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Abstract 
 

As the industrial demand for increasingly effective ultrafiltration (UF) membranes rises, the 

creation of optimized membranes has risen to the forefront of laboratory research. This project 

studies the cause and effect relationship between combinations of UF membrane design 

variables and their corresponding performance responses. Using uniform experimental design 

and linear regression techniques it was possible to produce membranes with superior 

functionality.  It was found that doping of PVC/PVB with PEG-600 or PVP could produce a 

membrane with increased rejection and water flux values which allows for industrial scale 

applications.  
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Executive summary:  
 

UF membranes are a critical part of the chemical industry. They are used mainly for the physical 

separation of particles, as they have the ability to segregate these particles based on their size. 

In recent years the application base for UF membranes has increased drastically, ranging from 

pharmaceuticals to water purification. This immense demand drives researchers to 

continuously try and produce more cost effective membranes with increased performance 

values. The efficiency of these membranes depends on a range of variables which control their 

ultimate performance. This experiment focused on controlling these variables and studying the 

performance of produced membranes in order to evaluate a cause and effect relationship. This 

relationship was in turn used with regression techniques for the development of membranes 

with superior functionality. 

 

Figure 1: Membrane separation technology: (20: Google images Conc-Polarization) 

In the present work, the effect of doping polyvinyl chloride (PVC)/ polyvinyl butaral (PVB) blend 

flat sheet membranes with different additives on the ultrafiltration performance was 

investigated. These additives include calcium nitrate, lithium chloride, poly-vinyl pyrrolidone 

(PVP), and polyethylene glycol 600 & 100 (PEG 600 & 1000). In order to conduct the experiment 

efficiently and optimize membrane functionality, Taguchi’s uniform experimental design 

method was used.  PVC/PVB blend ratios, weight percentage of the total amount of polymer, 

additive type, the weight percentage of the additive, and water bath temperature were all the 

controlled variables. These variables were combined in different amounts according to the 

experimental design method to produce ten different kinds of membranes. These combinations 

are illustrated below:  
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Table 1: The final set of design combination used to create the different membranes. 

Experiment Temperature of 
bath (A) 

PVC/PVB (Blend 
Ratio)(B) 

Wt.% of 
Polymer(C) 

Additive (D) Wt. % of 
Additive. 

(E) 

1 40 9:1 20 PVP 7 

2 40 8:2 18 LiCl 3 

3 50 7:3 10 PEG 1000 10 

4 50 6:4 21 LiCl 5 

5 60 5:5 20 PEG 1000 1 

6 60 9:1 15 CaNO3 10 

7 70 8:2 10 PEG 600 5 

8 70 7:3 21 CaNO3 1 

9 80 6:4 18 PEG 600 7 

10 80 5:5 15 PVP 3 

 

The produced membranes were tested with scanning electron microscopy, atomic force 

microscopy; Fourier transformed infrared spectroscopy, viscometers and CA goniometers. 

These tests were run in order to characterize the membranes according to their morphology, 

surface terrain, bulk functional groups, viscosity and contact angle.   The performance 

evaluations were represented using porosity, pure water flux and retention of protein particles 

through the membranes.  The main performance responses of the membranes are shown 

below: 

Table 2: Performance of membranes 

EXP # Flux (L/m^2.hr) Rejection (%) 

1 443.808 6.81 

2 89.1 52.12 

3 2164.32 9.3 

4 5388.66 0.83 

5 4026.708 5.08 

6 1203.12 8.59 

7 534.672 30.45 

8 142.38 72.57 

9 214.776 70.35 

10 889.272 34.31 
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The combination of design variables which make up the different membranes (Table 1) and 

their corresponding performance responses (Table 2) are used with linear regression in order to 

predict variable combinations which give optimum performance values.  According to the 

regression performed the following combinations are predicted to give the following optimized 

performances.  

Table 3: Combination for producing optimized membranes 

Additive Weight % 

Additive 

Bath 

Temperature 

Blend 

Ratio 

Flux(L/m^2.hr) Rejection 

PEG 1000, LiCl 1 40 90 1210.028 26.13 

PEG 600, LiCl 1 80 80 330.408 66.24 

PVP,Ca(NO3)2 1 100 10 3614.448 34.49 

PEG 600, PVP 10 50 100 187.608 83.98675 

 

From the table above it can be seen that a membrane with a PEG-600, PVP/PVC/PVB construct 

will be able to reject 84% of 20000 Da proteins with a flux of 188 liters/m2.hr. This is a good 

balance between flux and rejection and should be sought for more effective industrial 

applications.    
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Introduction 
Membranes are used widely in the chemical industry to separate solute molecules such 

as proteins on the basis of size. Ultrafiltration (UF) membranes are used to separate molecules 

around particle sizes of 10-3 to 10-6 Da*. UF membranes differ from other particle separators 

because it has an anisotropic structure; which essentially means that it has a thin layer with 

small pores that improves the selectivity while the mechanical support is provided by a much 

thicker highly porous layer.  UF membranes are used widely in the pharmaceutical, chemical 

and food industries to separate vaccines, fermentation products, enzymes and other types of 

proteins. 1 

Producers for UF equipment are constantly looking for new polymers to create 

inexpensive membranes. These membranes are required to have a balance between the cost of 

production and adequate mechanical strength and thermal/chemical resistance, ease of 

preparation and most importantly be efficient and selective. Poly-vinyl chloride (PVC) is a 

compositive resin with the benefits of abrasive resistance, acid and alkali resistance, microbial 

corrosion resistance and chemical performance stabilization. PVC is commonly used to produce 

relatively inexpensive UF membranes. Further study has been conducted to show that blending 

of PVC with other more hydrophilic polymers like poly-vinyl butaral (PVB) can improve the 

balance between membrane performance and cost of production. 2 

It is also known from previously conducted studies that additives like lithium chloride 

(LiCl), poly-vinyl pyrrolidone (PVP) and poly-ethylene glycol (PEG-600, PEG 1000) could further 

improve the performance of UF membranes. These studies focused on the performance 

variations due to a change in the amount of additive or a change in the amount of polymer. But 

these changes in performance can also be used with statistical analysis to evaluate a UF 

membrane which shows an optimum balance between efficiency and selectivity.  

The purpose of this research was to evaluate and analyze a group of membranes 

prepared from PVC, PVB and different blends of additives. This analysis helps to determine an 

optimum PVC/PVB blend and the additive which shows the largest performance improvement. 

Hence these evaluations can be used with theories of experimental design to predict a 

membrane with optimum functioning performance.    
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Background 

Ultrafiltration Membrane: 

 

Membrane filtration is a simple mechanism which uses a certain driving force (e.g. 

hydrostatic pressure) against a semi-permeable material to separate materials as a function of 

their physical and chemical properties like size and intermolecular forces. i In membrane 

separation processes, the feed is separated into a stream that goes through the membrane, i.e., 

the permeate and a fraction of feed that does not go through the membrane, i.e., the retentate 

or the concentrate. A membrane process then allows selective and controlled transfer of one 

species from one bulk phase to another bulk phase separated by the membrane.3 

 

 

 

 

 

 

 

  

The type of membrane and the process of separation is based on its nature, structure 

and/or driving force. Microfiltration (MF), nanofiltration (NF), reverse osmosis (RO) and gas 

separation (GS) use hydrostatic pressure differences as a driving force for the transport of 

selective particles through the membrane. Ultrafiltration (UF) is also one of the membrane 

processes which use pressure difference as its driving force. Ultrafiltration in its ideal definition 

is a separation technique that can simultaneously concentrate macromolecules or colloidal 

substances in the process stream. Ultrafiltration can be considered as a method for 

concurrently purifying, concentrating, and fractionating macromolecules or fine colloidal 

suspensions. 

Ultrafiltration membranes serve as a molecular sieve for particle separation. The basic 

difference between Ultrafiltration membranes and its counterparts is the size of particles that it 

separates. Ultrafiltration membranes works on particles in the range of 1000 to 500000  Da 

(where 1 Da is 1.660 538 78×10−27 Kg).  

Figure 2: Basic membrane filtration mechanism. 20: 
www.nanoglowa.com 
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 Another distinguishing feature is the asymmetric anisotropic structure of the 

membrane. In an anisotropic membrane a thin layer with small pores is formed over a thicker 

highly porous layer. The thin layer provides for the membranes selectivity and the thick porous 

layer acts as the mechanical support.  

 

 

 

 

 

 

 

 

 

 

                Figure 3: Schematic representation of symmetric and asymmetric membrane cross-section [22: Strathmann, 2001] 
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Transport Mechanism 

 

One of the most important aspects of determining the performance of an ultrafiltration 

system is the rate of solute or particle transport towards the membrane. This is measured in 

volume per unit area per unit time.  As shown in Fig. 2, the pressure difference across the 

membrane feed and the retentate and permeate side forces the solution particles towards the 

upstream surface of the membrane. If the membrane is partly, or completely, selective to a 

given solute, the initial rate of the particle transport toward the membrane, J.C, will be greater 

than the solute flux through the membrane, J.C
p
. This causes the retained particles to deposit at 

the surface of the membrane.  This is generally referred to as concentration polarization, a 

reversible mechanism that depends directly on the pressure difference driving the process.  The 

solute concentration of the feed solution adjacent to the membrane varies from the value at 

the membrane surface, C
w

, to that in bulk solution, C
b
, over a distance equal to the 

concentration boundary layer thickness, δ. The buildup of retentate at the surface of the 

membrane leads to the particles diffusing back towards the bulk of the solution,    
  

  
. 

Steady state is reached when the rate of particle flow towards the membrane is equal to the 

flux through the membrane in addition to the rate of diffusive back transport of the particles to 

the bulk solution. i.e.: 

 

 

 

 

 

 

 

       
  

  
      

Where, De = effective diffusivity of the solute in liquid film (cm2/s) 

J = volumetric filtration flux (cm3/cm2
.s)  

C = concentration of the solute (mol/cm3) 

Figure 5: Solute transfer without layer 
formation (1: Schuler & Kargi) 

Figure 4: Solute transfer with gel 
formation (1: Schuler & Kargi) 
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Cp = concentration of the permeate (mol/cm3) 

CG = maximum value of Cw (mol/cm3) 

X = film thickness (cm) 

Separating the variables and integrating the above equation gives:  

  
     

     
 
  

  
 

Where, Cb = Concentration of the bulk solution (mol/cm3) 

Cw = concentration of the solute particles at the membrane surface (mol/cm3) 

The ratio of the diffusivity coefficient of De and the thickness of the boundary layer can 

be written as k, which is the mass transfer coefficient. The equation can be written as follows: 

      
     

     
 

For a flux limiting situation when all the solutes are completely retained Cp = 0 hence 

the equation transforms to:  

      
  

  
 

The concentration at the surface of the membrane Cw can be found by extrapolating the 

curve which is obtained by plotting J versus Cb.  

The amassing of particles at the membrane surface can affect the permeate flux in two 

different ways. Firstly, the accumulated solute can initiate an osmotically driven fluid flow in 

the opposite direction of the permeate flux, thereby reducing the net rate of solvent transport. 

This phenomenon is often more prominent for smaller solute particles because of the high 

osmotic pressure (e.g., retained salts in reverse osmosis). Secondly the can be intense amounts 

of membrane fouling due to chemical and physical interactions between the particles in the 

process stream and the components that make up the membrane, thereby providing an 

additional hydraulic resistance to the solvent flow in series with that provided by the 

membrane. These interactions can be attributed to adsorption, gel layer formation and 

plugging of the membrane pores.   

