Function-level Parallelism for Multi-core
Processors
Automated Parallelization of Graphical Dataflow Programs

by
John Vilk

A Major Qualifying Project report submitted in partial fulfillment
of the requirements for the degree of
Bachelor of Science
in
Computer Science
at Worcester Polytechnic Institute
2010

Advisors:

Professor Craig Wills, Advisor
Professor Hugh Lauer, Co-advisor

TABLE OF CONTENTS

ABSTRACT
CHAPTER

I. Introduction oo

1.1 Background

I1. Graphical Dataflow Language & Translating to C

2.1 Introduction to Graphical Dataflow Languages
2.1.1 Datatypes
2.1.2 Operationso
2.1.3 Loops.
2.1.4 Scopes
2.1.5 Conclusiono
2.2 Translating Graphical Dataflow Programs to C
2.2.1 Datatypes oo
2.2.2 Operations
223 SCOPES
224 Loops. e e
2.2.5 main Method oL

III. Methodology

3.1 Activation Records oL
3.1.1 Traditional Activation Records
3.1.2 Our Activation Records
3.1.3 Allocating Activation Records
3.1.4 Instantiating Activation Records
3.1.5 Suspending and Resuming Activation Records

3.2 Program Transformations
3.2.1 Function Entry Point
3.2.2 Establish Function Argument Order

12
16
16
17
18
19
21
22
24

25

3.2.3 Entering a Scope 42
3.2.4 Writing Arguments into Activation Records 47
3.2.5 Waiting For Return Values 50
326 for Loops 51
3.2.7 foreach Loops. 52
3.2.8 Function Termination 52
3.2.9 Late Compilation Changes 52
3.3 Runtime Library o0 55
3.3.1 Allocating Activation Records 55
3.32 Ready Queue 55
3.3.3 Resuming Activation Records 55
3.3.4 Thread Pool 56
IV. GCC Background 57
4.1 Language Front End o0 D7
4.2 GENERIC Trees 58
4.3 GIMPLE 58
4.3.1 High GIMPLE 59
432 Low GIMPLE 59
4.3.3 SSAGIMPLE 60
4.4 RTL 61
441 Nonstrict RTL 61
442 Strict RTL 62
4.5 Assembly 62
V. GCC Plugin Implementation 63
5.1 GCC Plugin Architecture 63
5.2 GENERIC Tree Hook 64
5.3 High GIMPLE Pass 65
5.3.1 Start of Function Label 65

5.3.2 Local Variable Representation of Activation Record
Elements oL 65
5.3.3 Allocating and Initializing Activation Records . . . 66
5.3.4 Adding Constants to Counter 66
5.3.5 Writing Arguments into Activation Records 67
5.3.6 Waiting for Return Values 67
5.3.7 Function Termination 67
54 Strict RTL Pass 68
5.4.1 Suspend/Resume Code 68
5.4.2 Aligning Activation Records 69
VI. Conclusion 70

6.1 Conclusion 70

6.2 Future Work 71
6.2.1 Shifting from GCC 71
6.2.2 Loops. 72
6.2.3 Runtime Library 72
6.2.4 Graphical Dataflow Program Development Environ-
ment 72
BIBLIOGRAPHY 73

ABSTRACT

Function-level Parallelism for Multi-core Processors
Automated Parallelization of Graphical Dataflow Programs

by
John Vilk

Advisor: Professor Craig Wills

Co-advisor: Professor Hugh Lauer

This project investigated how to implement implicit fine-grain parallelism in graph-
ical dataflow programs at the function-level. We succeeded in developing a runtime
model that accomplishes this by changing the content of each function’s activation
record, and changing its location from the stack to the heap. Simple atomic instruc-
tions are used for synchronization purposes, and a runtime library manages a thread
pool that it uses to execute functions to minimize operating system calls. We call our
modified functions concurrent function invocations. In addition, we describe how to
implement this runtime model as an optimization pass within a compiler that would
work on a well-defined C representation of graphical dataflow programs. Finally, we
describe how this optimization pass might be implemented in GCC, which opens the
door to future work that could complete an implementation of our runtime model.

CHAPTER I

Introduction

For over 40 years, Moore’s Law has greatly influenced processor manufacturers
to rapidly increase the performance of their products. In accordance with this, the
clock speed of retail processors has exponentially increased during much of this time.
However, in recent years, power dissipation issues have prevented the companies from
making further large gains in clock speed. To keep up with Moore’s Law, these com-
panies made a dramatic shift to multi-core architectures. Today, multi-core processors
are present in most retail computers, and the number of cores in each are increasing
rapidly.

However, many programs are still written as single-threaded applications, and do
not take advantage of the multiple cores available to them. Those that are written to
take advantage of multiple cores generally take a coarse-grain approach to parallelism,
and assign significant amounts of work to each parallel section. Typically, the result
is a few important threads running at once, when modern processors are capable of
executing many more simultaneously.

Fine-grain approaches to parallelism seek to maximize the use of parallel process-
ing by executing many small tasks in parallel in order to use as many cores as possible.
A program written in this manner would, theoretically, see improved performance as

the number of cores on processors increases. Unfortunately, it is very difficult to break

up a program into a large number of tasks that can execute in parallel. In addition,
this approach leads to a lot of operating system overhead through thread creation
and scheduling these parallel tasks for execution.

Graphical dataflow programs have specific properties that lend themselves to fine-
grain parallelism. Specifically, dependencies among functions in graphical dataflow
languages are very explicit because they are expressed in the form of arguments and
return values. These dependencies could be used to automatically determine when
and where to execute functions in parallel, thus relieving the burden of breaking up a
program into parallel tasks from the programmer. The overhead of scheduling parallel
tasks and thread creation can be mitigated using runtime support that manages
a thread pool. This project aims to explore how to implement implicit fine-grain

parallelism in graphical dataflow programs at the function level.

1.1 Background

There are a number of shortcomings to traditional tread-level parallelism that
prevent it from being feasible at the fine-grain level. First, there is overhead involved
when creating a thread or process, since it requires a call into the operating system.
Since fine-grain parallelism parallelizes small tasks, the time to create the thread or
process may be significant when compared to the time to execute the task. Second, all
threads or processes must be synchronized; as the number of threads increases, so does
the amount of synchronization required. Third, traditional programming languages
(e.g. C, C++, Java) require the programmer to explicitly handle synchronization,
communication, and race conditions, so implementing a program with a large number
of parallel tasks would require skillful programming to avoid common pitfalls. Finally,
scheduling becomes an issue, since the program will want to run enough fine-grain
tasks to take full advantage of each core on the processor, but not too many such that

the cores are swamped with parallel tasks. There have been a number of attempts to

mitigate some of these shortcomings, which we will describe below.

In 2007, Intel published a paper titled “Architectural Support for Fine-Grained
Parallelism on Multi-core Architectures” that described how to overcome scheduling
and thread creation overhead by moving those responsibilities into the processor (1).
They implemented hardware queues to cache tasks and handle task scheduling poli-
cies, and task prefetchers on each core to decrease the latency of accessing the hard-
ware queue. The result is a system where the overhead of task scheduling is minimal,
and the execution speed is nearly ideal. On a 64-core machine, their task benchmark
ran 98% faster than a pure software solution. However, this solution requires special-
ized hardware that is not yet readily available. It also requires the programmer to
explicitly implement fine-grain parallelism using a task queue APIL.

The next version of Java, Java 7, introduces a package called forkjoin that allows
fine-grain parallelism in the form of tasks (2). Tasks are much more lightweight than
traditional threads, since they do not need to perform calls into the operating system
during creation. Rather, forkjoin maintains a thread pool of “worker” threads that
only need to be created once, and can be reused for as many tasks as needed. The
forkjoin package also takes care of thread scheduling, as its thread pool has as many
threads as cores on the CPU. However, like in the Intel solution, the programmer must
explicitly create these tasks.

A previous MQP successfully implemented implicit fine-grain parallelism for a
graphical dataflow language. The project developed a system that enabled program-
mers to construct graphical dataflow programs and translate them into a parallelized
C++ form that could be compiled with a C++ compiler. Like with Java 7’s forkjoin
package, this implementation used a thread pool to minimize thread creation events.
Unfortunately, it used an antiquated programming language called SISAL to enable
parallelism, and the system they developed had stringent limitations on the sorts of

programs that could be created (3).

Using the infomation gathered from these sources, we made a few key decisions
for our project. First, function scheduling and thread pool management would be
delegated to a runtime library that runs in user space. In the future, processors may
have direct support for task queues, like in the previously mentioned Intel paper (1).
Separating the runtime library from the rest of the parallelization process allows
these platforms to have a separate implementation that takes advantage of these
hardware features. For other architectures, a purely software implementation of the
runtime library can manage a thread pool, much like Java 7’s forkjoin package. The
implementation of this runtime library is outside the scope of this project, but we will
describe its responsibilities and features. Second, to avoid the trap that the previous
MQP fell into with SISAL, we decided to look into how to implement implicit fine-
grain parallelism within GCC, an open source compiler framework that is widely used
and is under active development (4).

To achieve these goals, we have to convert graphical dataflow programs into a
representation that can be understood by GCC and perform program transformations
on this representation within GCC to introduce parallelism at the function level.
Chapter II describes how we solved the first problem with a process to translate
graphical dataflow programs into a stylized subset of C that can be run through
the GCC compiler and executes serially. Chapter III explains the runtime model we
developed to support fine-grain parallelism at the function level. Chapter IV describes
GCC’s compilation process for important background information. Finally, Chapter

V provides an overview of how to implement the runtime model from Chapter III as

a GCC plugin.

CHAPTER II

Graphical Dataflow Language & Translating to C

In this chapter, we outline a generic graphical dataflow language inspired by Lab-
VIEW. Then, we describe how to convert programs written in this graphical dataflow

language into C for the parallelization process described in Chapter III.

2.1 Introduction to Graphical Dataflow Languages

Graphical dataflow languages are unlike most traditional programming languages.
While traditional programming languages are written entirely in a textual form,
graphical dataflow programs take the form of a directed graph. Nodes in the graph
represent functions, conditionals, variables, and constants. Edges represent data con-
nections. In this chapter, we will introduce a generic graphical dataflow language
inspired by LabVIEW (5). Programs written in this graphical dataflow language
can be automatically parallelized using the parallelization process described in Chap-
ter III.

To get our feet wet, let’s look at a simple function written in this language. An
example can be seen in Figure 2.1. In this example, the name of the function is f,
as indicated by the text above the rectangle that encloses the nodes of the graph.
This rectangle represents the scope of £, just like curly braces represent scopes in C.

The two boxes labeled int are called terminals, and are outside the scope. Terminals

wnt : 4 4}

Figure 2.1: A very simple graphical dataflow function, f, that adds 1 to the input
number.

represent input and output in a component, and serve the role of parameters and
results of textual languages. The input is supplied by the user if the function is run
directly, or by another function, and serves the role of an argument. The output is
sent to the user if the function is run directly, or it is sent to another node in a graph
that contains a call to the function. The triangle with the + symbol represents the
addition operation. The circle with 1 represents the constant 1. According to the
edges, the function’s input and the constant 1 are the operands to the + operation,
and the output of the operation is also the output of the function f. From this, we
can deduce that this function’s purpose is to add 1 to the input number. In this
language, data flows along the links, and operations at nodes execute when the data
values have arrived.

In the sections below, we briefly document the features of this graphical dataflow
language to provide important background information needed to fully understand

the rest of this report.

2.1.1 Datatypes

Our graphical dataflow language has no concept of variables; instead, data travels
around in colored edges, or wires. The color and style of the wire represents its
datatype. There are no pointers or references in this language; all data are passed by

value. Below, we outline the data types available in our graphical dataflow language.

