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ABSTRACT 
 
 
 
 The vapor phase photochemistry of the three isomeric cyanopyridines and the 

three methylpyridines was studied by irradiating their vapors at 254 nm.  It was found 

that direct irradiation of any one cyanopyridine isomer resulted in the formation of the 

other two isomers of cyanopyridine or methylpyridines respectively.  The reactivity of 

each isomer was found to be different.  This was suggested to be based on the stability of 

their azaprefulvene intermediates formed during interconversion.  The phototransposition 

of these molecules was suggested to result from 2,6-bonding, nitrogen migration around 

the five sides of cyclopentenyl ring followed by rearomatization.  This mechanism was 

found to be consistent with the results of deuterium labeling studies of cyanopyridines  

These result suggest that cyanopyridines undergo phototransposition via the intermediacy 

of azaprefulvenes instead of Dewar-pyridine and azaprismane. 

 

 Thus, photochemical studies showed that the six trideuteriopyridine isomers 

constitute two separate photochemical triads.  Each triad consists of three isomers that are 

photointerconverting upon irradiation at 254 nm in the vapor phase.  Similary, it was 

found that the three isomeric tetradeuteriopyridine isomers also constitute a 

photochemical triad and are interconverting upon irradiation at 254 nm in the vapor phase.  

These phototranspositions are best explained by the cyclization, nitrogen migration, and 

rearomatization mechanism.  These results are in contrast to the long-held belief that 

pyridine is photostable in the vapor phase.  Instead, unlabeled pyridine undergoes a 

hidden phototransposition leading back to itself. 
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CHAPTER I 
 

Introduction 
 

 The photochemical isomerization of heterocyclic ring compounds which contain a 

C-N double bond have received considerable attention for many decades.1  Surprisingly, 

their photochemical and photophysical properties have not been clearly understood.   

Although there have been many accounts of this area of photochemistry, very little is 

known about the photochemistry of these compounds.   

 

 For many years the light-induced isomerization of simple benzenoid compounds 

into phototransposition intermediates such as benzvalene, Dewar benzene, prismane, and 

fulvene derivatives have been reported.2    

 

 

 

 

 

The photochemistry of pyridine and its derivatives have also been of much 

interest because they exhibit many distinct and interesting features.  Like benzene, it is 

known that after pyridine and its derivatives are irradiated by UV light, they undergoes 

valence bond isomerization to yield non-planar isomers such as Dewar-pyridine, 

azabenzvalene, and azaprismane, which have been suggested to be the intermediates in 

the photochemical transformation.3 

Dewar-benzene prismane benzvalene
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 However, a study of photochemical and photophysical properties of the six 

isomeric dimethylpyridines, in our laboratory revealed that these dimethylpyridines 

undergo phototransposition upon irradiation in the vapor phase at 254 nm.  It was 

discovered that the non-planar isomer, azaprefulvene, formed by 2,6-bridging is the 

major intermediate in the phototransposition mechanism.  Nevertheless, Dewar-Pyridine 

intermediates were also observed in the interconversion between 2,3-dimethylpyridine 

and 2,5-dimethylpyridine upon irradiation in the condensed phase at -30 oC. 

 

 Recently, the vapor phase photochemistry of the three isomers of cyanopyridine 

has been studied in our laboratory.  The photochemical and photophysical properties of 

the three isomers were previously reported by Sarkar and co-workers.4  To understand the 

phototransposition mechanism of cyanopyridines, the vapor phase photochemistry of all 

three cyanopyridine isomers were carried out.  Furthermore, to simplify the 1H-NMR data 

of photoproducts, the photochemistry of deuterium-labeled cyanopyridines has been 

studied.  The results from both experiments have been compared to explain the behavior 

of pyridine and its derivatives at the excited state level. 

 

N NN

Dewar-pyridine azaprismane azabenzvalene
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The photochemistry of deuterium labeled pyridines is also a major part of this 

thesis.  The study of deuterium labeled pyridine allows observation of phototransposition 

reactions which would not be observed in the absence of suitable labels. 

 

 The following chapter will provide a review of the photochemical and 

photophysical information of pyridine, methylpyridines, and cyanopyridines that were 

reported in the literature.  Theoretical studies of some pyridine derivatives are also 

reviewed.   

 

 

 

 

 

 

 

 

 

 

 



 
 

 

CHAPTER II 
 

Literature review 
 

2.1. Photochemistry of pyridine and its derivatives 

 

 The photochemistry of pyridine (1) under various conditions has been studied 

extensively for many decades.  In 1970, Wilzbach and Rausch5 discovered that irradiation 

of pyridine (1) at 254 nm in butane solution at -15 oC for 45 minutes lead to the formation 

of  Dewar-pyridine (2), as confirmed  by  1H-NMR  spectrum.  This NMR spectrum  

 

Scheme 2.1  Irradiation of pyridine in butane 

 

 

 

 

recorded at -25 oC gave proton signals at δ 4.03, 5.22, 6.51, and 6.54 which correspond to 

the protons at position 4, 1, 6, and 5, respectively, of Dewar-pyridine.  The first two were 

assigned to the bridgehead protons and the latter two were assigned to the vinyl protons.  

At more elevated temperatures the valence isomer 2 reverted back to pyridine (1).  In 

acetonitrile solution, the half-life of Dewar-pyridine (2) was found to be 36 minutes at 0 

oC and 2 minutes at room temperature.  These results show that in butane or acetonitrile 

solvent the only reaction of the photochemically generated Dewar-pyridine (2) is its 

reversion back to pyridine (1).  It should be noted that the half-life of Dewar-pyridine (2) 

N
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23
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is much shorter than the half-life of synthetic Dewar-benzene, which was reported to be 

~2 days at room temperature in a solution of pyridine.6  

 

 These workers also showed that if pyridine is irradiated in water or in aqueous 

sodium borohydride, then Dewar-pyridine is trapped by reaction with water or by 

reduction of the imine double bond.  The hydration step was proposed to take place on 

the Dewar-pyridine 2 by addition of water across the imine double bond.  The unstable 

hydrated Dewar-pyridine 4 was then proposed to undergo ring opening to yield the δ-

aminopentadienal (5).  This mechanism is shown in Scheme 2.2.  In the presence of 

sodium borohydride, reduction of the double bond occurs to yield the stable bicyclic 

compound 3.  Isolation of 3 is excellent evidence for the intermediacy of Dewar-pyridine 

(2). 

 

Scheme 2.2  Irradiation of pyridine in water or in NaBH4 

 

 

 

 

 

 

 

Linnell and Noyes discovered that irradiation of pyridine in the vapor phase at 

253.7 nm led to little decomposition.7  This result is consistent with the work of Mathias 

N

N NH
H

H

NH
HO

H

ONH2

2
H2O

aq. NaBH4

3
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and Heicklen who observed little or no decomposition when pyridine was irradiated at 

254 nm.8  In addition, there was no gaseous photoproduct observed upon irradiation at 

265 or 248 nm.  Interestingly, irradiation at shorter wavelength (228.8 and 213.9 nm) 

converted pyridine to acetylene and acrylonitrile. 

 

 A qualitative study using flash photolysis by Roquitte9 identified the products of 

pyridine irradiation to be acetylene and hydrogen cyanide.10  Identically, irradiation of 

pyridine matrix isolated in argon at 8K gave rise to hydrogen cyanide and cyclobutadiene 

as secondary products.11  

 

Scheme 2.3  Irradiation of pyridine matrix isolated in argon at 8 K 

 

 

 

It was assumed that these products arise from photofragmentation of initially formed 

Dewar-Pyridine (2), as shown in scheme 2.4, followed by ring opening to form 

cyclobutadiene and hydrogen cyanide. Cyclobutadiene subsequently undergoes reverse 

2+2 cycloaddition to form two molecules of acetylene (Scheme 2.5). 

 

 

 

 

 

N
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Scheme 2.4  Irradiation of pyridine forms cyclobutadiene and HCN 

 

 

 

 

Scheme 2.5  Photolytic ring cleavage of cyclobutadiene 

 

  

 

The vapor phase photochemistry of 2-methylpyridine (6) was studied by 

Roebke.12  The irradiation of 2-methylpyridine (6) vapor at 238-266 nm resulted in the 

formation of 3-methyl and 4-methylpyridine in a 10:1 ratio. 

 

Scheme 2.6  Photolysis of 2-methylpyridine 

 

 

 

 

 According to Roebke, a mechanism involving an azaprismane intermediate 

formed from Dewar-pyridine was suggested as a reasonable reaction pathway for the 

observed rearrangements.  Roebke speculated that the mechanism involving an 

azabenzvalene would not allow the photoisomerization of 2-methylpyridine (6) to 3- and 

4-methylpyridine (7 and 8).   
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 If this speculation is true, the conversion of 2-methylpyridine (6) to 3-

methylpyridine (7) and 4-methylpyridine (8) via an azaprismane mechanism requires the 

formation of Dewar-pyridine.  This mechanism was discussed in Kebede’s thesis.13  Two 

possible azaprismane structures can result from the formation of Dewar-pyridine either 

by 2,5- or 3,6-bridging that will yield Dewar pyridine 9 and 11, respectively.  

 

Scheme 2.7  2,5- and 3,6-Bridging for 2-methylpyridine 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Subsequent [2+2] cycloaddition reaction of 9 and 11 would give azaprismane 10 

and 12.  The azaprismane 10 can then undergo ring-opening by three distinct bond 

cleavages that will result in the formation of isomeric Dewar-pyridines 9, 10a, 10b.  
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Rearomatization of the Dewar-pyridines 10a and 10b therefore formed the starting 

material, 2-methylpyridine (6), and 3-methylpyridine (7), one of the photoproducts. 

 

 The second possible Dewar-pyridine 11, formed from 3,6-bridging, will yield the 

azaprismane 12 by a [2+2] cycloaddition reaction.  Ring opening reactions in this case 

also results in three possible Dewar-pyridines 11, 12a, and 12b. Rearomatization of these 

Dewar-pyridines will yield the starting material and 4-methylpyridine (8), the other 

observed photoproduct. 

 

 Moreover, 1,4-bridging in 2-methylpyridine (6) can result in the formation of a 

third Dewar-pyridine 13 which can undergo [2+2] cycloaddition to give azaprismane 14.  

When 14 rearranges by the three possible ring opening and rearomatization processes, the 

products formed from 14a and 14b are the starting material, 2-methylpyridine (6) and one 

of the observed photoisomerization products 3-methylpyridine (7). 

 

 

Scheme 2.8  1,4-Bridging for 2-methylpyridine 
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 If all of these suggested reactions occur in a statistical basis, 3-methylpyridine and 

4-methylpyridine should be formed in a ratio of 2: 1.  This statistically expected ratio is 

very different from the observed ratio of 10: 1.  Thus, if the suggested mechanistic 

pathway is correct, a number of very arbitrary assumptions regarding the selectivity of 

bond formation and bond opening would be required.  It is difficult to see how these 

arbitrary decisions would be justified.  

 

In contrast to Roebke’s report, Caplain and Lablache-Combier14 reported that 

irradiation of 2-methylpyridine vapor resulted in the formation of 4-methylpyridine as the 

only photoproduct.  This product was reported by Roebke to be the minor product and 

that 3-methylpyridine was the major product.  If Caplain and Lablache-Combier could 

observe the minor product, it is difficult to understand why they were unable to detect the 

major product. 

 

 Caplain and coworkers15 reported evidence that supports the involvement of 

radical intermediates by irradiating pyridine and its 2- and 4-methyl derivatives in 

cyclohexane.  According to these workers, irradiation of pyridine in cyclohexane solution 

led to the formation of 2-cyclohexylpyridine (15) and 4-cyclohexylpyridine (16) as 

shown in Scheme 2.9. 
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Scheme 2.9  Photolysis of pyridine in cyclohexane 

 

 

 

 

 

 

  In addition, irradiation of 2-methylpyridine in cyclohexane produced 6- and 4-

cyclohexyl-2-methylpyridine (17 and 18), bis-cyclohexane (19) and methylcyclohexane 

(20), as shown in Scheme 2.10, in a ratio of 10:10:20:1.   

 

Scheme 2.10  Photolysis of 2-methylpyridine in cyclohexane 

  

 

 

 

 

In the case of 4-methylpyridine (8), it was reported to undergo photoisomerization 

to 2-methylpyridine (6) and to photosubstitution with cyclohexane at C4 and C6 to yield 

17 and 18 (Scheme 2.11). 
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Scheme 2.11  Photolysis of 4-methylpyridine in cyclohexane 

 

 

 

 

 

Pascual16 reported the vapor phase photolysis of 2- and 4-methylpyridine (6 and 8) 

with a mercury lamp for 72 hours.  It was observed that 6 yielded 8, 2,4-dimethylpyridine 

(21), and a large amount of polymer as shown in Scheme 2.12. 

 

Scheme 2.12  Photolysis of 2-methylpyridine vapor by Pascual’s group 

 

 

 

 

Interestingly, it was found that irradiation of 8 yielded 6, pyridine (1), and a small 

amount of polymer.  There was, however, no dimethylpyridine product that could be 

observed. 

Scheme 2.13  Photolysis of 4-methylpyridine vapor by Pascual’s group 
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Hence, Pascual suggested that the product 1 and 21 may result from reactions that 

proceed via radical type methylation-demethylation.  

 

The vapor phase photochemistry of 2,4-, 2,3-, 2,5-, 2,6-, 3,4-, and 3,5-

dimethylpyridines (21-26) was also studied by Caplain and Lablache-Combier.14  Table 

2.1 shows the experimental results from irradiation of dimethylpyridines reported by 

Caplain and Lablache-Combier. 

 

Table 2.1  Experimental data from Caplain and Lablache-Combier work 

  

Dimethylpyridine Photoproducts 

2,3- 2,5-, 3,4- 

2,4- 2,6- 

2,5- 2,3-, 3,4- 

2,6- 2,4- 

3,4- 2,3-, 2,5- 

3,5- None 
 

 

Caplain and Lablache-Combier explained these reactions by the Dewar-pyridine 

azaprismane mechanism also suggested by Roebke.  Their explanations, however, leave 

substantial unanswered mechanistic questions.  For example, according to Caplain and 

Lablache-Combier, irradiation of 2,6-dimethylpyridine (24) results in the formation of 

2,4-dimethylpyridine (21).  The conversion to 21 requires that the reactant first undergoes 

2,5- or 3,6-bridging to form Dewar-pyridine 27 as shown in Scheme 2.14. 
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Scheme 2.14  2,5- and 3,6-Bridging for 2,6-dimethylpyridine 

 

 

 

 

  

 

 

 

 

The subsequent azaprismane 28 undergoes regiospecific opening via cleavage by 

path a, but not path b which would result in the formation of 2,5-dimethylpyridine (23).  

Caplain and Lablache-Combier could not explain the reason why this transformation 

undergoes only by path a. 

 

Alternatively, shown in Scheme 2.15 the conversion of 2,3-dimethylpyridine (22) 

to a mixture of 2,5-dimethylpyridine (23) and 3,4-dimethylpyridine (25)  requires initial 

N-C4 bonding (1,4- but not 2,5- or 3,6-bonding), followed by cleavage of azaprismane 

(30) via both a and b pathways. 
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Scheme 2.15  1,4-Bridging for 2,4-dimethylpyridine 

 

 

  

 

 

 

 

 

These examples illustrate the arbitrary selectivity that must be imposed upon the 

possible modes of formation of the initially formed Dewar-pyridines as well as on the 

rearomatization of the subsequently formed azaprismanes.13 

 

Work on photochemistry of dimethylpyridines was reinvestigated by Pavlik and 

colleagues.17  It was discovered that dimethylpyridines undergo phototransposition upon 

irradiation in the vapor phase at 254 nm to yield different products than those reported by 

Caplain and Lablache-Combier.  It was found that the six dimethylpyridines  (21-26)   

could   be  divided  into two triads as shown in Scheme 2.16. 
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Scheme 2.16  Photo-interconversion of dimethylpyridines 

 

 

 

 

 

 

 

 

 

 

 The interconversions within each triad were suggested to occur via a mechanism 

involving 2,6-bonding followed by nitrogen migration and rearomatization as shown in 

Scheme 2.17 and 2.18. 
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Scheme 2.17  Phototransposition mechanism in triad 1 

 

 

 

 

 

 

 

 

 

 

Scheme 2.18  Phototransposition mechanism in triad 2 
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 In addition to the reactions within each triad, 2,5-dimethylpyridine(23), a member 

of triad 1, was observed to interconvert with 2,3-dimethylpyridine (22), a member of triad 

2.  These inter-triad reactions were suggested to occur via interconverting Dewar pyridine 

intermediates as shown in Scheme 2.19. 

 

Scheme 2.19  Inter-triad reaction 

 

 

 

 

 

 

 

 

 The intra-triad interconversions occur upon irradiation of the dimethylpyridine 

with light of 254 nm.  These reactions are quenched by adding nitrogen (15-20 Torr) to 

the reaction mixture and do not occur when the dimethylpyridines are irradiated with 

light of wavelength greater than 290 nm. 

 

 When the dimethylpyridines absorb light of λ = 254 nm the molecules undergo a 

π,π* transition leading to the formation of vibrationally excited S2(π,π*)vib molecules.  It 

should be noted here that if pyridine was excited into the relaxed vibrationally excited 

S2(π,π*)0 state, the formation of azaprefulvene would not take place since the carbon 
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atoms at ring position 2 and 6 are still far apart.  The structure of pyridine molecule, 

however, would transform in a way that C2 and C6 come close resulting in 2,6-bonding 

when it absorbs energy into a vibrationally excited state.  In the presence of nitrogen gas 

in the reaction mixture, this excess vibrational energy can be transferred from the 

dimethylpyridine S2(π,π*)vib to nitrogen leaving the dimethylpyridine molecules in the 

vibrationally relaxed S2(π,π*)0 state.  Since the addition of nitrogen was observed to 

quench the intra-triad interconversions, it was concluded that the intra-triad reactions 

occur from the vibrationally excited S2(π,π*)vib molecules and that the vibrationally 

relaxed S2(π,π*)molecules are less reactive in the 2,6-bonding mechanism. 

 

 The inter-triad interconversions of 2,3-dimethylpyridine (22) and 2,5-

dimethylpyridine (23) were enhanced by the addition of N2 gas to the reaction mixture, 

were observed upon irradiation with light of λ> 290 nm, and took place in the condensed 

phase at low temperature (-30oC).  These observations indicate that the inter-triad 

reactions occur from a state of lower energy than the S2 (π,π*) state.  This could be the S1 

(n,π*) or a T1 state.  

 

 The phototransposition of dimethylpyridines was suggested to occur via 2,6-

bonding cyclization resulting in a non-planar structure, azaprefulvene (BC-1). This 

intermediate (scheme 2.20) will allows nitrogen to migrate around the five sides of 

cyclopentenyl ring followed by rearomatization to form the isomeric products.   
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Scheme 2.20  Formation of azaprefulvene 

 

 

 

 

 

 An azaprefulvene intermediate was also suggested by Chachisvillis and Zewail18 

to result from deactivation of the S2(π,π*) state of pyridine.  These workers investigated 

the deactivation pathway for excited pyridine in solution phase using the technique of 

femtosecond transient spectroscopy.  In this work pyridine in acetonitrile solvent was 

excited with a femtosecond pulse of 266 nm.  This resulted in the population of 

vibrationally excited S1(n,π*)vib and S2(π,π*)vib molecules.   

 

 

Figure 2.1 Potential energy surface representing photochemistry and photophysics of    
       pyridine in solution phase18 
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The vibrationally excited S2(π,π*)vib molecule was observed to relax to its equilibrium 

geometry in less than 100 fs.  Two pathways were detected for this vibrationally relaxed 

S2(π,π*) molecule.  First, this S2(π,π*) molecule was observed to undergo internal 

conversion to the S1(n,π*) state in a time greater than 10 ps.  Second, the S2(π,π*) 

pyridine molecule rapidly (~2.2 ps) isomerizes to the azaprefulvene species by passing 

over a low energy barrier and through a conical intersection.  Theoretical calculation also 

have previously suggested that the S2(π,π*) pyridine would isomerize to the 

azaprefulvene molecule.  This azaprefulvene species is the same species that we suggest 

as the key intermediate in the cyclization-heteroatom migration mechanism.  According 

to Chachivisllis and Zewail this azaprefulvene can pass over a barrier and revert to the 

ground state of pyridine in greater than 2 ns.  

 

Zewail and co-workers also studied the deactivation dynamics of excited pyridine 

in the gas phase.
19  In these experiments, pyridine vapor was excited with femtosecond 

light pulses of 277 nm.  Although this is sufficient energy to populate the S1(n,π*) singlet 

state (0-0 = 287.6 nm) it cannot bring about excitation to the S2(π,π*) singlet which has a 

0-0 origin at 260.7 nm.  Furthermore, although the S1(n,π*) singlet is populated with 

excess vibrational energy, it is about 300 cm-1 below the onset of channel three activity.  

After this excitation, time-resolved mass spectroscopy showed a decay component of  

400 fs which describes the initial motion of pyridine on the pyridine potential surface.  

These experiments also revealed components of 3.5 ps and 15 ps which were assigned to 

Dewar-pyridine and azabenzvalene respectively.  Presummably, an azaprefulvene species 

is on the reaction coordinate leading to the azabenzvalene. 
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It is interesting to note that for pyridine-d5, the decay time for the d5-Dewar 

isomer increased from 3.5 ps to 5.1 ps but remained nearly the same, ~16 ps, for the d5-

azabenzvalene isomer.  According to these workers, the difference in the effect of 

deuteration is due to the differences in the motion of the nuclei during the formation of 

the transition states leading to the two valence isomers.  During the formation of the 

Dewar-pyridine all five deuterium atoms are involved in bending motions while during 

azabenzvalene formation C-C twisting is localized and only two deuterium atoms 

participate.  Thus, perdeuteration effects Dewar-pyridine formation to a greater extent 

than it effects azabenzvalene formation. 

 

Zewail and Colleagues20 have also studied the deactivation pathways for excited 

pyridine in the vapor phase using ultra-fast electron diffraction.  In these experiments, a 

femtosecond light pulse of 267 nm was used to excite pyridine vapor into the S1(n,π*) 

state with excess vibrational energy of approximately 2700 cm-1, well above the 1600   

cm-1 threshold for channel three behavior.  Sequentially delayed ultra-short electron 

pulses were then used to probe the resulting structural changes.  Interestingly, the results 

of this experiment were not consistent with either direct S1→(S0)vib internal conversion to 

a vibrationally excited ground state pyridine molecules or S1→S0 internal conversion by 

way of an  azabenzvalene  intermediate.   Instead, the results  indicated  that  the  primary  
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Scheme 2.21  Ultra-fast electron diffraction experiment 

 

 

 

 

 

product from the vibrationally excited S1(n,π*)vib pyridine molecule is a vibrationally 

excited ring-opened biradical (35) formed by cleavage of the C-N bond. 

 

 No suggestions have been given for the role that such a ring-opened species might 

have in pyridine photochemistry.  It is possible that the initially formed vibrationally 

excited biradical could undergo rapid vibrational relaxation followed, by recyclization to 

a ground state pyridine molecule.  This ring opening-ring closure pathway would 

therefore be an energy wasting process.  It is also interesting to speculate that this ring-

opened biradical could cyclize as shown in Scheme 2.22 and lead to the azaprefulvene  

 

Scheme 2.22   Cyclization of ring-opened biradical 

 

 

   

 

intermediate.  No experimental evidence exists for this pathway and it must therefore 

only be considered as a possibility. 
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2.1.1. Spectroscopic properties of pyridine and methylpyridines 
 

 The spectroscopic behavior of pyridine (1) and isomeric methylpyridines (6 and 7) 

was studied by Yamasaki and coworkers.21  The positions of the 0-0 bands of S1→S0 

absorption for pyridine, pyridine-d5, 2-methylpyridine (6), and 3-methylpyridine (7) in 

the gas phase are shown in Table 2.2.   

 

Table 2.2  Experimental energetic data of pyridine vapor and derivatives 

 

 S0→S1 (n,π*)0-0 S0→S2 (π,π*)0-0 

 nm (kcalmol-1) nm (kcalmol-1) 

Pyridine-h5            288 (99.3) 261 (110.0) 

Pyridine-d5            286 (100.0) 259 (110.4) 

2-MP (6)            288 (99.3) 266 (107.5) 

3-MP (7)            288 (99.3) 268 (106.7) 

2,6-DMP (22)            285 (100.3) 271 (105.5) 
 

  

The S1(n, π*)0-0 state of pyridine (1) and its methylpyridines (6-8) lie above their 

ground states at the same energy level of 99.3 kcal mol-1.  The 0-0 point level of pyridine-

d5 is about 0.7 kcalmol-1 higher than that of pyridine-h5.  The S2(π,π*) states of pyridine 

and the methylpyridines were located from the 0-0 bands to lie approximately 107 kcal 

mol-1 above their ground states. 
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 The methyl-substitution on pyridine gives rise to a significant red shift of the 

S0→S2 transition but the substitution has only a slight effect on the S0→S1 transition.  

This therefore results in a decrease in the energy gap between S1 and S2 states. 

 

 Fluorescence properties and non-radiative processes of pyridine, pyridine-d5 and 

methylpyridines were also reported. These workers observed that pyridine is only very 

weakly fluorescent with a fluorescence quantum yield of only 10-4 after excitation into 

the 0-0 band of the S0→S1(n,π*) transition.  Interestingly, the quantum yield of 

fluorescence decreases by a factor of 100 to 10-6 when the molecule is excited at the 

S0→S2 origin.  This decrease in the quantum yield of fluorescence with increasing energy 

of excitation has also been observed for benzene.  Thus, the fluorescence quantum yield 

of benzene has been reported to be only 0.57 as great at an excitation energy of 248 nm 

as when benzene is excited at 254 nm.22  This decrease in the fluorescence is quite 

dramatic.  Thus, the quantum yield for benzene fluorescence  has been reported to be 0.18 

at 253 nm, 0.10 at 248 nm, and 0 at 242 nm.23 

 

 This decrease in fluorescence has been taken to indicate that an efficient non-

radiative pathway for benzene or pyridine becomes available at vibrational energy levels 

above the 0-0 origin.  This new non-radiative pathway has been termed channel three.  

The onset for channel three in benzene has been reported to occur at ~3000 cm-1 above 

the S1 origin while for pyridine the onset occurs at ~1600 cm-1 above the S1 origin.24 This 

non-radiative pathway has been viewed to lead to a meta-bonded ground state prevalene 

diradical which can revert to the aromatic reactant or cyclize to a benzvalene isomer.  In 
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the case of pyridine,25 this channel three pathway has been shown to result in cleavage of 

the aromatic ring.20,26 

 

 The inherent S1 lifetimes of pyridine (1) and methylpyridines (6 and 7) were 

estimated to be 0.02-0.03 ns from the fluorescence quantum yields and the radiative rate 

constants derived from the oscillator strengths.27,28  The fluorescence quantum yields (φF) 

for excitation at 0-0 band of the S0→S1 and S0→S2 absorption were given in Table 2.3. 

 

Table 2.3  Fluorescence and Intersystem crossing quantum yields 

 

 S0→S1 (n,π*)0-0 S0→S2 (π,π*)0-0 

 φF (x10
-5

) φISC φF(x10
-5

) φISC 

Pyridine-h5 5.9 0.5 0. 27 0.02 

Pyridine-d5 6.0  0.46  

2-MP 3.5 0.6 0.44 0.08 

3-MP 5.4  0.30  

2,6-DMP 2.5  2.6  
 

 

 The φF decreases significantly as the excitation energy is changed from the value 

corresponding to the S0→S1 transition (~3.5-5.9×10-5) to the one corresponding to the 

S0→S2.  Furthermore, the changes in φF of all compounds were found to be independent 

on increasing the pressure or adding the foreign gas. 
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 The intersystem crossing yields (φISC) of the compounds were also determined.  

The φISC after S0→S1 excitation is greater than φISC after S0→S2 excitation.  The 

maximum value of φISC from S1(n,π*) state is 0.5 at a total pressure of 15 Torr.  The 

intersystem crossing yield of 2-methylpyridine (6) vapor reported by Roebke shows 

values of 0.21, 0.12, 0.08, 0.03 for excitation at 280, 275, 266, and 248 nm, respectively. 

 

 The phosphorescence properties of pyridine (1) and its methyl pyridines (6 and 8) 

were studied by Suzuki and coworkers.29  In this work, excitation of all sample vapors 

was carried out at the 0-0 band of S0→S1 absorption except for 2,6-lutidine (24) which 

does not have a well-resolved 0-0 band.  It was observed that the phosphorescence 

spectra of all compounds remain unchanged in shape and position under the excitation 

wavelength and the vapor pressure factors.  The phosphorescence characteristics of 

pyridine and its methyl derivatives in the vapor phase were shown in Table 2.4.   

 

Table 2.4  Phosphorescence maxima energy, lifetime, and quantum yield 

 

 λp
max nm (kcal mol-1) τp (µs) φp 

Pyridine 450 (63.6) 0. 27 4.4x10-7 

2-MP 420 (68.1) 0.44 2.4x10-7 

3-MP 430 (66.8) 0.30 - 

2,6-DMP 415 (69.0) 2.6 2.0x10-7 
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The phosphorescence spectra have onsets near 350 nm (81.7 kcal mol-1) for all 

compounds, but the intensity maximum blue shifts upon increasing the number of methyl 

groups in the ring.  This 0-0 transition energy was consistent with the value of 84.8 kcal 

mol-1 from the S0→T absorption spectrum of pyridine vapor reported by Japar and 

Ramsay.30  The phosphorescence maxima wavelength, λp
max, of pyridine is 450 nm, while 

the maxima for other compounds are shifted to the blue.  It should be noted that the 

excitation spectra of all compounds agree well with their absorption spectra. 

 

Furthermore, the phosphorescence lifetimes and quantum yields have also been 

reported.  The phosphorescence lifetimes of pyridine and methylpyridines are of the order 

of 1 µs which is considered as a short lifetime.  The phosphorescence quantum yield is 

also anomously low, on the order of 10-7.  These behaviors of pyridine and 

methylpyridines result from the strong vibronic coupling between the lowest triplet state, 

T1(π,π*) and the second lowest triplet state T2(n, π*) which gives rise to a pseudo-Jahn-

Teller interaction.  This interaction causes distortion of the potential surface of T1, 

resulting in the extremely weak phosphorescence of pyridine.31,32 

 

The energies and configurations of the various states of each pyridine and 

dimethylpyridines are summarized in Figure 2.2, 2.3, and 2.4. 
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Figure 2.2. Energy level diagram of pyridine 

 
 
 
 
 
 
 



  Literature review 
 

 30

 
 
 
 
 
 
 

107.5 kcalmol-1

99.3 kcalmol-1

84.8 kcalmol-1

S2(π,π*)

S1(n,π*)

S0

T2(n,π*)
T1(π,π*)

 

 

 

 

Figure 2.3  Energy level diagram of 2-methylpyridine 
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Figure 2.4  Energy level diagram of 3-methylpyridine 
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2.2. Photochemistry of cyanopyridines  
  

 Although the photochemistry of cyanopyridine vapors (36-38) has been 

experimentally studied in many works, their molecular  rearrangement  after  irradiation  

 

 

 

 

has never been discussed.  The photoproducts from irradiation of cyanopyridines are not 

yet known even though the effect of the cyano group which is considered to be a strong 

withdrawing group that is attached to the pyridine ring is interesting.  In this thesis, the 

phototransposition mechanism by irradiating cyanopyridines with certain energies will be 

studied.  The following is the spectroscopic properties of isomeric cyanopyridines which 

were obtained by spectroscopic study in various systems.   

 

2.2.1. Spectroscopic properties of cyanopyridines 
 

 Sarkar and coworkers4 have studied the absorption and luminescence behavior of 

isomeric cyanopyridines.  The S2(π,π*) states of the cyanopyridines (36-38) were located 

from the 0,0 bands in the vapor phase absorption spectra  and, as shown in Table 2.5, lie 

approximately  105 kcalmol-1  above their ground states.       In addition, the S0→S1 (n,π∗) 

 vapor phase spectrum of 4-cyanopyridine (38) was also observed with an origin at 335 

nm.  Such n → π* bands have also been detected in the spectra of hydrocarbon solutions 

N NCN

CN

N

CN

36 37 38
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of 3-cyanopyridine and 4-cyanopyridine (38) at high concentrations (~10-2M) but not in 

the spectrum of 2-cyanopyridine. 

 

Table 2.5  Experimental spectral and energetic data for cyanopyridines 

 
 S0→S2 (π,π*)0-0 nm(kcalmol-1) 

Compound Vapor Ethanol 

2-CNP 268 (106.7) 271 (105.5) 

3-CNP 269 (106.3) 271 (105.5) 

4-CNP 277 (103.3) 282 (101.4) 
 

 

 Although these cyanopyridines were found to be non-fluorescent, the 

phosphorescence excitation spectra in rigid polar media at 77 K reveal S0→S1 and S0→S2 

excitation bands and two relatively weak S0 → T  excitation  bands.   The lower energy  

S0 → T band which is very close to and overlaps with the phosphorescence emission band 

origin was independent of solvent polarity and was thus identified as the S0 → T1 (π,π*) 

transition whereas the sensitivity of the higher energy band (a few hundred wave 

numbers higher) to solvent polarity confirmed that this band is due to the S0 → T1(n,π*) 

transition.  The singlet and triplet energy levels of the cyanopyridine isomers determined 

from the phosphorescence excitation spectra at 77 K are shown in Table 2.6. 
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Table 2.6  Singlet and Triplet energy levels from phosphorescence excitation spectra at 77K 

 

(a) Singlet Energies 

 
 (π,π∗)0,0 nm(kcal mol-1) (n,π∗)0,0 nm(kcal mol-1) 

Compound Ethanol MCH Ethanol MCH 

2-CNP 273 (105.8) 287 (99.6) 344 (83.0) 360 (79.4) 

3-CNP 274 (104.4) 273 (105.8) 338 (84.6) 341 (83.9) 

4-CNP 285 (100.4) 318 (89.9) 333 (85.9) 354 (80.8) 
 

 These S2(π,π*) energies determined from the phosphorescence excitation spectra 

in ethanol shown in Table 2.6(a) agree well with the values given in Table 2.5 which 

were determined from absorption spectra in the vapor phase or in ethanol solvent.  In 

addition, the energy for the S1(n,π*) state at 333 nm ( 85.9 kcal mol-1) for 4-

cyanopyridine determined from the phosphorescence excitation spectrum, is very close to 

the value of 335 nm (85.4 kcal mol-1) determined from the vapor phase absorption 

spectrum.  Surprisingly, there is less agreement between the values in Table 2.5 and the 

data determined from the phosphorescence excitation spectra at 77 K in MCH solvent. 

 

(b) Triplet Energies 

 3(n,π∗)0,0 nm(kcal mol-1) 3(π,π∗)0,0 nm(kcal mol-1) 

Compound Ethanol MCH Ethanol MCH 

2-CNP 358 (79.9) 386 (74.1) 370 (77.3) 398 (71.9) 

3-CNP 355 (80.6) 366 (78.1) 369 (77.5) 371 (77.1) 

4-CNP 347 (82.4) 372 (76.9)  354 (80.8) 379 (75.5) 
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 From the values shown above, all three cyanopyridines have two low-lying triplet 

states which are separated by only several kcal mol-1.  In all three cases the lowest lying 

triplet state was identified as the π,π* state. 

  

 Furthermore, the energies of the lowest-lying triplet states were also determined 

from the phosphorescence band origins.  These data, phosphorescence lifetimes (τp), and 

quantum yields (φp) have also been reported.  These data are shown in Table 2.7. 

 

Table 2.7  Triplet energies from Phosphorescence band origins, phosphorescence lifetimes,  
        quantum yields 

 
 Phosphorescence band origins 

nm (kcalmol-1) 
τp(sec) φp(77 K) 

 Ethanol MCH Ethanol MCH Ethanol MCH 

2-CNP 375 (76.3) 401 (71.3) 2.0 0.8 0.32 0.10 

3-CNP 369 (77.5) 334 (77.1) 2.0 1.8 0.48 0.30 

4-CNP 358 (79.9) 383 (74.7) 0.6 0.4 0.69 0.25 
 

 

 The triplet energies determined from the onset of phosphorescence in ethanol 

matrix at 77K are in good agreement with the energies of the 3(π,π*) states determined 

from the phosphorescence spectra in ethanol which are shown in Table 2.6(b).  The 

phosphorescence lifetimes, which range from 0.6 to 2.0 seconds, are typical of the 

lifetimes of 3(π,π*) states. 
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 The intersystem crossing yields of these cyanopyridines were also determined in 

glassy hydrocarbon matrices.  The triplet yields were estimated from the efficiency of 

these molecules in sensitizing the biacetyl phosphorescence.  The measured values were 

0.8 ± 0.05 for 2-cyanopyridine and 3-cyanopyridine and 0.85 ± 0.05 for 4-cyanopyridine.  

Under this condition the triplet yields are very high. 

 

 The energies and configurations of the various states of each cyanopyridine are 

summarized in Figure 2.5, 2.6, and 2.7.  
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Figure 2.5  Energy level diagram of 2-Cyanopyridine 
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Figure 2.6 Energy level diagram of 3-Cyanopyridine 
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Figure 2.7  Energy level diagram of 4-Cyanopyridine 
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2.3. The triplet state of 4-cyanopyridine 
 

 Akiyama, Yamauchi, and Hirota33 studied the lowest triplet (T1) state of 4-

cyanopyridine by time-resolved EPR, phosphorescence, and ab initio calculations.  It has 

been known earlier that the phosphorescence lifetime of 4-cyanopyridine is very short.34  

The configuration character, however, is not clear whether it is 3nπ* or 3ππ*.  The 

contradiction among many research groups still remain for decades.35,36,37. 

 

 Unlike other pyridine derivatives, 4-cyanopyridine (38) has the ability to give a 

moderate phosphorescence signal which makes it possible in the study of T1 state both 

with EPR and phosphorescence method. 

 

 The solvent effect studied in EPR method was found to be independent on the 

character of the T1 state both in nonpolar and polar solvent.  This is different from the 

long understanding that the azaaromatics and aromatic carbonyls with nearby 3nπ* and 

3ππ* can be tremendously affected by solvents.  The temperature effect on the triplet 

state was also found to be small.  This was suggested to result from a strong vibronic 

coupling that produces a distorted T1 state with a very large separation between T1 and T2.   

 

 With phosphorescence results, the T1 state of 4-cyanopyridine was suggested to 

be of mixed nπ* and ππ* character.  Ab initio calculations predict a strong vibronic 

coupling between nπ* and ππ* states which leads to geometric distortion of the T1 state.  

This explains the low phosphorescence that was generally observed in pyridine analogs. 



 

 

CHAPTER III 
 

Statement of purpose 
 

 In this thesis, the photochemical and photophysical properties of pyridine 

derivatives has been studied.  Previous work in our laboratory provided evidence that 

dimethylpyridines undergo phototransposition upon irradiation in the vapor phase via 

2,6-bonding-nitrogen migration mechanism and rearomatization instead of the 

mechanism involving an azaprismane intermediate suggested by Caplain and Lablache-

Combier.14  The purpose of this thesis is to determine if the 2,6-bonding-nitrogen 

migration mechanism is general to other pyridine derivatives and to the parent pyridine 

molecule.   

 

 To determine this the vapor phase photochemistry of 2-,3-, and 4-methylpyridine 

(6-8) and 2-, 3-, and 4-cyanopyridine (36-38) (Scheme 3.1) has been studied. 

 

Scheme 3.1. Cyanopyridines and methylpyridines 
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 In order to more completely monitor the phototransposition reactions, the 

dideuteratedcyanopyridines 36-4,6-d2, 37-2,6-d2, and 38-2,6-d2 shown in Scheme 3.2 

will be synthesized and their photochemistry in the vapor phase studied. 

 

Scheme 3.2  Dideuteriocyanopyridine 

 

 

 

 

 

 In order to study these photoreactions in the parent pyridine molecule, extensive 

deuterium labeling will be employed.  The six possible trideuteriopyridines shown in 

Scheme 3.3, which are analogous in their substitution patterns to the dimethylpyridines, 

will be synthesized and their vapor phase photochemistry studied. 

 

Scheme 3.3  Trideuteriopyridines 
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 These reactions will be monitored by 1H-NMR spectroscopy which will allow the 

transposition of the two protons in each molecule to be followed.  In addition, the three 

possible isomeric tetradeuteriopyridines shown in Scheme 3.4 will also be synthesized 

and their vapor phase photochemistry studied.  

 

Scheme 3.4  Tetradeuteriopyridines 
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CHAPTER IV 
 

Results and discussion 
 

4.1. Photochemistry of cyanopyridines in the vapor phase 
 

 The photochemistry of cyanopyridines 36-38 was studied by irradiating the vapor 

(0.3-0.4 Torr) in a 3 liter quartz reaction vessel at 254 nm or at wavelengths greater than 

290 nm.  The 0-0 origin of 36, 37, and 38 are 268, 269, and 277 nm respectively.  