 

 



  

Page | 16  
 

Applications of Ultrafiltration membranes: 

 

Ultrafiltration membranes are being used increasingly in the food, beverage, 

pharmaceutical and chemical industry. One of the most important uses of ultrafiltration 

membranes is that of wastewater treatment. Today, UF technology is being used worldwide for 

treating various water sources.  

The reasons for the increased use of ultrafiltration membranes in the water purification 

industry can be attributed as follows increased regulatory pressure to provide better treatment 

for water, increased demand for water requiring exploitation of water resources of lower 

quality than those relied upon previously, and market forces surrounding the development and 

commercialization of the membrane technologies as well as the water industries themselves.3 

The use of UF technology for municipal drinking water applications is a relatively recent 

concept, although as mentioned before, it is commonly used in many industrial applications 

such as food or pharmaceutical industries.3 

 

Electro-coat paint and Ultrafiltration:  

 

  

 

 

 
 

 

Electrophoretic coating gives a homogeneous and defect free coat.  This process 

involves the electrophoretic deposition of charged paint particles in an aqueous solution onto a 

conductive (metal) work piece. While the permeate from the ultrafiltration module is used for 

rinsing the work pieces, there is a stream that takes the mixture of water and paint back to the 

e-coat paint tank. The introduction of an ultrafiltration unit helps to eliminate the production of 

waste water and the use of extra de-ionized water for rinsing 

Figure 6: Electro coat paint & ultrafiltration (23: Munir, UF and MF handbook) 
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Food industry and Ultrafiltration: 

Ultrafiltration is found in various sectors in the food industry, especially companies that 

produce milk, gelatinous food products and large scale meat processing.  

Meat Processing: 

 

 

 

 

 

 

 

 

 

 

 

Around 90% of the water used for meat processing is discharged as waste water. This 

water has significant amounts of organic matter, high levels of COD and BOD5, high 

concentration of etheric extract, suspension, biogenic and dissolved substances. Ultrafiltration 

is used to remove colloids, suspended and macromolecular matter. 18 

 

Gelatin Production:  

In the past gelatin was extracted in solution by alternately soaking and cooking animal 

hides in up to 8-10 runs, filtering the solution and passing it through an ion exchanger to 

remove the salt which is a natural by-product of gelatin production. Water is removed from the 

solution by evaporation and drying.  With the use of evaporators and driers a total solid content 

of 90-92% was possible. And this evaporation and drying process took up 45% of the total 

energy required for the gelatin production process. 

 

Using spirally wound UF membrane units, 90% of the water content can be removed, 

and with the help of lower number of evaporators and driers a solid content close to 98% can 

be reached. With the new UF membrane system there is less degradation of the protein 

molecule so there is a higher product quality, the amount of natural gas or oil required 

decreases by a lot for which carbon emissions decreases and also the amount of water required 

from outside sources decreases. There are a number of other benefits most importantly lower 

Figure 7: New Ultrafiltration water treatment 
concept for the meat processing industry. (18: 

Huber) 
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operating costs, increased control because individual units can be run for required product 

outputs, reduced labor because of lower maintenance and easier cleaning methods. The 

amount of electrical power also decreases while a larger amount of steam can be conserved. 4 

  

 
Figure 8: A spirally wound UF membrane system (24: trade gateway) 

 

Miscellaneous Applications: 

 

Ultrafiltration of oil-water emulsions:  

Oil water emulsions are commonly used as metal working fluids (MWF) in different 

kinds of machining and rolling processes to lubricate and cool the work piece, remove chips out 

of the cutting zone and most importantly to prevent corrosion. These emulsions consist of a 

complex mixture of water, oil and additives such as emulsifiers, corrosion-inhibitors, 

antifoaming and extreme pressure agents. These MWF must be replaced over time because of 

the severe working conditions and the contaminants they collect. The dumping of this oily 

wastewater poses as a severe environmental threat.  

 

Several methods exist to treat MWF wastewater such as oil skimmers, centrifuges, and 

coalescers, settling tanks, depth filters, magnetic separations and flotation technologies. But 

owing to the size of the particles Ultrafiltration is a very successful treatment system but there 

because of the high quality of permeates that is attained.5 
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Ultrafiltration in Pulp and paper processing:  

The pulp and paper industry is challenged by the water authorities to bring substantial 

reduction in their ejection of toxic pollutants or face legal reprisal. The effluents produced 

during the manufacturing of paper contain biologically inactive substances that can be harmful 

for the environment. Not only are these substances toxic by nature, but they also possess light-

absorbing characteristics that influence the light-penetration properties of water, thereby, 

causing death to most water based organisms.  

The wastewater originating from pulp and paper processing can be treated using various 

methods. These include aerobic and anaerobic treatments, lime and alum coagulation and 

precipitation, oxidation, adsorption onto ion-exchange resins and most importantly 

Ultrafiltration. 

 

 Treatment of pulp and paper effluent by means of UF is an efficient method, as most of the 

polluting substances consist of high molecular mass compounds that are easily retained by UF.  

UF treatment of the effluent can result in 70–98% removal of color, 55–87% removal of 

chemical oxygen demand (COD) and 35–44% reduction in biological oxygen demand (BOD).6 

 

PVC and PVB based Ultrafiltration membranes: 

As mentioned before there is extensive research being conducted on novelty materials 

that can possibly improve the balance of performance characteristics of Ultrafiltration 

membranes. Some of the commonly used polymers for the production of UF membranes are 

polysulfone (PS), polyetherimide, (PEI), polyvinylidenefluoride (PVDF), and cellulose triacetate 

(CTA). One of the more common relatively inexpensive membrane materials is polyvinyl 

chloride (PVC) which provides for good chemical and corrosion resistance.   

The solubility parameter is an important indication of polymeric characteristic. It is a 

function of cohesive density which consists of dispersion forces, dipole forces and hydrogen 

bonding forces. That is: 

    √ 
  

 
 

  

 
  
   

 
 
   

 
 
   

 
 

Hence,                   

Here the right hand side of the equation is characterized by the dispersion, dipole and hydrogen 

bonding forces.  The solubility parameter of PVC, δsp, PVC is 9.5 (cal/cm3)1/2 ; δd and δh of PVC 
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are respectively 1.45 and 8.65 (cal/cm3)1/2, which demonstrates low hydrogen bond, 

intermolecular force and poor hydrophilics.2 

One more concern while designing an UF membrane is the fouling factor. Fouling occurs 

when membrane pores are blocked by particles being filtered. This may cause decrease in the 

flow rate of liquid (Flux) through the membrane. The best way to decrease this effect is to 

blend the membrane with more hydrophilic polymers. 

The performance of a certain material can be improved by blending the original base 

polymer with other polymers with more adequate properties. However the main obstacle in 

doing so is that not all polymer pairs are readily miscible. The miscibility of polymer occurs in 

three situations: low molecular weights (negligible entropy of mixing), chemically similar 

polymers (relatively low unfavorable heat of mixing), and polymers that show specific 

interactions between the molecules (highly favorable heat of mixing). Another important factor 

that should be taken into account is the interactive forces between the particles being 

transported and the polymer component of the membrane. Since ultrafiltration common deals 

with water molecules the amount of hydrophilicity (likeness towards water) counts for a lot. 

PVC membranes are relatively less hydrophilic; therefore blending with a more hydrophilic 

component is important for process improvement and increased efficiency. 

Polyvinylbutaral is a hydrophilic polymer and has the following structure:    

 

 
 

 

 

 

 

 

Figure 9: -OH bond makes the PVB polymer more hydrophilic. 

As shown in the above figure the PVB monomer has a hydrophilic hydroxyl group. Owing 

to this the solubility parameter of PVB is     = 8.76 (Cal/cm3)1/2 hence PVB can be blended with 

PVC to improve hydrophilicity of PVC based UF membranes. PVC and PVB are also compatible 

because of their well predicted miscible properties, chemical similarity and a small unfavorable 

heat of mixing.2 Most importantly owing to the –OH bond, the PVC/PVB blend is predicted to be 

much more hydrophilic than the original PVC membrane. 
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Solvent:  

Dimethylacetamide is the organic compound with the formula CH3C (O) N (CH3)2. This 

colorless, water miscible, high boiling liquid is commonly used as a polar solvent in organic 

chemistry. DMAc is miscible with most other solvents, although it is poorly soluble in aliphatic 

hydrocarbons. 

 

 

 

 

 

DMAc was chosen for the purpose of this experiment because of expected trends 

observed from other studies on the interaction of PVC and DMAc. The relative viscosity is fairly 

low and balanced in DMAc casting solutions. The interaction with PVC isn’t too high to produce 

a non-fluid casting solution but then again the solution won’t be too runny for it to produce a 

weak membrane. The same goes for the crystallinity of the casting solution where the amount 

of crystals formed is fairly low for DMAc casting solutions. Also another notable advantage is 

that the relative viscosity and crystallinity does not change drastically with the addition of other 

components.7 

 

 

 

 

 

 

 

 

 

Figure 10: N-N Dimethylacetamide 
25: wikipedia 
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Additives:  

Additives are used alongside PVC/PVB to further increase membrane performance. 

Generally, additives create a spongy membrane structure by prevention of macro voids 

formation, enhance pore formation, improve pore interconnectivity and introduce further 

hydrophilicity. The main additives that were tested during this research were poly ethylene 

glycol (PEG) -600, 1000, poly-vinyl pyrrolidone (PVP), lithium chloride (LiCl) and also calcium 

nitrate (CaNO3). 8 

PEG – 600, 1000:  

Poly ethylene glycol or PEG is a poly ether compound which is commonly used in the 

manufacturing and pharmaceutical industry. PEG as additive is less frequently used compared 

to PVP, but it could play a similar role in the formation process, acting as a macro void 

suppressor and improving the membranes hydrophilic characteristics. (Ma et al 2010) The 

numbers that follow PEG represents the average molecular weight and the monomer is 

illustrated below in figure 8. Molecular weights of PEG range from 100 to 500,000 Da but for 

this experiment the lower molecular weights are used because of their higher, favorable heat of 

mixing.  

  

 

 

 

 

 

 

 

In studies conducted before many conclusions were drawn on the effect of using PEG as 

an additive for UF membranes. PEG is known for increasing porosity/permeability and 

thermal/chemical stability of the membrane. PEG, being hydrophilic in nature, can also be used 

to improve membrane selectivity as well as a pore forming agent. It was also seen that with an 

increase in molecular weight of PEG, the pore number as well as pore area in membranes 

increases. Membrane with PEG of higher molecular weight has higher pure water flux (PWF) 

and higher hydraulic permeability due to high porosity. More specific studies showed that the 

addition of PEG-600 is expected to increase the exchange rate of additive and non-solvent 

during the membrane formation process, resulting in the appearance of the macro voids 

formation while hydraulic permeability decreases. 10 

All these studies have been conducted on different kinds of polymeric materials but 

interaction of PEG with PVC is not well documented. Hence learning the effect of PEG on PVC 

blended membranes is important to see if the it follows the expected trend. 

Figure 11: Molecular structure of PEG 
(26 Wikipedia) 
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PVP: 

Polyvinyl pyrrolidone (PVP) also known as polyvidone is a water soluble polymer. The 

single PVP monomer is illustrated below:  

 

 

 

 

 

 

 

The N-C=O bond makes PVP extremely hydrophilic and its addition to the membrane 

could improve the permeability of the membrane. As a resulted the fouling rate is also 

expected to decrease.  There is one known disadvantage in using PVP; it is expected that the 

flux of solution through the membrane will decrease because PVP swells to decrease the size of 

the pores. 11 

From previous studies that were conducted the general trend of PVP doping shows the 

following changes to membrane characteristics.  

