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Abstract 

The aerodynamic performance of low aspect ratio wings at low Reynolds 

numbers applicable to micro air vehicle design was studied in this thesis. There is an 

overall lack of data for this low Reynolds number range, particularly concerning details 

of local flow behavior along the span. Experiments were conducted to measure the local 

pressure distributions on a wing at various spanwise locations in a Reynolds number 

range 3×104 < Re < 9×104. The model wing consisted of numerous wing sections and 

had a rectangular planform with NACA0012 airfoil shape with aspect ratio of one. One 

wing section, with pressure ports at various chordwise locations, was placed at different 

spanwise locations on a wing to effectively obtain the local pressure information. 

Integration of the pressure distributions yielded the local lift coefficients. Comparison of 

the local lift distributions to optimal elliptic lift distribution was conducted. This 

comparison showed a sharply peaked lift distribution near the wing tip resulting in a 

drastic deviation from the equivalent elliptic lift distributions predicted by the finite wing 

theory. The local lift distributions were further analyzed to determine the total lift 

coefficients vs angle of attack curves, span efficiency factors and the induced drag 

coefficients. Measured span efficiency factors, which were lower than predictions of the 

elliptic wing theory, can be understood by studying deviations of measured lift from the 

elliptic lift distribution. We conclude that elliptic wing theory is not sufficient to predict 

these aerodynamic performance parameters. Overall, these local measurements provided 

a better understanding of the low Reynolds number aerodynamics of the low aspect ratio 

wings. 
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Nomenclature: 
 
AR = aspect ratio of the wing. 

α = angle of attack 

A = Axial Force 

b = span of the wing. 

c = chord length of the wing. 

ca = local axial coefficient. 

cd =local drag coefficient 

CD = total drag coefficient. 

CDo = parasitic Drag coefficient. 

CDi = induced drag coefficient 

cf = shear stress coefficient. 

cl = local lift coefficient  

CL = total lift coefficient. 

cn = local normal coefficient. 

Cp = pressure coefficient. 

D = Drag. 

e = span efficiency factor. 

Г = circulation 

l = lower surface quantity 

L = lift. 

L’ = lift per unit span (local lift) 

µ = Absolute Viscosity of air (1.79 e-5) 
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N = Normal force. 

P = pressure. 

P∞ = static pressure. 

q∞ = dynamic pressure. 

Re = Reynolds number. 

ρ∞ = free stream density (1.19 kg/m3)  

τ = shear stress distribution. 

u = upper surface quantity 

V∞ = free stream velocity. 

x = co-ordinate axes along the wing chord. 

y = co-ordinate axes along the wing span. 
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1. Introduction 

1.1 Background 

                   Aircraft design has been of interest for over a century. Military and civil 

aircrafts, which fly at Reynolds numbers of 106 and above, have usually been studied. 

The flow behavior over airfoils in this range of Reynolds number is well understood.    

                       The aerodynamics in the Reynolds number range below that of commercial 

aircraft has gained attention from the research community over the last few years. These 

Micro Air Vehicles (MAV’s) have a variety of potential applications ranging from 

military and civil missions to use in planetary explorations. These may include 

surveillance missions, detection of chemical or biological agents, placement of acoustic 

sensors on the outside of a building during a hostage rescue and other search and rescue 

operations. The advancement in micro-fabrication techniques and miniaturization of 

electronics is the main driving force behind this development.  

             Micro-air vehicles (MAV’s) are the smallest class of uninhabited air vehicles 

(UAV’s). Current MAV’s generally have maximum dimensions of less than 25 cm, fly at 

approximately 10 m/s, and have low aspect ratios AR ≅ 1 (where AR = wing span/wing 

chord), yielding Reynolds numbers of 105 < Re < 106. The final aim for these projects is 

to develop an MAV of the size less than 8 cm, total weight less than 30 g and flying at the 

speeds of less than 10 m/s. Future MAV’s are expected to decrease in size by an 

additional order of magnitude compare to current models, placing them in the Reynolds 

number range of the work in this thesis.  

              The function of any wing is to generate lift. There is a drag associated with this 

lift generation know as the induced drag, is in addition to the parasitic drag produced on 
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the wing. The aerodynamic effectiveness of an airfoil is judged by the lift –drag ratio. 

This ratio decreases dramatically, at low Reynolds numbers and results in deterioration of 

performance of the airfoils. Other investigators have concentrated on reducing the drag 

and improving the lift-drag ratio of MAV’s. This thesis has the same overall goal and 

should be helpful in providing some important information about the aerodynamics of the 

flow in the Low Reynolds number range of 104 < Re < 106. 

                     Birds and insects are found to fly in this range of Reynolds numbers. The 

study of aerodynamics of the flow over the wing of these birds and insects is another 

aspect of MAV development. As MAV’s become smaller and smaller, they may need to 

mimic certain aspects of bird and insect flight. Typical features of bird wings such as 

notches on the trailing edges and cambered airfoil shapes have been studied by biologists 

as well as aerodynamicists [21]. 

             In the next section we will discuss observations and conclusions made so far by 

various researchers in this low Reynolds number regime. This is not a complete summary 

but a brief review of the studies carried out relevant to the present work. The main 

emphasis is on the aerodynamic flow phenomenon occurring over the low aspect ratio 

wings at low Reynolds number. Section 1.3 will outline the scope of work in the thesis 

and other objectives of the study. 
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1.2 Previous work 

                   Very limited aerodynamic data exists for airfoils and low aspect ratio wings 

in the Reynolds number 104-105 range. Previous numerical simulations have often 

focused on two-dimensional airfoil flow and primarily concentrated on design and 

analysis of new airfoil shapes for these low aspect ratio wings. (Kunz and Kroo [1] and 

Selig [2]).                   

                     However, the aerodynamics of the flow over MAV wings is inherently 

three-dimensional and is dominated by wingtip vortices. The three-dimensional nature of 

the flowfield along the wingspan in the case of low aspect ratio wings at low Reynolds 

numbers has remained largely unstudied in experiments. Monttinen et.al. [3] have solved 

the Navier Stokes equations for low chord Reynolds number flows. They have used finite 

element approximations and unstructured meshes with adaptive refinement to model the 

flow over various airfoils at Reynolds numbers as low as 4×103. Although they have tried 

to model three-dimensional flows and the extension of their fluid solver to three 

dimensions has been straightforward, experimental verification of these results has not 

been conducted 

                 The flow over these wings is laminar and hence viscous effects become a 

governing factor. A very complex phenomenon takes place here within a short distance 

on the MAV wing. Carmichael [4] has explained this phenomenon for various flow 

regimes for the low Reynolds number airfoils in details. For Reynolds number range of 

103 < Re < 104, flow is found to be laminar in the boundary layer and it is very difficult 

to cause transition to turbulent flow. It is very difficult to generate turbulent boundary 

layers artificially. The boundary layer remains laminar even in the range 104 < Re < 
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3×104. But the lift coefficients are of the order of 0.5 or less. Use of artificial methods to 

generate higher lift coefficients results in a separated laminar boundary layer without 

reattachment. Apparently, in the range 3×104 < Re < 7×104 the laminar separation with 

transition to turbulent flow is observed. But for a Reynolds number below 5×104, laminar 

separation does not transition in time, to turbulent flow for the boundary layer time to 

reattach.  A laminar separation bubble is found on the upper surface of most of the 

airfoils at Reynolds numbers above 5×104. It is known that these bubbles become larger 

with reducing Reynolds numbers and as a result causes a rapid deterioration in the 

performance. Typically, adding so-called ‘turbulators’ can artificially control this laminar 

separation bubble and transition. These include wires, tape strips, grooves, bleed through 

holes and so on. However, the appropriate positions and practical effects of these 

turbulators have not yet been studied in details. At a Reynolds number higher than 7×104 

a laminar flow can be obtained but the separation bubble may still be present for a 

particular airfoil.  This flow separation is the main reasons for stalling of the wings. Gad-

el-Hak [5] has further explained the aerodynamics behind the separation bubble 

formation on a wing in detail. The study presented in this thesis concentrates on the range 

3×104 < Re < 9×104, which encompasses the region detailed in Carmichael [4]. 

Carmichael discusses the flow over 2-D airfoils, however 3-D effects such as the wing tip 

vortices dominate the flow over a finite MAV wing, which drastically alters the flow over 

the wing. 

                    McCullough and Gault [6] have established that the airfoil stall could be 

classified through three types of stall, trailing edge stall, leading edge stall and thin airfoil 

stall. The trailing edge stall results because of movement of the turbulent boundary layer 
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separation point forward from the trailing edge with increasing angle of attack. Leading 

edge stall involves flow separation near the leading edge without subsequent 

reattachment.  

               This abrupt separation is caused due to bursting of the separation bubble at stall 

and results in sharp reduction in the lift. The thin airfoil stall is primarily due to flow 

separation at the leading edge with reattachment, which progressively moves downstream 

with increasing angle of attack. Their observations suggest that the stall can be a 

combination of any or all of these stall types. Broeren and Bragg [7] have carried out 

experiments on various airfoil shapes at Re = 3×105 to study the unsteady effect in these 

stall types. They observed that the laminar separation bubble was a common feature in 

the airfoil flowfields for both, thin airfoil stall and trailing edge separation stall.  The 

elimination of the separation bubble caused a significant reduction in the unsteady 

behavior of lift near the stall.  

                   Studies on low aspect ratio wings have often focused on theoretical 

treatments at higher Reynolds numbers [8], [9] and delta wing shapes [10]. Delta wings 

used in modern fighter aircrafts have been studied extensively. Although delta wings are 

normally studied at relatively higher aspect ratios (AR ≈ 2 to 3) and higher Reynolds 

numbers, studies suggest that delta wings are also prone to separation from the outboard 

leading edge and have lift distributions strongly deviating from the theoretical predictions 

[11].   

                  The study by Hoerner [12], [13] indicates that the lift on wings of AR=1 or 

less is composed of two sources, linear and non-linear. The linear part of the lift is similar 

to that observed in high AR wings associated with the circulation around the airfoil. The 
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non-linear part of the lift is due to formation of low-pressure cells on the wing’s top 

surfaces by the tip vortices, such as that observed in delta wings at high angle of attack. A 

pair of wing tip vortices is formed above and parallel to the lateral edges. Two different 

schemes have been suggested by various authors [14], [15], as a reason behind this non-

linear lift. One suggests that the lateral edges of a small aspect ratio (rectangular) wing 

are assumed to have an effect similar to end plates having a height proportional to the 

angle of attack. The other proposes that the size of the fluid stream tube deflected by the 

wing is increased by a component, which is proportional to the angle of attack. Study 

further predicts that this non-linear part of the lift is responsible for higher stall angles for 

the low AR wings.  

             Mueller and Pelletier [16] have performed experiments on various thin 

flat/cambered plate, low aspect ratio rectangular wings in a Reynolds number range of 

6×104 < Re < 1.7×105 to investigate the effects of camber, trailing edge geometry, 

leading edge geometry on the aerodynamic performance of those airfoils. They have 

carried out experiments on thin airfoil wings of aspect ratios 0.5 < AR < 3. There 

observations suggest that with reducing aspect ratio the angle of attack for stall increased. 

The also clearly observed a thin separation region on the suction surface near the trailing 

edge at low angles of attack during flow visualization carried out with hydrogen bubbles 

in a water tunnel in a similar range of Reynolds numbers. This separation region 

increased to more than 50% of the chord after an angle of 8o. They have also discussed 

cambered airfoils in detail and conclude that cambered airfoils (with 4% camber) offer 

better aerodynamic performance than a flat-plate wing for a given Reynolds number and 

aspect ratio. 
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                 Torres and Mueller [17] have presented their observations on various wing 

planform shapes in the range 7×104 < Re < 1.4×104. Although these experiments were 

carried out at Reynolds number lower than used by Hoerner [12], [13] the aerodynamic 

theory still holds. Their study included wind tunnel experiments as well as flow 

visualizations which further supports the theory predicted by Hoerner [12], [13] and 

McCullough et al. [6]. They clearly observed a separation bubble, typical in low 

Reynolds number flows. They conclude that a laminar free-shear layer forms and is 

highly unstable if the Reynolds number exceeds some critical value. Small perturbations 

in the flow cause transition to turbulent flow in this layer. This turbulent flow energizes 

the flow near the airfoil surface and sometimes reattaches as turbulent boundary layer. 

