

Friendly House IQP Report

Paul Gibler

Project #GFP0803

Advisor Signature: ___

Student Signature: ___

1

Table of Contents

Introduction

The Initial Project

1. Overview

2. Capabilities

3. Shortcomings

Site Generation Language

1. Overview

2. Capabilities

3. Shortcomings

Friendly House Content Management System

1. Overview

2. Open-Source Options

3. Capabilities

4. Shortcomings

5. Before and After

Closing Words

Appendix

1. Section I

2. Section II

3. Section III

2

4

4

4

4

5

5

5

5

6

6

6

7

7

7

8

9

9

14

17

2

Introduction

The Friendly House Interdisciplinary Qualifying Project (IQP) had a goal of creating an easy to

maintain website for Friendly House, Inc., a food shelter located in Worcester, MA. The need for this

arose since their web presence and site home page, as of March 9, 2009, amounted to an image of the

front of the Friendly House building with their contact information written on it. This need was met by

a team consisting of Dylan Streb and myself. I wrote the code for both displaying and maintaining the

website, and Streb compiled a user guide for the administrators of the website at Friendly House.

The project itself went through several iterations. The first one did not initially include me, as I joined

the project in the middle of its development process. Once I did join, my task was to use the current

code base and website developed by the team and expand upon it so that it would be capable of

handling all of the features the client would need. I did this over the first half of the summer of 2008, in

which I added features such as dynamic loading of pages into the content section of the website,

configurable page links, and made the news section simpler to maintain and update, by having all of the

information loaded from plain text files and displayed on the web page after being processed by a PHP

script. However, editing the individual pages still required the user to know HTML to update them, as

they were loaded into the content section as-is. The initial solution that I decided upon was to create a

site generation language to remove the need for developing the sites with HTML, as the users would

then be able to use the site generation language and have the site manager application automatically

generate the HTML from the language. This did not prove to be a significant enough upgrade over

HTML as far as ease of use was concerned, and this part of the project was eventually scrapped.

In the next iteration of the project, I decided that a tool would be a good solution to solve this problem,

and the web-based text editor FCKeditor was incorporated into the site management page to maintain

individual web pages. An extension of jQuery, the jQuery File Tree, was used to navigate the individual

pages of the website and select one for editing. While functional, the user experience was lacking, and

serious renovations were necessary.

The only part of the project at this point that proved itself both easy to use and develop with was the

FCKeditor tool. Since the site was going to be significantly renovated, I decided that the best way to

handle this was to simply scrap everything unrelated to the FCKeditor and start fresh. This current

iteration of the project was started at the beginning of Christmas break and has been ongoing since

then. After some research, I decided to create a fully fledged Content Management System (CMS) for

maintaining everything on the website, including but not limited to the web pages, page categories,

3

images, and footer. The CMS was written in a combination of PHP and JavaScript, with the PHP and

JavaScript being used for the front-end and with the PHP also being used for the back-end, to interact

with both the site pages and configuration files. A key goal of the CMS was to make it as easy to use as

possible – this was accomplished by developing an intelligent design for the user interface in the CMS

web application, by creating categories for related features so that navigating it was both simple and

intuitive. Altering pages was also meticulously implemented. Users can edit page contents using a

single feature, and edit the page title using another feature. By separating the features and only

implementing the ones they would need, the hope was that users would not get lost trying to wade

through features they didn’t need or want. Based on the feedback from the clients during the demos,

this appears to be a success.

4

 The Initial Project

 Overview

The initial project was a site displayer written in PHP that incorporated CSS for styling the pages of the

web site. It included a pop-up menu bar that contained each program the clients at Friendly House

wanted written for the web site. As well, it contained a section for displaying the contents of the web

page and a news section that contained the current news of the day. Initially, the site displayer had

several shortcomings such as having all of its content hard coded as well as being difficult to maintain

from a development perspective that made it a decided failure in the end.