  

4.1.1. Irradiation of 2-cyanopyridine (36) at 254 nm 
 

2-Cyanopyridine (36) vapor (0.3-0.4 Torr) was irradiated at 254 nm with four 

low-pressure mercury lamps in a Rayonet reactor for 15, 30, 60, 75, or 90 minutes.  GC 

analysis of the resulting product mixtures showed that irradiation resulted in the 

consumption of various amounts of the reactant (retention time 12 minutes) and the 

formation of 3-cyanopyridine (37), and 4-cyanopyridine (38) (retention time 7 and 6 

minutes, respectively).   

 

Scheme 4.1  Photolysis of 2-cyanopyridine (36) 
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Figure 4.1 shows the GC trace observed after 90 minutes of irradiation to 

illustrate a typical GC analysis. 

 

 

Figure 4.1  GC trace of 2-cyanopyridine irradiated for 90 minutes 

 

 After each irradiation the resulting product mixture was also analyzed by 400 

MHz 1H-NMR in acetone-d6 solvent.  Figure 4.2a and 4.2b shows the 1H NMR spectra of 

2-cyanopyridine (36) before and after irradiation at 254 nm for 90 minutes.  Before 

irradiation, the 1H-NMR spectrum in Figure 4.2a shows the signals of 38 only at δ 

7.63(H5), 7.80 (H3), 8.08 (H4) and 8.63 (H6).  After irradiation, the 1H-NMR spectrum 

in Figure 4.2b also shows signals for 4-cyanopyridine (38) at δ 7.63(H3, H5) and at δ 

8.73 (H2, H6) and also signals for 3-cyanopyridine (37)  at  δ 7.43 (H5),  8.12 (H4)  and  
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 Figure 4.2  (a) 1H-NMR spectrum of 2-cyanopyridine before irradiation 

                (b)  1H-NMR spectrum of 2-cyanopyridine after 90 min of irradiation 
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8.87 (H2).  The H6 signal of 37 is overlapped with the signal for the H3 and H5 of 38 at δ 

8.87 and thus it cannot be observed.  

 

 Table 4.1 shows the data obtained for the irradiation of 2-cyanopyridine (36) at 

254 nm with 4 lamps at the various irradiation times. 

 

Table 4.1  Experimental details for photolysis of 2-cyanopyridine (36) 

 
Exp 
no. 

Irradiation 
time 
(min) 

Sample  
weight 
 (mg) 

Recovered 
weight 
 (mg) 

2-CNP 
consumption 

(%) 

3-CNP 
formation 

(%) 

4-CNP 
formation 

(%) 

1 15 13 5 4.9 3.6 1.29 

2 60 20 7 22.7 18.4 4.31 

3 75 18 9 27.0 22.4 4.64 

4 90 17 8 35.3 29.4 5.92 
 

The ratio of 37 to 38 as a function of irradiation time is shown in Figure 4.3.  

Over the range of 15-90 minutes of irradiation the ratio increased linearly from 2.8-5.0. 
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Figure 4.3  Photoproduct ratio VS. irradiation time from irradiation of 36 

 
 
 

Assuming that this plot can be extrapolated to zero minutes of irradiation time 

leading to a ratio of 2.40:1, the obtained ratio of photoproduct 37 and 38 suggests that 

both photoproducts must have been formed at early irradiation.  This shows that 

irradiation of 36 directly results in the formation of 37 and 38.  Thus, these two new 

isomers are primary photoproducts of 36.  It should be noted here that irradiation of 36 

for less than 15 minutes could not give a detectable amount of photoproduct.  In addition, 

since the ratio of 37:38 increases with irradiation time, it appears that once formed, 38 

phototransposes to 37 faster than 37 is transposed.  Subsequent experiments have 

confirmed that 38 is substantially more photoreactive than the 37 isomer. 
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4.1.2. Irradiation of 3-cyanopyridine (37) at 254 nm  
 

      3-Cyanopyridine (37) vapor (0.3-0.4 Torr) was irradiated at 254 nm with four 

low-pressure mercury lamps in a Rayonet reactor for 60, 120, 240, and 360 minutes. GC 

analysis of the resulting product mixtures showed that irradiation resulted in the 

consumption of 3-cyanopyridine (37) (retention time 7 minutes) and the formation of 2-

cyanopyridine (36) (12 minutes) and 4-cyanopyridine (38) (6 minutes). 

 

Scheme 4.2  Photolysis of 3-cyanopyridine (37) 

 

 

 

 

The GC trace of 37 shown in Figure 4.4 was observed after 360 minutes of 

irradiation indicates the typical formation of 36 and 38 isomers.  The long irradiation 

time required shows that the reactivity of 3-cyanopyridine (37) is much less than that of 

2-cyanopyridine (36).  Even after prolonged irradiation, only a small amount of 3-

cyanopyridine (37) was converted to 36 and 38. 
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Figure 4.4  GC trace of 3-cyanopyridine at 254 nm irradiated for 360 minutes 

 

After each irradiation the resulting product mixture was also analyzed by              

1H-NMR in acetone-d6 solvent.  Figure 4.5a shows the 1H-NMR spectrum of 3-

cyanopyridine (37) before irradiation.  The proton signals of 37 are located at δ 7.65 (H5), 

8.26 (H4), 8.89 (H6), and 9.00 (H2).  After irradiation for 360 minutes, the 1H-NMR 

spectrum in Figure 4.5b shows the proton signals of products 36 and 38.  The proton 

signals at δ 7.60(H5), 7.81 (H3), 7.94 (H4), and 8.62 (H6) are due to the formation of 2-

cyanopyridine (36) and the proton signals at δ 7.65 (H3,5) and 8.73 (H2,6) are due to the 

formation of 4-cyanopyridine (38).  Again, the signal due to the H2 and H6 of 4-

cyanopyridine (38) is overlapped with the signal due to the H6 of 3-cyanopyridine (37).  

Thus, these protons cannot be distinguished. 
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Figure 4.5  (a) 1H-NMR spectrum of 3-cyanopyridine before irradiation 

         (b) 1H-NMR spectrum of 3-cyanopyridine after 360 min of irradiation  
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Table 4.2 shows the data obtained for the irradiation time of 60, 120, 240, and 360 

minutes.   

 

Table 4.2  Experimental details for photolysis of 3-cyanopyridine (37) 

 
Exp 
no. 

Irradiation 
time 
(min) 

Sample  
weight 
 (mg) 

Recovered 
weight 
 (mg) 

3-CNP 
consumption 

(%) 

4-CNP 
formation 

(%) 

2-CNP 
formation 

(%) 

5 60 11 8 3.0 1.58 1.46 

6 120 9 7 4.5 2.08 2.45 

7 240 9 4 8.9 3.80 5.06 

8 360 13 8 7.5 2.89 4.64 
 

 

 In addition, the ratio of 36 and 38 as a function of irradiation time shown in 

Figure 4.6 shows that over the range of 60-360 minutes of irradiation, the ratio increases 

linearly from 0.9 to 1.6.  This indicates that during this period, 2-cyanopyridine (36) is 

more formed than 4-cyanopyridine (38).  
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Figure 4.6  Photoproduct ratio VS Irradiation time from irradiation of 37 

 

 Extrapolation to zero minutes of irradiation gives a ratio of 0.84:1.  This value 

indicates that both 36 and 38 are formed at early irradiation time and therefore they are 

primary products.  Since the ratio of 36:38 increases at longer irradiation time, it appears 

that once formed, 38 is consumed in a second photoreaction faster than 36. 
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4.1.3. Irradiation of 4-cyanopyridine (38) at 254 nm 
       

      4-Cyanopyridine (38) vapor (0.3-0.4 Torr) was irradiated at 254 nm with four 

low pressure mercury lamps in a Rayonet reactor for a variety of irradiation times of 23, 

45, 70, and 90 minutes.  GC analysis of the resulting product mixtures showed that 

irradiation resulted in the consumption of reactant (retention time 6 minutes) and the 

formation of  3-cyanopyridine (37) (7 minutes), and 4-cyanopyridine (38) (12 minutes). 

 

Scheme 4.3  Photolysis of 4-cyanopyridine (38) 

 

 

 

 

 

 The GC result observed from 90 minutes of irradiation shown in Figure 4.7 

indicates that 38 is consumed and 37 and 36 are formed.  However, the yields of 36 and 

37 from 38 are quite different.  3-Cyanopyridine (37) which appears to be the most 

photostable isomer is formed in a much higher yield than the yield of 2-cyanopyridine 

(36).  
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Figure 4.7  GC trace of 4-cyanopyridine irradiated at 254 nm for 90 minutes 

 

 After each irradiation the residue was analyzed in acetone-d6 by 1H-NMR 

spectroscopy.  Figure 4.8a and 4.8b shows the 1H-NMR spectra of 4-cyanopyridine (38) 

before and after irradiation at 254 nm for 90 minutes.  Before irradiation, the 1H-NMR 

spectrum shown in Figure 4.8a shows the proton signals of 38 only at δ 7.80(H3,5) and 

8.85(H2,6).  After irradiation for 90 minutes, the 1H-NMR spectrum shown in Figure 

4.8b reveals that the proton signals of product 36 and 37 were observed.  The proton 

signals at δ 7.75 (H5), 7.96(H3), 8.10(H4), and 8.80(H6) are due to the formation of 2-

cyanopyridine (36).  The proton signals at δ 7.65(H5), 8.27(H4), 8.89 (H6), and 9.02 (H2) 

are due to the formation of 3-cyanopyridine.  
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Figure 4.8  (a) 1H-NMR spectrum of 4-cyanopyridine before irradiation 

        (b) 1H-NMR spectrum of 4-cyanopyridine after 90 min of irradiation  
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The proton at position 6 of 3-cyanopyridine (37) also gives the signal that overlaps with 

the proton at position 2 and 6 of 4-cyanopyridine (38) as previously mentioned.       

  

Table 4.3  Experimental details for photolysis of 4-cyanopyridine (38) 

 
Exp 
no. 

Irradiation 
time 
(min) 

Sample  
weight 
 (mg) 

Recovered 
weight 
 (mg) 

4-CNP 
consumption 

(%) 

3-CNP 
formation 

(%) 

2-CNP 
formation 

(%) 

9 23 15 10 26.6 24.5 2.13 

10 45 11 10 39.7 36.8 2.91 

11 70 13 10 47.0 43.5 3.50 

12 90 16 15 59.8 54.3 5.55 
 

 Figure 4.9 shows the ratio of 3-cyanopyridine (37) to 2-cyanopyridine (36) as a 

function of irradiation time. 
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Figure 4.9  Photoproduct ratio VS. Irradiation time from irradiation of 38 
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 Although there is more scatter in this data, the ratio still remains constant at about 

13:1.  This means that 37 and 36 are the primary products.  However, 37 is the major 

product. 

 

 It should be noted again that the photochemical reactivity of cyanopyridine 

isomers (36-38) are not similar.  This can be observed from the GC results shown in 

Figure 4.1, 4.4, and 4.7 together with result data shown in Table 4.1, 4.2, and 4.3, which 

exhibit that after irradiation, their time of the formation of photoproducts are different.  4-

Cyanopyridine (38) seems to be the most reactive because it forms both photoproducts, 

36 and 37 in significant amounts within the time range from 23 to 90 min.  The 59.8 % 

comsumption of 38 and 54.3 % formation of 37 shows that 4-cyanopyridine (38) is the 

most reactive isomer.  2-Cyanopyridine (36) was also found to be more reactive than 3-

cyanopyridine (37) because it forms significant amounts of photoproducts within time 

range from 15 to 90 minutes which is in the same reaction time of 4-cyanopyridine (38).  

However, it is less reactive than 38 since only about 35% was consumed after 90 min. of 

irradiation.  In contrast to 38 and 36, 3-cyanopyridine (37) was observed to be only 7.5% 

consumed even after 360 minutes of irradiation time.  The difference in reactivity among 

the cyanopyridine isomers is expected to result from the stability of their intermediates, 

which are formed in the excited state.  The mechanistic scheme and cause of this reactive 

difference will be discussed in a later section.     
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4.1.4. Irradiation of 2-cyanopyridine (36) at ≥ 290 nm 
 

 2-Cyanopyridine (36) vapor ( 0.3-0.4 Torr) was also irradiated at wavelength ≥ 

290 nm using the pyrex filtered light from 16 lamps that emit a broad band of light with a 

maximum at 300 nm.  This irradiation wavelength precludes S0→S2 (π,π*) excitation 

[(S2(π,π*)0,0 = 268 nm)] but allows direct excitation to the S1(n,π*) state [(S1(n,π*)0,0 = 

344 nm)] and population of the T1 state via intersystem crossing. 

 

 The data in Table 4.4 shows that after 24 hours of irradiation, 18.3% of the 

reactant 2-cyanopyridine (36) was consumed but that the yields of 3-cyanopyridine (37) 

and 4-cyanopyridine (38) were only 9.6 % and 8.7 % respectively.  By comparison with 

the data in Table 4.1, after irradiation at 254 nm until 22.7 % of 36 was consumed, the 

yields of 37 and 38 were 18.4 and 4.3 % respectively.  Thus, irradiation with light ≥ 290 

nm leads to decreased yields of the phototranposition products and to a different ratio of 

their yields.  This indicates that phototransposition is less effective from the S1(n,π*) 

singlet or from the lowest triplet state of 2-cyanopyridine (36). 

 

Table 4.4  Experimental details for photolysis of 36 at ≥ 290 nm 

 
Exp 
no. 

Sample  
weight 
 (mg) 

Recovered 
weight 
 (mg) 

Irradiation 
time 

(hours) 

2-CNP 
consumption 

(%) 

3-CNP 
formation 

(%) 

4-CNP 
formation 

(%) 

13 7 7 24 18.3 9.6 8.7 
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Figure 4.10  GC trace of 2-cyanopyridine irradiated at ≥ 290 nm for 24 hours 

 

 

4.1.5. Irradiation of 3-cyanopyridine (37) at ≥ 290 nm 
 

        3-Cyanopyridine (37) vapor (0.3-0.4 Torr) was also irradiated by wavelengths 

at ≥ 290 nm using pyrex filtered light from 16 lamps which emit a broad band of light 

with a maximum at 300nm.  This irradiation wavelength precludes S0→S2(π,π*) 

excitation [(S2(π,π*)0,0 = 269 nm)] but allows direct excitation to the S1(n,π*) state 

[(S1(n,π*)0,0 = 338 nm)] and population of the T1 state via intersystem crossing. 

 

 The data in Table 4.5 shows that after 24 hours of irradiation, 4.1 % of the 

reactant 3-cyanopyridine was consumed while the yield of 2-cyanopyridine (36) and 4-
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cyanopyridine (38) were observed to be 3.1 % and 1.0 % respectively.  The data in Table 

4.2, however, shows that after 4 hours of irradiation at 254 nm, when a comparable 

amount of 37 was consumed, the yields of 36 and 38 were 3.2 % and 0.8 % respectively.  

Thus, changing the excitation wavelength from 254 nm to ≥ 290 nm results in decreased 

yields of the phototransposition products and a different ratio of 36 to 37 and again 

suggests that phototransposition is less effective from the S1(n, π*) singlet or from the 

lowest triplet state of 3-cyanopyridine (37). 

 

Table 4.5  Experimental details for photolysis of 37 at ≥ 290 nm 

 
Exp 
no. 

Sample  
weight 
 (mg) 

Recovered 
weight 
 (mg) 

Irradiation 
time 

(hours) 

3-CNP 
consumption 

(%) 

4-CNP 
formation 

(%) 

2-CNP 
formation 

(%) 

14 10 8 24 4.1 1.0 3.1 
 

 

 

 

 

 

 

 

 

 

Figure 4.11  GC trace of  3-cyanopyridine irradiated at ≥ 290 nm for 24 hours 
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 The GC data from ≥290-nm irradiation shown in Figure 4.11 is analogous to that 

from 254 nm irradiation.  The GC peak of 37 is also high in intensity comparing to 

signals of 36 and 38 indicating that 3-cyanopyridine (37) is very stable in both 

wavelength excitations. 

 

 

4.1.6. Irradiation of 4-cyanopyridine (38) at ≥ 290 nm 
 

      4-cyanopyridine (38) vapor was irradiated at ≥ 290 nm using the pyrex filtered 

light from 16 lamps that emit a broad band of light with a maximum at 300 nm.  The data 

in Table 4.6 obtained by irradiation of 4-cyanopyridine at ≥ 290 nm for 24 hours shows 

that 4-cyanopyridine (38) phototransposed to only one product, 3-cyanopyridine (37).  

After 1.9 % consumption of 38, the yield of 37 is only 1.9 %.  2-Cyanopyridine (36) was 

not observed as a product in this experiment.  This result indicates that 4-cyanopyridine 

(38) reactivity at the absorption of ≥ 290 nm energy is much less than that from the 

irradiation at 254 nm.    

 

Table 4.6  Experimental details for photolysis of 38 at ≥ 290 nm 

 

 

 

Exp 
no. 

Sample  
weight 
 (mg) 

Recovered 
weight 
 (mg) 

Irradiation 
time 

(hours) 

4-CNP 
consumption 

(%) 

3-CNP 
formation 

(%) 

2-CNP 
formation 

(%) 

15 8 6 24 1.9 1.9 0.0 
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 Figure 4.12 shows the GC trace of 4-cyanopyridine (38) after irradiation at λ ≥ 

290 nm.  The 2-cyanopyridine (36) peak is not observed indicating that it is probably not 

formed or its intensity cannot be detected by GC analysis.  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.12  GC trace of 4-cyanopyridine irradiated at > 290 nm for 24 hours 

 

 The result from this experiment gave some interesting information that should be 

pointed out.  The formation of 3-cyanopyridine (37) from irradiation of 4-cyanopyridine 

(38) indicates that 3-cyanopyridine (37) is formed faster than 2-cyanopyridine (36).  This 

results in the formation of only one product, 37, after 24 h of irradiation.  It seems to be 

consistent with the previous experiments for irradiation at 254 nm of cyanopyridines that 

37 is more stable than the other isomers (36 and 38) and it is usually formed first.  

However, when this result shown in Figure 4.12 is considered together with the result 
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from the experiment of 3-cyanopyridine (37) shown in Figure 4.11, it gives an interesting 

result.  The GC trace from irradiation of 3-cyanopyridine (37) at ≥ 290 nm shows that the 

photoproducts 36 and 38 are formed after 24 h of irradiation.  At the same irradiation 

time, 38 is found to form only one photoproduct.  This means that 37 is more reactive 

than 38 by excitation at ≥ 290 nm.  This comment agrees well with the calculated percent 

consumption shown in Table 4.5 and 4.6.  It is about 4.1% of 3-cyanopyridine (37) that 

was consumed whilst only 1.9 % of 4-cyanopyridine (38) was consumed for the same 

irradiation period.  Furthermore, the GC result in Figure 4.10 shows that 2-cyanopyridine 

(36) is more reactive than any other cyanopyridine isomers.  It exhibits the percent 

consumption at 18.3 %.  Hence, it can be concluded that 2-cyanopyridine (36) is the most 

reactive and 4-cyanopyridine is the most unreactive upon irradiation at ≥ 290 nm. 
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4.1.7. Mechanistic discussion for cyanopyridines 
  

 The experimental results from vapor phase photochemistry of isomeric 

cyanopyridine (38-40) show that irradiation of any one isomer results in the formation of 

the other two as shown in Scheme 4.4.   

 

Scheme 4.4  Photo-interconversion of cyanopyridines 

 

 

 

  

 

 

 

 

 These interconversions are consistent with a mechanism involving 2,6-bridging, 

nitrogen migration around five sides of cyclopentenyl ring, and rearomatization as shown 

in Scheme 4.5. 
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Scheme 4.5  Phototransposition mechanism of cyanopyridines 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Cyanopyridines 36-38 are expected to interconvert by this mechanism.  

Cyclization between positions 2 and 6 of any one of the cyanopyridine 36-38 results in 

the formation of a bicyclic azaprefulvene intermediate.  Nitrogen migration around the 

five sides of the cyclopentenyl ring, followed by rearomatization, results in the formation 

of the other two cyanopyridines.  For example, excitation of 4-cyanopyridine (38) will 

convert 38 to azaprefulvene BC-38.  Nitrogen migration of this intermediate can be 
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clockwise or counterclockwise.  Counterclockwise nitrogen migration would result in the 

formation of BC-37 which rearomatizes to 3-cyanopyridine (37).  The second nitrogen 

migration converts BC-37 to BC-36 and this intermediate will rearomatize to 2-

cyanopyridine (36).  The clockwise nitrogen migration of BC-40 also results in the 

formation of BC-37’, which rearomatize to 3-cyanopyridine (37), one of the 

photoproduct.  The second nitrogen migration from BC-37’ results in the formation of 

BC-36’ and will aromatize to 36.  Thus, these photoproducts are consistent with the 

suggested mechanism. 

 

Since the photoproduct 36 from BC-36 and BC-36’ are identical, at this level of 

labeling, they cannot be distinguished.  Similarly, the photoproduct 37 resulting from 

BC-37 and BC-37’ are also undistinguishable. 

 

 It should be pointed out that the experimental results indicate that 38 is very 

reactive when it was excited at 254 nm.  This reactivity is consistent with the mechanistic 

diagram shown in Scheme 4.5.  It is likely that BC-37 is more stable than BC-38.  Thus 

the conversion from BC-38 to BC-37 can compete effectively with the conversion from 

BC-38 to 38.  This is the reason why 4-cyanopyridine (38) is reactive and 3-

cyanopyridine (37) is unreactive.  Moreover, the mechanism suggests that photolysis of 

38 would result in the formation of 36 and 37 in a ratio of 1:1.  The data shown in Table 

4.3, however, shows that after 90 minutes of irradiation, the yield of 37 was found to be   

~ 10 times greater than 36.  This result is not consistent with the statistical ratio suggested 

in Scheme 4.5.  The reason for this observation can be explained in term of the stability 
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of intermediate BC-37(37’).   The cyclopentenyl radical BC-37 (37’) is stabilized by 

delocalization of the odd electron with the cyano group located at the end of the allyl 

system.  This stabilization is not possible in BC-36 (36’) since the cyano group is at the 

bridgehead and not conjugated with the allyl system. Thus, conversion of the more stable 

BC-37 (37’) to the less stable BC-36 (36’) would be expected to be slower than the 

rearomatization of BC-37 (BC-37’) to 37. 

 

 Irradiation of 3-cyanopyridine (37) would result in the formation of BC-37.  

Nitrogen migration in the counterclockwise direction would result in the formation of 

BC-38 which is the precursor of 38, one of the photoproduct.  The second nitrogen 

migration would form BC-37’ which upon rearomatization would result in the formation 

of starting material, 37.  The other photoproduct, 36, would result from nitrogen 

migration from BC-37 in the opposite direction.  In this case, the intermediate BC-36 and 

BC-36’ would result from the first and second nitrogen migration, respectively.  This 

intermediate would rearomatize to 36, the second photoproduct.  On a statistical basis this 

mechanism shows that irradiation of 37 will form 36 and 38 in a ratio of 2:1.  

Quantitative analysis from irradiation of 3-cyanopyridine (37) shows that after 360 

minutes of irradiation the ratio of 36:38 is close to 2:1, which is consistent with the 

mechanistic interpretation.  It should be noted that at short irradiation times, the 

photoproduct ratio was found to be less than 1.  This indicates that the photolysis of 37 

has not reached a photo-equilibrium point.  Therefore, the ratio of photoproduct formed is 

different from the statistically expected ratio. 
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 Irradiation of 2-cyanopyridine (36) would result in the formation of BC-36.  

Nitrogen migration in the clockwise direction would result in the formation of BC-37 

which rearomatizes to the photoproduct, 37.  The second nitrogen migration would form 

BC-38 which rearomatizes to another photoproduct, 38.  In the opposite direction, BC-36 

undergoes nitrogen migration to form BC-38’ which would rearomatize back to the 

starting material, 36.  The second nitrogen migration would result in the formation of 

BC-37’ which would rearomatize to 37.  From the mechanism, the ratio of photoproduct 

37 to 38 should be 2:1.  However, because of the resonance stabilization of BC-37 (37’), 

this ratio would be expected to be experimentally higher than 2:1.  Quantitative analysis 

shows that irradiation for 15 minutes of 2-cyanopyridine (36) forms 37 and 38 in a ratio 

of 2.5:1.  However, after prolonged irradiation time to 90 minutes, the ratio increases to 

be about 5:1.  This is due to the greater stability of BC-37 (37’) as previously discussed. 

 

 The photochemical reactivity of cyanopyridines (36-38) described above is found 

to be consistent with the substituent-site influence on stability of allylic radicals obtained 

from theoretical calculation by Lehd and Jensen.38 Using AUMP2 method, the radical 

stabilization energies of electron withdrawing CN group at position 1 and 2 of the allyl 

radical were calculated as 9.9 and 3.0.  These values can be applied to the allylic system 

in azaprefulvene structures BC-36, BC-37, and BC-38.  BC-37 has the cyano group at 

the end of the allyl system and should be the most stable.   BC-38, however, has the 

cyano substituent at position 2 of the allyl system and should be less stable.  These 

interpretations are consistent with the experimental results showing that 3-cyanopyridine 
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(39) is much less reactive than 4-cyanopyridine (38).  Scheme 4.6 shows the bicyclic 

radicals resulting from photolysis of 36, 37, and 38. 

 

Scheme 4.6  Radical stabilization of cyanopyridines 

 

 

 

 

 

 

 

 

 

   

  

 With the relative radical stabilization energy of 9.0, BC-37 is expected to be the 

most stable intermediate due to the resonance delocalization of the allylic system which 

is extended into the CN group.  In the case of BC-38, its stability is expected to be less 

than the stability of BC-37 because it does not have resonance stabilization with CN.  

This is consistent with the relative stabilization energy of 3.0 in BC-38.  Thus, 38 is more 

reactive than 37. 

 

  In a similar way, BC-36 does not have resonance stabilization due to the CN 

group.  Therefore, BC-36 should be less stabilized than BC-37 and BC-38 because the 
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CN group is not located at position 1 or position 2 in allylic system.  2-Cyanopyridine (36) 

should be the most reactive species.   

 

However, there are some other factors in BC-36 structure that should be 

considered.  BC-36 is an azaprefulvene that contains the CN group at ring position 2.  It 

should be noted that the substituents at C2 and C6 can sterically inhibit the formation of 

azaprefulvene.  Scheme 4.7 shows the azaprefulvene structure with R groups on C2 and 

C6. 

 

Scheme 4.7  Steric hindrance from substituents at C2 and C6 

 

 

 

 

The R groups attached to C2 and C6 come closure together as 2,6-bridging occurs, 

inhibiting the formation of azaprefulvene.  The larger the R groups, the greater the 

inhibition to its reactivity.  In this case, steric hindrance from CN group inhibits the 

reaction.  This causes BC-36 to be less reactive than BC-38 which does not contain any 

CN group at ring position 2 and 6.  In addition, the BC-36 intermediate also would 

undergo energy wasting process by one nitrogen migration to itself (Scheme 4.5).  These 

result in the less reactive 2-cyanopyridine (36) than 4-cyanopyridine (38).  Therefore, the 

reactivity of cyanopyridines should be in order of 38>36>37, which is consistent with the 

experimental results. 
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 Moreover, to ensure that the Dewar-pyridine and azaprismane mechanisms are 

not involved in the photo-reaction of cyanopyridine, these mechanistic pathways are 

examined.  Scheme 4.8 shows that, irradiation of 2-cyanopyridine (36) would either form  

 

Scheme 4.8  Dewar-pyridine mechanism of 2-cyanopyridine 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

Dewar-pyridine 39 (3,6-bridging) or 40 (2,5-bridging).  From Dewar-pyridine 39, it 

would undergo bond cleavage between C5 and C6 and bond linkage between C2 and C5 

to form Dewar-pyridine 39a which will rearrange to the starting material, 36.  In the other 

pathway, 39 would undergo bond cleavage between C3 and C4 and bond linkage between  

C4 and N1 to  form  Dewar-pyridine 39b, which would also rearrange to the starting 
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material, 36.  The Dewar-pyridine 40 would undergo bond cleavage between C2 and C3 

followed by bond linkage between C3 and C6 to form 40a.  This structure will also 

rearrange back to cyanopyridine 36, the starting material.  Interestingly, the bond 

cleavage between C4 and C5 of 40 and bond forming between N1 and C4 would result in 

the formation of 40b.  This species will rearrange to 4-cyanopyridine (38).  This 

mechanistic examination clearly shows that rearrangement of 2-cyanopyridine (36) by the 

Dewar-pyridine mechanism would lead to only photoproduct 38 but not 37 that was also 

observed in 1H-NMR spectrum.  This indicates that the phototransposition of 2-

cyanopyridine (36) does not occur via the Dewar-pyridine pathway.   

 

 Another possible mechanism is also examined.  The azaprismane-intermediate 

mechanism is shown in Scheme 4.9.  

 

Scheme 4.9  Azaprismane mechanism: 3,6-bridging 

 

 

 

 

 

 

Dewar-pyridine 39 (3,6-bridging) would undergo  [2+2]  cycloaddition between 

C5 and N1 as well as C4 and C2 to form azaprismane structure 41.  Three distinct bond 

cleavages of 41 would result in the formation of 39, 41a, and 41b.  In this case, only 41b 

would rearrange to form 4-cyanopyridine 38.   
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Dewar-pyridine 40 (2,5-bridging) can also undergo [2+2] cycloaddition as shown 

in Scheme 4.10 between C3 and N1 as well as C4 and C6 to form azaprismane 42.  Three 

distinct cleavages of 42 would result in 40, 42a, and 42b.  In the case of 45a, it will 

rearomatize back to the starting material, 38.  The 42b structure will rearomatize to 3-

cyanopyridine (37).    

 

Scheme 4.10  Azaprismane mechanism: 2,5-bridging 

 

 

 

 

 

 

 

Furthermore, the other azaprismane structure of 2-cyanopyridine (36) can result 

from the 1,4-bridging between C4 and nitrogen atom to form Dewar-pyridine 43 as 

shown in Scheme 4.11. 
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Scheme 4.11  Azaprismane mechanism: 1,4-bridging 

   

 

 

 

 

 

 

[2+2] cycloaddtion of 43 result in the formation of azaprismane 44 which would undergo 

bond cleavage either by a or b pathway.  The resulting Dewar-pyridine structure 44a  

would rearrange to 37 and 44b would rearrange back to the starting material, 36.  From 

all these mechanistic possibilities, the statistical ratio of photoproducts 37 and 38 is found 

to be 2:1.  This value is consistent with the quantitative analysis showing that the ratio is 

greater than 2:1 since the short irradiation time and it increased constantly for the range 

from 15-90 minutes.  However, it indicates that 2-cyanopyridine (36) should be very 

unreactive even though the experimental photoproduct ratio indicates that 3-

cyanopyridine (37) is the least reactive isomer.  If the arbitrary selectivity regarding to 

the bond formation or cleavage in transposition pathway may be present, it is difficult to 

explain how these decisions occur. 
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4.2. Photochemistry of methylpyridines in vapor phase 
 

 The photochemistry of methylpyridines (6-8) was studied by irradiating the 

vapors (2.5-3.5 Torr) in a 3-L quartz reaction vessel at 254 nm.  

 

4.2.1. Irradiation of 2-methylpyridine (6) 
 

 2-Methylpyridine (6) vapor (2.5-3.5 Torr) was irradiated at 254 nm with 15 low- 

pressure mercury lamps in a Rayonet reactor for 3, 6, and 12 hours.  GC analysis of the 

resulting product mixtures showed that irradiation of 2-methylpyridine (6) at retention 

time 19 minutes resulted in the formation of pyridine (1) at 15 minutes, 3-methylpyridine 

(7) at 30 minutes, and 4-methylpyridine (8) at 31 minutes.  In addition, one unknown 

compound was also formed which may be formed from the methyl-demethylation 

process.  The structures of these photoproducts are shown in scheme 4.12.  

 

Scheme 4.12  Photolysis of 2-methylpyridine (6) 

 

 

 

 

 Figure 4.13 shows the GC trace of the resulting mixture of photoproducts after 12 

hours of irradiation.  It clearly shows all components shown in Scheme 4.12.  
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Figure 4.13  GC trace of photoproduct mixture from 2-methylpyridine after irradiation  
           for 12 hours 

 

 In each experiment, the photoproduct mixture was analyzed by GC.  The 

quantitative data of all photoisomerization products are given in Table 4.7.  It should be 

noted that pyridine (1) was also formed from the methylation-demethylation reaction and 

thus is excluded from this discussion.  

 

Table 4.7  GC data of photoproduct mixture from irradiation of 2-methylpyridine (6) 

 
Exp 
no. 

Irradiation 
time 
(min) 

Sample 
weight 
(mg) 

Recovered 
weight 
 (mg) 

2-MP 
consumption 

(%) 

3-MP 
formation 

(%) 

4-MP 
formation 

(%) 

16 3 75.1 48.7 5 3.41 0.62 

17 6 72.6 42.5 9.9 6.60 1.85 

18 12 50.3 29.8 19.5 13.2 4.39 
  

1 

6

7
8
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 In Table 4.7, it is observed that 6 was consumed upon irradiation and then 7 was 

formed as the major product and 8 as the minor product.    After 12 hours of irradiation, 

the yield of 7 is greater than the yield of 8 in a ratio of 3:1.  Figure 4.14 shows a plot of 

product ratio VS irradiation time. 
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Figure 4.14  Ratio of  7 / 8 from irradiation of 2-methylpyridine (6) 

 

 The ratios of 7 to 8 decrease upon irradiation time.  This means that once formed 

3-methylpyridine (7) undergoes phototransposition more rapidly than 4-methylpyridine 

(8).  Extraporation to zero minute of irradiation gave the ratio of 5.8:1 indicating that 

both 7 and 8 have been formed directly from 6 at early irradiation time.  Hence, 7 and 8 

are primary photoproducts.  After irradiation, the product mixtures were analyzed by 

1H-NMR in CDCl3.  Figure 4.15a and 4.15b show the 1H-NMR spectra before and after 

irradiation, respectively.   
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        Figure 4.15  (a) 1H-NMR spectrum of 2-methylpyridine before irradiation 

            (b) 1H-NMR spectrum of 2-methylpyridine after 12 hours of irradiation 
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In Figure 4.15a, the signal due to the H6 proton of 6 appears as a doublet at δ 8.36 

(J = 4.6 Hz) because it is coupling with the adjacent H5 proton.  The H4 signal is 

observed at δ 7.41.  A doublet signal due to H3 absorbs at δ 7.00 (J = 7.8 Hz) and a 

distorted triplet due to H5 absorbs at δ 6.93.  After irradiation, the 1H-NMR spectrum 

shown in Figure 4.15b shows the proton signals of the photoproducts, 3-methylpyridine 

(7), and 4-methylpyridine (8).  The singlet that absorbs at δ 8.42 is due to the H2 proton 

of 7.  The doublet that absorbs at δ 8.38 (J = 4.1 Hz) is due to the H6 of 7.  A doublet due 

to proton 4 of 3-methylpyridine (7) is observed at δ 7.45 (J = 7.6 Hz).  A complicate 

signal due to the H5 of 7 is observed at δ 7.15. 

 

In addition, A singlet signal observed at δ 8.42 is due to the H2,6 proton of 4-

methylpyridine (8).  The signal due to the H3,5 protons of 8 are obscured by the H5 

signal of 2-methylpyridine (7). 

 

 The photoproduct mixture from irradiation of 2-methylpyridine (6) was also 

analyzed by 13C-NMR.  Figure 4.16a and 4.16b show the 13C-NMR spectra of 2-

methylpyridine (6) before and after irradiation.  In Figure 4.16a, the carbon signals due to 

C2, C6, C4, C3, and C5 are observed at δ 158.6, 149.4, 136.5, 123.5, and 120.9, 

respectively.  After irradiation, the new signals due to photoproducts are observed.  As 

shown in Figure 4.16b, the C2, C6, C4, C3, and C5 signals due to 7 are observed at 

δ 150.6, 147.3, 136.8, 133.5, and 123.5, respectively.  The C2,6 and C3,5 due to 8 are 

observed at δ 149.9 and 125.0, respectively.  It should be noted that the C4 of 4-

methylpyridine could not be observed in 13C-NMR spectrum because of low intensity.  
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   Figure 4.16  (a) 13C-NMR spectrum of 2-methylpyridine before irradiation 

             (b) 13C-NMR spectrum of 2-methylpyridine after 12 hours of irradiation 
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  From these results, it can be concluded that irradiation of 6 results in the 

formation of 7 and 8.  Thus, it is consistent with the mechanism involving 2,6-bridging, 

nitrogen migration, and rearomatization.  

 

 

4.2.2. Irradiation of 3-methylpyridine (7) 

 

 3-Methylpyridine (7) vapor (2.5-3.5 Torr) was irradiated at 254 nm with 15 low-

pressure mercury lamps in a Rayonet reactor for 3, 6, and 12 hours.  GC analysis of the 

resulting photoproducts showed that irradiation of 3-methylpyridine (7) at retention time 

30 minutes resulted in the  formation of pyridine (1) at 15 minutes, 2-methylpyridine (6) 

at 19 minutes, and 4-methylpyridine (8) at 32 minutes as shown in Scheme 4.13. 

 

Scheme 4.13  Photolysis of 3-methylpyridine (7) 

 

 

  

 

Figure 4.17 shows the GC analysis result of 3-methylpyridine (7) after 6 hours of 

irradiation.  Pyridine (1) which was suggested to be the product from methyl-

demethylation reaction is also observed.  
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  Figure 4.17  GC trace of photoproduct mixtures from 3-methylpyridine after irradiation   
  for 12 hours 

 

 In separate experiments, the photoproduct mixtures from irradiation for 3 and 12 

hours were also analyzed.  The data from all these experiments are given in Table 4.8.  

 

Table 4.8  Experimental details for irradiation of 3-methylpyridine (7) 

 
Exp 
no. 

Irradiation 
time 
(min) 

Sample 
weight 
(mg) 

Recovered 
weight 
 (mg) 

3-MP 
consumption 

(%) 

2-MP 
formation 

(%) 

4-MP 
formation 

(%) 

19 3 72.4 28.4 16.5 10.5 5.7 

20 6 72.8 38.5 27.3 17.2 9.5 

21 12 77.3 36.5 38.3 24.2 14.4 
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 The formation of 2-methylpyridine (6) and 4-methylpyridine (8) are in a ratio of 

2:1 after the first three hours of irradiation.  
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Figure 4.18  Ratio of 6 / 8 from irradiation of 3-methylpyridine (7) 

 

 The plot shows that the ratio of 6/8 is constant upon irradiation from 3 hours to 12 

hours.  Extrapolation back to zero irradiation shows the ratio of 6 to 8 as 1.85 indicating 

that both products are primary products and they are formed at the very short time. 

 

 Figure 4.19a and 4.19b show the 1H-NMR spectra of 3-methylpyridine before and 

after 12 hours of irradiation.  In Figure 4.19a, a singlet due to the H2 proton is observed 

at δ 8.39.  The doublet due to H6 proton is observed at δ 8.36 (J = 4.7 Hz).  The last 

signal is a distorted triplet due to the H5 proton which is observed at δ 7.12.  
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Figure 4.19  (a) 1H-NMR spectrum of 3-methylpyridine before irradiation 

          (b) 1H-NMR spectrum of 3-methylpyridine after 12 hours of irradiation 
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After irradiation, the 1H-NMR spectrum in Figure 4.19b exhibits a doublet signal 

due to the H6 proton of 2-methylpyridine (6) at δ 8.46 (J = 4.7 Hz).  The H4 proton is 

observed at δ 7.54 as a triplet of doublet.  A doublet of H3 in 6 is overlapping with the 

H5 of the reactant at δ 7.11.  This signal looks like a singlet because of this coincidence.  

The H5 signal of 6 is also overlapping but with the signal of another photoproduct 4-

methylpyridine (8).  This signal appears in a region between δ 7.04-7.08 with the H3,5 

signal of 8.  The signal due to H2,6 of 8 is overlapping with the H2 of the reactant 7 at       

δ 8.44. 

 

 The 13C-NMR spectra were also recorded.  Shown in Figure 4.20a, the carbon 

spectrum shows the C2, C6, C4, C3, and C5 at δ 150.6, 147.3, 136.8, 133.4, and 123.5, 

respectively.  After irradiation, Figure 4.20b shows that the photoproducts have been 

formed.  The new signals that absorb at δ 158.7, 149.5, 136.6, 123.6, and 121.1 are due to 

the C2, C6, C4, C3, and C5 of 2-methylpyridine (6), respectively.  In addition, the signals 

due to the C2,6 and C3,5 of 4-methylpyridine (8) are observed at δ 149.9 and 125.0, 

respectively.  The small singlet appearing at δ 147.4 is due to the C4 carbon of 8.  