Their observations show the width of this separation bubble ranges to be from a small 

percent of the chord to 30% of the chord.  

               This separation bubble was limited to inner sections of the wing as the wing tip 

vortices energize the flow and the separation is eliminated near the wing tip. Their wind 

tunnel measurements along with some numerical simulations for lift and drag suggest that 

the angle of attack for stall increases as aspect ratio becomes smaller. The lift curve 

becomes increasingly nonlinear with reduction in aspect ratio. They also observed span 

efficiency factors,  defined by e

 
eAR
CCC L

DD π

2

0
+=             (1) 

 

in the range of 0.6 < e  < 0.7 for Re between 7×104 and 1×105 at aspect ratios AR < 2. 

These  values are lower than typical values found on high aspect ratio wings at high Re, 

which are normally between 0.8-0.9.  

e
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1.3 Thesis Objectives 

Previous studies have essentially concentrated on understanding the overall 

aerodynamic performance of low AR wing shapes, or determining optimum airfoil shapes 

at low Reynolds numbers so as to improve the wing performance in MAV designs.  As a 

result there is a lack of any experimental data for local behavior of the flow over these 

wings. We seek to measure spanwise pressure and lift distributions in order to understand 

the local behavior of the flow on the wing. Tests are performed on a low aspect ratio 

rectangular wing (AR = 1) in the Reynolds number range 2.5×104 < Re < 8.5×104 at 

various angles of attack. The local lift distribution is obtained through surface pressure 

measurements at various locations along the span of the wing. The pressure distribution 

along the chord at each spanwise location is studied to understand the local aerodynamics 

in these highly three-dimensional flows. The pressure data is analyzed to validate the 

separation phenomenon observed in earlier studies. Prandtl’s lifting line theory forms the 

basis of most of the aerodynamic research carried out on any wing or airfoil. To the best 

of our knowledge, a specially modified theory hasn’t been suggested to date for the 

optimum lift distribution over low Aspect Ratio (AR = 1) wings at low Reynolds 

numbers. Hence the analysis in this thesis is based on Prandtl’s lifting line theory. An 

overall goal of the present study is to determine if this theory can accurately predict total 

lift coefficients, local lift distribution and induced drag on low AR wings at low Reynolds 

numbers. The span efficiency factor, introduced before, is dependent on the spanwise 

circulation (lift) distribution over the wing. A general lift distribution on a wing can be 

expressed in terms of a Fourier sine series. The Fourier coefficients for this series can 

yield the span efficiency factor, ‘e’, if relations from Prandtl’s lifting line theory are 
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applied. This relation is discussed in detail in Section 2.1. Prandtl’s lifting line theory 

shows that the value of ‘e’ for an elliptic lift distribution is 1. With any deviation of the 

lift from this elliptic shape the span efficiency tends to reduce. We seek to determine the 

Fourier coefficients for the measured lift distributions and then obtain the span efficiency 

factors. The span efficiency factor is directly related to generated induced drag through 

Prandtl’s lifting line theory. We also seek to determine the physical cause behind lower 

values of ‘e’ observed by Mueller [17] through careful study of the measured spanwise 

lift distributions. We will also undertake an independent study of lift on low AR wings 

using force balance methods in order to further confirm our findings. Our study will also 

address the issue of whether an optimal planform shapes for MAV wings can be designed 

based on the observed local lift distributions. The measurements in this study could also 

eventually prove useful in understanding loadings and deformations on low AR wings 

with possible application to future flapping-wing MAV’s if certain quasi-static 

assumptions are applied.  

The thesis is organized as follows. In chapter 2, we discuss the theory used in the 

study. We will also discuss here, details of the experimental set-up for pressure and the 

lift measurements. In chapter 3 we discuss the results obtained during the experiments. 

This includes discussion of the pressure distributions over the wing at various Reynolds 

numbers and angles of attacks, local lift and lift coefficient distributions, lift curve slopes 

at various Reynolds numbers and the span efficiency factor at various Reynolds numbers 

and angles of attacks. In chapter 4 we describe the conclusions made on the basis of 

results obtained during this research. Chapter 5 describes the future work that needs to 

done to further understand the low Reynolds number flow regime.  

 

                                                                           9  



2. Methods 

              In this chapter we first review the aerodynamic theory used in the present study. 

The focus is mainly on the pressure distribution over an airfoil, finite wing theory, 

Prandtl’s lifting line theory, which leads to discussion of induced drag and span 

efficiency factor. We then discuss the experimental set up for the two types of 

experiments carried out, pressure measurements and force balance measurements. 

Fabrication of the model wing, pressure measurement set-up and instrumentation issues 

are then discussed. This chapter also discusses issues related to experimental error such 

as velocity variations in the test section and pressure tubing out-gassing. A brief summary 

of the experimental procedure is discussed at the end of this chapter. 

2.1   Theory behind the analysis 

         Application of momentum conservation laws shows that the forces and moments on 

an airfoil or a wing are due to two sources: 

1. Pressure Distribution on the surface of the body. 

2. Shear stress distribution over the surface of the body. 

The pressure forces act normal to the surface of the airfoil whereas the shear stress acts 

tangential to the surface of the airfoil. The integration of these two distributions over the 

surface of the airfoil yields a resultant force and a moment. This resultant force can be 

divided into two components, one perpendicular to the chord line, the normal force (N) 

and other parallel to the chord line, the axial force (A). The relation between these forces 

and the pressure and stress distribution in terms of non-dimensional coefficients is given 

as: 
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The suffixes u and l indicate the upper and lower surface respectively. 

The pressure coefficient and the shear stress coefficients are given as: 

                                                             
∞

∞−
=

q
PP

pC                                                         (4) 

                                                           
∞

=
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The resultant force can be split up into two other components, Lift (L) which is in the 

direction perpendicular to the flow direction and drag (D) in the direction of the free 

stream velocity. The geometric angle of attack (α) for the airfoil is the angle made by the 

chord line with the flow direction. These various components of the resultant force are 

related by: 

                                                   αα sincos ANL −=                                                      (6) 

                                                  αα cossin AND +=                                                      (7) 

This leads us to the following non-dimensional coefficients.  

                                                    αα sincos anl ccc −=                                                   (8) 

                                                   αα cossin and ccc +=                                                   (9) 

For small angles of attack the lift coefficient can be approximated as equal to the normal 

coefficient. So from equation (2) and (8) we have 
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This is only if ca << cn, e.g. viscous shear stresses are considered negligible. The average 

value of ca based on a laminar flow assumption was of the order of 1-2% of cn in the 

Reynolds number range under consideration in this study. Hence neglecting the viscous 

shear stress has an insignificant effect on the lift coefficient. This equation shows that if 

the pressure distribution on the surface of the airfoil is measured the lift coefficient can 

be determined. The observations made in the thesis are based on this assumption.  

                       The parameter cl is a local (or two-dimensional) lift coefficient, which may 

vary along the span of the airfoil so that cl (z). To obtain this lift distribution, pressure 

measurements were carried out at various spanwise locations on an airfoil. Measurements 

were made with 22 different pressure ports with one port at the leading edge, 11 on the 

upper surface and 10 on the lower surface of the airfoil. 

                   Figure 2.4 gives the numbering scheme for the pressure ports. The 

construction of the airfoil and the details about these pressure ports will be discussed in 

Section 2.6.  The reference pressure for these pressure measurements was the static 

pressure in the wind tunnel. The dynamic pressure was measured using the same pressure 

transducer (explained in Section 2.8). Using equation (4) and the pressures recorded, 

pressure coefficients at various chord wise locations were obtained. Using a modified 

version of equation (8) the local lift coefficients were calculated. The equation used is 

based on a normalized chord length and given as follows: 

                                              ( )
1

0

( ) cosl pl pu
xC d
c

c C α
 

= −
 
∫                                         (11)  

The set up allowed pressure measurements at various spanwise locations leading to 

measurement of lift coefficients at those different locations, i.e. the spanwise lift 

coefficient distribution. 
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The spanwise lift coefficients can be converted to a local lift distribution using the 

relation: 

                                                         21'
2 lL Vρ∞ ∞= cc                                                    (12) 

where L’ is the lift per unit span. 

The Kutta-Joukowski relates the circulation and the lift generated as follows: 

                                                             
∞∞

=Γ
V

L
ρ

'                                                           (13) 

It is well known that a general circulation distribution along any arbitrary finite wing can 

be approximated using a Fourier Sine series as follows: 

                                                  
1

( ) 2 sin
N

nbV A nθ θ∞ ∑Γ =                                               (14) 

Here θ is a transformation variable given by 

                                                       





−= −

b
z2cos 1θ                                                       (15) 

with 0 ≤ θ ≤ π . 

This acts as a new transformed co-ordinate system that is used to build up the circulation 

distribution Г (θ). The coefficients An’s are the Fourier coefficients. By applying 

equations (11) - (15) to our pressure measurements, we can obtain the circulation 

distribution in equation (14) at various spanwise locations along the transformed co-

ordinates. Then the An’s are the only unknowns in the equation (14). Depending on the 

number of θ co-ordinates used, say N, we will have N independent equations and N 

unknowns. So equation (14) becomes a system of linear equations to be solved for those 

N unknowns.  
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                    The Fourier coefficients are determined from the circulation distribution 

obtained through pressure measurements. The total lift coefficient can be obtained from 

the local lift coefficient distribution as: 

                                                      C                                                         (16) 
/ 2

/ 2

( )
b

L l
b

c z
−

= ∫ dz

This total lift coefficient is also based on the leading coefficient A1 of An. The relation is 

given as: 

                                                             C ARAL π1=                                                        (17) 

Further the induced drag produced on the wing is also a function of these Fourier 

coefficients and is given as  
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1, 1πC                                              (18) 

This can be further modified using equation (17) to give: 

                                                         
eAR
CL

Di π

2

=C                                                            (19) 

The coefficient ‘e’ in this equation is known as the span efficiency factor, which was 

introduced earlier in section 1. This factor ‘e’ is hence given as 
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1e                                                  (20) 

The span efficiency factor is a measure of the induced drag, as the span efficiency factor 

decreases the induced drag increases. The span efficiency factor e = 1 for an elliptic lift 

distribution. For a general lift distribution this number is lower. Prandtl’s lifting line 

theory applied to rectangular wings with AR → 0 gives an elliptic lift distribution. This 
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results in a span efficiency factor very close to 1 (e = 0.9969). These equations form the 

basis of the assumptions made in this research. 

 Further more the lift curve slope for an elliptic wing is also based on the Fourier 

coefficients. This is given as: 

                                                 0

01
L adC a ad

AR
α

π

= =
+

⋅

                                                      (21) 

where a = lift curve slope for a elliptic planform wing 

         a0 = lift curve slope for a 2-D airfoil = 2*π 

This equation gets modified for a finite wing with rectangular planform as follows: 

                                                   0

01 (1

a
a
AR

)
a

τ
π

=
+ ⋅ +

⋅

                                                   (22) 

The additional term τ is a function of the first coefficient of the Fourier sine series A1 and 

is related through 

                                         
0 0 1

4 4(1 ) ( )
4

AR AR
a a A

α πτ ⋅ ⋅ ⋅
+ = ⋅ −

⋅
                                              (23) 

where α = angle of attack under consideration.  

Hence by determining the leading term of the Fourier coefficients A1 the lift curve slope 

for a wing with rectangular planform can be determined. For an elliptic wing with AR = 

1, a = (2*π/3).  

The fundamental equation of Prandtl’s lifting line theory, which gives the relation 

between the geometric angle of attack, the induced angle of attack and the effective angle 

of attack, is as follows: 
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where α = geometric angle of attack. 

This equation was used to calculate the lift distribution for a rectangular wing with 

varying aspect ratios. This issue is discussed later in Section 3. Equations (1)-(22) and 

(24) are from Anderson [25] and equation (23) from Glauert [26]. 

               Analysis required for the experiments was carried out using MATLAB 

software. The equations (11) - (23) formed the basic framework of all this analysis. 

Typically, built-in solvers and programs from MATLAB were used to avoid uncertainties 

in programming. The MATLAB codes are attached in Appendix B.  

