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ABSTRACT 

In recent decades, much research has investigated the efficiency of Phase Change Materials 

(PCMs) in improving the thermal performance of buildings and pavements. In buildings, 

increasing the thermal inertia of structural elements by incorporating PCMs decreases the energy 

required to keep the inside temperature in the comfort range. In concrete pavements, using PCMs 

decreases the number of freeze/thaw cycles experienced by the pavement and thus increases 

service life. However, PCMs cannot be added to cementitious binders directly, because they 

interfere with the hydration reactions between cement and water that produce strength-bearing 

phases. Therefore different carriers have been proposed to indirectly incorporate PCMs in 

cementitious materials. 

Lightweight Aggregate (LWA) is one of the materials that has been proposed as PCM carrier 

agent. However, it was not studied in depth before. Various experiments were conducted to 

investigate the problems associated with incorporating LWA presoaked in PCM in cementitious 

media. The results show that a portion of PCM leaks out of the LWA’s structure and subsequently 

affects different chemical, physical, and mechanical properties of the binder. In addition, the 

applicability of Rice Husk Ash (RHA), a common material never before used to encapsulate PCM, 

as a PCM carrier agent was investigated. The results show that RHA can absorb and contain liquids 

in its porous structure; and regarding its compatibility with the cementitious media, it can be used 

as PCM carrier. 

Different computational simulations using Typical Meteorological Year data were conducted to 

evaluate the efficiency of PCMs in improving the thermal performance of buildings. Utilizing 

PCM-incorporated gypsum boards was shown to be a promising strategy to achieve the 

governmental plans of “Zero Net Energy” buildings. The results show that using a PCM with a 

melting point near the occupant comfort zone delays and reduces the inside peak temperature, 

increases the duration of time during which the inside temperature stays in the comfort zone, and 

decreases the cost and energy required by HVAC system to keep the inside temperature in this 

range. However, PCMs’ efficiency is completely dependent on the input temperature profile. 

 

Key Words: Phase Change Materials, Temperature Changes in Buildings, Occupant Comfort, 

Service Life of Pavements, Lightweight Aggregate, Rice Husk Ash 
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NOMENCLATURE 

 

 OPC  Ordinary Portland Cement 

 PCM  Phase Change Material 

 LWA  Lightweight Aggregate 

 RHA  Rice Husk Ash 

 T  Temperature (°C, K, °F, and R) 

 Q  Heat flow (W and BTU/h) 

 q  Heat flow per unit area (W/m2 and BTU/h·ft2) 

 h  Heat transfer coefficient (W/m2·K and BTU/h·ft2·R) 

 λ  Thermal conductivity (W/m·K and BTU/h·ft·R) 

 Cp  Specific heat at constant pressure (J/g·K and BTU/lb·R) 

 L  Latent heat of fusion (J/g and BTU/lb) 

 ρ  Density of the solid material (kg/m3 and lb/ft3) 

 σ  Stefan-Boltzmann constant (W/m2·K4 and BTU/h·ft2·R4) 

 ε  Surface emissivity 

 ϴ  Volume fraction of PCM in mortar 

 β  Volume fraction of PCM in phase one 

 ɸ  Time Lag 

  f  Decrement Factor 

 EEF  Energy Efficiency Factor 

 CEF  Cost Efficiency Factor 
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      CHAPTER ONE 

 INTRODUCTION 

Energy consumption all around the world has been increasing significantly during the last two 

decades [1, 2]. Between only 1998 and 2009, the total energy consumption of the entire world 

increased by more than 30% [3]. This energy is mostly gained from fossil fuels. The excessive 

combustion of fossil fuels puts exorbitant amounts of CO2 into the atmosphere. High levels of CO2 

mean that heat from the earth is retained in the atmosphere, thus intensifying the greenhouse effect 

and global warming [4]. 

A big portion of the generated energy is consumed in residential and commercial buildings. In the 

European Union, up to 40% of all energy was used by buildings in 2012 [4]. In the United States 

in 2015, roughly the same percentage of the total energy consumption was due to residential and 

commercial buildings [5]. Also, the energy consumption of Chinese buildings has doubled 

between 1998 and 2009 [6]. Therefore, decreasing the energy consumption of buildings has been 

the topic of many governmental plans and building codes [7]. 

For instance, in the United States, the state of California follows strategies to achieve Zero-Net-

Energy (ZNE) residential buildings by 2020, and ZNE commercial buildings by 2030 [8]. Also, 

Washington State Building Code Council has developed energy codes to achieve a 70% reduction 
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in building energy use by 2030 compared to 2006 levels [9]. Improving the energy efficiency in 

existing buildings, as well as new buildings, was recognized as one of the main strategies to reduce 

energy consumption and reach ZNE buildings. 