 

  Hence, irradiation of 3-methylpyridine (7) results in the formation of 2-

methylpyridine (6) and 4-methylpyridine (8) which is consistent with the mechanism 

involving electrocyclic ring closure 2,6-bonding reaction, nitrogen migration, and 

rearomatization. 
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Figure 4.20  (a) 13C-NMR spectrum of 3-methylpyridine before irradiation 

          (b) 13C-NMR spectrum of 3-methylpyridine after 12 hours of irradiation 
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4.2.3. Irradiation of 4-methylpyridine (8) 

 

 4-Methylpyridine (8) vapor (2.7-3.7 Torr) was irradiated at 254 nm with 15 low-

pressure mercury lamps in a Rayonet reactor for 3, 6, and 12 hours.  GC analysis of the 

resulting photoproducts showed that irradiation of 4-methylpyridine (8) which was 

observed as a peak at retention time 32 minutes resulted in the  formation of pyridine (1) 

at 15 minutes, 2,6-dimethylpyridine (22) at 24 minuites, 2-methylpyridine (6) at 19 

minutes, and 3-methylpyridine (7) at 30 minutes as shown in Scheme 4.14. 

 

Scheme 4.14  Photolysis of 4-methylpyridine (8) 

 

 

 

 

 

GC analysis shown in Figure 4.21 shows that irradiation of 4-methylpyridine (8) 

resulted in the formation of 2-methylpyridine (6) at retention time 19 minutes, 3-

methylpyridine (7) at 30 minutes, pyridine (1) at 15 minutes, and 2,6-dimethylpyridine 

(22) at 24 minutes. 
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Figure 4.21  GC trace of photoproduct mixture from 4-methylpyridine after irradiation  
           for 6 hours 

 

 In Table 4.9, the quantitative analysis for each separated experiment shows that 2-

methylpyridine (6) is formed in greater yield than 3-methylpyridine (7).  For example, 

after 12 hours of irradiation, 20.5% of 8 was consumed at and 6 and 7 were formed in 

yield of 8.7% and 11.4%, respectively.  

 

Table 4.9  GC data of photoproduct mixture from irradiation of 4-methylpyridine (8) 

 
Exp 
no. 

Irradiation 
time 
(min) 

Sample 
weight 
(mg) 

Recovered 
weight 
 (mg) 

4-MP 
consumption 

(%) 

2-MP 
formation 

(%) 

3-MP 
formation 

(%) 

22 3 29.4 20.6 11.7 4.4 6.7 

23 6 77.1 29.1 16.6 6.7 9.3 

24 12 70.1 20.6 20.5 8.7 11.4 
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 The ratio of 7/6 is plotted as a function of irradiation time and it is shown in 

Figure 4.22.   

 

 

 

 

 

 

 

 

 

 

Figure 4.22  Ratio of 7/6 from irradiation of 4-methylpyridine (8) 

 

 Extrapolation back to zero irradiation leads to the 7/6 ratio of 1.54:1.  This 

indicates that both photoproducts are formed at very short irradiation time and they are 

primary products. 

 

Furthermore, the photoproduct mixture of 8 was analyzed by NMR.  The 1H-

NMR spectra recorded in CDCl3 shown in Figure 4.23a and 4.23b exhibit the proton 

signals of reactant before irradiation and photoproduct after irradiation for 12 hours.  In 

Figure 4.23a, the doublet signal due to protons at ring position 2 and 6 is observed at δ 
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8.38 (J= 4.3 Hz) whilst the doublet signal due to protons at ring position 3 and 5 is 

observed at δ 7.01 (J = 4.4 Hz).   

 

After irradiation, the 1H-NMR spectrum in Figure 4.23b shows the same signals 

of reactant and weak signals of photoproducts.  The small signal as a doublet at δ 8.39 (J 

= 4.8 Hz) is due to the H6 of 3-methylpyridine (7).  In addition, the doublet signal 

absorbing at δ 7.46 (J = 7.8 Hz) is due to the H4 proton of 7.  The signal that absorbs at δ 

7.16 also represents the H5 of 3-methylpyridine (7).  However, the H2 signal of 7 is 

overlapping with the H2,6 signal of the reactant. 

 

  Furthermore, the triplet of doublet signal due to the H4 of 2-methylpyridine (6) 

are observed at δ 7.55.  However, the signals due to the H6 of 6 is overlapping with the 

H2,6 signal of the reactant 8.  The H5 signal of 6 is also overlapping with the intense 

signal due to H3,5 signal of 8.      
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Figure 4.23  (a) 1H-NMR spectrum of 4-methylpyridine before irradiation 

          (b) 1H-NMR spectrum of 4-methylpyridine after 12 hours of irradiation 
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 In addition, the 13C-NMR spectra of 4-methylpyridine before and after irradiation 

were also recorded.  In Figure 4.24a the carbon signal due to C2,6 and C3,5 are observed 

as intense peaks at δ 149.6 and 124.6, respectively.  The quarternary C4 carbon is 

observed as a small peak at δ 147.0.   

 

 Figure 4.24b shows the 13C-NMR spectrum of photoproducts after irradiation.  

The intense peaks of the reactant carbon signal are still observed.  However, 

photoproducts are also clearly observed.  The signal at δ 150.6, 147.3, 136.9, 133.3, and 

123.5 are due to the C2, C6, C4, C3, and C5 of 3-methylpyridine (7), respectively.  The 

signals at δ 149.5, 136.6, 123.6, and 121.1 are due to the C6, C4, C3, and C5 of 2-

methylpyridine (6), respectively.  It should be noted that because of the very low intensity, 

the quarternary C2 of 2-methylpyridine could not be observed in this 13C-NMR spectrum.  

 

 According to these results, the phototransposition of 8 to 6 and 7 is consistent 

with the suggested mechanism involving 2,6-bonding, nitrogen migration, and 

rearomatization. 
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Figure 4.24  (a) 13C-NMR spectrum of 4-methylpyridine before irradiation 

          (b) 13C-NMR spectrum of 4-methylpyridine after 12 hours of irradiation 
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4.2.4. Mechanistic Discussion of methylpyridines 

 

 The experimental results from the photochemistry of isomeric methylpyridine 

vapors (6-8) show that irradiation of any one isomer results in the formation of the other 

two as shown in Scheme 4.15. 

 

Scheme 4.15  Photo-interconversion of methylpyridines 

 

 

 

 

 

 

 

 

 The interconversions are found to be consistent with the mechanism involving 

cyclization-2,6-bonding followed by nitrogen migration around five sides of 

cyclopentenyl ring.  Finally, rearomatization gives the other two isomers. 

 

 The mechanism shown in Scheme 4.16 shows that irradiation of any one isomer 

would result in the formation of an azaprefulvene intermediate which allows nitrogen to 

migrate from one side to the other side in both directions.  
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Scheme 4.16  Phototransposition mechanism of methylpyridines 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Irradiation of 4-methylpyridine (8) would result in the formation of BC-8.  This 

species can undergo nitrogen migration in both directions.  Nitrogen migration in the 

counterclockwise direction leads to BC-7 followed by rearomatization to 3-

methylpyridine (7).  The second migration along the same direction gives BC-6 which 

would rearomatize to 2-methylpyridine (6), another photoproduct.  The nitrogen 

migration from BC-8 in clockwise direction results in the formation BC-7’ and 7 after 
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rearomatization.  The second nitrogen migration results in the formation of BC-6’ which 

is followed by rearomatization to form 6.  Hence, the photoproducts formed from 

irradiation of 4-methylpyridine (8) are expected to be in a ratio of 1:1.  Quantitative 

analysis shows that the photolysis of 8 at very short irradiation time leads to the 

photoproduct ratio of 7 and 6 as 1.5:1 (Figure 4.21).  This ratio, however, tends to 

decrease upon longer irradiation time and eventually it becomes close to 1.  This 

indicates that at short irradiation times the photolysis has not reached the equilibrium 

state but finally it would come close to the 1:1 ratio of 7:6 when all compounds are in 

equilibrium.  It can be seen that this suggested mechanism is consistent with the 

experimental result. 

 

 In addition, since the photoproducts 6 from rearomatization of BC-6 and BC-6’ 

are identical, without an appropriated labeling they are undistinguishable.  Similarly, the 

photoproducts 7 from rearomatization of BC-7 and BC-7’ are identical.  These pathways 

could not be distinguished at this time. 

 

 Irradiation of 3-methylpyridine (7) would result in the formation of BC-7.  

Nitrogen migration in the counterclockwise direction leads to BC-6 which is followed by 

rearomatization to form 6.  The second nitrogen migration would result in the formation 

of BC-6’ which would also undergo rearomatization to 6.  In the clockwise direction, 

BC-7 also undergo nitrogen migration to form BC-8 which rearomatizes to 8.  In addition, 

the second nitrogen migration would result in the formation of BC-7’ which rearomatizes 

back to 7. 
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A similar process also occurs in the vapor phase photochemistry of 2-

methylpyridine (6).  Excitation of 2-methylpyridine (6) would result in the formation of 

BC-6.  Nitrogen migration in the counterclockwise direction leads to the formation of 

BC-6’ which undergoes rearomatization to form 6, the starting material.  The second 

nitrogen migration would result in the formation of BC-7’ which would rearomatize to 7.  

The nitrogen migration in the clockwise direction of BC-6 leads to BC-7 followed by 

rearomatization to yield 7.  The second nitrogen migration would result in the formation 

of BC-8, a precursor of 8.  

 

 These overall mechanistic interpretations for methylpyridine isomers (6-8) are 

consistent with the 2,6-bonding-nitrogen migration and rearomatization.  The 

photoproducts that were predicted by this mechanism have been successfully observed in 

the 1H-NMR and 13C-NMR spectra.   

 

 Furthermore, the relative reactivity of methylpyridine isomers (6-8) are consistent 

with the suggested mechanism.  According to the experimental data shown in Table 4.7-

4.9, the percent consumptions of methylpyridines 6, 7, and 8 after 12 hours of irradiation 

are 19.5, 38.3, and 20.5, respectively.  This indicates that the methylpyridine 

photoreactivity in an order of isomer 7 > 8 > 6.  This reactivity difference can be 

explained by the stability of intermediates.   Unlike cyanopyridines, azaprefulvene 

intermediates from methylpyridines (6-8) are not resonance stabilized with the methyl 

group.  The stabilities resulting from radical stabilization in azaprefulvene structures BC-

6, BC-7, and BC-8 may not be considerably different.  In allylic radical system, the 
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AUMP2 calculation by Lehd and Jensen38 showed that the difference in radical 

stabilization energies upon substitutent site (1- or 2-position) due to the electron-

withdrawing CN group is much greater than the difference due to the electron-donating 

CH3 group.39  Table 4.10 shows the substituent effects on stability of allylic radicals from 

theoretical calculation of radical stabilization energies. 

 

Table 4.10  The substituent effects on stability of allylic radicals 

 
Substituent 1-position 

X
2-position 

X

 
CH3 5.6 4.3 

CN 9.9 3.0 
 

 Based on the consumption of the reactant as a function of irradiation time, it was 

observed that 2-methylpyridine (6) is the least reactive isomer.  Inspection of Scheme 

4.16 shows why this is the case.  Thus, electrocyclic ring closure of 6 leads to BC-6.  One 

nitrogen migration from BC-6 leads either to BC-7, the precursor of 3-methylpyridine (7), 

or to BC-6’ which leads to reactant.  Thus, the pathway 6→BC-6→BC-6’→6 is an 

energy wasting pathway and would reduce the apparent reactivity of 6.  In contrast to the 

analogous pathways originating from 7 or 8, all lead to product formation and not back to 

the reactant. 

 

 According to Scheme 4.16, after electrocyclic ring closure of 7, one nitrogen 

migration leads either to the formation of 2-methylpyridine (6) or 4-methylpyridine (8) 

whereas the second nitrogen migration leads to 2-methylpyridine (6) and back to 3-
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methylpyridine (7).  Thus, one nitrogen migration in either direction leads to product and 

neither is energy wasting.  Thus, 3-methylpyridine (7) is predicted to be more reactive 

than 2-methylpyridine (6) and this was observed.  Also, Scheme 4.16 predicts that 6 and 

8 should be formed from 7 in a ratio of 2:1.  This is very close to the observed ratio of 

~1.8. 

 

 In case of 4-methylpyridine (8), the first nitrogen migration from BC-8 results in 

the formation of BC-7 and BC-7’.  Both lead to the same methylpyridine isomer, 7.  

Therefore, 8 phototransposes to 7 only in the first nitrogen walk and 6 is formed as a 

result of second nitrogen migration.  It was found that the ratio of 6 to 7 increases upon 

irradiation time.  This is due to the fact that once formed, 7 phototransposes to 6 faster 

than the reverse reaction takes place.  Thus, as the irradiation time increases the 

concentration of 6 increases faster than the concentration of 7 and hence the 6:7 ratio 

increases. 

 

 Scheme 4.17 shows the stabilized and non-stabilized forms of azaprefulvene 

intermediates BC6, BC-7, and BC-8 at an extremely short time-scale according to the 

radical stabilization.   
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Scheme 4.17  Radical stabilization of methylpyridines 

 

 

 

 

 

 

 

 

 

 

 

 

 The radical stabilization energies of BC-8 and BC-7 are not expected to be much 

different.  The radical stabilization energy shown in Table 4.10 supports this conclusion.  

In the case of 2-methylpyridine (6), however, there are two factors that should be 

considered.  BC-6 undergoes energy wasting process by one nitrogen migration to itself 

(Scheme 4.16).  This process causes 2-methylpyridine (6) less reactive than the other two 

isomers.  Furthermore, it should be noted that substituents at C2 and C6 might sterically 

inhibit reaction.  Scheme 4.18 shows the azaprefulvene structure with R groups on C2 

and C6. 
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Scheme 4.18  Steric hindrance from substituents at C2 and C6 

 

 

 

 

 The R groups attached to the C2 and C6 come closer together as 2,6-bridging 

occurs.  This inhibits the formation of azaprefulvene.  The larger the R groups, the greater 

the inhibition to its reactivity.  Thus, if both substituents are H atoms, the inhibition is at 

minimum.  This structure would be the most reactive.  This is contrast to the case of    

BC-7 and BC-8, which do not contain the methyl group at C2 or C6.  Therefore, BC-7 

and BC-8 has minimum steric hindrance, thus they would be more reactive than BC-6.   

If one H atom and one methyl groups are present, it would be slightly more inhibited, 

which means that this structure is slightly less reactive.  This prediction was exactly 

observed in the photochemistry of deuterated pyridine and methylpyridine vapors.  

Deuterated pyridine was photolyzed by 4 low-pressure mercury lamps whilst 

methylpyridines had to be photolyzed by 15 lamps in order to detect photoproducts. 

 

The mechanisms involving Dewar-pyridine and azaprismane intermediates have 

also been examined.  Scheme 4.19 shows the phototransposition mechanism of 2-

methylpyridine (6) via Dewar-pyridine intermediate. 
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Scheme 4.19  Dewar-pyridine mechanism of 2-methylpyridine 

 

 

 

 

 

 

      

 

 

 

 

 

 

 

 As shown in this Scheme, the only predicted photoproduct is 4-methylpyridine (8).  

This obviously shows that this mechanism is not consistent with the experimental results.  

Since 3-methylpyridine (7) is not predicted as a product, it indicates that the 

phototransposition pathway via Dewar-pyridine can be ruled out. 

 

 The mechanism involving azaprismane intermediate was also considered.  

Scheme 4.20 shows the mechanism for 2-methylpyridine (6) reacting by this mechanism. 
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Scheme 4.20  Azaprismane mechanism: 3,6-bridging 

 

 

 

 

 

 

 The Dewar-pyridine 45 which would result from 3,6-bridging undergoes [2+2] 

cycloaddition to form azaprismane 47.  This species would undergo bond cleavage 

resulting in the formation of 45, 47a, or 47 b.  The Dewar-pyridine 47a would rearrange 

back to 6, the starting material.  The Dewar-pyridine 47b would rearrange to 8, only 

photoproduct. 

 

 Scheme 4.21 shows the azaprismane mechanism resulting from the 2,5-bridged 

Dewar-pyridine, 46.  The only photoproduct in this Scheme is 7. 

 

Scheme 4.21  Azaprismane mechanism: 2,5-bridging 
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 Furthermore, one other azaprismane can result from 6 by 1,4-bridging between 

C4 and the nitrogen atom as shown in Scheme 4.22.  Cleavage of this azaprismane would 

result in the formation of 3-methylpyridine 7 or back to 6, the reactant.  

  

Scheme 4.22  Azaprismane mechanism: 1,4-bridging 

 

 

 

 

 

 

 

If the reaction occurs by all possible azaprismane pathways the mechanism 

predicts that 2-methylpyridine (6) would phototranspose to 3-methylpyridine (7) and 4-

methylpyridine (8) in a ratio of 2:1.  This is not consistent with the experimental results.   
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4.3. Deuterium labeling studies 
 
4.3.1. Cyanopyridines 

 

 In order to simplify the 1H-NMR spectra of the cyanopyridines to allow the 

transposition of selected ring protons to be monitored, a study of the synthesis and 

photochemistry of 2-cyanopyridine-4,6-d2, (36-4,6-d2), 3-cyanopyridine-2,6-d2 (37-2,6-

d2), and 4-cyanopyridine-2,6-d2 (38-2,6-d2) was undertaken. 

 

 

 

 

 

 

 

4.3.2. Proton-Deuterium exchange reaction with base catalyst 

 

 Previous work in this lab showed that heating dimethylpyridines in D2O 

containing K2CO3 at 180 oC for 5.5 days led to H-D exchange at ring positions 2 and 6 

when these positions were unsubstituted and at methyl groups located at ring positions 2, 

4, and 6, exclusively.40   

 

 The procedure described above was also used for the H-D exchange at ring 

position 2 and 6 to form 4-cyanopyridine-2,6-d2 (38-2,6-d2) from 4-cyanopyridine (38).  
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However, it was found that after heating in aqueous base solution, the cyano group at 

position 4 was also hydrolyzed.  This led to the formation of a complex mixture of the 

nitrile with the corresponding amide and carboxylate. 

 

Scheme 4.23  hydrolysis of cyano group in 4-cyanopyridine 

 

 

 

 

 

  In fact, the H-D exchange reaction in pyridine derivatives has already been 

reported by Kawazoe and co-workers41.  The use of strong bases, such as Na2CO3, 

Na2CO3, or Na+OD- in deuterium oxide as catalyst at an ambient temperature was found 

successful in preparation of pyridine N-oxide-2,6-d2 or pyridine N-oxide-d5.  This 

method is convenient and it usually gives a high percent of deuterium exchange.  

 

 The mechanism for this reaction has been considered in several ways.  The 

mechanistic discussion  reported by Zoltewicz and Kauffman42 suggested that the   H-D 

exchange reaction should involve proton abstraction by base to give an intermediate 

carbanion as shown in Scheme 4.24.  
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Scheme 4.24  Proton abstraction by base for pyridine N-oxide 

 

 

 

 

 

 The carbanion at the ortho position generated from pyridine N-oxide can be 

looked upon as being stabilized by resonance with the nucleophilic carbene structure 

53b.43 

 

Scheme 4.25  Resonance stabilization 

  

 

 

 

The authors also studied the reactivity order of hydrogen-deuterium exchange in 
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pyridine N-oxide-d5 in CH3ONa/CH3OH has been reported to be in the order 2,6 >> 3,5 > 

4.  The 2,6 position is readily exchanged at temperatures as low as 75 oC. 

 

 Substituted pyridine N-oxides can also undergo H-D exchange by base catalysis 
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 Accordingly, Matsuki and coworkers45 reported that the preparation of deuterium-

labeled isoniazid (57-2,6-d2)  started with isonicotinic acid N-oxide.   

 

Scheme 4.26  Preparation of deuterium labeled isoniazid 

 
 

 

 

 

 

This base-catalyzed hydrogen exchange in D2O solution provided the deuterium-labeled 

compound 57-2,6-d2 in a high yield.  

 

The procedure developed by Matsuki for the preparation of deuterated isoniazid  

was found to be useful in the synthesis of some deuterated cyanopyridines. 
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4.3.3. Synthesis of 4-cyanopyridine-2,6-d2 (38-2,6-d2) 

 

 The synthetic route to 4-cyanopyridine-2,6-d2 (38-2,6-d2) starting from 

isonicotinic acid N-oxide (54) is shown in Scheme 4.27.  The synthetic procedures have 

been adapted from methods in the literatures.45,46 

 

Scheme 4.27  Synthesis of 4-cyanopyridine-2,6-d2 (38-2,6-d2) 
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sulfuric acid as catalyst in methanol instead of using saturated-HCl methanol as in the 

literature.46  In this reaction benzene was used to increase the esterification yield by 

azeotropic distillation to remove water as it is formed.  This methylester N-oxide 58-2,6-

d2 was then reduced using PCl3 to give methylester 59-2,6-d2 in a high yield (72.2%).  In 

the next step, it was found that even though amide 60-2,6-d2 was easily formed by 

reacting 59-2,6-d2 with concentrated aqueous ammonia, it would not crystallize out from 

the aqueous solution. 

 

The crude amide 60-2,6-d2 obtained by concentration in vacuum was therefore 

directly used for the next step to synthesize cyanopyridine 38-2,6-d2.  To obtain 4-

cyanopyridine-2,6-d2 (38-2,6-d2), many attempts were tried.  The reaction of 

nicotinamide with benzenesulfonyl chloride in the presence of pyridine to form 

nicotinonitrile has been reported.47  However, the yield of 4-cyanopyridine (38) using this 

method was found to be very low and that the compound was difficult to separate from 

the reactants. 

   

Finally, the dehydration was successful by heating 60-2,6-d2 and phosphorous 

pentoxide in the absence of a solvent.48  The reaction was carried out in a Kugelrohr 

apparatus and the cyanopyridine 38-2,6-d2 was isolated by sublimation from the reaction 

mixture.  Although the dideuteriocyanopyridine 38-2,6-d2 obtained in this manner was 

contaminated by the starting material, the pure cyanopyridine 38-2,6-d2 was obtained by 

sublimation. 
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The mass spectrum of 38-2,6-d2, shown in Figure 4.25 exhibits a molecular ion at 

m/z = 106, consistent with the exchange of two hydrogen atoms with deuterium.  The 

fragmentation of 78 (68.4%, -DCN) was observed.   

 

 

 

 

 

 

 

 

 

 

 

Figure 4.25  GC-MS of 4-cyanopyridine-2,6-d2 (38-2,6-d2) 
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 Figure 4.26 shows the 1H-NMR spectrum of 38-2,6-d2 which was recorded and 

compared to the 1H-NMR spectrum of authentic 4-cyanopyridine (38).  The singlet signal 

at δ 7.56 is due to the proton at positions 3 and 5 of the pyridine ring.  It also exhibits a 

very small signal at δ 8.87 which was assigned to the residual protons at positions 2 and 6. 

 

 

 

 

 

 

            

 

 

 

 

 

 

Figure 4.26  1H-NMR spectrum of 4-cyanopyridine-2,6-d2 (38-2,6-d2) 

 

 

 

 



Results and Discussion 
 

 113

In addition, the 13C-NMR spectrum shown in Figure 4.27 is consistent with the 

structure of 38-2,6-d2.  This spectrum exhibits singlets at δ 125.6 and 120.9 for the 

carbon atoms at ring positions 3/5, and 4 and at δ 116.8 for the cyano carbon while the 

signal due to the C2 and C6 carbons is observed at δ 150.8 as a triplet (J = 28.2 Hz) due 

to coupling with the attached deuterium atoms.  This confirms that deuteration has 

occurred regiospecifically at ring positions 2 and 6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.27  13C-NMR spectrum of 4-cyanopyridine-2,6-d2 (38-2,6-d2) 
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4.3.4. Synthesis of  3-cyanopyridine-2,6-d2 (37-2,6-d2) 

 

 The synthetic route to 3-cyanopyridine-2,6-d2 (37-2,6-d2) starting from nicotinic 

acid N-oxide (61) is shown in Scheme 4.28.   

 

Scheme 4.28  Synthesis of 3-cyanopyridine-2,6-d2 (37-2,6-d2) 

 

 

 

 

 

 

 

 

 

 

 Nicotinic acid N-oxide 61, which is commercially available, was transformed to 

nicotinic acid N-oxide 61-2,6-d2 by two successive base-catalyzed H-D exchange 

reactions.  Esterification followed by N-oxide reduction led to the methylester 62-2,6-d2 

in a good yield (85.7%).  It was then converted to amide 64-2,6-d2 by reaction with 

concentrated aqueous ammonia. 
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Dehydration of the amide by heating with P2O5 until in the Kugelrohr apparatus up to   

190 oC provided 2,6-dideuterio-3-cyanopyridine (37-2,6-d2), which was further purified 

by sublimation. 

 

The mass spectrum of 37-2,6-d2 shows a molecular ion at m/z = 106, which is 

consistent with a dideuterated product.  The first fragmentation to 78 (48%) is due to the 

loss of DCN (28) which is consistent with the molecular structure of pyridine.  

 

 

 

 

 

 

 

 

 

 

Figure 4.28  GC-MS of 3-cyanopyridine-2,6-d2 (37-2,6-d2) 
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hydrogen at ring positions 2 and 6.  This is consistent with deuteration at ring positions 2 

and 6.  This was further confirmed by the 13C-NMR spectrum shown in Figure 4.30.  

Thus, the signals for the C2 and C6 carbons are shown as two overlapping triplets at δ 

153.0 ( J =27.3 Hz) and 152.5 ( J =27.7 Hz) due to their coupling with the deuterium 

atoms on those carbons.  The remaining signals due to C4, C5, C3, and CN all appear as 

singlets at δ 139.7, 123.9, 116.9, and 110.4, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.29  1H-NMR spectrum of 3-cyanopyridine-2,6-d2 (37-2,6-d2) 
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Figure 4.30  13C-NMR spectrum of 3-cyanopyridine-2,6-d2 (37-2,6-d2) 
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4.3.5. Synthesis of 2-cyanopyridine-4,6-d2 (36-4,6-d2) 

 

 The synthesis of 2-cyanopyridine-4,6-d2 (36-4,6-d2) was started from 

commercially available picolinic acid N-oxide (65).  The synthetic route to 36-4,6-d2 was 

much different from the procedures for 38-2,6-d2 and 36-2,6-d2.  The previous procedure 

could not be used to prepare a dideuterated 2-cyanopyridine because this compound has 

only one open position α to nitrogen which undergoes direct base-catalyzed H-D 

exchange.  The photoreaction of a monodeuterated  2-cyanopyridine (36-6-d)  could not 

give the sufficient information to explain the photochemical mechanism of 2-

cyanopyridine.  

 

 

 

 

The synthesis of 36-4,6-d2 was attempted in several ways.  First, the synthesis 

was started with 2-picoline N-oxide (65).  Scheme 4.29 shows the synthetic route starting 

from 2-picoline N-oxide (65).  Whereas the deuterium labeling on positions 3, 4, and 5 is 

not favorable under mild conditions, the use of high temperature and pressure as well as a 

strong base leads to exchange at all ring position with no selectivity.  Generally, a 

specific H-D exchange of one of these three protons would not be successful using this 

high temperature method. 
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The specific substitution on ring position 4 was found possible by some methods.  

The nitration at the γ−position of the pyridine ring can be accomplished by gently 

refluxing pyridine N-oxide in fuming HNO3 in conc. H2SO4.   

 

Scheme 4.29  Proposed synthesis of 2-cyanopyridine-4,6-d2 (36-4,6-d2) 
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 In this synthetic route, the preparations of 65-6-d and 66-6-d were carried out 

successfully and they were obtained in good yields.  The nitration reaction at ring 

position 4 of the pyridine ring was very effective.  However, the reaction of 66-6-d with 

conc.HCl gave 67-6-d in poor yield and the conversion of 4-chloro 68-6-d to 4-deuterio 

69-4,6-d2 was found to be difficult using Zn/CD3COOD despite the fact that 

dehalogenation using Zn/CH3COOH has been used successfully in other heterocyclic 

compounds.51  White gel by-products due to Zn salts hindered extraction of the product 

by dichloromethane.  Furthermore, the oxidation of 69-4,6-d2 in the following step from 

methylpyridine 69-4,6-d2 to aldehyde 70-4,6-d2 was expected to be difficult even though 

its transformation to the final product 36-4,6-d2  should be simple by adapting the 

technique using iodine in ammonia which was reported by Talukda and co-worker.52    

 

 The synthesis of cyanopyridine 36-4,6-d2 was also attempted using the approach 

shown in scheme 4.30.  According to this approach 4-nitro-2-picolinic acid N-oxide-6-d 

(71-6-d) was converted to the 4-chloro derivative 72-6-d by refluxing in conc. HCl.  

Reduction  of  72-6-d  with  PCl3  gave  73-6-d.   However, the  reaction  of  PdCl2  with           

 

Scheme 4.30  Proposed synthesis of 36-4,6-d2 from 71-6-d 

 

 

 

 

4-chloropicolinic acid 73-6-d was not successful even though this reagent has been used 

to reduce aryl halides in the presence of sodium borodeuteride.  Bosin and Co-Worker 

N COOH

O

D

NO2

N COOH

O

D

Cl

N COOHD

Cl

N COOHD

D

HCl PCl3 PdCl2

NaBD4

71-6-d 72-6-d 73-6-d 74-6-d



Results and Discussion 
 

 121

reported that the use of PdCl2 and sodium borodeuteride could lead to the 

dehalodeuteriolysis at ring position 2, 3 or 4 in 2-,3-, or 4-chlorobenzoic acid at 20 oC.53   

However, compound 73-6-d was clearly not converted to 74-6-d by this reaction.    

 

 The deuterium labeling at position 4 was successful from the synthetic route 

shown in Scheme 4.31.  Picolinic acid N-oxide (75) was subjected to H-D exchange 

reaction  followed  by  nitration at  carbon   position 4.  This  nitration  of  picolinic  acid   

 

Scheme 4.31  Synthesis of 2-cyanopyridine-4,6-d2 (36-4,6-d2) 
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reason for this conversion is that the chlorination of the ester is easier than chlorination of 

the acid.  Chlorination of 76-6-d was made possible by using acetyl chloride.   The 

resulting 4-chloro 77-6-d was changed to 78-6-d by reduction with PCl3 to remove the N-

oxide.  Several deuteriolysis experiments had been attempted by using reagents, such as 

Zn/CD3COOD, Zn/ND4Cl, and PdCl2/NaBD4, but the reaction was eventually successful 

using 10% Pd-C and D2 gas.  This procedure was a modification of the procedure 

reported by Azzam and co-worker.55  Their preparation of a pyrazinone product by 

hydrogenolysis was successful by using 10% Pd-C in hydrogen atmosphere at room 

temperature.  The deuteriolysis was carried out in our laboratory by using NaBD4 and 

D2SO4 in D2O to generate D2.  The reaction succeeded and the deuterium-labeled 

methylester (79-4,6-d2) was confirmed by GC-MS and NMR data shown in Figure 4.31-

4.33. 

 

 

 

 

 

 

 

 

 

 

Figure 4.31  GC-MS spectrum of methylpicolinate-4,6-d2 (79-4,6-d2) 
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Figure 4.32  1H-NMR spectrum of methylpicolinate-4,6-d2 (79-4,6-d2) 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.33  13C-NMR spectrum of methylpicolinate-4,6-d2 (79-4,6-d2) 
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Methylester 79-4,6-d2 was converted to amide 80-4,6-d2 by using concentrated 

aqueous ammonia.  The preparation of cyanopyridine 36-4,6-d2 from reaction with 

phosphorous pentoxide was in a low yield but sufficient for photochemical study.  

 

The mass spectrum of 2-cyanopyridine-4,6-d2, shown in Figure 4.34, exhibits a 

molecular ion at m/z=106 which is consistent with the molecular weight 106 of 36-4,6-d2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.34  GC-MS of 2-cyanopyridine-4,6-d2 (36-4,6-d2) 
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 Figure 4.35 shows the 1H-NMR spectrum of 2-cyanopyridine-4,6-d2.  The H3 and 

H5 singlet signals are observed at δ 7.66 and 7.50 respectively while the H4 at δ 8.10 and 

H6 at 8.66 are labeled with deuterium.    

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.35  1H-NMR spectrum of 2-cyanopyridine-4,6-d2 (36-4,6-d2) 
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 The 13C-NMR spectrum recorded in CDCl3 confirmed the deuterium labeling by 

showing two triplets of carbon position 4 and 6 as δ 152.1 (J = 28.0 Hz) and 138.2 (J = 

25.6 Hz).  The singlets due to C2, C3, C5, and CN are observed at δ 135.0, 129.9, 128.2, 

and 118.5, respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.36  13C-NMR spectrum of 2-cyanopyridine-4,6-d2 (36-4,6-d2) 
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4.3.6. Pyridines 

 

   In order to simplify the 1H-NMR spectra and to allow specific ring positions to 

be followed during the phototransposition reaction, A series of deuterium-labeled 

pyridines have been synthesized. These compounds include 2,6-dideuteriopyridine (1-

2,6-d2), 3,4,5-trideuteriopyridine (1-3,4,5-d3), 2,4,6-trideuteriopyridine (1-2,4,6-d3), 

2,3,4-trideuteriopyridine (1-2,3,4-d3), 2,3,6-trideuteriopyridine (1-2,3,6-d3), 2,3,5-

trideuteriopyridine (1-2,3,5-d3), 2,4,5-trideuteriopyridine (1-2,4,5-d3) 2,3,5,6-

tetradeuteriopyridine (1-2,3,5,6-d4), 2,3,4,6-tetradeuteriopyridine (1-2,3,4,6-d4), and 

2,3,4,5-tetradeuteriopyridine (1-2,3,4,5-d4).  
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Scheme 4.32  All synthetic deuterium-labeled compounds 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A variety of starting materials, such as pyridine N-oxide (53), pyridine N-oxide-d5 

(53-d5) or 3,5-dichloropyridine (84), which are commercially available, were used for 

synthesizing the deuterated pyridines shown above.  
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4.3.7. Synthesis of dideuterio-2,6-pyridine (1-2,6-d2) 

 

 The synthesis of 2,6-dideuteriopyridine (1-2,6-d2) was started by allowing 

pyridine N-oxide (53) to undergo base catalyzed H-D exchange at ring positions 2 and 6 

to yield 53-2,6-d2.  Reduction of 53-2,6-d2, by reaction with PCl3, gave 2,6-

dideuteriopyridine (1-2,6-d2) as shown in Scheme 4.33.  

 

Scheme 4.33  Synthesis of 2,6-dideuteriopyridine (1-2,6-d2) 

 

 

 

 

 

The mass spectrum of the product from this reaction shown in Figure 4.37 

exhibits a molecular ion at m/z = 81 which is consistent with the exchange of two 

hydrogen atoms for deuterium.  Major fragmentation signals at 53 and 54 are consistent 

with loss of DCN and HCN respectively from the molecular ion.  Loss of both DCN and 

HCN is consistent with the finding that scrambling of the ring atoms occurs before 

fragmentation.56 
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Figure 4.37  GC-MS of 2,6-dideuteriopyridine (1-2,6-d2) 
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Figure 4.38  1H-NMR of 2,6-dideuteriopyridine (1-2,6-d2) 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.39  13C-NMR spectrum of 2,6-dideuteriopyridine (1-2,6-d2) 
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 The 13C-NMR spectrum of 1-2,6-d2 is shown in Figure 4.39.  As expected for this 

structure, the spectrum exhibits singlets at δ 124.1 for C3 and C5 and at δ 136.4 for the 

C4 carbon and a triplet (J = 27.3 Hz) at δ 149.8 for the two equivalent carbons at ring 

positions 2 and 6 which are coupled with deuterium atoms.  A scale expansion of the 

triplet region of the spectrum is shown in Figure 4.39.   This confirms that the deuterium 

atoms are located at C2 and C6 of the pyridine ring. 
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4.3.8. Synthesis of 3,4,5-trideuteriopyridine (1-3,4,5-d3) 
 

 3,4,5-Trideuteriopyridine (1-3,4,5-d3) was synthesized from perdeuteriopyridine 

N-oxide (53-2,3,4,5,6-d5) as shown in Scheme 4.34 by base catalyzed exchange of the 

deuterium atoms at position 2 and 6 for hydrogen followed by reduction of the N-oxide 

(53-3,4,5-d3) by treatment with PCl3. 

 

Scheme 4.34  Synthesis of 3,4,5-trideuteriopyridine (1-3,4,5-d3) 

 

 

 

 

The mass spectrum of the product from this reaction shown in Figure 4.40 

exhibits a molecular ion at m/z = 82 which is consistent with a trideuterated pyridine.   

 

 

 

 

 

 

 

 

 

Figure 4.40  GC-MS of 3,4,5-trideuteriopyridine (1-3,4,5-d3) 
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The 1H-NMR spectrum shown in Figure 4.41 exhibits an intense signal at δ 8.48, 

where the H2 and H6 protons of pyridine are known to absorb, and only very small 

signals where the H3, H4, and H5 protons are expected.  This confirms that the deuterium 

atoms at ring positions 2 and 6 have been exchanged for hydrogen. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.41  1H-NMR spectrum of 3,4,5-trideuteriopyridine (1-3,4,5-d3) 
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 The 13C-NMR spectrum shown in Figure 4.42 is also consistent with this 

conclusion.  Thus, the spectrum shows signals for C3 and C5, C4 and C6 at δ 125.3, 

137.2, and 151.7 respectively.  As required, the signals for C3 and C5 and for C4 appear 

as triplets (J = 25.3 and 24.9 Hz) indicating that these carbons are coupling with the 

attached deuterium atoms while the signal for the C2 and C6 carbons appears as a sharp 

singlet.   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.42  13C-NMR spectrum of 3,4,5-trideuteriopyridine (1-3,4,5-d3) 
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4.3.9. Synthesis of 2,4,6-trideuteriopyridine (1-2,4,6-d3) 

 

 2,4,6-Trideuteriopyridine (1-2,4,6-d3) was synthesized from pyridine N-oxide 

(37).  The synthetic route to the final product is shown in Scheme 4.35.  The deuterium 

labeling at position 2 and 6 was carried out by base catalyzed H-D exchange reaction and 

the deuterium labeling at position 4 was accomplished by deuteiumolysis.  

 

Scheme 4.35  Synthesis of 2,4,6-trideuteriopyridine (1-2,4,6-d3) 

 

 

  

 

 

 

 

 

 

 

 Nitration of pyridine N-oxide-2,6-d2 (53-2,6-d2) gave 4-nitropyridine N-oxide-

2,6-d2 (81-2,6-d2) in a good yield by treating 53-2,6-d2 with a mixture of nitric acid and 

sulfuric acids according to the method reported by Ochiai.49  Warming 81-2,6-d2 with 

acetyl chloride gave 4-chloropyridine N-oxide-2,6-d2 (82-2,6-d2) as the product which 

was confirmed by the 1H-NMR spectrum, which was consistent with the spectrum 

reported by Sojka.57  4-Chloropyridine-2,6-d2 (83-2,6-d2) was obtained by reduction with 
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PCl3 and purified by Kugelrohr distillation to give a colorless liquid.  The GC-MS, 1H-

NMR, and 13C-NMR of pure 83-2,6-d2 are shown in Figure 4.43, 4.44, and 4.45. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.43  GC and MS of 4-chloropyridine-2,6-d2 (83-2,6-d2) 
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Figure 4.44  1H-NMR spectrum of 4-chloropyridine-2,6-d2 (83-2,6-d2) 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.45  13C-NMR spectrum of 4-chloropyridine-2,6-d2 (83-2,6-d2) 
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The chloro group in 83-2,6-d2 was then exchanged for deuterium by treating 83-

2,6-d2 with palladium on charcoal in a deuterium atmosphere according to the method of 

Azzam55.  2,4,6-Trideuteriopyridine (1-2,4,6-d3) was obtained as a colorless liquid which 

was further purified by Kugelrohr distillation. 

 

The mass spectrum of this product is shown in Figure 4.46.  The molecular ion at 

m/z = 82 consistent with a trideuteriopyridine (1-2,4,6-d3). The observation of DCN  

 

 

 

 

 

 

 

 

 

 

Figure 4.46  GC-MS of 2,4,6-trideuteriopyridine (1-2,4,6-d3) 
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Figure 4.47  1H-NMR spectrum of 2,4,6-trideuteriopyridine (1-2,4,6-d3) 

 

 The 1H-NMR spectrum, shown in Figure 4.47, exhibits a singlet for H3 and H5 as 

an intense signal at δ 7.37.  Two very small signals are observed at δ 8.60 and 7.77 due to 

residual protons at H2,6 and H4 confirms that protons at these positions have been 

mainly exchanged by deuterium.  