2.2 Experimental set up 

2.2.1 Wind tunnel 

                 Measurements were performed in WPI’s closed circuit wind tunnel. This is a 

low speed re-circulating wind tunnel with a contraction ratio of 6:1 with test section 

dimensions 61 cm (width) x 61(height) cm x 240(length) cm. The free stream velocity in 

the test section can be varied from 1 m/s to 55 m/s. This corresponds to a Reynolds 

number of 1.2 ×104 to 6.2 × 105. The free stream velocity was determined by measuring 

the dynamic pressure in the wind tunnel using a pressure transducer, explained later in 

section 2.2.2. 

The turbulence intensity in the wind tunnel is about 0.8 % in the range of velocities 

considered for the measurement. The free stream turbulence measurements are from Popp 

[22]. The wind tunnel is equipped with a copper tubing water-cooled heat exchanger. The 
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temperature of the air inside the wind tunnel was maintained at 73o F for all the 

measurements to avoid inaccuracies due to temperature variations. 

2.2.2 Pressure Transducer 

                A Setra Make C264, ± 0.1 inches of water bidirectional pressure transducer was 

used for all the measurements. The transducer was connected to a Setra make Datum 

2001 display, which displayed the pressure in inches of water. It had an accuracy of ± 

0.25 % FS or 0.0005 in of Water. The transducer calibration was verified against an 

inclined manometer in the 0.1” range.   

2.2.3. Wing Model 

             All tests were carried out on a blunt-end rectangular wing with AR = 1 with a 

NACA 0012 airfoil shape. A NACA 0012 shape was chosen because substantial 

information exists on its aerodynamic performance at high Reynolds numbers. The 12% 

thickness of the airfoil also facilitated the internal pressure tubing. Future study should 

extend the present work to other optimized airfoil shapes at these lower Reynolds 

numbers. The span and chord of the wing were both 20.32 cm in length. The wing was 

fabricated in the WPI HAAS CNC facility out of PVC plastic. The accuracy of the 

manufacturing was maintained at about ± .00127 cm (± 0.005”). The wing was built in 

1.27 cm thick sections each with identical airfoil sections. The final wing consisted of 14 

of these 1.27 cm thick sections and a 2.54 cm central section (Fig.2.1).  

                     The wing was constructed in sections to achieve the purpose of measuring 

local pressure distributions along the span of the wing. These sections were assembled 

together with a ¼“ threaded rod with nuts on both the ends to tightly hold all the sections 
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and the central section together. Two 1/8” guiding dowell pins on each section aligned 

each section with the one next to it.  

                    Twenty-two surface pressure taps, each 0.1 cm in diameter, were drilled on 

one of the sections (hereafter, referred to as the pressure section). The data points in Fig. 

2.3 show the locations of the pressure taps along the chord line on the pressure section. 

One of these ports was at the leading edge, 11 ports were on the upper surface and 10 

were on the lower surface. Fig. 2.4 explains the numbering scheme for the ports on the 

pressure section. The positions 1-7 shown in (Fig.2.2) indicate various spanwise locations 

of the pressure section used to measure the local pressure distributions. Table 2.1 presents 

the spanwise distances of these positions from the wing tip. It was assumed that the 

measured spanwise pressure distributions and resulting lift distributions are symmetric 

about the wing centerline located at the central span section. Therefore pressure 

distributions were measured over half of the wing span only. 

               The schematic for the overall experimental set-up is shown in Fig. 2.5.  Internal 

holes, 0.1 cm in diameter, were drilled through the remaining 6 sections. Tygon tubing 

passed through these holes carried the pressure information from the pressure taps to the 

central section. The tygon tubing eliminated the possibility of any leakage between wing 

sections. Tygon tubing used was of 0.1 cm ID and 0.3175 cm in OD. The tubing passed 

out of the central section through an opening on the lower surface, and then was guided 

along the sting balance out of the wind tunnel. Care was taken to ensure the effect of tube 

bundle on the flowfield around the wing was minimized. The 22 tubes were connected to 

the pressure transducer through a pressure tube selector mechanism. Only one tube at a 

time would connect to the transducer.  
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Fig. 2.1 Exploded view of the low aspect ratio wing (NACA 0012) 

 

 

Fig. 2.2. Numbering scheme for various spanwise positions. 
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Position Normalized spanwise 
location 

1 0.9375 
2 0.8125 
3 0.6875 
4 0.5625 
5 0.4375 
6 0.3125 
7 0.1875 

                                   

Table 2.1: Spanwise distances from the wing tip for pressure section 

 

 

 

Fig. 2.3. Location of ports on the Pressure section (All dimensions in inches) 
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Fig. 2.4. Numbering scheme for the ports. 

Port 
Number

x/c 
Location

Port 
Number

x/c 
Location

1 0 12 0.9225 
2 0.0525 13 0.0525 
3 0.1125 14 0.1125 
4 0.1725 15 0.1725 
5 0.2325 16 0.2325 
6 0.3525 17 0.3525 
7 0.4375 18 0.4375 
8 0.5925 19 0.5925 
9 0.7125 20 0.7125 
10 0.7725 21 0.8025 
11 0.8325 22 0.8625 

 

Table 2.2: Chordwise locations of ports as percent chord (x/c) 
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Fig. 2.5 Experimental set-up (schematic) 
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2.2.4 Sting balance / Angle of attack control mechanism  

              A commercial sting arm support from Aerolab Inc. was used to mount the wing 

in the wind tunnel. This set-up has an in-built mechanism to adjust the angle of attack. 

The angle of attack was varied between range of 0o ≤ α ≤ 18o for the experiments. The 

error on the angle of attack measurement is ± 0.05o. 

2.2.5 Lift measurement set-up using force balance 

A second set of experiments was carried out in the same wind tunnel described 

earlier. This set of experiments consisted of lift measurements on a wing made of foam 

with AR =1 and c = 0.2032 m, with a NACA 0012 airfoil shape. The wing model used 

for pressure measurements could not be used for these experiments because of the load 

range of the force balance used for the measurements. Care was taken to smoothen the 

surface of the airfoil by applying a smooth adhesive Mono-kote surface on the foam 

wing. The wing was fabricated using a hot wire with the HASS machined airfoil sections 

(same as used in pressure measurements) as templates. 

The set up consisted of a sting support mounted on a weighing balance, Acculab 

Model C2400, with a range of 0-2400 g. The weighing balance has an accuracy of ± 0.1 

g. The wing was mounted on the sting arm that has a provision for adjusting the angle of 

attack. The angles of attack were measured using a digital readout protractor. This angle-

measuring device has an accuracy of ± 0.1o.  

 The repeatability of the set-up was found to be very good with no drift. The 

calibration slope has an error of about 2%, which was confirmed using calibration 

weights. The measurements recorded are adjusted for this error. All measurements were 
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carried out at a temperature of 73o F to be consistent with the tests carried out during the 

pressure measurements and to avoid inaccuracies due to temperature variations. 

2.3 Tygon tube out-gassing issue 

          Tygon tubing used for high-resolution pressure measurements can introduce errors 

in the measurements due to out-gassing issues. (Cimbala et.al. [23]). They observed while 

measuring pressures at low Reynolds numbers that the new plastic Tygon tubing out-

gassed the gas trapped in during the manufacturing process. This apparently increased the 

density of the air inside the pressure tubing by about 25%. Although no confirmation of 

the presence of out-gassing was made in our study, there were certain inherent 

characteristics of our set-up, which would have reduced the effect of out-gassing. 

Cimbala et.al. [23] suggest that using a brand new tube for local pressure measurement, 

and an older tube (or no tube at all), for reference pressure measurements, induces the 

error. Our reference, as well as the measured pressures, were connected to the transducer 

with similar tubing which should nullify the effect of this out-gassing.  

 Another issue Cimbala et.al. [23] discuss is that with change in position of the 

transducer with respect to the position of the reference pressure port (height difference 

change) their pressure reading changes. This occurs only if out-gassing in the tubes is an 

issue. The reason behind this in their case was that they were measuring pressures with 

reference to the atmospheric pressure with substantial height difference between the 

measured and reference port locations. We have confirmed that our pressure readings do 

not change with change in height (location) of the pressure transducer thus showing any 

out-gassing effects are negligible. In our case the reference pressure port (pitot-static 
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probe) and measurement port (wing surface) are at essentially the same elevation inside 

the wind tunnel, thereby minimizing the effect. 

2.4 Velocity Distribution across wind tunnel 

                  Measurements were carried out to verify the variation of velocity (dynamic 

pressure) across the axes of the wind tunnel test section. The dynamic pressure 

measurements were carried out at a speed of around 3.65 m/s, yielding a Reynolds 

number of about Re = 50000. The measured data is shown in Figure 2.6. As seen from 

this figure, the velocity distribution remains fairly constant over about 70% of the test 

section on both sides of the origin. The model wing spanned only the central 30% section 

of the wind tunnel. This confirms the presence of constant velocity over the model wing 

in the region where experiments were carried out in the wind tunnel test section.  

The variation of velocity at the walls can be associated with the boundary layer 

developed on the wall. Assuming a laminar boundary layer, we have the thickness of the 

boundary layer, δ given as,  

5
Rex

xδ = ⋅
 

where x = distance at which the boundary layer thickness is measured = 45 cm from the 

test section inlet and Re = Reynolds number based on this length = 109415.  

(x and Re are based on the position where velocity measurements were carried out). 

This gives a boundary layer thickness of δ = 0.2678 in, which is of the order of distance 

from the test section walls where a large variation in speed is observed. So this velocity 

variation can be attributed to the boundary layer development on the test section walls. 

For a turbulent boundary layer, boundary layer thickness will be smaller.  
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(c) 

Fig. 2.6 Velocity Distribution across wind tunnel  
(a.) Axes terminology, (b.) Y-axis distribution (c.) X-axis distribution 

(Data for x-axes plotted for ‘Y≥- 9’ due to limitations in set-up) 
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2.5 Experimental Procedure  

                 After setting the wing at the desired angle of attack, the wind tunnel was set to 

the desired free stream velocity. Measurements were then taken for all 22 ports. This was 

repeated for the remaining angle of attacks and Reynolds numbers for that particular 

spanwise location before moving the pressure section to a new spanwise location. This 

was done because the relocation of the pressure section was the major time consuming 

part of the experiments. To confirm that this procedure led to repeatable measurements, a 

second set of experiments was carried out at a fixed angle of attack and fixed Reynolds 

number, with the pressure section moved sequentially to the various spanwise locations. 

Identical results were obtained for both methods of data collection. The earlier mentioned 

method led to the most efficient scheme of data collection.             

Measurements were carried out with the temperature of the free stream flow 

maintained at 73o F using a water cooled heat exchanger in-built in the wind tunnel. The 

experimental matrix in Table 2.3 presents angles of attacks and Reynolds number 

combinations at which the measurements were carried out. 

 

Velocity Reynolds 
Number 

Angle of attack, 
α 

(m/s)   (degrees) 
2.23 30218 0,6,15 
2.66 35966 0,6,15 
3.22 43615 0,3,6,9,12,15,18 
3.65 49345 0,6,15 
6.21 84122 3,6,9,12,15,18 

Table 2.3. Experimental Matrix 

 

 

                                                                           27  



2.6 Error analysis 

     The accuracy of the pressure transducer used introduces an error in the measurements. 

This accuracy, as informed by the manufacturer is 0.25% FS (0.0005 in of water). We 

have used the Root sum of squares method for the error analysis. The maximum error 

was found for the data at Re=30218 where the dynamic pressure (q) values were lowest, 

resulting in higher error in the pressures measured. This maximum error in the pressure 

coefficients was found to be of the order of ± 3.5%. Error bar will be presented on later 

pressure coefficient curves in the Results section. This results in an error in the calculated 

local lift coefficient on the order of ±1%. Error in the total lift coefficient obtained from 

the pressure measurements was about ±1.2%. Errors in other readings were found to be 

lower than these. The error on the angle of attack measurement for the pressure 

measurement set up is ± 0.05o. The error in angle of attack measurements for the lift 

measurements using force balance is ± 0.1o. Sample error calculations for pressure 

coefficients and the local lift coefficient are shown in Appendix D. 
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3. Results 

This section will describe the various results obtained in this research. This section 

will also include the discussion of these results. The result section will consist of pressure 

coefficient distributions for various Reynolds numbers and angles of attacks. The 

pressure coefficients are integrated to determine the local (spanwise) lift coefficients. 