 Capabilities

The site displayer had several useful capabilities, which found themselves in the final version of the

project, albeit modified greatly. In the beginning, for a user to edit the content of individual pages, they

would have to write the page using the Friendly House Site Generator language, a domain-specific

language that was compiled into HTML. This feature is covered more in the next section of the paper.

While it was not used in the end, from it came the most important feature and capability of the website,

that is, allowing users to edit individual pages using FCKeditor, preview them, and save them on the

website. This feature became a core component in the final iteration of the site manager tool.

As well, page content was loaded dynamically into the content section of the web page. The content

loaded was determined by the GET variables of the HTTP request of the client program accessing the

web page. The news section was loaded from a text file and rendered as is, meaning that the only way

to incorporate formatting in the text of the web page was to wrap text in HTML tags. This was one of

the things that the site maintainers at Friendly House explicitly stated that they did not want to have to

deal with. This issue was handled by using FCKeditor to edit the content of web pages.

 Shortcomings

The site displayer was written by the previous group in PHP, but the content of the site was hard coded

into the page, making it hard coded and difficult to maintain. The user interface for the site manager

was lacking, as it was unintuitive to use and was not pleasing to look at. The site displayer itself did not

look good either, and the CSS written for the site displayer was poorly written, undocumented, and

very difficult to maintain. I concluded that scrapping most of the parts of the initial project and starting

anew would be the best direction for the IQP to go so that the clients would be satisfied.

5

 Site Generation Language

 Overview

The Site Generation Language (SGL) was a data language that contained Lisp-like syntax, and was

compiled into an HTML page. It was designed with ease of use in mind, as the users of the site

expressed their desire to avoid writing HTML. As an example, a user would type the following to

generate bolded text in an HTML document:

My bolded text

In the SGL, a user would type the following to generate bolded text:

(bold My bolded text)

This simple example does not display the full capabilities of the language, but does show the inherent

difference between the two languages, which is that the SGL is more verbose as far as how the text

following the formatting code will be altered.

The code for the SGL compiler code can be found in Appendix Section I.

Two examples of SGL code and its HTML output can be found in the Appendix Section II.

 Capabilities

The SGL contained several features that made it both easy to update, maintain, and use. Users could

invoke the SGL compiler by pointing it to the path of the file to be compiled and an output HTML file,

and it would generate the HTML file at the given location. It also had a schema file for all of the

formatting codes, with both their inputs and outputs indicated at each formatting code.

The final schema file can be found in the Appendix Section III.

 Shortcomings

The SGL suffered from several important shortcomings. Most importantly, it was not any easier or

more readable than HTML for a user who lacked experience with HTML, and based on the level of

development skill of the clients of the project, it was not reasonable to expect them to use it with any

sort of success.

6

 Friendly House Content Management System

 Overview

The Friendly House Content Management System (FHCMS) is a tool developed for the clients at

Friendly House to facilitate the ease and use of updating and maintaining pages, categories, images,

and other artifacts that could appear on their web space. I wrote it in PHP, utilizing concepts first

outlined by the previous iterations of the project, such as the use of configuration files for the settings

of the website, and integrating FCKeditor into the FHCMS to make updating individual pages simple.

 Open-Source Options

There are many open-source solutions for developers who would like to integrate a CMS into their web

site. Two popular CMSs include Drupal and WordPress. The following is Drupal’s developers’

description of their software:

 Drupal is a free software package that allows an individual or a community of users to easily

 publish, manage and organize a wide variety of content on a website.

WordPress’s developers describe their software as follows:

 WordPress was born out of a desire for an elegant, well-architectured personal publishing

 system built on PHP and MySQL and licensed under the GPL. It is the official successor of

 b2/cafelog. WordPress is fresh software, but its roots and development go back to 2001. It is a

 mature and stable product. We hope by focusing on user experience and web standards we can

 create a tool different from anything else out there.