 

In addition, the 13C-NMR spectrum, shown in Figure 4.48, exhibits triplet signals 

which are due to C-2 and C-6 at  δ 150.7 (J = 26.7 Hz) and C-4 at 137.0 (J = 28.0 Hz), 

respectively.  The carbon signal due to C3 and C5 was observed at δ 124.7 as an intense 

singlet.  This result clearly confirms the structure of 2,4,6-trideuteriopyridine (1-2,4,6-d3). 
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Figure 4.48  13C-NMR spectrum of 2,4,6-trideuteriopyridine (1-2,4,6-d3) 
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4.3.10. Synthesis of 2,3,5,6-tetradeuteriopyridine (1-2,3,5,6-d4) 

 

 The synthesis of  2,3,5,6-tetradeuteriopyridine (1-2,3,5,6-d4) was first envisioned 

from 3,5-dichloropyridine (84) by the series of reactions shown in Scheme 4.36.   

  

Scheme 4.36  Proposed synthesis of 2,3,5,6-tetradeuteriopyridine (1-2,3,5,6-d4) 
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in an attempt to synthesize 2,6-dideuterio-3,5-dichloropyridine N-oxide (85-2,6-d2), led 

however to 2,4,6-trideuterio-3,5-dichloropyridine (85-2,4,6-d3).  This result is consistent 

with the report by Zoltewicz  and  Kauffman42  that  chlorine substitution  at  position  3  
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and 5 increases the reactivity of pyridine N-oxide toward H-D exchange.  The increased 

reactivity of 85 to the H-D exchange reaction was the major concern.  To avoid this 

problem, it was decided to exchange the chlorine atoms on positions 3 and 5 for 

deuterium before the H-D exchange of the protons at ring position 2 and 6.  The synthesis 

shown in Scheme 4.37 was then suggested. 

 

Scheme 4.37  Proposed synthesis of 2,3,5,6-tetradeuteriopyridine (1-2,3,5,6-d4) 
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enough of this compound to continue the synthesis.  Also, the water solubility of N-

oxides 53-3,5-d2 and 53-2,3,5,6-d4 made it difficult to extract these products from the 

aqueous reaction mixture. Therefore, because of the low yields, this approach could not 

be utilized.  

 

 A new approach was designed using the starting material 84. According to this 

method, compound 84 was converted directly to the N-oxide 85 which is not very soluble 

in the aqueous phase.  Furthermore, none of the intermediates shown in Scheme 4.38, 

were found to be very soluble.  This low solubility in water allowed high yield to be 

obtained by extraction with organic solvents. 

 

Scheme 4.38  Synthesis of  2,3,5,6-tetradeuteriopyridine (1-2,3,5,6-d4) 
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 The new approach, shown in Scheme 4.38, makes use of the fact that while 3,5-

dichloropyridine N-oxide (42) undergoes H-D exchange at ring positions 2,4 and 6,59          

3,5-dichloropyridine is known  to undergo  exchange  more  rapidly at position 4  then  at  

positions 2 and 6.60  Thus, once N-oxide 85 is allowed to undergo exchange at positions 2, 

4, and 6, the deuterium at position 4 in the reduced pyridine 84-2,4,6-d3 is re-exchanged 

with hydrogen to form 84-2,6-d2.  This approach was superior to attempting to limit the 

H-D exchange in N-oxide 85 to ring positions 2 and 6 as described by Zoltewics and 

Kauffman.59  In our laboratory this approach always led to the trideuterated N-oxide (85-

2,4,6-d3). 

 

In the last step, the synthesis of 1-2,3,5,6-d4 gave interesting results.  The 

dehalodeuteriumolysis was not successful in some solvents.  Using ether or 

dichloromethane as the solvent led to a low reaction rate and therefore gave 50 % return 

of starting material even though large amounts of Pd-carbon were used.  The reaction in 

dichloromethane or ether for 6 hours gave incomplete deuteriumolysis while the reaction 

in methanol-d solvent gave complete conversion within 4 hours. Unfortunately, because 

of the volatility of pyridine, recovery of 1-2,3,5,6-d4 from methanol solvent was not an 

easy task.  To purify this compound from methanol, the pyridine had to be converted to 

the pyridinium salt by treating with conc. HCl.  Once the methanol was removed by 

evaporation, the residue was neutralized with base and extracted with a volatile solvent, 

such as dichloromethane or ethyl ether.  The solvent-free 1-2,3,5,6-d4 was then obtained 

after purifying by fractional distillation followed by Kugelrohr distillation. 
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The mass spectrum of the product from this reaction shown in Figure 4.49 

exhibits the molecular ion m/z = 83, which is consistent with a tetradeuterated pyridine.   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.49  GC-MS of 2,3,5,6-tetradeuteriopyridine (1-2,3,5,6-d4) 

 

 

 

 

 

 

 

50 60 70 80 90
m/z

0

20

40

60

80

100

Ab
un

da
nc

e

55 

83 



Results and Discussion 
 

 147

 The 1H-NMR spectrum shown in Figure 4.50 exhibits an intense singlet at δ 7.75, 

where the H4 proton is known to absorb, and small signals where the H2,6 and H3,5 

protons are expected.  This confirms that the protons at ring position 2,3,5, and 6 have 

been exchanged with deuterium.  

 

 

 

Figure 4.50  1H-NMR spectrum of 2,3,5,6-tetradeuteriopyridine (1-2,3,5,6-d4) 
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 In addition to the 1H-NMR, the 13C-NMR shown in Figure 4.51 was also recorded.  

As required, the signals due to C-2,6 at δ 150.3 and C-3,5 at δ 124.2 appear as triplets     

(J = 27.9 Hz and J = 25.5 Hz respectively) indicating that they are coupling with the 

attached deuterium atoms.  The signal for the C-4 carbon observed at δ 136.5, however, 

appears as an intense singlet.  This 13C-NMR is consistent with the deuterium labeling at 

ring positions 2, 3, 5, and 6.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.51  13C-NMR spectrum of 2,3,5,6-tetradeuteriopyridine (1-2,3,5,6-d4) 
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4.3.11. Synthesis of 2,3,4,6-tetradeuteriopyridine (1-2,3,4,6-d4) 

 

 2,3,4,6-Tetradeuteriopyridine (1-2,3,4,6-d4) was synthesized by first oxidizing 3-

chloropyridine (86) to 3-chloropyridine N-oxide 87. To accomplish this, the 86 was 

converted to 87 by reacting with glacial acetic acid and 37% hydrogen peroxide.  

Oxidation formed the N-oxide 44 as a pure liquid confirmed by 1H-NMR spectrum.   

 

Scheme 4.39  Synthesis of 2,3,4,6-tetradeuteriopyridine (1-2,3,4,6-d4) 

 

 

 

 

 

 

 

 

 

3-Chloropyridine N-oxide-2,4,5,6-d4 (87-2,4,5,6-d4) was then synthesized by base-

catalyzed H-D exchange reaction at 190 oC in an autoclave.  The result from this reaction 

is different from the results reported by Zoltewicz.60   According to his work, H-D 
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incursion of methoxydechlorination at reaction temperatures higher than 80 oC.  However, 

our H-D exchange reaction gave a different result.  The mass spectrum shown in Figure 

4.52 exhibits a molecular ion with m/z = 133 which is consistent with the molar mass of a 

tetradeuterated structure.  However, the 10% abundance of the trideuterated structure was 

also observed as m/z =132.  It should be noted that the mass spectum also shows that Cl 

atom and isotope abundance (M+2) are still present in the molecule.   

 

 

 

 

 

 

 

 

 

 

Figure 4.52  GC-MS of 3-chloropyridine N-oxide-2,4,5,6-d4 (87-2,4,5,6-d4) 
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The NMR result showed that no deuteroxydechlorination was taken place.  

Instead, the H-D reaction carried out at 190 oC in an autoclave gave deuteration at all 4 

proton positions (2, 4, 5, and 6). This was confirmed by the 13C-NMR spectrum shown in 

Figure 4.53.  The 13C spectrum exhibits four triplets due to C2, C6, C4, and C5 at δ 139.0 

(J = 30.2 Hz), 137.9 (J = 28.9 Hz), 126.1 (J = 26.9 Hz), and 125.8 (J = 25.8 Hz) 

respectively and a singlet at δ 133.6 due to the C3 carbon.  This confirms that H-D 

exchange has occurred at each of these ring positions but not at the C3 position. 

 

 

 

 

 

 

 

Figure 4.53  Expansion of 13C-NMR spectrum of 87-2,4,5,6-d4 shows 4 triplets 

 

Moreover, two successive H-D exchange reactions were applied to obtain the highest 

deuterium content in 87-2,4,5,6-d4.   

 

 Reduction to remove the N-oxide was achieved by using PCl3 to give 3-

chloropyridine-2,4,5,6-d4 (86-2,4,5,6-d4) as a pure liquid.  This compound was then 

subjected to the dehalohydrogenolysis at position 3 using 10% Pd-C and methanol in a 

hydrogen atmostphere.  Because of the high volatility of pyridine, the resulting solution 
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was made acid to convert pyridine to the pyridinium salt and methanol was then removed 

by evaporation.  The product tetradeuteriopyridine 1-2,3,4,6-d4 was obtained after 

purification by fractional distillation followed by Kugelrohr distillation. 

 

The mass spectrum of 1-2,3,4,6-d4 shown in Figure 4.54 shows a molecular ion at   

m/z = 83 confirming that the compound is a tetradeuterated pyridine.  The ion at m/z 82 

indicates that about 10% of a trideuterated pyridine is also present. 

 

 

 

 

 

 

 

 

 

 

Figure 4.54  GC-MS of 2,3,4,6-tetradeuteriopyridine (1-2,3,4,6-d4) 
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 The 1H-NMR spectrum recorded in acetone-d6 is shown in Figure 4.55.  As 

expected, the spectrum exhibits an intense singlet observed at δ 7.36 where the H5 proton 

of pyridine absorbs.  Residual protons at positions 2 and 6 and at position 4 are observed 

as very small signals at δ 8.59 and 7.78, respectively.   

 

 

 

Figure 4.55  1H-NMR spectrum of 2,3,4,6-tetradeuteriopyridine (1-2,3,4,6-d4) 
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 The 13C-NMR spectrum shown in Figure 4.56, shows the three triplet signals for 

C2 and 6, C4, and C5 at δ 152.1 (J = 30.4 Hz), 138.0 (J = 24.9 Hz) and 125.8 (J = 25.8 

Hz), respectively, indicating that these carbons are labeled with deuterium atoms.   

  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.56  13C-NMR spectrum of 2,3,4,6-tetradeuteriopyridine (1-2,3,4,6-d4) 
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4.3.12. Synthesis of 2,3,4,5-tetradeuteriopyridine (1-2,3,4,5-d4) 

 

 In this experiment 2-chloropyridine (88) was first used as a starting material 

(Scheme 4.40) in an attempt to synthesize 2,3,4,5-tetradeuteriopyridine (1-2,3,4,5-d4) by 

a procedure analogous to the procedure used for the synthesis of 2,4,5,6-

tetradeuteriopyridine (1-2,4,5,6-d4), shown in  scheme 4.39,  from  3-chloropyridine (86).   

 

Scheme 4.40  Proposed synthesis of 2,3,4,5-tetradeuteriopyridine (1-2,3,4,5-d4) 
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autoclave.  However, this reaction did not give 2-chloropyridine N-oxide-3,4,5,6-d4 (89-

3,4,5,6-d4).  The cause of this unsuccessful reaction can be due to nucleophilic 

displacement of the chlorine atom in 2-chloropyridine N-oxide (89).62  Therefore, this 

gave a product different from the desired perdeuterated 2-chloropyridine N-oxide.  The 

synthesis of 1-2,3,4,5-d4 was thus redesigned.  One approach is shown in scheme 4.41 

which led to the successful synthesis of 1-2,3,4,5-d4.   

 

Scheme 4.41  Synthesis of 2,3,4,5-tetradeuteriopyridine (1-2,3,4,5-d4) 
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MS and NMR spectra.   
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The mass spectrum of the product form this reaction shown in Figure 4.57 

exhibits a molecular ion at m/z = 83, which is consistent with a tetradeuterated pyridine.  

In addition, the ion at m/z = 82 indicates that a trideuteratedpyridine is present in 

approximately 10%.  Major fragmentation signals at 55 and 56 are consistent with loss of 

DCN and HCN respectively from the molecular ion.  This suggests that the scrambling of 

the ring atoms occur before fragmentation.56   

 

 

 

 

 

 

 

 

 

 

 

Figure 4.57  GC-MS of 2,3,4,5-tetradeuteriopyridine (1-2,3,4,5-d4) 
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Figure 4.58  1H-NMR spectrum of 2,3,4,5-tetradeuteriopyridine (1-2,3,4,5-d4) 

 

 

 

 The 13C-NMR spectrum, shown in Figure 4.59, also supports this conclusion.  

Therefore, the spectrum shows signals for C3, C4, C5, and C6, as triplets at δ 122.1, 

134.1, 122.0, and 148.3, respectively (J = 25.2, 24.6, 25.5, 27.2 Hz) indicating that these 

carbons are coupling with the attached deuterium atoms.  The signal for the C2 carbon at 

δ 148.6 appears as a sharp singlet.   
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Figure 4.59  13C-NMR spectrum of 2,3,4,5-tetradeuteriopyridine (1-2,3,4,5-d4) 
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4.3.13 Synthesis of 2,3,4-trideuteriopyridine (1-2,3,4-d3), 2,4,5-trideuteriopyridine 

           (1-2,4,5-d3), and 2,3,6-trideuteriopyridine (1-2,3,6-d3) 

 

 The syntheses of 2,3,4-trideuteriopyridine (1-2,3,4-d3), 2,4,5-trideuteriopyridine 

(1-2,4,5-d3), and 2,3,6-trideuteriopyridine (1-2,3,6-d3) were started from commercially 

available 3-chloropyridine (86).  According to Yamanaka and colleagues, reaction of 3-

substituted pyridine N-oxide with phosphoryl chloride (POCl3) results in the formation of 

site-selective products.62  In our case, reaction of 3-chloropyridine N-oxide 87-2,4,5,6-d4 

with POCl3 is expected to form 2,3-dichloropyridine (91-4,5,6-d3), 2,5-dichloropyridine 

(92-3,4,5-d3), and 3,4-dichloropyridine (93-2,5,6-d3) in a ratio of 47: 38: 15.  These 

compounds can be the precursors for the preparation of 1-2,3,4-d3, 1-2,4,5-d3, and 1-

2,3,6-d3, respectively by hydrogenolysis reaction in the presence of H2 and Pd-C.  

Scheme 4.41 shows the synthetic route for the target products, 1-2,3,4-d3, 1-2,4,5-d3, and 

1-2,3,6-d3. 

Scheme 4.42  Syntheses of 2,3,4-,2,4,5-, and 2,3,6-trideuteriopyridine 
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 Perdeuterio 3-chloropyridine N-oxide 87-2,4,5,6-d4 was prepared from 86 as 

previously described in the synthesis of 1-2,3,4,6-d4.  After 87-2,4,5,6-d4 was allowed to 

react with POCl3 at 80-90 oC, the resulting mixture was purified by column 

chromatography.  All components were isolated using 90:10 dichloromethane/hexane as 

a solvent system.  Each compound was converted to the final product by 

dechlorohydrogenolysis in the presence of H2 and Pd-C.  All products were confirmed by 

GC-MS and NMR. 

 

 The mass spectrum of 1-2,3,4-d3 shown in Figure 4.60 exhibits a molecular ion at 

m/z = 82, which is consistent with a trideuterated product.   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.60  GC-MS of 2,3,4-trideuteriopyridine (1-2,3,4-d3) 
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 Figure 4.61 shows the 1H-NMR spectrum of 1-2,3,4-d3 recorded in acetone-d6.  

The doublet signals due to H6 and H5 are observed at δ 8.58 (J = 4.8 Hz) and 7.34 (J = 

4.8 Hz).  The H4 proton at δ 7.75 is labeled with deuterium, it was not observed.  This 

NMR result is consistent with the structure of 2,3,4-trideuteriopyridine.   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.61  1H-NMR spectrum of 2,3,4-trideuteriopyridine (1-2,3,4-d3) 
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 This product is also confirmed by the 13C-NMR spectrum shown in Figure 4.62.  

The singlet signals due to C6 and C5 are observed at δ 150.6 and 124.4 whereas the 

triplet signals due to C2, C4, and C3 are observed at δ 150.2 (J = 27.2  Hz), 136.2 (J = 

25.3  Hz), and 124.0 (J =  25.6  Hz).  The scale expansion of each triplet is also shown in 

Figure 4.62.   

  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.62  13C-NMR spectrum of 2,3,4-trideuteriopyridine (1-2,3,4-d3) 
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 The mass spectrum of 2,4,5-trideuteriopyridine (1-2,4,5-d3) is shown in Figure 

4.63.  The molecular ion at m/z 82 is observed in the spectrum confirming the 

trideuteriopyridine compound.  Fragmentation of DCN and HCN gave molecular ion at 

m/z 54 and 55, respectively. 

 

 

   

Figure 4.63  GC-MS of 2,4,5-trideuteriopyridine (1-2,4,5-d3) 
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 In addition, the 1H-NMR spectrum of 1-2,4,5-d3 is also recorded in acetone-d6.  

The singlet signal due to H6 and H3 are observed at δ 8.60 and 7.36.  The H4 proton is 

not observed because of deuterium labeling.  These results agree well with the structure 

of 1-2,4,5-d3.   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.64  1H-NMR spectrum of 2,4,5-trideuteriopyridine (1-2,4,5-d3) 
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 The 13C-NMR spectrum of 2,4,5-trideuteriopyridine (1-2,4,5-d3) is shown in 

Figure 4.65.  It exhibits the carbon signals due to C3 and C6 as intense singlets at δ 150.6 

and 124.2.  The C2, C4, and C5 carbon, which are labeled with deuterium, are observed 

as small triplets at δ 150.3 (J = 26.9 Hz), 136.2 (J = 25.3 Hz), 124.1 (J = 25.0 Hz), 

respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.65  13C-NMR spectrum of 2,4,5-trideuteriopyridine (1-2,4,5-d3) 
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 Futhermore, the GC-MS spectrum of 2,3,6-trideuteriopyridine (1-2,3,6-d3) are 

shown in Figure 4.66, exhibiting the molecular ion at m/z 82.  Fragmentation of DCN or 

HCN leads to m/z 54 or 55 respectively.  This confirms the structure of a 

trideuteriopyridine. 

 

 

 

   

 

 

 

 

 

 

 

Figure 4.66  GC-MS of 2,3,6-trideuteriopyridine (1-2,3,6-d3) 
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 Figure 4.67 shows the 1H-NMR spectrum of 2,3,6-trideuteriopyridine (1-2,3,6-d3).  

As expected for the assigned structure, the doublet due to the H4 and H5 protons are 

observed at δ 7.76 (J = 7.6 Hz) and 7.34 (J = 7.6 Hz).  In addition, the residual protons 

H2 and H6 are observed as a singlet at δ 8.57.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.67  1H-NMR spectrum of 2,3,6-trideuteriopyridine (1-2,3,6-d3) 
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 The structure of 1-2,3,6-d3 is confirmed by 13C-NMR spectrum shown in Figure 

4.68.  This spectrum exhibits a triplet signal at δ 150.3, which is due to the C2 and C6 

carbon coupling with deuteriums.  Another triplet can be observed at δ 124.1 which is 

due to C3 coupling with deuterium.  This signal is overlapping with an intense singlet of 

C5 at δ 124.3.  A singlet of C4 can be observed in this spectrum at δ 136.4. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.68  13C-NMR spectrum of 2,3,6-trideuteriopyridine (1-2,3,6-d3) 
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4.3.14. Synthesis of 2,3,5-trideuteriopyridine (1-2,3,5-d3) 

 

 2,3,5-Trideuteriopyridine (1-2,3,5-d3) was synthesized from pyridine N-oxide (53) 

by the multistep synthesis shown in Scheme 4.43. 

 

Scheme 4.43  Synthesis of 2,3,5-trideuteriopyridine (1-2,3,5-d3) 
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amount.  Column chromatography was used to isolate 94-3,5,6-d3 which was then reacted 

with H2 in the presence of Pd-Charcoal to form a hydrogenolysis product, 2,3,5-

trideuteriopyridine (1-2,3,5-d3).  This compound was analyzed by GC-MS and NMR 

spectroscopy.     

 

 The mass spectrum shown in Figure 4.69 exhibits the molecular ion at m/z 82 

which is consistent with the molecular weight of desired product, 1-2,3,5-d3.  This 

fragmentation of DCN or HCN gave molecular ion at m/z 54 and 55, respectively. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.69  GC-MS of 2,3,5-trideuteriopyridine (1-2,3,5-d3) 
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 The 1H-NMR spectrum shown in Figure 4.70 exhibits two singlets due to H4 and 

H6 at δ 7.75 and 8.58, respectively whereas the H3 and H5 at δ 7.35 are labeled with 

deuterium atoms.    

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.70  1H-NMR spectrum of 2,3,5-trideuteriopyridine (1-2,3,5-d3) 
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 Figure 4.71 shows the 13C-NMR spectrum of 2,3,5-trideuteriopyridine (1-2,3,5-

d3).  The singlets due to C6 and C4 are observed at δ 150.5 and 136.3, respectively.  The 

triplet signals absorbing at δ 150.2 (J = 31.3 Hz) and 124.2 (J = 24.6 Hz) are due to the 

C2 and C5 carbon atoms.  This confirms the structure of 1-2,3,5-d3.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.71  13C-NMR spectrum of 2,3,5-trideuteriopyridine (1-2,3,5-d3) 
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4.4. Photochemistry of deuterated cyanopyridines 
 
4.4.1. Irradiation of 2-Cyanopyridine-4,6-d2 

 
 Irradiation of 2-cyanopyridine-4,6-d2 (36-4,6-d2) vapor (0.3-0.4 Torr) at 254 nm 

resulted in the formation of 3-cyanopyridine-2,5-d2 (37-2,5-d2), 3-cyanopyridine-4,6-

d2(37-4,6-d2), 2-cyanopyridine-3,5-d2(36-3,5-d2), and 4-cyanopyridine-2,5-d2(38-2,5-d2).  

Table 4.11 shows the data from 4 hours of irradiation time. 

 

Table 4.11  Experimental details for photolysis of 2-cyanopyridine-4,6-d2 

 

The 1H-NMR spectra of 2-cyanopyridine-4,6-d2 (36-4,6-d2) recorded in acetone-

d6 before and after 240 minutes of irradiation are shown in Figure 4.72a and 4.72b, 

respectively.  In Figure 4.72a, the H3 and H5 protons are observed as intense singlets at δ 

7.95 and at δ 7.72, respectively.  The residual proton due to H4 and H6 are observed as 

very tiny signals (0.04 %) at δ 8.10 and 8.79, respectively.  After 240 minutes of 

irradiation, the 1H-NMR spectrum shown in Figure 4.72b shows that four major singlets 

and several minor singlets have appeared after irradiation.  The major signals at δ 7.63, 

8.65, 8.89, and 8.99 can be assigned to the H5, H4, H2, and H6, respectively, of 3-

cyanopyridine (37).  Since each dideuterio-3-cyanopyridine photoproduct can have only 

two hydrogens, this indicates that two dideuterio-3-cyanopyridine isomers have been 

formed. 

Exp 
no. 

Irradiation 
time 

(min.) 

Sample 
weight 
 (mg) 

Recovered 
weight 
 (mg) 

2-CNP 
consumption 

(%) 

3-CNP 
formation 

(%) 

4-CNP 
formation 

(%) 

25 240 17 10 39.2 35.0 4.3 
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Figure 4.72  (a)  1H-NMR spectrum of 2-cyanopyridine-4,6-d2 before irradiation 

         (b)  1H-NMR spectrum of 2-cyanopyridine-4,6-d2 irradiated for 240 min. 
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Furthermore, since all four of these signals are singlets neither product can have 

hydrogens on adjacent carbons.  Therefore, the two photoproducts must be 3-

cyanopyridine-2,5-d2 (37-2,5-d2) and 3-cyanopyridine-4,6-d2 (37-4,6-d2).  In addition to 

the proton signals of 3-cyanopyridine (37), small singlets at δ 8.10 and 8.87 are also 

observed where the H4 and H6 protons of 2-cyanopyridine (36) absorb.  This indicates 

that a minor photoproduct is 2-cyanopyridine-3,5-d2(36-3,5-d2).  A small singlet at δ 7.79 

that is close to the intense peak of H5 proton of 36 is also observed.  This signal is due to 

4-cyanopyridine-2,5-d2 (38-2,5-d2) which is the last photoproduct from this particular 

irradiation.  This NMR result shows that 3-cyanopyridine (37) is the major product 

formed from irradiation of 2-cyanopyridine (36).  This is consistent with the quantitative 

GC analysis which showed a ratio of 8:1. 

 

 Therefore, excitation of 2-cyanopyridine-4,6-d2 (36-4,6-d2) results in the 

formation of 3-cyanopyridine-2,5-d2 (37-2,5-d2), 3-cyanopyridine-4,6-d2(37-4,6-d2), 2-

cyanopyridine-3,5-d2(36-3,5-d2), and 4-cyanopyridine-2,5-d2 (38-2,5-d2) as shown in 

Scheme 4.44. 
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Scheme 4.44  Photolysis of 2-cyanopyridine-4,6-d2 (36-2,6-d2) 
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 Scheme 4.45 shows the phototransposition mechanism of 2-cyanopyridine-4,6-d2          

(36-4,6-d2). 

 

Scheme 4.45  Phototransposition mechanism of 2-cyanopyridine-4,6-d2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

These NMR results are consistent with the mechanism shown in Scheme 4.45 which 

involves cyclization-2,6-bonding and nitrogen migration around five sides of 

cyclopentenyl ring.  Excitation of 36-4,6-d2 would result in the formation of an 
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azaprefulvene, BC-36-4,6-d2, which undergoes nitrogen migration to form another 

azaprefulvene, BC-36-3,5-d2.  This species would rearomatize to 36-3,5-d2 which is one 

minor photoproduct.  Alternatively, BC-36-3,5-d2 would be expected to undergo rapid 

nitrogen migration to BC-37-4,6-d2, the more stable bicyclic species. Since nitrogen 

migration of BC-37-4,6-d2 is expected to be slow, rearomatization to 37-4,6-d2, one of 

the major products, is expected to be a major reaction pathway. 

 

Furthermore, nitrogen migration in the opposite direction from BC-36-4,6-d2 

results in the formation of BC-37-2,5-d2,which would rearrange to 37-2,5-d2 as a major 

product, or undergo a second nitrogen migration to BC-38-2,5-d2, the precursor of 38-

2,5-d2, a minor product.   

 

 

 

 

 

 

 

 

 

 

 



Results and Discussion 
 

 180

4.4.2. Irradiation of 3-cyanopyridine-2,6-d2 

 
 
 Irradiation of 3-cyanopyridine-2,6-d2 vapor (37-2,6-d2) (0.3-0.4 Torr) at 254 nm 

resulted in the formation of  3-cyanopyridine-4,5-d2 (37-4,5-d2), 2-cyanopyridine-5,6-d2 

(36-5,6-d2), 2-cyanopyridine-3,4-d2 (36-3,4-d2), and 4-cyanopyridine-5,6-d2 (38-5,6-d2). 

Table 4.12 shows the data obtained for the radiation times of 360 minutes. 

 

Table 4.12  Experimental details for photolysis of 3-cyanopyridine-2,6-d2 

 

 Figure 4.73a and 4.73b show the 1H-NMR spectra recorded in acetone-d6 of 3-

cyanopyridine-2,6-d2 (37-2,6-d2) before irradiation and after irradiation for 360 minutes, 

respectively.  In Figure 4.73a, the H4 proton is observed as a doublet at δ 8.09 and the H5 

proton is observed as a doublet at δ 7.48.  The residual protons at ring positions 2 and 6 

are observed as very small signals (0.01%) at 8.72 and 8.82, respectively.  After 360 

minutes of irradiation the 1H NMR spectrum shown in Figure 4.73b reveals the formation 

of three sets of signals.  The major signals formed at δ 8.63 and 8.74 are in the region 

where H2 and H6 of pyridine are known to absorb.  These chemical shifts are not, 

however, due to H2 and H6 protons of either 2-cyanopyridine (36) or 4-cyanopyridine 

(38).  Interestingly, these signals are due to H2 and H6 of 3-cyanopyridine (37).  This 

shows that the major product from irradiation of 3-cyanopyridine-2,6-d2 (37-2,6-d2) is 3-

cyanopyridine-4,5-d2 (37-4,5-d2).  Since this phototransposition would not be observed in  

Exp 
no. 

Irradiation 
time 

(min.) 

Sample 
weight 
 (mg) 

Recovered 
weight 
 (mg) 

3-CNP 
consumption 

(%) 

2-CNP 
formation 

(%) 

4-CNP 
formation 

(%) 

26 360 22 13 8.2 3.0 5.2 
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Figure 4.73  (a) 1H-NMR spectrum of 3-cyanopyridine-2,6-d2 before irradiation 

          (b) 1H-NMR spectrum of 3-cyanopyridine-2,6-d2 after irradiation for  

                360 minutes   
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the absence of a suitable label, this explains why undeuterated 3-cyanopyridine (39) 

appears to be so photochemically unreactive.  This is because it phototransposes to itself.  

 

In addition, a minor series of proton signals at δ 7.55, 7.72, 7.74, and 8.53 have 

the same chemical shift values as the  H5, H3, H4, and H6 protons of 2-cyanopyridine 

(36).  Because a particular dideuterio-2-cyanopyridine can exhibit signals for only two 

hydrogens, these four signals indicate that two different dideuterio-2-cyanopyridines, 2-

cyanopyridine-3,4-d2 (36-3,4-d2) and 2-cyanopyridine-5,6-d2 (36-5,6-d2) have been 

formed.  Furthermore, the small signal at δ 7.50 has the same chemical shift as the H3 of 

4-cyanopyridine.  Since this signal appears as a doublet, this product must also have a 

proton at ring position 2.  This indicates that this minor product is 4-cyanopyridine-5,6-d2 

(38-5,6-d2). 

  

These results show that 37-2,6-d2 phototransposes to 37-4,5-d2 as the major 

product, and also to 36-3,4-d2, 36-5,6-d2, and 38-5,6-d2 as minor products.  The heights 

of proton signals from minor products are almost the same corresponding to the GC data 

showing that the minor products are formed in equal quantities. 
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Scheme 4.46  Photolysis of 3-cyanopyridine-2,6-d2 (37-2,6-d2) 
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Scheme 4.47 shows the phototransposition mechanism after excitation of 37-2,6-

d2.  

 

Scheme 4.47  Phototransposition mechanism of 3-cyanopyridine-2,6-d2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 The experimental results are consistent with the mechanism shown in Scheme 

4.47 which involves cyclization and nitrogen migration around all five sides of the 

cyclopentenyl ring.  After excitation, 37-2,6-d2 undergoes electrocyclic ring closer 

resulting in the formation of azaprefulvene BC-37-2,6-d2, which either reverts back to 
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37-2,6-d2 or undergoes sigmatropic nitrogen migration to form azaprefulvene BC-36-5,6-

d2.  This intermediate can either rearomatize to 36-5,6-d2, a minor product, or 

azaprefulvene BC-36-5,6-d2 can undergo a second nitrogen migration to azaprefulvene 

BC-36-3,4-d2, which can rearomatize resulting in the formation of a second minor 

product 36-3,4-d2. The major reaction pathway for BC-36-3,4-d2, however, is expected to 

be the rearrangement to the more stable species BC-37-4,5-d2.  Since rearrangement of 

BC-37-4,5-d2 to the less stable azaprefulvenes BC-36-3,4-d2 or BC-38-5,6-d2 is expected 

to be slow, the major reaction pathway is rearomatization to the major product 37-4,5-d2.   

 

In addition, the initially formed azaprefulvene BC-37-2,6-d2 can undergo nitrogen 

migration in the opposite direction to yield BC-38-5,6-d2, the precursor of the minor 

product 40-5,6-d2, or more rapidly isomerize to 37-2,6-d2 via BC-37-4,5-d2.  Thus, 

excitation of 3-cyanopyridine-2,6-d2 (37-2,6-d2) leads to the formation of 2-

cyanopyridine-5,6-d2 (36-5,6-d2), 2-cyanopyridine-3,4-d2 (36-3,4-d2), 4-cyanopyridine-

5,6-d2 (38-5,6-d2) as minor products and 3-cyanopyridine-4,5-d2 (37-4,5-d2) as a major 

product. 

 

 Note that in this mechanism compound 37-4,5-d2 is the major product because it 

is formed from the most stabilized azaprefulvene BC-37-4,5-d2 which is stabilized by 

resonance interaction with the cyano group when it is at the end of the allyl system. 
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4.5.3. Irradiation of 4-cyanopyridine-2,6-d2 

 
Irradiation of 4-cyanopyridine-2,6-d2 (38-2,6-d2) vapor (0.3-0.4 Torr) at 254 nm 

resulted in the formation of 3-cyanopyridine-5,6-d2 (37-5,6-d2) and 2-cyanopyridine-4,5-

d2 (36-4,5-d2).  Table 4.13 shows the data obtained for the irradiation times of 30 and 60 

minutes. 

 

Table 4.13  Experimental details for photolysis of 4-cyanopyridine-2,6-d2 

Exp 
no. 

Irradiation 
time 
(min) 

Sample 
weight 
 (mg) 

Recovered 
weight 
 (mg) 

4-CNP 
consumption 

(%) 

3-CNP 
formation 

(%) 

2-CNP 
formation 

(%) 

27 30 16 8 49.4 45.3 4.1 

28 60 16 7 66.3 61.0 5.3 
 

  Figure 4.74a and 4.74b show the 1H-NMR spectra recorded in acetone-d6 

of 4-cyanopyridine-2,6-d2, 38-2,6-d2, before irradiation and after irradiation for 60 

minutes, respectively.   In Figure 4.74a, the identical H3 and H5 protons are observed as 

a singlet at δ 7.79 while the residual protons at positions 2 and 6 are observed as a very 

small signal (0.01%) at δ 8.9.  After 60 minutes of irradiation the 1H-NMR spectrum 

shown in Figure 4.74b reveals the formation of two sets of signals.  The major signals at 

δ 9.00 and 8.27 have the same chemical shift values as the H2 and H4 protons of 3-

cyanopyridine.  This indicates that the major phototransposition product is 3-

cyanopyridine-5,6-d2 (37-5,6-d2).  The minor set of signals at  δ 8.78 and 7.96 have the 

same chemical shift values as the H6 and  H3 protons of 2-cyanopyridine (38) indicating 

that the minor phototransposition product is 2-cyanopyridine-4,5-d2 (36-4,5-d2). 
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(b) 

 Figure 4.74  (a) 1H-NMR spectrum of 4-cyanopyridine-2,6-d2 before irradiation 

                      (b) 1H-NMR spectrum of 4-cyanopyridine-2,6-d2 after irradiation      

       for 60 min  
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 These results show that 4-cyanopyridine-2,6-d2 (38-2,6-d2) has phototransposed 

to 3-cyanopyridine-5,6-d2 (37-5,6-d2) and 2-cyanopyridine-4,5-d2 (36-4,5-d2). 

 

Scheme 4.48  Photolysis of 4-cyanopyridine-2,6-d2 (38-2,6-d2) 

 

 

 

 

 

 

Based on the relative heights of the major and minor 1H-NMR signals, which is a 

very qualitative measure, the ratio of the yields of 37-5,6-d2 to 36-4,5-d2 is 5:1.  Scheme 

4.49 shows the phototransposition mechanism of 4-cyanopyridine-2,6-d2.  
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Scheme 4.49  Phototransposition mechanism of 4-cyanopyridine-2,6-d2 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 The NMR results are consistent with the mechanism shown in Scheme 4.49 
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rearomatization.  As expected, 38-2,6-d2 undergoes cyclization between carbon position 2 
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azaprefulvene BC-37-5,6-d2 which mainly rearomatizes to 37-5,6-d2 as major product.  A 

small portion of BC-37-5,6-d2, however, can undergo a second migration of nitrogen, 

resulting in the formation of BC-36-4,5-d2.  Rearomatization of this intermediate would 

result in the formation of 36-4,5-d2, the observed minor product.  This process can also 

occur in the opposite direction (clockwise from BC-38-2,6-d2).  Interestingly, from this 

scheme the formation of photoproducts is estimated to be in a ratio of 1:1.  This 

inconsistency with the experimental result can be explained in term of the resonance 

stabilization of BC-37-5,6-d2.  It is stabilized by the cyano group and thus 37-5,6-d2 is 

formed in higher yield than 36-4,5-d2.  In addition, 36-4,5-d2 is produced from the second 

nitrogen walk.  Although 36-4,5-d2 is also a primary product but its intermediate, BC-36-

4,5-d2, is scantly formed from the first nitrogen-migration intermediate.  
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4.5. Photochemistry of deuterated pyridines 
  

 In an attempt to simplify the 1H-NMR spectrum of pyridine in order to monitor 

the phototransposition reactions, a number of deuterated pyridine compounds were 

synthesized and their photochemistry studied. 

  

4.5.1. Irradiation of 2,6-dideuteriopyridine 

 

The 1H-NMR spectrum of 2,6-dideuteriopyridine (1-2,6-d2) before irradiation  

shown in Figure 4.75 exhibits the expected triplet for the H4 proton at δ 7.6 (J = 7.6 Hz) 

and a doublet upfield at δ 7.2 (J = 7.6 Hz) for the two identical protons at ring positions 3 

and 5.  A very small signal is also visible at δ 8.55 due to residual protons at ring 

positions 2 and 6.  

 

 

 

 

 

 

 

 

 

Figure 4.75  1H-NMR spectrum of 2,6-dideuteriopyridine before irradiation 
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 The 2,6-dideuteriopyridine vapor was irradiated at 254 nm with four low pressure 

mercury lamps in a Rayonet photochemical reactor for 1, 5, and, 10 hours and the 

 

 

 

 

 

 

 

 

  

 

Figure 4.76  1H NMR spectrum of 2,6-dideuteriopyridine after 1 hour irradiation 

 

progression of the reaction was monitored by 1H-NMR spectroscopy.  After irradiation 

for one hour the 1H-NMR spectrum in Figure 4.76 shows that a new signal has appeared 

at δ 8.45 where H2 and H6 of pyridine are known to absorb.  Figure 4.77 shows that the 

1H-NMR spectral changes are more pronounced after 5 hours of irradiation.  The scale 

expansion shown in Figure 4.78 shows that the signal in the δ 8.45 region consists of a 

broad singlet at δ 8.48 ( this signal may be two closely spaced singlets) overlapped by a 

doublet at δ 8.48 (J = 4.4 Hz).  This suggests that a photoproduct has been formed in 

which H2 appears as  a singlet, and thus a deuterium atom is located at position 3, and H6 
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appears as a doublet, and thus a hydrogen atom is located at position 3.  This indicates 

that the photoproduct is 3,4-dideuteriopyridine (1-3,4-d2).    

 

 

 

 

 

 

 

 

 

 

Figure 4.77  1H NMR spectrum of 2,6-dideuteriopyridine after 5 hours irradiation 

 

 

 

 

 

 

 

 

 

Figure 4.78  Expansion of signal at δ 8.48 
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 In addition to the singlet and doublet for the H2 and H6 protons, this compound 

also requires a doublet for the H5 proton in the δ 7.25 region of the spectrum which 

should exhibit a coupling constant of ~4.5 Hz since it is coupling with the H6 proton in  

1-3,4-d2. 

  

 Examination of the scale-expansions of that spectral region recorded after 1, 5, 

and 10 hours of irradiation as shown in Figure 4.79 shows the appearance of four new 

signals at δ 7.261, 7.249, 7.242, and 7.233 which are apparently due to two new doublets.  

Considering the requirement that the coupling constant be ~ 4.5 Hz, the two new signals 

at δ 7.261 and 7.249 have been assigned to the H5 proton in 1-3,4-d2.  This proton thus 

appears as a doublet (J = 4.8 Hz) at δ 7.255. 

 

 

 

     

  

 

 

Figure 4.79  Expansion of proton position 3 and 5 after irradiated for 1, 5, and 10 h 
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 In addition to the signals due to the formation of 1-3,4-d2, examination of the δ 

7.6-7.7 region of the spectrum where the H4 proton of pyridine is known to absorb shows 

the appearance of a doublet at δ 7.66 (J = 7.6 Hz) overlapping with the triplet due to H4 

proton of the reactant.  This indicates that an additional product has been formed that has 

a proton at H4 which is adjacent to only one other hydrogen at C3 or C5.  The coupling 

constant of 7.6 Hz is consistent with this.  This suggests that the second product is either 

2,3-dideuteriopyridine (1-2,3-d2) or 2,5-dideuteriopyridine (1-2,5-d2). 

