
 1 

����������	�
	�������	

�����	��	

�����	�����	�����	

�����	��	���
��	�������������	

	
By 

Karthik Krishna 
 

���������
�	
� ���������������	����

�������

����������	�
�����������������
������������	������ ��������������	���� �������������

� ���������� �����������������
���

�����������������������
     March 2005 
 
 
 
 
        __________________ 

Prof. Edward A. Clancy 
ECE Department, 
Thesis Advisor 

 
__________________ 
Prof. Donald R. Brown 
ECE Department, 
Committee member 

 
___________________ 
Prof. Fred J. Looft 
ECE Department 
Committee member. 

 
 
�



 2 

1 Abstract 
 

In performing manual tasks, muscles are voluntarily contracted in order to produce 

force and orient the limb in the desired direction. Many occupational tasks are associated 

with frequent musculoskeletal disorders. In tasks involving skilful manipulation, very 

frequently the forces are focused on the upper limb and neck. Upper extremity 

cumulative trauma disorders are among the more common worker related injuries. These 

muscle disorders may be related to repetitive exertions, excessive muscle loads and 

extreme postures. One of the major challenges is to quantify the muscle load and 

researchers have tried various measures to quantify muscle load. Joint mechanical 

impedance can be a robust method to quantify muscle load.  Joint mechanical impedance 

characterizes the dynamic torque-angle relationship of the joint. Joint impedance has 

been measured by earlier researchers, for limited tasks, by imparting force (or angle) 

perturbations on the joint and relating resultant angular (or force) changes. The joint 

impedance gives a quantitative measure related to muscle co-contraction level. 

Measurement of the mechanical impedance at the workplace may provide useful 

information relevant to the understanding of upper limb disorders. 

Electromyogram (EMG) is the electrical activity of the muscle. Usually, an estimate 

of the EMG amplitude is obtained from the raw waveform recorded from the surface of 

the skin. EMG amplitude estimates can be used to non-invasively estimate torque about 

joints. Presently, there exists no means by which mechanical impedance can be estimated 

non-invasively (i.e., without external perturbations). Therefore, we proposed the use of 

EMG to noninvasively estimate the joint mechanical impedance. Our objective in this 

project was to determine the extent to which surface EMG can be used to estimate 
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mechanical impedance. Simulation studies were first performed to understand the extent 

to which this tool could be useful and to determine methods to be used for the experiment. 

The simulations were followed by evaluating and estimating mechanical impedance using 

data collected from one experimental subject. 

Simulations helped to devise processing techniques for the measured signals and also 

to determine the length of data to be collected. Low pass filters for derivatives (used in 

the development of impedance estimates) were designed. Subtracting out a polynomial 

was the best approach to attenuate a low frequency drift (artifact) that occurs in torque 

measurements. Thirty seconds of data provided impedance estimates with a relative error 

of 5% when EMG amplitude estimates with SNR of 15 were used. 

Experimental data from constant-posture, slowly force-varying background torque 

level showed that the elbow joint system behaved like a second order linear system 

between 2 Hz and 10 Hz. Co-contraction by subjects during experiments caused 

impedance estimates to be unexpectedly high even at low background torque. Further 

experiments would need to be conducted with the subjects being instructed to avoid co-

contraction.   
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2 Introduction 

 
Electromyography is the study of muscle function through the inquiry of the 

electrical signal the muscles emanate [6]. The surface electromyogram is the signal 

detected by an electrode on the surface of the skin. Researchers have been studying the 

relationship between the surface electromyogram (EMG) and torque produced about a 

joint as a means of estimating musculoskeletal load, in particular, and joint dynamics in 

general. Measurement and understanding of these dynamics is important in the 

prevention of musculoskeletal injuries at the work place, rehabilitation engineering and 

basic motor control research. A joint exhibits mechanical impedance since it produces a 

torque if it is subjected to a displacement. Joint mechanical impedance is a necessary 

property of the musculoskeletal system because it helps stabilize force interactive tasks 

like tool usage. Joint mechanical impedance can be modulated by co-contracting muscles 

about a joint [20]. For example, a worker using a power tool will co-contract his/her 

muscles to generate the mechanical impedance required to stabilize the tool. However 

excessive impedance may be associated with musculoskeletal injury. 

Mechanical impedance has been measured for constant posture tasks and point-to-

point motion tasks. These methods have not used EMG for estimating the impedance. In 

this project, we have estimated the joint mechanical impedance from surface EMG. This 

estimation process is similar to EMG-torque modeling.  

EMG amplitude is defined as the time varying standard deviation of the surface 

EMG [11]. Surface EMG amplitude provides a measure of the muscular effort and also 

serves as an input to EMG-to-force models, myoelectric prosthesis, gait analysis, motion 
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control studies, and other applications [9]. There are various EMG processing techniques, 

some of which perform better than others and help reduce the amplitude estimate error. 

 Our aims in this project are to estimate the mechanical impedance of the elbow joint 

from surface EMG in a constant posture, slowly force varying task. One of the objectives 

is also to demonstrate through simulation that advanced methods of estimating surface 

EMG amplitude lead to better EMG-impedance estimates. The long-term objectives of 

this work would be to use EMG-based estimates of mechanical impedance to study 

mechanisms of musculoskeletal injury in occupation tasks.  

Simulations were carried out to relate EMG amplitude to impedance using a second 

order linear model. Simulations give us useful insight about the kind of data that needed 

to be collected and the length of data to be collected in experimental studies. The length 

of data collected must be adequate for system identification, so that the impedance 

estimation is accurate. On the other hand, the duration of the data cannot be so long that 

the subject is under fatigue. EMG amplitudes are a noisy signal and therefore, the 

impedance estimates could be noisy and it would be useful to know the accuracy of 

estimation in the presence of noise. Our experiment involves a slowly varying operating 

point. Earlier experiments have been carried out using a constant operating point and 

simulations could provide information about system identification with a varying 

operating point. The contributions from this project are the simulations required to relate 

EMG to impedance and a preliminary examination and analysis of data collected from 

one subject. 
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3 Background 
 

Surface electromyography is a technique used to record the electrical activity of 

skeletal muscles. As muscles are activated, they generate action currents that flow 

through the resistive medium of the tissues. The voltage gradients thus produced may be 

recorded as the myoelectric signal [1]. 

3.1 Physiological Basis of the Electromyogram   

As shown in Figure 3-1c, the skeletal muscle is composed of muscle fibers. In 

most muscles, muscle fibers (or cells) extend over the length of the muscle and are 

attached to at least two different bones on either side by means of tendons [19]. Muscle 

fibers are made up of myofibrils. The muscle is surrounded by a tissue called fascia. A 

thin fibrous membrane that surrounds the muscle and separates it from other muscles is 

the fascia [2]. The deep surface of the fascia gives off septa (endomysium). The 

endomysium penetrate the muscle and provide connective and supportive structures to 

various subdivisions of the muscle.  

 The fasciculi (subdivision of the muscle), are surrounded by perimysium, 

a sheath formed by extensions of the fascia into the muscle. The surface of perimysium 

divides to yield septa that surround each muscle fiber. Each fasciculus as in Figure 3-1b 

can contain up to 150 muscle fibers. The endomysium, perimysium and epimysium 

(fascia) together serve two functions. First, at the end of the muscles the contractile 

portion  gradually gives way to the connective tissue that blends with and becomes a 
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Figure 3-1 Organization of skeletal muscle [2]. 

 

part of the tendon which attaches the muscle and the bone as in Figure 3-2. The muscles 

are able to exert tensile forces due to this attachment. Second, the connective tissues help 

to bind contractile units and groups of units together so that their action is integrated. 

This arrangement allows independent functioning of the fibers. The independent 
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functioning of the fibers is important because the fibers belonging to the same motor unit 

can be spread throughout the muscle. Motor units are the smallest functional unit of the 

neuromuscular system. Contraction of single muscle fibers within many different 

fasciculi is the result of activation of a motor unit [2]. 

A muscle cell is surrounded by sarcolemma. The myofibrils that make up the 

muscle fiber are contained within the sarcolemma [Figure 3-1d].  The myofibril runs 

along the entire length of the muscle fiber [2].  

 

 

Figure 3-2 Cross structure of a skeletal muscle [2]. 
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The sarcomere is the smallest contractile unit of the muscle. A series of sarcomeres 

form the myofibril. The total muscle fiber contraction is the end product of contraction of 

all the sarcomeres within [2].   

3.2 The Electromyography Signal 
 

The sarcolemma is a thin semi-permeable membrane composed of a lipid bi-layer 

that has channels through which certain ions can move between the intra-cellular and the 

extra-cellular fluid. The intra-cellular fluid has a high concentration of potassium (K+) 

ions and an organic (A-) anion. The K+ ions are small enough to pass through the 

channels in the membrane as opposed to the organic anions that cannot flow through the 

membrane. The extra-cellular fluid has sodium (Na+) and chloride (Cl-) ions. The Cl- 

ions are small enough to pass through the membrane channel, but the larger Na+ ions 

have difficulty in penetration (refer Figure 3-3) [2]. 

Let us consider for a moment that there is no difference in potential between the 

intra cellular and extra-cellular fluid (Figure 3-3). The K+ diffuses through the cell 

membrane because of higher concentration inside the cell compared with outside the cell. 

The Na+ ions cannot move in the opposite direction through the membrane to replace the 

K+ ions. Therefore, a potential difference develops across the sarcolemma membrane. A 

positive charge now develops on the outside of the membrane and this slows the further 

diffusion of K+ ions. The Cl- ions act in a similar manner and remain in equilibrium 

because of this interaction between its concentration gradient and the electrical charge [2]. 
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Figure 3-3 Development of trans-membrane voltage by an ion concentration gradient. Diagram of an 
intracellular fluid-membrane-interstitial fluid system. Membrane has some properties of a real cell 
membrane. The pores in the membrane are such that K+ and Cl- ions can pass through easily, Na+ 
with difficulty and A- ions cannot pass through [2]. 