2.1.1.1 Boolean

Boolean

A Boolean is represented by a solid green line. Booleans are either true, or false.

2.1.1.2 Integer

Integer

An integer is represented by a solid blue line.

2.1.1.3 Floating Point

A floating point number, or float, is represented by a solid orange line.

2.1.1.4 Arrays

1 Boolean Integer

Base Type
1D Array
2D Array

m—— ——
= =
3D Array | = | =P

Figure 2.2: The above table displays a variety of array types along with their base
types.

The graphical dataflow language supports arrays of any base type. The base
type determines the color of its representative wire, while the dimension of the array
determines the multiplicity of the wire. These types can be seen in the table in
Figure 2.2. A one-dimensional array is a thick line, a two-dimensional array is a
double line, a three-dimensional arrays is a triple line, etc. Each array is also aware

of its size, which may change dynamically.

Multi-dimensional arrays with dimension d contain elements that are arrays with
dimension d — 1. For example, the elements of a two-dimensional array are one-

dimensional arrays.

2.1.2 Operations

2.1.2.1 Basic Arithmetic

Operation | Representation Result
a c
Addition + c=a-+b
b
a
c
Subtraction - c=a—>
b
a c
Multiplication X c=axb
——
a
. c
Division - c=—+
— 5 b
a
— c
Modulus % c = a%b
——

Figure 2.3: Arithmetic operations in the graphical dataflow language.

The graphical dataflow language supports basic arithmetic operations, such as
addition, subtraction, multiplication, division, and modulus. They operate on int
and float datatypes. These operations are represented as triangles with the operator
printed inside. A table of operations and their representations in the language can

be seen in Figure 2.4.

Operation | Representation Valid Input Types Result
a .
Less Than < — float, int c=a<b
b
Less Than O < c
55 Lhatl Ut < — float, int c=a<b
Equal To — 71
a .
Greater Than > — float, int c=a>0b
b
Greater Th . c
reater L uan > —— float, int c=a>b
Or Equal To | — 3]
a .
Equality = — float, int, bool c=a==
b
a .
Logical And & >—— bool c = a&b
——
a .
Logical Or | — bool c=alb
b

Figure 2.4: Comparison operations in the graphical dataflow language.

2.1.2.2 Comparison Operations

Comparison operators compare two input values, and output a Boolean with
the result of the comparison. A table of the comparison operators in our graphi-

cal dataflow language can be seen in Figure 2.4.

2.1.2.3 Conditional Switch

The graphical dataflow language has a conditional operation called a conditional
switch. Much like an if-else or switch statement in other languages, it presents

a branching path in the program for different values of a variable, and it defines a

new scope. Unlike traditional switch statements, conditional switches must define
outputs, and each case must supply a value for each output. Conditional switches
can also have multiple inputs beyond the input that it is switching on.

A conditional switch is represented graphically as a multi-layered scope with ter-
minals for input and output. Each layer is another case in the switch. All conditional

switches must have a default case.

input=1
it rﬁ?j \
+ B int
nt /
default
nt r“ﬂ \
- B nt
int /

Figure 2.5: A simple conditional switch on an integer. The top scope executes when
the input integer is 1, and the bottom scope executes for any other input
integer.

Figure 2.5 displays a simple conditional switch on an integer. The switch checks
the integer that is connected to the ? box. If the integer is 1, then the switch adds that
integer to the other integer input, and outputs the result. If the integer is anything
else, then the default case executes, which subtracts the second input integer from

the switched on integer, and outputs the result.

2.1.2.4 Function Call

One of the key differences between a graphical dataflow language and languages
like Java and C is that a function’s output can be “wired” to the input of another. In
fact, each argument to a function can come from the output of a different function! By
comparison, in C or Java, all arguments to a function must be supplied directly by the

calling function. In a graphical dataflow program, there is no concept of a ‘calling’

10

function; a function executes, or fires, once it receives all of its inputs. Graphical
dataflow functions can also have multiple outputs, and each separate output can be

delivered to multiple destinations.

float f h

— float

g

Figure 2.6: A graphical dataflow function scope with multiple function calls.

Figure 2.6 displays a function z that illustrates these properties. After z receives
its input, £ begins executing because z’s input is wired directly into f. Function g
cannot execute until it receives input from both f and h. Meanwhile, h will start
executing as soon as f outputs s. There may be no circular dependencies (like in the
invalid function shown in Figure 2.7), so the function z can complete successfully in
the following order: £, h, g, and, finally, the + operation.

Graphical dataflow programs are not forced to execute serially, however. In the
previous example, dependencies forced serial execution. In Figure 2.8, the function
z can execute in multiple valid sequences. Once f finishes executing, both h and
g are ready to run. It does not matter which executes first. In fact, they could
execute in parallel! It is due to this that we believe that graphical dataflow programs
exhibit inherent parallelism. Introducing parallel execution at the granularity of

a function call is the main idea behind our parallelization technique.

11

invalid

bool bool
|bool f |bool

*7
= |»
[

Figure 2.7: An invalid graphical dataflow function with circular dependencies.

Z

float f i float

Figure 2.8: A graphical dataflow function scope that does not force a serial execution.
2.1.3 Loops

There are three types of loops in this graphical dataflow language: for loops,

foreach loops, and while loops.

2.1.3.1 for Loops

for loops are loops that iterate a specified number of times. They may include

the following items:

e Input Values and Arrays: The loop can use these input items in its opera-

tions.

12

e Output Values or Arrays : Output values and arrays are produced by the

last iteration of the loop.

e N (required): N is the upper bound on the number of iterations the loop will

perform. N can be set to the size of the smallest input array.
e i (required): i is the counter that represents the current iteration of the loop.

e Disaggregator: The disaggregator takes in an input array, and, for each iter-
ation of the loop, provides the corresponding element of the array as input to

that iteration.

e Aggregators: An aggregator creates a new array from the output values of

each iteration.

e Accumulators: An accumulator performs a commutative operation on the
output it receives from each loop iteration (e.g. sum all loop outputs). There
may be one or more accumulators on a for loop. Accumulators are inspired by
the programming language Fortress, which has for loops that are parallel by

default (6).

e Recirculating Values: These output values are calculated each iteration and
supplied as inputs to the next iteration. There may be one or more recirculating

values on a for loop.

e Stop Conditions: A condition that, if met, halts the loop prematurely. There

may be more than one stop condition.

The number of iterations that a for loop performs is the minimum of the size of
the smallest input array to a disaggregator, and the value of N. N is either explicitly
set to a constant, or is set to the size of the input array. If there is no input array, N

must be explicitly set. If a stop condition is present, a Boolean must be wired to it.

13

If the Boolean has the value true during an iteration, then the loop stops executing

after that iteration completes.

N Accumulator
l for loop
(10—] i
Disaggregator Aggregator
int array > | | + [] > int array

Recirculating Value (input) 2ellcglr)ilzl)at1ng Value

o= @
/ Stop condition
Initial value of recirculating value @I

i @

Figure 2.9: This for loop uses most of the loop constructs.

Iterator

A labeled for loop that uses most of these loop constructs can be seen in Fig-
ure 2.9. N is set to 10, so the loop will execute 10 times unless the input array has a
size that is smaller than 10. During every iteration, the ¢th element is added to the

previous element. The result of this operation is wired to four locations:

e The result is wired into an aggregator that places it into the ith position of the

output array.

e The result is wired into an addition accumulator that adds it to its current value.
When the loop stops executing, it will output the sum of all of the elements in

the output array.

e The result is wired into a recirculating value, so that it can be used in the next

iteration’s calculation.

14

e The result is compared to 7. If it is greater than 7, then the stop condition is

met, and the loop stops executing once the current iteration completes.

Thus, for a 6-element input array with values {1,2,3,4,8,5}, this loop would
output a 4-element array with values {1, 3,6, 10} and 20 for the addition accumulator.
The stop condition is triggered during the iteration that produced 10, so the final two

elements in the input array are not processed.

2.1.3.2 foreach Loops

foreach loops bodies execute a specified number of times. Each execution of the
loop body processes one element of the disaggregated input array. foreach loops may
include any of the items defined for for loops, except for recirculating values, stop
conditions, output values, and output arrays that are not produced by aggregators.
Essentially, foreach loops are for loops where the executions of the loop body are
independent of one another. Due to this, foreach loops are inherently parallelizable.

The number of iterations that a foreach loop performs is the minimum of the
size of the smallest input array, and the value of N. If the value of N is not explicitly

declared, then it is automatically set to the size of the smallest input array.

foreach loop

float array [[—i—]

Figure 2.10: A simple foreach loop that adds up all of the numbers in the input
array.

15

The foreach loop in Figure 2.10 is rather simple: it finds the sum of all of the
floating point numbers in the input array using the addition accumulator. N is not

explicitly set, so this loop iterates once for each element in the input array.

2.1.3.3 while Loops

A while loop iterates until a stop condition is triggered. Since they are generally
not parallelizable, and are typically used much less often than for loops in LabVIEW

programs, we will not mention them further in this report.

2.1.4 Scopes

Throughout this chapter, we have mentioned various graphical dataflow language
constructs that define ”scopes”, but we have yet to explain what scopes are in context
of our graphical dataflow language.

In a traditional programming language, a scope typically creates a new stack frame
to store information local to that scope. However, our graphical dataflow language
has no local variables, so this detail is irrelevant to its scopes. Rather, the scopes in
our graphical dataflow language are purely lexical scopes, and are mainly important
in the under-the-hood operations described in Chapter 3.

In our graphical dataflow language, scopes are defined for:

e Function bodies.

e Loop bodies.

e Branches of conditional switches.

2.1.5 Conclusion

We have described all of the major elements of our generic graphical dataflow

language. Now, we will describe how to represent graphical dataflow programs in the

16

correct format for our parallelization process outlined in Chapter III.

2.2 Translating Graphical Dataflow Programs to C

Unfortunately, there are no compilers for our hypothetical graphical dataflow lan-
guage, so we need to use an intermediate form that we can parallelize from within an
existing compiler. We chose C as an intermediate language for our graphical dataflow
language, since it was the simplest vehicle for getting our graphical dataflow programs
into the GCC compiler. The translation process outlined in this chapter produces a
C program from a graphical dataflow program that can be compiled and run with no
modifications. However, the C program will execute in a completely serial manner,
with no parallelization at all. The parallelization process described in Chapter I1I de-
scribes how a compiler plugin can modify these C programs from within a compiler to
introduce parallelism. Because this parallelization process makes assumptions about
the program it is processing, it is important to conform to the conversions explained
in this chapter.

To get our feet wet, let’s look at the simple graphical dataflow function in Fig-
ure 2.1. This function adds 1 to the input number. It would get translated into the

following C code:

struct f_output

{
int output;
}
struct f_output f (int input)
{

//We could also use input++. The compiler looks at both in exactly
//the same way.

int output = input + 1;

struct f_output f_out = { output };

return f_out;

17

In this example, the conversion process is very straightforward, and predictable.
We require all functions to return structs. This requirement is explained in Sec-

tion 2.2.2.3.

2.2.1 Datatypes

The basic datatypes of our graphical dataflow language translate nicely into C. An
integer is an int, a floating point number is a float, and, with the help of stdbool.h,
a Boolean is a bool.