 

 

 

 

 

 Further examination of the δ 7.25 region of the spectrum reveals that a second 

doublet has been formed at δ 7.236 ( J = 4.8 Hz) indicating the presence of a second H3 

or H5 proton coupling with a proton at H2 and H6.  This suggests that the second 

photoproduct is 1-2,3-d2. 

 

 In summary, the best interpretation of the 1H-NMR spectroscopic data indicates 

that 2,6-dideuteriopyridine (1-2,6-d2) has undergone phototransposition to a mixture of 

2,3-dideuteriopyridine (1-2,3-d2) and 3,4-dideuteriopyridine (1-3,4-d2) as shown in 

Scheme 4.50. 
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Scheme 4.50  Photolysis of 2,6-dideuteriopyridine (1-2,6-d2) 

 

 

 

 

   

 

4.5.2. Mechanistic discussion of deuterated pyridines 
 

 The experimental results described earlier have shown that the isomerization 

products observed from irradiation of pyridine result from the insertion of a nitrogen 

atom between two carbons of carbon skeleton of the pyridine ring. 

 

 

 

 

The mechanism that will allow this selective nitrogen insertion involves 2,6-bonding 

followed by nitrogen migration around the five sides of cyclopentenyl ring and 

rearomatization to the new pyridine isomers.63  Cyclization-heteroatom migration 

mechanisms have been employed to explain the phototransposition of 5- and 6-membered 

heteroaromatic compounds, such as cyanotoluenes and lutidines. 17,64    

 

 The bonding between carbon at position 2 and 6 of pyridine results in the 

formation of non-planar azabicyclohexenyl species as a diradical called azaprefulvene. 
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Nitrogen migration around the five sides of the cyclopentenyl ring leads to the 

interconversion of the bicyclic intermediates, which after rearomatization it results in the 

formation of pyridine isomers.  This nitrogen migration could occur via the intermediacy 

of an azabenzvalene valence isomer but there is no evidence of its involvement in the 

present case. 

 

 The photochemistry of pyridine vapor was studied by several research groups.7,8  

Interestingly, there was no photoproduct upon irradiation of pyridine vapor that could be 

identified and thus it was suggested to be non-reactive.  With deuterium labeling study 

developed in our laboratory, the photochemistry of pyridine vapor was reinvestigated.  

Irradiation of deuterium-labeled pyridine could lead to the formation of deuterium-

labeled pyridine isomers different from the original pyridine compound.  In this way, it 

could be observed that pyridine vapor is indeed not non-reactive but that it undergoes 

phototransposition to itself.  Our work in the deuterium-labeled pyridine is successful in 

defining two significant points.  First, it reveals that pyridine vapor is reactive and it 

undergoes phototransposition when it is irradiated.  Second, it phototransposes via the 

azaprefulvene intermediate, supporting the Cyclization-heteroatom migration mechanism.     
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4.5.3. 2,6-Dideuteriopyridine 

 

 Irradiation of 2,6-dideuteriopyridine (1-2,6-d2) in the vapor phase at 254 nm 

yielded 2,3-dideuteriopyridine(1-2,3-d2) and 3,4-dideuteriopyridine (1-3,4-d2) which 

were identified by the 1H-NMR spectrum shown in Figure 4.75 and 4.77.  The 

observation of 1-2,3-d2 and 1-3,4-d2 are consistent with the proposed mechanism.  

Shown in Scheme 4.51, the interconversion of 1-2,6-d2, 1-2,3-d2 and 1-3,4-d2 can be 

rationalized by the 2,6-bridging-cyclization to form bicyclic intermediate BC-2,6-d2.  

One nitrogen migration in a clockwise direction leads to the formation of another bicyclic 

isomer, BC-2,3-d2, which can rearomatize to form 1-2,3-d2 or undergo a second nitrogen 

migration to form BC-3,4-d2 which would rearomatize to 1-3,4-d2.  BC-2,6-d2 can 

undergo one nitrogen migration in a counter clockwise direction resulting in the 

formation of BC-2,3-d2’, which could rearomatize to 1-2,3-d2 pyridine or undergo a 

second nitrogen migration and then rearomatization to 1-3,4-d2.  All photoproducts that 

were observed in the 1H-NMR spectrum therefore confirmed the suggested mechanism.   
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Scheme 4.51  Phototransposition mechanism of 2,6-dideuteriopyridine (1-2,6-d2) 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

In addition to the 2,6-briging cyclization-nitrogen migration mechanism shown in 

Scheme 4.51, mechanisms involving rearranging Dewar-pyridine and azaprismanes 

should also be considered. 
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The phototransposition mechanism via the Dewar-pyridine sigmatropic shift 

mechanism is shown in Scheme 4.52.  The 2,5- and 3,6- bridging of 1-2,6-d2 yields the 

same Dewar-pyridine, DP-2,6-d2.    

 

Scheme 4.52  Dewar-pyridine mechanism of 1-2,6-d2 

 

 

 

 

 

 

 

 

 

 

 

 Scheme 4.52 shows that sigmatropic nitrogen migration of DP-2,6-d2 would 

result in the formation of DP-2,6-d2 itself or a new Dewar-pyridine structure, DP-2,4-d2.  

Rearomatization of this species would lead to 2,4-dideuteriopyridine (1-2,4-d2) which is 

not one of the products observed in the 1H-NMR spectrum shown in Figure 4.77.  This 

indicated that in this reaction the Dewar-pyridine mechanism is not in operation. 
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 The phototransposition of 1-2,6-d2 via the formation of azaprismane was also 

examined.  Scheme 4.53 shows that [2+2] cycloaddition of DP-2,6-d2 would result in the 

formation of azaprismane (96).  The ring cleavage of 96 can either result back to the 

Dewar structure of 1-2,6-d2 or in the formation of two Dewar-pyridine intermediates 96a 

and 96b.   Rearomatization of these species results in the formation of 2,4-

dideuteriopyridine (1-2,4-d2) and 2,5-dideuteriopyridine (1-2,5-d2).   

 

Scheme 4.53 Azaprismane mechanism of DP-2,6-d2 

  

 

 

 

 

 

 

 The photoproducts predicted by this mechanism should be carefully considered.  

Although the structure of 1-2,4-d2 is not consistent with the 1H-NMR spectrum obtained 

for the photoproducts, the predicted product 1-2,5-d2 would be consistent with the 

observed 1H-NMR spectrum.  Thus, 1-2,5-d2 would be expected to exhibit a doublet due 

to the H4 proton and H3 and H6 would be expected to appear as a doublet in the H3 

region and a singlet in the H2,6 region of the spectrum.  Thus, the 1H-NMR spectrum 

might be interpreted to suggest that 1-2,5-d2 has been formed.  If the azaprismane 

mechanism is in operation it seems strange that it is selective to yield 1-2,5-d2 but not 1-
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2,4-d2.  Since the latter product is not observed, it does not seem likely that the 

photoreaction has followed the azaprismane mechanism. 
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4.6. Photochemistry of trideuteriopyridines 
  

4.6.1. Irradiation of 3,4,5-trideuteriopyridine (1-3,4,5-d3) 

 

Irradiation of the 3,4,5-trideuteriopyridine (1-3,4,5-d3) vapor was carried out at 

254 nm with four low-pressure mercury lamps in a Rayonet photochemical reactor for 12 

and 24 hours.  After each of irradiation, the photoproduct was analyzed by 1H-NMR in 

acetone-d6.  Figure 4.80 and 4.81 show the 1H-NMR spectra of 3,4,5-trideuteriopyridine 

(1-3,4,5-d3)  before and after irradiation at 254 nm for 24 hours. 

 

 Figure 4.80 shows that the 1H-NMR spectrum of 3,4,5-trideuteriopyridine (1-

3,4,5-d3) before irradiation exhibits only a singlet at δ 8.60 due to the equivalent H2 and 

H6 protons.  A small signal which is barely observed at δ 7.35 is due to the residual 

protons H3 and H5. 

 

 

 

 

 

 

 

 

Figure 4.80  1H-NMR spectrum of 1-3,4,5-d3 before irradiation 
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Figure 4.81  1H NMR spectrum of 1-3,4,5-d3 after 24 hours irradiation 

 

After irradiation, the spectrum in Figure 4.81 shows that a new signal has 

appeared as a doublet at δ 7.75 (J = 6.63 Hz), where H4 of pyridine absorbs, and a 

multiplet at δ 7.35 due to H3 and H5 protons.  This result is consistent with the formation 

of new pyridines which contain H4, H3, and H5 protons.  In addition, since the H4 proton 

is observed as a doublet, there is one adjacent proton coupling with it.  The H3 and H5 

proton signal consists of two overlapping doublets which indicate that in both cases the 

H3 and H5 protons are also coupling with only one adjacent proton.  This interpretation 

leads to the conclusion that the product is a mixture of 2,3,4-trideuteriopyridine (1-2,3,4-

d3) and 2,3,6-trideuteriopyridine (1-2,3,6-d3).  The structures of these new photoproducts 

are shown in Scheme 4.54.   
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Scheme 4.54  Photolysis of 3,4,5-trideuteriopyridine (1-3,4,5-d3) 

 

 

 

 

 

 The H6 proton of 1-2,3,4-d3 is obscured by the signal for the H2,6 protons of the 

reactant and the H5 proton appears as a doublet (J ~ 4.8 Hz) in the H3-H5 region.  The 

second photoproduct, 2,3,6-trideuteriopyridine (1-2,3,6-d3), exhibits the doublet for the 

H4 proton which is observed in the H4 region and a doublet (J = 7.0 Hz) for the H5 

proton which is overlapping with the H5 doublet from 1-2,3,4-d3.  As expected for an 

equimolar mixture of 1-2,3,4-d3 and 1-2,3,6-d3, the signals for the H5 and H4 protons are 

observed in Figure 4.81 as an integrated ratio of approximately 2:1. 

 

Figure 4.82 shows an expansion of the region showing the overlapping doublets 

for the H5 proton for the two products.  This signal is expected to consist of two 

overlapping doublets with essentially the same chemical shifts but with coupling 

constants of approximately 4.8 Hz (J5,6) and approximately 7.0 Hz (J4,5).  Thus, the signal 

was expected to appear as four lines as simulated below. 
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 Figure 4.82, however, shows that the signal shows additional coupling and is 

therefore more complicated.  It was suspected that this additional coupling may be due to 

H-D coupling. 

 

 

 

 

 

 

 

Figure 4.82  1H-NMR expansion of H5 from photoproducts 

 

 In order to explore this, one of the photoproducts, 2,3,4-trideuteriopyridine        

(1-2,3,4-d3) was synthesized and its 1H-NMR spectrum was studied.  The scale expansion 

of the signal due to the H5 proton is shown in Figure 4.83.   

 

 

 

 

 

 

 

Figure 4.83  Scale expansion of H5 from 2,3,4-trideuteriopyridine (1-2,3,4-d3) 
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Since this proton is coupling with the H6 proton, in the absence of additional 

coupling, this signal would be expected to appear as a doublet with a coupling constant of 

4.8 Hz.  Figure 4.83 shows, however, that the signal appears as a doublet of triplets with 

coupling constants of 1.0 Hz and 4.8 Hz.  This is consistent with the H5 proton coupling 

with the H6 proton (J = 4.8 Hz) and with the deuterium (J = 1.0 Hz) at ring position 4.  

The signal due to the photoproduct shown in Figure 4.82 also shows this additional H-D 

coupling. 

 

 

4.6.2. Irradiation of 2,4,6-trideuteriopyridine (1-2,4,6-d3) 

 

 Irradiation of the 2,4,6-trideuteriopyridine (1-2,4,6-d3) vapor (2-4 Torr) was 

carried out at 254 nm with four low pressure mercury lamps in the Rayonet 

photochemical reactor for 5 and 11 hours.  The 1H-NMR spectra of 1-2,4,6-d3 recorded in 

acetone-d6 before and after irradiation are shown in Figure 4.84 and 4.85, respectively.  

  

In Figure 4.84, the 1H-NMR spectrum shows a singlet signal due to the H3 and 

H5 protons at δ 7.37 which confirms the deuterium exchange at the other ring positions.  

In addition, a small triplet signal due to the residual H4 proton is observed at δ 7.78 and a 

tiny signal due to the residual H2,6 protons is observed at δ 8.60. 
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Figure 4.84  1H-NMR spectrum of 1-2,4,6-d3 before irradiation 

 

 

 

 

 

 

 

 

 

Figure 4.85  1H-NMR spectrum of 1-2,4,6-d3 after 11 hours irradiation 

 

 

 The 1H-NMR spectrum after irradiation of 1-2,4,6-d3 for 11 h, shown in Figure 

4.85, exhibits new singlets at δ 8.58, where H2 and H6 protons are known to absorb, and 
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at δ 7.79, where the H4 proton of pyridine is known to absorb, in an integrated ratio of    

2: 1. 

  

 According to these new signals, one of the photoproducts must have a proton at 

ring position 4 with deuterium atoms at ring position 3 and 5.  The third deuterium atom 

must be at ring position 2 while the second hydrogen must be at ring position 6.  Thus, 

one of the photoproducts must be 2,3,5-trideuteriopyridine, 1-2,3,5-d3.   

  

 The second photoproduct must have one proton at ring position 6.  According to 

the spectrum, the second proton cannot be at ring positions 2, 4, or 5.  This proton 

therefore must be at ring position 3 and the product must be 2,4,5-trideuteriopyridine, 1-

2,4,5-d3. 

   

Scheme 4.55  Photolysis of 2,4,6-trideuteriopyridine (1-2,4,6-d3) 

 

 

 

 

 

These  1H-NMR  results  thus  show  that   2,4,6-trideuteriopyridine  (1-2,4,6-d3) 

undergoes phototransposition to a mixture of 2,3,5-trideuteriopyridine, 1-2,3,5-d3, and 

2,4,5-trideuteriopyridine, 1-2,4,5-d3. 
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4.6.3. Irradiation of 2,3,4-trideuteriopyridine (1-2,3,4-d3) 

 

 2,3,4-Trideuteriopyridine (1-2,3,4-d3) vapor was irradiated at 254 nm with four 

low pressure mercury lamps in the Rayonet photochemical reactor for 12 hours.  The 1H-

NMR spectrum of 1-2,3,4-d3 before irradiation shown in Figure 4.86 exhibits two 

doublets due to the H6 and H5 protons at δ 8.59 and 7.34.  As previously shown in Figure 

4.83, scale-expansion of the signal at δ 7.34 shows that the signal can be resolved into a 

doublet of triplets due to coupling of H5 with H6 and with the deuterium atom at position 

4. 

 

 

 

 

 

 

 

 

 

 

Figure 4.86  1H-NMR spectrum of 1-2,3,4-d3 before irradiation 
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Figure 4.87  1H-NMR spectrum of 1-2,3,4-d3 after 12 hours 

 

 Figure 4.87 shows that after 12 hours of irradiation a doublet signal appears in the 

1H-NMR spectrum at δ 7.76 (J = 7.57 Hz) due to the formation of a product with protons 

at ring positions 4 and 3(5).  This photoproduct must be 1-2,3,6-d3. 

 

 

 

 

 A scale expansion of the signal at δ 8.59 shown in Figure 4.88 shows that after 

irradiation a singlet is now superimposed on the doublet due to the H6 proton of the 

reactant.  
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Figure 4.88  Scale expansion of H6 after 12 hours of irradiation 

 

 

Since no other new signals are apparent in the 1H-NMR spectrum, this new singlet must 

be due to a photoproduct with two protons at H2 and H6 and the new product must be 1-

3,4,5-d3. 

 

 

 

 Interestingly, the 1H-NMR spectrum of this same mixture of compounds, i.e., 1-

2,3,4-d3 and 1-3,4,5-d3, was also observed as the product mixture formed from irradiation 

of 1-2,3,6-d3.  A scale expansion of the H2(H6) signal in that case is shown in Figure 

4.91.  The slightly different appearance of the two signals is due to the different ratios of 

the compounds in the two samples.  In Figure 4.91, 1-2,3,4-d3 and 1-3,4,5-d3 were both 

photoproducts.  In Figure 4.88, 1-2,3,4-d3 is unconsumed reactant while 1-3,4,5-d3 is a 

photoproduct. 
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 This shows that 1-2,3,4-d3 has undergone phototransposition to yield a mixture of  

1-2,3,6-d3 and 1-3,4,5-d3. 

 

Scheme 4.56  Photolysis of 2,3,4-trideuteriopyridine (1-2,3,4-d3) 

 

 

 

 

 

 

4.6.4. Irradiation of 2,3,6-trideuteriopyridine (1-2,3,6-d3) 

 

 The photolysis of 2,3,6-trideuteriopyridine (1-2,3,6-d3) was carried out by 

irradiating its vapor in Rayonet reactor with four 254nm lamps for 12 hours.  Figure 4.89 

and 4.90 show the 1H-NMR spectra in acetone-d6 of 1-2,3,6-d3 before and after 

irradiation for 12 hours. 

 

 Before irradiation, the 1H-NMR spectrum shown in Figure 4.89 exhibits two 

doublets due to the H4 and H5 protons of 1-2,3,4-d3.  These signals are observed at          

δ 7.76 (J = 7.6 Hz) and 7.34 (J = 7.6 Hz), respectively.  The residual protons at ring 

positions 2 and 6 are also observed as a small singlet at δ 8.60. 
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Figure 4.89  1H-NMR spectrum of 1-2,3,6-d3 before irradiation 

 

 

 

 

 

 

 

 

 

Figure 4.90  1H-NMR spectrum of 1-2,3,6-d3 before irradiation 

 

 Figure 4.90 shows that after 12 hours of irradiation, an intense signal appears in 

the 1H-NMR spectrum at δ 8.58.  Because of its intensity, this signal must be due to more 

than one proton.  A scale expansion of this signal is shown in  Figure 4.91  which  reveals  



Results and Discussion 
 

 215

 

 

 

 

 

 

 

Figure 4.91  Scale expansion of H2 and H6 

 

that the signal can be resolved into a doublet overlapping with a singlet.  Thus, the 

photoproducts must have the partial structures A and B shown below. 

 

 

 

 

 Furthermore, since each product must have three deuterium atoms, the partial 

structure B must be due to 2,3,4-trideuteriopridine (1-2,3,4-d3)   
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 A scale expansion of the signal at δ 7.45 is shown in Figure 4.92 which reveals 

that the signal can be resolved into two overlapping doublets.  One of these doublets with 

J = 7.1 Hz is due to the unconverted reactant 1-2,3,6-d3 in which H5 is coupling with a 

proton at C6.  This is consistent with the product 1-2,3,4-d3. 

 

Figure 4.92  Scale expansion of H5 after 12 hours of irradiation 

 
 Based on partial structure A, two structures are possible for the second product.  

These are 1-3,4,5-d3 and 1-2,4,5-d3 shown below. 

 

 

 

 

 It is important to note that no evidence for the formation of a singlet can be seen 

in the scale expansion shown in Figure 4.92.  Since the formation of 1-2,4,5-d3 would 

demand the appearance of a singlet at this chemical shift, 1-2,4,5-d3 is not formed in this 

reaction.  The second product must be 1-3,4,5-d3. 
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 These results show that 1-2,3,6-d3 has undergone phototransposition to yield a 

mixture of 1-2,3,4-d3 and 1-3,4,5-d3. 

 

Scheme 4.57  Photolysis of 2,3,6-trideuteriopyridine (1-2,3,6-d3) 

 

 

 

 

 

 

 

4.6.5. Irradiation of 2,3,5-trideuteriopyridine (1-2,3,5-d3) 

 

 2,3,5-Trideuteriopyridine (1-2,3,5-d3) vapor was irradiated by four 254 nm lamps 

for 12 hours.  Figure 4.93 and 4.94 show the 1H-NMR spectra in acetone-d6 of 1-2,3,5-d3 

before and after irradiation for 12 hours.    

 

 In Figure 4.93, two intense singlets due to the H4 and H6 protons of 1-2,3,5-d3 

are observed at δ 7.75 and 8.60, respectively.  A very small signal due to the residual H3 

proton is also observed at δ 7.36. 
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Figure 4.93  1H-NMR spectrum of 1-2,3,5-d3 before irradiation 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.94  1H-NMR spectrum of 1-2,3,5-d3 after 12 hours of irradiation 
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 The 1H-NMR spectrum shown in Figure 4.94 shows that irradiation is 

accompanied by the formation of a new singlet at δ 7.34 where H3 and H5 protons of 

pyridine are known to absorb.  Furthermore, the intensity of this signal shows that it is 

due to more than one proton.  Considering the relative decrease in the intensity of the H4 

signal at δ 7.75 due to the consumption of the reactant and the relative increase in the 

signal at δ 7.34, this new signal must be due to the formation of products with three 

protons at the H3/H5 ring positions.  Since  all  of these  protons appear  as  singlets,  this  

indicates the partial structures C and D.   

 

 

 

 

Since each structure must also have three deuterium atoms and since the two structures 

must be different, the two photoproducts must be 1-2,4,6-d3 and 1-2,4,5-d3.  The increase  

 

 

 

 

in the intensity of the signal at δ 8.6 in Figure 4.94 is also consistent with the formation 

of a product, i.e, 1-2,4,5-d3, which has a proton at ring position 6.  

 

 These results shows that 1-2,3,5-d3 has undergone phototransposition to yield a 

mixture of 1-2,4,6-d3 and 1-2,4,5-d3 (Scheme 4.58). 
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Scheme 4.58  Photolysis of 2,3,5-trideuteriopyridine (1-2,3,5-d3) 

 

 

 

 

 

 

4.6.6. Irradiation of 2,4,5-trideuteriopyridine (1-2,4,5-d3) 

 

 The 1H-NMR spectrum of 1-2,4,5-d3 before irradiation shown in Figure 4.95 

exhibits singlets due to the H6 and H3 protons at δ 8.59 and 7.36 respectively.  The 1H-

NMR spectrum in Figure 4.96 shows that irradiation is accompanied by the formation of 

a new singlet at δ 7.75 due to the formation of a product with a proton at ring position 4.  

Since this signal is a singlet and since the product must have three deuterium atoms, the 

product must be 1-2,3,5-d3. 
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Figure 4.95  1H-NMR spectrum of 1-2,4,5-d3 before irradiation 

 

 

 

 

 

 

 

 

 

Figure 4.96  1H-NMR spectrum of 1-2,4,5-d3 after 12 hours of irradiation 

 
 

 The second product must have protons at ring positions 3(5) and/or 2(6) which all 

appear as singlets in the 1H-NMR spectrum.  Excluding the reactant, 1-2,4,5-d3 of the six 

trideuterated pyridines, only 1-2,4,6-d3 and 1-3,4,5-d3 are possible structures. 
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 As seen in Figure 4.96, the intensities of the signals at δ 7.35 due to H3(H5) and δ 

8.60 due to H2(H6) remain essentially equal after irradiation.  On this basis, structure 1-

3,4,5-d3 can be eliminated as a possible product since the formation of 1-2,3,5-d3 and 1-

3,4,5-d3 would require that the intensity of the signal at δ 8.60 due to H2(H6) would be 

much larger than the intensity of the signal at δ 7.35 due to H3(H5).  Accordingly, the 

second product must be 1-2,4,6-d3.  Thus, whereas the formation of 1-2,3,5-d3 would 

result in an increase in the intensity of the signal at δ 8.60 due to the H6 proton, the 

formation of 1-2,4,6-d3 would result in an increase in the intensity of the signal at δ 7.35 

due to the protons at ring positions 3 and 5.  Since the intensities of the signals remain 

identical, it appears that the relative yields of 1-2,3,5-d3 and 1-2,4,6-d3 is 2:1. 

 

 These results show that 1-2,4,5-d3 has undergone phototransposition resulting in a 

mixture of 1-2,3,5-d3 and 1-2,4,6-d3 as shown in Scheme 4.59. 

 

Scheme 4.59  Photolysis of 2,4,5-trideuteriopyridine (1-2,4,5-d3) 
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4.6.7. Summary and mechanistic conclusion of trideuteriopyridines 
 

 These photochemical studies show that each of the six trideuteriopyridine 

undergoes phototransposition to yield two isomeric trideuteriopyridines.  Based on the 

observed phototransposition products, the six trideuteriopyridines can be divided into two 

triads of three compounds each which photochemically interconvert.  Triad 1 consists of  

 

Scheme 4.60  Photo-interconversion of trideuteriopyridines 
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are also interconverting upon irradiation at 254 nm in the vapor phase.  These results are 

almost identical to the results of the photochemical reactions of the six isomeric 
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trideuteriopyridines, no interconversion of any member of triad 1 with any member of 

triad 2 was detected. 

 

 Two photochemically interconverting triads in 1H-NMR spectra, the 

photoproducts in each Triad are consistent with the proposed mechanism involving 

cyclization-2,6-bridging, nitrogen migration and rearomatization.  Scheme 4.61 shows 

the phototransposition mechanism of the trideuteriopyridine members in Triad 1. 

 

Scheme 4.61  Phototransposition mechanism of trideuteriopyridines in Triad 1 
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 As expected,  irradiation of any isomer in Triad 1 results in the formation of the 

other two isomers.  For example, 1-2,4,6-d3 undergoes cyclization between carbon 

position 2 and 6 resulting in the formation of BC-2,4,6-d3.  This intermediate can revert 

back to 1-2,4,6-d3 or undergo nitrogen migration in either clockwise or counterclockwise 

directions.  In one of this two directions, BC-2,4,6-d3 would isomerize to azaprefulvene 

BC-2,3,5-d3 (BC-2,3,5-d3’) which would either rearomatize to 1-2,3,5-d3, a member of 

Triad 1, or undergo a second nitrogen migration, resulting in the formation of BC-2,4,5-

d3 (BC-2,4,5-d3’).  This intermediate would also either rearomatize to 1-2,4,5-d3, the 

other member of Triad 1, or continue nitrogen migration to  BC-2,4,5-d3’(BC-2,4,5-d3) 

which is an energy wasting process.  The formation of photoproducts in this triad based 

on the above mechanistic scheme is estimated to be 2:2:1 for 1-2,3,5-d3, 1-2,4,5-d3, and 

1-2,4,6-d3, respectively. 

 

 The similar mechanism is also consistent with the photochemistry of the members 

in Triad 2.  Scheme 4.62 shows the phototransposition mechanism of trideuteriopyridines 

in Triad 2.   
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Scheme 4.62  Phototransposition mechanism of trideuteriopyridines in Triad 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Again, irradiation of any one isomer in Triad 2 results in the formation of the 

other two isomers.  For example, 1-3,4,5-d3 would undergo 2,6-bonding resulting in the 

formation of BC-3,4,5-d3.  Nitrogen migration in the counterclockwise direction would 

result in the formation of BC-2,3,4-d3, which would rearomatize to 1-2,3,4-d3, a second 

member of Triad 2.  However, BC-2,3,4-d3 can undergo a nitrogen migration to BC-

2,3,6-d3, which is followed by rearomatization to form 1-2,3,6-d3, another member of 
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Triad 2.  Nitrogen migration in the clockwise direction of BC-3,4,5-d3 undergoes 

nitrogen migration to yield BC-2,3,4-d3’ followed by rearomatization to yield 1-2,3,4-d3.  

Second nitrogen migration from BC-2,3,4-d3’ results in the formation of BC-2,3,6-d3’ 

followed by rearomatization to 1-2,3,6-d3.   

 

 The statistical ratio of photoproduct 1-2,3,6-d3, 1-2,3,4-d3, and 1-3,4,5-d3, is 2:1:1. 

 

 

4.6.8. Dewar-pyridine mechanism 
 

 The phototransposition of 1-3,4,5-d3 via interconverting Dewar-pyridine was also 

considered.  The formation of Dewar-pyridine DP-3,4,5-d3 results from 2,5- and 3,6-

bonding reaction.  Scheme 4.63 shows the phototransposition mechanism involving this 

Dewar-pyridine intermediate.   
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Scheme 4.63  Dewar-pyridine mechanism of 1-3,4,5-d3 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 This mechanism suggests that 1-2,3,5-d3 would be the only photoproduct.  This is 

not consistent with the 1H-NMR results which shows the presence of signals due to H3,5 

from the new product.  In addition, the H4 proton in 1-2,3,5-d3 would give a singlet 

signal but the experimental result exhibits H4 as a doublet.  Therefore, the 

phototransposition of 1-3,4,5-d3 does not occur by this pathway. 
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and 97b.  Rearrangement of 97a and 97b would result in the formation of 1-2,4,5-d3 and 

1-2,3,5-d3. 

   

Scheme 4.64  Azaprismane mechanism of DP-3,4,5-d3 

 

 

 

 

 

 

 

 

 These photoproducts, however, are not consistent with the proton signals 

observed in 1H-NMR spectrum.  Neither structure would exhibit the observed doublet 

signals in the NMR spectra.  Thus, phototransposition involving the azaprismane 

mechanism is not in operation.   

 

 Scheme 4.65 shows the products expected from the interconverting Dewar-

pyridine mechanism for 1-2,4,6-d3.  Because of the symmetry of 1-2,4,6-d3, C2-C5 and 

C3-C6 bonding leads to the same Dewar-pyridine, DP-2,4,6-d3.  Scheme 4.65 shows that 

all possible sigmatropic migrations result in the formation of the same Dewar-pyridine, 

DP-2,4,6-d3.  
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Scheme 4.65  Dewar-pyridine mechanism of 1-2,4,6-d3 

 

 

 

 

 

 

 

 

 

 

 

 

Rearomatization of all of these leads back to 2,4,6-trideuteriopyridine (1-2,4,6-d3).  Thus, 

if this mechanism is operating it cannot be detected by product formation. 
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  Scheme 4.66 shows the products expected if the initially formed Dewar-

pyridine undergoes a [2+2] cycloaddition reaction to form azaprismane 98.  In addition to  

 

Scheme 4.66  Azaprismane mechanism of DP-2,4,6-d3 

 

 

 

 

 

 

 

reverting back to the reactant 1-2,4,6-d3, 77 can undergo ring opening via path a or path b 

to give Dewar-pyridines 98a or 98b and, after rearomatization, 2,3,5-trideuteriopyridine 
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ring closure-heteroatom migration mechanism and the azaprismane mechanism on the 

basis of product formation. 
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 As was previously discussed, in the case of 3,4,5-trideuteriopyridine (1-3,4,5-d3), 

these pathways lead to different products as shown below. 

 

Scheme 4.67  Different photoproducts from 2,6-bonding and azaprismane formation 

 
 

 

 

 

 

 

 

 

 

 

 Thus, since irradiation of 1-3,4,5-d3 led to the formation of 2,3,4-

trideuteriopyridine (1-2,3,4-d3) and 2,3,6-trideuteriopyridine (1-2,3,6-d3), the reaction 

must have occurred by the 2,6-bonding-heteroatom migration mechanism.  By analogy, it 

is suggested that 2,4,6-trideuteriopyridine(1-2,4,6-d3) also phototransposes via this 

pathway. 
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4.7. Photochemistry of tetradeuteriopyridines 
 

4.7.1. Irradiation of 2,3,5,6-tetradeuteriopyridine (1-2,3,5,6-d4) 

 

Irradiation of 2,3,5,6-tetradeuteriopyridine (1-2,3,5,6-d4) vapor (2-4 Torrs) was 

carried out at 254 nm with the same procedure that was previously described.  Analysis 

of the photoproduct mixture after 3, 6, and 12 hours of irradiation was carried out by 1H-

NMR spectroscopy.  Figure 4.97 and 4.98 shows the 1H-NMR spectra in acetone-d6 of             

1-2,3,5,6-d4 before and after irradiation for 12 hours. 

 

 

 

 

 

 

 

 

Figure 4.97  1H-NMR spectrum of 1-2,3,5,6-d4 before irradiation 

 

In addition to the singlet at δ 7.75 due to 1-2,3,5,6-d4, after irradiation, the 1H-

NMR spectrum shown in Figure 4.98 exhibits new singlets at δ 7.34, where the H3/5 

proton absorbs and a new singlet at δ 8.58 where the H2/6 proton absorbs.  These new 

signals are formed in an integrated ratio of 1:1. 
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Figure 4.98  1H-NMR spectrum of 1-2,3,5,6-d4 after 12 hours irradiation 

 

Since each new photoproduct can have only one ring proton, these spectral results 

show that the products are 2,3,4,5-tetradeteriopyridine, 1-2,3,4,5-d4, and 2,3,4,6-

tetradeuteriopyridine, 1-2,3,4,6-d4. 

 

Scheme 4.68  Photolysis of 2,3,5,6-tetradeuteriopyridine (1-2,3,5,6-d4) 
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4.7.2. Irradiation of 2,3,4,6-tetradeuteriopyridine (1-2,3,4,6-d4) 

 

The 2,3,4,6-tetradeuteriopyridine (1-2,3,4,6-d4) vapor (2-4 Torrs) was irradiated 

at 254 nm with four low-mercury lamps in the Rayonet reactor for 3, 6, and 12 hours.  

After each irradiation the resulting photoproduct was analyzed by 1H-NMR in acetone-d6.  

Figure 4.99 and 4.100 shows the 1H-NMR spectra of 1-2,3,4,6-d4 before and after 

irradiation for 12 h. 

 

 The 1H-NMR spectrum in Figure 4.99 shows only one singlet observed at δ 7.36 

which is due to the H5 proton in 1-2,3,4,6-d4.  However, two tiny signals at δ 8.59 and 

7.77 due to the residual H2,6 (96%) and H4 (98%) protons, respectively, are also 

observed.    

 

 

 

 

 

 

 

 

Figure 4.99  1H-NMR spectrum of 1-2,3,4,6-d4 before irradiation 
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Figure 4.100  1H-NMR spectrum of 1-2,3,4,6-d4 after 12 hours irradiation 

 

 After 12 hours of irradiation, in addition to the signal at δ 7.36 due to 1-2,3,5,6-d4, 

the 1H-NMR spectrum shown in Figure 4.100 exhibits two new singlet signals observed 

at δ 8.58 and 7.79 in a ratio of 2:1.  The most downfield signal is due to a proton at the 

H2,6 ring position and the singlet at δ 7.79 is due to a proton at ring position 4.  The 

presence of singlets at ring positions 2 and 4 indicate that the products are 2,3,4,5-

tetradeuteriopyridine (1-2,3,4,5-d4) and 2,3,5,6-tetradeuteriopyridine (1-2,3,5,6-d4) as 

shown in Scheme 4.69. 

 

Scheme 4.69  Photolysis of 2,3,4,6-tetradeuteriopyridine (1-2,3,4,6-d4) 
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4.7.3. Irradiation of 2,3,4,5-tetradeuteriopyridine (1-2,3,4,5-d4) 

  

2,3,4,5-Tetradeuteriopyridine (1-2,3,4,5-d4) vapor was irradiated at 254 nm with 

fours low pressure mercury lamps in the Rayonet photochemical reactor for 3, 6, and 12 

hours.  After each irradiation, the product mixture was dissolved in acetone-d6 and 

analyzed by 1H-NMR.  Figure 4.101 and Figure 4.102 show the 1H-NMR spectra of 1-

2,3,4,5-d4 before and after irradiation for 12 hours. 

 

In Figure 4.101, the 1H-NMR spectrum exhibits only one singlet at δ 8.60 which 

is due to the H2 proton.  Small signals at δ 7.77 and 7.36 due to the residual protons at 

ring position 4 and 3,5, respectively.   After  irradiation  for  12 hours, in  addition  to  the  

 

 

 

 

 

 

 

 

Figure 4.101  1H-NMR spectrum of 1-2,3,4,5-d4 before irradiation 
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singlet at δ 8.60 due to the reactant, the 1H-NMR spectrum shown in Figure 4.102 

exhibits two singlets at 7.78 due to a proton at ringposition 4 and 7.36 due to a proton at 

H3,5 in a ratio of 1:2.   

 

 

 

 

 

 

 

Figure 4.102  1H-NMR spectrum of 1-2,3,4,5-d4 after 12 hours irradiation 

 

 These new peaks show that 1-2,3,4,5-d4 has undergone phototransposition 

resulting in the formation of 2,3,5,6-tetradeuteriopyridine (1-2,3,5,6-d4) and 2,4,5,6-

tetradeuteriopyridine (1-2,3,4,6-d4) as shown in Scheme 4.70.  

 

Scheme 4.70  Photolysis of 2,3,4,5-tetradeuteriopyridine (1-2,3,4,5-d4) 
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4.7.4. Summary and mechanistic conclusion of tetradeuteriopyridines 

 

 The experimental results from the photochemistry tetradeuteriopyridines show 

that each tetradeuterio isomer undergo phototransposition to yield two isomeric 

tetradeuteriopyridines.  Scheme 4.71 shows the photo-interconversion of 

tetradeuteriopyridines. 

 

Scheme 4.71  Photo-interconversion of tetradeuteriopyridines 

 

 

 

 

 

 

 

 

 

 These interconversion are found to be consistent with the mechanism involving 

cyclization by 2,6-bridging followed by nitrogen migration.  Finally rearomatization 

gives the other two isomers. 
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4.7.5.1. 2,3,5,6-Tetradeuteriopyridine (1-2,3,5,6-d4) 
 

 Irradiation of 2,3,5,6-tetradeuteriopyridine (1-2,3,5,6-d4) results in the formation 

of 2,3,4,6-tetradeuteriopyridine (1-2,3,4,6-d4) and 2,3,4,5-tetradeuteriopyridine (1-

2,3,4,5-d4).  The 1H-NMR spectrum shown in Figure 4.98 shows that two new singlets 

are observed at δ 7.86 and 7.35 where the H2,6 and H3,5 of pyridine absorb in a ratio of 

1:1.  This result is consistent with the photoproducts predicted from the 

phototransposition mechanism involving 2,6-bridging, nitrogen migration, and 

rearomatization.  The mechanistic scheme of this reaction is shown in Scheme 4.72. 
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Scheme 4.72  Phototransposition mechanism of 1-2,3,5,6-d4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Once 1-2,3,5,6-d4 absorbs light, it undergoes 2,6-bonding cyclization to form an 
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migration in both directions to give BC-2,3,4,6-d4 and BC-2,3,4,6-d4’.  Rearomatization 

of this intermediate results in the formation of one of the observed photoproduct, 2,3,4,6-

tetradeuteriopyridine (1-2,3,4,6-d4).  The second nitrogen migration, however, form BC-
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2,3,4,6-d4 (BC-2,3,4,6-d4’) will result in the formation of  another bicyclic species, BC-

2,3,4,5-d4 (BC-2,3,4,5-d4’).  Again, these structures will rearrange to form the second 

photoproduct, 2,3,4,5-tetradeuteriopyridine (1-2,3,4,5-d4). 

 

 Scheme 4.73  shows  that the  Dewar-pyridine sigmatropic  shift  mechanism  also 

 

Scheme 4.73  Dewar-pyridine mechanism of 1-2,3,5,6-d4 
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heteroatom migration mechanim which predicts that the ratio of these products should be 

1:1.  Thus, the experimentally observed ratio of 1:1 is more consistent with the 

electrocyclic ring closure-heteroatom migration mechanism.  

 

 Scheme 4.74 shows that 2,3,5,6-tetradeuteratiopyridine (1-2,3,5,6-d4) is converted 

to 2,3,4,6-tetradeuteriopyridine (1-2,3,4,6-d4) as the only product by the azaprismane 

mechanism.  This is clearly not consistent with the experimental observations. 

 

Scheme 4.74  Azaprismane mechanism of DP-2,3,5,6-d4 
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the proton signals observed at δ 7.79 and 8.60 where the H4 and H2,6 of pyridine absorb 

are due to the two new photoproducts.  The interconversion among 1-2,3,4,6-d4, 1-

2,3,5,6-d4, and 1-2,3,4,5-d4 is suggested to occur via the azaprefulvene intermediate 

which is formed from the mechanism involving 2,6-bridging, nitrogen migration, and 

rearomatization as shown in Scheme 4.75. 

 

 

Scheme 4.75  Phototransposition mechanism of 1-2,3,4,6-d4 
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 Excitation of 1-2,3,4,6-d4 results in the formation of a bicyclic intermediate, BC-

2,3,4,6-d4 by 2,6-bonding between C-2 and C-6.  Once formed, this species undergoes 

nitrogen migration in both directions resulting in new azaprefulvene intermediate.  

Clockwise direction leads to the formation of BC-2,3,4,5-d4 which subsequently 

rearomatize to 1-2,3,4,5-d4.  The second migration from this species leads to the 

formation of BC-2,3,4,5-d4’ which will undergo rearomatization to 1-2,3,4,5-d4, identical 

structure to the photoproduct from the first nitrogen migration.  In the counterclockwise 

direction, BC-2,3,4,6-d4 undergo first nitrogen migration to form BC-2,3,5,6-d4 which 

leads to the formation of 1-2,3,5,6-d4 after rearomatization.  The second nitrogen 

migration would result in the formation of BC-2,3,4,6-d4’ followed by rearomatization to 

1-2,3,4,6-d4, the starting material.  The experimental observation evidences that the 

product ratio is 2:1 for 1-2,3,4,5-d4 to 1-2,3,5,6-d4 which is consistent with the statistical 

ratio from Scheme 4.75.     