 
The movement of K+ and Cl- ions creates a positive charge on the outside, and a 

negative charge on the inside of the membrane. Like charges repel each other and 

therefore, the positive charge on the outside of the membrane in combination with the 

large concentration gradient of Na+ drives Na+ into the cell. An active ion transport 

system called the sodium-potassium pump maintains the membrane potential [2]. This 

pump redirects the Na+ ions to the outside of the cell. 

A muscle fiber contraction is preceded by several events. A depolarization is 

initiated in the motor neuron (muscles are stimulated by motor neurons) by the central 

nervous system. This depolarization is conveyed to the motor end plate through the 

motoneuron. At the endplate, a chemical substance is released that diffuses across the 

synaptic cleft causing a rapid depolarization of the muscle fiber under the motor endplate. 

This rapid depolarization, and the subsequent re-polarization of the muscle fiber, is an 
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action potential [2]. The action potential propagates along the muscle fiber in both 

directions, away from the motor end plate. 

The basis of surface electromyography is the relationship between the action 

potential of muscle fibers and the extra-cellular recording of those action potentials at the 

skin surface. The motor unit consists of the motor neuron and the muscle fibers that it 

stimulates [19]. Few motor units are required to be activated for weak contractions. 

Stronger contractions require larger number of motor units to be activated or recruited to 

contract, and this selective activation of motor units is called motor unit recruitment [19]. 

The frequency of the stimulation of the motor units is called the motor unit firing rate. 

3.3 Model for the Surface EMG Signal 
 

The EMG signal may be modeled by linearly summing up the motor unit action 

potentials trains (MUAPTs) as they exist when they are detected by the electrode. This 

approach may be expressed as �
=

=
p

i
i FtuFtm

1

),(),(  

Where ),( Ftm is the observed EMG signal being a function of time variable t and force F, 

),( Ftui is the ith motor unit action potential train (MUAPT) and p the total number of 

MUAPTs. A schematic representation of the model is shown in Figure 3-4. The integer p 

represents the total number of MUAPTs which contribute to the potential field at the 

recording site. The superposition at the recording site forms the physiological EMG 

signal, ),( Ftm p . However, the detected signal is affected by electrical noise n(t), and the 

filtering of the recording electrode r(t) [r(t) is the impulse response of the recording 

electrode ]. The resulting signal, ),( Ftm , is the observable EMG signal [6]. The location 
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of the recording site with respect to the active motor units determines the waveform of h(t) 

which is the motor unit action potential. 

                                  

 

Figure 3-4. Schematic representation of the model for the generation of the EMG signal [6]. 

 

The MUAPT may be completely described by its inter pulse interval (IPI) and the 

waveform of the motor unit action potential (MUAP). It is convenient to describe the 
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MUAPT as a random process in which the waveform of the MUAP is present at random 

intervals of time. The MUAPT’s can be divided into a sequence of dirac delta 

impulses )(tiδ , which are passed through a filter whose impulse response is )(thi .  

The impulse response of the filter can be modeled as time variant to reflect changes in the 

waveform of the MUAP during a sustained contraction. 

If each dirac delta impulse marks the time occurrence of a MUAP in a MUAPT, the 

output of the filter will be the MUAPT or )(tui . The integer i denotes a particular 

MUAPT. 

 

Figure 3-5 Model for a motor nit action potential train and the corresponding Fourier Transform of 
the inter pulse intervals (IPI), the motor unit action potentials and the MUAPT. 
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The dirac delta impulse train can be described by 

�
=

−=
n

k
kttti

1

)()( δδ . Therefore the MUAPT )(tui can be formulated as 

�
=

−=
n

k
kii tthtu

1

)()( ,where �
=

=
k

l
lk xt

1

for k,l=1,2,3,…n. 

The variable t is a real continuous random variable, kt  represents the time locations of the 

MUAPs, x represents the IPIs, n the total number of IPI’s in a MUAPT, and i, k and l are 

the integers which denote specific events [6]. 

 

3.4 Relating Electromyogram to Torque 
Researchers have been studying the relationship between the surface 

electromyogram and the torque produced about a joint, to estimate musculoskeletal load 

in particular and joint dynamics in general. Measurement and understanding of these 

dynamics is important in the prevention of musculoskeletal injuries in the workplace and 

in rehabilitation engineering, basic motor control research and neuromuscular diseases. 

There has been experimental study by Clancy and Hogan relating simultaneous 

elbow flexor and extensor electromyogram amplitude to joint torque [3]. There are a few 

assumptions made while forming this relationship. First, that the EMG amplitude can be 

identified from the EMG waveform. Second, for the case of isotonic, isometric and non-

fatiguing muscle contractions, the EMG amplitude has a constant value. Third, that the 

joint torque is an identifiable function of EMG amplitude. Torque measured about a joint 

is assumed to be algebraically related to the torques due to flexion ( FT ) and extension 

( ET ) as EFEXT TTT −= . The flexion and extension EMG amplitudes are in turn related to 

the flexion and extension torques as the polynomials: 
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..., 3
3,

2
2,1 +•+•+•= FFFFFFF sfsfsfT  

Equation 3-1 

..., 3
3,

2
2,1 +•+•+•= EEEEEEE sfsfsfT  

Equation 3-2 

EFEXT TTT −=  

Equation 3-3 

where jif ,  are the fit parameters, Es  is the EMG extension amplitude estimate and Fs  is 

the flexion amplitude estimate. The error between the estimated and measured torque at 

each instant in time (t) was exttEtFtt TTTerror −−= . For a sequence of measurements, 

linear least squares techniques were used to calculate the fit parameters to minimize the 

mean squared error between the measured and estimated torque [3]. 

3.5 Joint Dynamics 
The dynamic relation between joint position and torque is referred to as joint 

dynamics. Linear models provide good descriptions of joint dynamics provided that 

conditions (eg: activation level, mean position) are maintained approximately constant 

over the experiment [5]. Parametric or non-parametric models can be used for describing 

the system behavior. Parametric models describe system behavior in terms of an analytic 

expression. Systems may be described with relatively few parameters, if the correct 

model order is chosen.  Non parametric models use descriptions such as impulse response 

functions or frequency response functions that make no assumptions about model order 

or system structure and are infinite dimensional in nature. 



 23 

Researchers such as Kearney and Hunter have studied the human ankle joint 

dynamics by applying stochastic perturbations of position [7]. Their experiments 

consisted of nominally constant posture, constant force and non-fatiguing contractions. 

The subjects were trained to maintain a steady contraction in either plantar flexion or 

dorsiflexion during ongoing perturbations. Subjects were asked to maintain a constant 

effort whose magnitude was adjusted with respect to the visual feedback of the torque. 

Prior to each experiment, subjects were informed about the required level of contraction. 

To avoid muscle fatigue, contractions were limited to less than 20% maximum voluntary 

contraction (MVC). The mean EMG level was always monitored and if there was an 

increase in EMG activity (implying muscle fatigue) then subsequent trials involving 

higher mean torque were not performed. The idea was to understand the system under 

normal conditions and not when it is under fatigue. The ankle position and torque were 

low-pass filtered (8 pole Bessel, 200 Hz cut-off) to avoid aliasing and then sampled at 

400 Hz by a 12 bit A/D converter for 65 seconds [7].  
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Figure 3-6 shows the time domain ankle torque and position measurements collected 

during one such experiment. 

 

Figure 3-6 Measured values of (a) angular position and (b) torque of the ankle [7] 

 

Position data are considered to be the input to the system and the joint torque as the 

output. The transfer function of the system is the system output divided by the input in 

the frequency domain. Thus, frequency analysis techniques consist of taking the Fourier 

transform of the measured torque deviations and displacements and dividing one by the 

other. The result is the transfer function of the joint. 

Frequency analysis techniques were employed on the data to obtain the ankle 

impedance gain and phase (nonparametric technique) after removing the bias (subtracting 

the mean value) from the torque and position measurements. Figure 3-7 shows the gain 

and phase characteristics of the impedance using the measurements obtained. The curves 

obtained were compared with the characteristics of a second order system [smooth line in 
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Figure 3-7 (a) and (b)]. It can be observed that the two curves are close to each other 

suggesting that a second order system can be a good approximation to model joint 

dynamics. 

 Coherence is defined as  
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where )( ωφθθ j  is the position auto spectrum, )(, ωφ θ jT  is the torque-position cross-

spectrum and )(, ωφ jTT is the torque auto-spectrum. The coherence squared (frequency 

domain characteristic of output variance accounted for) gives us an estimate of how much 

of the output power can be predicted on the basis of the linear transfer function estimate 

at each frequency [5]. Figure 3-7 (c) shows that we have a high value of coherence (0.9) 

for most of the frequency range, suggesting that this estimate of the transfer function is a 

good approximation [7].  
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Figure 3-7 Frequency analysis of the data shown in fig 2-5. (a)Stiffness gain in dB,(b) phase in 
degrees (c) Coherence squared. Smooth curves are plots for a second order system, jagged curves for 
the actual data [7]. 

From the above analysis, the system seems very similar to a second-order system. 

The transfer function can be therefore be modeled as  

KBsIs
sPOS

sTQ
sSTIFF ++== 2

)(
)(

)(  

Equation 3-5 

where: 

STIFF= dynamic ankle impedance, TQ = torque deviations, POS = angular deviations, I 

is angular moment of inertia (of the foot) in Nms2/rad, B = angular viscosity in Nm-s/rad, 

K=angular elasticity of the ankle in Nm/rad and jws =  is the complex frequency. 