Arrays are a bit more difficult. Unlike C arrays, our arrays must know their size.
We can get around this restriction by representing arrays using the following struct,

where T is the type of the elements in the array:

struct T_array

{

T *xarray;
unsigned int size; //Number of elements in the array.

i

Note that these structs must follow the above naming convention for the paral-
lelization process to work. Thankfully, the C preprocessor makes it easy to generate
code like this; with the following code in a header file, new array types c an be declared

with ARRAY (typename):

#define ARRAY(T) struct (T)_array \
{\

(T) =array; \

unsigned int size; \
&

Notice that the C array in the struct above is referenced by a pointer. Because
structs in C must be a constant size, the array information needs to be dynamically
allocated and referenced in the struct as a pointer. This poses a problem: due to

the semantics of our graphical dataflow language, arrays are passed by value. We

have decided that, for the sake of optimization, our implementation will use the C

18

convention and pass arrays around using a pointer whenever possible. Meaning, if an
array is output to only one location, it will be passed as a pointer. If it is output to

multiple locations, then it may have to be copied once for each output location.

2.2.2 Operations
2.2.2.1 Basic Arithmetic & Comparison Operations

All of the basic arithmetic and comparison operations in our graphical dataflow

language have direct C equivalents. In all cases, we use these equivalent operations.

2.2.2.2 Conditional Switch

Conditional switches are implemented using the switch statement. As mentioned
before, a conditional switch requires each case to have the exact same outputs, while a
switch in C does not. This restriction needs to be enforced in the frontend that con-
structs the graphical dataflow program, because the compiler plugin, in its proposed
form in Chapter 3, does not check it.

In addition, each branch of a Conditional Switch defines a new scope in our graph-
ical dataflow language, so the frontend must apply the scope conventions that are
described in Section 2.2.3.

As an example, we will convert the conditional switch from Figure 2.5 into a
switch statement. Because our graphical dataflow language does not have named

outputs or inputs, we use arbitrary variable names to represent their values in C:

int a, b, output;
//Scope requirement: Assign variables that are inputs to
//the scope into new local variables.

a = var_to_switch_on;

b = other_input_from_scope;
switch(a)

case 1:

output = a + b;

19

break;

default:
output = a — b;
break;

}

2.2.2.3 Function Calls

Function call translations are best explained using an example. Figure 2.6 shows
a graphical dataflow function with multiple function calls. Some of these function
calls have multiple outputs that are connected to the input of different functions!

In the C representation, we cannot directly connect the output of one function
to the input of another. To work around this language restriction, we leave it to
the scope (the function z in this example) to handle 'wiring’ functions to each other.
Another issue is that C functions can have only one return value, but we can solve
that problem by using custom return structs for each function. Below is the resultant

C code from the conversion process.

struct f_output

int r;
int s;

}s

struct h_output

int t;
int u;

}s
struct g_output

{
int v;

}s

int z (int input)
//The names of these variables do not matter.
struct f_output f_out = f(input);
struct h_output h_out = h(f_out.s);
struct g_output g_out = g(f_out.r, h_out.t);

20

int output = h_out.u + g_out.v;

return output;

}

Note that the parallelization process expects the program to follow the above
naming convention for the structs. Namely, the struct that holds the return value
from a function example will need to have the name example output. Graphical
dataflow programs do not have named outputs or inputs, so the names of the struct
elements can be internally generated.

This conversion works for any valid graphical dataflow function. If a graphical
dataflow function cannot be serialized in this manner, it must have a circular de-
pendency and, thus, be invalid. An example of a graphical dataflow function with a

circular dependency can be seen in Figure 2.7.

2.2.3 Scopes

Due to an unfortunate implementation detail, scopes need to follow two conven-
tions concerning variables passed in from the parent scope, and passed back to the
parent scope. Section 3.2.3.1 contains the procedure that causes these conventions to
be necessary!. If these conventions are not followed, it is possible that a scope will
try to use a variable in the C representation that is not ready yet, which will cause

unpredictable results.

These conventions are:

e Any variables in the C representation that the scope uses that are defined in
a parent scope must be reassigned to new local variables before the scope is

entered.

!Essentially, if an input to the scope or output from the scope is the return value from a function
call, the procedure in Section 3.2.3.1 will not check counter before it is referenced again. The
procedure only checks counter according to information local to the scope, and not with information
from any subscopes or parent scopes. It may eventually be possible to improve upon this process to
remove the need for the scope conventions.

21

e [f a return value from a function is wired as an output of the scope, the return
value must be assigned to a temporary variable before being assigned to the

output.

For example, consider the following scope:

int b = getInt();
int output;

begin scope

output = functionCall(a, b);
end scope

This would become the following:

int b = getInt();

int output;

int a_scope = a;

int b_scope = b;

begin scope
int temp = functionCall();
output = temp;

end scope

2.2.4 Loops

As mentioned previously, our graphical dataflow language is only concerned with
two types of loops: for loops, and foreach loops. Both of these constructs define
new scopes, and will have to follow scope conventions as explained in Section 2.2.3 in

addition to the conventions below.

2.2.4.1 for Loop

Much like function calls, for loops are best explained with an example. Below is

the C representation of the graphical dataflow function in Figure 2.9:

//Prerequisite: Pointer to input array is stored in variable input.
//Output array is allocated to the minimum of the input array’s
//size and the value of N, and a pointer pointing to it is stored
//in variable output.

22

//Iterator
int i;

//Recirculating value
int recirc = 0;

//Addition accumulator
int add = 0;

//Stop condition
bool stop = false;

for (i = 0; i < input.size && i < 10 && !stop; i++)

{
int tmp = input.array|[i]| + recirc;
output.array[i]| = tmp;
add += tmp;
recirc = tmp;
stop = tmp > 7;
}

//Output may have been allocated larger than its current size;
//update the size to the number of elements that we have
//placed into it.

output.size = 1ij;

The conversion is rather straightforward. Since the plugin makes no attempt to
parallelize for loops, the translation is lax. However, any function calls within the
loop body must follow the conventions established in Section 2.2.2.3, since they will

be executed as concurrent function invocations.

2.2.4.2 foreach Loop

Since foreach loop iterations can execute independently, they are massively par-
allel. There is no foreach loop in C, so we must make due with using the for
loop.

To make it easy for the parallelization process to recognize foreach loops from
for loops, the loop body must be converted into a separate function call. The return

value for this function call will be a struct with elements for:

e Inputs to aggregators.

23

e Inputs to accumulators.

The rest of the body of the loop will take the return values from the function call
and update the accumulators and aggregators as necessary.

Below is the appropriate C code for the foreach loop in Figure 2.10:

//The output struct for the loop body’s function. This is needed to
//follow the function call specifications explained in a previous
//section .

struct loop_body_output

//Contains the output from an iteration to add to the ’addition’
//accumulator
int add;

}s

//This is the function that contains the code for the loop body,
struct loop_body_output loop_body(float element)

{
//In this trivial case, we are literally just returning the input.
struct loop_body_output output = {element };
return output;

}

//Code segment below is within the scope that contains the loop.
//Prerequisite: Pointer to input array is stored in variable input.

//Iterator
int i;

//Addition accumulator
int add = 0;

for (i = 0; i < input.size; i++)

{
struct loop_body_output output = loop_body(input.array[i]);
//Update accumulator with the output from the loop body.
add += output.add;

}

2.2.5 main Method

Since we are translating graphical dataflow programs into C, there needs to be
a main method defined that kicks off the program. The only purpose of this main

method is to process inputs, and pass them into the function that is being run.

24

CHAPTER III

Methodology

The automatic parallelization process proposed in this chapter has three main
components. First, we define an activation record format that allows multiple func-
tions to execute concurrently and grants the ability to suspend and resume function
execution when needed using possibly different threads. Next, we discuss how to over-
come synchronization issues related to function dependencies. Finally, we describe
a runtime library that performs operations that are integral to the execution of a
parallelized program.

The net result of these structures is the concurrent function invocation, which
allows the calling function to continue executing until it requires the return value
from that call. The parallelization process converts all user-defined function calls

into concurrent function invocations. This is best illustrated with an example:

int sum(int a, int b){return a + b;}
int subtract(int a, int b){return b — a;}
int application()
{
int a = sum(1, 3);
int b = sum(3, 5);
int ¢ = subtract(a, b);
return c;

When the program starts, sum(1, 3), sum(3, 5), and subtract(a, b) arelaunched

in parallel. The two calls to sum proceed to execute, since their arguments are avail-

25

able. The call to subtract must wait, since its arguments depend on the results from
the calls to sum. It will execute only when its arguments are available. Meanwhile,
the function application will pause at the return statement, since it must wait
for the return value from the call to subtract. Once that value is available, it will
execute the return statement.

Library functions, such as printf, are launched as regular functions since the
libraries are not compiled with our automatic parallelization process. We can explain

this using another example:

int sum(int a, int b){return a + b;}
int subtract(int a, int b){return b — a;}
int application()

{
int a = sum (1, 3);
int b = sum(3, 5);
printf("Hello!\n");
int ¢ = subtract(a, b);
return c;

Like before, sum(1, 3), sum(3, 5), and subtract(a, b) arelaunched in parallel.
The calls to sum execute, while the call to subtract must wait for its arguments.
printf ("Hello!\n") is launched as a regular function call, meaning it must complete
before application() can continue executing. While the call to printf is executing,
the call to subtract may run if it receives its arguments from the two calls to sum.
However, the return statement cannot execute until printf returns, and also until
subtract returns the variable c.

This is the general idea behind our automated parallelization process.

26

Return value
Return address
Location of Caller’s Activation Record
Function Arguments

Local Variables

Figure 3.1: This diagram shows the typical structure of a GCC activation record.
Activation records should be fairly similar in other compilers.

3.1 Activation Records

3.1.1 Traditional Activation Records

By way of background, a traditional activation record in most languages stores
the information used by a single function call. When a function a is called, a new
activation record is created. a’s activation record contains space where its return
value will be stored, the return address where a should jump to when it completes,
the location of the caller’s activation record, the arguments passed into a, and space
where a can store local variables. In most programs, this activation record is stored
in a stack frame and is pushed onto the top of the call stack. Once the activation
record is constructed, the function a begins executing. When a finishes executing, it
pops its stack frame off of the stack, restores the caller’s frame pointer, pushes its
return value to the top of the stack, and jumps to the return address. The structure
of a normal stack frame in GCC is displayed in Figure 3.1.

If a calls another function (e.g. function b), an activation record is created for b,
pushed onto the call stack, and b begins executing in the same manner as a.

This works fine for single threaded applications, where only one function is exe-
cuting at a time and calling functions are suspended until called functions complete.
The program only needs to keep track of the location of the current stack frame and

the top of the stack in order to access information in the activation record. However,

27

this does not work when multiple functions are executing in parallel; the program
needs to keep track of the location of each executing function’s activation record.
Most applications that take advantage of parallel processing use traditional threads
to execute tasks in parallel. Each thread has its own stack that stores activation
records, so this implementation is nearly equivalent to making each parallel task a
separate single threaded application. Threads of this kind are usually managed by
the operating system, which can make thread management slow as it requires calls
into the bulky operating system. Our need for fine-grain parallelism forces us to take

a different route that avoids using the stack whenever possible.

3.1.2 Our Activation Records

Our modified activation records had to solve a few different problems. First, we
need to allow functions to be 'wired’ to one another, such that a function can write its
return value directly into the activation record of another function as an argument to
that function. Next, we need to allow functions to save state and suspend execution
when they are waiting on return values from other functions, and to resume when
those values are available. Finally, we need to allow multiple functions to execute in
parallel without using a stack. All of this needs to be done without introducing race
conditions or other synchronization issues.

In our fine-grain execution model, we changed the content and the location of
activation records to meet these needs. While activation records are normally stored
on the stack as stack frames, we opted to store them on the heap, as in the Mesa
programming language (7). Using a heap allows multiple functions to execute con-
currently and finish out-of-order. As explained below, it also allows return values
to be forwarded directly to other functions represented by other activation records.!

These activation records still store the arguments passed into the function and local

ITo the criticism that using the heap will impact performance, we note that efficient heap allo-
cators are possible and do exist. One such example is the Linux slab allocator (8)(p194-201).