1. An increase in the pore density 

2. The thickness of the more selective porous layer decreases due to an increase in the 

amount of macro voids in the support layer. 

3. An increase in the hydrophilicity for the bulk of the membrane. 

PVP is a very commonly used additive and generally helps improve the performance of the 

membrane. The blend of PVC/PVB/PVP should produce an interesting membrane to study. 12 

 

 

 

 

 

Figure 12: Monomer of PVP 
(27: Wikipedia) 
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Inorganic Additives: 

Inorganic Salts like lithium chloride and calcium nitrate is known to develop membrane 

morphologies and performance. And these additives are also known to change the solvent 

properties in the casting solution and provide better interaction between the macromolecular 

chains. Inorganic salts are also known to form complexes with the carbonyl group in polar 

aprotic solvents via ion–dipole interaction. Although there was research done previously on 

membranes made from doping Lithium chloride there hasn’t been any membranes tested with 

calcium nitrate. 

LiCl: 

Lithium chloride (LiCl) is a salt and a typical ionic compound. The small size of the Li+ ion 

gives rise to properties not seen for other alkali metal chlorides, such as extraordinary solubility 

in polar solvents (83g/100 mL of water at 20 °C) and its hygroscopic properties.  

LiCl is expected to increase the membranes hydrophilicity due to its hygroscopic 

behavior, in previous studies it also showed increase in porosity, thinning of the porous layer 

and most importantly drastic positive changes in the rejection rates.  

Previously LiCl was used to dope cellulose acetate (CA), polyamide, poly(vinylidene 

fluoride) (PVDF) and poly(ether sulfone) (PES) membranes. Hence it is important to study the 

effect of inorganic solvents like LiCl on PVC/PVB membrane hydrophilicity, morphology, 

permeability, porosity and most importantly selectivity. 13 

Ca(NO3)2: 

Calcium nitrate (Ca(NO3)2), is also called Norgessalpeter (Norwegian saltpeter). This 

colorless salt absorbs moisture from the air and is commonly found as a tetra hydrate. It is 

mainly used as a component in fertilizers.  

There has never been any prior research on the effect of Ca(NO3)2 as an additive on UF 

membranes. The doping of PVC/PVB membranes with calcium nitrate is expected to increase 

the hydrophilicity of the membranes because of its ability to attract water molecules. Therefore 

it is important to check how calcium nitrate doping affects the factors that determine the 

performance of a UF membrane.  
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Experimental Design:  

 

The technique of uniform experimental design is a kind of space filling design that can 

be used for computer and industrial experiments where the statistical model of the responses 

is unknown. This is completely based on a simple cause and effect scenario. Engineers and 

scientists are constantly faced with the problem of distinguishing between effects that are 

caused by particular factors and those that arise from random error or just the building of a 

model between the input and output variables of a given experiment.  

In recent years the traditional design methods are evolving to be simpler and more 

effective to solve more complex industrial problems. Most experimental design like orthogonal 

and optimal designs assume that the model is known with some unknown parameters like main 

effects, interactions and regression coefficients and choose a design such that the estimation of 

these unknown parameters have the highest efficiency. But in these cases the experiments 

domain might be too large and the two level designs might prove to be insufficient.  

For example, taking a certain regression model into account: 

   (      )   

Where, y is the response, g is the process model and represents a polynomial (first or 

second order) and Ԑ is the random error. When the mathematical function g is nonlinear and 

complex, an approximate linear model can be used to replace the original model.  

    (      )   (      )   

Here, gi’s are complex known parameters and h is a function that represents the 

deviation from the original. In lot of real life cases the gi’s are unknown due to lack of 

knowledge of the process. Hence using a space filling uniform design method makes it easier to 

produce a more robust design.  

The uniform design method was first proposed by Fang and Wang in 1978. Examples of 

successful applications of the uniform design method on improving technologies of various 

fields such as the textile industry, synthetic works, fermentation industry, pharmaceuticals 

manufacture, and some others have been consistently reported. The main difference between 

uniform design and traditional methods is that it is not defined in terms of combinatorial 

structure rather the spread of the design points over the entire design region.  One advantage 

of the uniform design method over traditional statistical methods is that it can explore the 

correlation between factors and responses using a minimal amount of experimental runs. The 

Taguchi-type parameter method was found to be one of the more efficient design methods and 



  

Page | 26  
 

is used to conduct the design of this particular research. For example, if an L36 (23X311) 

orthogonal array is used for inner and outer arrays, the total number of runs required would be 

36*36 = 1296, while using U13(138) and U12(1210) uniform design the total amount runs would 

come up to 12*13 = 156. And more importantly, for practical ease, most uniform designs have 

been constructed and tabulated for users. 14 

   The performance characteristics and evaluation parameters of the ultrafiltration 

membranes in this experiment is correlated with many parameters, such as, the nature, 

amount and blend of the polymeric material and additive used and temperature of the 

coagulation bath. For optimization of the fabrication conditions of these ultrafiltration 

membranes with good separation ability and high flux efficiency, ideally, a huge number of UF-

membranes need to be prepared under all possible casting conditions if the trial and error 

method was used. Through the use of applied statistical method like uniform design, the 

amount of experiments that need to be conducted can be substantially reduced. Uniform 

design tables suitable for use in experimental design with up to seven predictor variables with 

five or more treatment levels in each are available. Therefore, using this method to optimize UF 

membrane performance would be extremely efficient and helpful.   
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Membrane Preparation:  

 

UF membranes are prepared using phase inversion through immersion precipitation. 

Phase inversion happens between two miscible liquids and is the occurrence whereby the 

phases of a liquid-liquid dispersion interchange such that the dispersed phase spontaneously 

changes to become the continuous phase and vice versa under conditions determined by the 

system properties, volume ratio and energy input. The phase inversion process for an oil and 

water mixture is illustrated below:  

 
 

Figure 13: The phase inversion method illustrated using an oil-water example. (28: Matar) 

The casting solution is referred to as the mixture of all the components 

(PVC/PVB/Additive) in the solvent being used (DMAc).The casting solution is generally molded 

into a certain form (flat sheet) and dipped into a coagulation bath after which phase inversion 

takes place.  The phase inversion process follows the path illustrated below in the ternary phase 

diagram (Figure 12). The three extreme points represents the three components that come into 

play during a phase inversion process. That is polymer, solvent and the non-solvent which is 

water in this case. The initial casting solution (A) is a combination of the solvent and the 

polymers but during the phase inversion process the content of the solution changes. At point B 
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the solvent precipitates out with the help of a few water molecules taking its place. At point C 

the membrane combination solidifies and finally reaches point D where all the solvent has 

phased out of the mixture and the membrane is a combination of the non-solvent and the 

polymer. This process is extremely spontaneous and takes place within a matter of 30 to 60s.15 

 

 

 

 

 

 

 

 

 

Figure 14: Ternary phase diagram representing the phase inversion process through immersion precipitation. (28: 
Matar) 
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Input Variables: 
 

Experimental uniform design is first used to create an array of various combinations of 

the input variables being used in this research. For example: 

Table 4: Example of a uniform design combination 

Temperature of 
bath ®C (A) 

PVC/PVB (Blend 
ratio) (B) 

Weight % of 
Polymer (C) 

Additive (D) Weight % of 
Additive (E) 

40 9:1 20 PVP 7 

 

The input set points are defined below:  

Weight percentage of the polymer:  

The weight percentage of the polymer is the amount of the base polymer (PVC/PVB) 

that will exist in the casting solution and thereby the membrane itself. It can be found using: 

            
       

                     
     

 

PVC/PVB blend ratio:  

The blend ratio or the relative amount of PVC and PVB is also used as a set point. This is 

calculated as a percentage of the total polymer being used. I. E.: 
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Additive:  

This variable is simply a written input of the type of additive being used. (For reference 

on the types of additives being used please see Additives.  

Weight percentage of the additive: 

The weight percentage of the additive is the ratio of the additive against the mixture of 

all the components in the casting solution.  

             
       

                     
     

Water bath temperature: 

After all the different components are mixed according to the different input variables 

defined above the casting solution is generally stirred in a water bath. The temperature of the 

water bath can influence crystallinity, viscosity and even the overall performance of the 

membrane. Hence, this was set as a variable and changed to see the effect that might have on 

the performance of the different membranes.  
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Characterization:   

In an ultrafiltration membrane experiment the characteristics of a membrane can be 

done using many different output variables. For this experiment, effect and cause relationships 

were studied according to the output parameters defined and illustrated below:  

Viscosity of the Casting Solution:  

The viscosity of the casting solution is measured directly by using a viscometer. Viscosity 

helps determine the miscibility/compatibility of the components in the casting solution. If the 

correlation between the viscosity of the casting solution and the different blends of PVC and 

PVB is linear the components are completely miscible. For a non-linear relation the polymers 

are partly miscible and of course for a S-segment relation the polymers are fully immiscible. 

Also In the case of this research the miscibility of the polymeric additives can be determined by 

variations in these correlations.  

The viscosity variations among different casting solutions can help predict the tensile 

strength of the membrane. A relatively higher viscosity would mean the production of a 

stronger membrane, while a lower viscosity means a weaker membrane might be produced.2 

Porosity of the membrane: 

Porosity is the measure of void spaces in a certain material. It is simply the fraction of 

the volume of voids over the total volume of the material (including the voids).  Porosity can be 

calculated using the following equations:  

         
              

                                 
 

In real life using mass difference of the wet and dry material is used to make the porosity calculations  

                        
(  ) (  )

       
 Equation 1 

Where, W2 = weight of the wet membrane  

W1 = weight of the dry membrane 
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Flux of pure water through the membrane:  

The flux through the membrane is the measure of how fast the membrane can process 

the water that is being passed through it. Flux is measured in volume of water per unit area per 

unit time. This is one of the most important characteristics of a membrane since in an industrial 

sized application a huge amount of fluids need to be processed so, the larger the flux of a 

membrane the more advantageous it is.  

Usually flux is measured using a dead end stirred cell ultrafiltration system. The water is 

held in a filtration cell and the pressure gradient is created by pumping gas at a certain pressure 

into the cell. The water is accumulated on a beaker sitting atop an electronic balance. The 

amount of time required for all the water to move into the beaker and the mass change on the 

balance are the two values that are recorded.  

 

 

 

 

 

 

 

 

The flux through the membrane can be calculated using this formula: 

                                           
 

   
      Equation 2 

Where, V = volume of the water filtered 

A = the area of the membrane  

t = time required for complete filtration 

 

Figure 15: Dead end stirred cell ultrafiltration system to measure flux. 
(29: Becht) 
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Rejection of particles by the membrane: 

 The main function of a membrane is its selectivity against large sized particles. This is 

the most important characteristic of a membrane. The amount of particles that a membrane 

can block means the purer the fluid is on the permeate side.  

Rejection can be calculated using:  

                                (  (
  

  
))           Equation 3 

                                      

                                   

Scanning electron microscopy: 

A scanning electron microscope (SEM) is a type of electron microscope that images a sample by 
scanning it with a high-energy beam of electrons in a raster scan pattern. The electrons interact 
with the atoms of the material being tested producing signals that contain information about 
the sample's surface topography and composition. 