Therefore, joint dynamics (under constant operating point conditions) have 

frequently been modeled using a parametric model of the form 
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where, )(tT∆  = change in torque, )(tθ∆  = change in angular position, I = inertial 

parameter, B = viscous parameter, K = elastic parameter [5]. An advantage of using 

Equation 3-6 to model joint dynamics is that each parameter has a direct interpretation in 

terms of the underlying physics [5]. Equation 3-6 is the time domain equivalent of 

Equation 3-5 assuming zero initial conditions. 

Kearney and Hunter [7] performed a time domain parametric analysis to find out 

the best fit parameters (K, B and I). These parameters were plotted for various bias torque 

values. These estimated parameters varied with mean ankle bias torque. The elastic (K) 

and viscous (B) parameters increased linearly with increase in bias torque (over their 

range of bias torques) but the inertial (I) parameter did not change much with torque [7]. 

 

 
Figure 3-8 (a) Inertial(Nm s2/rad), (b) viscous (Nm s/rad) and (c) elastic parameters(Nm/rad) 
estimated in the time domain as functions of mean ankle torque. Positive and negative torques 
corresponds to dorsiflexing and plantar flexing[7]. 
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The operating point is defined by the mean torque or mean position (maintained 

by the subject via feedback). The operating point remains constant over a particular trial 

consisting of constant posture, constant force, and non-fatiguing contractions. The 

parameters change as the operating point changes. The ensemble of linear models 

estimated over a range of operating conditions may be thought of as defining a quasi-

static model of joint dynamics and can be defined by the linear equation 
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Equation 3-7 

where λ  defines the operating point of the system. The quasi-static model cannot be used 

when the operating point of the system is changing dynamically [5]. 

 

3.5.1 Impedance measurement using EMG 
 

Osu and Kamimura [8] have performed experiments collecting surface EMG activity 

from the brachioradialis, medial head of the triceps brachii (mono-articular muscles), 

biceps brachii and long head of the triceps (bi-articular muscles). The EMG signals were 

high pass filtered at 25Hz, low-pass at 1 KHz and sampled at 2KHz. The digitized EMG 

signals were rectified and averaged for a period of 0.4 seconds before perturbations. 

Using previous studies by Osu and Gomi [9] which had suggested a linear relation 

between surface EMG activity and joint torque and joint stiffness, a parameter called 

index of muscle co-contraction around the joint (IMCJ) was introduced. 

First, joint torque was expressed as the difference between the flexion torque exerted 

by the flexor muscles and the extension torque exerted by the extensor muscles [10]. 
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 Elbow torque can be expressed as 24231211 EFEF sasasasa −+−=τ  

Equation 3-8 

where 1Fs  and 1Es  are the surface EMG activity of the elbow mono-articular flexor and 

extensor, respectively and 2Fs  and 2Es denote surface EMG activity of bi-articular flexor 

and extensor, respectively. The EMG activity ( FE ss , ) and torque are measured. The 

parameters ia include both the moment arm and the conversion factor from muscle 

activity (rectified and averaged EMG) [10] to muscle tension. The ia terms are constants 

for a constant moment arm (i.e. limb posture). 

If each muscle stiffness term is proportional to the corresponding muscle torque 

( iEi sa ), we can use summation of muscle torque as an indicator of joint stiffness [10]. 

Stiffness can be related to the weighted summation of rectified EMG signals through the 

index of muscle co-contraction around the joint (IMCJ) [8]. IMCJ can be defined as the 

summation of absolute values of antagonist muscle torques around the joint, and it is 

computed from the linear relation between surface EMG and joint torque.  

                  24231211 EFEF sasasasaIMCJ +++=  

Equation 3-9 

 
From Equation 3-8 and Equation 3-9, concomitant increases in flexor and extensor 

muscle torques do not increase joint torque but do increase the IMCJ because IMCJ is the 

summation of absolute values of muscle torques [10].  

 To check the utility of IMCJ, the IMCJ estimated from EMG was compared to the 

stiffness measured using conventional methods of applying mechanical perturbations. 

Perturbations were applied by a manipulandum fixed to the subjects arm. The subjects 

arm was pushed and pulled back in eight random directions (6-8 mm) in a short period of 
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time (0.3 seconds). The subjects were asked to keep the muscle (EMG) activity constant 

during the trial. A second order model was used to estimate the stiffness (Nm/rad) [10]. 

The EMG was recorded (using silver electrodes) from the elbow muscles and signal 

processing techniques discussed above (rectification and averaging) were applied. The 

processed EMG was used as the muscle activity iu  in Equation 3-8. The force was 

measured using a force sensor attached and averaged over a period of 0.4s.The joint 

torque was calculated from the average force. It was confirmed that IMCJ linearly 

correlated with the stiffness measured directly by applying mechanical perturbations to 

the arm during isometric force regulation tasks. 

 IMCJ is not a universal indicator for stiffness since there can be variable moment 

arms during movements and non linear properties of muscle tension. IMCJ does not 

estimate viscosity and inertia. However, IMCJ is useful under certain limiting conditions 

where the second order system contributions of viscosity and inertia are limited. The 

above method would not benefit from using advanced EMG amplitude estimators due to 

the usage of a long (0.4sec) averaging window. The simple linear model of Equation 3-9 

does not capture all subtleties of the stiffness parameter, but definitely is a good first 

approximation of stiffness to be measured from EMG activity [8].  
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4 Simulation Methods and Results 
 

Simulations were first performed in MATLAB before the processing methods 

(discussed later in the section) were applied to experimental data. All our simulations had 

the change in angular deviation ( θ∆  ) as the input to the system and change in torque 

( T∆ ) as the generated output. Simulations helped address some of the concerns in 

processing the data. First and second derivatives of angular measurements had to be taken 

which could introduce high frequency noise. The low-pass filters required to deal with 

this high frequency noise had to be designed. Torque measurements in an experimental 

set up usually have a low frequency artifact component associated with it. This low 

frequency component arises due to the fact that the subject is expected to maintain a 

constant background force level during a trial. In an attempt to maintain this background 

force level, the subject could drift about from the expected background force, and this 

drift manifests itself as a low frequency artifact. This artifact is called the bias torque. 

This slowly varying torque bias has to be removed from the measurements before system 

identification is performed. Methods such as high-pass filters and subtraction of a 

polynomial were implemented to rid this low frequency component. A new model 

(explained in section 4.5) relating EMG amplitude to impedance was devised as an 

extension of the change in torque to change in angle relationship (explained in section 

3.5). This new approach of estimating impedance using EMG was simulated to find out 

what duration data need be collected and to understand the effect of noise (in EMG 

amplitude estimates) on estimation of impedance parameters. 
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The second order linear equation relating angular position to the change in torque 

produced about the joint is given by: 

•••
∆+∆+∆=∆ θθθ IBKT  

Equation 4-1 

where 
K is the elastic parameter, 

B is the viscous parameter, 

I is the inertial parameter, 

θ∆  is the change in angular displacement of the joint and 

T∆  is the change in torque produced about the joint. 

4.1 Parameters and Basic Procedures 

4.1.1 Sampling Rate and Duration 
 
A sampling frequency of 256 Hz was used and the simulated recording time was 

30 seconds per trial. 

 

4.1.2 Stimulus 
The angular deviation θ∆  was the stimulus for our system. The angular deviation 

signal was simulated using a pseudo-random binary sequence (PRBS) generator (varying 

between 1 radian and -1 radian) followed by a low-pass Butterworth filter with a gain of 

1 in the pass band and a cut-off frequency of 3 Hz. The peak-to-peak displacement 

amplitude was clipped to 0.05 radians (2.86 degrees). Earlier experiments by Kearney 

and Hunter [4, fig 1] indicate perturbations of 0.05 radians as sufficient for producing 
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torque variations of about 12 N-m.  

 

4.1.3 Theta Quantization  
Quantization noise in θ  arises due to the fact that we use an encoder to encode the 

angular deviations in the experimental apparatus. The encoder uses 48,000 counts per 360 

degrees. The generated θ  in our simulation model is therefore quantized to mimic the 

encoder. There could additionally be some random noise in the form of measured noise 

(in the encoder) which is not greater than one count in the encoder. The effect of this 

random noise is very minimal due to the accuracy of the encoder. Therefore only the 

quantization error was considered. 

4.1.4 Derivatives 
 

 A central differences followed by a low-pass filter scheme was used to take the 

first and second derivatives of θ∆ . 

[ ] [ ] [ ]
t

nxnx
ny

∆
−−+=

*2
11

 

Equation 4-2 

        
where  ][nx  is the input, 
              ][ny  is the derivative and 
               t∆  is the sampling time. 
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Figure 4-1 Basic differentiator estimate  

 
 
The derivatives were followed by low-pass filters to filter away the noise due to the first 

stage. The low-pass FIR filter, the cut-off frequency and the number of taps to be used 

was determined by simulation for the first and second derivatives (described below). 

4.1.5 Parameter Estimation 
 

Impedance parameter estimation consists of estimating K, B and I (in Equation 4-1) 

given T∆  and θ∆  using the above model equation. T∆  and θ∆  are the measured values. 

The first and second derivatives, θ�  and θ��  are calculated from θ . BK ˆ,ˆ and Î are then 

found using the method of linear least squares. For the simulation, we start with known 

values of K, B, I (using [13]) and θ . BK ˆ,ˆ and Î  are then calculated using T∆  and θ∆ . 

The estimated and known values are compared.   

The model equation in Equation 4-1 suggests that, given the torque deviations ( T∆ ) 

and measured angular deviations ( θ∆ ), we can numerically evaluate  θ�∆  and θ��∆ . 

Therefore, the unknown quantities are then K, B and I. The general form of this kind of 

model is  



 35 

�
=

=
M

k
kK xXaxy

1

)()(  

Equation 4-3 

where )(),...(),( 21 xXxXxX M  are arbitrary functions of x called basis functions [12]. 

The basis functions can be non-linear by themselves but the model’s dependence on the 

system parameters ka  is linear. In our model, θθθ ��� === )(,)(,)( 321 xXxXxX  and 

IaandBaKa === 321 , . 