28

counter variable & isRunning flag
Function entry point
return_locations structs for each return value
Function Arguments
Space to save program counter
Space to save registers’ states

Local Variables

Figure 3.2: This diagram shows the structure of our modified activation records that
are stored on the heap. The counter variable and isRunning flag are
stored as one machine word to allow atomic instructions to modify and/or
view both in one instruction. See Section 3.1.5.2 for more information.

variables.? However, they also contain space to save register values and the pro-
gram counter, an entry point for the function associated with the activation record,
a counter variable, isRunning flag, and return _locations structs. All of these are
stored at fixed offsets from the start of the activation record, which is important; if
a function knows the address to an activation record, it can calculate the addresses
of these items to manipulate them. The space to save register data and the program
counter allows functions to suspend and resume. The counter variable, isRunning
flag, and return_locations structs allow functions to be 'wired’” to each other. The
details behind these features are explained in later sections of this chapter. A diagram

of our modified activation record’s structure can be seen in Figure 3.2.

3.1.3 Allocating Activation Records

In a normal C program, an activation record is created at the time a function
is called. However, in our implementation of our graphical dataflow languages, an
activation record is created at the start of the scope that calls its function (see Sec-

tion 2.1.4 for details on what constitutes a scope). This is necessary because any

2Qur graphical dataflow language does not have a concept of 'local variables’. However, the C
representation of graphical dataflow programs specified in Chapter 2 creates local variables that
represent wires. These must be stored in an activation record.

29

function called within that scope may need to write a value into the activation record
of another function in that scope or in a parent scope.

We can explain this requirement using the example scope in Figure 2.6. Inside z, £,
g, and h require activation records. Since all of these are in the same scope, and there
are no conditionals affecting whether or not certain functions will execute, we know
that z will need to eventually allocate activation records for all 3. The question is:
When should we allocate them? Before f is launched, z will need to create activation
records for h and g since f needs to write argument values to them. And, since f is
called immediately, all of the activation records will need to be allocated right away.
We could perform this dependency analysis on all programs to determine the latest
point at which an activation record can be allocated, but the benefit of doing this is
minimal if we know that z will need to use all of these activation records eventually.
Thus, we always allocate all activation records for a scope at the start of the scope.

However, what happens if we have a conditional switch? Surely, we do not want
to create the activation records of the function calls within each case of a conditional
switch if there is a chance that they will not be needed! As mentioned in Section 2.1.4,
a conditional switch creates a new scope.® Therefore, function calls within a case of
a conditional switch will be created when that case begins executing.

By following the above rules, every activation record that a program allocates
will eventually be used, so no memory or time is wasted. This model also supports
recursion; a function can call itself, as long as a conditional checks whether or not
the function should execute (otherwise, the function would always call itself, which

would always call itself, ad infinitum).

3Tt is important to understand that a scope is not the same as a function. Unlike a function call,
a scope does not have its own activation record.

30

3.1.4 Instantiating Activation Records

Before a function can begin executing, its activation record needs to be completely
instantiated. In other words, the function call’s arguments, the locations to which
the function needs to write its return values, and other information that describes
the function’s initial state need to be written into the activation record before its
function can begin executing.

First, let’s discuss the return value locations. In our runtime library, we have the

following struct:

struct return_locations

void* ar_ptr;
unsigned int offset;
struct return_locationsx* next;

b

This struct describes a linked list of locations to which copies of one return value
need to be written. One linked list of these structs is defined for each return value of
a function, and a pointer to the head of each linked list is placed at a fixed offset in
the activation record. This pointer can be null if the corresponding return value is
not used at all. A function is not aware of the context in which it is being called, so
it is the responsibility of the parent scope to dynamically allocate these structs, and
to write a pointer to the head of each linked list into the function call’s activation
record. It does this at the same time that it allocates the activation records. More
details on how they are actually used by a function can be seen in section 3.2.4.

Let’s look at a quick example to illustrate how a scope allocates and instantiates
return locations structs. In Figure 3.3, the scope for the function x needs to set
up three activation records. The resultant return_locations structs can be seen in
Figure 3.4. Note how we handle return values that go to operations (e.g. +), and to
multiple locations (e.g. £’s return value s). Because operations are carried out by the

parent scope (in this example, the parent scope is the function z), return values that

31

float f h

— float

g

Figure 3.3: A sample graphical dataflow function. Note that f’s return value s needs
to be written into the activation records for h and g.
are used in operations need to be written into the parent scope’s activation record.

Arguments are more complex. A function is ready to run once it has all of its
arguments. And, since arguments can come from multiple locations, we need a paral-
lelizable way of launching the function immediately after the last argument is copied
into the function call’s activation record.

This is the first place where counter comes in. The counter in an activation
record is initialized to the total number of arguments needed by a function. Each time
an argument is copied into the activation record, counter is atomically decremented
by 1. The activation record is considered to be suspended until all of the arguments
are copied into the activation record and counter becomes 0, at which point the
activation record is sent to the runtime library for execution. See Section 3.1.5 for
more information on how a suspended function eventually executes.

The isRunning flag in an activation record indicates whether or not the activation
record is running. We define running to mean that the activation record is ready
to execute on the CPU or is currently executing on the CPU. This flag is used to
prevent a race condition that would otherwise occur when activation records suspend

as described in Section 3.1.5. isRunning must be initialized to 0, since the activation

32

’ function name - return variable

function name’s activation record that argument needs to go to
Offset into activation record that argument needs to be written
Pointer to next return_ locations struct

f-s f-s
h’s activation record g’s activation record
offset offset
next — null

h-u ‘
z’s activation record
offset
null

h-t |
g’s activation record

offset
null

g-v |
z’s activation record
offset
null

Figure 3.4: Example return_locations structs generated by the scope in Figure 3.3.

record does not have any of its arguments yet and is not ready to execute. In the
event that a function does not require any arguments and is, in fact, ready to execute
immediately after its activation record is allocated, then it does not matter what its
isRunning flag is initialized to, since it will be set to 1 when the activation record is
passed to the runtime library for execution.

As seen in Figure 3.2, both the counter variable and isRunning flag are stored
in a single machine word. The reason for this decision is outlined in Section 3.1.5.2.

The function entry point in an activation record should be initialized to contain
the address to the set of instructions that "resume” the activation record. In other

words, the instructions should load the register states and program counter saved in

33

the activation record. An activation record will always begin or resume execution on
the CPU by jumping to the function entry point. See Section 3.2.1 for details on how
we implemented this.

The final pieces of information that need to be initialized in an activation record
are the program counter and register states. In our implementation, every function
begins in the function entry point described in the previous paragraph, so we must
initialize the register states and the program counter to the same values that the
function expects when it begins. In other words, all of the registers should be cleared
(set to 0), and the program counter should be set to the address of the first instruction

in the function’s body.

3.1.5 Suspending and Resuming Activation Records

There are two scenarios in which an activation record must be suspended: it does
not have all of its arguments, or its function needs to perform an operation using
another function’s return value that is not ready yet. In the first case, the activation
record is initialized in a suspended state by its parent scope. In the second case, the
function actually saves its own state and suspends execution.

Both of these cases use the counter to track when the function needs to resume,
but in different ways. Let us describe each in detail, before generalizing how to deal

with resuming suspended activation records.

3.1.5.1 Activation Records Waiting For Arguments

When an activation record is initialized, counter is set to the number of argu-
ments that its function requires. These arguments can come from multiple different
functions, which may be executing concurrently. Each time an argument becomes

available, the function providing the argument must perform the following procedure:

1. Write the argument into the destination activation record at the desired offset.

34

2. Atomically decrement the counter of the destination activation record by 1.

This operation returns the new value of counter.

3. If counter becomes 0, the function must resume the activation record by using
the appropriate runtime library method (see Section 3.3.2 for more details).
The important takeaway from this is that it is the responsibility of the function
that supplies the final argument to an activation record to start the function

associated with it.

A suspended activation record that is waiting for arguments can only resume when
its counter decrements to 0. The atomic decrement operation prevents synchroniza-
tion issues, race conditions, and misses. If we did not use an atomic decrement oper-
ation, then it would be possible for two (or more!) different functions to decrement
the counter at the same time before checking its new value. If the second function
decrements it to 0, then both would see the counter at 0, and the function would
execute twice! Since the atomic decrement operation is hardware supported, it is a
fast and computationally cheap method to ensure that this does not occur.

Notice that this operation requires the function providing the argument to have
two key pieces of information: the address of the destination activation record, and
the offset at which the argument needs to be written. If the argument is supplied
as the return value of a function call, then the address of the destination activation
record and the appropriate offset are recorded in the return_locations structure
for that return value. In all other cases, the argument is supplied by an operation
performed in the parent scope that created the destination activation record in the
first place. So, it should have a reference to the destination activation record and the

appropriate offset that the argument needs to be written at.

35

3.1.5.2 Activation Records Waiting For Return Values

A scope may use return values from its function calls in operations. However,
because the function that the scope belongs to and its function calls execute concur-
rently, we need a way to be sure that a return value from a function call is ready
before its scope tries to use it. Here, we must use both the counter variable and
isRunning flag to ensure that the function can suspend when a needed return value
is not available and resume when the needed return value is available with no race
conditions.

The value of counter in this scenario is the number of obtainable return values
that the function will need to use in its own execution. At the start of each scope, and
before writing certain values to other activation records as arguments, the function
must add a constant determined at compile time to its own counter. See Section 3.2.3
for specific details on how these constants are determined. Eventually, function calls
within the scopes contained within the function will decrement counter to 0, as
described in a procedure later on in this section.

If a function gets to the point of needing a return value before counter reaches
0, it must suspend itself. As a result, a function must check its counter before
trying to use the return value in an operation. If counter is not 0, then it must
prepare to suspend itself by saving its registers and program counter! It must also
re-check counter after preparing to suspend to ensure that the return value did not
become available while it was preparing to suspend. In addition, it must change its
isRunning flag to 0 at the same time to prevent a race condition where the return
value is supplied in-between these two operations. Atomic instructions only operate
on one machine word at a time, so we decided to store both of these values in one
machine word, where the lowest bit is isRunning. So, for a machine that operates

on words of size n, this word would have the following layout:

36

Bit: n—11]...|1 0

Contents: counter isRunning

With this in mind, a function can successfully suspend itself by performing the fol-

lowing procedure:

1. Save a copy of the current value of the counter and isRunning word.
2. If counter is greater than 0:

(a) Save the registers that have been used into the activation record.

(b) Save the address of the first instruction in the operation that uses the
return value into the program counter field in the activation record so the

function resumes at that spot when the return value becomes available.

(¢) Try to perform a compare-and-swap on the counter and isRunning word,
where the old value is the saved copy of the counter and isRunning word,
and the new value is the old value minus 1 (which sets the isRunning flag

to 0).
(d) If the compare-and-swap fails:
i. Update the saved value of the counter and isRunning word to the
current value of the counter and isRunning word.

ii. If counter is now 0, jump to the operation that uses the return value,
since the return value is now available and the activation record no
longer needs to suspend.

iii. Otherwise, jump to the compare-and-swap operation above to repeat

this procedure.

(e) If the compare-and-swap succeeds, call the appropriate runtime library

function to complete the suspension of the activation record.

37

3. Else, counter must be 0, so the return value must be available for use in an

operation. Continue executing.

From the other end, each time a function writes a return value into an activation
record for use in an operation, it must follow a procedure similar to what was described
for arguments. The main difference is that the activation record it is modifying may
be running when its counter is decremented to 0, in which case it does not need to
be resumed. With this in mind, the function providing the return value must perform

the following procedure:

1. Write the argument into the destination activation record at the desired offset.

2. Atomically decrement the counter and isRunning word of the destination ac-
tivation record by 2. This effectively decrements the counter portion of the
word by 1, and will return the new values of counter and isRunning in one

word.

