures were 

treated as described in Figure-6.  Following 3 days of culture, cells were stained with 

trypan blue, and the percent viable cells (trypan blue excluded) was determined by 

microscopy.  Each histobar represents the mean of three independent determinations.  

Error bars denote one standard deviation.  

 

 

Lactate Dehydrogenase Assay of Cell Viability 

 As an additional measure of cell viability, the enzymatic activity of Lactate 

Dehydrogenase (LDH) was quantified in the cells remaining attached to the wells following the 

washes to remove loosely bound dying cells (Figure-8).  LDH is a housekeeping enzyme 

normally thought to be constitutively produced in all cells, including SHSY cells, and its assay 

has frequently been used to indirectly quantitate cell viability (Lemmen et al., 1983; Anderson et 

al., 2001).  In four independent trials, the average LDH OD decreased 80.8% (from 0.47 to 0.09) 

in the presence of 20 µM Yankner peptide (p < 0.001 relative to control), was 0.47 when 75 µM 

hEPN-1 was added simultaneously with Yankner (p < 0.001 relative to Yankner alone), and was 

0.48 when 75 µM hEPN-1 was added 24 hrs post Yankner (p < 0.001 relative to Yankner alone).  

The control mean was not statistically distinguishable from either of the hEPN-1 treated samples 

(p = 0.174 and 0.479, respectively).   
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Figure 8 – LDH Activity as an Alternative Measure of Cell Viability for SHSY Cells Treated 

with Yankner and/or hEPN-1 Peptides for 3 Days.   Cultures were treated as described in 

Figure-6.  Following 3 days of culture, loosely bound cells were removed by washes, and cell 

lysates were prepared.  LDH activity was measured in a spectrophotometric assay (see Methods).  

Each histobar represents the mean of four independent determinations.  Error bars denote one 

standard deviation.  

 

 

 Although studies have shown that LDH is a constitutive enzyme not upregulated in 

human neuronal cells, to rule out the possibility that hEPN-1 upregulated the LDH activity in the 

Figure-8 experiments, total cellular protein was assayed in the same lysates used to obtain the 

LDH data to allow a calculation of LDH activity per unit protein.  As expected, the overall 

histoplot profile of total cellular protein in the surviving cells (those remaining after the washes) 

(Figure-9) was very similar to the LDH histoplot profile.  When the LDH activity value was 

divided by the protein value (Figure-10) for each sample, all four experimental samples were 

statistically indistinguishable (p values = 0.184, 0.995, 0.872, respectively, relative to control).  

Thus, when assaying cell viability by LDH activity, the addition of hEPN-1 peptide appears to 

completely block the toxic effect of the Yankner peptide. 
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Figure 9 – Total Cellular Protein in SHSY Cells Treated with Yankner and/or 

hEPN-1 Peptides for 3 Days.   Cultures were treated as described in Figure-6.  

Following 3 days of culture, the wells were washed to remove loosely bound cells, and 

cell lysates were prepared.  Protein content was measured by UV absorbance at 280 nm.  

Each histobar represents the mean of four independent determinations.  Error bars denote 

one standard deviation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10 – LDH Activity Divided by Protein Content in SHSY Cells Treated with Yankner 

and/or hEPN-1 Peptides for 3 Days.   The LDH data from Figure-8 was divided by the protein 

data from Figure-9.  Each histobar represents the mean of four independent determinations.  

Error bars denote one standard deviation.  
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Quantification of Nuclear Blebbing 

 The therapeutic effects of hEPN-1 peptide were also tested by measuring nuclear 

blebbing as an indicator of apoptosis.  Nuclear blebbing is one of the hallmark features of 

apoptosis that distinguishes it from general necrosis, and it is relatively easy to measure by 

microscopy (Kerr et al., 1972; Green and Evan, 2002).  Cultures were treated with peptides as 

described in the previous experiments, then nuclear blebbing was monitored by fluorescence 

microscopy in acridine orange stained cells (Figure-11).  In five independent trials, the mean 

percent blebbed nuclei doubled from 7.5% to 16% in the presence of the 20 µM Yankner peptide 

(p < 0.001 compared to control), was 6.7% when 75 µM hEPN-1 was added simultaneously with 

Yankner (p = 0.001 relative to Yankner alone), and was 6.5% when 75 µM hEPN-1 was added 

24 hrs post-Yankner (p < 0.001 relative to Yankner alone).  The decreased apoptosis relative to 

control observed in both hEPN-1-treated samples however, was not statistically lower than the 

control sample (p = 0.381 and 0.279, respectively).  Thus, when assaying cellular apoptosis by 

nuclear blebbing, the addition of hEPN-1 peptide appears to completely block the toxic effect of 

the Yankner peptide. 

 

Figure 11 – Quantification of 

Nuclear Blebbing in SHSY Cells 

Treated with Yankner and/or 

hEPN-1 Peptides for 3 Days.   
Cells were treated with peptides as 

described in Figure-6, then the 

percent of cells showing blebbed 

nuclei was quantitated by 

fluorescence microscopy in 

acridine orange stained cells.  

Each histobar represents the mean 

of five independent field 

determinations.  Error bars denote 

one standard deviation.  
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DISCUSSION 

 

 The overall goal of this thesis was to use an in vitro model for Alzheimer’s disease (AD), 

cultured human SHSY neuronal cells treated with neurotoxic Aβ25-35 (also termed the Yankner 

peptide) to determine whether the toxic effects of the Yankner peptide could be blocked by 

human ependymin mimetic hEPN-1 peptide.  Our rationale was that because the treatment of 

SHSY cells with Yankner peptide is known to increase reactive oxidative stress (ROS) leading to 

apoptosis (Yan et al., 1996; Mattson and Rydel, 1996; Mackie et al., 1998; Yuan and Yankner, 

2000; Armstrong, 2006), and because our lab has previously shown that treatment of these same 

cells with ependymin mimetics 8933 (Adams et al., 2001) and hEPN-1 (Saif, 2003) increases 

several anti-oxidative enzymes, perhaps an ependymin mimetic could block the toxic effect of 

the Yankner peptide.   