For our model, we define a merit function as  
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Equation 4-4 

The linear least squares problem is to minimize 2χ and to pick the ka values that achieve 

the least 2χ . Let A be a matrix having M columns each representing the M basis vectors 

( θθθ ���,,  for our case) and N rows representing the function evaluated (or measured) at N 

data points. Therefore, we have )( ijij xXA = . The matrix A is the design matrix of the 

fitting problem. Also, we define a vector b of length N as b = [ ]T
Nyyy ,...., 21  and vector a 

whose components are the parameters to be determined. T
Maaa ],...,,[ 21 . For our case,  

][ θθθ ���=A  θθθ ���  are column vectors of length N, Tb ∆=  the measured torque of 

length N and a= [K B I]. 

The minimum of Equation 4-4 occurs when the derivative of 2χ  with respect to all M ka  

parameters goes to zero. To solve the linear least squares problem, the normal equations 

in matrix form are [12]: 
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bAaAA TT =• )(  

 

4.2 Simulation for Derivative Filters 

As explained in 4.1.3, the encoder that is used for recording the angular deviations 

introduces high frequency quantization errors. High frequency components exist at the 

output of the quantizer, since the quantization process inherently introduces steps (high 

frequency content) and also due to truncation errors in the encoder. Our model equation 

(Equation 4-1) requires that we take first and second derivatives of the angular deviations. 

An ideal differentiator has a frequency response magnitude of |H(ω )| = ω  which is a 

linear function of frequency. The presence of high-frequency noise in the signal would 

result in very noisy derivatives, since the ideal differentiator would provide a higher gain 

to the high frequency noise as opposed to the low frequency signal. This operation of the 

differentiator could result in noise being the major component of the derivative estimate. 

Therefore, we find the necessity to design and implement low-pass filters to remove this 

noise to obtain better derivative estimates. The objective of the present simulation was to 

examine various filters to reduce the effect of noise at the output of a differentiator and 

achieve better derivative estimates in the process.  

The numerical central differences (Equation 4-2) approach is clearly a non-causal 

operation since the output depends on future inputs. Hence this approach can be used for 

applications where the future inputs are available, as they are in our case. Figure 4-2 

shows a plot of the magnitude response of the ideal differentiator and the central 

differences system (approach used). We observe that the response of the central 

differences approach is very close to the ideal differentiator until around 6/π  radians (on 
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a relative frequency axis) and then falls off from the ideal response. If our discrete time 

signal is sampled at a sufficient rate (much higher than the Nyquist rate), noise until 

around 6/π  radians would be amplified (for example, if the signal is present until  12/π  

radians and the rest is noise).  

Figure 4-3 shows the flow of the simulations performed. A signal (resembling an 

ideal angular position signal) is generated, which is then quantized to simulate the 

encoder. Numerical first derivatives (or second-derivatives as the case may be) of the un-

quantized signal and the quantized signal (actual derivative) are taken. The numerical 

derivative of the un-quantized signal is treated as the “true” derivative. MATLAB uses 

double precision floating point and therefore the central differences of the double 

precision floating point is used as the true derivative. The quantized signal, after the 

central differences, is passed through various low-pass filters (estimated derivative) and 

then compared with the “true” derivatives. The filter providing the lowest RMS error 

(explained in section 4.3) will be used for the derivative filter. 

 

Figure 4-2 Magnitude response of ideal differentiator v/s that of numerical central differences 
approach. 
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Figure 4-3 Basic block diagram of the simulation for derivative filters 

4.2.1 Low Pass Filter 
A Hamming window-based, finite impulse response (FIR) low-pass technique 

was used to design the low-pass (LP) filter [17]. However, the order and the cut-off 

frequency of the filter were varied to investigate the performance of the derivative 

estimate. Zero-phase filtering (Matlab’s function filtfilt [18]) was performed to eliminate 

phase distortions within the low-pass filter. The start-up transients of the FIR filter were 

removed before making the error evaluation. 
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4.3 Simulations and Results for Derivative filters 
 

The root-mean-square (RMS) difference was taken between the “true” derivative 

and the estimated derivative (signal after quantization and low pass filtering).  

N

xx
errorRMS estimateactual� −

=
2)(

        N being the number of elements. 

 
 

Figure 4-4 shows a plot of RMS error obtained in estimating the derivatives using 

the central differences followed by a low pass filter. The cut-off frequency has been 

varied from 4.26 Hz to 84.26Hz in steps of 10 Hz., and the number of taps of the low-

pass filter have been varied from 10 to 300 in steps of 20. Each curve in the plot 

represents the filter at a particular cut-off frequency. The RMS error is quite similar for 

cut-off frequencies of 64 Hz and higher. Also, there is no appreciable change in the RMS 

error with increase in the number of taps at these higher cut-off frequencies. However, 

the best low pass filter to be used will be the one with the least RMS error on this plot 

(Figure 4-4). The RMS error is least with a filter of length 10 and a cut off frequency of 

84.2667 Hz. 
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Figure 4-4 RMS error obtained for the first derivative estimates, each curve represents different cut-
off frequencies. 

Figure 4-5 shows a plot of RMS error values when low pass FIR filters of various cut-

offs are used, while estimating the second derivatives. The cut-off frequency has been 

varied from 4.26 Hz to 84.26Hz in steps of 10 Hz., and the number of taps of the low-

pass filter have been varied from 10 to 300 in steps of 20. The RMS error is quite similar 

for cut-off frequencies of 64.26 Hz and higher. Also, there is no appreciable change in the 

RMS error with increase in the number of taps at cut-off frequencies of 64, 74 and 84 Hz. 

However, the RMS error is least with a filter of cutoff 84.26Hz and 10 taps. 
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Figure 4-5 RMS error obtained for the second derivative estimate, each curve represents different 
cut-off frequencies. 

The above simulations have provided a means to determine the type of filter to be 

used to remove the high frequency component (present due to the encoder) in the angle 

data. FIR filters with various taps and cut-off frequencies were used to determine the best 

filter to use. For the first derivative, an FIR filter of length 10 and cut-off frequency of 

84.266 Hz is the optimal. The same filter of length 10 and cut-off of 84.26Hz is optimal 

for a second derivative.  
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4.4 Estimation of T∆ and θ∆  for Varying Operating Point 

Contractions 

Under the conditions of slowly varying background torque, the measured torque has 

a low frequency artifact component associated with it. This low frequency component 

arises due to the fact that the subject is expected to maintain a particular background 

torque level during a trial. In an attempt to maintain this background torque, the subject 

drifts about from the expected background force, and this drift manifests itself as a low 

frequency component. This low frequency component is not related to the perturbations 

themselves. For system identification, we need the T∆  signal and the position signal θ∆ . 

The measured torque is modeled as the background torque plus the T∆ : 

TtorqueBackgroundTorqueMeasured ∆+=  

Equation 4-5 

Further, the background torque that the subject actually produces about the joint is 

different from the background torque that he/she is requested to produce. The background 

torque that the subject actually produces might be a slowly varying curve when he/she is 

expected to produce a straight line. This background torque has to be removed from the 

measured torque to get the T∆ . The T∆  is used for system identification as per our 

model equation in Equation 4-1, repeated here. 

•••
∆+∆+∆=∆ θθθ IBKT . 

There are a couple of approaches that were investigated for removing the 

background torque. Considering the background torque as a slowly varying component in 

comparison with T∆ , we used high-pass filters to remove the background torque. The 

high-pass filters were FIR and IIR. The FIR filters themselves were designed using a 
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window-based approach and least squares. Butterworth IIR filters were used for these 

simulations.. The slowly varying component was also removed by subtracting out the 

best fit polynomial from the total torque. For the purposes of simulation, we used values 

of K = 95 N-m/rad, B=2.9 N-m-s/rad and I=0.125N-m-s2/rad corresponding to a torque 

bias of 40N-m for a time duration of 30 seconds [13].The methods were first applied to a 

constant operating point condition (constant torque bias) followed by a varying operating 

point (torque varying as a ramp).  The ramp torque varied from 0 N-m to 30 N-m in a 30 

second time period. 

4.4.1 Window-Based FIR Filters 
 

To find out the effects of high-pass filters on T∆ , we first passed the simulated T∆  

signals (i.e. the torque signal with no background torque) through a high-pass filter and 

measured the amount of distortion caused to the required signal ( T∆ ). Various FIR filters 

were used. One of the common FIR filter algorithms is the window based approach. The 

errors in estimating the impedance parameters K, B and I were found in each case when 

T∆  was passed through various high pass filters of varying cut-off frequencies and taps. 

The next task was to evaluate the effects of high pass filters on the total torque. The 

total torque was passed through various high pass filters in order to remove the slowly 

varying component of bias torque. The stiffness, viscosity and inertia were estimated 

after the total torque was passed through the filters. The errors in the actual parameters 

and their estimates were calculated for each filter operation. The difference in the actual 

impedance parameters and the estimated parameters was calculated as the error and taken 

as a percentage of the actual parameter.  
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The following plots show the percentage errors in estimation for each filter as a 

function of the high-pass cut-off frequency. Figure 4-6 shows a plot of the errors for the 

window based FIR filter approach of filter order 200 and varying cut-off frequencies. The 

errors for K and I are high for even low cut-off frequencies of up to 1Hz. Figure 4-6 

shows that there is an error of about 50% in estimating the stiffness using the model when 

the total torque is passed through a FIR filter of order 200 and cut-off 1 Hz. The order of 

the filter was increased to 400 (Figure 4-7), 600 (Figure 4-8) and then 800 (Figure 4-9) 

for the same window-based FIR filter approach. The errors in estimating the parameters 

do not reduce considerably when the order of the filters is increased. With a filter order of 

400 (Figure 4-7), the error in estimating K is 37% for a FIR filter with high pass cut off 

of 1 Hz which is still high. Therefore the window based FIR high pass filter is not an 

effective way to deal with the bias torque problem. Figure 4-9 shows that the error 

reduces moderately for higher order filters (of order 800).  However, filters of order 800 

have a start-up-transient of 800 samples which corresponds to about 3 seconds of data at 

a sampling rate of 256 Hz. The large amount of transients would mean losing out on too 

much data which could otherwise be used for system identification. 
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Figure 4-6 Estimation errors in the K, B and I when the simulated total torque is passed through a 
window-based FIR high pass filter of length 200 at various cut off frequencies. 