3. If counter and isRunning are both 0 (which would make the entire counter
and isRunning word 0), the function must resume the activation record by using

the appropriate runtime library method (see Section 3.3.2 for more details).

3.1.5.3 Generic Procedure for Resuming Activation Records

As mentioned in Section 3.1.4 on initializing activation records, isRunning is ini-
tialized to 0, and remains that way until the activation record resumes. So, whenever
an argument is written into an activation record, isRunning is 0. This allows us to
use the procedure for writing return values into activation records for operations for
all cases when a value is written into an activation record.

The following state diagram and table summarize how counter and isRunning

are managed throughout the life of an activation record:

38

Argument is written

into activation record

Function receives an obtainable return value

Activation record

is initialized | counter = # of arguments to function

_—

isRunning = 0

counter > 0

Final argument is written

into activation record

unction finishes

isRunning = 0

counter > 0

\&
Y
R4
?
A
O P
@ &
QS
‘406 &
&
,b’&
e’&
N
&

Function needs to use

a return value

Function receives final obtainable

counter = 0

isRunning =1

executing
- >

return value that it will need to use
$9582.0Ul 3SN 03 PIdU [[IM UOIIDUNY dYI

1ey3 sanjeA uinial 3|qeuleiqo Jo Jaquinp

isRunning = 0

counter > 0

isRunning =1

Function receives an obtainable return value

OR

Number of obtainable return values that

the function will need to use increases

39

Event

Action to counter

Action to isRunning

Activation record is initialized.

counter is set to the number of

arguments in the function.

isRunning is set to 0

Argument is written into activa-

tion record.

counter is decremented by 1.

If counter is now 0, isRunning

is set to 1.

Function fulfills final obligation
to a function call by either pro-

viding it with the last argument

counter is incremented by the

number of new "obtainable”

return values resulting from

Nothing.

it is responsible for, or by launch- | this function call (see Sec-
ing it. tion 3.1.5.2).
Function requires the use of a re- | None. If counter > 0, isRunning =

turn value.

0 and the activation record sus-
pends. Otherwise, nothing hap-

pens.

Function is running, and receives
a return value from a function

call.

counter is decremented by 1.

Nothing.

Function is suspended, and re-
ceives a return value from a func-

tion call.

counter is decremented by 1.

If counter is now O,
isRunning = 1 and the function

resumes.

3.2 Program Transformations

Now that we have explained our modified activation record format and how it is

used, we need to modify the program code to take advantage of it. The following

section describes these transformations in detail.

3.2.1 Function Entry Point

As described earlier, the function entry point of a function is responsible for load-

ing the saved registers and program counter from the function’s activation record in

order to resume the function’s execution on the CPU. Since each function may use

40

different sets of registers, we decided to only save the registers that a function actually
uses in its activation record. Because of this, the space in the activation record used
to save registers will be laid out differently depending on the subset of registers that
the function uses. And, due to this, a unqiue function entry point procedure must be
defined for each subset of registers used by functions in the program.

To make implementation simpler, we opted to define a unique function entry
point for every function. We added instructions to the start of every function to
load the registers and program counter saved into its activation record. Due to this
procedure, the function entry point for a given function is just a pointer to the start
of the function. One implication of this is that we need to define a label for the start
of the function body of each function, since a function’s scope must initialize its saved
program counter to the start of the function body.

After this transformation, a function will look like the following pseudocode:

begin function example
load registers
load program counter
label example_function_body
//Insert code for function body
end function example
Register information is not available until late in the compilation, so it may be

necessary to insert a placeholder for the register loading code until register information

is available.

3.2.2 Establish Function Argument Order

The next important step that the optimization pass needs to perform is to establish
some method of ordering the arguments to a function. While arguments have a clear
order in C, compilers may shift things around. For our optimization pass, the order

of arguments is very important, because the optimization pass needs to calculate the

41

offset of each argument of a function with respect to the function’s activation record.

One method for ordering arguments is to sort them by name, if the original func-
tion parameter names are available. The arguments to a C function must have unique
names, so there is no ambiguity provided that the same order is used throughout the

optimization pass.

3.2.3 Entering a Scope

Whenever a scope is entered, the following three actions need to occur in the

following order:

1. The scope will need to allocate and initialize the activation record of each func-

tion call within that scope.
2. The scope may need to add a constant value to counter.

3. The scope will launch any of the activation records that it has initialized that
already have a counter of value 0. This will occur if one of its function calls

requires no arguments.

We will now explain the program transformations required for each of these pro-
cedures.
3.2.3.1 Allocating and Initializing Activation Records

In Sections 3.1.3 and 3.1.4, we explained how activation records are allocated and
initialized, but not how the compiler achieves these results. At the start of a new
scope, the optimization pass needs to collect the following information in order to

properly initialize activation records:

e Obtain a list of all of the function calls made inside the scope.

42

e Detect the source of each argument of each function call. Arguments can either

be supplied by the scope itself, or by a return value from a function call.

e Detect the destinations of each return value of each function call. Return values
can be used by the scope and in other function calls as an argument. Remember

that each return value can have multiple destinations!

Note that the last two items in the list are very much related. The destinations
of many return values will be arguments to function calls. Any argument that is not
supplied by a return value must be supplied by the scope. We use this result in the
optimization pass.

We will describe how to collect this information as a series of algorithms, since the
procedures involved are quite complex. All of the algorithms occur in the compiler
as an optimization pass. So, when an algorithm defines a structure, it means in
the optimization pass, and not in the graphical dataflow program that the compiler
is compiling. When the algorithm mentions inserting something, it means to insert
that into the graphical dataflow program being compiled. Futhermore, our algorithms
operate on an abstract syntax tree (AST) representation of the program. We assume
that this AST representation has a node type for ’scope’ that represents a new scope.

For a first pass through the scope, the optimization pass collects the information
it needs to initialize the activation records for the function calls in its scope, and per-
forms program transformations that can be made along the way with the information

it collects, such as inserting the code to wait for return values.

//This is used to track the destinations of each return value.
//Note that this is different from return_locations! return_locations
//is a structure that exists at runtime. This structure exists during the
//compiler optimization pass.
define a new structure called return_destinations that contains:

a reference to one return value node

a list called destinations of variable and function argument nodes

initialize function_calls, a list of function call nodes
initialize return_destinations_list, a list of return_destinations

43

for each child node of the scope body:
//This child scope will be processed later using this procedure.
if node is a scope node:
skip over scope node
//Note that calls to library functions are ignored and unmodified.
else if node is a function call to a user defined function:
add function call node to function_calls
for each return value:
create a return_destinations structure
associate the return_destinations structure with the return value
add return_destinations to return_destinations_list
for each argument:
if source of argument is a return value in return_destinations_list:
add argument to destinations in the return value’s return_destinations structure
else if node references a return value in return_destinations_list:
//See Section 3.2.5 for details on this code.
insert code just before this node to check the counter
//The return values will no longer exist when we remove the function
//call, so we need a new local variable that the function will write to
//when the return value is available.
replace reference to return value with a new local variable
add new local variable to the list of destinations for the return value

This information is enough to enable the compiler to generate the code to allocate
the activation records at run time, and to initialize them properly, by following this

procedure:

//This structure only exists to associate function calls with
//their activation records.
define a new structure called ar_association that contains:

a reference to the address of an activation record

a reference to a function call node

initialize ar_associations, a list of ar_association structures

go to the start of the scope

//Allocate and instantiate most parts of each activation record

for each function call in function_calls:
insert a new local variable of type void*
//Note that this call to the runtime library will need the size of the activation
//record as an argument. However, this value cannot be calculated until late in the
//compilation. We can insert a symbol reference for this value at this point of the
//compilation with the name FUNCTIONNAME_ARSIZE. The algorithm in Section 3.2.9.3
//will calculate and set the values of these symbols.
insert runtime library call to allocate the activation record for the function call,

and to store result of call into new local variable

add local variable to a new ar_association structure
add function call to the ar_association structure
//Since counter and isRunning are one machine word,
//these two steps can be made in one instruction by

44

//initializing the word to 2%number of arguments

insert code to instantiate counter to the number of arguments to the function call

insert code to initialize isRunning to O

insert code to initialize function entry point to the address of the start of the function
//This address should be obtainable using the label created when the

//function entry point was created.

insert code to initialize program counter to the start of the body of the function

//Instantiate the return_locations structures for each return value of each activation record
for each ar_association in ar_associations:
for each return value of the function call in the ar_association:
insert a return_locations pointer to act as the head of the return_locations struct
insert code to initialize the local variable to NULL
for each destination in its return_destinations structure:
insert code to dynamically allocate a return_locations struct
insert code to initialize the next pointer in the struct to the head
insert code to initialize the ar_ptr pointer to the activation record that
contains the destination
if the activation record is the scope that the function call belongs to:
//Destination is a local variable in the scope, so its address will later be
//determined by the compiler.
insert code to calculate the offset by subtracting ar_ptr from the address
of the destination

else:
//0therwise, it is an argument to a function, which is at a location
//that we define -- it’s in the arguments section of the function

//call’s activation record!
//This offset can be calculated using the argument ordering established
//elsewhere, along with the sizeof operator.
calculate the offset of the argument in the destination activation record
insert code to set the offset of the struct to this constant

insert code to make this return_locations struct the new head

insert code to initialize the return_locations pointer for this variable in
the activation record to the address stored in the head.

At the end of all of this, the scope will have code at the start to allocate and
initialize its activation records. The information generated by this entire procedure
will be used again in Section 3.2.4, where we describe how to insert the code to write

arguments into activation records.

3.2.3.2 Adding a Constant to counter

We established in Section 3.1.5.2 that the value of counter takes on a new mean-
ing after an activation record has all of its arguments. Specifically, it becomes the

number of obtainable return values that the function will need to use during execu-

45

tion. 'Obtainable’ means that these return values are supplied by the closed set of
function calls that are able to execute without any direct or indirect dependencies
on the current function. This closed set expands during runtime as the function re-
solves its dependencies with function calls by writing its return values into activation
records, and by launching activation records at the start of scopes that do not require
any arguments. In this section, we will discuss the latter case. For the former case,
see Section 3.2.4.

The value of counter should be managed according to the algorithm below. We
make use of a list of concurrent function invocations that we call executingFunctions.
This list contains the previously described closed set of function calls. Note that this
list corresponds to a function, and not just a scope! This list only exists during the
algorithm, and is not an entity during runtime.

For each scope in the function [including the function’s main scope]:

1. Add all of the concurrent function invocations in the current scope that do not

require any arguments to executingFunctions.

2. Add any concurrent function invocations in the current scope and parent scopes
that only receive arguments from functions in executingFunctions to executingFunctions,
since these functions will eventually execute with no further input from the cur-
rent function. Note that this only applies to concurrent function invocations
not already in executingFunctions. Repeat this step until no new concurrent

function invocations are added to executingFunctions.

3. As the first instruction in the scope, atomically add the total number of re-
turn values that the entire function uses from all of the concurrent function

invocations just added to executingFunctions to counter.

46

3.2.3.3 Launching Activation Records that Require No Arguments

The final program transformation that occurs at the start of a scope is launching
activation records that require no arguments. It is perfectly legal to define a function
in our graphical dataflow language that takes no arguments. These functions will be
able to launch as soon as their activation records are allocated. So, after the code
that adds a constant amount to counter, the optimization pass will add calls to
the runtime library to execute any activation records that it allocated that have a

counter of 0.

3.2.4 Writing Arguments into Activation Records

Using the information from the algorithms described in Section 3.2.3.1, we can
insert code to write the function call arguments that the scope is responsible for
providing into the appropriate activation records. We also have to delete the function
call nodes since, in our graphical dataflow language, functions only execute when they
have all of their arguments!