Drupal, while powerful, contained a cumbersome interface that would be difficult to use for people not

comfortable with other CMS software. This was the main reason Drupal was not selected as the CMS

to use for the maintenance of Friendly House’s web space. WordPress, on the other hand, has a very

clear and concise interface. However, the software was geared towards maintaining and updating blogs,

and was not intended to be used for web sites without some significant configuration and extension of

the current code base. For these reasons, it was decided that developing a CMS tailor made for the

users at Friendly House was the best direction for the project.

7

 Capabilities

As it was tailor made for the clients at Friendly House, the FHCMS contained features that would

facilitate them running their website more efficiently. It was designed so they would have to spend as

little time navigating it, conversely letting them spend more time updating the site itself. An example of

this includes the “Hiding” feature. Users can hide categories, which are just a collection of pages, and

pages themselves. When a page or category is hidden, it does not appear in the navigation bar of the

page. This is useful for seasonal web pages, such as the Thanksgiving Food Drive program that only

appears during Thanksgiving. As well, the FHCMS contains many of the features standard to all CMS

software, included but not limited to the ability to add and remove pages, edit the content of pages, add

and remove categories, rename pages, rename categories, and update and change the footer.

As far as systems capabilities goes, passwords are encrypted with 64-bit reverse string encoding to

protect user login information. AJAX is used heavily to make the interface interaction with the back-

end seamless, with PHP scripts being called to perform routines for the system.

 Shortcomings

In its current state, the FHCMS can be considered a complete piece of software. However, there are

several aspects of it that could be improved. The biggest shortcoming of the site is that all data is stored

in text files in a hierarchal file structure. While this works, there are issues regarding the locking of

files and corruption of data that would be much more easily handled with a true database such as

MySQL or Oracle. As well, it lacks administrative tools for adding and removing users, as well as

options such as disabling notifications. Despite these shortcomings, the clients at Friendly House

should find the software to be both intuitive and easy to use, allowing them to update and maintain

their site quickly and easily, which was the main goal of the IQP.

 Before and After

The site has been improved dramatically from

what they had previously. Before this IQP, their

web presence amounted to a single image

containing their contact information and an

image of the Friendly House building at their

domain name, http://friendlyhousema.org/.

Friendly House’s Original Website

http://friendlyhousema.org/

8

This image has been replaced with a proper website. One of the pages on it is as follows.

Like the original site, the contact information has been maintained on the website. It appears on both

the front page and the footer. The footer is as follows:

Much like the rest of the website, this footer is alterable as well, satisfying the requirement of having

the whole page be updateable.

9

 Closing Words

The journey from the beginning of the IQP to its current state has been an interesting one. The project

went through several iterations, some of which could have been avoided with better research from the

project team. Using a CMS should have been the direction of the project since the beginning, but

unfortunately much time was wasted upgrading the code from the previous project and then developing

a data language. However, all of this work has taught me a lot. I got my first experience with

developing a language, which was both interesting and eye opening. The CMS itself is a large-scale

project which I am proud to say that I wrote and learned a lot from while developing it. I’m surprised

by how well it turned out – it could have been a huge mistake writing a CMS, but I feel confident that it

was the correct move based on our demos with the clients at Friendly House, as they have expressed

that it looks easy enough for them to use. If they truly are happy with the final iteration of the project,

then it’s fair to say that we satisfied the customers’ expectations, which is the true barometer of this

project’s success.

10

 Appendix

 Section I

#!/usr/bin/perl

use strict;

use Data::Dumper;

use Getopt::Long;

use FindBin ‘$Bin’;

use lib "$Bin/lib";

use Parse::RecDescent;

use Config::Scoped;

use UNIVERSAL::isa;

my %in_cfg;

my %cfg = ();

my @tokens = ();

my $input_file;

my $output_file;

my $config_file = "schema.cfg";

Getopt::Long::Configure ("bundling", "auto_help");

if (!GetOptions(

 "config_file=s" => \$config_file,

 "help" => sub {&usage},

))

{

 &usage;

}

%in_cfg = %{ Config::Scoped->new(

 file => $config_file,

 warnings => { permissions =>

‘off’ },

)->parse() };