 

 

Figure 4-7 Estimation errors in the K, B and I when the simulated total torque is passed through a 
window-based fir high pass filter of length 400 at various cut off frequencies. 

 

Frequency in Hz 

Frequency in Hz 
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Figure 4-8 Estimation errors in the K, B and I when the simulated total torque is passed through a 
window-basedFIRhigh pass filter of length 600 at various cut off frequencies. 

 

 

Figure 4-9 Estimation errors in the K, B and I when the simulated total torque is passed through a 
window-basedFIRhigh pass filter of length 800 at various cut off frequencies. 

 

Frequency in Hz 

Frequency in Hz 
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4.4.2 Linear Phase FIR- Least Squares Approach 
 

Another approach tried was to use least squares linear phase FIR filter design. 

These linear phase FIR filters could provide sharper cut-offs at lower orders. In this way 

they could perform better than the window-based approach of FIR filters. 

 The total measured torque was passed through a linear phase FIR filter before 

estimating the parameters. The filters were of length 200, 400, 600 and 800 taps. Figure 

4-10, Figure 4-11, Figure 4-12 and Figure 4-13 display plots of the percentage errors in K, 

B and I. We can observe from the plots that the error in estimating K is high while using 

any of these FIR filters, albeit the results are better than those when using the window 

design technique. As before, the increase in performance at higher orders comes at the 

expense of longer start-up transients (i.e. higher order filters). Therefore, a least squares 

FIR filter approach would not be appropriate to remove the torque bias.  
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Figure 4-10 Estimation errors in the K, B and I when the simulated total torque is passed through a 
least squares FIR high pass filter of length 200 at various cut off frequencies. 

 
Figure 4-11 Estimation errors in the K, B and I when the simulated total torque is passed through a 
least squares high pass filter of length 400 at various cut off frequencies. 

 

Frequency in Hz 

Frequency in Hz 
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Figure 4-12 Estimation errors in the K, B and I when the simulated total torque is passed through a 
least squares FIR high pass filter of length 600 at various cut off frequencies. 

 

 
Figure 4-13 Estimation errors in the K, B and I when the simulated total torque is passed through a 
least squares high pass filter of length 800 at various cut off frequencies. 

Frequency in Hz 

Frequency in Hz 
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4.4.3 Butterworth Filters  
 

Butterworth filters are infinite impulse response (IIR) filters which could also be 

used for removing the torque bias from the total torque measurement so that we can 

extract the T∆  signal. Butterworth filters could have shorter start-up transients which 

was a problem in the previous approach and could provide reduced error (previous 

approaches had errors of 20% in estimating K, using a low-pass cut-off frequency of 1 

Hz).  

Butterworth filters of order 2, 3 and 4 were investigated. Figure 4-14, Figure 4-15 

and Figure 4-16 show us the results of the errors in calculating the impedance parameters 

when total torque is passed through the Butterworth filters. The error in evaluating the 

elastic parameter K did not improve considerably over the previous approaches. A 25% 

error is observed in estimating K with a cut-off as low as 1 Hz. It is clear from the errors 

that Butterworth filters are not an adequate approach to this problem of slowly varying 

torque. 
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Figure 4-14 Estimation errors in the K, B and I when the simulated total torque is passed through a 
butter-worth high pass filter of order 2 at various cut off frequencies. 

 

Figure 4-15 Estimation errors in the K, B and I when the simulated total torque is passed through a 
butter-worth high pass filter of order 3 at various cut off frequencies. 

 

Frequency in Hz 

Frequency in Hz 
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Figure 4-16 Estimation errors in the K, B and I when the simulated total torque is passed through a 
butter-worth high pass filter of order 4 at various cut off frequencies. 

Frequency in Hz 
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4.4.4 Polynomial Subtraction  
 

Removing the best fit line or the best fit polynomial from the measured torque is 

another approach to remove the torque bias. The best-fit polynomial would ideally 

correspond to the slowly varying component in the measured total torque signal. 

Therefore, we fit a polynomial to the measured torque and then subtracted that 

polynomial from the measured torque. 

Figure 4-17 shows the results of these simulations as a function of polynomial 

degree, and it is clear that the errors in estimation are considerably reduced (compared to 

the linear filtering techniques) when this approach is chosen. The error in estimating K 

has dropped to just about 2% even when a third degree polynomial is subtracted from the 

measured torque. There are no start-up transients when we choose this approach over the 

filtering approach. Therefore, no data would be lost with the start-up transients, when we 

use this approach. 
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Figure 4-17 Estimation errors in the K, B and I when a best fit polynomial is subtracted from the 
simulated total torque before estimating the impedance parameters. 

 

 The same methods were now tried on a simulated torque that has a torque bias 

varying as a ramp instead of a constant torque. Figure 4-18 and Figure 4-19 give us the 

results when we use a window based FIR filter. The errors in estimating K are quite high. 

When the least squares FIR filter design approach was used, shown in Figure 4-20 and 

Figure 4-21, results are also unsatisfactory. Subtracting out the best fit polynomial, 

shown in Figure 4-22, reduces the errors considerably to acceptable levels. The plots 

show that we have tried subtracting out the polynomials of degree up to 14. The best fit 

polynomial to be subtracted can only be decided after evaluating experimental data sets, 

since the nature of the experimental torque bias drift is not well understood. The 

simulations have shown that this method (of polynomial subtraction) works better than 

high-pass filtering. 

Frequency in Hz 
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Figure 4-18 Estimation errors in the K, B and I when the simulated total torque is passed through a 
window based FIR high pass filter of length 400 at various cut off frequencies. 

 

 
Figure 4-19 Estimation errors in the K, B and I when the simulated total torque is passed through a 
window based FIR high pass filter of length 800 at various cut off frequencies. 

Frequency in Hz 

Frequency in Hz 
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Figure 4-20 Estimation errors in the K, B and I when the simulated total torque is passed through a 
least squares FIR high pass filter of length 400 at various cut off frequencies. 

 
Figure 4-21 Estimation errors in the K, B and I when the simulated total torque is passed through a 
least squares based FIR high pass filter of length 800 at various cut off frequencies. 

Frequency in Hz 

Frequency in Hz 
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Figure 4-22 Estimation errors in the K, B and I when a polynomial is subtracted from the simulated 
total torque before estimating the impedance parameters. 

4.5 Estimation Using EMG Amplitude 
 

Our intention with this project was to estimate the impedance parameters (K, B, I) 

using EMG. Simulations were performed to find out what duration data need be collected 

and the effect of noise (in EMG amplitude estimates) on estimation of the impedance 

parameters. 

4.5.1 Model Equation 
For slowly-force varying perturbation trials, the experimental state is a function of 

the EMG amplitude estimates ( FE ss ˆ,ˆ ). The second order linear equation relating EMG 

amplitude and change in angular displacement to the change in torque produced about the 

joint is modeled as: 

Frequency in Hz 
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( ) ( ) θθθ ��� ∆⋅+∆⋅+∆⋅=∆ IssBssKT FEFE ˆ,ˆˆ,ˆ  

Equation 4-6 

where 
Eŝ  is the EMG amplitude estimate of the extensor muscles, 

Fŝ  is the EMG amplitude estimate of the flexor muscles, 

θ∆  is the change in angular displacement of the joint, 

T∆  is the change in torque produced about the joint. 

)ˆ,ˆ( FE ssK  is the elastic stiffness function, 

)ˆ,ˆ( FE ssB  is the viscosity function and 

I is the constant inertial parameter. 

We select 

FfEeFE skskssK ˆˆ),( +=  and 

Equation 4-7 

 FfEeFE sbsbssB ˆˆ)ˆ,ˆ( +=  

Equation 4-8 

 

Making these selections (as in Equation 4-7 and Equation 4-8) is advantageous for 

two reasons. First, the elastic (K) and viscous (B) functions are now linear functions of 

EMG amplitude estimates ( FE ss ˆ,ˆ ) and can be estimated with the use of linear least 

squares. Second, we know that EMG amplitudes increase with increase in background 

joint torque [3] and so do the elastic and viscous parameters [13]. Thus we can have a 

model where K and B increase with EMG amplitudes. Our conditions are a quasi-

constant operating point and the variations in K and B should be consistent with those 

reported in the literature. A polynomial increase in K and B is reasonable according to 
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data collected by Kearney and Hunter [7]. For the work described in this project, we 

assume a first degree polynomial relation. Later studies can involve higher degree 

polynomials. We also know that K and B vanish with zero torque bias [13] and therefore 

we omit the bias portion of the polynomial. The elastic function K and viscous function B 

are varying quantities (vary with change in activation level of the muscle), while I is a 

constant quantity since the inertial term does not change appreciably for different 

activation levels of the muscle. The terms fefe bbkk ,,, and I are the fit parameters for 

the linear least squares technique. 

 The purpose of these simulations was to investigate the amount of data that need 

be collected in order to be able to estimate impedance accurately. Although previous 

experiments have been performed [7] where impedance parameters have been estimated 

using Equation 4-1, there is a need to perform a different set of simulations for this new 

model. Here, the impedance parameters are estimated from EMG amplitude estimates 

which are by themselves noisy. The position measurements, θ ,  are taken from a 

quantizer, due to which the first and second derivatives, θ�  and θ�� ,  have high frequency 

noise associated with them [see section 4.2] which are multiplied by the EMG inputs 

which leads to the input noise being accumulated. There are more fit parameters (five) 

here as opposed to Equation 4-1 (three). 