We will describe this process as an algorithm. As with the algorithms defined
in Section 3.2.3.1, this algorithm is executing inside the compiler as an optimization

pass during the compilation of a graphical dataflow program:

for each child node of the scope body:
if node is a scope node:
skip through statements until subscope ends
else if statement is a function call:
//See below for this procedure
calculate the constant counter increase that will be caused by this
insert code to atomically increment counter by this constant
for each argument that is not supplied by a return value:
//See below for this procedure.
calculate the address of the argument in the activation record
insert code to write argument into function call’s activation record
insert code to atomically decrement the function call’s activation record’s
counter and isRunning word by 2
insert code to launch the activation record if its counter and isRunning word is 0O
remove function call from scope body

47

This algorithm leaves two subprocedures undefined: how to determine the con-
stant to increment counter by, and how to calculate the address of an argument in
an activation record.

A similar method to what was described in Section 3.2.3.2 can be used to find
the constant to increment counter by. It reuses the executingFunctions list that

is defined in the compiler for the function that the scope occurs in:
1. Add the function to executingFunctions.

2. Add any concurrent function invocations in the current scope and parent scopes
that only receive arguments from functions in executingFunctions to executingFunctions,
since these functions will eventually execute with no further input from the cur-
rent function. Note that this only applies to concurrent function invocations
not already in executingFunctions. Repeat this step until no new concurrent

function invocations are added to executingFunctions.

3. As the first instruction in the scope, atomically add the total number of re-
turn values that the entire function uses from all of the concurrent function

invocations just added to executingFunctions to counter.

For calculating the offset of an argument in a function call’s activation record, the

algorithm can simply add the following together:

Offset = Address of Activation Record + Offset where return_locations structs begin
+ # of return values * size of a pointer + size of counter and isRunning word
+ sum of the size of each argument that occurs before this argument in

the argument ordering (see Section 3.2.2)

All of these numbers except the address of the activation record are available at

48

some point during the compilation process, so it is possible to calculate and insert a
constant offset into the program rather than have the program calculate it at runtime.

It would simplify the runtime calculation to:

Offset = Address of Activation Record 4+ Constant Offset

As a side note, we could optimize the argument writing procedure to write the
arguments into an activation record once they are available, rather than at the location
where the function call occurs in the C representation. Namely, the optimization pass
could find the latest point in the scope where one of the arguments to the function call
was modified, and write the arguments into the activation record there. However, this
adds some issues to our procedure for determining the constant to increment counter

by. Namely, look at the following code:

begin scope
int a = 2;

int b = firstFunc();

int ¢ = b+1;

int d = secondFunc(c);
int e = thirdFunc(a, d);

int £ = d+1;
end scope

Going strictly by the optimization, we could insert the code to increment counter
and write a into thirdFunc’s activation record directly after int a = 2. counter
should be increased by 1, since the return value e is used in an operation. Now, the

code looks like this:

begin scope
//counter is initialized to 1, due to firstFunc()
counter = 1
runtime library call to start firstFunc
int a = 2;
increment counter by 1
//counter may be 2 if firstFunc() has not returned yet.
write a into thirdFunc’s activation record
atomically decrement thirdFunc’s counter
//thirdFunc cannot possibly have a counter of 0, since it relies on the return value
//from secondFunc which receives an argument from an operation that occurs later on

49

//in this scope.
launch thirdFunc if its counter is O and isRunning is O
//b is a return value from firstFunc, so we need to make sure it is available before
//using it (e.g. check that counter is 0). Counter is at most 2 at this point. However,
//it will NEVER decrement to O; it expects firstFunc to decrement it once, but it cannot
//because it is waiting for an argument from secondFunc, which is waiting for this
//operation to complete! We have deadlock!
if counter > O
suspend //Represents entire suspension process
int ¢ = b+1;
increment counter by 1
write c into secondFunc’s activation record
atomically decrement secondFunc’s counter
launch secondFunc if it has a counter of 0 and isRunning is O
if counter > 0O
suspend //Represents entire suspension process
int £ = et+l;
end scope

There are probably ways to get around these deadlock situations (e.g. changing

where counter is incremented)?, but they are outside the scope of this project.

3.2.5 Waiting For Return Values

In Section 3.2.3.1, we determined where to place the procedure to wait for a return
value from a function. In this section, we will explain how this procedure works.

First off, this procedure does not have to run every time we use a return value. If
the function has checked counter previously, and counter has not been incremented,
then counter must be 0. Thus, this procedure only needs to execute if counter has
been incremented since the last counter check.

Section 3.1.5.2 gives an excellent overview of the procedure underlying this pro-
gram transformation. It translates nicely into the following pseudocode that should
be inserted by the optimization pass in the compiler just before a return value is used

(provided that counter has been incremented since the last counter check):

4This position needs to be selected carefully. counter is unsigned, so it needs to be incremented
in a place that is guaranteed to execute before the function that is going to decrement it, otherwise a
function could try to decrement it when it is 0. But, it cannot execute too soon, or else the deadlock
situation will occur.

20

unsigned int savedCounterWord = current value of the counter and isRunning word in the AR
//The counter and isRunning word will be at least 1, since isRunning is set to 1.
if savedCounterWord > 1:
//See note below about register saving.
save the registers used by the function into the activation record
//There should be a node in the compiler that represents the address of the
//instruction that a node represents. Use this to retrieve the address of the
//node that represents the instruction that uses the return value.
save the address of the operation that uses the return value into the program counter
field of the activation record
//compare_and_swap returns a boolean.
//Repeatedly try to flip the isRunning bit to O.
while !compare_and_swap(address of counter and isRunning word,
savedCounterWord, savedCounterWord-1):
savedCounterWord = current value of the counter and isRunning word in the AR
//A value of 1 indicates a counter of O with isRunning set to 1.
if savedCounterWord ==
//Jump to the instruction that uses the return value since the counter is O.
//We saved this address into the program counter field.
jump to the address in the program counter field of the activation record
call the runtime library function to suspend the activation record

One part of that algorithm that needs clarification is the process to save the
registers used by the function into the activation record. In most compilers, it is not
possible to do this at the abstract syntax tree (AST) level; registers are assigned near
the end of compilation. Thus, the optimization pass should insert a dummy node at
this part of the compilation that can be identified later on in the compilation process

when registers are assigned and replaced with actual code.

3.2.6 for Loops

The body of a for loop is treated as a new scope. Meaning, at the top of the
loop body, the activation records for each function call used in the loop body will be
allocated and initialized. The function calls made in the loop body will be converted
to concurrent function invocations. for loops are not massively parallel like foreach
loops; only one iteration of the loop can execute at once due to recirculating values
and stop conditions causing dependencies between loop iterations.

However, there is plenty of existing research concerning how to automatically

parallelize for loops, so it is possible that a future implementation of our graphical

o1

dataflow language will attempt to parallelize for loops (9).

3.2.7 foreach Loops

There are many bodies of work that explain how to parallelize foreach loops.
In particular, the Fortress programming language has implicitly parallel foreach
loops (6). These methods could be applied to our project, but applying them is

outside of the scope of our implementation.

3.2.8 Function Termination

When a function ceases executing, it calls a runtime library method that returns

its thread to the threadpool. More information about this can be read in Section 3.3.4.

3.2.9 Late Compilation Changes

A number of details, mentioned in previous sections of this chapter, cannot be
resolved until later on in the compilation process. This subsection deals with these

few loose ends.

3.2.9.1 Register State Saving and Loading

When suspending and resuming activation records, the program needs to save and
load its register states, respectively. Each function uses some subset of the registers
available on the CPU, so we have decided that the activation record of each function
will only save the registers used by the function.

One important detail that needs to be sorted out is the order of the saved registers
in each activation record. We assume that there is an unambiguous way to sort the
registers on the CPU.

In previous algorithms that operated on the abstract syntax tree representation

of the graphical dataflow program, we inserted dummy nodes for register loading and

52

saving procedures. We will be referencing them in the following algorithm, which
describes how to insert the code to save and load registers. Note that this procedure

takes place inside the compiler as an optimization pass:

for each function in the program:
initialize func_register_list, a list of registers
//We do not know what internal representation compilers typically use at this stage
//(GCC uses RTL), so we use the generic term ’statement’ to mean the representation
//of an instruction.
for each statement:
if the statement references a register that is not in func_register_list:
add the register to func_register_list
sort func_register_list using the unambiguous sorting method that we assume exists
//Now, we will look for the ’dummy nodes’ inserted previously into the AST. They should
//have been constructed in such a manner that they will be recognizable at this late stage
//of compilation.
for each statement:
if the statement is a dummy node representing register loading:
calculate the offset in the activation record where saved registers appear
insert code to add the address of the activation record to this offset
insert code to save the result of the operation into a new local variable called
register_address
//This list will already be sorted in the same order that they are saved into the
//activation record.
for each register in func_register_list:
load the value saved at the address in register_address
add the size of the register to register_address
remove the dummy node statement
else if the statement is a dummy node representing register saving:
calculate the offset in the activation record where saved registers appear
insert code to add the address of the activation record to this offset
insert code to save the result of the operation into a new local variable called
register_address
//This list will already be sorted in the same order that they are saved into the
//activation record.
for each register in func_register_list:
save the value in the register into the address contained in register_address
add the size of the register to register_address
remove the dummy node statement

3.2.9.2 Changing Argument Source

One common optimization that compilers perform is passing arguments in registers
whenever possible. Unfortunately, this technique is impractical, since we write every
argument into the activation record of a function call. We need to change the low

level code to use the arguments that are stored in the activation record rather than

93

registers.

An easy way to do this is to insert code at the start of a function body to load
arguments into the registers that the function expects them to be in. There needs
to be some metadata available in the compiler that specifies this information. This

process allows us to modify the program with minimal changes at the register level.

3.2.9.3 Calculating AR Size

In order to tell the runtime library to allocate an activation record, we need to
know the size of the activation record of each function. This information can only be
calculated late in the compilation process. In Section 3.2.3.1, we inserted a reference
to a symbol with the name FUNCTIONNAME_ARSIZE when we needed to use this value.
Now, we will define the value behind these symbols.

At a late phase of compilation, the compiler will determine the stack size of each
function. This value represents the size of the part of the activation record that stores
local variables. We can use this, along with other information we know, to calculate

the total size of the activation record:

Activation Record Size = size of counter and isRunning machine word
+ size of a pointer + # of return values * size of a pointer
+ size of program counter
+ combined size of all of the registers that the function uses

+ combined size of all of the arguments + stack size of function

This value needs to be calculated for each individual function, and stored into a

symbol named FUNCTIONNAME ARSIZE.

o4

3.3 Runtime Library

The main duties of the runtime library are to allocate space for the activation
records, manage a ready queue for activation records that are ready to execute, and
to manage a threadpool that operates on the ready queue. Some of the functionality
of the runtime library could be implemented in hardware in the future, but this section

describes their implementation in software (1).

3.3.1 Allocating Activation Records

The runtime library provides a function that allocates an activation record. The
size of the activation record of a function is known toward the end of the compilation,
and must be exported as a symbol in the executable so it can be accessed when
needed. In any case, the runtime library is provided with the required size of the
activation record, and allocates it on the heap. It returns a pointer to the newly

allocated activation record.

3.3.2 Ready Queue

The ready queue is a simple queue of activation records that are ready to execute
on the CPU, but are waiting for a thread.® Access to the ready queue must be
synchronized somehow to avoid race conditions. The design of the ready queue is
beyond the scope of this MQP; the current design immediately runs every activation

record that is ready to execute.