 Beginning with a qualitative approach via microscopy (Figure-5), cell confluency in the 

presence of the Yankner peptide appeared to be significantly decreased in comparison with the 

control.  However, the cells treated with the hEPN-1 peptide simultaneously to the Yankner 

insult appeared to have normal cell numbers and morphology.  Unlike a previous study 

suggesting that the SHSY neuronal cells must be differentiated with retinoic acid to respond to 

the Yankner peptide (Lambert et al., 1994), our studies agree with Yankner et al. (1990) and Yan 

et al. (1996) that growing SHSY cells fully respond to the presence of the Yankner peptide.   

 When cell counts were performed on the cells remaining attached to the wells after 3 

days of culture with the various peptides (Figure-6), the data supported the initial microscopic 

observations, with a highly significant decrease in cell numbers in the Yankner treated culture, 

but no significant difference between the control cultures and those treated simultaneously with 
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Yankner and hEPN-1.  A similar protection was provided when adding hEPN-1 24 hrs post 

Yankner insult, so hEPN-1 appears to interfere with a later event in apoptosis, not those events 

that take place within minutes or hours, such as calcium flow.  The hEPN-1 peptide not only 

prevented cells from detaching from the substrate (as evident by post wash cell counts), but 

prevented cells from undergoing cellular apoptosis as a result of oxidative stress, as evident by 

trypan blue staining (Figure-7).  Identical observations occurred when an alternative assay for 

cell viability, the LDH assay, was used (Figure-8), which could not be explained by increased 

expression of LDH (Figures-9 and 10). 

 As a direct measurement of cellular apoptosis, the percent of cells showing nuclear 

blebbing was quantitated (Figure-11).  Nuclear blebbing is one of the hallmark features of 

apoptosis that distinguishes it from general necrosis, and it is relatively easy to measure by 

microscopy (Kerr et al., 1972; Green and Evan, 2002).  As expected based upon previous studies 

showing that the Yankner peptide induces cellular apoptosis (Yan et al., 1996; Mattson and 

Rydel, 1996; Mackie et al., 1998; Yuan and Yankner, 2000; Armstrong, 2006), the Yankner 

challenged cells had twice as many nuclear blebbing events than the untreated control.  The 

hEPN-1 cells (either simultaneous or 24 hr post) protected the cells from the toxin (the mean 

percent blebbing in five independent observations was statistically identical to control cultures), 

actually scoring significantly less apoptosis than the control.  Such protective effects have not 

been seen by any drug currently used in Alzheimer’s treatment (see below). 

 Although the data appears conclusive that hEPN-1 does prevent the Yankner neurotoxin 

from inducing apoptotic events, additional work could further this hypothesis.  One key question 

remaining is exactly how late can the therapeutic act to save the cells?  Such a study would seek 

to differentiate between a matter of protection and regeneration.  Specifically, how far beyond 24 



 32 

hrs post insult can the hEPN-1 be added and still convey similar protection?  As a negative 

control, a scrambled version of the hEPN-1 would be very useful to prove that it is indeed the 

sequence/shape of the hEPN-1 and not an unknown component of the peptide preparation that is 

blocking the effects of the Yankner toxin.  Our lab previously showed that a scrambled version 

of ependymin mimetic 8933 was inactive, and 8933 is prepared using the same process as hEPN-

1, so likely it is the sequence/shape of hEPN-1 that is active.  Fluorescently-labeled hEPN-1 

should bind the surface of neuronal cells if a receptor is being engaged, as is the case for all 

known neurotrophic factors.  Ultimately, the next major step would be to extend the experiments 

to an in vivo Alzheimer’s disease rodent model.  Our laboratory helped create, in collaboration 

with the former Transgenic Sciences Inc., the first mouse model for AD (Games et al, 1995).  

hEPN-1 could be administered, with and without conjugation to a BBB carrier such as DHA 

(Shashoua et al., 2004), to explore its in vivo efficacy reducing astrocytosis and gliosis. 

 Currently there is no cure for Alzheimer’s disease, but the U.S. Food and Drug 

Administration has to date approved five drugs for the treatment of mild to moderate AD (year of 

FDA approval in parentheses):  Tacrine (Cognex®, 1993), Donepezil hydrochloride (Aricept®, 

1996), Rivastigmine (Exelon®, 2000), Galantamine hydrobromide (Razadyne
TM

 - formerly 

called Reminyl®, 2001), and Memantine HCI (Namenda
TM

, 2003).   All of these drugs inhibit 

acetylcholinesterase to increase the amount of acetylcholine neurotransmitter in the brain, which 

improves moderate symptoms temporarily.  But these drugs treat only the symptoms, not the 

underlying neurodegeneration.  hEPN-1 appears to block Aβ neurotoxicity, so this is a step in the 

right direction, although this treatment still does not address the fundamental cause of AD, the 

improper cleavage of APP to form Aβ.   
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Overall, the data suggest that hEPN-1 can protect human neuronal cells from Yankner-

induced cell death, whether added simultaneous to the insult, or 24 hrs post.  Because the 

therapeutic can act 24 hrs post-insult, it may interfere with a late-stage apoptotic event.  As there 

is currently no known drug that blocks Yankner-induced toxicity, the hEPN-1 therapeutic shows 

potential in combating the underlying neural apoptosis of Alzheimer’s disease. 
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