4.5.2 Simulation Method 
The simulated relation between background torque and K (or B) and the 

associated torque bias was taken from [13]. The first step was to generate (simulate) all 

the measurements acquired during an experiment as in Figure 4-23 and thereafter to 
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estimate the impedance parameters using these measurements as in Figure 4-24. The 

estimated parameters were then compared against the simulated values. 

Generation of the signals consists of the following steps, shown in Figure 4-23: 

1. Generating the angular measurements ( θ∆ ) as a band-limited Gaussian random 

signal (section 4.1.2). 

2. Ideal EMG amplitudes for the flexor and extensor muscles are selected as a 

profile that varies linearly from 50% MVC flexion to 50% MVC extension. 

3. bfbekfke ,,,  and I are selected so that we get realistic values of )ˆ,ˆ( fe ssK  and 

)ˆ,ˆ( fe ssB  as in Rymer’s work [13] (subject S and Z selected from Rymer’s work). 

4.  Random Gaussian noise (the standard deviation of the noise varied as described 

below) was added to the EMG amplitudes, the standard deviation of which 

increases with the EMG amplitude estimate itself [14,15]. Noisy EMG amplitudes 

are used instead of raw EMG itself. 

5. T∆ (change in torque) was generated using Equation 4-6 and the previously 

simulated information. 

6. Torque bias was generated as a ramp for the corresponding values for K(t) and B(t) 

from step 3 using [13]. 

7. The torque bias was added to T∆  to obtain the total torque measurement. 

The above set of steps returned the total torque, position measurements and the noisy 

EMG amplitudes. These measurements were used by the parameter estimation 

module. Noisy EMG amplitudes are used instead of raw EMG itself. 



 61 

 

Figure 4-23 Generation of measurement signals for simulation 
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The parameter estimation module carried out the following steps, as depicted in 

Figure 4-24: 

1. Remove the torque bias from the total-torque measurements to get T∆ , using 

the first-degree polynomial subtraction technique (section 4.4.4) . 

2. Subtract the mean bias from the position measurements (to get θ∆ ). 

3. Use T∆ , θ∆  and the noisy EMG amplitude estimates to estimate 

bfbekfke ,,, and I using linear least squares. 

 

IBBKK fefe
ˆ,ˆ,ˆ,ˆ,ˆ

 
Figure 4-24  Parameter Estimation module 
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4.5.3 Simulation Waveforms and Results 
The generated angular deviations ( θ∆ ), as seen in Figure 4-25, were the input to 

the system and were generated as described in section 4.1.2. 

 

 
Figure 4-25 Angular deviations at a sampling rate of 256 Hz.  

The values for the background bias torque were taken from Rymer’s work [13] and 

varied as a ramp from 50% MVC flexion to 50% MVC extension (Figure 4-26) 

 
Figure 4-26 Background torque bias (in N-m) varying as a ramp, sampling rate of 256 Hz used. 
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Figure 4-27 and Figure 4-28 show the noisy EMG extensor amplitude and the EMG 

flexor amplitude respectively. The EMG amplitude estimates shown were assigned a 

signal to noise ratio (SNR) of 5. The standard deviation of the EMG amplitudes increase 

with the increase in the mean EMG amplitude [14].  

)(
)(

t
t

SNRemg σ
µ=  

Equation 4-9 

where )(tµ is the time varying mean of the EMG amplitude and )(tσ is the standard 

deviation. The noise is white Gaussian multiplied by )(tσ . On the y-axis, 1 represents 

MVE (maximum voluntary EMG). 

 
Figure 4-27 Extensor EMG amplitude (noise varying as a function of the amplitude) varying from 
50% MVC flexion to 50%MVC extension, sampling rate of 256 Hz used. 
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Figure 4-28 Flexor EMG amplitude (noise varying as a function of the amplitude) varying from 50% 
MVC flexion to 50%MVC extension, sampling rate of 256 Hz. 

 
 
Figure 4-29 shows the total torque generated when we use )ˆ,ˆ( FE ssK and  )ˆ,ˆ( FE ssB  (as 

in Figure 4-30), I = 0.113, θ∆  (as in Figure 4-25), EMG extension and flexion (as in 

Figure 4-27 and Figure 4-28) in Equation 4-6. 
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Figure 4-29 Generated total torque (in N-m). Data collected for 10 seconds at the rate of 256 Hz.   
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Figure 4-30 Simulated values of K(t) and B(t) with bias torque varying from 50% MVC flexion to 
50% extension 
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The generated signals were then used to estimate the impedance parameters. The 

simulation was carried out for lengths of data sets varying from 10 seconds to 40 seconds 

and for varying EMG SNR’s (5, 15 and 25). The background torque and EMG amplitude 

were varied from 50% flexion to 50% extension irrespective of the length of the data set 

chosen. A data set shorter in length had values ramping up faster than that of a longer 

data set. After estimation, the error was calculated between the actual impedance 

parameters and the estimated values. Each simulation condition was repeated 50 times, 

using distinct random values each time. Figure 4-31 shows a plot of the mean plus-

and-minus standard deviation of the percentage errors in estimating bfandbekfke ,, , 

where 

100*%
Kactual

KestimateKactual
estimationinError

−=  

Equation 4-10 

. 

For this calculation, Kactual is the simulated value of the elastic parameter K and 

Kestimate is the estimated K after linear least squares. Errors are plotted for various 

lengths of data sets starting from 10 seconds to 40 seconds. The various plots represent 

different SNR for EMG used for estimation (solid line with square markers represents 

EMG amplitudes with an SNR of 5, dotted line with triangle markers an SNR of 15 and 

solid line with circular markers an SNR of 25). Figure 4-31and Figure 4-32 show that the 

error is high for a data set of 10 seconds and then drops considerably for longer data sets. 

We can also observe that the error reduces with better EMG SNR. The performance (low 

errors) for bfbekfke ,,,  and I are quite within acceptable limits for data sets of 20 

seconds or more. From the plots, we can say that the system identification requires a 
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minimum length of data of 20 seconds for good performance and that a data set of 10 

seconds is not sufficient.  The elastic parameter ke is most susceptible to short data 

durations. 
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Figure 4-31 Mean ±  standard deviation percentage errors in estimating bfandbekfke ,, . The 
solid line with square markers represents EMG amplitudes with SNR of 5, dotted line with triangle 
markers SNR of 15 and solid line with circular markers being SNR of 25. 
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Figure 4-32 Mean ±  standard deviation percentage errors in estimating I, the solid line with square 
markers represents EMG amplitudes with SNR of 5, dotted line with triangle markers SNR of 15 and 
solid line with circular markers being SNR of 25. 

Figure 4-33 displays a plot of mean ±  standard deviation error in root mean square 

(RMS) for  )ˆ,ˆ( FE ssK and  )ˆ,ˆ( FE ssB . 

N

KestimateKactual
KinerrorRMS i

ii�
∀

−
=

2)(
, 

Equation 4-11 

 where Kactual is the simulated value of )ˆ,ˆ( FE ssK  as  in Figure 4-30,  and Kestimate is 

its estimated value. N is the total number of sample times simulated. The plot shows that 

the mean RMS error is within 1% for both K and B for when the SNR of the EMG is 15 

and above. 
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Figure 4-33 Mean ±  standard deviation of RMS error in estimating K(t) and B(t) the solid line with 
square markers represent EMG amplitudes with SNR of 5, dotted line with triangle markers SNR of 
15 and solid line with circular markers being SNR of 25. 

 
A second set of simulations were performed with torque-varying background 

torque. These simulations were performed using parameter values taken from another 

subject (subject Z) from Rymer’s work [13] (with different impedance and torque bias 

values). These values would help us calculate the error for other trials (or subjects), and 

to validate the simulations. Figure 4-34 shows a plot of the generated total torque (with 

bias torque varying from -40 N-m to 40 N-m) by another subject and the corresponding 

impedance parameter plots are shown in Figure 4-35. Figure 4-36, Figure 4-37 and 

Figure 4-38 show plots of the errors for the impedance parameters. The mean errors for 

the parameters are well under 2% for data sets of 20 seconds or longer at a sampling rate 

of 256 Hz for and an EMG SNR of 15. 
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Figure 4-34 Generated total torque (for simulated subject 2 ) (in N-m). Data collected for 10 seconds 
at a sampling rate of 256 Hz.   
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Figure 4-35 Simulated values of K(t) and B(t) (for subject 2) with bias torque varying from 50% 
MVC flexion to 50% extension 
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Figure 4-36 Percentage error in estimating Ke, Kf, Be, Bf the solid line with square markers 
represent EMG amplitudes with SNR of 5, dotted line with triangle markers SNR of 15 and solid line 
with circular markers being SNR of 25 (Subject 2 of Rymer’s work [13]). 
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Figure 4-37 Percentage error in estimating I, the solid line with square markers represent EMG 
amplitudes with SNR of 5, dotted line with triangle markers SNR of 15 and solid line with circular 
markers being SNR of 25 (Subject 2 of Rymer’s work [13]). 
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Figure 4-38 RMS error in estimating K(t) and B(t), the solid line with square markers represent 
EMG amplitudes with SNR of 5, dotted line with triangle markers SNR of 15 and solid line with 
circular markers being SNR of 25 (Subject 2 of Rymer’s work [13]). 