This section will also discuss the lift curve slope at two Reynolds numbers and the span 

efficiency factor at various Reynolds numbers and angles of attacks. 

3.1 Local Pressure measurements 

         The pressure measurements were carried out for the complete experimental matrix 

described in Section 2.4. The results from these measurements are discussed in this 

section. Typical pressure distribution curves and plots are presented. 

        Fig 3.1 (a-g) shows the pressure coefficient curves for the upper (Cpu) and lower 

surface (Cpl) of the wing, plotted against the percent chord (x/c) for Re=35966 at α = 15o. 

Fig 3.2 presents the same plots for Re = 35966 at α = 6o. The Re = 35966 case is a 

moderate Re in the middle of our studied Reynolds numbers range. Fig 3.1 and 3.2 will 

serve as representative Cp distributions, in order to first discuss the overall features of 

other measured Cp distributions. Later we will present Cp distributions at other Re and α 

combinations needed to discuss additional observed phenomenon. Pressure distributions 

for complete experimental matrix are shown in appendix A. From equation 11 in Section 

2.1, the area between the upper and lower surface Cp curves is a measure of the lift 

coefficient. Figures 3.1 and 3.2 indicate that the lift coefficient varies along the span. The 

spanwise lift coefficient curves, based on these Cp plots are presented and discussed later 
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in this section. The pressure coefficient plots ‘a-g’ are plotted for pressure section at 

Positions 1-7 (explained earlier) respectively. 

 Three distinct types of pressure distributions can be observed in Fig. 3.1 by 

focusing on the upper surface. Near the wing tip (Fig. 3.1a) a low-pressure region (where 

Cp values decrease dramatically to larger negative values) appears to exist for 0.2 < x/c < 

0.4. In Fig. 3.1 b for Pos 2, this low-pressure region disappears. For the remaining Figs. 

3.1 c - 3.1 g nearer to the central span region the pressure coefficient values do not reach 

the large negative values around the mid-chord region as in the case of wing tip 

distributions. A separation region exists for all these positions characterized by a plateau 

in the pressure distribution for 0.15 < x/c < 0.2. The effect of the laminar separation 

bubble on the outer flow is to increase the velocity, resulting in this plateau shape of the 

pressure distribution [27]. We observe that the width of this plateau (separation region) 

remains fairly constant near the central span region for Figs. 3.1 c – 3.1 g, but is reduced 

in size near the wing tip in Fig. 3.1 b. The sudden decrease in the pressure coefficients 

(towards lower negative values) also suggests the presence of the separation bubble in the 

plateau region. This decrease in pressure can be associated with the increase in velocity at 

the separation bubble. 

Torres & Mueller [17] have observed separation regions in the same location in 

their flow visualization studies. Fig 3.3 shows a reproduction of their flow visualization 

for a wing with AR =1 at Re = 7×10 4. These plots clearly show the separation bubble for 

α = 5o, with no separation at the wing tips. The reader can refer to Fig. 31 from [17] for 

additional results. They suggest, “The tip vortices energize the flow and eliminate the 

presence of the separation bubble”. Our results seem to be consistent with their findings; 
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in our case the energized flow from the wing tip vortex eliminates the separation bubble, 

and creates a low-pressure region. Torres & Mueller have stressed that low pressure cells 

on the wing’s upper surface can be formed by the wingtip vortices at low AR, leading to 

the so-called ‘nonlinear lift’ which occurs in addition to the linear lift due to fluid 

circulation. 

 Figure 3.2 (a-g) shows similar pressure coefficient plots at the same Reynolds 

number and at α = 6o. Comparing Figure 3.1 and 3.2 we observe that the plateau region 

disappears for Figs. 3.2 c – 3.2 g. This indicates that the separation bubble is absent for 

lower angles of attack. A fairly constant Cp distribution can be observed for Figs 3.2 a – 

3.2 g in the region 0.2 < x/c < 0.8, indicating an attached laminar flow over the wing. 

This flow is further confirmed with the overall lower values of pressure coefficients in 

this region.  

Fig 3.4 shows the pressure distribution plots for Re = 30218 and α = 15o. Fig 3.5 

shows these plots at same Re and at α = 6o. This is the lowest Reynolds number at which 

measurements are carried out in this research. The velocity range of the wind tunnel 

limited the lowest Reynolds number reached. Fig 3.6 shows the pressure distribution 

plots for Re = 84122 and α = 15o. Fig 3.7 shows these plots at Re = 84122 and at α = 6o. 

This is the highest Reynolds number for which pressure measurements are carried out. 

The range of the pressure transducer limited this highest Reynolds number reached. 

Comparing the Cp distributions for Re = 35966 with those for Re = 30218 and Re = 

84122, we observe that the overall trend of the Cp plots remains the same. The 

magnitudes of the pressure coefficients are found to be different. A very wide plateau 

region can be observed in Fig 3.4 g as compared to other Cp plots for Pos 7 at α = 15o. .     
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Figs 3.8 and 3.9 show pressure distributions at Re = 49345 at α = 15o and α = 6o 

respectively. This is Reynolds number is a point of transition in the behavior of the flow 

over the low AR wings.  Earlier investigators have observed typical trends at this 

Reynolds number. The low-pressures for the upper surface in Fig. 3.7a and 3.8a are 

higher as compared to compared to those observed for other Reynolds numbers. This 

hints on some, yet unknown, but peculiar phenomenon occurring at this Reynolds 

number.  

Figs 3.4 a-g also show the error bars on the pressure coefficient plots. We present 

the error bars only for this Reynolds number to demonstrate the typical values of error 

involved in these measurements. As explained earlier the error analysis is based on RSS 

type uncertainty. The error involved in other Cp measurements is of the same order or 

lower than the error at this Reynolds number.  

Fig. 3.10 shows the pressure coefficient plots for a Reynolds number of 

Re=43615, to summarize the effect of variation of α on Cp distribution curves. Fig 3.10-a 

is plotted for the pressure section being at the tip (Pos 1), at different α values. It can be 

observed in Fig. 3.10-a that the upper surface pressure coefficients drastically change to 

higher negative values with increasing angle of attack. The pressure coefficients for α = 

18o are much higher (negative) than those seen for α = 3o. The wing tip vortices become 

stronger with increase in angle of attack and the flow is further energized. This leads to 

lower pressures at the wing tips and the resultant drop in pressure coefficients.   

Fig. 3.10-b shows the pressure coefficient plots for Pos 4,which is approximately 

quarter span length distance away from the wing tip. The gradually developing plateau 

region with increase in angle of attack for the upper surface curve can be clearly seen in 
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Fig 3.10b. The plateau region is absent for α = 3o, but a clearly developed plateau can be 

seen for α = 18o. Measurements at various angles of attack in this range show that the 

separation bubble gradually develops with increase in the angle of attack.  

Figs. 3.11a-3.12a plot the pressure coefficients at various Reynolds numbers at α 

= 6o and α = 15o respectively for Pos 1. Figs 3.11b – 3.12b plots the Cp distribution for 

the same Reynolds numbers and angles of attack for Pos 6. It can be observed from the 

Fig. 3.11 that the Cp’s, for both the upper surface and the lower surface, remained fairly 

constant for all the Reynolds numbers shown. No fixed trend is observed in the Cp 

distributions here. Fig 3.12a shows the changes in the low-pressure region with the 

Reynolds number. For Re = 49345 the upper surface pressure coefficients are higher as 

compared to those for Re = 30218 and Re = 84122. The low-pressure region for Pos 1 

and the plateau region for Pos 6 show the development of separation bubble separation 

bubble. Fig. 3.12 shows for Pos6 the trends for Cp distributions are fairly monotonic with 

lowest pressures reached decreasing with Reynolds numbers. The increase in pressure 

behind the separation bubble has a reversed trend with the pressure increase being 

inversely proportional to Reynolds number.      

Figs 3.13 a – 3.13 b show the pressure coefficient plots for Re = 30218 and Re = 

49345 at α = 0o. These figures illustrate that no lift is generated at zero angle of attack as 

is expected from a symmetric airfoil. The zero lift was also observed for other positions 

and other Reynolds numbers. The existence of zero lift also validates the pressure 

measurement set up and ensures the accuracy of the readings obtained for other angles of 

attack.   
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Fig. 3.1 Cp vs x/c plots for Re = 35966, α = 15o; (a) Pos 1, (b) Pos 2, (c) Pos 3, (d) Pos 4, 

(e) Pos 5, (f) Pos 6, (g) Pos 7. 
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Fig. 3.2 Cp vs x/c plots for Re = 35966, α = 6o; (a) Pos 1, (b) Pos 2, (c) Pos 3, (d) Pos 4, 

(e) Pos 5, (f) Pos 6, (g) Pos 7. 
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Fig. 3.4 Cp vs x/c plots for Re = 30218, α = 15o, with error bars; (a) Pos 1, (b) Pos 2, (c) 

Pos 3, (d) Pos 4, (e) Pos 5, (f) Pos 6, (g) Pos 7. 
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Fig. 3.5 Cp vs x/c plots for Re = 30218, α = 6o; (a) Pos 1, (b) Pos 2, (c) Pos 3, (d) Pos 4, 

(e) Pos 5, (f) Pos 6, (g) Pos 7. 
 

 

                                                                           38  



x/c ( Percent chord )

0.0 0.2 0.4 0.6 0.8 1.0

C
p(

Pr
es

su
re

 C
oe

ffi
ci

en
t)

-1.4

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Upper Surface
Lower Surface

                           x/c ( Percent chord )

0.0 0.2 0.4 0.6 0.8 1.0

C
p(

Pr
es

su
re

 C
oe

ffi
ci

en
t)

-1.4

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

 

(a) (b) 

 

x/c ( Percent chord )

0.0 0.2 0.4 0.6 0.8 1.0

C
p(

Pr
es

su
re

 C
oe

ffi
ci

en
t)

-1.4

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

                           x/c ( Percent chord )

0.0 0.2 0.4 0.6 0.8 1.0

C
p(

Pr
es

su
re

 C
oe

ffi
ci

en
t)

-1.4

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

 

(c) (d) 

 

 x/c ( Percent chord )

0.0 0.2 0.4 0.6 0.8 1.0

C
p(

Pr
es

su
re

 C
oe

ffi
ci

en
t)

-1.4

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

                         x/c ( Percent chord )

0.0 0.2 0.4 0.6 0.8 1.0

C
p(

Pr
es

su
re

 C
oe

ffi
ci

en
t)

-1.4

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

 

(e) (f) 

 

x/c ( Percent chord )

0.0 0.2 0.4 0.6 0.8 1.0

C
p(

Pr
es

su
re

 C
oe

ffi
ci

en
t)

-1.4

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

 

(g) 

 
Fig. 3.6 Cp vs x/c plots for Re = 84122, α = 15o; (a) Pos 1, (b) Pos 2, (c) Pos 3, (d) Pos 4, 

(e) Pos 5, (f) Pos 6, (g) Pos 7. 
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Fig. 3.7 Cp vs x/c plots for Re = 84122, α = 6o; (a) Pos 1, (b) Pos 2, (c) Pos 3, (d) Pos 4, 

(e) Pos 5, (f) Pos 6, (g) Pos 7. 
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Fig. 3.8 Cp vs x/c plots for Re = 49345, α = 15o; (a) Pos 1, (b) Pos 2, (c) Pos 3, (d) Pos 4, 

(e) Pos 5, (f) Pos 6, (g) Pos 7. 
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Fig. 3.9 Cp vs x/c plots for Re = 49345, α = 6o; (a) Pos 1, (b) Pos 2, (c) Pos 3, (d) Pos 4, 
(e) Pos 5, (f) Pos 6, (g) Pos 7. 
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(b)

Fig. 3.10 Effect of variation of α on Cp distribution for Re = 43615; (a) Pos 1 (b) Pos 4 
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(b) 

Fig. 3.11 Effect of variation of Re on Cp distribution for α = 6o; (a) Pos 1 (b) Pos 6 
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(b) 

Fig. 3.12 Effect of variation of Re on Cp distribution for α = 15o; (a) Pos 1 (b) Pos 6 
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(b)

Figure 3.13 Cp vs x/c plots at α = 0o for Pos 1; (a) Re = 30218, (b) Re = 49345 
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3.2 Spanwise Lift Distributions  

Integration of the area under pressure coefficient curves such as those presented in 

the last section yields local lift coefficient values. Figures 3.14 and 3.15 show the local 

lift coefficient distributions for 3×104 ≥ Re ≥ 8.5× 104 at α = 15o and 6o respectively. The 

variations in area under the pressure coefficients curve yield varying spanwise lift 

coefficients. Although the local lift coefficients appear to be in the same range for all the 

Reynolds number at a given spanwise location, the total lift generated increases with 

increase in Reynolds number. Comparing Fig 3.14 with Fig 3.15 we observe that there is 

an increase in the magnitude of the local lift coefficient at a given spanwise location for 

the two angles of attack resulting in increase in lift at higher angle of attack.  