SEM images are used in the case of ultrafiltration membranes to check the morphological 

changes that a certain membrane undergoes due to the different component combinations. A 

scanning electron microscope is particularly helpful in the case of UF membranes because it 

helps identify the anisotropic and asymmetric nature: the voids and the void walls are clearly 

visible in the supporting substructure of the membrane.16  

 

Fourier transformed infrared spectroscopy: 

Fourier transform infrared spectroscopy (FTIR) is a technique which is used to obtain an 
infrared spectrum of absorption, emission, photoconductivity or Raman scattering of a solid, 
liquid or gas. An FTIR spectrometer instantaneously collects spectral data in a varied spectral 
range. This deliberates a significant advantage over a dispersive spectrometer which measures 
intensity over a narrow range of wavelengths at a time. 

FTIR is extensively used in UF membrane studies to check the functional groups of components 
in the bulk of the membrane. This can help identify forces that attract foulants and also predict 
the tensile strength of the components.17   
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Contact Angle:  

The contact angle is the angle at which a liquid/vapor interface meets a certain solid 

surface. In the case of UF membranes it is the measure of hydrophilicity/hydrophobicity of the 

particular membrane.  

 

 

 

 

 

 

 

 

Here, ϒsl = solid-liquid interface energy 

ϒlg = liquid gas interface energy 

ϒsg = solid-gas interface energy 

ϴc = contact angle 

For reference: For any given membrane an angle above 90 degrees means lower likeness 

towards water and more hydrophobic but anything less than that means the membrane is more 

hydrophilic.   

 

 

 

 

 

 

 

Figure 16: The contact angle of the membrane 
(30: Absoluteastronomy.com) 
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Atomic force microscopy:  

Atomic force microscopy or AFM is a very high resolution type scanning probe 

microscopy. In a AFM there is a certain tip attached to the end of a cantilever. This tip probes 

the surface of the underlying material. The cantilever acts like a spring and the force 

differentials which it undergoes is used to create a topographical image of the surface of the 

material. 

 

 

 

 

 

 

 

 

 

There are many advantages of using AFM imagery in the case of UF membranes. 

1) A three dimensional image of the membrane surface can be attained 

2) The images produced is of a higher resolution than other microscopic imaging 

techniques 

This can help us study many factors that affect the make of a certain membrane. Quantities 

such as pore distribution, pore size, surface roughness and so forth.  

 

 

 

 

 

 

Figure 17: AFM mechanism 
(31: iap.tuwien.ac.at) 
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Methodology 

Uniform design and component combination tables:  
 

The initial step for performing an optimization study on UF membranes was the 

designing of the experimental combinations to make the different casting solutions. As 

mentioned before the Taguchi’s parameter type uniform design is used and for this technique 

the parametric combinations are pre tabulated.  

The first step was using Table 2 ,Appendix A  which identifies according to the number 

of factors the column numbers in the U11 (1110) table (Table 3,Appendix A)  that need to be 

used. (Deng Bo 1994). The final numerical statistical combination would look like that given in 

Table 4, Appendix A.   

As it can be seen the factors were named according to letters going from A to E and 

each factor has 5 levels. This means that every factor has five different values. These factor 

levels are defined in Table 5, Appendix A. The complete correlation of the factors and levels are 

shown according to the matrix in Table 6, Appendix A. So for example, from this table the 

numerical value of 1 and 2 in the statistical combination table will relate to the same level of a 

certain factor.  These factor and level definitions are used in correspondence to the numerical 

values of Table 4, Appendix A. And the final combination is represented in Table 7, Appendix A. 

The values represented under A1, B2 and so forth are substituted in to produce the final set of 

design combination that is used to make the different casting solutions (Table 2, methodology).  

Table 5: The final set of design combination used to create the different casting solutions. 

Experiment Temperature of 
bath (A) 

PVC/PVB (Blend 
Ratio)(B) 

Wt.% of 
Polymer(C) 

Additive (D) Wt. % of 
Additive. (E) 

1 40 9:1 20 PVP 7 

2 40 8:2 18 LiCl 3 

3 50 7:3 10 PEG 1000 10 

4 50 6:4 21 LiCl 5 

5 60 5:5 20 PEG 1000 1 

6 60 9:1 15 CaNO3 10 

7 70 8:2 10 PEG 600 5 

8 70 7:3 21 CaNO3 1 

9 80 6:4 18 PEG 600 7 

10 80 5:5 15 PVP 3 

 
 



  

Page | 37  
 

Membrane Preparation: 

The different steps that were used to prepare a certain membrane are defined below.  

Measurement of DMAc, PVC, PVB and additive amounts:  

 Since most of the factors are represented in percentage or ratios, the exact amount to 

put into a mixture needs to be calculated. Microsoft Excel, one of the most commonly used 

spreadsheet software was used to make this process more efficient.  

 The main problem in finding the amounts of additive and polymer is clear when one 

looks at the equation to find the weight percentage of either additive or the polymer.  

            
       

                     
     

             
       

                     
     

In order to determine the amount of polymer or additive one has to know the total weight 

when everything is combined but that cannot be determined without finding the amount of 

polymer or additive itself. In order to do this a system of simultaneous equations was created 

which was solved for each and every experimental run according to the defined weight 

percentages and amount of DMAc. The sample calculation is shown in appendix B.  

Finally after the amount of polymer was figured out the amount of the individual PVC and PVB 

amounts are calculated according to the equation:  

             (       )       

             (       )       
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Membrane Preparation:  

 

As mentioned before the PVC/PVB/Additive composite UF membrane was mixed using a 

phase inversion method. All the membranes were prepared according to the following steps: 

1) The DMAc was poured into an Erlenmeyer flask sitting atop a mass balance used to 

measure the amount of DMAc.   

2) The powdered form of each of the components i.e. PVC, PVB and additive was weighed 

on a mass balance according to the required amount calculated using the spreadsheet 

software.  

3) The PVC and PVB was gradually poured into the flask containing the DMAc and 

simultaneously stirred to attain proper mixing. 

4) The polymeric additives were mixed with the solvent in the same way but for the 

inorganic solvents initial vacuum drying was required to remove the water content. 

5) After all the components are mixed in the flask, the viscous liquid was continuously 

stirred in a water bath at a certain temperature. (This water bath temperature is one of 

the factors being varied in the experiment) 

6) Each casting solution was continuously stirred in the water bath for 12 -36 hours until it 

was completely mixed. 

7) After proper mixing the casting solution was poured onto a glass pane sitting atop a 

membrane scraper. The viscous gel is scraped to form a layer over the flat glass pane. 

8) This glass pane with the gel layer was immediately dipped into the coagulation bath and 

the instantaneous formation of the membrane is observed.  

9) The membrane was stored in the coagulation bath for a longer period of time for 

complete removal of all the solvent. These membranes were cut into smaller pieces 

according to the characterization requirement.  

10) The same steps were followed to produce each UF membrane 4 different times for 

result verification.  
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Characterization method: 

Viscosity of the Casting Solution:  

The viscosity of the casting solution was directly measured under a viscometer. The viscosity 

is measured according to the following steps: 

 The viscometer used a certain spindle that went into the casting solution and the 

spindle size is decided by an educated guess of how viscous the material might be. The 

spindle sizes go from 30 to 35 and the smaller number represents a larger spindle used 

for less viscous gels.  

 The appropriate spindle was put the solution and the viscometer was run at a certain 

percentage of the original RPM.  

 The speed was adjusted until the viscometer gave a stable reading.   

 Reading was taken for 5 different RPM’s for each solution and the average viscosity was 

taken into consideration for further study.  

Porosity of the membrane: 

The porosity was calculated according to the equation 1. The procedure to attain the 

values to calculate porosity is given below: 

 The membranes were cut into equal pieces and the dimensions were measured 

using a measuring tape and the thickness was measured using a sensitive slide 

caliper.  

 Then the membranes were dipped into water until they were completely soaked. 

 The weights of the individual membrane pieces were measured and they were 

placed on a glass pallet. 

 The glass pallet was placed inside an oven and heated up 45 degrees C. The 

membranes are dried for a while 

 Then the weight of the membrane was measured in intervals of heating until the 

weight did not fluctuate any more.  

 Using the difference in the initial and final weights, the volume and density of the 

material the porosity of the membrane was measured.  
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Flux of pure water through the membrane:  

The pure water flux through the membrane is calculated using equation 2. As mentioned 

before the variables in the equation were measured using a dead end stirred cell filtration 

system. The filtration runs were conducted according to the following steps: 

 The membrane was placed inside the dead end stirred cell and the cell was filled with 

distilled water.  

 The pressure was applied on the water in the cell by pumping gas from a gas cylinder 

into the cell.  

 After the pre-pressure value of 0.12 MPa was reached the pressure is lowered to work 

at 0.1 MPa.  

 The effluent water was collected in a beaker sitting atop an electronic mass balance 

connected to a computerized system. 

 This automatic data logging software measures the time and the change in weight the 

balance undergoes through this time period.  

Rejection of particles by the membrane: 

The rejection of the membrane was calculated using equation 3. The variables of the 

equation were found following these procedures: 

 The concentration of the protein solution was figured out using a UV- 

spectrophotometer. This machine gives the amount of absorbance according to a 

certain concentration of a solution.  Hence a reference absorbance calibration chart was 

needed to correlate absorbance with protein concentration.  

 The absorbance chart was prepared by dissolving 0.1 gram of BSA protein in 10 ml of 

water creating a 10mg/ml solution of BSA (Bovine serum albumin).  

 Different amounts of this solution were used with different amounts of a PBS buffer 

solution to create different concentrations of protein solution. The sample calculation to 

reach a certain concentration is given in Appendix B and the calibration graph is 

presented in Appendix C.  

 A protein solution of concentration 1000 mg/l was used for rejection calculation. 

 The protein solution was used in the same dead end stirred cell filtration system used to 

measure flux. 

 The initial and final absorbance values were measured and used in the calibration graph 

to find the values of Cp and Cf.  
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Scanning electron microscopy: 

For the SEM process the membranes were cut into small pieces and adhered to a miniature ring 

shaped solid object. It was placed into a boxed slot which was pushed into the SEM and the 

chamber was vacuum pumped. The images were automatically rendered onto imaging 

software.  

Fourier transformed infrared spectroscopy: 

Individual membrane pieces were placed under a certain probe which was pushed onto the 

surface of the membrane. The readings were automatically taken by the machine and the 

absorbance bands were graphically represented. 

Contact Angle:  

The contact angle of each membrane was found using a CA goniometer. Membranes were dried 

and cut into square pieces and placed under a needle. 20ul of water was dropped onto the 

membrane and the blown up image of the water droplet on the membrane was taken.  

Atomic force microscopy:  

The AFM images were taken automatically by a computer. The membranes were placed directly 

under the tip attached to the cantilever. The computer processes the readings taken by the 

AFM tip and a rendered 3 dimensional image is produced.  
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Results and discussions:   
In this section the results of the different characterization techniques and their significance to 

the design of the membrane will be discussed 

SEM:  

SEM imagery was used as a visual verification of how the combinations of polymer and 

additives influence the morphology of the membrane. The SEM images of membranes # 1- 10 

are consecutively illustrated below. 

 

 

 

 

 

 

 

 

CA:  

The contact angle for the membranes was used to check the hydrophobicity/hydrophobicity. 

This is compared to the relative amount of components which influence the value. 