 

 In addition to the electrocyclic ring closure-nitrogen migration mechanism shown 

in Scheme 4.75, the mechanism involving Dewar-Pyridine intermediates mechanism 

shown in Scheme 4.76 and 4.77 has also been examined.  Unlike the deuterated pyridines 

that were previously described, the different Dewar pyridine intermediates can be formed 

from 1-2,3,4,6-d4 by 2,5-, or 3,6-bonding of the pyridine ring  followed by C and N 

sigmatropic shifts.  This would result in two different mechanistic pathways originating 

from different intermediates.  
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Scheme 4.76 shows the Dewar pyridine mechanism formed from 2,5-bonding 

which results in the formation of DP-2,3,4,6-d4.  Rearomatization of all possible Dewar-

pyridines leads back to 2,3,4,6-tetradeuteriopyridine (1-2,3,4,6-d4). 

 

Scheme 4.76  Dewar-pyridine mechanism of 1-2,3,4,6-d4: 2,5-bonding 

 

 

 

 

 

 

 

 

 

 

 

 

 Scheme 4.77 shows the Dewar-pyridine mechanism originating from 3,6-bonding.  

The resulting Dewar-pyridine is DP-2,3,4,6-d2 which undergoes nitrogen rearrangement 

to DP-2,3,4,6-d4 itself.  Thus, all possible Dewar-pyridine leads to the starting material.   

 

 

N

N

N

N DD

N DD

N D

D

N DD

D
D

DD

D D

DP-2,3,4,6-d4

1-2,3,4,6-d4

b

DP-2,3,4,6-d4

a
1-2,3,4,6-d4

1-2,3,4,6-d4

DP-2,3,4,6-d4

DP-2,3,4,6-d4

D D

D

D

D

D

D

D D

D

N

N

N

N DD

N D

D

DP-2,3,4,6-d4

b

DP-2,3,4,6-d4

a

1-2,3,4,6-d4

1-2,3,4,6-d4

DP-2,3,4,6-d4

D

D

D
D

D
D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

2,5- bonding



Results and Discussion 
 

 247

Scheme 4.77  Dewar-pyridine mechanism of 1-2,3,4,6-d4: 3,6-bonding 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

This shows that if Dewar-pyridine mechanism is operating it cannot be detected.   

 

 In addition, the [2+2] cycloaddition of Dewar-Pyridine DP-2,3,4,6-d4 from 2,5- 

and 3,6-bonding can form azaprismane structures shown in Scheme 4.78.       
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Scheme 4.78  Azaprismane mechanism of DP-2,3,4,6-d4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 The azaprismane mechanism shows that irradiation of 1-2,3,4,6-d4 would result in 

the formation of 1-2,3,4,5-d4 and 1-2,3,5,6-d4 in a statistical ratio of 2:1 identical to 

electrocyclic ring closure-heteroatom migration.   
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4.7.5.3. 2,3,4,5-Tetradeuteriopyridine (1-2,3,4,5-d4) 
 

Irradiation of 1-2,3,4,5-d4 was found to result in the formation of 1-2,3,4,6-d4 and 

1-2,3,5,6-d4.  Scheme 4.79 shows that excitation of 1-2,3,4,5-d4 results  in the formation   

 

Scheme 4.79  Phototransposition mechanism of (1-2,3,4,5-d4) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

of azaprefulvene BC-2,3,4,5-d4.  These intermediate undergoes nitrogen migration 
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counterclockwise direction  result in the formation of BC-2,3,4,6-d4  which  is  allowed  

to rearomatize to 1-2,3,4,6-d4, one of the photoproduct.  The second nitrogen migration 

subsequently forms BC-2,3,5,6-d4 followed by aromatization to 1-2,3,5,6-d4 as another 

photoproduct.  The nitrogen migration in the clockwise direction of BC-2,3,4,5-d4 results 

in the formation of BC-2,3,4,5-d4’.  This azaprefulvene structure leads back to the 

starting material after rearomatization.  The second nitrogen migration of BC-2,3,4,5-d4’ 

results in the formation of BC-2,3,4,6-d4’ which then undergo rearomatization to 1-

2,3,4,6-d4.  These results are consistent with the 1H-NMR spectrum shown in Figure 

4.102.  The two new singlets observed at δ 7.36 and 7.79 represent the H3,5 and H4 of 

two new pyridine isomers.  The integrated ratio of H3,5 to H4 of 2:1 in NMR result also 

confirms this mechanistic scheme. 

 

 The mechanism involving Dewar-Pyridine intermediate has also been examined.  

The Dewar-Pyridines that result from 2,5- or 3,6-bonding as shown  in Schemes 4.80 and 

4.81. 
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Scheme 4.80  Dewar-pyridine mechanism of 1-2,3,4,5-d4: 2,5-bonding 

 

 

 

 

 

 

 

 

 

 

 

 

 

The rearrangement of all possible Dewar-pyridines in Scheme 4.80 leads back to 

the starting material 1-2,3,4,5-d4.  This means that if this mechanism exists, it cannot be 

detected.  However, the 1H-NMR result shown in Figure 4.102 indicates that there are 

indeed new photoproducts formed from irradiation of 1-2,3,4,5-d4.  
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Scheme 4.81  Dewar-pyridine mechanism of 1-2,3,4,5-d4: 3,6-bonding 

  

 

 

 

 

 

 

 

 

 

 

 

 Scheme 4.81 shows that the rearrangement of DP-2,3,4,5-d4 from 3,6-bridging 

leads to the formation of 1-2,3,4,5-d4, the starting material, and 1-2,3,5,6-d4 as only 

photoproduct.  This is not consistent with the experimental results which shows that 1-

2,3,4,5-d4 is photochemically converted to 1-2,3,4,5-d4 and 1-2,3,5,6-d4.  Therefore, the 

Dewar-pyridine mechanism does not take place in the photochemistry of 1-2,3,4,5-d4. 
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 In addition to the Dewar-pyridine, the azaprismane possibility was also examined.  

Scheme 4.82 shows the [2+2] cycloaddition of DP-2,3,4,5-d4 resulting from 2,5-bonding 

and 3,6-bonding followed by rearranging  to photoproducts. 

 

Scheme 4.82  Azaprismane mechanism of  DP-2,3,4,5-d4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Although this mechanism would result in the formation of the other two isomers 

of pyridine 1-2,3,4,5-d4, the ratio of 1-2,3,4,6-d4 and 1-2,3,5,6-d4 is 1:1.  This is not 

consistent with the experimental result suggesting that the ratio is 2:1.  Therefore, the 

phototransposition of 1-2,3,4,5-d4 does not occur via this pathway. 
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 This discussion shows that mechanism involving interconverting Dewar-pyridines 

or azaprismanes predict the correct photoproducts in some cases but not in others.  Of the 

pathways considered, the mechanistic pathway that consistenly predicts the correct 

products is the cyclization-nitrogen migration mechanism. 
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4.8. Photochemistry of cyanopyridines in solution phase 

 

4.8.1. Irradiation of cyanopyridines in the solution phase 

 

 A 2x10-2 M solution of 2-cyanopyridine (36), 3-cyanopyridine (37), or 4-

cyanopyridine (38) in acetonitrile was irradiated with 16 low-pressure mercury lamps at 

254 nm.  Figure 4.103 shows the GC trace of 2-cyanopyridine before irradiation. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.103  GC trace of 2-cyanopyridine before irradiation 

 

     The GC analysis shows one intense signal for 2-cyanopyridine (36) observed at a 

retention time of 12 min with a peak area of 245.9. 
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Figure 4.104 shows the GC trace for this solution of 2-cyanopyridine after 

irradiation for 4 hours. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.104  GC trace of 2-cyanopyridine after irradiation for 4 hours 

 

 After irradiation, GC analysis shows that approximately 30% of 2-cyanopyridine 

(36) was consumed.  However, this analysis shows that there was no GC-volatile 

photoproduct formed from this irradiation. 

   

   In a different experiment, a 3-cyanopyridine (37) solution was irradiated for 2 and 

4 hours.  Figure 4.105 shows the GC trace of 3-cyanopyridine (37) before irradiation 

exhibiting an intense signal of  37 at 7 min. retention time.   
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Figure 4.105  GC trace of 3-cyanopyridine before irradiation 

 

 After irradiation, the GC-trace in Figure 4.106 shows that after 4 hours of 

irradiation, 13% of 3-cyanopyridine was consumed but no GC-volatile photoproduct 

could be detected.   

 

 

 

 

 

 

 

 

Figure 4.106  GC trace of 3-cyanopyridine after irradiation for 4 hours 
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 The GC trace shown in Figure 4.107 shows the GC-trace of the 4-cyanopyridine 

solution (38) before irradiation.  

 

 

  

 

 

 

 

 

 

Figure 4.107  GC trace of 4-cyanopyridine before irradiation 

 

 After irradiation for 4 hours, GC analysis shown in Figure 4.108 shows that 

approximately 90% of 4-cyanopyridine (40) was consumed without the formation of any 

GC-volatile products. 
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Figure 4.108  GC trace of 4-cyanopyridine after irradiation for 4 hours 

 

 These experiments show that irradiation of 2-, 3-, or 4-cyanopyridine in 

acetonitrile solution does not lead to the formation of any GC-volatile products.  Thus, 

phototransposition does not occur in the solution phase. 

 

 The analogous results for the photochemistry of cyanopyridines 36-38 were also 

observed in non-polar solvent.  In a different experiment, 2, 3, or 4-cyanopyridine (2x10-2 

M) solution in methylcyclohexane was photochemically studied.  Irradiation of 

cyanopyridine solutions were carried out in a Rayonet reactor at 254 nm (13 lamps) for 

30 minutes.  After irradiation, the solution color turned yellow.  The GC analysis shows 

that all reactants were consumed but no isomerized products could be observed.  In other 

word, irradiation of one cyanopyridine isomer did not result in the formation of the other 

two isomers that was observed in the gas phase photolysis.  Figure 4.109 shows the GC 

trace of 2-cyanopyridine before irradiation.  Only peak of 2-cyanopyridine at 13 minutes 
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is observed.  After irradiation, the relative area of this peak was 12% decreased without 

the formation of any new product. 

 

 

Figure 4.109  GC trace of 2-cyanopyridine in MCH before irradiation 

 

 

Figure 4.110  GC trace of 2-cyanopyridine in MCH after 30 minutes of irradiation 
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 In the photolysis of 3-cyanopyridine (37), no any photoproduct could be observed 

after irradiation.  This shows that irradiation of 37 in non-polar solvent also did not give 

the isomer of 3-cyanopyridine and the reactant was consumed only 6.02%.  Figure 4.111 

shows the GC trace of 37 before irradiation and Figure 4.112 shows the GC trace of 37 

after irradiation.   

 

Figure 4.111 GC trace of 3-cyanopyridine in MCH before irradiation 

 

 

Figure 4.112 GC trace of 3-cyanopyridine in MCH after 30 minutes of irradiation 
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 The photolysis of 4-cyanopyridine (38) also shows the similar result.  The 

decrease in relative peak area from 160.6 to 92.2 (57%) shows that 4-cyanopyridine was 

consumed without the formation of any GC-volatile product.  Figure 4.113 shows the GC 

trace of 4-cyanopyridine (38) before irradiation.  After irradiation, the GC trace still 

shows the peak of the reactant in a less extent.   

 

Figure 4.113 GC trace of 4-cyanopyridine in MCH before irradiation 

 

 

Figure 4.114 GC trace of 4-cyanopyridine in MCH after 30 minutes of irradiation 



 

 

CHAPTER V 
 

Experimental 
 

5.1. General Procedures 

 

 2-Cyanopyridine, 3-cyanopyridine, 4-cyanopyridine, 2-methylpyridine, 3-

methylpyridine, and 4-methylpyridine were purchased from Aldrich Chemical Company.  

All of these compounds were distilled before use.  The 1H NMR and 13C NMR spectra 

were recorded at 400 MHz on a Bruker FT-NMR system.  1H and 13C chemical shifts 

were measured relative to internal (CH3)2CO or CDCl3.  GLC was performed on a PE-

9000 FID instrument equipped with 15 m x 3 µm methyl 50 % phenylsilicon phase 

capillary column.  Mass spectra were recorded with an HP 5970B mass selective detector 

interfaced to an HP 5880 capillary gas chromatograph.  Ultraviolet absorption spectra 

were performed on a Hitachi U-2000 and Shimadzsu UV-2100U spectrometers.    

Luminescence spectra were recorded on a PE-LS 50 spectrometer.  Flash column 

chromatography was carried out on silica gel, 45-60 µm average particle size.  

Preparative-layer chromatography was carried out on 20 x 20 cm glass plates coated with 

2 mm of silica gel 60 F254+366 nm (EM Science).  

 

5.2. Ultraviolet absorption  
 

 Absorption spectra of cyanopyridines (36-38) were recorded by placing 8x10-5 M-

solution in 1:1 ethanol/methanol or acetonitrile in a cuvette, which was always capped 
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during analysis.  The range of UV absorption wavelength is between 220-350 nm.  The 

λmax of 2-cyanopyridine (36) is 264 nm; 3-cyanopyridine (37) is 264 nm; 4-cyanopyridine 

(38) is 282 nm. 

 

5.3. Methods of irradiation and analysis 
  

Irradiation of cyanopyridine, methylpyridine, deuterated cyanopyridine, 

deuterated pyridine vapors were carried out in a Rayonet reactor equipped with 4 or 15 

low-pressure mercury arc lamps.  The materials were introduced into a 3-L quartz reactor 

as a gas at the reduced pressure.  Prior to introduction of the materials into the reactor, the 

dissolved gas was removed by two freeze-thaw cycles using an acetone-dry ice bath. 

 

5.4. GC analysis of photoproduct 
 

 The quantitative analysis of photoproduct was calculated from GC area results.  

Because of material losses during filling the reaction vessel and during recovery after 

irradiation, the percent consumption of starting material and percent formation of 

photoproducts were not obtained accurately.  The relative values of the peak area in the 

GC results were therefore used to calculate the percent formation of products.  To ensure 

that the peak areas of compounds are accurate, each peak area is multiplied by its detector 

response value calculated from 1mg-injection peak area of each substance. The percent 

formations of products are assumed to obtain from the percent starting material consumed.  
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It should be noted that the loss of starting materials during analysis are uncertain and 

unavoidable in each experiment.    

 

5.5. Irradiation at 254 nm 
 

5.5.1. 2-Cyanopyridine (36) 

 

 The vapor of 2-cyanopyridine (36) (0.3 Torr) was obtained from 100 mg of the 

sample in a 3-L quartz reactor at 24 oC.    This was then irradiated in a Rayonet reactor 

equipped with 4-low mercury arc lamps for 15, 60, 75, and 90 minutes.  After irradiation, 

the resulting material was recovered by pumping it out through a trap cooled in an 

acetone-dry ice bath.  The resulting product was dissolved in 2 mL of ether.  The GC 

analysis was obtained by injecting this solution through capillary column at oven temp of 

100 oC.  The GC traces showed the consumption of 36 and the formation of 37 and 38 

with retention times of 12, 7, and 6 minutes, respectively.  Table 5.1 shows photolysis 

conditions and quantitative results. 

Table 5.1  Irradiation of 2-cyanopyridine (36) at 254 nm 

 
Exp 
no. 

Irradiation 
time 
(min) 

Sample  
weight 
 (mg) 

Recovered 
weight 
 (mg) 

2-CNP 
consumption 

(%) 

3-CNP 
formation 

(%) 

4-CNP 
formation 

(%) 

1 15 13 5 4.9 3.6 1.29 

2 60 20 7 22.7 18.4 4.31 

3 75 18 9 27.0 22.4 4.64 

4 90 17 8 35.3 29.4 5.92 
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 After GC-analysis, the ether solvent was removed by purging with nitrogen.  The 

resulting crude was dissolved  in acetone-d6 and analyzed by 1H-NMR. 

 

5.5.2. 3-Cyanopyridine (37) 

 

The vapor of 3-cyanopyridine (37) (0.3 Torr) was obtained from 100 mg of the 

sample in a 3-L quartz reactor at 25 oC.  This was then irradiated in a Rayonet reactor 

equipped with 4-low mercury arc lamps for 60, 120, 240, and 360 minutes.  After 

irradiation, the resulting material was recovered by pumping it out through a trap cooled 

in an acetone-dry ice bath.  The resulting product was dissolved in 2 mL of ether.  The 

GC analysis was obtained by injecting this solution through capillary column at oven 

temp of 100 oC.  The GC traces showed the consumption of 37 and the formation of 36 

and 38 with retention times of 7, 12, and 6 minutes, respectively.  Table 5.2 shows 

photolysis conditions and quantitative results. 

 

Table 5.2  Irradiation of 3-cyanopyridine (37) at 254 nm 

 
Exp 
no. 

Irradiation 
time 
(min) 

Sample  
weight 
 (mg) 

Recovered 
weight 
 (mg) 

3-CNP 
consumption 

(%) 

4-CNP 
formation 

(%) 

2-CNP 
formation 

(%) 

5 60 11 8 3.0 1.58 1.46 

6 120 9 7 4.5 2.08 2.45 

7 240 9 4 8.9 3.80 5.06 

8 360 13 8 7.5 2.89 4.64 
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 After GC analysis, the sample in the ether solution was concentrated by purging 

with nitrogen.  Aceton-d6 was added and the solution was analyzed by 1H-NMR.  

 

5.5.3. 4-Cyanopyridine (38) 

 

4-Cyanopyridine vapor (38) (0.3 Torr) was obtained from 100 mg of the sample 

in a 3-L quartz reactor at 24 oC.  This was then irradiated in a Rayonet reactor equipped 

with 4-low mercury arc lamps for 23, 45, 70, and 90 minutes.  After irradiation, the 

resulting material was recovered by pumping it out through a trap cooled in an acetone-

dry ice bath.  The resulting product was dissolved in 2 mL of ether.  The GC analysis was 

obtained by injecting this solution through a capillary column at an oven temperature of 

100 oC.  The GC traces showed the consumption of 38 and the formation of 37 and 36 

with retention times of 6, 7, and 12 minutes, respectively.  Table 5.3 shows photolysis 

conditions and quantitative results. 

 

Table 5.3  Irradiation of 4-cyanopyridine (38) at 254 nm 

 
Exp 
no. 

Irradiation 
time 
(min) 

Sample  
weight 
 (mg) 

Recovered 
weight 
 (mg) 

4-CNP 
consumption 

(%) 

3-CNP 
formation 

(%) 

2-CNP 
formation 

(%) 

9 23 15 10 26.6 24.5 2.13 

10 45 11 10 39.7 36.8 2.91 

11 70 13 10 47.0 43.5 3.50 

12 90 16 15 59.8 54.3 5.55 
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 After GC analysis, the ether solvent was removed and acetone-d6 was added.  The 

resulting solution was analyzed by 1H-NMR spectroscopy.  

 

5.5.4. 2-Methylpyridine (6) 

 

 The vapor of 2-methylpyridine (6) (2.7 Torr) was obtained by vaporizing the 

sample (72 mg) into the 3-L quartz reactor at 25 oC.  It was irradiated in the Rayonet 

reactor at 254 nm using 15 low-pressure mercury arc lamps for 3, 6, and 12 hours.  After 

irradiation, the material was recovered by pumping it out through a trap cooled in 

acetone-dry ice.  This was then dissolved in 1 mL CDCl3 and analyzed by 1H-NMR and 

13C-NMR.  The GC analysis was obtained by diluted this solution to 8 mL and injecting 

an aliquot into the capillary column at oven temp of 55 oC.  The GC trace showed the 

consumption of 2-methylpyridine (6) at retention time 19 minutes and formation of 3-

methylpyridine (7) at 31 minutes and 4-methylpyridine (8) at 32 minutes as 

phototransposition products. It also shows pyridine at 15 minutes and an unknown 

compound at 29 minutes as methyl-demethylation products.  Table 5.4 shows photolysis 

conditions and quantitative results. 

Table 5.4  Irradiation of 2-methylpyridine (6) at 254 nm 

 
Exp 
no. 

Irradiation 
time 
(min) 

Sample 
weight 
(mg) 

Recovered 
weight 
 (mg) 

2-MP 
consumption 

(%) 

3-MP 
formation 

(%) 

4-MP 
formation 

(%) 

16 3 75.1 48.7 5 3.41 0.62 

17 6 72.6 42.5 9.9 6.60 1.85 

18 12 50.3 29.8 19.5 13.2 4.39 
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5.5.6. 3-Methylpyridine (7) 

 

 The vapor of 3-methylpyridine (7) (2.5 Torr) was obtained by vaporizing 100 mg 

of the sample into the 3-L quartz reactor at 25 oC.  This was then irradiated in the 

Rayonet reactor at 254 nm using 15 low-pressure mercury arc lamps for 3, 6, and 12 

hours.  After irradiation, the material was recovered by pumping it out through a trap 

cooled in an acetone-dry ice bath.  The material was dissolved in 1 mL CDCl3 and 

analyzed by 1H-NMR and 13C-NMR.  This solution was diluted to 8 mL and then it was 

analyzed by GC at an oven temperature of 55 oC.  The GC traces showed the 

consumption of 3-methylpyridine (7) at retention time 31 minutes and the formation of 2-

methylpyridine (6) at 19 minutes and 4-methylpyridine (8) at 32 minutes as 

phototranspositon products.  It also showed the formation of pyridine (1) at 15 minutes as 

a demethylation product.  No methylation product was observed. Table 5.5 shows 

photolysis conditions and quantitative results. 

 

Table 5.5  Irradiation of 3-methylpyridine (7) at 254 nm 

 
Exp 
no. 

Irradiation 
time 
(min) 

Sample 
weight 
(mg) 

Recovered 
weight 
 (mg) 

3-MP 
consumption 

(%) 

2-MP 
formation 

(%) 

4-MP 
formation 

(%) 

19 3 72.4 28.4 16.5 10.5 5.7 

20 6 72.8 38.5 27.3 17.2 9.5 

21 12 77.3 36.5 38.3 24.2 14.4 
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5.5.7. 4-Methylpyridine (8) 

 

 The vapor of 4-methylpyridine (8) (2.7 Torr) was obtained by vaporizing 100 mg 

of the sample into the 3-L quartz reactor at 25 oC.  This was then irradiated in the 

Rayonet reactor at 254 nm using 15 low-pressure mercury arc lamps for 3, 6, and 12 

hours.  After irradiation, the material was recovered by pumping it out through a trap 

cooled in an acetone-dry ice bath.  The material was dissolved in 1 mL CDCl3 and 

analyzed by 1H-NMR and 13C-NMR.  This solution was diluted to 8 mL and then 

analyzed by GC at oven temperature of 55 oC.  The GC traces showed the consumption 

of 4-methylpyridine (8) at a retention time of 32 minutes and the formation of 3-

methylpyridine (7) at 31 minutes and 4-methylpyridine (8) at 19 minutes as 

phototranspositon products.  It also showed the formation of pyridine (1) at 15 minutes as 

a demethylation product, and 2,6-dimethylpyridine at 24 minutes as a methylation 

product.  Table 5.6 shows photolysis conditions and quantitative results. 

 

Table 5.6  Irradiation of 4-methylpyridine (8) at 254 nm 

 
Exp 
no. 

Irradiation 
time 
(min) 

Sample 
weight 
(mg) 

Recovered 
weight 
 (mg) 

4-MP 
consumption 

(%) 

2-MP 
formation 

(%) 

3-MP 
formation 

(%) 

22 3 29.4 20.6 11.7 4.4 6.7 

23 6 77.1 29.1 16.6 6.7 9.3 

24 12 70.1 20.6 20.5 8.7 11.4 
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5.6. Irradiation at λ ≥ 290 nm 
 

5.6.1. 2-Cyanopyridine (36) 

 

 The vapor of 2-cyanopyridine (36) (0.3 Torr) was obtained from 100 mg of the 

sample in a 3-L quartz reactor.  This was then irradiated through a pyrex filter in the 

Rayonet reactor using sixteen 300 nm lamps for 24 hours.  After irradiation, the material 

was recovered by pumping it out through a trap cooled in an acetone-dry ice bath.  The 

material was dissolved in 2 mL ether.  The resulting solution was analyzed by GC.  Table 

5.7 shows photolysis conditions and quantitative analysis. 

 

Table 5.7  Irradiation of 2-cyanopyridine (36) at λ ≥ 290 nm. 

Exp 
no. 

Sample  
weight 
 (mg) 

Recovered 
weight 
 (mg) 

Irradiation 
time 

(hours) 

2-CNP 
consumption 

(%) 

3-CNP 
formation 

(%) 

4-CNP 
formation 

(%) 

13 7 7 24 18.3 9.6 8.7 
 

 

5.6.2. 3-Cyanopyridine (37) 

 

The vapor of 3-cyanopyridine (37) (0.3 Torr) was obtained from 100 mg of the 

sample in a 3-L quartz reactor.  This was then irradiated through a pyrex filter in the 

Rayonet reactor using sixteen 300 nm lamps for 24 hours.   After irradiation, the material 

was recovered by pumping it out through a trap cooled in an acetone-dry ice bath.  The 
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material was dissolved in 2 mL ether.  The resulting solution was analyzed by GC.  Table 

5.8 shows photolysis conditions and quantitative analysis. 

 

Table 5.8  Irradiation of 3-cyanopyridine (37) at λ ≥ 290 nm 

 
Exp 
no. 

Sample  
weight 
 (mg) 

Recovered 
weight 
 (mg) 

Irradiation 
time 

(hours) 

3-CNP 
consumption 

(%) 

4-CNP 
formation 

(%) 

2-CNP 
formation 

(%) 

14 10 8 24 4.1 1.0 3.1 
 

 

5.6.3. 4-Cyanopyridine (38) 

 

The vapor of 4-cyanopyridine (38) (0.4 Torr) was obtained from 100 mg of the 

sample in a 3-L quartz reactor.  This was then irradiated through a pyrex filter in the 

Rayonet reactor using sixteen 300 nm lamps for 24 hours.   After irradiation, the material 

was recovered by pumping it out through a trap cooled in an acetone-dry ice bath.  The 

material was dissolved in 2 mL ether.  The resulting solution was analyzed by GC.  Table 

5.9 shows photolysis conditions and quantitative analysis. 

 

Table 5.9  Irradiation of 4-cyanopyridine (38) at λ ≥ 290 nm 

 

 

Exp 
no. 

Sample  
weight 
 (mg) 

Recovered 
weight 
 (mg) 

Irradiation 
time 

(hours) 

4-CNP 
consumption 

(%) 

3-CNP 
formation 

(%) 

2-CNP 
formation 

(%) 

15 8 6 24 1.9 1.9 0.0 
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5.7. Deuterium labeling studies 
 

5.7.1.  2-Cyanopyridine-4,6-d2 (36-4,6-d2) 

 

 The vapor of 2-cyanopyridine-4,6-d2 (36-4,6-d2) (0.4 Torr) was obtained 

from 20 mg of the sample in a 3-L quartz reactor.  This was then irradiated in a Rayonet 

reactor equipped with 4-low mercury arc lamps.  After irradiation, the material was 

recovered by pumping it out through a trap cooled in an acetone-dry ice bath.  The 

material was dissolved in 2 mL ether.  The resulting solution was analyzed by GC.  Table 

5.10 shows photolysis conditions and quantitative analysis. 

 

Table 5.10  Irradiation of 2-cyanopyidine-4,6-d2 (36-4,6-d2) 

 

 The ethereal solution was concentrated to remove solvent and the residue was 

analyzed by 1H-NMR in acetone-d6. 

 

5.7.2.  3-Cyanopyridine-2,6-d2 (37-2,6-d2) 

 

The vapor of 3-cyanopyridine-2,6-d2 (37-2,6-d2) (0.4 Torr) was obtained from 25 

mg of the sample in a 3-L quartz reactor.  This was then irradiated in a Rayonet reactor 

equipped with 4-low mercury arc lamps.  After irradiation, the material was recovered by 

Exp 
no. 

Irradiation 
time 

(min.) 

Sample 
weight 
 (mg) 

Recovered 
weight 
 (mg) 

2-CNP 
consumption 

(%) 

3-CNP 
formation 

(%) 

4-CNP 
formation 

(%) 

25 240 17 10 39.2 35.0 4.3 
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pumping it out through a trap cooled in an acetone-dry ice bath.  The material was 

dissolved in 2 mL ether.  The resulting solution was analyzed by GC.  Table 5.11 shows 

photolysis conditions and quantitative analysis. 

 

Table 5.11  Irradiation of 3-cyanopyridine-2,6-d2 (37-2,6-d2) 

 

 The ethereal solution was concentrated to remove the solvent and the residue was 

analyzed by 1H-NMR in acetone-d6. 

 

5.7.3.  4-Cyanopyridine-2,6-d2 (38-2,6-d2) 

 

The vapor of 4-cyanopyridine-2,6-d2 (38-4,6-d2) (0.4 Torr) was obtained from 30 

mg of the sample in a 3-L quartz reactor.  This was then irradiated in a Rayonet reactor 

equipped with 4-low mercury arc lamps.  After irradiation, the material was recovered by 

pumping it out through a trap cooled in an acetone-dry ice bath.  The material was 

dissolved in 2 mL ether.  The resulting solution was analyzed by GC.  Table 5.12 shows 

photolysis conditions and quantitative analysis. 

 

 

 

 

Exp 
no. 

Irradiation 
time 

(min.) 

Sample 
weight 
 (mg) 

Recovered 
weight 
 (mg) 

3-CNP 
consumption 

(%) 

2-CNP 
formation 

(%) 

4-CNP 
formation 

(%) 

26 360 22 13 8.2 3.0 5.2 
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Table 5.12  Irradiation of 4-cyanopyridine-2,6-d2 (38-2,6-d2) 

Exp 
no. 

Irradiation 
time 
(min) 

Sample 
weight 
 (mg) 

Recovered 
weight 
 (mg) 

4-CNP 
consumption 

(%) 

3-CNP 
formation 

(%) 

2-CNP 
formation 

(%) 

27 30 16 8 49.4 45.3 4.1 

28 60 16 7 66.3 61.0 5.3 
 

The ethereal solution was concentrated to remove the solvent and the residue was 

analyzed by 1H-NMR in acetone-d6. 

 

5.7.4.  2,6-Dideuteriopyridine (1-2,6-d2) 

 

The vapor of 2,6-dideuteriopyridine (1-2,6-d2) (1.5 Torr) was obtained from 20 

mg of the sample in a 3-L quartz reactor at 24 oC.    This was then irradiated in a Rayonet 

reactor equipped with 4-low mercury arc lamps for 1, 3, 4, 6 and 10 hours.  After 

irradiation, the resulting material was recovered (6 mg) by pumping it out through a trap 

cooled in an acetone-dry ice bath.  The resulting product was dissolved in acetone-d6.  

The resulting solution was analyzed by 1H-NMR. 

 

5.7.5.  3,4,5-Trideuteriopyridine (1-3,4,5-d3) 

 

The vapor of 3,4,5-dideuteriopyridine (1-3,4,5-d3) (1.5 Torr) was obtained from 

20 mg of the sample in a 3-L quartz reactor at 25 oC.    This was then irradiated in a 

Rayonet reactor equipped with 4-low mercury arc lamps for 6 and 12 hours.  After 

irradiation, the resulting material was recovered (3 mg) by pumping it out through a trap 
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cooled in an acetone-dry ice bath.  The resulting product was dissolved in acetone-d6.  

The resulting solution was analyzed by 1H-NMR. 

 

5.7.6. 2,4,6-Trideuteriopyridine (1-2,4,6-d3) 

 

The vapor of 2,4,6-trideuteriopyridine (1-2,4,6-d3) (1.5 Torr) was obtained from 

20 mg of the sample in a 3-L quartz reactor at 24 oC.    This was then irradiated in a 

Rayonet reactor equipped with 4-low mercury arc lamps for 6 and 12 hours.  After 

irradiation, the resulting material was recovered (5 mg) by pumping it out through a trap 

cooled in an acetone-dry ice bath.  The resulting product was dissolved in acetone-d6.  

The resulting solution was analyzed by 1H-NMR. 

 

5.7.7. 2,3,6-Trideuteriopyridine (1-2,3,6-d3) 

 

The vapor of 2,3,6-trideuteriopyridine (1-2,3,6-d3) (1.0 Torr) was obtained from 

14 mg of the sample in a 3-L quartz reactor at 24 oC.    This was then irradiated in a 

Rayonet reactor equipped with 4-low mercury arc lamps for 12 hours.  After irradiation, 

the resulting material was recovered (10 mg) by pumping it out through a trap cooled in 

an acetone-dry ice bath.  The resulting product was dissolved in acetone-d6.  The 

resulting solution was analyzed by 1H-NMR. 
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5.7.8. 2,3,4-Trideuteriopyridine (1-2,3,4-d3) 

 

The vapor of 2,3,4-trideuteriopyridine (1-2,3,4-d3) (1.5 Torr) was obtained from 

20 mg of the sample in a 3-L quartz reactor at 25 oC.    This was then irradiated in a 

Rayonet reactor equipped with 4-low mercury arc lamps for 12 hours.  After irradiation, 

the resulting material was recovered (19 mg) by pumping it out through a trap cooled in 

an acetone-dry ice bath.  The resulting product was dissolved in acetone-d6.  The 

resulting solution was analyzed by 1H-NMR. 

 

5.7.9. 2,3,5-Trideuteriopyridine (1-2,3,5-d3) 

 

The vapor of 2,3,5-trideuteriopyridine (1-2,3,5-d3) (1.5 Torr) was obtained from 

20 mg of the sample in a 3-L quartz reactor at 25 oC.    This was then irradiated in a 

Rayonet reactor equipped with 4-low mercury arc lamps for 12 hours.  After irradiation, 

the resulting material was recovered (19 mg) by pumping it out through a trap cooled in 

an acetone-dry ice bath.  The resulting product was dissolved in acetone-d6.  The 

resulting solution was analyzed by 1H-NMR. 

 

5.7.10. 2,4,5-Trideuteriopyridine (1-2,4,5-d3) 

 

The vapor of 2,4,5-trideuteriopyridine (1-2,4,5-d3) (1.5 Torr) was obtained from 

25 mg of the sample in a 3-L quartz reactor at 25 oC.    This was then irradiated in a 

Rayonet reactor equipped with 4-low mercury arc lamps for 12 hours.  After irradiation, 
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the resulting material was recovered (21 mg) by pumping it out through a trap cooled in 

an acetone-dry ice bath.  The resulting product was dissolved in acetone-d6.  The 

resulting solution was analyzed by 1H-NMR. 

 

5.7.11. 2,3,4,5-Tetradeuteriopyridine (1-2,3,4,5-d4) 

 

The vapor of 2,3,4,5-tetradeuteriopyridine (1-2,3,4,5-d4) (1.7 Torr) was obtained 

from 20 mg of the sample in a 3-L quartz reactor at 25 oC.    This was then irradiated in a 

Rayonet reactor equipped with 4-low mercury arc lamps for 3, 6 and 12 hours.  After 

irradiation, the resulting material was recovered (10 mg) by pumping it out through a 

trap cooled in an acetone-dry ice bath.  The resulting product was dissolved in acetone-d6.  

The resulting solution was analyzed by 1H-NMR. 

 

5.7.12. 2,3,4,6-Tetradeuteriopyridine (1-2,3,4,6-d4) 

 

The vapor of 2,3,4,6-tetradeuteriopyridine (1-2,3,4,6-d4) (1.5 Torr) was obtained 

from 20 mg of the sample in a 3-L quartz reactor at 25 oC.    This was then irradiated in a 

Rayonet reactor equipped with 4-low mercury arc lamps for 3, 6 and 12 hours.  After 

irradiation, the resulting material was recovered (7 mg) by pumping it out through a trap 

cooled in an acetone-dry ice bath.  The resulting product was dissolved in acetone-d6.  

The resulting solution was analyzed by 1H-NMR. 
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5.7.13. 2,3,5,6-Tetradeuteriopyridine (1-2,3,5,6-d4) 

 

The vapor of 2,3,5,6-tetradeuteriopyridine (1-2,3,5,6-d4) (1.5 Torr) was obtained 

from 25 mg of the sample in a 3-L quartz reactor at 20 oC.    This was then irradiated in a 

Rayonet reactor equipped with 4-low mercury arc lamps for 3, 6 and 12 hours.  After 

irradiation, the resulting material was recovered (8 mg) by pumping it out through a trap 

cooled in an acetone-dry ice bath.  The resulting product was dissolved in acetone-d6.  

The resulting solution was analyzed by 1H-NMR. 
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5.8. Synthesis of 4-cyanopyridine-2,6-d2 (36-2,6-d2) 
 

5.8.1. Preparation of isonicotinic acid N-oxide-2,6-d2 (54-2,6-d2) 

 

 Isonicotinic acid N-oxide (54) (3.0 g, 21.6 mmole) was dissolved in a solution of 

Na+OD- prepared from sodium metal (0.71 g, 31.0 mmole) dissolved in deuterium oxide 

(10 mL).  The mixture was heated at 80 oC for 4 h.  The resulting solution was acidified 

to pH=1 by addition of conc. HCl.  The resulting white precipitate (~2.95 g) was 

collected by suction filtration to give partially deuterated isonicotinic acid N-oxide.  The 

white solid was subjected to a second hydrogen-deuterium exchange in Na+OD-/D2O as 

above.  Acidification as above gave isonicotinic acid N-oxide-2,6-d2 (54-2,6-d2) as a 

white precipitate: m.p. 267-270 oC; yield 2.9 g (20.6 mmole, 95.5 %); 1H-NMR(D2O) δ 

7.69 (s, 2H); 13C-NMR (D2O) δ 170.6 (CO), 139.6 (C-4), 139.0 (t: C-2,C-6; J = 29.0 Hz), 

127.0 (C-3, C-5); 13C-Dept135 δ 170.6(0), 139.6(0), 139.0 (0), 127.0 (+).  

 

5.8.2. Preparation of methyl isonicotinate N-oxide-2,6-d2 (58-2,6-d2) 

 

 Isonicotinic acid-2,6-d2 N-oxide (54-2,6-d2) (2.9 g, 20.6 mmole) was dissolved in 

a mixture of benzene (10 mL), methanol (10 mL), and conc.H2SO4 (2 mL).  This solution 

was refluxed for 2 h and then the azeotropic mixture was slowly distilled.  The residue 

was poured on ice (10 g) and made basic to pH 8 with 10% aqueous Na2CO3.  The 

solution was extracted with dichloromethane (5x20 mL) and the extract was dried 

(Na2SO4).  Evaporation at room temperature gave methyl isonicotinate N-oxide-2,6-d2 

(58-2,6-d2) as a white precipitate: mp 118-120 oC; yield 1.3 g (8.4 mmole, 40.7 %; 1H-
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NMR (CDCl3) δ 7.79 (s, 2H), 3.88 (s, 3H); 13C-NMR(CDCl3) δ 164.2 (CO), 139.6 (t: C-

2,C-6; J = 29.0 Hz), 126.8 (C-4) 126.7 (C-3,C-5), 53.2 (CH3); 13C-Dept135 δ 164.2(0), 

139.6(0), 126.8(0), 126.7(+), 53.2(+); MS m/z (%) 155 (29), 139 (89). 

 

5.8.3. Preparation of methyl isonicotinate-2,6-d2 (59-2,6-d2) 

 

 Methyl isonicotinate N-oxide-2,6-d2 (58-2,6-d2) (1.4 g, 9.0 mmole) was dissolved 

in dichloromethane (60 mL).  The solution was added dropwise to PCl3(1.2 mL) at 0 0C.  

The mixture was then refluxed for 1 hour and mixed with ice water (30 g) and then made 

basic with 10 N NaOH.  The basic solution was extracted with dichloromethane (5x20 

mL) and dried (Na2SO4).  Evaporation gave methyl isonicotinate-2,6-d2 (59-2,6-d2) as a 

brown-oily liquid: yield 0.9 g (6.5 mmole, 72.2 %); 1H-NMR(CDCl3) δ 7.73 (s, 2H), 3.86 

(s, 3H); 13C-NMR(CDCl3) δ 165.7 (CO), 150.3(t: C-2, C-6; J = 27.6 Hz), 137.7 (C-4), 

123.1 (C-3, C-5), 53.0 (CH3); 13C-Dept135  δ 165.7(0), 150.3(0), 137.7(0), 123.0(+), 

53.0(+); MS m/z (%) 139 (100), 108 (90).     