$input_file = shift || "source/home.txt";

my $input_file_name = ($input_file =~ /\/(.*)$/)[0];

$output_file = shift || "output/$input_file_name.html";

my $string = ‘‘;

open INPUT_FILE, $input_file;

for(<INPUT_FILE>)

{

 $string .= "$_";

}

close INPUT_FILE;

$Parse::RecDescent::skip = ‘‘;

Create and compile the source file

my $parser = Parse::RecDescent->new(q(

 startrule : field(s)

 { main::capture($item[1]); }

11

 ws : /\s+/

 pws : /\s*/

 field : generator

 | paren_text

 | text

 | ws

 string_field:generator

 | paren_text

 | string_text

 | ws

 paren_text: ‘\(‘ field(s) ‘\)’

 { $return = $item[1]."@{$item[2]}".$item[3] }

 string : /\’/ string_field(s) /\’/

 { $return = "@{$item[2]}"; }

 string_text :/[^\(\)\s\’]+/

 text : /[^\(\)\s]+/

 generator: ‘\(‘ pws command pws ‘\)’

 { $return = main::generate($item{command}); }

 command: operation(s /\s+/) /\s*/ parameter(s /\s*/)

 { $return = { instructions => $item[1], parameters =>

$item[3] }; }

 | operation(s /\s+/)

 { $return = { instructions => $item[1], parameters => [()]

}; }

 parameter : generator

 | string

 | text

 operation : ‘-’ text

 { $return = $item[2]; }

));

if($parser->startrule($string))

{

print "Valid.\n\n";

 open OUTPUT_FILE, ">$output_file";

 print OUTPUT_FILE combine_all(@tokens);

}

else

{

 print "Invalid file formatting\n";

}

sub capture

{

 @tokens = @{ (shift) };

}

sub combine_all {

 my @toks = @_;

 my $output = "";

 for my $tok (@toks)

 {

 $tok =~ s/\n/\n
/g;

 $output .= "$tok";

 }

 return $output;

}

12

sub generate

{

 my %command = %{ (shift) };

 # The command instructions.

 my @instructions = @{$command{instructions}};

 # The command parameters.

 my @p = @{$command{parameters}};

 my $parameter_count = @p;

 my %tag_group = ();

 # Load up all instructions with the number of parameters equal to the

parameter count.

 if(defined $in_cfg{parameter_count}{$parameter_count})

 {

 %tag_group = %{$in_cfg{parameter_count}{$parameter_count}};

 }

 # Then load up all instructions that take ‘n’ parameters.

 for my $instruction (keys %{$in_cfg{parameter_count}{n}})

 {

 $tag_group{$instruction}{body} =

$in_cfg{parameter_count}{n}{$instruction}{body};

 if(defined $in_cfg{parameter_count}{n}{$instruction}{pre})

 {

 $tag_group{$instruction}{pre} =

$in_cfg{parameter_count}{n}{$instruction}{pre};

 }

 if(defined $in_cfg{parameter_count}{n}{$instruction}{post})

 {

 $tag_group{$instruction}{post} =

$in_cfg{parameter_count}{n}{$instruction}{post};

 }

 }

 # Preprocess the text.

 for my $instruction (keys %tag_group)

 {

 if(defined $tag_group{$instruction}{pre})

 {

 eval($tag_group{$instruction}{pre});

 }

 }

 my $output = "";

 my $result = "";

 my $curr_instruction = "";

 # Output the body in the order that the instructions work.

 for my $instruction (@instructions)

 {

 if(defined $tag_group{$instruction}{body})

 {

 $curr_instruction = $tag_group{$instruction}{body};

 # Parameters with a count of 1 can be linked together.

 if($parameter_count == 1)

 {

 if(!$result)

 {

13

 $result = $curr_instruction;

 }

 else

 {

 $result =~ s/\$p\[0\]/$curr_instruction/g;

 }

 }

 else

 {

 $result .= $curr_instruction;