 

 

 

 

 

 

 

 

Figure 18: SEM: 1(TOP LEFT) - 10 (BOTTOM RIGHT) 

Figure 19: CA: 1(TOP LEFT) - 10(BOTTOM RIGHT) 
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Table 6: Exact amounts of components added to make up the membrane 

Experiment Additive (D) Amount PVC(g) Amount PVB(g) Amount additive (g) CA degrees 

1.0 PVP 61.8 15.5 27.1 72.0 

2.0 LiCl 32.7 8.2 6.8 78.0 

3.0 PEG 1000 24.8 10.6 35.4 75.0 

4.0 LiCl 31.6 21.1 12.5 70.0 

5.0 PEG 1000 35.8 35.8 3.6 81.0 

6.0 CaNO3 49.2 5.5 36.4 91.0 

7.0 PEG 600 26.7 6.7 16.7 72.0 

8.0 CaNO3 53.2 22.8 3.6 82.0 

9.0 PEG 600 40.8 27.2 26.4 83.0 

10.0 PVP 26.0 26.0 10.4 69.0 

 

These surface SEM images only display the top porous surface image. As it can be seen 

the pore distribution and morphology is very clearly illustrated on the membrane images. And 

the CA images shows how much the micro bubble of water is sticking out of the membrane 

which is the measure of hydrophilicity.  In addition, for reference the amount of each 

component and the corresponding CA are tabulated above in Table 3.  

Membrane 1: This membrane is extremely porous and the pores on the membrane are fairly 

evenly distributed .This means that there might be a good balance between retention, flux and 

tensile strength. The amount of PVC used for this membrane is fairly high and can be used to 

explain the high stress that it can with stand. The amount of PVB is lower than it counterpart 

membrane # 10 which explains the relative lack of hydrophilicity. Then again, the relation 

between CA and the amount of PVB is fairly evident since the more PVB that is used the more 

hydrophilic the membrane acts.  

Membrane 2:  This is one of the membranes produced from an inorganic additive. The 

complexes formed by the Li ion shows as the small white spots on the surface. The complexes 

are fairly low because of the lower amount of additive than its counterpart, membrane # 4. This 

is another membrane with numerous pores but they are also very evenly distributed. This 
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verifies the good balance between tensile strength and flux of the membrane. The CA shows 

that because of the decrease in PVB this membrane is less hydrophilic.  

Membrane 3: The pores are extremely large and the SEM image is able to show the 

entanglements within inner layers through the surface. The pores are not very even and it is 

evident that the low tensile strength will make this membrane prone to breakage giving it a 

high flux but extremely low retention.  The amount of PVC and PVB used to make this 

membrane is very low. But the CA follows the trend of proportionality with the amount of PVB.   

Membrane 4: This is another membrane made from the LiCl additive and the complexes on the 

surface are much clearer.  This membrane is much less porous and hence is predicted to have a 

large selectivity but extremely low flux. The membrane is extremely hydrophilic because of its 

low CA, this is because of the increased amounts of complexes due larger amount of LiCl and 

PVB compared to membrane 1,2 and 3. 

Membrane 5: This membrane consists of equal amounts of PVC and PVB. The casting solution 

proved to be extremely viscous and the membrane dried up rapidly when open to the 

atmosphere. The amount of pores are extremely limited but are evenly distributed over the 

surface of the membrane. This membrane is more hydrophobic, given the high CA.  This might 

be because of the high amounts of PVC and/or PEG is often acts as a macro void suppressor 

rather than a hydrophilic agent.   

Membrane 6: This was one of the hardest membranes to run tests on. It is very evident that the 

membrane is extremely weak because of the dilated pores illustrated on the surface image. The 

contact angle also shows that this membrane is hydrophobic.  This may be because of the 

excessive amounts of PVC and also the CaNO3 additive did not prove to be an appropriate 

novel material.  

Membrane 7: For this membrane PEG 600 worked as a good hydrophilic agent. The hydrophilic 

characteristic properties can be explained by the low amounts of PVC but the relative high 

amounts of PEG. The magnified surface image shows that although the pores are dilated the 

strength of entanglement should   be high enough to hold the membrane together for a high 

flux.  

Membrane 8: This is the second membrane made from CaNO3. Although the amount of the 

calcium nitrate is much less, the amount of the PVC is fairly high. From this we can conclude 

that CaNO3 in high amounts will work towards hydrophobic characteristics of the membrane.  

The surface image also shows the dilated pores that were prone to breakage when it 

underwent high pressures.  



  

Page | 45  
 

Membrane 9: The fairly high amounts of PVC make this membrane fairly hydrophobic. The 

surface image shows that it’s not very porous which verifies that this membrane will have high 

amounts of retention but a very low flux.  

Membrane 10: This membrane is the most hydrophilic one of the group. The fairly high 

amounts PVB, low PVC and PVP might be the cause of this character. The membrane surface is 

extremely porous with these pores being evenly distributed. This can help with a good balance 

between flux and rejection.  This membrane is expected to have less swelled voids than 

membrane # 1 because of the lower amounts of PVP.  

FTIR: 

To check the polymeric functional groups which exist within the membrane a Fourier 

transformed Infrared spectroscopy was conducted on each membrane. This can help explain 

the exact compounds which affect the forces of attraction with the retained particles and which 

holds the polymers together.  

The FTIR responses and the different functional groups represented by the different peaks are 

illustrated below:  

 

 

 

 

 

 

 

 

 

 

 

The phenol group usually shows a high intensity peak between 3300cm-1 to 3600cm-1.  

 

 

Figure 20: FTIR spectroscopy 
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All the membranes have very similar IR band peaks mainly because of the similar composition 

of PVC and PVB but there are some unusual changes to the intensity of the peaks or ATR units 

because of interaction with the additives or the amount of materials used.  The membrane 

labels and the peak positions with their corresponding functional groups are tabulated below.  

 

Table 7 : Peak position according to Fig 18 and Functional groups 

Peak position wavenumber cm-1 Functional group possibilities  

3399.01 Alcohol or phenol broad stretch (3550 – 3200) 
2951.09 Carboxylic Acid -O-H broad stretch (3000 – 2500) 

Alkyl C-H medium Stretch (2950 – 2850) 
2311.82 Phosphine –P-H stretch (2320-2270) 
1651.94 Amides –C=O stretch, -N-H bend (1680-1550) 
1428.87 Esters –C=O stretch (1440-1400) 
1249.87 Acetates C-C(O)-C stretch (1260-1230) 
1135.85 Alcohols –C-O stretch (1260-1000) 

Ethers C-O-C stretch (~1120) 
~750 Alkyl halides, acid chlorides –C-Cl (785-540) 

 

After specifying the functional groups represented by each peak positions it is important 

to distinguish the membranes and discuss the peaks, stretch intensity and the peak intensity to 

show how the additives reacts with PVC and PVB to give the membrane its individual 

characteristics. 

Table 8: Color coded FTIR spectroscopy and compounds present. 

Membrane # (color 
coded) 

Compounds present 

1 (Pink) (-CH2-CHCl-) + (-CH2-R1-)(-CH2-CHOH-)(-CH2-CHO-CO-CH3)+(-CHNR2O-CH2-) 
2 (Red) (-CH2-CHCl-) + (-CH2-R1-)(-CH2-CHOH-)(-CH2-CHO-CO-CH3)+LiCl 
3 (Blue) (-CH2-CHCl-) + (-CH2-R1-)(-CH2-CHOH-)(-CH2-CHO-CO-CH3)+H-(O-CH2-CH2-)-O-H 

4 (green) (-CH2-CHCl-) + (-CH2-R1-)(-CH2-CHOH-)(-CH2-CHO-CO-CH3)+ LiCl 
5 (orange) (-CH2-CHCl-) + (-CH2-R1-)(-CH2-CHOH-)(-CH2-CHO-CO-CH3)+ H-(O-CH2-CH2-)-O-H 
6 (L. green) (-CH2-CHCl-) + (-CH2-R1-)(-CH2-CHOH-)(-CH2-CHO-CO-CH3)+ CaNO3 

7 (L. blue) (-CH2-CHCl-) + (-CH2-R1-)(-CH2-CHOH-)(-CH2-CHO-CO-CH3)+ H-(O-CH2-CH2-)-O-H 
8 (Yellow) (-CH2-CHCl-) + (-CH2-R1-)(-CH2-CHOH-)(-CH2-CHO-CO-CH3)+ CaNO3 
9 (Black) (-CH2-CHCl-) + (-CH2-R1-)(-CH2-CHOH-)(-CH2-CHO-CO-CH3)+ H-(O-CH2-CH2-)-O-H 

10 (Purple) (-CH2-CHCl-) + (-CH2-R1-)(-CH2-CHOH-)(-CH2-CHO-CO-CH3)+(-CHNR2O-CH2-) 

 

Membrane 1 and 10: The peaks at the 3350-3400 cm-1 and ~740 cm-1 can be explained by the 

constant presence of –OH from PVB and the –CL from PVC. The amount of PVB is much more in 

membrane 10 is more than in membrane one and hence the phenol peak for 10 is much higher. 
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The peak at around ~1650 cm-1 is produced by the functional group of –N-C=O- and by a simple 

–C-C- bond. Although the amount of PVP present in membrane 1 is much higher the peak 

intensity is much less. This can be explained by the excessive amounts of PVC for which there 

would much more –C-C- bonds present. Hence for a membrane made with PVC/PVB/PVP it can 

be predicted that a higher peak intensity at the nitrile and phenol positions can result in lower 

contact angles and higher hydrophilicity. 

 

Membrane 2 and 4:  The amount of PVB increases from membrane 2 to 4 which means there is 

an excessive amounts of –OH in 4 but the peak intensity at ~3350 cm-1 for 4 is much less. This 

can be explained by the complexes formed by the presence of LiCl. In small amounts the LiCl 

makes the phenols more accessible while in excess amounts the phenols are suppressed under 

the complexes and hence results in the smaller peak intensity which is also supported by the 

contact angle. One of the more significant peaks for membrane 4 is at ~1135 which occur 

because of the alcohols (-C-O-) and ethers (-C-O-C-) present in the mixture. The excessive 

amounts of PVC/PVB relative to membrane 2 explains the excessive amounts of –C-O and –C-O-

C- bonds present in membrane 4 and the higher peak intensity at ~1130.  

Membrane 3 and 5: These membranes were formed from PEG-1000. For all the peak positions 

the peak intensity is much lower for membrane 3 than membrane 5. This can be explained by 

the increase in amounts of PVB which gives the excessive amounts of –OH and the increase in 

the amount of PVB /PVC which counts for the increase in –C-O and –C-O-C- bonds. This also 

proves that the excessive amount of PEG for membrane 3 does not help with the peak 

intensities but does make the membrane more hydrophilic.     

Membrane 6 and 8: Membrane 8 has one of the highest amount of PVB which gives a 

significantly high amounts of phenols and hence the high peak intensity. In small amounts the 

CaNO3 complexes help make the phenols more accessible and the membrane more hydrophilic. 

With the combination of excessive PVC , low amounts of PVB and high amounts of calcium 

complexes makes membrane 6 extremely inappropriate for use and hydrophobic.   

Membrane 7 and 9:  Although the amount of PVB in membrane 9 is more, the increased 

amounts of additive in membrane 7 accounts for its high peak intensity at ~3390 cm-1. 