The most striking feature of Fig 3.14 and 3.15 is the presence of a peaked lift 

region near the wing tip at z/(b/2) ≈ 0.9. The low-pressure region in the Cp curves (see 

Fig. 3.1), results in a large increase in area under the Cp vs x/c curve compared to the 

other positions. This results in a dramatic increase (peak) in the lift coefficient near the 

wing tip. Although it varies in magnitude, this peak can be observed for all the Reynolds 

numbers and for both angles of attacks presented here. This peak is less prominent at α = 

6o except for Re = 84122 case. No fixed trend was found for the nature of this peak, but at 

α = 15o and at the critical Reynolds number of Re = 49345 there is a drop in this peak. 

The location of the peak is at approximately z/(b/2) = 0.9 over our measured range of Re. 

This corresponds to the wingtip vortex core location measured by Desabrais and Johari 

[20] on a rectangular NACA 0012 wing at Re = 6.8×104. Table 1 from [20] lists the 

locations of vortex core from their study. Fig 3.16 shows the approximate location of the 

wing tip vortex core on a wing. We surmise that the high velocity core region induces the 
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low-pressure region on the upper surface near the wingtip. Although no actual 

measurements were taken, a data point at the wing root has been added in all cl vs z/(b/2) 

plots, assuming a linear trend beyond measurement for Pos 7. This was necessary to 

calculate the total lift coefficient for the wing. 

Figs 3.17 a- 3.17c and 3.18 a- 3.18c show the comparison of the measured lift 

distributions with an elliptical lift distribution. It can be clearly observed that the 

measured lift distributions are deviating significantly from an elliptic lift distribution. 

This deviation from the elliptic distribution affects the total lift generated and the induced 

drag on the wing. These issues will be discussed in further details later in this section. 

The elliptical lift distribution is determined by keeping the area under the lift coefficient 

curve the same as that obtained for the measured lift distribution, since comparison of lift 

distributions with same amount of generated lift is appropriate. Although the elliptical lift 

distribution is obtained on a wing with elliptical planform and the wing used for the 

experiments in this thesis is a rectangular wing, the comparison was made since an 

elliptic lift distribution ensures minimum induced drag.  For an optimum MAV 

performance the desired lift distribution would be elliptic, hence comparison of the 

measured lift distribution with this ideal lift distribution will further help in understanding 

the design of the wing planform shape.  

Furthermore we carried out tests using equation (24), the fundamental equation of 

finite wing theory, to determine the lift distribution for a rectangular wing with a given 

aspect ratio. Fig. 3.19 shows the results obtained. As can be clearly seen from the Figure 

as the AR increases the lift distribution becomes more and more rectangular. At AR = 1 

the lift distribution is nearly elliptical. Schlichting, H [11] shows that as AR approaches 
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zero the lift distribution becomes elliptic. Fig 3.19 demonstrates this fact. Hence the 

comparison of the measured lift distribution with an elliptic lift distribution becomes a 

close approximation to comparing the measured lift distributions with a lift distribution 

for a rectangular wing with AR = 1. 

Comparing all the plots in Figs 3.17 and 3.18 we observe that the measured lift 

distribution clearly deviates from the elliptic lift distribution. This results in a 

deterioration of the wing performance. The value of span efficiency factor discussed 

earlier in Section 2.1 reduces to a value lower than 1. Other investigations (Torres and 

Mueller [17] etc) have observed dramatic reduction in the wing performance, e.g. low ‘e’ 

values and high induced drag for low AR wings in this Reynolds number range. This 

issue will be addressed in detail later in this section. 

 It can be clearly seen from all these figures that the lift distribution differs 

drastically from the elliptic distribution at the peak near the wing tip. On rest of the wing, 

near the central span region, the lift distribution is fairly close to desired. We surmise that 

this peak could be a major factor for the dramatic increase in induced drag on low AR 

wings. Comparing Figs 3.17a-b and 3.18a-b we observe that at lower angle of attack of α 

= 6o, the deviation from the elliptic distribution is less than that for α = 15o.  

 Fig 3.20 shows variation of lift coefficients at two different Reynolds numbers 

with varying angles of attack. We observe a monotonic trend for both the Reynolds 

numbers. The magnitude of local lift coefficients increases with increasing angle of 

attack indicating increase in overall lift. The peaked lift region near the wing tip exists for 

almost all the angles of attack for both the Reynolds numbers, but the sharpness of the 

peak tends to increase with increasing angle of attack. Fig 3.21 shows the typical error 
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bars for the local lift distribution curves for Re = 30218 at α = 15o. This was calculated 

based on the error involved in the Cp measurements discussed earlier. The error involved 

in these calculations is small, hence the presence of peaked lift near the tip can be 

concluded to be an actual peak and not an effect of error involved in the Cp 

measurements. 
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Figure 3.14 Local lift coefficient distribution for various Reynolds numbers at α = 15o, 
Spline curve fits through the data are shown. 
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Figure 3.17 Local lift distribution at α = 15o; (a) Re = 30218, (b) Re = 49345, 
(c) Re = 84122 
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Figure 3.18 Local lift distribution at α = 6o; (a) Re = 30218, (b) Re = 49345, 
(c) Re = 84122 

                                                                           55  



 

 

 

z/(b/2)

0.0 0.2 0.4 0.6 0.8 1.0 1.2

L'
/L

' o (
N

or
m

al
is

ed
 L

ift
 p

er
 u

ni
t s

pa
n)

 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1
AR=1
AR=2
AR=4
AR=6
AR=8
AR=10
AR=12

 

Fig. 3.19 Normalized lift distributions for Rectangular wings with varying AR. 
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Figure 3.20 Local lift coefficient distribution for various angles of attacks, (a) Re = 
43615, (b) Re = 84122   
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Figure 3.21 Local lift coefficient distribution for Re = 30218 at α = 15o, with error bars. 
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3.3 Fourier Coefficients 

The Fourier coefficients introduced earlier in section 2.1 are important parameters for 

aerodynamic analysis. The span efficiency factor, which relates the induced drag with the 

lift on a wing, and the lift curve slope for a wing, both are a function of these Fourier 

coefficients. Applying the equations (11)-(15) in the Section 2.1 to the measured local lift 

coefficient data the Fourier coefficients were determined for full set of measurements.  

            ( )
1

0

( ) cosl pl pu
xc C C d
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 

= −
 
∫                                         (11)  

                                                         )(
2
1' 2

lccVL ∞∞= ρ                                                    (12) 

                                                             
∞∞

=Γ
V

L
ρ

'                                                           (13) 

                                                                                                (14) ∑∞=Γ
N

n nAbV
1

sin2)( θθ

                                                       
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



−= −

b
z2cos 1θ                                                       (15) 

The equations are repeated here for the convenience. The Fourier coefficients are used to 

calculate the span efficiency factor and the lift curve slope from our pressure 

measurement for a rectangular wing, discussed in the next sections in details.  

Equation (14) is solved as a system of simultaneous equations with ‘N’ 

unknowns, the unknown Fourier coefficients. The data for the spanwise lift distributions 

is known at only 7 locations along the span. To solve this system of linear equations we 

have plotted a spine fit curve through the measured data to determine local lifts at other 

intermediate locations. To solve equation (14), selective lift coefficient values locations 

along the span are used depending on the number of coefficients to be determined. 
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Glauert [26] suggests that the number of coefficients or the simultaneous equations 

considered depends on the accuracy of the solution expected. After a certain number of 

Fourier coefficients the value of successive coefficients decreases sharply in magnitude 

and small number of coefficients can fairly approximate the distribution. The analyses is 

based on this assumption and to analyze the number of coefficients to be considered, a 

test was carried out for the data at Re = 43615, α=15o. The value of the span efficiency 

factor was calculated for varying number of coefficients using equation (20).  
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Fig 3.22a shows the change in calculated span efficiency factor with increase in 

the number of Fourier coefficients used for analysis. It can be clearly seen from this 

figure that the value of span efficiency factor remains fairly constant beyond N = 10. All 

the results described in the Section 3.4 and 3.5 are based on N = 40.    

Fig 3.22b shows a plot of an assumed circulation distribution. This distribution is 

an artificial distribution obtained using pre-selected Fourier coefficients. Note that the 

artificial distribution was selected so that a peak occurred near the z((b/2) ~ 1 similar to 

our measured lift distribution. The above-mentioned technique was used to determine the 

Fourier coefficients from this artificial distribution. The calculated results matched 

exactly with the expected results, thus confirming the validity of the procedure used for 

determining the Fourier coefficients. The procedure for calculating the span efficiency 

factor was applied for the elliptic lift distribution mentioned in Section 3.2. This was 

done to confirm as well establish the method used to calculate the span efficiency factors. 

As expected the span efficiency factor for the elliptical lift distribution was obtained to be 

                                                                           60  



1 for all the Reynolds numbers. This ensured that the approach used for analysis of the 

lift distribution data to determine the Fourier coefficients was correct. An values for Re = 

43615 and Re = 84122 at various angles of attack are shown in Appendix C. 
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Figure 3.22  (a) Span efficiency factor vs No. of coefficients used for analysis. 
 (b) Fourier coefficient calculation analysis confirmation plot  
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3.4 Span efficiency factor 

 Fig 3.23 shows the span efficiency factor plotted for various Reynolds 

numbers. As explained earlier in Section 2.1 the span efficiency can be calculated based 

on the measured lift distribution. The span efficiency factor is important for aerodynamic 

analysis because it affects the induced drag generated on the wing. The span efficiency 

factor is related with the induced drag through equation (20). The higher the span 

efficiency factor, the lower the induced drag.  

  The measured lift distribution was used to determine the Fourier coefficients for 

various Reynolds numbers at α = 6o and α = 15o. These Fourier coefficients were used to 

calculate the span efficiency factor through equation (20) as: 
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  We observe in Fig 3.23 that for both the angles of attack the span efficiency factor 

remains fairly constant for Re < 45000. For Re ≈ 45000 the span efficiency factor 

suddenly increases for α = 15o. This can be associated with the reduction in peaked lift 

region in Fig 3.17 b. Comparing Figs 3.17-3.18 with the span efficiency factors obtained 

in Fig 3.23 we observe that as the deviation from the elliptic lift distribution increases the 

value of span efficiency factor reduces. The value of span efficiency factor for Re = 

30218 and Re = 84122 are roughly same for α = 15o, but is higher for Re = 49345. 

Comparing this with Fig 3.17 we observe that the lift distributions for Fig 3.17a and Fig 

3.17 c are similar, with more deviation from the elliptic curve than in Fig 3.17 b. This 

results in the variation in span efficiency factor demonstrated in Fig 3.23. This can be 

also observed for α = 6o by comparing this with Figs 3.18 a-c. The span efficiency factor 
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is higher for Re = 49345 where the measured lift distributions are fairly close to the 

elliptic lift distribution. The further reduction in span efficiency factor for Re = 84122 at 

both the angles of attack in Fig 3.23 can be associated with large deviation from the 

elliptic distribution in Fig 3.17c and Fig 3.18c.  

 It can be seen in Fig 3.23 that value of the span efficiency ‘e’ roughly lies in the 

range of 0.6 < e < 0.95. Torres and Mueller [17] have observed that the span efficiency 

factor for small aspect ratio wings is approximately 0.6-0.7. They have carried out tests 

for AR = 0.5, 1 and 2 wings with various planform shapes at two Re’s, Re = 7×104 and 

Re = 10×104. All the models used by them were thin flat-plates. Our experimental results 

are found to be consistent with their results in the range of Reynolds numbers common 

between the two studies.     