 
These simulations helped us find out how much data would need to be collected to 

achieve low error while estimating the impedance parameters (K, B and I). Using the 

simulations, we could infer that acquiring 30 seconds of data would be adequate for 

system identification with the assumptions inherent in the model. We can see that the 

errors in Kf and Bf increase by 0.5 % from 28 to 34 seconds. We would have expected 

the errors to reduce monotonically as the length of data set increased. The exact reason 

for the increase in error could not be analyzed at this time. Since the total amount of error 

was low, at both 28 and 34 seconds, we can be assured that we would have a good system 

identification process in place. 
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5 EXPERIMENTAL METHODS and RESULTS 
 

5.1 Experimental Apparatus and Protocol 
(Section 5.1 is included as a modified version of [20] with permission) 
 

This thesis will include examination and analysis of preliminary data collected from 

one human subject. This analysis will help reinforce our understanding obtained from the 

simulations. The examination of human data is required to verify the signal processing 

techniques used for EMG amplitude estimation, torque and angle measurements. This 

analysis would provide us with information on the accuracy for estimating mechanical 

impedance on real world data, using our processing techniques. 

 One healthy subject (with no known neuro-musculo-skeletal deficits of the right 

shoulder, arm or hand) participated in one experimental session. Eight EMG electrodes 

were applied to their right arm.  The skin above the investigated (biceps and triceps) 

muscles was cleaned with an alcohol wipe.  An array of four EMG electrode-amplifiers 

was secured over each of the biceps and triceps muscles, midway between the elbow and 

the midpoint of the upper arm, centered on the muscle midline ([11], Fig. 3). The two 

contacts of each electrode-amplifier were oriented along the muscle’s long axis, the 

presumed direction of action potential conduction.  Each electrode-amplifier consisted of 

a pair of 8-mm diameter, stainless steel, hemispherical contacts separated by 10 mm 

(edge to edge).  The distance between adjacent electrode-amplifiers was approximately 

1.5 cm.  A single ground reference electrode was gelled and secured over the acromion 

process (along the shoulder).  Each electrode-amplifier had a gain of 20 and a common 

mode rejection ratio > 90 dB at 60 Hz.  Each electrode-amplifier signal was eighth-order 
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(15 Hz) high-pass filtered, amplified (selectable gain), electrically isolated and fourth-

order (1800 Hz) low-pass filtered. 

The subject was seated and secured into the experimental apparatus (Figure 5-1).  

Their right upper arm was positioned in a plane parallel to the floor and forearm in the 

same plane but at 90o to the upper arm (shoulder abducted 90o from the anatomic 

position). The forearm was oriented in the parasagittal plane, with elbow flexed 90o.  The 

subject’s right wrist was rigidly attached to the manipulandum with a cuff at the styloid 

process (Figure 5-2). The subject was instructed to relax all muscles not directly involved 

in the task, and to maintain a consistent posture and contraction technique throughout all 

trials. The subjects was first encouraged to perform MVCs (separately for flexion and 

extension) by slowly increasing torque (over 2–3 s) until MVC was reached, and to 

maintain MVC for a 3 second recording. The average torque from the average of two 

such trials was used as the MVC. Similarly, the average EMG amplitude from the 

average of two such trials was used as the maximum voluntary EMG (MVE).  These 

simple MVC and MVE measures were sufficient to evaluate torque over a modest range 

for each subject. The subject was provided a three minute rest between these, and 

subsequent contractions, so as to prevent neuromuscular fatigue.  Subjects were released 

from the cast restraint between trials to ensure normal circulation in the periphery. 
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Figure 5-1 Experimatal set up of the robotic arm and the cuff where the subjects places his/her arm 
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Figure 5-2 Subject seated in the experimental apparatus with his right arm placed in the 
manipulandum 

The subject next produced a series of contractions necessary for calibrating EMG-

amplitude estimation algorithms and EMG-torque modeling. In this section of the 

experiment, the actuator was locked in place at 90o elbow angle (fixed position, so that 

only the torque measurement is relevant) and the feedback PC displayed only a target 

torque and the achieved torque. First, EMG was recorded for 5 seconds while subjects 

completely relaxed their muscles (0% MVC; with the subject’s arm removed from the 

manipulandum).  Second, two 50% MVC constant-force contractions were recorded for 

each of attempted flexion and extension.  Subjects were instructed to begin at rest, and 

then gradually (over a duration of 2–3 s) increase effort until the target torque level is 

maintained.  At this time, a 5 s recording was made.  These first two contraction sets are 

sufficient for calibration of the advanced EMG amplitude estimation algorithms [11].  
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Third, the target torque level was ramped from 50% MVC extension to 50% MVC 

flexion in 30 seconds.  Recordings were made while subjects completed two of these 

slow ramp contractions.  Fourth, the unperturbed torque ramp contractions were repeated, 

but this time the ramp was extend from 50% MVC flexion to 50% MVC extension.  

Contraction sets three and four provided the data necessary for EMG-torque modeling 

during quasi-static conditions [3].  Fifth, the target torque level was modulated in a 

random fashion between 50% MVC flexion and 50% MVC extension [11].  The random 

target movement obeyed a uniform probability density function and was limited to a 

statistical bandwidth of 0.5 Hz  [11]. The subject practiced target tracking, and once 

capable of adequately tracking, recorded for four 30 second trials. Contraction set five 

provided the data necessary for EMG-torque modeling during dynamic, constant-angle 

conditions [16]. 

Impedance measurements were next acquired.  The joystick was set to obtain a 

nominal joint angle of 90º.  Feedback consisted only of the target position and achieved 

position. An initial, constant target position was provided and the subject was asked to 

generate torque to match this position. The perturbations commenced.  The subject was 

instructed to maintain the target torque level—on average—without resisting the 

perturbations, and with as little muscle co-contraction as possible.  A 30 s recording was 

then made.  This procedure was repeated until two recordings each had been made at 

target torque levels of 10%, 25% and 40% MVC extension and flexion. These constant-

torque recordings allowed replication of prior impedance measurement trials and formed 

discrete points relating EMG to impedance.  Next, the target torque level was ramped 

from 50% MVC extension to 50% MVC flexion in 30 s, while perturbations were applied.  
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Again the subject was instructed to follow the target position—on average—without 

resisting the perturbations, and with as little muscle co-contraction as possible.  Once the 

subject was able to adequately follow the target, the 30s trial was recorded.  Four such 

trials were recorded during extension to flexion contraction, and four trials during flexion 

to extension contraction.  These slowly force-varying trials were used to develop the 

EMG-impedance models. 

5.2 Analysis of Experimental data 
 

5.2.1 Constant torque trials 
 

We have presented here an analysis of the data collected from one particular 

subject. Data were collected using the procedure in section 5.1. The data were then 

processed using techniques developed from our simulation studies. Signal processing 

techniques were run on the collected data and their results were analyzed. Data from the 

constant torque bias experiments were first processed to verify that the data coincided 

with experiments conducted by previous researchers. Figure 5-3 shows the total torque 

measured for six different experiments. Each experiment was conducted at a particular 

bias torque as mentioned on top of each plot. Figure 5-4 shows a plot of the ∆ Torque 

values after subtracting out the torque bias (mean torque level) from the total torque 

measurements. 
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Figure 5-3 Total torques measured for constant torque bias trials (trial nos. 13-18) with background 
torques as mentioned (13.94N-m, 9.195N-m, 0N-m, -9.23 N-m, -13.9317N-m and -20.9125N-m). 
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Figure 5-4 Delta torques for various constant torque bias trials, after removing the background 
torques from total torque measurements. 
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The plots in Figure 5-5 show the angular deviations recorded for the 

corresponding experiments. For the purpose of analysis, let us consider three (bias 

torques of 13.943 N-m, 0 N-m and -20.9126 N-m) of the six experiments here in detail. 

The ∆ Torque plots (Figure 5-4) for these cases seem to be similar. Since the ∆ Torque 

plots are similar and the bias torque is varying, we would expect the angular deviations to 

be varying.  
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Figure 5-5  Measured angular deviations for constant torque bias trials. 

A transfer function plot is needed to evaluate the data collected. The plots would 

help verify results produced by previous researchers. Figure 5-6 shows a plot of the 

transfer function 
T∆

∆θ
 for trial no.15 (torque bias of 0 N-m). The angular deviations and 

the torque have not been processed, i.e., the low frequency artifacts, shown in Figure 5-5, 

has not been removed. Note that there is a low frequency drift associated with the angular 
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deviation measurements, which have to be removed by estimating the best fit polynomial. 

The torque signal is the input signal from the computer and therefore there is no low 

frequency drift associated with the torque. However, the mean torque has to be subtracted 

out to obtain T∆ . The motor used to perturb the subject, has a bandwidth of only about 15 

Hz. Any information above this frequency would be noise in the torque measurements. 

Figure 5-6 shows the transfer function obtained. The information above 10 Hz is 

corrupted by the limited motor bandwidth and the information below 2-3 Hz is corrupted 

due to the drift in the angular measurements. The remaining spectrum is characteristic of 

a second-order system. The unnecessary portions of the signal have to be removed from 

the measurements. 
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Figure 5-6 Transfer function 
T∆

∆θ
 for trial no.15 (background torque of 0 N-m) without signal 

processing the data   

 
The torque and the angular measurements were next processed and the transfer 

function again plotted. The low frequency drift in the angular deviations was removed by 

subtracting a 14th degree polynomial. Various degree polynomials were tried and visually 

assessed with respect to their fit to the total torque. A higher order polynomial would fit 

to the Delta_T signal itself and not the low frequency content while a low order 

polynomial would not be able to remove the low frequency component. The decision of 

using a 14th degree polynomial was qualitative, after observing the polynomial fit. Figure 

5-7 shows a plot of the angular measurements ( θ ) and the 14th degree polynomial 
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(smooth line running through the plot). This polynomial is subtracted out from the 

angular measurements to get the change in angle ( θ∆ ) as in the bottom plot Figure 5-7. 