Membrane 9 has a relatively higher peak at ~2950 which accounts for the increased amounts of 

carboxylic acid functional group present in the membrane. The membrane peak intensity 

accounts for the contact angle difference and membrane 7’s increased hydrophilicity.  
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AFM:  

The atomic force microscopy was performed on the membranes with the best 

performance, namely membranes 2, 7, 8, 9 and 10. The surface roughness and pore depths are 

illustrated through the 3-Dimensional images shown below.  

 

Figure 21: Membrane2 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 22: Membrane 7 
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Figure 23: Membrane 8 

Figure 24: Membrane 9 
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It is important to consider how the surface roughness and the pore depth affect the 

membranes flux and rejection.  

 

Table 9 : Membrane pore depth 

Membrane # Average Pore 
depth (nm) 

Average peak 
to peak 
distance (nm) 

CA Flux Rejection 

2 41.88 1.942 78 89.1 52.12 
7 289.43 25.017 72 534.672 30.45 
8 477.76 3.525 82 142.38 72.57 
9 55.454 0.667 83 214.776 70.35 
10 88.255 4.209 69 889.272 34.31 

 

As it can be seen the more the CA the more the flux and it is generally known that 

rejection is inversely proportional to flux. The flux and rejection depends directly on the pore 

depth and on the intermolecular forces between the particles and the membrane materials.  

Membrane 2 : It is safe to predict that the complexes formed by LiCl on membrane 2 are 

repelling the water particles making it more hydrophobic and giving it a low flux capacity but 

this helps increase the concentration of the permeate.  

Figure 25: Membrane 10 
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Membrane 7: The average pore depth of membrane 7 is relatively large which was predicted 

before from the SEM images. But the pores are spread out more than all the other membranes. 

So although flux is large the amount of proteins being rejected is fairly low. 

Membrane 8: With a large pore depth and very closely located pores this membrane has a 

slightly low flux because of the excessive amounts of PVC used to produce it which also gives it 

the low hydrophilic characteristics. Never the less, membrane 8 has a high rejection rate which 

proves it to be more useful in the industry. 

Membrane 9: The pores are smaller in membrane 9 but are extremely close to each other 

which gives it a relatively higher flux which in turn also hampered by the low hydrophilicity. This 

membrane is able to achieve high rejection rates because of the small pores.  

Membrane 10: Although this membrane showed relatively small pores which are relatively 

further apart the extreme hydrophilic character helps more water to pass through per unit area 

of the membrane. But the faster the water passes through gives the membrane a lower 

opportunity to hold on to the protein particles. 

Viscosity of the casting solution:   
 

The viscosity of the solution helps determine the tensile strength and stability of the 

membrane.  

Table 10: Viscosity of the membranes 

EXP # Viscosity (cP) Flux (L/m^2.hr) Rejection (%) 

1 175600 443.808 6.81 

2 38578 89.1 52.12 

3 251.24 2164.32 9.3 

4 2558 5388.66 0.83 

5 20520 4026.708 5.08 

6 4540 1203.12 8.59 

7 1067.6 534.672 30.45 

8 128920 142.38 72.57 

9 13550 214.776 70.35 

10 1327.25 889.272 34.31 
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The higher the viscosity of a certain casting solution means that the membrane 

produced will be more stable and will be less prone to breakage. But too high of a viscosity 

means that the membranes is hard to scrape because of rubbery characteristics. It was 

extremely difficult to produce membranes 1, 2, 5, and 8 because of this particular reason. 

Membrane 3 was very difficult to move around for testing because of its weak tensile strength 

resulting from the low viscosity of the casting solution.   

Porosity of the membranes:  
 

The porosity of the membrane helps determine the void fraction of the membrane and is a 

direct determinant of the flux of the membrane.  

Table 11: Porosity of the membranes 

EXP # Porosity (%) Flux (L/m^2.hr) CA degrees  

1 23.74 443.808 72  

2 43.02 89.1 78  

3 6.37 2164.32 75  

4 24.53 5388.66 70  

5 16.9 4026.708 81  

6 12.82 1203.12 91  

7 36.84 534.672 72  

8 26.76 142.38 82  

9 53.95 214.776 83  

10 95.94 889.272 69  

 

The porosity and hydrophilicity of the membrane can be used to determine the flux of 

the membrane. Even though a membrane is highly porous and is expected to have a high flux 

the amount of hydrophilicity/hydrophobicity is a barrier to that.  
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Flux and Rejection:  

The direct analysis method using responses of flux and rejection can be used to judge 

the membrane with the best performance. 5 out of the 10 membrane that were prepared were 

already chosen to run AFM experiment. These were chosen according to good balance between 

flux and rejection and a high enough tensile strength to hold the membrane together while 

water and other components are passing through it.  

Table 12: Relation between flux, Rejection and the characteristics 

EXP # Flux (L/m^2.hr) Rejection (%) 

1 443.808 6.81 

2 89.1 52.12 

3 2164.32 9.3 

4 5388.66 0.83 

5 4026.708 5.08 

6 1203.12 8.59 

7 534.672 30.45 

8 142.38 72.57 

9 214.776 70.35 

10 889.272 34.31 

 

The most ideal membrane would have a fair balance between flux and rejection. A very 

high rejection would mean a fairly low flux while a fairly high flux would mean that not all 

particles are being properly separated. The most noteworthy of the all the membranes 

designed is that of membrane 8, 9 and 10. Although membrane 8 and 9 has fairly high rejection, 

the flux is fairly low. Despite this fact it is highly recommended for industrial use for high 

separation quality. Membrane 10 has a very high flux most appropriate for large scale 

processes and the rejection would be much higher if it were separating larger particles.  

Membranes 2 and 7 were with fair rejection and flux rates respectively, are not recommended 

for large scale use because of either poor separation quality or poor economic benefits. The 

rest of the membranes were either prone to breakage or as it can be seen in the above table 

the flux to rejection balance was very poor for further consideration.    
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Optimization using linear regression: 

The uniform design method was mainly used for optimization purposes from the 

responses found from the fixed experiments. In order to do this a statistical software PASW 

Statistics v17, IBM was used. Through backward regression method this software is able to 

detect the most significant variables that affect the responses of the experiment. The results of 

the backward regression from PASW statistics is illustrated in Appendix D. The regression 

resulted in a certain expressions consisting of the variables and coefficients which predict 

response values if different variable values were used.  

The two linear regression model expressions were:  

                                                

                                                 

Where,                                

                                     

                                        

               

                        

The regression plots are illustrated in Appendix C.  

These plots help predict the combination that is needed to produce a membrane with the best 

performance, meaning an appropriate balance between flux and rejection.   

According to the plots and optimization analysis the following results were achieved for 

predicted membrane combinations: 

Table 13: Combination for producing optimized membranes. 

   Membrane   Additive Weight 

% 

Additive 

Bath 

Temperature 

Blend 

Ratio 

Flux Rejection 

   A   PEG 1000, LiCl 1 40 90 1210.028 26.13 

   B   PEG 600, LiCl 1 80 80 330.408 66.24 

   C   PVP,Ca(NO3)2 1 100 10 3614.448 34.49 

   D   PEG 600, PVP 10 50 100 187.608 83.98675 
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Conclusions: 
According to all the characterizations and performance evaluations performed on all the 

membranes it is evident that membranes 2,7,8,9 and 10 are the ones with the best 

performance.  The performances of the membranes are judged on their balance between flux 

and rejection. Each membrane was tested for viscosity, surface roughness, pore depths, pore 

separation, functional group and hydrophilicity. Based on the results quantified in tables 10, 11 

and 12 it can be seen: 

 Membrane 2: The viscosity of the casting is fairly high which counts for the 

stable tensile strength that this membrane possesses. Although the porosity is 

high this membrane has a relatively low flux and a very high rejection rate. This 

could be a result of the complexes of Li+ formed on the surface of the membrane 

which prohibits large amounts of water molecules to pass through. On the other 

hand these complexes also helps reject a lot of the protein molecules trying to 

pass through it. Despite the high rejection value, the low flux does not allow this 

membrane to be used in large industrial applications for poor economic benefits.  

 Membrane 7:  With a fairly high tensile strength this membrane proved to be a 

one of the more reliable ones. According to its porosity it does have a fairly high 

flux but in turn a fairly poor rejection rate. The rejection rate could be higher if 

larger sized proteins were used for percentage retentate testing. This leaves 

membrane 7. Hence membrane 7 is apt for industrial applications for greater 

economic advantages.  

 Membrane 8: This membrane was produced with a novelty additive of CaNO3 

and proved to be more apt at rejecting protein than any of the other 

membranes. This can be recommended for large scale applications only if the 

use calls for high quality separations.    

 Membrane 9: With relatively higher porosity and hence relatively higher flux this 

membrane has equal rejection capabilities as membrane 8 and hence would be 

more cost effective compared to membrane 8.  

 Membrane 10: This membrane is the most hydrophilic according to the CA tests 

run on it. This hydrophilicity also accounts for the large flux capabilities that this 

membrane holds. Given a situation of rejecting larger protein molecules in this 

membrane would be able to do it most cost effectively. Hence, this membrane is 

highly recommended for large scale industrial applications.  
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According to the optimization process it can be seen that additives like LiCl and CaNO3 in 

small amounts improves the functionality of the membrane. On the other hand additives like 

PVP and PEG 600 work better at higher compositions. Finally, using the statistical optimization 

method proved to be an extremely efficient way of determining the combinations for producing 

a membrane with even better capabilities.  

 Membrane A: This membrane should contain low amounts of PEG-1000 and LiCl 

additives. With a combination of low bath temperature and high amounts of PVC 

this membrane could prove to be extremely cost effective owing to its high flux 

value. But on the other hand it is recommended for the rejection of larger 

protein molecules. 

 Membrane B: PEG-600 and LiCl in low amounts should be used to produce this 

membrane. With a high bath temperature and relatively high blend ratio this 

membrane proves to have excellent rejection qualities and also fairly high flux 

making it extremely favorable for industrial applications.  

 Membrane C:   with low amounts of calcium nitrate and PVP this membrane 

shows excellent rejection quality for larger protein molecules and one of the 

highest flux values. This membrane would be extremely cost effective for large 

scale processes.  

 Membrane D: This membrane has one the highest rejection rates with a fairly 

low flux and hence is very appropriate for large scale high purification processes.  

It can be recommended to use this method with other variables like solvent characteristics, 

coagulation bath temperatures, protein molecular weight and so forth to engineer a much 

more efficient membrane with higher flux and rejection values.  
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Recommendations:  
There are many ways by which this experimental process could be improved. The following 

points are recommended for future investigations in this topic: 

1) It is evident that more factors and levels of an experimental design method will help 

attain better results. Hence, it is very important that the number of factors and more 

importantly the number of levels be increased for more accurate predictions for 

optimization. 

2) As mentioned above, the factors or variables used could be increased and things like 

solvent characteristics, coagulation bath temperatures, protein molecular weight and so 

forth would help find more accurate dependence of the responses on the independent 

variables. 

3) The machines used for characterization should must be functional and clean before use. 

4) It is extremely important to let the casting solution mix completely before it is scraped.  

5) The protein rejection studies depend highly on the size of the protein being used. The 

used of heavier or larger protein particles would have helped achieve higher rejection 

rates and better results. 