 Fig 3.24 demonstrates the span efficiency factor for two Reynolds numbers at 

various angles of attack. It is observed that the span efficiency factor remains fairly 

constant for all angles of attack for Re = 84122. The dramatic drop in span efficiency 

factor for α = 3o at Re = 43615 is due to a severely wavy (scalloped) lift distribution (see 

Fig 3.25). This distribution causes the lift distribution to deviate enormously from the 

elliptic lift distribution and the sudden drop in span efficiency factor occurs. The physical 

reasons for this ‘waviness’ of the lift distribution in Fig 3.25 are not understood at present 

and require further study. As seen in Fig 3.25b the measured lift distribution is fairly 

close to the elliptic distribution, which results in increase in the span efficiency factor in 

Fig 3.24 to near e = 1 at α = 3o. The lift peak near the wing tip is also less prominent for 

this Reynolds number-angle of attack combination. 

 

                                                                           64  



 

 

 

 

Reynolds Number, Re

20000 30000 40000 50000 60000 70000 80000 90000

S
pa

n 
E

ffi
ci

en
cy

 F
ac

to
r ,

e

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

α = 6o

α = 15o

 

 Figure 3.23 Variation of span efficiency factor with Reynolds number 
e = 1 for elliptic wing 

e = 0.9969 for AR =1 rectangular wing 
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Figure 3.24 Variation of span efficiency factor with angle of attack 
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Fig 3.25 Spanwise lift distribution for Re = 43615; (a) α = 3o, (b) α = 6o 
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3.5 Lift coefficient curve vs angle of attack 

Figs. 3.26 and 3.27 plot the measured lift coefficients (from pressure measurements) vs 

angle of attack for Re = 43615 and Re = 84122. The integration of area under the curve 

for spanwise lift coefficient plots yields the total lift coefficient at each angle of attack. 

This is calculated for all the measured angles and a plot of lift coefficient versus angle of 

attack curve is obtained.  

Figs 3.26 and 3.27 also plot the predicted lift coefficient curves for an elliptic 

wing with AR =1 as well as a theoretical slope for AR = 1 wing with rectangular plan 

form shape. The lift curve slope for elliptic wing was calculated based on equation (21). 

The theoretical slope for a wing with rectangular planform is based on equation (22). The 

equation for the general planform shape wing includes the factor ‘τ’which is based on the 

first coefficient in the Fourier series discussed earlier. This slope was determined by 

calculation of τ from A1 obtained from the lift distribution for a rectangular wing. Figs 

3.26 and 3.27 also show the linear regression fit through the measured data. This was 

done to calculate the slope of the measured lift coefficient curve. 

 The lift curve slope for an elliptic wing is higher than obtained for the 

measured data. This is consistent with the theory that the lift curve slope for a wing with 

planform shape other than elliptic would be less than that for an elliptic wing. This lift 

curve for the elliptic wing is based on equation (21) and not on the lift coefficients 

obtained from the elliptic lift distributions used earlier for comparison with the measured 

local lift distributions in Fig. 3.17, 3.18 for example. This is done because a lift curve 

obtained from the assumed elliptical lift distributions (in Fig. 3.17 and 3.18) would match 

exactly with those obtained from pressure measurements as the elliptical lift distributions 
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were obtained by maintaining the same total lift coefficients (or area under the curves). 

The Figs 3.26 and 3.27 also show the lift curve for an AR = 1 rectangular wing. This lift 

curve is slightly lower than that of the elliptic but also higher than that obtained from the 

pressure data as discussed previously. The deviation of the measured lift values from the 

elliptic lift values increases with increasing angle of attack.  

 It is also seen from these figures that the wing has not stalled up to α = 18o 

indicating that the angle of attack for stall for low AR wings at low Reynolds numbers is 

much higher than for larger AR wings at high Reynolds numbers. Torres & Mueller [17] 

have also observed that for AR =1 wing at Re = 7×104and Re =10×104 the wing does not 

stall until as high as α = 25o.  

Fig. 3.26 also shows the lift curve slope obtained from lift measurements using 

the force balance set-up explained earlier in section 2.2. The measurements were carried 

out for 0o ≤ α ≤ 14o. The low weight of the wing and frame results in vibrations of the 

frame at higher angles of attack and high Reynolds numbers. This limits the maximum 

angle of attack at which measurements can be taken. The lift curve slope obtained from 

the force balance measurements is found to be slightly higher than that obtained by the 

pressure measurement tests. We observe in Fig.  3.27 that this deviation is more for Re = 

84122. However in both the figures it can observed that the actual data points obtained 

through lift measurements lie close to that obtained by the pressure measurements. The 

slope for these lift measurements is obtained by a linear regression fit through the data. 

This might result in the difference between the slopes obtained from the pressure 

measurements and the lift measurements. The last two data points in Fig 3.27 plotted 

from the lift measurements for α = 11.8o and α = 14o, are drastically different from the 
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lift curve obtained from pressure measurements. These values were obtained with the set-

up experiencing the large vibrations mentioned earlier. These values are not considered 

when calculating the lift curve slope for force balance measurement curve. 

 This difference in the slopes might also be associated with the errors in the lift 

coefficient calculation from the pressure data as well as the error in lift readings in the 

weighing balance set-up. The overall agreement between lift coefficient curves obtained 

from the pressure and force balance measurements provides validation of the results from 

the pressure measurement technique. 
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Figure 3.26 Lift vs angle of attack curve at Re = 43615 
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Figure 3.27 Lift vs angle of attack curve at Re = 84122 
Lift curve slope for lift data based on data for 0o < α < 8o due to experimental uncertainty 

at higher angles of attack 
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3.6 Induced drag coefficients 

Fig. 3.28a shows the induced drag coefficient for various Reynolds numbers at 

varying angles of attack. The plot shows induced drag coefficients obtained from 

pressure measurements at two Reynolds numbers and for a rectangular wing with AR = 1 

predicted by the Prandtl’s lifting line theory. All the ‘measured’ induced drag coefficients 

are based on equation (19) where ‘CL’ values are from the pressure measurements and ‘e’ 

values are from the Fourier coefficient analysis. The induced drag coefficients for the 

rectangular wing with AR =1 are using equations (19) and (21). . The measured induced 

drag coefficients show a quadratic trend with α (or CL, since α is proportional to CL). 

Comparing the curves for Re = 43615 and Re = 84122 with that obtained for the 

Rectangular wing, we observe that their values match fairly well. The closeness of values 

of the induced drag coefficient for rectangular wing with those calculated for Re = 43615 

(for e.g. α = 9o and α = 12o), can be explained on the basis of the relation between the CL 

and e values from Fig. 3.24 and 3.26. The values for CL’s from the pressure 

measurements is approximately 16% less than those predicted for a rectangular wing with 

AR =1 and the span efficiency factors are approximately 30% less than the ‘e’ value for 

the rectangular wing. As an effect of equation (19) this reduction in CL’s is nullified by 

the reduction in e values and the induced drag coefficients from the pressure 

measurements and those predicted for rectangular wing match closely. However this 

match may not always occur for all flow cases. 

Fig. 3.28 b shows the comparison between induced drag coefficients at Re = 

84122 with the total drag coefficients obtained by Torres and Mueller [17] in their study 

on a Rectangular wing with AR = 1 at Re = 70000. This is just a qualitative comparison 
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to demonstrate the correctness in the variation of measured induced drag coefficients. 

Although this comparison is at two different Reynolds numbers, the similarity between 

trends followed by the measured induced drag coefficient with those observed by Torres 

and Mueller help the observations made with the pressure measurement technique.   

Fig 3.9 shows the induced drag coefficients at α = 6o and α = 15o at various 

Reynolds numbers. From the curve for α = 6o we observe that the induced drag 

coefficient remains fairly constant in the full range of Reynolds number under 

consideration, indicating that induced drag coefficient at low angle of attack is 

approximately same over a wide range of Reynolds number. Whereas for α = 15o we 

observe that this induced drag coefficient varies drastically around Re = 45,000. It 

remains fairly constant for Re ≤ 43615 but decreases sharply after that. This increase in 

the induced drag coefficients by up to 50% may have implications in MAV design as 

MAV’s become smaller and smaller, thus reducing Reynolds numbers into the range  

Re < 45000. 
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Fig. 3.28 Induced drag coefficients (a) With varying α 

(b) Comparison with Torres and Mueller data 
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Fig. 3.29 Induced drag coefficients with varying Reynolds number 
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4. Conclusion 

An experimental research for a low AR wing at low Reynolds number was carried 

out. The model wing with NACA 0012 airfoil shape, AR = 1, c = 0.2032 m was used. 

Tests were carried out in the Reynolds number range 3×104 < Re < 8.5×104. Tests 

included pressure measurements at various span wise locations to obtain a coefficient of 

pressure distribution along the chord length. Integration of the pressure coefficient data 

provided the local lift coefficients at various spanwise locations. Lift coefficients thus 

obtained were further analyzed to obtain the span efficiency factors for various Reynolds 

number-angle of attack combinations. The lift curve slopes at two Reynolds numbers 

were determined.   

The pressure distributions obtained show a large reduction in pressure on the upper 

surface of the wing near the wing tip. The separation phenomenon, common to low 

Reynolds number flows, was clearly observed at angles of attack above 6o. The 

separation bubble formed on the upper surface of the wing was found to produce a 

plateau region in the pressure coefficient plots. This plateau region disappeared for the 

pressure coefficient plot near the wing tip indicating that no separation was present at the 

wing tip. This observations match favorably with the flow visualization obtained by 

Torres and Mueller [17] in their research carried on low AR wings at low Reynolds 

numbers.  The separation plateau was found to increase in size with increasing angle of 

attack, consistent with classic separation theory.  

The pressure distributions were integrated over the chord length to obtain the local lift 

coefficients at various spanwise locations. The spanwise distributions prominently 

showed a peaked lift distribution near the wing tip. This increase in lift was found at 
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z/(b/2) ≈ 0.9 in the local lift distribution plots. This result is consistent with the 

observation made by Torres and Mueller [17] and Desabrais and Johari [20] in their 

research. Torres and Mueller suggest that the wing tip vortices energize the flow and 

result in low-pressure cells on the upper surface of the wing. Desabrais and Johari have 

observed the location of core of the wing tip vortices at approximately this location. We 

surmise that the high velocity core region induces this low-pressure region on the upper 

surface near the wing tip.  

The local lift distributions were compared with appropriate elliptical lift distribution. 

This elliptical lift distribution was obtained by maintaining the total lift coefficient for 

this distribution same as that obtained for the lift distributions obtained from the pressure 

distributions. The elliptical distribution was used for two principal reasons. First, the 

elliptical lift distribution generates the lowest induced drag, ensuring optimum 

aerodynamic performance for a wing. Secondly the lift distribution on a rectangular 

planform wing approaches elliptic lift distribution as AR goes to zero. For the AR =1 

wing used in the present study value of span efficiency was obtained to be e = 0.9969, so 

that the elliptic lift distribution approximates the lift distribution on a rectangular wing 

planform very well. Hence accordingly elliptic lift distribution was used for comparison.  

The span efficiency factor was obtained from the local lift distributions. A Fourier 

sine series approximation was used to find the Fourier coefficients based on the lift 

distributions. These Fourier coefficients were used to obtain the span efficiency factors at 

various Reynolds numbers and angles of attack. The variation of span efficiency factor 

indicated that any deviation of the measured lift distributions from the elliptic lift 

distribution resulted in a decrease in the span efficiency factor. The span efficiency for 
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elliptic distribution was found to be 1. The span efficiency factor was found to be in the 

range 0.6 < e < 0.9, which matches with the range of span efficiency factors obtained by 

Torres and Mueller [17]. These results are also consistent with finite wing theory, which 

shows that lift distribution deviating from the elliptic distribution have span efficiency 

factors less than 1. The variation of span efficiency factor with Reynolds number and 

angles of attack was found to be consistent with the details of lift distribution curves. The 

presences of a peaked lift region near the wing tip on a low AR wing at low Reynolds 

number contributes significantly to the observed reduction in span efficiency factors and 

hence increase in the induced drag. 