 }

 }

 else

 {

 print "Instruction $instruction does not take $parameter_count

parameters:\n";

 for my $p (@p)

 {

 print "$p\n";

 }

 print "Discontinuing parsing.\n";

 exit(0);

 }

 }

 $output .= $result;

 # Process the parameters.

 my $i = 0;

 for my $param (@p)

 {

 if(is_generator($param))

 {

 $param = generate($param);

 }

 $output =~ s/\$p\[$i\]/$param/g;

 $i++;

 }

 $output =~ s/\@p/@p/g;

 # Postprocesses the text.

 for my $instruction (keys %tag_group)

 {

 if(defined $tag_group{$instruction}{post})

 {

 eval($tag_group{$instruction}{post});

 }

 }

 return $output;

}

sub is_generator

{

 my $ref = shift;

 my $ishash = UNIVERSAL::isa($ref, "HASH");

 return $ishash;

}

14

Section II

Input)

(-article_title ‘Friendly House Shelter’)

(-section Description:)

The Friendly House Family Shelter is a short-term emergency shelter for homeless

families with children, with space for up to 13 families.

(-section ‘How to apply:’)

Applicants must be referred by DTA and have an interview with the shelter

supervisor. For more information, call or visit:

Address: 87 Elm Street

Worcester, MA 01609 (-link

‘http://maps.yahoo.com/py/maps.py?&addr=87+Elm+St.&csz=Worcester%2C+MA+01609’ ‘Map

of this location’)

Telephone: 508-792-1799

Office hours: 24 hours, every day of the year

Languages: English, Spanish

Transportation: Near a bus line

(-section Eligibility:)

This shelter is for women and children only. Families must be homeless and have a

referral from the DTA

Output)

Friendly House Shelter<hr

width=300 \>

Description:

The Friendly House Family Shelter is a short-term emergency shelter for

homeless families with children, with space for up to 13 families.

How to apply:

Applicants must be referred by DTA and have an interview with the shelter

supervisor. For more information, call or visit:

Address: 87 Elm Street

Worcester, MA 01609 Ma

p of this location

Telephone: 508-792-1799

Office hours: 24 hours, every day of the year

Languages: English, Spanish

Transportation: Near a bus line

Eligibility:

15

This shelter is for women and children only. Families must be homeless and have

a referral from the DTA

Input containing lists)

(-article_title ‘Quinsigamond Village Community Center’)

The Quinsigamond Village Community Center is a multi-service neighborhood center.

The center is located at:

(-unordered_list

 (-list_item ‘Quinsigamond Village Community Center

 16 Greenwood Street

 Worcester, MA 01607 (-link

‘http://maps.yahoo.com/py/maps.py?&addr=16+Greenwood+St.&csz=Worcester%2C+MA+01607’

‘Map of this location’)

 Telephone: 508-755-7481

 Hours: 9 AM to 4 PM, Monday through Friday’)

)

(-line_break)

(-section ‘Programs and services:’)

The Quinsigamond Village Community Center offers the following programs and

services:

(-unordered_list

 (-list_item ‘Senior Wellness Program’)

 (-list_item ‘Food pantry

 Food distribution is Monday through Friday from 10:00 AM to 4:00

PM.’)

 (-list_item ‘Holiday assistance

 Food baskets and Christmas toys are given out.’)

 (-list_item ‘Instructional baseball/basketball league

 For boys and girls ages 5 through 12, November through March’)

 (-list_item ‘Worcester Intertribal Indian Center (WIIC)’)

 (-list_item ‘Employment services

 Interviewing skills, application assistance, employment follow-up,

job crisis intervention’)

 (-list_item ‘Housing assistance’)

 (-list_item ‘After-school center

 This is a 30-week long program made available through a grant from

Project Bread:

 (-unordered_list

 (-list_item ‘ages 5 and 6 (limited to 20 children)’)

 (-list_item ‘Tuesday through Friday, 2:30 PM to 4:30 PM’)

 (-list_item ‘snacks are served’)