 

5.8.4. Preparation of isonicotinamide-2,6-d2 (60-2,6-d2) 

  

 Methyl isonicotinate-2,6-d2 (59-2,6-d2) (0.97 g, 6.5 mmole) was dissolved in a 

small amount of methanol (3 mL).  This solution was then added dropwise to 

concentrated aqueous ammonia (10 mL).  The resulting cloudy solution was made clear 

by adding methanol (~80 mL).  After 5 h at room temperature, the solution was cooled in 

the freezer overnight.  The solution was evaporated, giving isonicotinamide-2,6-d2 (60-
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2,6-d2) as a white precipitate: mp 149-150  oC; yield 0.64 g (5.2 mmole, 80 %); 1H-

NMR(D2O) δ 7.53 (s, 2H); 13C-NMR(D2O) δ 170.6 (CO), 148.9 (t: C-2, C-6; J = 27.9 

Hz), 142.1 (C-4), 122.1 (C-3, C-5); 13C-Dept135  δ 170.6 (0), 148.9(0), 142.1(0), 

122.1(+); MS m/z (%) 124 (100), 108 (41).  

   

5.8.5. Preparation of 4-cyanopyridine-2,6-d2 (38-2,6-d2) 

 

 Isonicotinamide-2,6-d2 (60-2,6-d2) (0.23 g, 1.9 mmole) was heated with 

phosphorous pentoxide (0.54 g, 1.9 mmole) in a round bottom flask at 160-180 oC for 3 h                

(Kugelrohr).  The mixture was neutralized with 10% aqueous Na2CO3 and extracted with 

dichloromethane (5x20 mL).  The organic layer was dried (Na2SO4) and evaporated.  The 

solid residue (0.15 g) was sublimed (70 oC, water aspirator) to give 4-cyanopyridine-2,6-

d2 (38-2,6-d2) as white crystal; mp 70-72 oC; yield 0.07 g (0.6 mmole, 31.6 %); 1H-NMR 

(CDCl3) δ 7.47 (s, 2H); 13C-NMR (CDCl3) δ 151.5 (t: C-2, C-6; J = 28.1 Hz), 125.6 (C-3, 

C-5), 120.8 (C-4), 116.8 (CN); 13C-Dept135 δ 151.5(0), 125.6(+), 120.8(0), 116.8(0);   

MS m/z (%) 106 (100), 78 (42). 
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5.9. Synthesis of 3-cyanopyridine-2,6-d2 (37-2,6-d2) 
 

5.9.1. Preparation of nicotinic acid N-oxide -2,6-d2 (61-2,6-d2) 

 

 Nicotinic acid N-oxide (61) (2.0 g, 14.4 mmole) was dissolved in a solution 

prepared from sodium (0.41 g, 18 mmole) dissolved in deuterium oxide (20 mL).  The 

solution was heated at 80 oC for 5 h.  The resulting solution was acidified to pH=2 by 

conc. HCl at 0 oC.  The white precipitate of partially deuterated nicotinic acid N-oxide 

(~1.9 g) was subjected to a second hydrogen-deuterium exchange as described above.  

Acidification as above gave a white precipitate of nicotinic acid N-oxide-2,6-d2 (61-2,6-

d2): m.p. 260 oC ; yield 1.9 g (13.5 mmole, 93.6 %); 1H-NMR(D2O)  δ 7.91(d, 1H, J = 

8.0 Hz), 7.44 (d, 1H, J = 8.0 Hz); 13C-NMR (D2O)  δ 168.2 (CO), 144.0 (t: C-2; J = 28.4 

Hz), 141.9 (t: C-6; J = 26.1 Hz), 135.1 (C-4), 133.8 (CN), 129.3 (C-5); 13C-Dept135 δ 

168.2 (0), 144.0 (0), 141.9 (0), 135.1 (0), 133.1(+), 127.4 (+).  

  

 

5.9.2. Preparation of methyl nicotinate N-oxide-2,6-d2 (62-2,6-d2) 

 

 Nicotinic acid-2,6-d2 N-oxide (61-2,6-d2) (1.9 g, 13.5 mmole)was dissolved in a 

mixture of benzene (20 mL), methanol (20 mL), and conc. H2SO4 (2 mL).  This solution 

was refluxed for 2 hours and slowly distilled in order to remove the azeotrope of bezene 

and water.  The viscous residue was poured on ice (10 g) and made basic to pH 8 with 

10% aqueous Na2CO3.  The aqueous solution was extracted with dichloromethane (5x20 

mL) and the organic layer was dried (Na2SO4).  Evaporation at room temperature gave 
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methyl nicotinate N-oxide-2,6-d2 as a brown precipitate.  This product was recrystallized 

twice from dichloromethane/hexane system to give methyl nicotinate N-oxide-2,6-d2 (62-

2,6-d2): m.p. 46-48 oC; yield 1.2 g (7.7 mmole, 57.3 %); 1H-NMR(CDCl3) δ 7.81(d, 1H, 

J = 8.0 Hz), 7.41 (d, 1H, J = 8.0 Hz); 13C-NMR (CDCl3) δ 163.5 (CO), 142.5 (t: C-2; J = 

28.4 Hz), 140.1( t: C-6; J = 29.1 Hz ), 132.2(C-3), 126.9 (C-4), 126.2 (C-5), 53.8 (CH3); 

13C-Dept 135 δ 163.5(0), 142.5(0), 140.1(0), 132.2(0), 126.9(+), 126.2(+) 53.4(+). 

 

5.9.3. Preparation of methyl nicotinate-2,6-d2 (63-2,6-d2) 

 

 Methyl nicotinate N-oxide-2,6-d2 (62-2,6-d2) (1.2 g, 7.7 mmole) was dissolved in 

dichloromethane (60 mL).  The solution was added dropwise to PCl3 (1.0 mL) at 0 oC.  

The mixture was refluxed for 1 h and poured on ice water (30 g).  The mixture was made 

basic with 10 N NaOH.  The basic solution was extracted with dichloromethane (5x20 

mL) and dried (Na2SO4).  Evaporation gave methyl nicotinate-2,6-d2(63-2,6-d2) as 

reddish-viscous liquid: 0.92 g (6.6 mmole, 85.7%); 1H-NMR (CDCl3) δ 8.98 (d, 1H J = 

8.1 Hz), 8.17 (d, 1H J = 8.1 Hz), 4.01 (s, 3H); 13C-NMR(CDCl3) δ 162.1 (CO), 146.3 (C-

4), 144.6 (t: C-2; J = 29.1 Hz), 142.3 (t: C-6; J = 29.5 Hz), 130.2 (C-3), 127.8 (C-5), 54.2 

(CH3); 13C-Dept 135 δ 162.1(0), 146.3(+), 144.6(0), 142.3(0), 130.2(0), 127.8(+), 54.2(+).   

 

5.9.4. Preparation of nicotinamide-2,6-d2 (64-2,6-d2) 

 

 Methyl nicotinate-2,6-d2 (63-2,6-d2) (0.76 g, 5.4 mmole) was dissolved in cold 

conc. aqueous ammonia (2 mL) at 0 oC.  The flask was capped and shaken occasionally.  
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Additional ammonia was added (1mL) every hour to saturate the solution.  The flask was 

allowed to stand at room temperature for 5 h, shaking occasionally and then stored in the 

refrigerator for 4 days.  The solvent was evaporated and the light brown precipitate of 

nicotinamide-2,6-d2 (64-2,6-d2) was obtained; yield 0.42 g (3.4 mmole, 63.0 %); m.p. 

110 oC  1H-NMR(D2O) δ  7.97 (d, 1H, J = 8.0 Hz), 7.32 (d, 1H, J = 8.0 Hz); 13C-

NMR(D2O) δ 170.9(CO), 151.9 (t: C-2; J = 27.1 Hz), 147.5 (t: C-6; J = 27.0 Hz), 

136.7(C-4), 129.4(C-3), 124.3(C-5); 13C-Dept 135 δ 170.9(0), 151.9(0), 147.5(0), 

136.7(+), 129.4(0), 124.3(+); MS m/z (%) 124 (100), 108 (55).  

 

 

5.9.5. Preparation of 3-cyanopyridine-2,6-d2 (37-2,6-d2) 

 

 Nicotinamide-2,6-d2 (64-2,6-d2) (0.42 g, 3.4 mmole) was mixed with P2O5 (1.0 g, 

1.0 mmole) and heated gradually to 160-180 oC in the Kugelrohr apparatus.  The reaction 

was allowed to occur for 3 h and the product was sublimed out of the mixture at reduced 

pressure (water aspirator) and trapped with dry ice.  The snow white crystals of 3-

cyanopyridine-2,6-d2 (37-2,6-d2): m.p. 48-50 oC; yield 0.10 g (0.9 mmole, 26.5%); 1H-

NMR (CDCl3)  δ 7.91 (d, 1H, J = 7.9 Hz), 7.39 (d, 1H, J = 7.9 Hz); 13C-NMR (CDCl3) δ  

153.0 (t: C-6; J = 27.3 Hz ), 152.5 (t: C-2; J = 27.7 Hz), 139.7 (C-4), 124.0 (C-5), 116.9 

(CN), 110.4 (C-3); 13C-Dept 135 δ 153.0(0), 152.5 (0), 139.7(+), 124.0(+), 116.9(0), 

110.4 (0); MS m/z (%) 106(100), 78(45). 
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5.10. Synthesis of 2-cyanopyridine-4,6-d2 (36-2,6-d2) 
 

5.10.1. Preparation of picolinic acid-N-oxide-6-d (75-6-d) 

 

 Picolinic acid N-oxide (75) (2.05 g, 14.7 mmole) was dissolved in Na+OD-  

prepared freshly by dissolving sodium (0.41 g) in to D2O (20 mL).  This solution was 

heated at reflux in an oil bath at 80 oC for 5 h.  The resulting solution was acidified at 0 

oC with conc. HCl until pH=2.  The white precipitate (~2.00 g) was collected by suction 

filtration to obtain partially deuterated picolinic acid N-oxide.  The white precipitate was 

subjected to a second hydrogen-deuterium exchange in Na+OD-/D2O as above.  

Acidification as above gave white precipitate of picolinic acid N-oxide-6-d (75-6-d); 

m.p.162 oC; yield 1.96 g (14.0 mmol, 95.2%) 1H-NMR (D2O)  7.53 (m, 1H)  7.34 (m, 

2H); 13C-NMR (D2O) δ 168.0 (CO), 147.7 (C-2), 139.0 (C-6: t; J = 28.6 Hz), 132.6 (C-4), 

126.2 (C-3), 124.0 (C-5); 13C Dept-135 δ 168.0(0), 147.7(0), 139.0(0), 132.6 (+), 126.2 

(+), 124.0 (+). 

 

5.10.2. Preparation of 4-nitropicolinic acid N-oxide-6-d (71-6-d) 

 

 Picolinic acid N-oxide-6-d (75-6-d) (1.92 g, 13.7 mmole) was dissolved in fuming 

HNO3 (3.3 mL) and conc. H2SO4 (12 mL) in a 25 mL two-neck pear shape flask 

equipped with a thermometer.  This reaction flask was then heated in an oil bath until the 

solution refluxed and the temperature reached to 120-127 oC for 1 h.  The resulting 

mixture was diluted with water (72 mL).  A brown gas was evolved and a light yellow 

crystal was formed.  This aqueous solution was stored in the freezer overnight which 
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gave light yellow crystals of 4-nitropicolinic acid N-oxide-6-d (71-6-d): m.p.148 oC; 

yield 1.14 g (6.2 mmole, 45.2%).  1H-NMR (DMSO-d6) δ  8.52 (s, 1H), 8.35 (s, 1H); 13C-

NMR (DMSO-d6) δ 165.0 (CO) , 154.9 (C-2), 152.4 (t: C-6; J = 28.4 Hz) , 151.3 (C-4) , 

119.7 (C-3), 117.4 (C-5); 13C Dept-135 δ 165.0 (0), 154.9 (0), 152.4 (0), 151.3 (0), 119.7 

(+), 117.4 (+). 

 

5.10.3. Preparation of methyl 4-nitropicolinate N-oxide-6-d (76-6-d) 

 

 4-nitropicolinic acid N-oxide-6-d (71-6-d) (0.19 g, 1.0 mmole) was placed in a 10 

mL round bottom flask and warmed in a water bath at 50 oC.  To this solid was added 

thionyl chloride (0.18 mL).  While stirring and refluxing, methanol (5 mL) was added to 

the mixture and a condenser was equipped.  At 62 oC the solid dissolved and the solution 

was allowed to reflux for 1 h.  The reaction flask was cooled to room temperature to give 

yellow crystals of methyl 4-nitropicolinate N-oxide-6-d (76-6-d): m.p. 136 oC; yield 0.11 

g (0.6 mmole, 60 %); 1H-NMR (CDCl3) δ 8.56 (s, 1H), 8.17 (s, 1H), 4.03 (s, 3H); 13C-

NMR (CDCl3) δ 160.3 (CO), 142.4 (t: C-6; J = 28.8 Hz), 142.1 (C-2), 141.5 (C-4), 122.8 

(C-3), 122.0 (C-5), 54.2 (CH3); 13C Dept-135 δ 160.3 (0), 142.4 (0), 142.1 (0), 141.5 (0), 

122.8 (+), 122.0 (+), 54.2 (+).  

 

5.10.4. Preparation of methyl 4-chloropicolinate N-oxide-6-d (77-6-d) 

 

 Methyl 4-nitropicolinate N-oxide-6-d (76-6-d) (0.81 g, 4.1 mmole) was placed in 

a 10 mL round bottom flask and warmed in water bath at 40 oC.  Acetyl chloride (4.1 mL) 
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was then added dropwise which led to the evolution of a gas.  After gas evolution ceased, 

the resulting solution was cooled to room temperature and concentrated by evaporation 

until dryness (0.85 g).  This crude was purified by column chromatography using 

dichloromethane and methanol (90:10) as solvent.  The major product was isolated and 

recrystallized from dichloromethane/hexane to give white crystals of methyl 4-

chloropicolinate N-oxide-6-d (77-6-d). m.p. 112 oC; yield 0.65 g (3.4 mmole, 82.9%); 

1H-NMR (CDCl3) δ 7.56 (s, 1H), 7.33 (s, 1H), 3.99 (s, 3H); 13C-NMR(CDCl3)  δ 161.2 

(CO), 142.3 (C-2), 141.8 (t: C-6; J = 29.1 Hz), 131.4 (C-4), 128.1 (C-3), 127.5 (C-5), 

54.0 (CH3); 13C Dept-135 δ 161.2 (0), 142.3 (0), 141.8 (0), 131.4 (0), 128.1 (+), 127.5 (+), 

54.0 (+). MS m/z (%) 188(3.81), 114 (100). 

 

5.10.5. Preparation of methyl 4-chloropicolinate-6-d (78-6-d) 

 

 Methyl 4-chloropicolinate N-oxide-6-d (77-6-d) (0.42 g, 2.2 mmole) was 

dissolved in dichloromethane (20 mL).  This solution was added dropwise into PCl3 (0.9 

mL) at 0 oC (ice bath) while stirring.  The solution was refluxed for 1 h.  The resulting 

solution was poured onto ice (20 g) and made basic with 10N NaOH solution until pH=8.  

The aqueous solution was extracted with dichloromethane (5x20 mL).  The organic phase 

was combined, dried (Na2SO4) and the solvent was removed by evaporation to give 

methyl 4-chloropicolinate-6-d (78-6-d) as a yellow liquid: yield 0.34 g (1.9 mmole, 87%). 

1H-NMR (CDCl3) δ 8.20 (s, 1H), 7.67 (s, 1H), 3.99 (s, 3H); 13C-NMR (CDCl3) δ 163.6 

(CO), 149.4 (t: C-6; J = 28.2 Hz), 148.2 (C-2), 147.6 (C-4), 128.3 (C-3), 126.7 (C-5), 
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54.0 (CH3); 13C-Dept 135 δ 163.6 (0), 149.4 (0), 148.2 (0), 147.6 (0), 128.3 (+), 126.7 (+), 

54.0 (+); MS m/z (%) 172.5 (3), 142 (27), 114 (100). 

 

5.10.6. Preparation of methyl picolinate-4,6-d2 (79-4,6-d2) 

 

 a.)  Methyl 4-chloropicolinate-6-d (78-6-d) (0.20 g, 1.2 mmole) was dissolved in 

MeOD (15 mL) and placed in a Büchner flask containing K2CO3 (0.16 g), Pd-C (0.03 g), 

and a magnetic bar.  This flask was sealed with a septum and equipped with a balloon at 

the side arm.  A side-arm test tube containing NaBD4 (0.10 g, 2.4 mmole) was sealed 

with a septum and the side-arm was connected to the Büchner flask via a syringe needle 

passed through the septum of the Büchner flask.  The entire system was purged with 

nitrogen for 10 minutes.  A solution of D2O (2.0 mL) containing D2SO4 (5 drops) was 

then added through the septum to the NaBD4 in the side-arm test tube.  The D2 generated 

filled the system and caused the balloon to expand.  The reaction mixture in the Büchner 

flask was stirred in the D2 atmosphere for 4 h. 

 

 The resulting solution was checked by TLC (only one spot was observed).  The 

Pd-C was filtered and the filtrate was evaporated.  This residue was diluted with 60-70 

mL  CH2Cl2 and washed with water twice.  The organic layer was dried (Na2SO4) and  

the solvent was evaporated to give a colorless liquid of methyl picolinate-4,6-d2 (79-4,6-

d2): yield 0.14 g (1 mmole, 83.3%); 1H-NMR (CDCl3)  δ  8.16(s, 1H), 7.50 (s, 1H), 

4.02(s, 3H);   13C-NMR (CDCl3)  δ  165.7(CO), 149.5 (t: C-6; J = 27.6 Hz), 147.9 (C-2), 

136.8 (t: C-4; J = 25.1 Hz), 126.8 (C-3), 125.1 (C-5), 52.9 (CH3); 13C-Dept 135  δ 165.7 
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(0), 149.5 (0), 147.9 (0), 136.8 (0), 126.8 (+), 125.1 (+), 52.9 (+); MS m/z (%) 139 (4.54), 

81(92.4). 

 

  b)  Methyl 4-chloropicolinate-6-d (78-6-d) (0.25 g, 1.4 mmole) was dissolved 

in MeOH (15 mL) and placed in a Büchner flask containing K2CO3 (0.30 g), Pd-C (0.05 

g), and magnetic bar.  This flask was sealed with septum and equipped with a balloon as 

in the above procedure but in order to generate the D2 gas, Na (0.5 g) and D2O (2 mL) 

were used.  The reaction mixture was stirred in the D2 atmosphere for 4 h.  

 

 The resulting solution was filtered to remove Pd-carbon.  The solution was 

evaporated.  Dichloromethane (60 mL) was added and the solution was washed twice 

with water.  The solvent was removed by evaporation to give liquid residue of methyl 

picolinate-4,6-d2 (79-4,6-d2): yield 0.13 g (0.9 mmole, 64.3%). 

 

5.10.7. Preparation of picolinamide-4,6-d2 (80-4,6-d2) 

 

 Methyl picolinate-4,6-d2 (79-4,6-d2) (1.04 g, 7.5 mmole) was dissolved in cold 

concentrated aqueous ammonia (~20 mL).  Another portion (5 mL) of aqueous ammonia 

was added to saturate the solution.  The reaction flask was shaken occasionally and stored 

in the freezer overnight.  The solvent was removed by evaporation to give a white 

precipitate of picolinamide-4,6-d2 (80-4,6-d2): m.p. 122 oC;  yield 0.61 g (4.9 mmole, 

65.3%); 1H-NMR(CDCl3)  δ    8.22 (s, 1H), 7.90(broad, 1H), 7.46(s, 1H), 6.18(broad, 

1H); 13C-NMR (CDCl3) δ 167.4 (CO), 149.9 (C-2), 148.4(t: C-6; J = 25.2 Hz) 137.7 (t: 
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C-4; J = 20.1 Hz), 126.6(C-3), 122.7(C-5); 13C-Dept 135 δ 167.4 (0), 149.9 (C-2), 148.4 

(0), 137.7 (0), 126.6 (+), 122.7 (+); MS m/z (%) 124 (38), 81 (100). 

 

5.10.8. Preparation of 2-cyanopyridine-4,6-d2 (36-4,6-d2) 

 

 Picolinamide-4,6-d2 (80-4,6-d2) (0.20 g, 1.6 mmole) was mixed with P2O5 (0.7 g) 

in a 25 mL-round bottom flask.  The reaction was carried out in the Kugelrohr apparatus 

at high temperature (oven: 120-190 oC) and reduced pressure (0.1 Torr).  Once the 

temperature was higher than 190 oC for 15 minutes, the reaction was stopped.  The 2-

cyanopyridine-4,6-d2 (36-4,6-d2)was collected as white solid in a glass bulb. Purification 

by column or TLC chromatography (DCM/EtOAc (1:1)) gave 2-cyanopyridine-4,6-d2 

(36-4,6-d2) as a colorless liquid: yield 0.07 g ( 0.7 mmole, 41.3%); 1H NMR (CDCl3)   δ  

7.66 (s, 1H), and 7.50(s, 1H); 13C-NMR (CDCl3) δ 152.2 (t: C-6; J = 28.0 Hz), 138.2 (t: 

C-4; J = 25.6 Hz), 135.0 (C-2), 129.9(C-3), 128.1(C-5), 118.5(CN); 13C-Dept 135  δ 

152.2 (0), 138.2(0), 135.0 (0), 129.9 (+), 128.1 (0), 118.5 (0). MS m/z(%) 106 (52), 32 

(100). 
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5.11. Synthesis of 2,6-dideuteriopyridine (1-2,6-d2) 
 

5.11.1. Preparation of pyridine N-oxide-2,6-d2 (53-2,6-d2) 

  

Pyridine N-oxide (53) (2.00 g, 21 mmole) was dissolved in D2O (20 mL).  To the 

solution Na2CO3 (3.0 g) was added.  This solution was refluxed for 12 h and then 

extracted with dichloromethane (10 x 20 mL).  The dichloromethane layer was dried 

(Na2SO4) and the solvent was removed to give liquid residue.  Drying in the desiccators 

gave 2,6-dideuteriopyridine N-oxide (53-2,6-d2) as a white solid of: 1.65 g ( 17 mmole, 

81.0 %);    1H- NMR(D2O) δ 7.41(m, 1H), 7.22(m, 2H); 13C-NMR (D2O) δ 138.9 (t: C-

2,C-6; J = 28.3 Hz), 132.9 (C-4), 127.5 (C-3,C-5); 13C-Dept135 (D2O) δ 138.9(0), 

132.9(+), 127.5(+); MS m/z (%) 98 (64), 97 (100), 82 (73), 81 (100). 

 

5.11.2. Preparation of 2,6-dideuteriopyridine (1-2,6-d2) 

 

 Pyridine N-oxide-2,6-d2 (53-2,6-d2) (0.42 g, 4.3 mmole) was dissolved in 

dichloro-methane (30 mL).  The solution was added dropwise into PCl3 (1.2 mL) at 0 oC.  

The mixture was refluxed for 2 h.  The reaction mixture was poured onto ice (15 g) and 

basified with 10 N NaOH solution and extracted with dichloromethane (5x10 mL).  The 

organic layer was dried (Na2SO4).  Evaporation off the solvent gave dideuterio-2,6-

pyridine (1-2,6-d2) as colorless liquid which was further purified by distillation 

(Kugelrohr: 95 oC; water aspirator): yield 0.18 g (2.2 mmole, 51.1%);  1H-NMR(CDCl3)  

δ  7.64 (m, 1H), 7.28 (m, 2H); 13C-NMR (CDCl3) δ 149.8 (t: C-2,C-6; J = 27.3 Hz), 
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136.4(C-4), 124.1 (C-3,C-5); 13C-Dept (CDCl3) δ 149.8(0), 136.4(+), 124.0 (+); MS m/z 

(%) 81(100), 53 (53). 

 

 

5.12. Synthesis of 3,4,5-trideuteriopyridine (1-3,4,5-d3) 
 

5.12.1. Preparation of pyridine N-oxide-3,4,5-d3 (53-3,4,5-d3) 

 

 Pyridine-d5 N-oxide (53-2,3,4,5,6-d3) (0.96 g, 9.6 mmole) was dissolved in 10% 

Na2CO3 solution and refluxed for 12 h.  The resulting solution was extracted with 

dichloromethane (5x10 mL).  The organic layer was dried (Na2SO4) and the solvent was 

removed by evaporation, obtaining pyridine N-oxide-3,4,5-d3(53-3,4,5-d3) as a liquid 

residue that was stored in desiccators until solidified: yield 0.48 g (4.9 mmole, 51.0 %); 

1H NMR(D2O) δ 8.18 (s, 2H); 13C-NMR (D2O) 139.2 (C-2,C-6), 132.5 (t: C-4; J = 26.0 

Hz), 127.3 (t: C-3,C-5; J = 25.9 Hz).  

 

5.12.2. Preparation of 3,4,5-trideuteriopyridine (1-3,4,5-d3) 

 

 3,4,5-Trideuteriopyridine N-oxide (53-3,4,5-d3) (0.48, 4.9 mmole) was dissolved 

in dichloro-methane (40 mL).  The solution was added dropwise into PCl3 (1.0 mL) at 

0oC.  The solution flask was equipped with a condenser and refluxed for 1 h.  The 

resulting mixture was poured on ice (20 g) and made basic with 10N NaOH solution.  

The aqueous phase was extracted with dichloromethane (3x10 mL).  This layer was dried 
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(Na2SO4) and the solvent was evaporated to obtain liquid residue.  This crude was 

purified by distillation (Kugelrohr: 95oC. water aspirator) to give 3,4,5-

trideuteriopyridine (1-3,4,5-d3) as a colorless liquid: yield 0.18 g (2.2 mmole, 44.9%); 

1H-NMR ((CD3)2CO) δ  8.44 (s, 2H); 13C-NMR ((CD3)2CO) δ 151.7(C-2,C-6), 137.2 (t: 

C-4; J = 24.9 Hz), 125.3 (t: C-3,C-5; J = 25.3 Hz); 13C-Dept 135 ((CD3)2CO) δ 151.7 (+), 

137.2 (0), 125.3 (0); MS m/z (%) 82 (100), 55 (90). 
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5.13. Synthesis of 2,4,6-trideuteriopyridine (1-2,4,6-d3) 
 

5.13.1. Preparation of 4-nitropyridine N-oxide-2,6-d2 (81-2,6-d2)  

 

 Pyridine N-oxide-2,6-d2 (53-2,6-d2) (1.80 g, 18 mmole) was dissolved in conc. 

H2SO4 (4 mL) and fuming HNO3 (2 mL).  This mixture was heated in an oil bath until 

reflux at 130 oC for 5 h.  The resulting solution was poured onto ice (20 g) and 

neutralized by Na2CO3 solution.  Extraction with dichloromethane (5x20 mL) gave 

separated organic phase which subsequently dried by Na2SO4.  Evaporation off  the 

solvent gave bright yellow precipitate, which was recrystallized in acetone to give 4-

nitropyridine N-oxide-2,6-d2 (81-2,6-d2) as a lustrous yellow crystal: yield 1.58 g (11 

mmole, 61.1%).; 1H-NMR(CDCl3) δ 8.14 (s, 2H); 13C-NMR (CDCl3) δ 142.2 (C-4), 

139.9 (t: C-2, C-6; J = 29.0 Hz), 120.8 (C-3, C-5); 13C-Dept 135 (CDCl3) δ 142.2(0), 

139.9 (0), 120.8 (+); MS m/z (%) 142 (34), 126 (78).  

 

5.13.2. Preparation of 4-chloropyridine N-oxide-2,6-d2(82-2,6-d2) 

  

 4-Nitropyridine N-oxide-2,6-d2 (81-2,6-d2) (1.00 g, 7.0 mmole) was warmed at 50 

oC in water bath.  After acetyl chloride (5.0 mL) was added, the mixture was refluxed 

until obtaining the yellow solid (30 minutes).  The resulting solid was cooled in ice bath 

and the cold water was added.  Once the vigorous reaction stopped, the resulting solution 

was made basic with 10% Na2CO3 solution and extracted with dichloromethane (7x20 

mL).  The organic layer was dried (Na2SO4) and the solvent was removed by evaporation 

to give 4-chloropyridine N-oxide-2,6-d2 (82-2,6-d2) as white pure solid: yield 0.75 g (5.7 
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mmole, 81%); 1H-NMR(CDCl3) δ 7.21 (s, 2H); 13C-NMR (CDCl3) 140.2 (t: C-2,C-6; J = 

28.5 Hz), 132.3 (C-4), 126.7 (C-3, C-5); 13C-Dept 135 (CDCl3) 140.2 (0), 132.3 (0), 

126.7 (+); MS m/z (%) 131 (26), 115 (100). 

 

5.13.3. Preparation of 4-chloropyridine-2,6-d2(83-2,6-d2) 

 

 4-Chloropyridine N-oxide-2,6-d2 (82-2,6-d2) (0.83 g, 6.3 mmole) was dissolved in 

ice-cold dichloromethane (15 mL).  At 0 oC, to the solution PCl3 (0.8 mL) was added and 

the mixture was refluxed in water bath at 70-80 oC for 1 h.  The resulting mixture was 

then poured onto ice water and made strong basic with Na2CO3 solution.  The aqueous 

phase was extracted with dichloromethane (7x20 mL).  The emulsion of two phase was a 

common problem but finally the organic layer was dried (Na2SO4) and the solvent was 

removed by evaporation without heating.  The cloudy liquid was obtained and it was 

purified by Kugelrohr distillation at reduced pressure (1 Torr) to give 4-chloropyridine-

2,6-d2 (83-2,6-d2) as colorless liquid: yield 0.40 g (3.0 mmole, 47.6%): 1H-NMR(CDCl3) 

δ 7.23 (s, 2H); 13C-NMR(CDCl3) δ 150.8 (t: C-2,C-6; J = 30.8 Hz), 144.5 (C-4), 123.4(C-

3, C-5); 13C-Dept 135(CDCl3) δ 150.8(0), 144.5(0), 123.4(+).  MS m/z(%) 117.0(33.2), 

115(100), 80(81).    

 

5.13.4. Preparation of 2,4,6-trideuteriopyridine (1-2,4,6-d3) 

 

 4-Chloropyridine-2,6-d2 (83-2,6-d2) (0.12 g, 1.1 mmole) was dissolved in ethyl 

ether (20 mL) and placed in a 50 mL Büchner flask containing 10% Pd-C (0.07 g), 
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K2CO3 (0.3 g), and a magnetic bar.  This flask was sealed with a balloon and a septum.  

In order to generate D2, sodium (0.6 g) was placed in another Büchner flask sealed with a 

septum.  The second flask was connected via a syringe needle pass through the septum of 

the first Büchner flask.  This sealed system was purged with Argon for 10 minutes.  The 

D2O (4 mL) was syringed through the septum of the sodium flask to obtain D2 which was 

brought to the reaction flask via syringe needle.  The dechlorodeuteriolysis was allowed 

to proceed for 4 hours.  The resulting mixture was filtered to remove black powder of Pd-

C.  The filtrate was concentrated by evaporation.  The liquid residue was purified by 

Kugelrohr distillation (100 oC, water aspirator) to give 2,4,6-trideuteriopyridine (1-2,4,6-

d3) as colorless liquid: yield 42 mg (0.51 mmole, 46.8%); 1H-NMR(CDCl3) δ 7.08 (s, 

2H); 13C-NMR (CDCl3) δ 149.8 (t: C-2, C-6; J = 27.1 Hz), 136.1 (t: C-4; J = 25.1 Hz), 

123.9 (C-3, C-5); 13C-Dept135 (CDCl3) δ 149.8 (0), 136.1 (0), 123.9 (+); MS m/z (%) 82 

(100), 54 (56). 
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5.14. Synthesis of 2,3,5,6-tetradeuteriopyridine (1-2,3,5,6-d4) 
 

5.14.1. Preparation of 3,5-dichloropyridine N-oxide (85) 

 

 3,5-Dichloropyridine (84) (14.8 g, 100 mmole) was mixed with methyltrioxo-

rhenium (VII) (50 mg, 0.2 mmole) in dichloromethane (40 mL).  To this mixture 30% 

aqueous H2O2 (17 mL) was added and then it was stirred for 17 hours.  The biphasic 

mixture was added with MnO2 (25 mg) and the stirring was continued until oxygen 

evolution stopped (~1 h).  The aqueous phase was separated and extracted with 

dichloromethane (3x20 mL).  The combined organic layers were dried over Na2SO4 and 

the solvent was removed by evaporation to give white solid.  The starting material was 

isolated by column chromatography (EtOAc/DCM 1:1) and the pure 3,5-dichloropyridine 

N-oxide (85) was obtained as a white solid: yield 11.5 g (70 mmole, 70 %); 1H-NMR 

(CDCl3) δ 8.15 (s, 2H), 7.27(s, 1H); 13C-NMR (CDCl3) δ 137.8 (C-2, C-6), 133.7(C-3, C-

5), 126.5 (C-4); 13C Dept-135 (CDCl3) 137.8 (+), 133.7 (0), 126.5(+); MS m/z (%) 165 

(67), 163 (100), 147 (54). 

 

5.14.2. Preparation of 3,5-dichloropyridine N-oxide-2,4,6-d3 (85-2,4,6-d3) 

  

 3,5-Dichloropyridine N-oxide (85) (1.0 g, 6.1 mmole) and K2CO3 (1.0 g) was 

dissolved in D2O (10 mL).  The solution was heated at 110 oC in an oil bath.  The 

resulting solution was let cooled to room temperature.  3,5-dichloropyridine N-oxide-

2,4,6-d3 (51) was formed as a white needle crystal.  The crystals were collected by 

filtration and dried at room temperature.  The filtrate was extracted with dichloromethane 
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(3x10 mL).  The organic phase was dried (Na2SO4) and the solvent was removed by 

evaporation to give 3,5-dichloropyridine N-oxide-2,4,6-d3 (85-2,4,6-d3) as a small white 

crystal.  All white products were combined: yield 0.84 g (5 mmole, 82%); 13C-

NMR(CDCl3) δ 137.6 (t: C-2, C-6; J = 29.6 Hz), 133.5 (C-3, C-5), 126.4 (t: C-4; J = 27.2 

Hz); MS m/z (%) 168 (47), 166 (74), 152 (68), 150 (100), 115 (62). 

  

5.14.3. Preparation of 3,5-dichloropyridine-2,4,6-d3 (84-2,4,6-d3) 

 

 3,5-Dichloropyridine N-oxide-2,4,6-d3 (85-2,4,6-d3) (0.83 g, 5 mmole) was 

dissolved in cold dichloromethane (30 mL).  To the solution was added PCl3 (0.64 mL) 

and then heated at 80 oC for 2 h. in an oil bath.  The resulting solution was poured onto 

ice (15 g).  The aqueous phase was made basic with 10% K2CO3 solution, extracted with 

dichloromethane.  The organic phase was dried over anhydrous Na2SO4.  Evaporation off 

the solvent gave 3,5-dichloropyridine-2,4,6-d3 (84-2,4,6-d3) as a white precipitate: yield 

0.69 g (4.6 mmole, 92 %); 13C-NMR(CDCl3) δ 146.7 (t: C-2, C-6; J = 29.1 Hz), 135.8 (t: 

C-4; J = 26.5 Hz), 132.4 (C-3, C-5); MS m/z(%) 162 (64), 150 (100), 117 (17), 115(53).  

 

5.14.4. Preparation of 3,5-dichloropyridine-2,6-d2 (84-2,6-d2) 

  

 3,5-Dichloropyridine-2,4,6-d3 (84-2,4,6-d3) (0.59 g, 3.9 mmole) was stirred in 1.6 

M NaOMe/MeOH (17 mL) solution for 24 h in a water bath controlled at room 

temperature.  The resulting solution was concentrated by evaporation.  The liquid residue 

was added with water (10 mL) and extracted with dichloromethane (5x10 mL).  The 
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organic layer was dried (Na2SO4) and the solvent was removed by evaporation to give 

3,5-dichloropyridine-2,6-d2 (84-2,6-d2) as a white crystal: yield 0.33g (2.2 mmole, 56 %); 

1H-NMR(CDCl3) δ 7.71 (s, 1H); 13C-NMR(CDCl3) δ 146.8 (t: C-2, C-6; J = 29.3 Hz), 

136.0 (C-4), 132.5 (C-3, C-5); 13C-Dept 135 (CDCl3) δ 146.8 (0), 136.0 (+), 132.5 (0); 

MS m/z (%) 151 (63), 149 (100), 114 (58).  

 

5.14.5. Preparation of 2,3,5,6-tetradeuteriopyridine (1-2,3,5,6-d4) 

 

 3,5-Dichloropyridine-2,6-d2 (84-2,6-d2)(0.3 g, 2 mmole), 10% Pd-C (0.3 g), and 

K2CO3 (0.6 g) was dissolved in methanol-d (10 mL) and placed in a Buchner flask sealed 

with balloon and septum.  In another flask, Na (0.8 g) was placed.   This system was 

purged with Argon for 15 min.  The deuteriolysis was introduced by adding of 5 mL D2O 

into the sodium flask in order to form D2.  The reaction was allowed to proceed for 4 h 

and the resulting mixture was filtered to remove Pd-C.  The filtrate was made acid with 

conc. HCl (2 mL) and methanol was evaporated, leaving wet white precipitate which was 

basified with K2CO3 solution.  The aqueous solution was extracted with dichloromethane 

(5x20 mL).  The organic phase was dried (Na2SO4) and the solvent was removed by 

fractional distillation.  The liquid residue was further purified by Kugelrohr distillation 

(100 oC, water aspirator) to give colorless liquid of 2,3,5,6-tetradeuteriopyridine            

(1-2,3,5,6-d4): yield 79 mg (1.0 mmole, 50%); 1H-NMR((CD3)2CO) δ 7.75 (s, 1H); 13C-

NMR (CD3)2CO) δ 150.3 (t: C-2, C-6; J = 27.9 Hz), 136.5 (C-4), 124.2 (t: C-3, C-5; J = 

25.5 Hz). 13C-Dept 135 ((CD3)2CO) δ 150.3(0), 136.8(+), 124.2(0); MS m/z (%) 83(100), 

55(72). 
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5.15. Synthesis of 2,4,5,6-tetradeuteriopyridine (1-2,4,5,6-d4) 
 

5.15.1. Preparation of 3-chloropyridine N-oxide (87) 

  

 3-Chloropyridine (86) (2 g, 17.6 mmole), glacial acetic acid (10.8 mL), and 

hydrogen peroxide (3.6 mL) were heated at 80 oC for 10 h.  The conversion was 

monitored by TLC (dichloromethane/ EtOAc 1:1).  The resulting solution was 

concentrated and the acid was removed as much as possible.  The liquid residue was 

made basic with K2CO3 granules and it was then shaken with chloroform.  The 

precipitate and K2CO3 were filtered and the filtrate was dried (Na2SO4).  The solvent was 

removed by evaporation to give 3-chloropyridine N-oxide (87) as a light yellow solid: 

yield 1.69 g (13.0 mmole, 73.9%); m.p. 54 oC; 1H-NMR (CDCl3) δ 8.22 (s, 1H), 8.10 (d, 

1H), 7.23 (m, 2H); 13C-NMR(CDCl3) δ 139.2 (C-2), 138.2 (C-6), 133.8 (C-3), 126.9 (C-

5), 126.3(C-4); 13C-Dept135 (CDCl3) δ 139.2 (+), 138.2 (+), 133.8 (0), 126.9 (+), 126.3 

(+); MS m/z (%) 131 (27), 129 (100), 115 (33), 113 (95).  

 

5.15.2. Preparation of 3-chloropyridine N-oxide-2,4,5,6-d4 (87-2,4,5,6-d4) 

 

 3-Chloropyridine N-oxide (87) (1.69, 13.0 mmole) and K2CO3 (1.0 g) was 

dissolved in D2O (10 mL). This solution was placed in the glass liner inserted in a metal 

bomb.  The bomb was heated in an oven at 190 oC for 5 h.  The resulting solution 

analyzed by NMR and concentrated to remove D2O.  The residue was subjected to the 

second H-D exchange reaction at the same reaction temperature for 3 h.  The resulting 

solution was extracted with dichloromethane (5x20 mL).  The organic phase was dried 
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(Na2SO4) and the solvent was removed by evaporation to give 3-chloropyridine N-oxide-

2,4,5,6-d4 (87-2,4,5,6-d4) as yellow solid: yield 0.8 g (6.0 mmole, 46%); m.p. 52-54 oC; 

13C-NMR(CDCl3) δ 138.9 (t: C-2; J = 30.2 Hz), 137.9 (t: C-6; J = 28.9 Hz), 133.6 (C-3), 

126.1 (t: C-5; J = 26.9 Hz) , 125.8 (t: C-4; J = 25.8 Hz); MS m/z (%) 135 (33), 133 (100), 

119 (19), 117 (61).  