The lift curve was plotted for two different Reynolds numbers. Results obtained were 

close to that predicted by the theory, although not exact. The theoretical lift curve slope 

for the elliptic wing is higher than that for the AR = 1 rectangular wing. Both these slopes 

were found to be higher than the lift curve slope obtained from the measured spanwise 

pressure coefficients. The lift curve slope for pressure data and force balance data was 

approximately (dCL/dα) ∼ 0.03 per degree. The predicted slope for a Rectangular wing 

with AR =1 was (dCL/dα) ∼ 0.035. The lift curve obtained from the pressure data has a 

lower slope because of the deviation of the lift distributions from the elliptic lift 

distributions. To obtain an overall physical validation of the pressure measurements and 

integration approach, lift measurements were carried out on another AR =1, NACA 0012 

wing using a force balance set-up. Although data over full range of Reynolds numbers 

and angles of attack was not obtained the lift coefficients determined using the force 

balance closely match with those obtained from the pressure measurements 
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Main general Conclusions: 

For low AR wings in the 3×104 ≤ Re ≤ 8.5×104 range: 

¾ Measured local lift distributions deviate significantly from the elliptic lift 

distributions predicted by finite wing theory. 

¾ As a result we conclude that finite wing theory cannot accurately predict 

• Total lift coefficient, cL 

• Span efficiency factor, e 

• Induced drag coefficient, Cdi 

¾ Measurement of local lift distributions is necessary to accurately predict these 

aerodynamic performance parameters through 

• Integration of local cl distributions to obtain cL 

• Determination of Fourier coefficients, An’s, to obtain the span efficiency factor, 

e, hence the induced drag coefficient Cdi. 
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5. Suggestions for Future Work 

The peaked lift near the wing tip needs to be understood in more detail. More detailed 

physical mechanisms that determine how the wing tip vortices ‘energize’ the boundary 

layer need to be described. The pressure coefficients can also be used to obtain the 

quarter chord moment coefficients, the location of center of pressure and other 

aerodynamic parameters based on pressure distributions. So the basic idea of pressure 

measurements can be extended to obtain various parameters important for the 

aerodynamic performance of a wing. 

The deviation of the lift distributions from those obtained for the elliptical lift 

distributions suggest possible modifications to the wing planform shape in order to obtain 

an elliptic lift distribution. Based on local lift distributions obtained in this thesis, 

modifications could be made to a rectangular planform wing so as to reduce lift in the 

areas of peaked lift and increase it in the central span region, where the measured lift is 

lower than the optimal elliptic distribution. Fig 5.1 b suggests possible changes to a wing 

chord distribution to obtain an elliptic lift distribution. Other ways of achieving the same 

result is by adding wash-out in regions of lower lift and introducing wash-in where the 

lift is higher than the elliptic lift distribution.  

Yuan [19] during his study on thin flat plates in the low Reynolds number range has 

observed a peaked lift distribution, approximately at z/(b/2) =0.6. If the chord length is 

reduced in this region of peaked lift to reduce the lift to an elliptic lift distribution, the 

reduced chord will appear as a notch in the thin wing (flat plate). This resembles to 

trailing edge notches observed on bird wings such as seagulls, pheasants, approximately 

at the same location where Yuan [19] has observed the peaked lift region. The method of 
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pressure measurements should be extended to thin flat plates to confirm these peaked lift 

distributions.  

Determination of an optimal wing planform shape could help in improving MAV lift-

drag ratios and the overall performance. Pressure measurements, with set-up similar to 

discussed in this research, at higher Reynolds numbers would determine the Reynolds 

number range where the deviation from the elliptic lift distributions disappear. Overall, 

further study of local lift distributions is recommended for effective design of the Micro 

air vehicles in the future.    
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Fig. 5.1 (a) Comparison of measured lift distributions to elliptic lift distributions at  

Re = 43615, α = 15; (b) Adjusted chord distributions. 
 

 

 

                                                                           83  



References: 

[1] Kunz, P. J. and Kroo, I., “Analysis and design of Aerofoils for use at ultra low  
     Reynolds numbers”, Progress in Astronautics and Aeronautics, (edited by Thomas J.  
     Mueller), Vol. 195, pp. 35-60, 2001. 
 
[2] Selig, M. et al. “Systematic airfoil design studies at Low Reynolds numbers,”  
     Progress in Astronautics and Aeronautics, (edited by Thomas J. Mueller), Vol. 195,   
     pp. 143-167, 2001. 
 
[3] Mönttinen et. al. “Adaptive unstructured meshes for solving the Navier-Stokes  
     equations for Low-Chord-Reynolds-Number flows”, Progress in Astronautics and  
     Aeronautics, (edited by Thomas J. Mueller), Vol. 195, pp. 61-80, 2001. 
 
[4] Carmichael, B. H., “Low Reynolds number airfoil survey”, Volume 1, NASA  
      Contractor Report 165803, November 1981. 
 
[5] Gad-el-Hak, M., “Micro-air-vehicles: Can they be controlled better”, Journal of  
      Aircraft, Vol 38, No 3, pp. 419 – 429, June 2001. 
 
[6] McCullough, G.B. and Gault, D.E., “Examples of three representative types of airfoil- 
      section stall at low speed”, NACA TN 2502, Sept. 1951. 
 
[7] Broeren, A.P. and Bragg, M.B., “Unsteady stalling characteristics of thin airfoils at  
      low reynolds number”, Progress in Astronautics and Aeronautics, (edited by  
      Thomas J. Mueller), Vol. 195, pp. 191 – 213, 2001. 
 
[8] Polhamus, E.C. “Predictions of vortex-lift characteristics by a leading-edge suction  
      analogy,” Journal of Aircraft, Vol. 8, pp. 193-199, 1971. 
 
[9] Rajan, S.C. and Shashidhar, S. “Exact leading-term solution for low aspect ratio  
      wings,” Journal of Aircraft, Vol. 34, pp. 571-573, 1997. 
 
[10] Polhamus, E.C. “A concept of the vortex lift of sharp-edge delta wings based on a  
       leading-edge-suction analogy,” NASA TN D-3767, 1966. 
 
[11] Schlichting, H., Aerodynamics of the airplane, Mc-Graw-Hill International Book  
        company, pp. 143-161, 1979. 
 
[12] Hoerner, S.F., Fluid Dynamic Drag, Hoerner Fluid Dynamics, Brick Town, NJ,  
        pp. 7.16-7.21, 1965. 
 
[13] Hoerner, S.F. and Borst, H.V., Fluid Dynamic Lift, Hoerner Fluid Dynamics, Brick  
       Town, NJ, pp. 17.1-17.15, 1975. 
 
 

                                                                           84  



[14] Mangler, “Induced Drag analysis in small aspect ratios”, Yearbook D.Lufo, p.I 139, 
       1939 
 
[15] Weinig, “Induced drag analysis in small aspect rations”, Lufo, 405, 1936 and 434,  
        1937. 
 
[16] Pelletier, A. and Mueller, T.J., “Low Reynolds number aerodynamics of low-aspect- 
        ratio, thin/flat/cambered-plate wings”, J. of Aircraft, Vol. 37, No.5, Sept.2000. 
 
[17] Torres, G. and Mueller, T.J. “Aerodynamic characteristics of low aspect ratio wings  
        at low Reynolds number,” Progress in Astronautics and Aeronautics, (edited by  
        Thomas J. Mueller), Vol. 195, pp. 115-141, 2001. 
 
[18] Johari, H. and Durgin, W.W. “Direct measurement of circulation using ultrasound,”  
        Experiments in Fluids, Vol. 36, pp. 2195-2203, 1998. 
 
[19] Yuan, J. “Circulation methods in unsteady and three-dimensional flows”, Ph.D.  
        Thesis, Worcester Polytechnic Institute, 2002. 
 
[20] Desabrais, K.J. and Johari, H. “Direct circulation measurements of a tip vortex,”  
       AIAA Journal, Vol. 38, pp. 2189-2191, 2000. 
 
[21] Drovetski, S. “Influence of the trailing-edge notch on flight performance of  
       galliforms,” The Auk, Vol. 113, pp. 802-810, 1996 
 
[22] Popp, K. “Experimental investigation of Reynolds number and scale effects on  
       parachute inflation”, M.S. Thesis, Worcester Polytechnic Institute, 2000. 
 
[23] Cimbala et. al. “Importance of fresh air in manometer tubing”, AIAA Journal,  
        Vol. 30, No. 1, pp 279-280, 1992. 
 
[24] White, F. M. Fluid Mechanics, McGraw Hill, 2003 
 
[25] Anderson, J. D, Jr., Fundamentals of Aerodynamics, McGraw Hill, 2001    
 
[26] Glauert, H., The Elements of Airfoil and Airscrew Theory, The University Press,  
       1948 
 
[27] Katz, J. and Plotkin, A., Low Speed Aerodynamics, from Wing Theory to Panel  
        Methods, McGraw Hill, 1991,pp 524-527. 
 
 
 
 
 
 

                                                                           85  



APPENDIX A 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                                           86  



  Plot of cp vs x/c 
(Pos 1 )

x/c ( Percent chord )

0.0 0.2 0.4 0.6 0.8 1.0

C
p(

Pr
es

su
re

 C
oe

ffi
ci

en
t)

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

Upper Surface
Lower Surface

                      

  Plot of cp vs x/c 
(Pos 2 )

x/c ( Percent chord )

0.0 0.2 0.4 0.6 0.8 1.0

C
p(

Pr
es

su
re

 C
oe

ffi
ci

en
t)

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

 
 

  Plot of cp vs x/c 
(Pos 3 )

x/c ( Percent chord )

0.0 0.2 0.4 0.6 0.8 1.0

C
p(

Pr
es

su
re

 C
oe

ffi
ci

en
t)

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

                      

  Plot of cp vs x/c 
(Pos 4 )

x/c ( Percent chord )

0.0 0.2 0.4 0.6 0.8 1.0

C
p(

Pr
es

su
re

 C
oe

ffi
ci

en
t)

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

 
 

  Plot of cp vs x/c 
(Pos 5 )

x/c ( Percent chord )

0.0 0.2 0.4 0.6 0.8 1.0

C
p(

Pr
es

su
re

 C
oe

ffi
ci

en
t)

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

                      

  Plot of cp vs x/c 
(Pos 6 )

x/c ( Percent chord )

0.0 0.2 0.4 0.6 0.8 1.0

C
p(

Pr
es

su
re

 C
oe

ffi
ci

en
t)

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

 
 

  Plot of cp vs x/c 
(Pos 7 )

x/c ( Percent chord )

0.0 0.2 0.4 0.6 0.8 1.0

C
p(

Pr
es

su
re

 C
oe

ffi
ci

en
t)

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

 
 
 

Plots for Re = 30218, α = 0o 
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Plots for Re = 30218, α = 6o  
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Plots for Re = 84122, α = 18o 
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MATLAB CODES 
 