6) Membrane performance can be exceedingly hampered by dust particles that deposit on 

the surface if the membrane is left outside in the open air. Proper storage of the 

membrane is highly recommended.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

Page | 58  
 

Appendix A: 

Factorial Design Tables: 19 

Table 14: Column selection for Table 3 

The 
number of 
factors 

The number of the column to be selected 

2 1 7 
        

3 1 5 7               
4 1 2 5 7 

      
5 1 2 3 5 7           
6 1 2 3 5 7 10 

    
7 1 2 3 4 5 7 10       
8 1 2 3 4 5 6 7 10 

  
9 1 2 3 4 5 6 7 9 10   
10 1 2 3 4 5 6 7 8 9 10 

 

 

 

Table 15: U11 (11^10): Defines the design combination 

EXPERIMENT 1 2 3 4 5 6 7 8 9 10 

1 1 2 3 4 5 6 7 8 9 10 
2 2 4 6 8 10 1 3 5 7 9 
3 3 6 9 1 4 7 10 2 5 8 
4 4 8 1 5 9 2 6 10 3 7 
5 5 10 4 9 3 8 2 7 1 6 
6 6 1 7 2 8 3 9 4 10 5 
7 7 3 10 6 2 9 5 1 8 4 
8 8 5 2 10 7 4 1 9 6 3 
9 9 7 5 3 1 10 8 6 4 2 

10 10 9 8 7 6 5 4 3 2 1 
11 11 11 11 11 11 11 11 11 11 11 
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Table 16: Numerical statistical combination 

Experiment Temperature of 
bath (A) 

PVC/xxx 
(Blend 

Ratio)(B) 

Wt.% of 
Polymer(C) 

Additive (D) Wt.% of 
Additive. 

(E) 

1 1 2 3 5 7 

2 2 4 6 10 3 

3 3 6 9 4 10 

4 4 8 1 9 6 

5 5 10 4 3 2 

6 6 1 7 8 9 

7 7 3 10 2 5 

8 8 5 2 7 1 

9 9 7 5 1 8 

10 10 9 8 6 4 

 

Table 17: Defining the levels and factors 

Levels\Factors Temperature 
of bath (A) 

PVC/xxx (Blend 
Ratio)(B) 

Wt.% of 
Polymer(C)  

Additive (D) Wt. % of 
Additive. (E) 

1 40 9:1 25 PEG 600 1 

2 50 8:2 20 PEG 1000 3 

3 60 7:3 18 PVP 5 

4 70 6:4 15 FeCl2 7 

5 80 5:5 10 LiCl 10 

 

 Table 18: Factor and Level 
correlation matrix 

 

 

 

 

 

 

 

 

Experiment Temperature 
of bath (A) 

PVC/xxx 
(Blend 

Ratio)(B) 

Wt.% of 
Polymer(C)  

Additive 
(D) 

Wt. % of 
Additive. 

(E) 

1 A1 B1 C1 D1 E1 

2 A1 B1 C1 D1 E1 

3 A2 B2 C2 D2 E2 

4 A2 B2 C2 D2 E2 

5 A3 B3 C3 D3 E3 

6 A3 B3 C3 D3 E3 

7 A4 B4 C4 D4 E4 

8 A4 B4 C4 D4 E4 

9 A5 B5 C5 D5 E5 

10 A5 B5 C5 D5 E5 
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Table 19: Final combination according to statistical combination 

 

 

Table 20: Final Design combination 

Experiment Temperature of 
bath (A) 

PVC/xxx (Blend 
Ratio)(B) 

Wt.% of 
Polymer(C)  

Additive (D) Wt. % of 
Additive. (E) 

1 40 9:1 20 PVP 7 

2 40 8:2 18 LiCl 3 

3 50 7:3 10 PEG 1000 10 

4 50 6:4 21 LiCl 5 

5 60 5:5 20 PEG 1000 1 

6 60 9:1 15 CaNO3 10 

7 70 8:2 10 PEG 600 5 

8 70 7:3 21 CaNO3 1 

9 80 6:4 18 PEG 600 7 

10 80 5:5 15 PVP 3 

 

 
 

 

Experiment Temperature of 
bath (A) 

PVC/xxx (Blend 
Ratio)(B) 

Wt.% of 
Polymer(C)  

Additive (D) Wt. % of Additive. 
(E) 

1 A1 B1 C2 D3 E4 

2 A1 B2 C3 D5 E2 

3 A2 B3 C5 D2 E5 

4 A2 B4 C1 D5 E3 

5 A3 B5 C2 D2 E1 

6 A3 B1 C4 D4 E5 

7 A4 B2 C5 D1 E3 

8 A4 B3 C1 D4 E1 

9 A5 B4 C3 D1 E4 

10 A5 B5 C4 D3 E2 
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Appendix B: 

Sample Calculations: 

Determination of polymer and additive amounts:  

 

 

     
      Equation 4 

 

     
      Equation 5 

Here, x = amount of PVC +PVB 

y=amount of additive 

z = amount of DMAc 

Wp = weight % of polymer 

Wa = weight % of additive  

Eq. 4 and 5 can be rewritten as: 

(    )           

(    )           

Using this and given values of Wp, Wa and z values of x and y can be found.  

The excel formula MMULT (MINVERSE (Array1) (Array2)) can solve for values of x and y automatically  as 

a simultaneous equation. 

Porosity of membrane:  

Porosity of the membrane is calculated using equation 1: 

         
(  )  (  )

       
 

For membrane 1:  

         
(      )  (      )
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Pure water flux of the membrane:  

The pure water flux can be found by using equation 2: 

        
 

   
      

For membrane 1:  

        
        

                 
        

  

    
      

 

Rejection of membrane:  

The rejection of the membrane can be found using equation 3: 

          (  (
  

  
))           

For membrane 1: (Cp and Cf from correlation given in graph 1) 

          (  (
   

    
))                 
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Appendix C: 

Graphs: 
Table 21: Absorbance and concentration relation 

[BSA] Absorbance 

100 0.934 

200 0.985 

400 1.144 

600 1.27 

900 1.462 

1000 1.51 

1500 1.772 

 

 

Graph 1: Absorbance and Concentration determination (Reference absorbance calibration). 
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Table 22: Flux and rejection variance according to blend ratio with bath temp at 40 

Regression 
Flux Equation  

Regression 
Rej. Equation 

Bath 
Temperature  

Blend 
Ratio 

Weight % 
Additive 

Weight % 
Additive  

Rej. 

5793.228 -41.28 40 10 3 10 -54.055 

5220.328 -33.31  20   -46.085 

4647.428 -25.34  30   -38.115 

4074.528 -17.37  40   -30.145 

3501.628 -9.4  50   -22.175 

2928.728 -1.43  60   -14.205 

2355.828 6.54  70   -6.235 

1782.928 14.51  80   1.735 

1210.028 22.48  90   9.705 

637.128 30.45  100   17.675 

 

 

Graph 2: Flux against Blend ratio at bath temperature of 40 

 

Graph 3: Rejection against blend ratio at bath temperature of 4 
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Table 23: Flux and rejection variance according to blend ratio with bath temp at 70 

Regression 
Flux Equation  

Regression 
Rej. Equation 

Bath 
Temperature  

Blend 
Ratio 

Weight % 
Additive 

Weight % 
Additive  

Rej 

4703.838 -8.87 70 10 5 10 -17.995 

4130.938 -0.9  20   -10.025 

3558.038 7.07  30   -2.055 

2985.138 15.04  40   5.915 

2412.238 23.01  50   13.885 

1839.338 30.98  60   21.855 

1266.438 38.95  70   29.825 

693.538 46.92  80   37.795 

120.638 54.89  90   45.765 

 

 

Graph 4: Flux against blend ratio at bath temp of 70 

 

Graph 5: Rejection against blend ratio at bath temp of 70 
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Table 24: Flux and rejection variance according to bath temp with blend ratio at 10.  

Regression 
Flux Equation 

Regression 
Rej. Equation 

Bath 
Temperature 

Blend 
Ratio 

Weight % 
Additive 

Weight % 
Addtive 

Rej. 

5793.228 -37.63 40 10 1 10 -54.055 

5430.098 -25.61 50    -42.035 

5066.968 -13.59 60    -30.015 

4703.838 -1.57 70    -17.995 

4340.708 10.45 80    -5.975 

3977.578 22.47 90    6.045 

 

 

Graph 6: Flux against bath temp at blend ratio of 10 

 

Graph 7: Rejection against bath temp at blend ratio of 10 
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Table 25: Flux and rejection variance according to bath temp with blend ratio at 90. 

Regression 
Flux Equation 

Regression Rej. 
Equation 

Bath 
Temperature 

Blend 
Ratio 

Weight % 
Additive 

Weight % 
Addtive 

Rej. 

5118.57 27.93675 40 90 1% 10% 27.7725 

5481.7 39.95675 50    39.7925 

5844.83 51.97675 60    51.8125 

6207.96 63.99675 70    63.8325 

6571.09 76.01675 80    75.8525 

6934.22 88.03675 90    87.8725 

 

 

Graph 8: Flux against bath temp at blend ratio of 90. 

 

Graph 9: Rejection against bath temp at blend ratio of 90. 
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Appendix D: 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 26: Backward regression on Flux 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 27: Backward regression on Rejection 
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Appendix E: 

Raw data tables: 

Porosity of Membranes: 
Table 26: Raw Data for Porosity 

Membrane  1 1 1 2 2 2 

Length 5.8   7.3   

Breadth 4.5 1.95 1.95 4.6 1.95 1.95 

Thickness 0.019 0.011 0.011 0.008 0.031 0.009 

Volume of the film  0.499162
5 

0.0328555 0.0328555 0.2560475 0.0925927
8 

0.0268817
7 

Room Temperature 16 18 18 16 18 18 

Density of Water 0.9989 0.9989 0.9989 0.9989 0.9989 0.9989 

Weight of Wet Membrane 
w1 (g) 

0.2693 0.0146 0.0148 0.1304 0.1228 0.0175 

Weight of Dry Membrane 
w2 (g) 

0.0615 0.0107 0.0090 0.0747 0.0408 0.0125 

Porosity of membrane  41.67377
9 

11.883229
8 

17.672495
6 

21.776794
2 

88.657347
4 

18.620445
6 

Average Porosity 23.74316815 43.01819575 

 

 

Membrane  3 3 3 4 4 4 

Length 5.1   5.7   

Breadth 4.8 1.95 1.95 4.3 1.95 1.95 

Thickness 0.013 0.013 0.041 0.013 0.015 0.013 

Volume of the film  0.31824 0.0388292
3 

0.1224614
1 

0.31863 0.0448029
6 

0.0388292
3 

Room Temperature 16 18 18 16 18 18 

Density of Water 0.9989 0.9989 0.9989 0.9989 0.9989 0.9989 

Weight of Wet 
Membrane w1 

0.0699 0.0411 0.0192 0.1001 0.0276 0.0276 

Weight of Dry 
Membrane w2 

0.0497 0.0184 0.0114 0.0399 0.0164 0.0161 

Porosity of membrane  6.3541270
7 

58.525492
9 

6.3763672
2 

18.913378
8 

25.025878
9 

29.649478
8 

Average Porosity 6.365247148  24.529578
8 
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Membrane  5 5 5 6 6 6 

Length  4.9   5.15   

Breadth  4.15 1.95 1.95 3.15 1.95 1.95 

Thickness  0.014 0.018 0.012 0.023   

Volume of 
the film 

 0.2745225 0.05376355 0.03584237 0.3731175   

Room 
Temperature 

 16 18 18 16 18 18 

Density of 
Water 

 0.9989 0.9989 0.9989 0.9989 0.9989 0.9989 

Weight of 
Wet 

Membrane 
w1 

 0.1013 0.0301 0.0187 0.1239   

Weight of 
Dry 

Membrane 
w2 

 0.0613 0.0200 0.0125 0.0761   

Porosity of 
membrane 

 14.5861723 18.8066501 17.3170144 12.8245333   

Average 
Porosity 

  16.9032789     

 