  

5.15.3. Preparation of 3-chloropyridine-2,4,5,6-d4 (86-2,4,5,6-d4) 

 

 3-Chloropyridine N-oxide-2,4,5,6-d4 (87-2,4,5,6-d4) (0.76 g, 5.7 mmole) was 

dissolved in cold dichloromethane (30 mL).  To this solution PCl3 (0.82 mL) was added.  

The mixture was refluxed at 70 oC with oil bath for 2 h.  The resulting solution was 

poured onto ice and it was basified with 10% K2CO3 solution.  The aqueous phase was 

extracted with dichloromethane, which was dried over anhydrous Na2SO4.  The solvent 

was removed at reduced pressure to give 3-chloropyridine-2,4,5,6-d4 (86-2,4,5,6-d4) as 

light yellow liquid:  yield 0.60 g (5.1 mmole, 89.5%); 13C-NMR (CDCl3) δ 148.8 (C-2, 

J= 28.0 Hz), 147.7 (C-6, J= 28.7 Hz), 136.0 (C-4, J= 26.1 Hz), 132.4 (C-3), 124.3 (C-5, 

J= 25.8 Hz); MS m/z(%) 113(32.9), 117 (100), 82(66.3). 

 

5.15.4. Preparation of 2,3,4,6-tetradeuteriopyridine (1-2,3,4,6-d4) 

 

 3-Chloropyridine-2,4,5,6-d4 (86-2,4,5,6-d4) (0.3 g, 2.6 mmole) was dissolved in 

methanol (10 mL) containing 10% Pd-C (0.08 g) and K2CO3 (0.6 g).  The mixture was 

placed in a balloon-sealed Büchner flask.  In another Büchner flask containing NaBH4 
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(0.2 g), the syringe needle was connected to the reaction flask.  This system was purged 

with Argon for 15 min.  The dehalohydrogenation was initiated by adding H2SO4 (5 

drops) diluted in water (3 mL).  The reaction was allowed to proceed for 4 h.  The Pd-C 

was filtered off and the filtrate was acidified with conc.HCl (2 mL).  The methanol was 

removed by evaporation and the residue was made basic by 10% K2CO3 solution and 

extracted with dichloromethane (3x15 mL).  This layer was dried and fractional distilled 

to concentrate the product which was further purified by Kugelrohr distillation (100 oC, 

water aspirator) to give 2,3,4,6-tetradeuteriopyridine (1-2,3,4,6-d4) as colorless liquid: 

yield 68 mg (0.82 mmole, 32%); 1H-NMR(CDCl3) δ 7.36 (s, 1H); 13C-NMR ((CD3)2CO) 

δ 152.1 (C-2, J = 30.4 Hz), 138.0 (C-4, J = 24.9 Hz), 125.8 (C-5, J = 25.8 Hz); MS 

m/z(%) 83 (100), 55 (65.5). 
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5.16. Synthesis of 2,3,4,5-tetradeuteriopyridine (1-2,3,4,5-d4) 
 

5.16.1. Preparation of pyridine N-oxide-d5 (53-2,3,4,5,6-d5) 

  

 Pyridine N-oxide (53) (2.0 g, 21 mmole) and K2CO3 (2.0 g) were dissolved in 

D2O (20 mL).  The solution was placed in a bomb and heated at 190 oC for 5 h.  The 

resulting solution was concentrated to remove solvent.  The liquid residue was subjected 

to the second H-D exchange reaction by adding 10 mL of D2O and heated at the same 

temperature for 5 h.  The resulting solution was extracted with chloroform (6x20 mL).  

The organic layer was dried (Na2SO4) and the solvent was removed by evaporation.  The 

rest of solvent in the residue was purged with nitrogen.  Pyridine N-oxide-d5 (53-

2,3,4,5,6-d5) was obtained   as a highly hygroscopic white solid: yield 2.0 g (20 mmole, 

95%); m.p. 50 oC; 13C-NMR (CDCl3) δ 139.4 (t: C-6; J = 28.5 Hz), 126.1 (t: C-4; J = 

25.6 Hz), 125.9 (t: C-3, C-5; J = 26.3) ; MS m/z(%) 100 (100), 84 (81). 

 

5.16.2. Preparation of 2-chloropyridine-3,4,5,6-d4 (88-3,4,5,6-d4) 

 

 Pyridine N-oxide-d5 (53-2,3,4,5,6-d5) (1.33 g, 13 mmole) was added with 

phosphorous oxychloride (11 mL) and this mixture was heated until reflux at 120 oC in 

an oil bath for 3 h.  The resulting mixture was concentrated by evaporation to remove 

POCl3 as much as possible.  The viscous residue was compleltely dissolved in ice water 

and made strongly basic with aqueous ammonia to give a reddish solution.  Extraction 

with dichloromethane (5x 20 mL) gave organic layer which was dried over anhydrous 

Na2SO4.  The solvent was removed by evaporation to give a red liquid.  Purification of 
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this crude via column chromatography (dichloromethane) gave 2-chloropyridine-3,4,5,6-

d4 (88-3,4,5,6-d4) as a colorless liquid: yield 0.44 g (3.7 mmole, 28 %); 13C-NMR (CDCl3) 

δ 151.5(C-2), 149.4 (t: C-6; J = 28.1 Hz), 138.2(t: C-4; J = 25.2 Hz), 124.1 (t: C-3; J = 

26.6 Hz), 121.7 (t: C-5; J = 25.4 Hz); MS m/z (%) 119 (25), 117 (79), 116 (7), 82(100). 

 

5.16.3. Preparation of 2,3,4,5-tetradeuteriopyridine (1-2,3,4,5-d4) 

 

 2-Chloropyridine-3,4,5,6-d4 (88-3,4,5,6-d4) (0.44, 3.7 mmole) was dissolved in 

MeOH (10 mL) and placed in a Büchner flask containing K2CO3 (0.6 g), Pd-C (0.1 g), 

and a magnetic bar.  This flask was sealed with a septum and equipped with a balloon at 

the side arm.  A side-arm test tube containing NaBH4 (0.2 g) was sealed with a septum 

and the side-arm was connected to the Büchner flask via a syringe needle passed through 

the septum of the Büchner flask.  The entire system was purged with nitrogen for 10 

minutes.  A solution of H2O (3.0 mL) containing H2SO4 (5 drops) was then added 

through the septum to the NaBH4 in the side-arm test tube.  The H2 generated filled the 

system and caused the balloon to expand.  The reaction mixture in the Büchner flask was 

stirred in the H2 atmosphere for 4 h.  The resulting mixture was filtered to remove Pd-C.  

The black solid of Pd was washed with methanol and the filtrates were combined.  This 

solution was acidified with conc. HCl and the solvent was removed by evaporation.  The 

residue was made basic with K2CO3 solution and the aqueous was extracted with 

dichloromethane (3 x 10 mL).  The organic layer was dried (Na2SO4) and the solvent was 

removed by fractional distillation.  The residue was further purified by Kugelrohr 

distillation at reduced pressure (water aspirator) and the pure 2,3,4,5-
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tetradeuteriopyridine (1-2,3,4,5-d4) was obtained in a glass bulb cooling with dry ice as a 

colorless liquid: yield 0.10 g (1.2 mmole, 32.4%); 1H-NMR ((CD3)2CO) δ 8.60 (s, 1H); 

13C-NMR ((CD3)2CO) δ 148.6 (C-2), 148.3 (t: C-6; J = 27.2 Hz), 134.1 (t: C-4; J = 24.6 

Hz), 122.1 (t: C-3; J = 25.2 Hz), 122.0 (t: C-5; J = 25.5  Hz); 13C-Dept135 ((CD3)2CO) δ 

148.6(+), 148.3(0), 134.1(0), 122.1(0), 122.0(0); MS m/z (%) 83(100), 82(11), 55(57). 
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5.17. Synthesis of 2,3,4-, 2,4,5-, and 2,3,6-trideuteriopyridine (1-2,3,4-d3,         

          1-2,4,5-d3, 1-2,3,6-d3) 
 

5.17.1. Preparation of 2,3-dichloropyridine (91-4,5,6-d3), 2,5-dichloropyridine   

(92-3,4,6-d3), 3,4-dichloropyridine (93-2,5,6-d3) 

  

 3-Chloropyridine N-oxide-2,4,5,6-d4 (87-2,4,5,6-d4) (2.20 g, 16.5 mmole) was 

mixed with phosphorousoxychloride (16.5 mL) in a round bottom flask.  This solution 

was heated until reflux at 120 oC for 2 hours.  The resulting solution was concentrated by 

evaporation to give brown liquid which was added with ice (10 g) and made basic with 

10% K2CO3 solution.  It was then extracted with dichloromethane (10 x 20 mL) and dried 

with anhydrous Na2SO4. Evaporation of this crude gave a brown liquid residue (1.90 g).  

Column chromatography using 10% Hexane in dichloromethane as eluent was used to 

isolate all four components.  The solvent of each collected fraction was removed by 

evaporation.  The first fraction was obtained as a white solid of 2,5-dichloropyridine-

3,4,6-d3 (92-3,4,6-d3): yield 0.34 g (2.3 mmole, 13.7%); 13C-NMR (CDCl3) δ 149.7 (C-2), 

148.5 (t: C-6; J = 28.8 Hz), 138.5 (t: C-4; J = 26.1 Hz), 131.1 (C-5), 125.2 (t: C-3; J = 

26.4 Hz); MS m/z (%)  154 (10), 152 (54), 150 (100), 117 (25), 115 (79).   

 

Fraction two was obtained as a white solid of 2,3-dichloropyridine-4,5,6-d3 (91-

4,5,6-d3): yield 0.62 g (4.1 mmole, 25 %); 13C-NMR (CDCl3) δ 149.6 (C-2), 147.3 (t: C-6; 

J = 28.1 Hz), 138.8 (t: C-4; J = 25.9 Hz), 131.0 (C-3), 123.1 (t: C-5; J = 25.5 Hz); MS 

m/z (%) 154 (11), 152 (59), 150 (96), 117 (31) 115 (100).  
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Fraction three was obtained as a white crystal of 3,5-dichloropyridine-2,4,6-d3 

(95-2,4,6-d3): yield 0.07 g (0.5 mmole, 2.8 %); 13C-NMR (CDCl3) δ 146.8 (t: C-2,C-6; J 

= 29.2 Hz), 135.7 (t: C-4; J = 26.3 Hz), 132.4 (C-3,C-5); MS m/z (%) 154 (10), 152 (66), 

150 (100), 117 (19), 115 (61).   

 

Fraction four was obtained as a yellowish liquid of 3,4-dichloropyridine-2,5,6-d3 

(93-2,5,6-d3): yield 0.20 g (1.3 mmole, 8%); 13C-NMR (CDCl3) δ 150.4 (t: C-2; J = 29.2 

Hz), 148.2 (t: C-6; J = 28.0 Hz), 142.3 (C-4), 131.1(C-3), 125.2 (t: C-5; J = 26.5 Hz); MS 

m/z (%) 150(10), 152 (64), 150 (100), 117 (20), 115 (67). 

 

5.17.2. Preparation of 2,3,4-trideuteriopyridine (1-2,3,4-d3)    

 

 2,3-Dichloropyridine-4,5,6-d3 (91-4,5,6-d3) (0.37 g, 2.5 mmole) was added to the 

mixture of Pd-C (0.2 g), K2CO3 (0.6 g), and methanol (15 mL).  The mixture was sealed 

in a Büchner flask equipped with a magnetic bar and balloon and purged with nitrogen 

for 15 minutes.  The H2 gas generated from NaBH4 (0.2 g), H2SO4 (5 drops), and 

deionized water (3 mL) was added through a syringe to the solution.  After 4 hours of 

stirring at room temperature, the resulting mixture was filtered to get rid off the Pd-C. 

The black precipitate of Pd-C was washed well with methanol.  The filtrate was acidified 

with conc.HCl to form deuterated pyridinium salts. The methanol solvent was removed 

by evaporation to give wet solid.  After basified with 10% K2CO3, the solution was 

extracted with dichloromethane, giving organic layer which was then dried over 

anhydrous Na2SO4.  The solvent was removed by fractional distillation.  The resulting 
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residue was purified by Kugelrohr distillation to give 2,3,4-trideuteriopyridine (1-2,3,4-d3) 

as a colorless liquid: yield 0.11 g (1.3 mmole, 52%); 1H-NMR ((CD3)2CO) δ 8.59 (d, 1H; 

J = 4.8 Hz), 7.34 (dt, 1H, J = 4.8 Hz); 13C-NMR ((CD3)2CO) δ 150.6 (C-6), 150.2 (t: C-2; 

J = 26.8 Hz), 136.2 (t: C-4; J = 25.3 Hz); 124.4 (C-5), 124.0 (t: C-3; J = 25.4 Hz); MS 

m/z (%) 82 (100), 55 (45), 54 (59).  

 

5.17.3. Preparation of 2,4,5-trideuteriopyridine (1-2,4,5-d3)    

 

 2,5-Dichloropyridine-3,4,6-d3 (92-3,4,6-d3) (0.41 g, 2.7 mmole) was added to the 

mixture of Pd-C (0.2 g), K2CO3 (0.6 g), and methanol (15 mL).  The mixture was sealed 

in a Büchner flask equipped with a magnetic bar and balloon and purged with nitrogen 

for 15 minutes.  The H2 gas generated from NaBH4 (0.2 g), H2SO4 (5 drops), and 

deionized water (3 mL) was added through a syringe to the solution.  After 4 hours of 

stirring at room temperature, the resulting mixture was filtered to get rid off the Pd-C. 

The black precipitate of Pd-C was washed well with methanol.  The filtrate was acidified 

with conc.HCl to form deuterated pyridinium salts. The methanol solvent was removed 

by evaporation to give wet solid.  After basified with 10% K2CO3, the solution was 

extracted with dichloromethane, giving organic layer which was then dried over 

anhydrous Na2SO4.  The solvent was removed by fractional distillation.  The resulting 

residue was purified by Kugelrohr distillation to give 2,4,5-trideuteriopyridine(1-2,4,5-d3) 

as a colorless liquid: yield 0.12 g (1.5 mmole, 55.5 %); 1H-NMR ((CD3)2CO) δ 8.59 (s, 

1H), 7.36 (s, 1H); 13C-NMR ((CD3)2CO) δ 150.6 (C-6), 150.3 (t: C2; J = 26.9 Hz), 136.2 
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(t: C4; J = 25.3 Hz); 124.2 (C3), 124.1 (t: C5; J = 25.0 Hz); MS m/z (%) 82 (100), 55 

(43), 54 (59). 

 

5.17.4. Preparation of 2,3,6-trideuteriopyridine (1-2,3,6-d3)    

 

 3,4-Dichloropyridine-2,5,6-d3 (93-2,5,6-d3) (0.27 g, 1.8  mmole) was added to the 

mixture of Pd-C (0.2 g), K2CO3 (0.6 g), and methanol (15 mL).  The mixture was sealed 

in a Büchner flask equipped with a magnetic bar and balloon and purged with nitrogen 

for 15 minutes.  The H2 gas generated from NaBH4 (0.2 g), H2SO4 (5 drops), and 

deionized water (3 mL) was added through a syringe to the solution.  After 4 hours of 

stirring at room temperature, the resulting mixture was filtered to get rid off the Pd-C. 

The black precipitate of Pd-C was washed well with methanol.  The filtrate was acidified 

with conc.HCl to form deuterated pyridinium salts. The methanol solvent was removed 

by evaporation to give wet solid.  After basified with 10% K2CO3, the solution was 

extracted with dichloromethane, giving organic layer which was then dried over 

anhydrous Na2SO4.  The solvent was removed by fractional distillation.  The resulting 

residue was purified by Kugelrohr distillation to give 2,3,6-trideuteriopyridine (1-2,3,6-d3) 

as a colorless liquid: yield 0.08 g (1.0 mmole, 54.2 %); 1H-NMR ((CD3)2CO) δ 8.59 (d, 

1H; J = 7.6 Hz), 7.36 (d, 1H; J = 7.6 Hz); 13C-NMR ((CD3)2CO) δ 150.3 (t: C-2, C-6; J = 

27.8 Hz), 136.4 (C-4); 124.4 (C-5), 124.1 (t: C-3; J = 25.6 Hz); MS m/z (%) 82 (100), 55 

(33), 54 (70). 
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5.18. Synthesis of 2,3,5-trideuteriopyridine (1-2,3,5-d3) 
 

5.18.1. Preparation of 4-nitropyridine N-oxide-2,3,5,6-d4 (81-2,3,5,6-d4) 

 

Pyridine N-oxide-d5 (53-2,3,4,5,6-d5) (2.74 g, 27.4 mmole) prepared from H-D 

exchange reaction of pyridine N-oxide (53) with K2CO3/D2O solution was mixed with 

conc. H2SO4 (10.0 mL) and fuming HNO3 (5.0 mL).  This mixture was heated until 

reflux at 130 oC for 5 hours.  The resulting solution was poured on ice and made basic 

with Na2CO3 solution.  The precipitate was filtered and all combined filtrate was 

extracted with dichloromethane (8x 20 mL).  The organic layer was dried over anhydrous 

Na2SO4 and the solvent was evaporated to give 4-nitropyridine N-oxide-2,3,5,6-d4 (81-

2,3,5,6-d4) as a yellow crystal.  This was further purified by recrystallization in acetone: 

yield 2.47 g (17.1 mmole, 62.4%); 13C-NMR (CDCl3) δ 142.7 (C-4), 140.5 (t: C-2, C-6;  

J = 29.8 Hz), 121.2 (t: C-3, C-5; J = 26.7 Hz); MS m/z (%) 144 (53), 128 (40), 114 (43). 

 

5.18.2. Preparation of 4-chloropyridine N-oxide-2,3,5,6-d4 (82-2,3,5,6-d4) 

 

 4-Nitropyridine N-oxide-2,3,5,6-d4 (81-2,3,5,6-d4) (2.12 g, 14.7 mmole) was 

warmed at 50 oC in water bath.  After acetyl chloride (11.0 mL) was added, the mixture 

was refluxed until obtaining the white solid (30 minutes).  The acid residue was removed 

by vacuum.  The white solid residue was cooled in ice bath and added with ice.  The 

aqueous solution was made basic with 10% Na2CO3 solution and extracted with 

dichloromethane (8x20 mL).  The organic layer was dried (Na2SO4) and the solvent was 

removed by evaporation to give 4-chloropyridine N-oxide-2,3,5,6-d4 (82-2,3,5,6-d4) as a 
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white solid.  This crude was purified by recrystallization in acetone: yield 1.84 g (13.7 

mmole, 93.2 %); 13C-NMR (CDCl3) δ 140.1 (t: C-2,C-6; J = 28.8 Hz), 132.0 (C-4), 126.7 

(t: C-3, C-5; J = 26.2 Hz); MS m/z (%) 135 (30), 133 (100), 117 (64), 82 (59). 

 

5.18.3. Preparation of 2,4-dichloropyridine-3,5,6-d3 (94-3,5,6-d3) 

 

4-Chloropyridine N-oxide-d4 (82-2,3,5,6-d4) (1.7 g, 12.7 mmole) was mixed with 

POCl3 (13 mL) in a round bottom flask.  This mixture was heated until reflux in an oil 

bath at 110 oC for 2 hours.  The resulting solution was concentrated to remove excess 

POCl3 by evaporator.  The yellow crude was added with ice (3 g), basified with K2CO3 

solution, extracted with dichloromethane (8 x 20 mL).  The organic layer was dried 

(Na2SO4) and the solvent was removed by evaporation to give a red mixture.  Preparative 

chromatography (9:1 DCM/Hexane) was used to isolate the major product as a colorless 

liquid of 2,4-dichloropyridine-3,5,6-d3 (94-3,5,6-d3) after removal of solvent: yield 0.90 g 

(6.0 mmole, 47.2 %); 13C-NMR(CDCl3) δ 152.6 (C-6), 150.2 (t: C-2; J = 28.2 Hz), 

146.1(C-4), 124.6(t: C-3; J = 26.8 Hz), 123.0(t: C-5; J = 26.2 Hz); MS m/z (%) 154 (8), 

152 (59), 150 (91), 117 (33), 115 (100), 78 (41). 

 

5.18.4. Preparation of 2,3,5-trideuteriopyridine (1-2,3,5-d3) 

 

2,4-Dichloropyridine-3,5,6-d3 (94-3,5,6-d3) (0.40 g, 2.6 mmole) was added to the 

mixture of Pd-C (0.2 g), K2CO3 (0.6 g), and methanol (15 mL).  The mixture was sealed 

in a Büchner flask equipped with a magnetic bar and balloon and purged with nitrogen 
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for 15 minutes.  The H2 gas generated from NaBH4 (0.2 g), H2SO4 (5 drops), and water (3 

mL) was added through a syringe to the solution.  After 4 hours of stirring at room 

temperature, the resulting mixture was filtered to remove Pd-C.  This precipitate was 

washed well with methanol.  The filtrate portions were combined and acidified with 

conc.HCl.  Methanol was removed by evaporation to give wet solid which was made 

basic with K2CO3 solution.  Extraction with dichloromethane gave organic layer which 

was dried over anhydrous Na2SO4.  The solvent was removed by fractional distillation.  

The resulting residue was purified by Kugelrohr distillation to give 2,3,5-

trideuteriopyridine (1-2,3,5-d3) as a colorless liquid: yield 0.16 g (2.1 mmole, 77%); 1H-

NMR ((CD3)2CO) δ 8.60 (s, 1H), 7.75 (s, 1H); 13C-NMR ((CD3)2CO) δ 150.5 (C-6), 

150.2 (t: C-2; J = 27.6 Hz), 136.3 (C-4), 124.2 (t: C-3; J = 24.6 Hz), 123.8 (t: C-5; J = 

24.9 Hz); MS m/z (%) 82(100), 55(48), 54 (66). 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

CHAPTER VI 

 
Conclusion 

 

 Photolysis of cyanopyridines (36-38) vapors at 254 nm resulted 

phototransposition.  Irradiation of any cyanopyridine isomer resulted in the formation of 

the other two isomers as photoproducts.  These results are analogous to the experimental 

results from the photochemistry of dimethylpyridine vapors which was previously 

reported by this laboratory.17  The phototransposition of these molecules was suggested 

to result from cyclization-2,6-bridging, nitrogen migration, and rearomatization.  The 

reactivity of each isomer was found to be quite different.  This was suggested to be based 

on the stability of their intermediates.  The radical stabilization plays role in determining 

the rate of reaction leading to the difference in the formation of the other two isomers.  In 

cyanopyridine, 3-cyanopyridine (38) is considered to be the least reactive species 

according to the radical stabilization in its intermediate, BC-38, which is extended by the 

cyano group attaching on the position 1 of the allylic system.  This agrees well with the 

experimental result and the theoretical value of substituted allyl radical38 which is applied 

to this azaprefulvene intermediate.  2-Cyanopyridine (36) is considered to be the 

moderate reactive species although it has the least radical stabilization.  The reactivity of 

36 depends on the steric hindrance of the CN group on the ring position 2 in the 

formation of azaprefulvene intermediate.  Also, the intermediate of, BC-36, can result in 

the formation of BC-36 during phototransposition period by one nitrogen migration, 

which is considered as an energy wasting process.  Hence, 4-Cyanopyridine (38) is the 

most reactive isomer in this series. 
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 Photolysis of methylpyridine vapors (6-8) at 254 nm was also studied resulting in 

the conclusion that they also undergo phototransposition via the using 2,6-bonding-

nitrogen migration instead of the Dewar-pyridine or azaprismane mechanism that have 

been reported by other groups.12,14  The experimental result shows that 2-

methylpyridine (6) is the least reactive isomer.   This is consistent with the suggestion 

that it undergoes an energy wasting process during phototransposition and that the 

formation of the azaprefulvene intermediate BC-6 is hindered by the methyl group at the 

ring position 2.  Because of the lack of steric hindrance, the reactivity of 3-

methylpyridine (7) and 4-methylpyridine (8) are greater than 6.  The reactivity of these 

two isomers is quite similar to each other and they are consistent with the radical 

stabilization energy reported in the literature.38 

 

 Multistep syntheses of various deuterated pyridines and cyanopyridines were 

designed and carried out successfully.  Two important deuterium labeling methods have 

been used in this synthesis.  The H-D exchange in strong base condition was found to be 

useful for incorporating deuterium atom on pyridine N-oxide derivatives.  Another 

method is deuteriumolysis/hydrogenolysis, which is a convenient way to change chlorine 

atoms at any position on the pyridine ring to D or H.  The final products were obtained as 

pure compounds which were ready to use for photolytic experiments.   

 

Using these deuterium-labeled compounds, the phototransposition mechanism 

could be followed.  The photochemistry of a variety of deuterated pyridines in the vapor 

phase showed that pyridine undergoes phototransposition after photochemical excitation 
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canceling the long-held belief that pyridine is photo-unreactive.  The mechanism that 

explains the observed reactions was suggested to involve electrocyclic ring closure-

nitrogen migration and rearomatization which leads to all deuterated photoproducts that 

could be observed in NMR spectra.  The same explanation is consistent with the 

photochemistry of all pyridine analogues, such as methylpyridines, dimethylpyridines, 

and cyanopyridines.  In contrast, the interconverting Dewar-pyridine and azaprismane 

mechanisms cannot explain the capricious formations of photoproducts observed in 

several experiments.  This shows that the 2,6-bonding-cyclization, nitrogen migration and 

rearomatization involving the formation of azaprefulvene intermediates is the best 

mechanistic pathway to explain the vapor phase photochemistry of pyridine and pyridine 

derivatives. These results are also consistent with reports by various research 

groups.19,20,65  
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A. NMR spectra of synthetic compounds 
 

1. Picolinic acid N-oxide-6-d (75-6-d) 

 

 

 

 

Figure A.1  1H-NMR spectrum of picolinic acid N-oxide-6-d 
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Figure A.2  13C-NMR spectrum of picolinic acid N-oxide-6-d 
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2. 4-Nitropicolinic acid N-oxide-6-d (71-6-d) 

 

 

Figure A.3  1H-NMR spectrum of 4-nitropicolinic acid N-oxide-6-d 

 

 

Figure A.4  13C-NMR spectrum of 4-nitropicolinic acid N-oxide-6-d 
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3. Methyl 4-nitropicolinate N-oxide-6-d (76-6-d) 

 

 

Figure A.5  1H-NMR spectrum of methyl 4-nitropicolinate N-oxide-6-d 

 

 

Figure A.6  13C-NMR spectrum of methyl 4-nitropicolinate N-oxide-6-d 

 



Appendix 
 

 327

4. Methyl 4-chloropicolinate N-oxide-6-d (77-6-d) 

 

 

Figure A.7  1H-NMR spectrum of methyl 4-chloropicolinate N-oxide-6-d 

 

 

Figure A.8  13C-NMR spectrum of methyl 4-chloropicolinate N-oxide-6-d 
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5. Methyl 4-chloropicolinate-6-d (78-6-d) 

 

 

Figure A.9  1H-NMR spectrum of methyl 4-chloropicolinate-6-d 

 

 

Figure A.10  1H-NMR spectrum of methyl 4-chloropicolinate-6-d 
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6. methyl picolinate-4,6-d2 (79-4,6-d2) 

 

 

Figure A.11  1H-NMR spectrum of methyl picolinate-4,6-d2 

 

 

Figure A.12  13C-NMR spectrum of methyl picolinate-4,6-d2 
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7. Picolinamide-4,6-d2 (80-4,6-d2) 

 

 

Figure A.13  1H-NMR spectrum of picolinamide-4,6-d2 

 

 

Figure A.14  13C-NMR spectrum of picolinamide-4,6-d2 

 



Appendix 
 

 331

8. Nicotinic acid N-oxide-2,6-d2 (61-2,6-d2) 

 

 

Figure A.15  1H-NMR spectrum of nicotinic acid N-oxide-2,6-d2 

 

 

Figure A.16  13C-NMR spectrum of nicotinic acid N-oxide-2,6-d2 
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9. Methyl nicotinate N-oxide-2,6-d2 (62-2,6-d2) 

 

 

Figure A.17  1H-NMR spectrum of methyl nicotinate N-oxide-2,6-d2 

 

 

Figure A.18  13C-NMR spectrum of methyl nicotinate N-oxide-2,6-d2 
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10. Methyl nicotinate-2,6-d2 (63-2,6-d2) 

 

 

Figure A.19  1H-NMR spectrum of methyl nicotinate-2,6-d2 

 

 

Figure A.20  13C-NMR spectrum of methyl nicotinate-2,6-d2 
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11. Nicotinamide-2,6-d2 (64-2,6-d2) 

 

 

Figure A.21  1H-NMR spectrum of nicotinamide-2,6-d2 

 

 

Figure A.22  13C-NMR spectrum of nicotinamide-2,6-d2 
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12. Isonicotinic acid N-oxide-2,6-d2 (54-2,6-d2) 

  

 

Figure A.23  1H-NMR spectrum of isonicotinic acid N-oxide-2,6-d2 

 

 

Figure A.24  13C-NMR spectrum of isonicotinic acid N-oxide-2,6-d2 
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13. Methyl isonicotinate N-oxide-2,6-d2 (58-2,6-d2) 

 

 

Figure A.25  1H-NMR spectrum of methyl isonicotinate N-oxide-2,6-d2 

 

 

Figure A.26  13C-NMR spectrum of methyl isonicotinate N-oxide-2,6-d2 
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14. Methyl isonicotinate-2,6-d2 (59-2,6-d2) 

 

 

Figure A.27  1H-NMR spectrum of methyl isonicotinate-2,6-d2 

 

 

Figure A.28  13C-NMR spectrum of methyl isonicotinate-2,6-d2 
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15. Pyridine N-oxide-2,6-d2 (53-2,6-d2) 

 

 

Figure A.29  1H-NMR spectrum of pyridine N-oxide-2,6-d2 

 

 

Figure A.30  13C-NMR spectrum of pyridine N-oxide-2,6-d2 
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16. Pyridine N-oxide-3,4,5-d3 (53-3,4,5-d3) 

 

 

Figure A.31  1H-NMR spectrum of pyridine N-oxide-3,4,5-d3 

 

 

Figure A.32  13C-NMR spectrum of pyridine N-oxide-3,4,5-d3 
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17. 4-Nitropyridine N-oxide-2,6-d2 (81-2,6-d2) 

 

 

Figure A.33  1H-NMR spectrum of 4-nitropyridine N-oxide-2,6-d2 

 

 

Figure A.34  13C-NMR spectrum of 4-nitropyridine N-oxide-2,6-d2 
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18. 4-Chloropyridine N-oxide-2,6-d2 (82-2,6-d2) 

 

 

Figure A.35  1H-NMR spectrum of 4-chloropyridine N-oxide-2,6-d2 

 

 

Figure A.36  13C-NMR spectrum of 4-chloropyridine N-oxide-2,6-d2 
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19. 4-Chloropyridine-2,6-d2 (83-2,6-d2)  

 

 

Figure A.37  1H-NMR spectrum of 4-chloropyridine-2,6-d2 

  

 

Figure A.38  13C-NMR spectrum of 4-chloropyridine-2,6-d2 
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20. 3,5-Dichloropyridine N-oxide (85) 

 

 

Figure A.39  1H-NMR spectrum of 3,5-dichloropyridine N-oxide 

 

 

Figure A.40  13C-NMR spectrum of 3,5-dichloropyridine N-oxide 
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21. 3,5-Dichloropyridine N-oxide-2,4,6-d3 (85-2,4,6-d3) 

 

 

Figure A.41  13C-NMR spectrum of 3,5-dichloropyridine N-oxide-2,4,6-d3 
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22. 3,5-dichloropyridine-2,4,6-d3 (84-2,4,6-d3) 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

Figure A.42  13C-NMR spectrum of 3,5-dichloropyridine-2,4,6-d3 
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23. 3,5-Dichloropyridine-2,6-d2 (84-2,6-d2) 

 

 

Figure A.43  1H-NMR spectrum of 3,5-dichloropyridine-2,6-d2 

 

 

Figure A.44  13C-NMR spectrum of 3,5-dichloropyridine-2,6-d2 
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24. Pyridine N-oxide-d5 (53-2,3,4,5,6-d5) 

 

 

 

Figure A.45  13C-NMR spectrum of pyridine N-oxide-d5 
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25. 3-Chloropyridine N-oxide-2,4,5,6-d4 (87-2,4,5,6-d4) 

 

 

 

 

Figure A.46  13C-NMR spectrum of 3-chloropyridine N-oxide-2,4,5,6-d4 
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26. 3-Chloropyridine-2,4,5,6-d4 (86-2,4,5,6-d4) 

 

 

 

 

Figure A.47  13C-NMR spectrum of 3-chloropyridine-2,4,5,6-d4 
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27. 2-Chloropyridine-3,4,5,6-d4 (88-3,4,5,6-d4) 

 

 

 

 

Figure A.48  13C-NMR spectrum of 2-chloropyridine-3,4,5,6-d4 
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28. 2,5-Dichloropyridine-3,4,6-d3 (92-3,4,6-d3) 

 

 

 

 

Figure A.49  13C-NMR spectrum of 2,5-dichloropyridine-3,4,6-d3 
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29. 2,3-Dichloropyridine-4,5,6-d3 (91-4,5,6-d3) 

 

 

 

 

Figure A.50  13C-NMR spectrum of 2,3-dichloropyridine-4,5,6-d3 
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30. 3,5-Dichloropyridine-2,4,6-d3 (84-2,4,6-d3) 

 

 

 

Figure A.51  13C-NMR spectrum of 3,5-dichloropyridine-2,4,6-d3 
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31. 3,4-Dichloropyridine-2,5,6-d3 (93-2,5,6-d3) 

 

 

 

 

Figure A.52  13C-NMR spectrum of 3,4-dichloropyridine-2,5,6-d3 
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32. 2,4-Dichloropyridine-3,5,6-d3 (94-3,5,6-d3) 

 

 

 

 

Figure A.53  13C-NMR spectrum of 2,4-dichloropyridine-3,5,6-d3 
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33. 4-Nitropyridine N-oxide-2,3,5,6-d4 (81-2,3,5,6-d4) 

 

 

 

 

 

Figure A.54  13C-NMR spectrum of 4-nitropyridine N-oxide-2,3,5,6-d4 
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34. 4-Chloropyridine N-oxide-2,3,5,6-d4 (82-2,3,5,6-d4) 

 

 

 

 

 

Figure A.55  13C-NMR spectrum of 4-chloropyridine N-oxide-2,3,5,6-d4 
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B. Mass Spectra of synthetic compounds 
 
1. Methyl 4-chloropicolinate N-oxide-6-d (77-6-d) 
 

 

 

 

 

 

 

 

 

Figure B.1  MS of methyl 4-chloropicolinate N-oxide-6-d 

  
 

2. Methyl 4-chloropicolinate-6-d (78-6-d) 
 

 

 

 

 

 

 

 

 

Figure B.2  MS of methyl 4-chloropicolinate-6-d 
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3. Picolinamide-4,6-d2 (80-4,6-d2) 

 

 

 

 

 

 

 

 

 

Figure B.3  MS of picolinamide-4,6-d2 

 

4.  Nicotinamide-2,6-d2 (64-2,6-d2) 

 

 

 

 

 

 

 

 

 

Figure B.4  MS of nicotinamide-2,6-d2 

 

40 60 80 100 120 140
m/z

0

20

40

60

80

100
Ab

un
da
nc
e

81 

124 

40 60 80 100 120 140
m/z

0

20

40

60

80

100

Ab
un
da

nc
e

80 

108 

124 



Appendix 
 

 360

5. Isonicotinamide-2,6-d2 (60-2,6-d2) 
 
 
 
 
 

 

 

 

 

 

 

Figure B.5  MS of Isonicotinamide-2,6-d2 

 

 

6. Methyl isonicotinate N-oxide-2,6-d2 (58-2,6-d2) 

 

 

 

 

 

 

 

 

 

Figure B.6  MS of methyl isonicotinate N-oxide-2,6-d2 
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7.  Pyridine N-oxide-2,6-d2 (53-2,6-d2) 

 

 

 

 

 

 

 

 

 

Figure B.7  MS of pyridine N-oxide-2,6-d2 

 

8. 4-Nitropyridine N-oxide-2,6-d2 (81-2,6-d2) 

 

 

 

 

 

 

 

 

 

Figure B.8  MS of 4-nitropyridine N-oxide-2,6-d2 
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9. 4-Chloropyridine N-oxide-2,6-d2 (82-2,6-d2) 

 

 

 

 

 

 

 

 

 

Figure B.9  MS of 4-chloropyridine N-oxide-2,6-d2 

 

 

10. 4-Chloropyridine-2,6-d2 (83-2,6-d2) 

 

 

 

 

 

 

 

 

 

Figure B.10  MS of 4-chloropyridine-2,6-d2 
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11. 3,5-dichloropyridine N-oxide (85) 

 

 

 

 

 

 

 

 

Figure B.11  MS of 3,5-dichloropyridine N-oxide 

 

 

12. 3,5-dichloropyridine N-oxide-2,4,6-d3 (85-2,4,6-d3) 
 

 

 

 

 

 

 

 

 

Figure B.12  MS of 3,5-dichloropyridine N-oxide-2,4,6-d3 
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13. 3,5-dichloropyridine-2,4,6-d3 (84-2,4,6-d3) 

 

 

 

 

 

 

 

 

 

Figure B.13  MS of 3,5-dichloropyridine-2,4,6-d3 

 

 

14.  3,5-dichloropyridine-2,6-d2 (84-2,6-d2) 

 

 

 

 

 

 

 

 

Figure B.14  MS of 3,5-dichloropyridine-2,6-d2 
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15. 3-Chloropyridine-2,4,5,6-d4 (86-2,4,5,6-d4) 

 

 

 

 

 

 

 

 

 

Figure B.15  MS of 3-Chloropyridine-2,4,5,6-d4 

 

 

16. 2-Chloropyridine-3,4,5,6-d4 (88-3,4,5,6-d4) 

 

 

 

 

 

 

 

 

Figure B.16  MS of 2-Chloropyridine-3,4,5,6-d4 
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17. 2,5-Dichloropyridine-3,4,6-d3 (92-3,5,6-d3) 
 

 

 

 

 

 

 

 

 

Figure B.17  MS of 2,5-dichloropyridine-3,4,6-d3 

 
 
 
18. 2,3-Dichloropyridine-4,5,6-d3 (91-4,5,6-d3) 
 

 

 

 

 

 

 

 

 

 

Figure B.18  MS of 2,3-dichloropyridine-4,5,6-d3 
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19. 3,4-Dichloropyridine-2,5,6-d3 (93-2,5,6-d3) 
 

 

 

 

 

 

 

 

 

Figure B.19  MS of 3,4-dichloropyridine-2,5,6-d3 

 

20. 2,4-Dichloropyridine-3,5,6-d3 (94-3,5,6-d3) 
 

 

 

 

 

 

 

 

 

 

Figure B.20  MS of 2,4-dichloropyridine-3,5,6-d3 
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21. 4-Nitropyridine N-oxide-2,3,5,6-d4 (81-2,3,5,6-d4) 
 

 

 

 

 

 

 

 

 

Figure B.21  MS of 4-nitropyridine N-oxide-2,3,5,6-d4 

 

 

22. 4-Chloropyridine N-oxide-2,3,5,6-d4 (82-2,3,5,6-d4) 
 

 

 

 

 

 

 

 

 

Figure B.22  MS of 4-chloropyridine N-oxide-2,3,5,6-d4 
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C. UV spectra of cyanopyridines 

 

1. 2-Cyanopyridine (36) 

 Concentration = 8x10-5 M 

 ε254 = 3275   

 εmax = 4325  

 

 

 

 

Figure C.1  Absorption spectrum of 2-cyanopyridine in 1:1 ethanol/methanol 
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2. 3-Cyanopyridine (37) 

 Concentration = 8x10-5 M 

 ε254 = 4450 

 εmax = 5450  

 

 

 

 

Figure C.2  Absorption spectrum of 3-cyanopyridine in 1:1 ethanol/methanol 
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3. 4-Cyanopyridine (38) 

 Concentration = 8x10-5 M 

 ε254 = 2100 

 εmax = 4512 

 

 

 

 

 

Figure C.3  Absorption spectrum of 4-cyanopyridine in 1:1 ethanol/methanol 
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D. UV spectra of methylpyridine vapors 
 
1. 2-Methylpyridine (vapor) 

 
 
 
 
 
 

 
 
 
 

Figure D.1  Absorption spectrum of 2-methylpyridine vapor66 
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2. 3-Methylpyridine (vapor) 

 

 

 

 

 

Figure D.2  Absorption spectrum of 3-methylpyridine vapor66 
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3. 4-Methylpyridine (vapor) 

 

 

 

 

 

Figure D.3  Absorption spectrum of 4-methylpyridine vapor66 
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