3.3.3 Resuming Activation Records

When an activation record’s counter hits 0, it is ready to resume execution on

the CPU. The runtime library should have a method for resuming activation records

SWhile it is called the ready queue, the activation records have no required order of execution,
so an unordered data structure would work as well.

95

that does the following;:

1. Sets the isRunning flag of the activation record to 1.

2. Adds the activation record to the ready queue.

3.3.4 Thread Pool

The runtime library manages a threadpool. Each thread will take an activation
record from the ready queue and execute it on the CPU. When a thread finishes
executing a function, it deallocates its activation record, and returns its thread to the
threadpool, where it may be assigned to execute another function. If a function sus-
pends (see Section 3.1.5 for details), it calls a runtime library method that returns the
thread to the threadpool without deallocating the activation record of the function.

The threads in the threadpool only need to be created once, and can be reused
for the duration of the program. Many thread pool implementations prune threads
from the pool if the demand for threads decreases, and add additional threads if the
demand increases. Using a thread pool greatly decreases the number of times that we
run the expensive thread creation process, which requires a trip through the operating
system. In the future, we hope to develop lightweight threads that do not use a stack,

and are created and managed in userspace to avoid expensive operating system calls.

o6

CHAPTER IV

GCC Background

Before delving into implementation specifics, we must explain a few details about
the internal workings of GCC. The GNU Compiler Collection, or GCC, is a compi-
lation system that evolved from the GNU C Compiler. Because it supports a wide
number of languages, GCC’s core has to compile and optimize programs in a language
independent manner. Figure 4.1 shows the main phases of the GCC compiler. Let’s

discuss these phases in detail.

Language GENERIC
Front End Trees

—| GIMPLE |—{ RTL [—{ Assembly

Figure 4.1: The GCC compilation pipeline.

4.1 Language Front End

GCC language front ends take care of language-specific details, such as lexical
analysis and parsing. Language front-ends produce a GENERIC tree representation
of the program, which is passed off to GCC’s core. The GCC plugin hooks into the
C language front end to save the GENERIC tree nodes that represent functions and

struct definitions in the runtime library from the garbage collector.

57

4.2 GENERIC Trees

GENERIC trees are GCC’s take on abstract syntax trees. This program represen-
tation exists primarily to provide a language-independent representation of an entire
function. Each function is represented as a single GENERIC tree structure. GCC
also allows languages to extend GENERIC trees with language-specific tree nodes,
but this project did not need to deal with this additional feature because C programs
only use the core GENERIC tree nodes.

After receiving the GENERIC tree representation of a program, GCC combs
through it and garbage collects tree nodes that it is certain will not be needed for
compilation. For example, it will garbage collect nodes that represent library func-
tions and structs if they are not referenced by any function. So, if a program includes
stdlib.h and only uses the atoi function, GCC will garbage collect the tree nodes
that represent all of the other functions in stdlib.h to save memory. At this stage of
the program, our compiler plugin will prevent the tree nodes that represent functions
and struct declarations from the runtime library from being garbage collected.

When this process is complete, GCC does not perform any further optimizations
on the GENERIC tree representation of the program. Instead, it converts the program
into GIMPLE tuples (through a process that GCC calls gimplification), and proceeds

to the next phase of compilation.

4.3 GIMPLE

GIMPLE is a tuple-based high-level internal representation language based upon
and named after the SIMPLE intermediate representation used in the McCat compiler
at McGill University (10). While the GENERIC tree structure exists to provide a
language-independent way to represent functions, GIMPLE exists to provide a more

restrictive internal program representation that is suitable for optimization passes.

o8

There are GIMPLE tuple equivalents for most C statements, such as function
calls, variable assignments, conditionals, return statements, etc. Most of these tuples
have three or fewer elements (with function calls being a notable exception, since they
require an element for each function argument). A list of these tuples can be seen in
the GIMPLE chapter of the GCC Internals manual (11).

This phase of the compiler is broken up into three stages: High GIMPLE, Low
GIMPLE, and SSA GIMPLE. Each of these forms is more restrictive than the last, as
the GIMPLE representation will eventually need to be translated into the low-level

RTL representation.

4.3.1 High GIMPLE

GENERIC trees are converted to a form of GIMPLE called High GIMPLE. Com-
pared with other GIMPLE representations, High GIMPLE contains tuples for explicit
lexical scopes and exception handling. Any optimizations that operate on these high-
level structures will run on this representation.

At this stage of compilation, the compiler plugin will perform most of the program
transformations described in Chapter III, including scope transformations.

Eventually, the GIMPLE tuples that are exclusive to the High GIMPLE repre-
sentation are converted to simpler, but semantically equivalent, tuples. The result of

this transformation is Low GIMPLE.

4.3.2 Low GIMPLE

Low GIMPLE is the product of linearizing (or lowering/inlining) the lexical scopes
and exception handling tuples from High GIMPLE. Other than these changes, the

representation remains the same.

29

4.3.3 SSA GIMPLE

SSA GIMPLE, or Static Single Assignment GIMPLE, is a form of GIMPLE where
every variable is assigned exactly once. GCC transforms the GIMPLE representation
of a variable reference to include a ’version’ number of the variable. Every time a
variable is reassigned, the version number increases by 1, and all further references
to the variable refer to the new version. Optimizations that run on this subset of
GIMPLE typically eliminate unnecessary variables and variable assignments, e.g.:

int someFunction ()

{

//This assignment is pointless.

int a = 3;
a = 4;
int b = 3;

//The variable ¢ is never used.
int ¢ = 2;

return sum(a, b);

...becomes:

int someFunction|()
{
//In this form, it is evident that a_l and c_1
//are mnever used.
int a_1 = 3;
int a_2 = 4;
int b_1 = 3;
int c_1 = 2;

return sum(a_2, b_1);

It is possible that a variable reference may refer to multiple versions of a variable

due to conditional statements. In this case, GCC stores a list of possible versions that

60

may be referenced at that point in the code. There are many other complications,
which are explained in part in Chapter 13 of the GCC Internals Manual (11), and in
a research paper that describes the variant of SSA that the GCC developers decided
to implement (12).

This is the lowest form of GIMPLE. It still contains all of the types of tuples
contained in Low GIMPLE, such as function calls.

Once all GIMPLE optimization passes complete, GCC translates SSA GIMPLE

into a low-level internal representation of the program called RTL.

4.4 RTL

RTL, or Register Transfer Language, is an LISP-like internal representation lan-
guage. The program is broken up into statements called insns, which are very similar
to assembly commands. The origin of the term insn is not clearly documented, and
may merely be a shortening of the word ”instruction”. The semantics of each insn
is meant to be close to an assembler instruction. Hence, RTL is sometimes referred
to as 'assembly-with-sugar’.

This phase of the compiler can be broken up into two parts: nonstrict RTL, and

strict RTL.

4.4.1 Nonstrict RTL

SSA GIMPLE is transformed into nonstrict RTL through an expansion process.
In nonstrict RTL, GCC assumes that there are an unlimited number of registers on
the target machine, and optimizes the program under this assumption. This allows
optimizations to modify the program without worrying about the details of register
allocation.

Nonstrict RTL is eventually converted into Strict RTL.

61

4.4.2 Strict RTL

In strict RTL, each register referred to by an insn directly corresponds to a register
on the target machine. Memory addressing changes may be made to adjust to the
target platform, as well. In addition, in this version of RTL, each insn is associated
with a set of machine instructions.

At this stage of compilation, we will insert the insns needed to suspend and resume
each function, calculate the size of each activation record, and to align the contents

of each activation record.

4.5 Assembly

Once optimizations are complete on the strict RTL representation of the program,

GCC uses a description of the target machine to convert it into assembly code.

62

CHAPTER V

GCC Plugin Implementation

This chapter will detail our efforts to implement the parallelization process de-
tailed in Chapter III as a GCC plugin for GCC version 4.5.2. Please note that, due to
accessibility issues with the GCC codebase, this plugin was never finished. Thus, this
chapter should be treated as a rough outline of how one would go about implementing
our parallelization process in GCC.

The plugin must hook into three distinct phases of the compiler. First, it must
hook into the parsing phase to prevent the GCC garbage collector from garbage
collecting the GENERIC tree nodes that represent important runtime library struct
definitions and functions. Second, it must register a High GIMPLE optimization
pass to perform the majority of the high-level program transformations described
in Chapter III. Finally, it must register a strict RTL pass to perform the low-level
program transformations described in Section 3.2.9. However, before describing all of

that, we will explain how the GCC plugin architecture works.

5.1 GCC Plugin Architecture

GCC provides a wide variety of places where a plugin can "hook’ into the compila-
tion process by registering a callback function with the compiler. When the compiler

reaches one of the hook points during compilation, it will call any callback functions

63

registered with it.

Optimization passes are a special type of hook. They must register with the GCC
pass manager, and are required to specify, relative to another optimization pass, when
it should execute.

For more information on how the plugin architecture works, see Chapter 23 of the
GCC Internals documentation (11). Otherwise, the above knowledge is sufficient to

gain a general understanding of the plugin described in this chapter.

5.2 GENERIC Tree Hook

The compiler plugin needs register callbacks with two hooks that occur during the
parsing phase. We will explain each of these separately.

The first hook is PLUGIN_FINISH_TYPE. This event occurs whenever the parser
finishes parsing a type into a tree node (e.g. a struct). Thus, the function registered
with this event will execute multiple times. The goal of this hook is to save a copy of
the return _locations struct before it is garbage collected. The callback function is
given a pointer to the tree node representing the type that was just parsed. All the
function needs to do is check if the name of the node is return_locations and, if it
is, save a copy of it for use in later optimization passes.

The second hook is PLUGIN_PRE_GENERICIZE. This hook is executed immediately
after the parser finishes parsing a file, but before the garbage collector runs to remove
unreferenced nodes. The compiler plugin uses this opportunity to save a copy of the
tree nodes that represent important runtime library functions that will be called by

the parallelized version of the graphical dataflow program.

64

5.3 High GIMPLE Pass

The High GIMPLE pass is responsible for most of the program transformations
described in Chapter III. It will execute after the first High GIMPLE pass, which is
called warn_unused_result. We chose to place this pass here because the next pass
begins the process of lowering High GIMPLE into Low GIMPLE.

The callback function registered for this event will be called once for each function
in the graphical dataflow program being compiled, which is perfect for the program
transformations described in Section 3.2. In this section, we will touch upon the
changes that this callback function will make to the internal representation of each

function while referring back to Chapter III.

5.3.1 Start of Function Label

First, the plugin will insert a GIMPLE_LABEL right before the first GIMPLE state-
ment in the function body to denote the start of the function. Then, it will export a
global symbol called FUNCIONNAME_INIT_PC that stores the address of the instruction
that this label points to. This allows other functions that call this function, including
those defined in other files, to refer back to it when initializing the program counter
field for the function call’s activation record. This has to be done due to the function

entry point process outlined in Section 3.2.1.

5.3.2 Local Variable Representation of Activation Record Elements

Next, the plugin will define some new local variables in the function to represent

important activation record items:

e An unsigned int that represents the counter and isRunning word.

e A void* that represents the saved program counter field.

65

e A struct return_locations* for each return value’s return_locations linked

list.

The strict RTL pass in Section 5.4 will eventually modify the addresses of these
local variables to their proper offsets in the activation record. These variables must
be marked as volatile to prevent the compiler from optimizing them into registers.
The variables do not need to be initialized, since they should already have values in

the activation record when the function begins executing.

5.3.3 Allocating and Initializing Activation Records

Now, the plugin is ready to insert the needed code to allocate and initialize acti-
vation records, following the algorithms in Section 3.2.3.1 for each scope within the
function. These algorithms were carefully written so that they correspond nicely to
the various GIMPLE tuples. For example, a GIMPLE_BIND tuple can be treated as a
scope tree node. A description of each of these tuples can be found in chapter 12 of
the GCC Internals Manual (11). Note that whenever the plugin needs to reference
the size of a function’s activation record, it should reference a global symbol with
the name FUNCTIONNAME ARSIZE. The strict RTL pass will retroactively define this
symbol for every function, since this information is not available until that stage of

compilation.