 

Membrane  7 7 7 8 8 8 

Length 4.5   4.35   

Breadth 3.9 1.95 1.95 4.3 1.95 1.95 

Thickness 0.023 0.026 0.061 0.012 0.013 0.013 

Volume of the 
film  

0.394875 0.07765846 0.18219869 0.21978375 0.03882923 0.03882923 

Room 
Temperature 

16 18 18 16 18 18 

Density of 
Water 

0.9989 0.9989 0.9989 0.9989 0.9989 0.9989 

Weight of Wet 
Membrane w1 

0.2110 0.0741 0.0431 0.1014 0.0342 0.0294 

Weight of Dry 
Membrane w2 

0.0562 0.0304 0.0159 0.0638 0.0196 0.0195 

Porosity of 
membrane  

39.2437599 56.3340096 14.945197 17.1258272 37.6419469 25.5243339 

Average 
Porosity 

 36.8409888   26.764036  
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Membrane  9 9 9 10 10 10 

Length 4.85   4.7   

Breadth 3.9 1.95 1.95 3.9 1.95 1.95 

Thickness 0.029 0.030 0.011 0.011 0.013 0.013 

Volume of 
the film  

0.54380625 0.08960591 0.0328555 0.2062125 0.03882923 0.03882923 

Room 
Temperature 

16 18 18 16 18 18 

Density of 
Water 

0.9989 0.9989 0.9989 0.9989 0.9989 0.9989 

Weight of 
Wet 

Membrane 
w1 

0.5041 0.1059 0.0197 0.2216 0.0489 0.0524 

Weight of 
Dry 

Membrane 
w2 

0.1524 0.0348 0.0139 0.0382 0.013 0.0112 

Porosity of 
membrane  

64.7422019 79.4348209 17.6724956 89.0314888 92.557938 106.22248 

Average 
Porosity 

 53.9498395   95.9373024  

Viscosity of casting solution: 
Table 27: Raw Data for Viscosity 

Viscosity of Casting Solution 1 2 2 2 2 2 

       

Solution Temperature 16.5 17 18 18 18 18 

Rotor Model 64 64 64 64 64 64 

Sample Volume (ml) 100 100 100 100 100 100 

Velocity (RPM) 3 20 12 10 6 5 

Torque (%) 87.8 90.9 68.4 61.2 45.9 41.1 

Viscosity (cP) 175600 27330 34200 36660 45700 49000 

Average Viscosity  38578 

 

Viscosity of 
Casting 
Solution 

3 3 3 3 3 4 4 4 4 4 

           

Solution 
Temperature 

17 17 18 18 18 17 17 17 17 17 

Rotor Model 62 62 62 62 62 63 63 63 63 63 

Sample 
Volume (ml) 

100 100 100 100 100 100 100 100 100 100 

Velocity (RPM) 100 60 50 30 20 30 20 12 10 6 

Torque (%) 84.2 50.6 42.4 25.2 16.4 65 42.1 25.4 21.5 12.7 

Viscosity (cP) 252.9 252.5 253.8 252 245 2612 2538 2540 2580 2520 

Average Vis. 251.24 2558 
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Viscosity of 
Casting 
Solution 

5 6 7 7 7 7 7 

        

Solution 
Temperature 

17 30 17 18 18 18 18 

Rotor Model 64 64 62 62 62 62 62 

Sample 
Volume (ml) 

50 100 100 100 100 100 100 

Velocity 
(RPM) 

20 50 100 60 50 30 20 

Torque (%) 68.4 37.8 90.8 53.9 44.9 26.6 17.2 

Viscosity 
(cP) 

20520 4540 1088 1076 1078 1064 1032 

Average 
Viscosity 

  1067.6 

 

 

Viscosity of 
Casting Solution 

8 8 8 8 8 

      
Solution 

Temperature 
17 18 18 18 18 

Rotor Model 64 64 64 64 64 
Sample Volume 

(ml) 
100 100 100 100 100 

Velocity (RPM) 5 4 3 2.5 2 
Torque (%) 89.2 76.3 60.9 59.3 53.1 

Viscosity (cP) 107500 114500 122400 140900 159300 
Average Viscosity 128920 

 

 

 

Viscosity of Casting 
Solution 

9 9 9 9 9 

      

Solution 
Temperature 

70 70 70 70 70 

Rotor Model 64 64 64 64 64 

Sample Volume (ml) 100 100 100 100 100 

Velocity (RPM) 50 30 20 12 10 

Torque (%) 59.4 68.3 56.3 32.1 27.6 

Viscosity (cP) 6820 12000 16740 16050 16140 

Average Viscosity 13550 
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Viscosity of Casting 
Solution 

10 10 10 10 

     
Solution Temperature 17 18 18 18 

Rotor Model 62 62 62 62 
Sample Volume (ml) 100 100 100 100 

Velocity (RPM) 20 12 10 6 
Torque (%) 89.2 53.3 44.3 26.2 

Viscosity (cP) 1337 1333 1329 1310 
Average Viscosity 1327.25    

 

Flux: 
Table 28: Raw Data for flux 

Pure Water Flux of the 
membrane 

1 1 1 2 2 2 

       

Temperature of water 18 18 18 17 17 17 

Membrane Area (m^2) 0.003473 0.003473 0.003473 0.003473 0.003473 0.003473 

Pre-Pressure 0.12 0.12 0.12 0.12 0.12 0.12 

Time for Pre-Pressure 0.5 0.5 0.5 0.5 0.5 0.5 

Operation Pressure 0.1 0.1 0.1 0.1 0.1 0.1 

Volume of filtered DI 
water 

276.2 297.7 18.6 307.4 32.9 10.7 

Time for Filtration 753 3074 38 1632 915 319 

Flux (Jw = V/A.t) in 
ml/m^2.s 

105.614589 27.8849704 140.936851 54.2349102 10.3530907 9.65802469 

Average Flux  123.27572   24.7486752  

 

Pure Water Flux 
of the 

membrane 

3 3 3 4 4 4 

       

Temperature of 
water 

17 18 18 18 18 18 

Membrane Area 
(m^2) 

0.003473 0.003473 0.003473 0.003473 0.003473 0.003473 

Pre-Pressure 0.12 0.12 0.12 0.12 0.12 0.12 

Time for Pre-
Pressure 

0.5 0.5 0.5 0.5 0.5 0.5 

Operation 
Pressure 

0.1 0.1 0.1 0.1 0.1 0.1 

Volume of 
filtered DI water 

274.3 16.9 311.4 206 190.7 313.6 

Time for 
Filtration 

78 66 125 41 42 52 

Flux (Jw = V/A.t) 
in ml/m^2.s 

1012.57318 73.7289393 717.304924 1446.70033 1307.36429 1736.47257 

Average Flux  601.202349   1496.84573  
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Pure Water Flux 
of the membrane 

5 5 5 7 7 

      
Temperature of 

water 
17 16 18 18 17 

Membrane Area 
(m^2) 

0.003473 0.003473 0.003473 0.003473 0.003473 

Pre-Pressure 0.12 0.12 0.12 0.12 0.12 
Time for Pre-

Pressure 
0.5 0.5 0.5 0.5 0.5 

Operation 
Pressure 

0.1 0.1 0.1 0.1 0.1 

Volume of 
filtered DI water 

310.8 246.7 22.6 291.7 300 

Time for 
Filtration 

82 62 19 594 555 

Flux (Jw = V/A.t) 
in ml/m^2.s 

1091.34578 1145.70465 342.491703 141.39863 155.640812 

Average Flux  1118.52522   148.519721 

 

Pure Water 
Flux of the 
membrane 

8 8 9 9 10 10 

       

Temperature 
of water 

18 17 18 17 17 18 

Membrane 
Area (m^2) 

0.003473 0.003473 0.003473 0.003473 0.003473 0.003473 

Pre-Pressure 0.12 0.12 0.12 0.12 0.12 0.12 

Time for Pre-
Pressure 

0.5 0.5 0.5 0.5 0.5 0.5 

Operation 
Pressure 

0.1 0.1 0.1 0.1 0.1 0.1 

Volume of 
filtered DI 

water 

306.4 9.3 266 301 254.1 28.3 

Time for 
Filtration 

1200 480 1452 1302 252 40 

Flux (Jw = 
V/A.t) in 
ml/m^2.s 

73.5195316 5.57875036 52.7485149 66.5657344 290.334965 203.714368 

Average Flux  39.549141  59.6571247  247.024666 
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Rejection:  
Table 29: Raw Data for rejection 

Rejection 1 1 1 2 2 2 

       

Concentration for BSA 1020 1127 1035 1020 1200 1180 

Volume of PBS buffer 30 30 30 30 30 30 

Operation Pressure 0.1 0.1 0.1 0.1 0.1 0.1 

Absorbance of Raw 
water 

1.5060 1.5750 1.5150 1.5060 1.6190 1.6070 

Absorbance of Filtered 
water 

1.4640 1.5300 1.4760 1.1870 1.2430 1.2330 

Concentration of Raw 
water 

1020 1127 1035 1020 1200 1180 

Concentration of 
Filtrate 

945 1056 965 490 587 551 

R= (1- Cp/Cf)*100 7.3529411
8 

6.2999112
7 

6.7632850
2 

51.960784
3 

51.083333
3 

53.305084
7 

Average Rejection  6.805379   52.11640  

 

Rejection 3 3 4 4 5 5 

       

Concentration 
for BSA 

1085 1160 1048 1115 995 1130 

Volume of PBS 
buffer 

30 30 30 30 30 30 

Operation 
Pressure 

0.1 0.1 0.1 0.1 0.1 0.1 

Absorbance of 
Raw water 

1.5450 1.5960 1.5220 1.5660 1.4940 1.5750 

Absorbance of 
Filtered water 

1.4930 1.5190 1.5200 1.5600 1.4700 1.5290 

Concentration 
of Raw water 

1085 1160 1048 1115 995 1130 

Concentration 
of Filtrate 

1000 1035 1040 1105 960 1055 

R= (1- 
Cp/Cf)*100 

7.83410138 10.7758621 0.76335878 0.89686099 3.51758794 6.63716814 

Average 
Rejection 

 9.30498173  0.83010988  5.07737804 
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Rejection 7 7 8 8 9 9 10 10 

         

Concentrat
ion for 
BSA 

1100 1082 1030 1000 1018 1000 1020 1020 

Volume of 
PBS buffer 

30 30 30 30 30 30 30 30 

Operation 
Pressure 

0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

Absorbanc
e of Raw 

water 

1.5540 1.5450 1.5150 1.4950 1.5060 1.4960 1.5070 1.507 

Absorbanc
e of 

Filtered 
water 

1.3320 1.3620 0.9370 1.1750 0.9560 1.1940 1.2750 1.313 

Concentrat
ion of Raw 

water 

1100 1082 1030 1000 1018 1000 1020 1020 

Concentrat
ion of 

Filtrate 

735 782 80 471 110 485 640 700 

R= (1- 
Cp/Cf)*100 

33.18181
82 

27.72643
25 

92.23300
97 

52.9 89.1944
99 

51.5 37.2549
02 

31.37254
9 

Average 
Rejection 

 30.45412
54 

 72.56650
49 

 70.34724
95 

 34.31372
55 
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