 (-list_item ‘homework club’)

 (-list_item ‘fun time’)

)’

)

 (-list_item ‘Girl Scouts

 Mondays, 2:30 PM to 4:00 PM’)

 (-list_item ‘Self-help groups:

 Narcotics Anonymous (Fridays, 6 PM to 7 PM)

 Alcoholics Anonymous (Saturdays, 2:30 PM to 5:00 PM)’)

 (-list_item ‘Neighborhood Watch

 Meets on the 4th Tuesday of the month, from 4 PM to 5:30 PM’)

 (-list_item ‘Community meeting space

 Call for availability’)

16

)

Output containing lists)

Quinsigamond Village Community

Center<hr width=300 \>

The Quinsigamond Village Community Center is a multi-service neighborhood

center. The center is located at:

Quinsigamond Village Community Center

 16 Greenwood Street

 Worcester, MA 01607 <a

href=http://maps.yahoo.com/py/maps.py?&addr=16+Greenwood+St.&csz=Worcester%2C+MA+01

607>Map of this location

 Telephone: 508-755-7481

 Hours: 9 AM to 4 PM, Monday through

Friday

<hr width=300 />

Programs and services:

The Quinsigamond Village Community Center offers the following programs and

services:

Senior Wellness Program Food pantry

 Food distribution is Monday through Friday from

10:00 AM to 4:00 PM. Holiday assistance

 Food baskets and Christmas toys are given

out. Instructional baseball/basketball league

 For boys and girls ages 5 through 12,

November through March Worcester Intertribal Indian Center

(WIIC) Employment services

 Interviewing skills, application assistance,

employment follow-up, job crisis intervention Housing

assistance After-school center

 This is a 30-week long program made available

through a grant from Project Bread:

 ages 5 and 6 (limited to 20

children) Tuesday through Friday, 2:30 PM to 4:30 PM

snacks are served homework club fun

time Girl Scouts

 Mondays, 2:30 PM to 4:00 PM Self-help

groups:

 Narcotics Anonymous (Fridays, 6 PM to 7 PM)

 Alcoholics Anonymous (Saturdays, 2:30 PM to 5:00

PM) Neighborhood Watch

 Meets on the 4th Tuesday of the month, from

4 PM to 5:30 PM Community meeting space

 Call for availability

17

 Section III

{

 parameter_count 0

 {

 line_break =>

 {

 body = ‘<hr width=300 />‘;

 }

 }

 parameter_count 1

 {

 bold =>

 {

 body = ‘$p[0]‘;

 }

 center =>

 {

 body = ‘<center>$p[0]</center>‘;

 }

 italicize =>

 {

 body = ‘<i>$p[0]</i>‘;

 }

 link =>

 {

 body = ‘$p[0]‘;

 }

 image =>

 {

 body = ‘‘;

 }

 list_item =>

 {

 body = ‘$p[0]‘;

 }

18

 article_title =>

 {

 body = ‘$p[0]<hr

width=300 \>‘;

 }

 section =>

 {

 body = ‘$p[0]‘;

 }

 email =>

 {

 body = ‘$p[0]‘;

 }

 print =>

 {

 body = ‘$p[0]’;

 }

 }

 parameter_count 2

 {

 link =>

 {

 body = ‘$p[1]‘;

 }

 image =>

 {

 body = ‘‘;

 pre = ‘if($p[0] =~ /[-_\s]?align[-_\s]?/) { $p[0] =~ s/[-

]?align[-]?//; };’

 }

 list_item =>

 {

 body = ‘$p[0]$p[1]’;

 }

19

 }

 parameter_count n

 {

 unordered_list =>

 {

 body = ‘@p‘;

 }

 list =>

 {

 body = ‘@p‘;

 }

 ordered_list =>

 {

 body = ‘@p‘;

 }

 definitions_list =>

 {

 head = ‘<dl>@p</dl>‘;

 }

 list_item =>

 {

 body = ‘@p‘;

 }

 }

}