5.3.4 Adding Constants to Counter

The next transformation is to follow the procedure in Section 3.2.3.2 to add a
constant to counter when needed, and to follow the procedure in Section 3.2.3.3
to launch activation records that require no arguments at the same time. These
procedures should be applied to every scope within the function. Also, any modi-
fication to counter must be done with an atomic instruction. Luckily, GCC has a

number of atomic built-in functions that are described in Section 6.49 of its documen-

66

tation (13). The plugin will use the __sync_fetch and_add function to add a constant

to the counter.

5.3.5 Writing Arguments into Activation Records

The plugin can now write arguments into the activation records that it had previ-
ously allocated by following the procedure in Section 3.2.4 for each scope in the func-
tion. Note that, once again, the plugin will need to use the __sync_fetch_and_add

function to add a constant to the function’s counter.

5.3.6 Waiting for Return Values

Next, the plugin will insert the code to wait for return values as described in
Section 3.2.5. The atomic compare_and swap function referenced in that algorithm
is present in GCC as the internal function __sync_bool_compare_and swap. At this
compilation phase, the plugin cannot insert the required code to save the registers’
states; that will need to be inserted during the strict RTL pass. It can, however, save
the address of the statement that uses the unavailable return value into the program
counter field of the activation record, since it previously declared a local variable that
represents the address of this field. In addition, the strict RTL pass can figure out
where it needs to insert the code to save the registers’ states by looking for insns
that modify the program counter, so no '"dummy nodes’ are required to mark these

locations.

5.3.7 Function Termination

Finally, the plugin should insert a call to the runtime library to terminate the
function just before the GIMPLE RETURN statement, as mentioned in Section 3.2.8.
This allows the runtime library to deallocate the activation record, and to return the

thread to the threadpool.

67

5.4 Strict RTL Pass

After all of the program transformations from the High GIMPLE pass are in
place, the plugin is ready to perform the low level changes required to tie everything
together. This pass will execute immediately after the postreload RTL pass, which
performs register allocation and converts Nonstrict RTL into Strict RTL.

Like the High GIMPLE pass, the RTL callback function will be called once for

each function defined in the graphical dataflow program that is being compiled.

5.4.1 Suspend/Resume Code

We need to create a list of registers that this function uses to determine the size
and layout of the Saved Registers’ States field of the activation record. All we need
to do is perform a linear scan of the RTL statements in the function, and add any
registers used in the statements to a list. We can use the order of that list as the
layout of the Saved Registers’ States field.

Next, at the very start of the function, we need to insert the code for the function
entry point that resumes the function. Using the list and the size of each register
as guidance, insert RTL statements to load the saved registers from the activation
record into the actual record. The offset for each can be calculated as an offset to the
stack frame pointer. At the end of all this, the pass should insert an RTL statement
to jump to the address contained in the Saved Program Counter field of the activation
record.

Finally, we can use this information to insert the appropriate RTL statements to
suspend a function. Even though the RTL form of the program is close to assembly, it
still links any RTL statement that refers to a variable from GIMPLE to that variable’s
original name. In Section 5.3.2, we defined a new local variable for the saved program
counter field. Any reference to this variable is part of a suspend process. Thus, we

can do a linear search for RTL statements that reference the saved program counter

68

field variable, and insert the RTL statements to save the function’s register values

into its activation record just before it.

5.4.2 Aligning Activation Records

The RTL pass will first need to align the content in each function’s activation
record. We can use the machine specific information available at this level to calculate
the exact offset of each item in the activation record.

Thus, for each of the local variables defined in the High GIMPLE pass, as described
in Section 5.3.2, we can find each reference to the variable, and change it to the proper
memory location, inserting an RTL statement to load it into a register if needed.

The process goes as follows:

1. Find the first reference to the variable. It should involve a memory location,

since we marked these variables as volatile.

2. Change the address used in the RTL statement to the correct address in the
activation record. This can be calculated as a negative offset to the virtual

‘stack frame’ pointer that GCC uses.

3. Search the function for further references to this address, and change each to

the appropriate address in the activation record in the same manner.

69

CHAPTER VI

Conclusion

6.1 Conclusion

Over the course of this project, we succeeded in developing a runtime model for
fine-grain parallelism in graphical dataflow programs at the level of the function call.
This model consists of changes to the content of each function’s activation record,
changing their location from the stack to the heap, and changing the logic of each
function to take advantage of these changes. The runtime model offers computa-
tionally cheap synchronization among parallel function calls through a clever use of
atomic instructions, such as compare-and-swap. Operating system calls are minimized
by using a thread pool to manage threads that execute concurrent function invoca-
tions. Overall, this runtime model is designed to minimize the overhead required for
fine-grain parallelism.

In addition, we outlined a method to implement this runtime model on a simple
graphical dataflow language as an optimization pass within a compiler. This process
involves an intermediate C representation that we used as a vehicle to get the graphical
dataflow programs into compilers, and a runtime library that implements core features
of the runtime model, such as thread pool management, activation record scheduling
and activation record allocation. As a final detail, we gave an overview on how

these program transformations can be performed from within GCC to implement the

70

runtime model in practice.
Overall, this project lays the ground work for a future project that can use the
information in this report to create an implementation of the runtime model. It also

opens the door to a number of other projects, which are discussed in the next section.

6.2 Future Work

6.2.1 Shifting from GCC

GCC started out as the GNU C Compiler in 1987, and eventually became the
GNU Compiler Collection when it started supporting additional languages. Because
it has been in active development for over 20 years, it is a large project with many
components. As mentioned in Chapter IV, it has three main internal representations
for programs (GENERIC trees, GIMPLE, and RTL), with different forms of each. The
compiler uses a number of methods to decrease its memory footprint, including reusing
GENERIC tree nodes whenever possible, which plugin developers must directly deal
with. It provides a plugin architecture, which essentially consists of a collection
of key header files directly from GCC’s source code. Finally, its lengthy internal
documentation is often short on details, and appears to be written as a quick reference
guide for experienced developers. In short: writing a GCC plugin to perform program
transformations on its internal representations is very difficult for people who are new
to the GCC codebase. These issues prevented us from completing a functional GCC
plugin to implement the proposed runtime model described in Chapter III within the
time available for the project.

Future projects may wish to investigate implementing the parallelization process
as a plugin for other compilers. In particular, LLVM (Low Level Virtual Machine)
looks promising. It has extensive documentation describing how to extend LLVM,

complete with examples, on its website (14). It may even be possible to write a lan-

71

guage frontend for LLVM for our proposed graphical dataflow language, which would
avoid requiring an intermediate C representation as a vehicle for getting graphical
dataflow programs into the compiler. One final advantage is that LLVM is written in

C++, so it can benefit from the abstractions that that language offers.

6.2.2 Loops

This project sidesteps the issue of automatically parallelizing loops. Much work
has already been done in that area using other languages (9). Future projects could
look into ways to apply the large body of research on parallelizing loops to our runtime
model. In particular, we know that foreach loops are trivially parallelizeable, and
could benefit from being parallelized in a similar manner as loops in the Fortress

programming language (6).

6.2.3 Runtime Library

While we describe the duties of the runtime library in this report in Section 3.3,
we do not discuss its implementation in detail. We know that the runtime library
needs an efficient heap allocator (such as the Linux slab allocator), a threadsafe
(but fast!) queue! implementation for activation records that are ready to execute,
and a threadpool implementation. Future projects could investigate efficient ways to

implement these duties.

6.2.4 Graphical Dataflow Program Development Environment

Chapter II outlines a simple graphical dataflow language, and a C representation of
programs written in it. Future projects could implement a GUI program to construct

graphical dataflow programs in this language.

"While we say the word queue, the activation records have no required order of execution, so an
unordered data structure would work as well.

72

BIBLIOGRAPHY

73

1]

[10]

BIBLIOGRAPHY

S. Kumar, C. Hughes, and A. Nguyen, “Architectural Support for Fine-Grained
Parallelism on Multi-core Architectures,” Intel Technology Journal, vol. 11, no. 3,
pp. 217-226, Aug. 2007.

D. Lea, “A java fork/join framework,” 2000, [Accessed: Apr. 23, 2011]. [Online].
Available: http://gee.cs.oswego.edu/dl/papers/fj.pdf

E. Archambault, J. Hogeboom, J. Montgomery, C. Pardy, C. Smith, and B. Tate,
“Fine-Grain Parallelism: An Investigative Study into the merits of Graphical
Programming and a Fine-grain Execution Model,” Worcester Polytechnic Insti-
tute, Mar. 2010, Major Qualifying Project, [Accessed: Sept. 6, 2010]. [Online].
Available: https://users.wpi.edu/~lauer/MQP _protected/FinalReport_PDF-
2010.pdf

Free Software Foundation, Inc., “GCC, the GNU Compiler Collection,” GNU
Project, 2011, [Accessed: Apr. 26, 2011]. [Online]. Available: http://gcc.gnu.org/

National Instruments Corporation, “NI LabVIEW - Improving the Productivity
of Engineers and Scientists,” 2011, [Accessed: Apr. 26, 2011]. [Online].
Available: http://www.ni.com/labview/

E. Allen, D. Chase, J. Hallett, V. Luchangco, J.-W. Maessen, S. Ryu,
G. L. S. Jr., and S. Tobin-Hochstadt, “The Fortress Language Speci-
fication,” Sun Microsystems, Inc., Tech. Rep., 2007. [Online|. Available:
http://research.sun.com/projects/plrg/Publications/fortressl.0beta.pdf

J. Mitchell, W. Maybury, and R. Sweet, “Mesa Language Manual,” Xerox
Palo Alto Research Center - Systems Development Department, Apr. 1979,
[Accessed: Feb. 24, 2011]. [Online]. Available: http://research.microsoft.com/en-
us/um/people/blampson/23a-MesaManual /23a-MesaManual.pdf

R. Love, Linux Kernel Development, 2nd ed. Novell Press, 2005.

M. Griebl, “Automatic parallelization of loop programs for distributed memory
architectures,” University of Passau, Jun. 2004, [Accessed: Apr. 10, 2011].
[Online]. Available: http://www.infosun.fim.uni-passau.de/cl/papers/Gri04.pdf

L. Hendren, C. Donawa, M. Emami, G. Gao, J. Justiani, and
B. Sridharan, “Designing the McCat Compiler Based on a

74

[11]

[12]

Family of Structured Intermediate Representations,” McGill Uni-
versity, 1992, [Accessed: Feb. 28, 2011]. [Online]. Available:
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.41.1069&rep=repl&type=pdf

Free Software Foundation, Inc., “GCC Compiler Collection (GCC) Internals,”
GNU Project, 2010, [Accessed: Sept. 6, 2010]. [Online]. Available:
http://gce.gnu.org/onlinedocs/gecint /

R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck,
“Efficiently computing static single assignment form and the control dependence
graph,” ACM Trans. Program. Lang. Syst., vol. 13, pp. 451-490, October 1991.
[Online]. Available: http://doi.acm.org/10.1145/115372.115320

Free Software Foundation, Inc., “GCC Compiler Collection (GCC) 4.5.2
Manual,” GNU Project, 2010, [Accessed: Apr. 18, 2011]. [Online]. Available:
http://gcc.gnu.org/onlinedocs/gee-4.5.2/gec/

The LLVM Team, “Documentation for the LLVM System,” 2011, [Accessed:
Apr. 23, 2011]. [Online]. Available: http://llvm.org/docs/

5