%Program to calculate local lift coefficient by integrating cp vs 
x/c curve% 
clear all; 
clc; 
clf; 
h=0.0001;% X co-ordinate resolution 
n=(0.9225/h)+1;% Range of matrices 
s=1;% Maximum range of y co ordinate, where x axes has to be shifted 
cpu= input('Enter the upper cp matrix')% Cp Data for upper surface 
cpl= input('Enter the lower cp matrix')% Cp Data for lower surface 
xu=[0.0,0.0525,0.1125,0.1725,0.2325,0.3525,0.4375,0.5925,0.7125,0.7725,0.8325, 
0.9225];% x/c co-ordinates for upper surface 
xl=[0.0,0.0525,0.1125,0.1725,0.2325,0.3525,0.4375,0.5925,0.7125,0.8025,0.8625, 
0.9225];% x/c co-ordinates for lower surface 
X=[0:h:0.9225];% Spline for x co ordinate 
YU=spline(xu,cpu,X);% Spline for upper surface 
YL=spline(xl,cpl,X);% Spline for lower surface 
plot(X,YU,X,YL)% To plot cp vs x/c curve 
YU1=s+YU; 
YL1=s+YL; 
% Calculation of Coefficient of Lift by integrating Cp vs x/c 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
intsec(1)=X(1); 
j=2; 
for i=2:n-1; 
    if (YU1(i)>YL1(i)& YL1(i+1)>YU1(i+1))|(YU1(i)==YL1(i))|(YU1(i)<YL1(i)& 
YL1(i+1)<YU1(i+1)) 
        intsec(j)=X(i); 
        j=j+1; 
    end 
end 
r=j; 
intsec(r)=X(n); 
for j=1:r-1 
    k=j; 
    X1=[intsec(j):h:intsec(j+1)]; 
    YU2=spline(xu,cpu,X1); 
    YL2=spline(xl,cpl,X1); 
    area1(k)=trapz(X1,YU2);%area integral- upper surface 
    area2(k)=trapz(X1,YL2);%area integral- lower surface 
    area3(k)=(area1(k)-area2(k)); 
    j=j+1; 
end 
cl=sum(area3)%Lift Coefficient 
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%Program to plot lift coefficient against percent wing span for 
measured data and elliptic distribution% 
clear all; 
clc; 
clf; 
h=0.001;% X co-ordinate accuracy 
b1=(8*25.4)/1000;% Wing Span 
b2=1;%normalised wing span 
c=(8*25.4)/1000;% chord length 
S=(64*((25.4/1000)^2));% Wing area 
rho=1.2;%air density 
x=[1,0.9375,0.8125,0.6875,0.5625,0.4375,0.3125,0.1875,0];% Z/(b/2) for the wing 
cl= input('Enter the cl(coefficient of lift) matrix')% Cl Data  
v= input('Enter the free stream velocity')% free stream velocity 
X=[0:h:1];% Spline for x co ordinate 
Y=spline(x,cl,X);% Spline for upper surface 
plot(X,Y)% To plot cl vs Z/(b/2) curve 
hold on; 
area=trapz(X,Y);% To calculate the area under the curve, i.e. the total lift  
ymax= (4*area/pi);%to calculate the maximum lift at the root  
n=(1/h)+1; 
b(1)=0; 
y(1)=ymax;%Minor axis of the elliptical lift distribution 
j=(1/h); 
for i=2:n% To plot the elliptical lift distribution for the same amount of lift 

    b(i)=(h*(i-1));  
    y(i)=sqrt((ymax^2)*(1-(b(i)^2))); 
    i=i+1; 
end 
for k=1:j% For getting the ratios of the two lift coefficients 
    ch(k)=y(k)/Y(k); 
    k=k+1; 
end 
xc(1)=0; 
for r=2:j % x co-ordinate for the plot of ratios 
    xc(r)=(r-1)*h; 
    r=r+1; 
end 
plot(b,y) 
hold off; 
figure(2) 
plot(xc,ch) 
CL=area 
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%Program to Calculate the Fourier Coefficients and span 
efficiency factor based on the measured lift distribution and 
elliptic distribution% 
clear all; 
clc; 
clf; 
format short; 
h=0.001;% X co-ordinate accuracy 
x=[1,0.9375,0.8125,0.6875,0.5625,0.4375,0.3125,0.1875,0];% Z/(b/2) for the wing 
cl= input('Enter the cl(coefficient of lift) matrix');% Cl Data  
%v= input('Enter the free stream velocity')% free stream velocity 
X=[0:h:1];% Spline for x co ordinate 
Y=spline(x,cl,X);% Spline for upper surface 
figure(1) 
plot(X,Y)% To plot cl vs Z/(b/2) curve 
hold on; 
area=trapz(X,Y);% To calculate the area under the curve, i.e. the total lift  
ymax= (4*area/pi);%to calculate the maximum lift at the root  
CL=area 
n=(1/h)+1; 
j=(1/h); 
for i=1:n% To plot the elliptical lift distribution for the same amount of lift 
    b(i)=(h*(i-1));  
    y(i)=sqrt((ymax^2)*(1-(b(i)^2))); 
    b1(i)=-b(i); 
    i=i+1; 
end 
plot(b,y) 
hold off; 
for k=1:j% For getting the ratios of the two lift coefficients 
    ch(k)=y(k)/Y(k); 
    xc(k)=(k-1)*h; 
    k=k+1; 
end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
nn=40; 
for i=1:nn 
    theta(i)=((i)/nn)*(pi/2); 
end 
for j=1:nn 
    xx(j)=cos(theta(j)); 
end 
for ii=1:nn 
for jj=1:n 
   if abs(b(jj)-xx(ii))<0.0005 
      kk(ii)=jj; 
   end 
end 
end 
for i=1:length(kk) 
    m=kk(i); 
    gamma(i)=(1/4)*Y(m); 
end 
for p=1:length(kk) 
    for s=1:length(kk) 
         R(p,s)=sin((2*s-1)*theta(p)); 
     end 
 end 
 Aact=R\gamma'; 
 Aact(1:3); 
for i=1:length(kk) 
     deltas1(i)=(2*i-1)*(((Aact(i)/Aact(1)))^2); 
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 end 
delta1=sum(deltas1); 
eact=(delta1)^(-1) 
%%%%%%%%%For elliptic distribution 
for i=1:length(kk) 
    m=kk(i); 
    gamma2(i)=(1/4)*y(m); 
end 
Aellip=R\gamma2'; 
Aellip(1:3); 
for i=1:length(kk) 
     deltas2(i)=(2*i-1)*(((Aellip(i)/Aellip(1)))^2); 
 end 
delta2=sum(deltas2); 
eellip=(delta2)^(-1) 
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APPENDIX C 
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For α = 15o 
An Re = 30218 Re = 35966 Re = 43615 Re = 49345 Re = 84122
A1 0.1437 0.1363 0.1413 0.1293 0.1292 
A2 0.0323 0.0355 0.0358 0.0273 0.0339 
A3 0.0232 0.0163 0.0194 0.0093 0.0165 
A4 0.0061 0.0091 0.0086 0.0025 0.0018 
A5 -0.0054 -0.0067 -0.0059 -0.005 -0.005 
A6 -0.0082 -0.009 -0.011 -0.0054 -0.0074 
A7 -0.0116 -0.0085 -0.0088 -0.0071 -0.0079 
A8 -0.0008 -0.002 -0.0009 -0.0002 -0.0005 
A9 0.0028 0.0027 0.0019 0.0015 0.0014 

A10 -0.0013 -0.0008 -0.0008 -0.0013 -0.0008 
A11 -0.001 -0.0013 -0.0012 -0.0001 -0.0008 
A12 -0.0011 -0.0008 -0.0008 -0.001 -0.0007 
A13 0.0004 0.0004 0.0002 0.0003 0.0002 
A14 -0.0001 -0.0002 0 -0.0001 0 
A15 0 0.0001 0 0.0001 0 
A16 -0.0002 -0.0002 -0.0001 -0.0002 -0.0001 
A17 0.0001 0.0001 0 0.0002 0 
A18 -0.0002 -0.0002 -0.0001 -0.0003 -0.0001 
A19 0.0002 0.0001 0.0001 0.0002 0.0001 
A20 -0.0002 -0.0002 -0.0001 -0.0002 -0.0001 
A21 0 0 0 0.0001 0 
A22 -0.0003 -0.0003 -0.0002 -0.0002 -0.0002 
A23 0 0 -0.0001 0 -0.0001 
A24 -0.0001 -0.0001 -0.0001 -0.0001 -0.0001 
A25 0.0001 0.0001 0 0.0001 0 
A26 -0.0001 -0.0001 -0.0001 -0.0001 -0.0001 
A27 0.0001 0.0001 0 0.0001 0 
A28 0 -0.0001 0 -0.0001 0 
A29 0.0002 0.0002 0.0001 0.0002 0.0001 
A30 0 0 0.0001 0 0 
A31 0.0002 0.0001 0.0001 0.0002 0.0001 
A32 0 0 0 -0.0001 0 
A33 0.0001 0.0001 0 0.0001 0 
A34 -0.0001 -0.0001 0 -0.0001 0 
A35 0.0001 0.0001 0.0001 0.0001 0.0001 
A36 0 0 0 -0.0001 0 
A37 0.0001 0.0001 0.0001 0.0001 0.0001 
A38 0 0 0 -0.0001 0 
A39 0.0001 0.0001 0 0.0001 0 
A40 -0.0001 -0.0001 0 -0.0001 0 
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For α = 6o 

An Re = 30218 Re = 35966 Re = 43615 Re = 49345 Re = 84122
A1 0.0586 0.0583 0.0582 0.0567 0.0569 
A2 0.0042 0.0018 0.0036 0.0036 0.0098 
A3 0.0023 0.0024 0.003 0.0045 0.0069 
A4 0.002 -0.0014 0.0006 0.0018 0.0023 
A5 -0.0024 -0.0012 -0.0016 -0.0012 -0.0009 
A6 -0.0034 -0.0009 -0.0019 -0.0026 -0.0031 
A7 0.0002 -0.0011 -0.002 -0.0024 -0.0044 
A8 -0.0011 -0.0013 -0.0001 -0.0005 -0.0004 
A9 0 0.0006 0.0003 0.0006 0.0011 

A10 0.0006 0.0006 -0.0002 0 -0.0003 
A11 -0.001 -0.0011 -0.0002 -0.0006 -0.0006 
A12 0.0003 0.0003 -0.0002 -0.0001 -0.0003 
A13 -0.0001 0 0 0 0.0001 
A14 0 0 0 0 0 
A15 0 -0.0001 0 0 0 
A16 0.0001 0.0001 0 0 0 
A17 -0.0001 -0.0001 0 -0.0001 0 
A18 0.0001 0.0001 0 0 -0.0001 
A19 -0.0001 -0.0001 0 0 0 
A20 0.0001 0.0001 0 0 0 
A21 -0.0001 -0.0001 0 0 0 
A22 0 0 0 0 -0.0001 
A23 -0.0001 -0.0001 0 0 0 
A24 0 0 0 0 0 
A25 -0.0001 -0.0001 0 0 0 
A26 0.0001 0.0001 0 0 0 
A27 -0.0001 -0.0001 0 0 0 
A28 0.0001 0.0001 0 0 0 
A29 0 0 0 0 0 
A30 0.0001 0.0001 0 0 0 
A31 0 0 0 0 0 
A32 0.0001 0.0001 0 0 0 
A33 0 0 0 0 0 
A34 0 0 0 0 0 
A35 0 0 0 0 0 
A36 0 0 0 0 0 
A37 0 0 0 0 0 
A38 0.0001 0.0001 0 0 0 
A39 0 0 0 0 0 
A40 0 0 0 0 0 
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APPENDIX D 
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Sample error calculations: 

The error calculation in the pressure coefficients is based on RSS (Root sum of squares) 

type uncertainty. A sample calculation and a sample table for errors in pressure 

coefficient for Re = 30218 and α = 15o is shown here. 

Error in Pressure coefficient: 

For a specific pressure coefficient, Cp and a dynamic pressure, q we have 

                                    p
PC
q

∆
=  

where                       sP P P∆ = −  

where P = pressure being measured (upper or lower surface pressure) 

          Ps = static pressure 

          q = dynamic pressure 

                             
2 2

( ) ( )
( ) ( )p
Cp CpC P

P q
δ δ

     ∂ ∂
= ⋅ ∆ + ⋅     ∂ ∆ ∂     

qδ




 

Here δ(∆P) = δ(q) = 0.0005, which is the accuracy of pressure transducer. The table on 

following  page demonstrates a sample set of error calculated in pressure coefficients. 

So for a particular pressure measurement we can obtain the error in pressure coefficient. 

The error in pressure coefficient calculation introduces error in the local lift coefficient 

calculation. This was based on the RSS type uncertainty as well. The error in cl is then 

given as:   

( )l puc Cδ δ δ= − plC∑  

So by knowing the error in Cp we can obtain the error in local lift coefficient. The code 

for this calculation was done in MATLAB.  
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Error in pressure coefficients for Re = 30218 and α = 15o: 

 

Error calculation in pressure coefficients 
Upper Surface Lower Surface 

Port # Cp,u Error in Cpu Port # Cp,l  Error in Cpl 

1 -0.08 0.042 1 -0.08 0.042 

2 -0.75 0.052 13 0.58 0.048 
3 -0.75 0.052 14 0.25 0.043 

4 -0.75 0.052 15 0.17 0.042 

5 -0.75 0.052 16 0.08 0.042 

6 -0.75 0.052 17 0.08 0.042 

7 -0.50 0.047 18 0.08 0.042 

8 -0.17 0.042 19 0.08 0.042 

9 -0.17 0.042 20 0.08 0.042 
10 -0.08 0.042 21 0.08 0.042 

11 -0.08 0.042 22 0.08 0.042 

12 0.00 0.042 23 0.00 0.042 
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