The T∆   and θ∆  were then 10 Hz low-pass filtered using a FIR filter because the motor 

was capable of a maximum of 15 Hz perturbations. Data greater than 15 Hz is not useful 

for system identification. Figure 5-6 shows that the transfer function plot starts to rise 

back at a frequency of about 10 Hz. Therefore it was decided to have the low pass cut-off 

at 10 Hz. 
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Figure 5-7 Polynomial subtraction from angular deviations to remove the slowly varying bias. The 
top plot represents the angular deviations data and the best fit polynomial(14th degree)  (solid line) 
running through the plot. Bottom plot represents the angular deviations after subtracting the 
polynomial. 

 The transfer function 
)(
)(

fT
f

∆
∆θ

 is now plotted after performing the above signal 

processing methods. This plot can be observed in Figure 5-8. The smooth line through the 
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plot represents the transfer function obtained using the parametric approach. K, B and I 

were estimated (after filtering of θ∆ and T∆ ) using linear least squares (as explained in 

4.1.5 ) using Equation 4-1. The smooth line represents the line 2

1
IsBsK ++

  

where fpijs **2*= ,  f being the frequency in Hz. 

 

Figure 5-8 Transfer function 
T∆

∆θ
 for trial no.15 (background torque of 0 N-m) after polynomial 

subtraction and low pass filtering (10 Hz) of angular measurements. The smooth line represents the 
second order curve got from the parametric approach after estimating the K, B and I parameters. 

 

The results of the parametric approach and the non-parametric approach match up well 

between the frequencies of 2 -10 Hz. The transfer function plot of the non-parametric 

approach rises after 10 Hz. Note that the above parametric approach has not used EMG 

data for estimating K, B and I. 
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Figure 5-9 EMG activity (in volts) seen in the biceps and triceps for background torque of 13.943 N-
m over a period of 35 seconds..   
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Figure 5-10 EMG activity (in volts) seen in the biceps and triceps for background torque of 9.195 N-
m . 
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Figure 5-11 EMG activity (in volts) seen in the biceps and triceps for background torque of 0 (approx) 
N-m  
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Figure 5-12 EMG activity (in volts) seen in the biceps and triceps for background torque of -9.23 N-
m  
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Figure 5-13 EMG activity (in volts) seen in the biceps and triceps for background torque of -13.93 N-
m  
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Figure 5-14 EMG activity (in volts) seen in the biceps and triceps for background torque of -20.9126 
N-m. 

The EMG activity in the biceps and triceps, for different background torques can 

be seen in Figure 5-9 to Figure 5-14. For each of those plots, recordings from four 

channels were collected for each muscle group (biceps/triceps). We have picked one 

channel per muscle to be representative of the muscle. The estimates of the impedance 

parameters for various trials are shown in Figure 5-15. For the purpose of analysis, trials 

corresponding to background torques of 13.94 N-m (Figure 5-9 for EMG activity), 0 N-m 

(Figure 5-11 shows EMG activity) and -20 N-m ( Figure 5-14 shows EMG activity) will 

be considered in detail. 

The T∆  plots (Figure 5-4) for trials with different torque bias seem to be the 

same, as desired by the experimental protocol. Since T∆  is same and the background 

torque for the trials are varying, the change in angular deviations would be expected to 

vary. Higher background torques would be accompanied with higher values of K and B 
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and a lesser change in angular deviation. The values of K and B would be expected to be 

near zero at a torque bias of 0 N-m and would be expected to be larger for -20 N-m and 

13 N-m. However, this pattern is contrary to what is observed in the plot of Figure 5-15 

where the values of K and B are higher at 0 N-m torque bias than -20 N-m. We can see 

from Figure 5-5 that θ∆ (change in angular deviation) is greater for 0 N-m than -20 N-m. 

The reason for this result can be attributed to the co-contraction at 0 N-m as can be seen 

from the EMG data shown in Figure 5-11. The subject co-contracted their arm resisting 

motion at 0 N-m. The inertial parameter (I) does not change appreciably over the 

experiments as has been seen by previous researchers.  
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Figure 5-15 Estimate of K, B and I v/s the torque bias 
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5.2.2 Ramp Contractions 
 

The next experiment consisted of background torque varying as a ramp. Figure 

5-16 shows the total torque measurement for one of the four different trials and Figure 

5-17 displays the corresponding angular deviations. Figure 5-18 show plots of the EMG 

activity (four channels were used to record each muscle group but we have shown only 

one channel as being representative of the muscle) during the experiment. Figure 5-19 

and Figure 5-20 give the estimates of K and B with respect to time. Parameters 

bfandbekfke ,, were first estimated using EMG amplitudes by linear least squares (as in 

section 4.5). K and B were then calculated using bfandbekfke ,,  (using Equation 4-7 

and Equation 4-8). 

 

0 10 20 30
-20

-10

0

10

20
Delta-torque for trial no. 35

D
el

ta
 to

rq
ue

(N
-m

)

Time(seconds)

D
el

ta
 to

rq
ue

(N
-m

)

 
Figure 5-16 Total torque measurements of an experiment with background torque varying as a ramp. 
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Figure 5-17 Angular measurements (in radians) for trial no.35 . 

 
 

 
Figure 5-18 EMG activity in the biceps (top plot) and triceps (bottom plot) for trial no.35. 
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Figure 5-19 Estimate of elastic parameter K with respect to time. 

0 10 20 30
0

1

2

3

Time in seconds

B
 in

 N
-m

/ra
d

B
 in

 N
-m

/ra
d

 
Figure 5-20 Estimate of elastic parameter B with respect to time.  

The torque bias (Figure 5-16) varies from -10 N-m to 10 N-m in the first 15 seconds and 

then 10 N-m to -10 N-m in the next 15 seconds. The change in torque ( T∆ ) about the 

bias torque is about the same for the length of the experiment. Since the bias torque is 

changing and the T∆  is about the same, the angular deviations would be expected to 

change during the experiment but this is not clear with the data that we have in Figure 

5-17. The EMG activity in Figure 5-18 shows that the biceps are predominant during the 

experiment and there is some amount of co-contraction during the last five seconds of the 

30 second duration.  

The impedance estimate K (from Figure 5-19) shows that there is a slight increase 

in the value of K up to 15 seconds and then reduces from 15 to 28 seconds. Towards the 

end, there is an increase in value of K, and this could be attributed to the muscle co-

contraction seen towards the end of the experiment. The change in value of K over time 
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can be compared with the muscle activity in the biceps since it is not as visible in the 

angular measurements. The activity of the biceps tends to increase until 15 seconds and 

then later reduces. The result of this change is the estimate of K gradually increasing and 

then falling off after 15 seconds, before it rises again due to muscle co-contraction. 

This preliminary examination of data would be of help for future experiments. It 

has been understood that co-contraction during experiments could lead to estimates that 

are not consistent with the literature. The subject needs to be instructed about relaxing 

during zero torque bias conditions. The angular deviations are associated with a low 

frequency component which could be removed by subtracting out a polynomial. A 14th 

degree polynomial worked well for this set of data. The motor is not capable of producing 

perturbations greater than 15 Hz. Therefore, all the data including θ∆ , θ�∆ and θ��∆  are 

low pass filtered at 15 Hz. 

 
 

6 Conclusions and Future work 
 

6.1 Conclusions and Discussion 
 

The objective of this project was to perform simulations prior to conducting a pilot 

experiment with associated data analysis. The simulations helped to provide insight into 

conducting the experiment. Various schemes were attempted to overcome the problem of 

slowly varying drift with the torque measurements. Subtracting out a polynomial was the 

best among them. The angular measurements, in the real data analysis, had a slowly 

varying component. A 14th degree polynomial was subtracted out from the angular 

measurements to remove this component. A 14th degree polynomial worked best since a 



 97 

higher degree polynomial would fit to the data itself rather than the drift, and a lower 

degree polynomial would not be sufficient to remove the drift.  

Simulations also helped us understand the length of data that need be collected for 

proper system identification, for the case of estimating impedance using EMG for this 

second-order model. The noise in EMG amplitudes and the length of data were varied to 

find out the optimal length of data required. Thirty seconds of data for EMG amplitude 

estimates of SNR 15 resulted in impedance estimation errors under 5%.  

Physical data from one subject were collected and the techniques learned from 

simulation were applied on them. The T∆ and θ∆  signals were low pass filtered at 10 Hz 

before obtaining the 2nd order transfer function
T∆

∆θ
. This non-parametric approach was 

compared against the parametric approach (Figure 5-8). Co-contraction during 

experiments caused high impedance at torque bias of 0 N-m which would otherwise be 

expected to be zero. The impedance estimates were compared with raw EMG and angular 

deviations to check for validity of the estimates. The ramp torque bias trials showed that 

the range of values over which K and B changed were low. This result was due to the fact 

that when the biceps relaxed, the triceps contracted and vice versa. Further, there were 

not appreciable changes in θ∆ . The subject’s contraction pattern would need to be altered 

by a different set of instructions or by altering the background torque target. 
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6.2 Suggestions for future work 
 
Data were collected from one subject as preliminary data examination. It would be 

necessary to collect data from more subjects to be able to verify our signal processing 

techniques and also to be able to understand the experiments involving ramp contractions. 

The subjects would need to be trained and instructed to avoid co-contraction, both during 

the constant torque bias trials and the slowly varying torque bias trials. Co- contraction 

by subjects, during experiments, was a reason for K and B not varying over a sufficient 

range. Therefore, the EMG-impedance relation could not be evaluated over a range of 

conditions. 

A first degree polynomial relation was assumed for the relation between EMG – 

stiffness (Equation 4-7) and EMG – viscosity (Equation 4-8). Higher degree polynomial 

relationships can be used and their performance can be evaluated. The motor used for 

perturbations had a maximum capacity of 15 Hz. Therefore, low-pass filters of 15 Hz had 

to be used to remove any data greater then 15 Hz. This process results in losing high 

frequency content, which could otherwise be used for system identification. It would be 

helpful to use a more powerful motor with a greater capability. 
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