The share of space heating and cooling in the buildings’ total energy consumption in the world 

was reported to be 34% in 2010 [10]. This share was more than 35% in the U.S. [11]. These 

statistics show that reducing the energy required for the air conditioning of buildings is one of the 

key elements to achieve the aforesaid goals. Thus, significant research has been done during the 

last two decades to improve energy efficiency of buildings [12, 13]. Different methods, such as 

utilizing polystyrene insulation boards [14], and lightweight insulating concretes [15], have been 

introduced to reduce the energy lost through the walls, floors, and roofs of buildings. These 

methods also address changes in the interior temperatures of buildings and suggest different 

methods for keeping that temperature in the comfort range and reducing HVAC energy 

consumption [16, 17]. Implementing these strategies not only improves occupant comfort, but also 

reduces the electricity demand and the associated emission of gasses such as CO2 [18]. 

The other topic that has attracted the attention of governments is the maintenance costs of 

infrastructure such as roads and bridges. In 2011, the U.S. federal government and state 

departments of transportation spent over $100 billion on maintaining and improving core 

highways, roads, and bridges [19, 20]. Despite this, the American Society of Civil Engineers gave 

a grade of D to American roads in 2013, and reported that an estimated $100 billion is needed 

annually to maintain the current roadway conditions, while an additional $79 billion annually is 

needed to improve the quality of the roadways [21]. 

Cracking due to extreme temperatures, i.e., both very low and very high temperatures, is one of 

the main failure mechanisms in pavements [22, 23]. Cyclic changes in temperature can also cause 
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fatigue failure in pavements after a period of time [24]. In addition, freeze/thaw cycles can cause 

cracks in concrete pavements due to the solidification and expansion of pore solution [22, 25]. 

Thus, decreasing the thermal vulnerability has been recognized as one of the key strategies to 

increase the service life of pavements and reduce the costs of maintenance [26]. 

The incorporation of Phase Change Materials (PCMs) in construction and pavement materials has 

been proposed as one promising method to address both of the mentioned concerns [26, 27]. 

PCMs are substances with relatively high latent heats of fusion. When the ambient temperature 

rises above its melting point, a given PCM absorbs heat and turns to the liquid phase while 

remaining at an almost constant temperature. When the ambient temperature falls below the 

melting point, the PCM begins to release heat and solidify, again remaining at an almost constant 

temperature [28]. A large number of PCMs with different melting points, from roughly -33 °C 

to 800 °C (-27 °F to 1472 °F), and different latent heats of fusion, are industrially available [29]. 

PCMs divide into three main categories: organic, inorganic, and eutectic. Organic PCMs are 

further divided in paraffin and non-paraffin groups. Paraffin waxes consist of a mixture of mostly 

straight chains of n-alkanes CH3-(CH2)-CH3. Non-paraffin PCMs have highly varied 

properties [30]. Fatty acids, with the general formula of CH3-(CH2)2n-COOH, are considered to be 

one of the important types of PCMs in this category. Organic PCMs can melt and freeze repeatedly 

without phase segregation or degradation in their latent heat of fusion, and are mostly stable under 

normal conditions, chemically inert, predictable, relatively cheap, and show little volume change 

on phase transition [31]. However, they have low thermal conductivity and relatively low latent 

heat of fusion [32]. 

Inorganic PCMs are further classified as salt hydrates and metallics. Salt hydrates have relatively 

high latent heat of fusion, relatively high thermal conductivity, and small volume changes on phase 
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transition [33]. However, the main problem associated with them is their structural degradation 

under cyclic phase transitions. Metallics include low melting point metals and metal eutectics. 

They have low heat of fusion per unit weight, high heat of fusion per unit volume, high thermal 

conductivity, and low specific heat [30]. 

Finally, a eutectic PCM is a composition of two or more components, where each of them melts 

and freezes congruently [34]. Eutectics nearly always melt and freeze without segregation, 

especially on melting where both of the components liquefy simultaneously. However, there is a 

low chance of separation between the two components during freezing. 

Using PCMs in buildings prevents rapid changes in the inside temperature and saves energy by 

reducing heating/cooling demands [35]. Laboratory tests prove using PCM in construction 

materials increases the heat storage capacity and decreases thermal conductivity [36-38]. Utilizing 

a PCM-impregnated boards over the existing walls was reported to keep the 

inside temperature 6 °C (10.8 °F) cooler during the days and 4 °C (7.2 °F) warmer during the 

nights [39]. 

Another laboratory test showed that using PCM panels in a building can reduce interior peak 

temperatures by 2.46 °C (4.43 °F) during the summertime [40]. The results of a study shows that 

encapsulating PCMs within the surfaces of walls, ceilings, and floors enhances the energy storage 

of buildings to capture and reserve solar energy [41, 42]. PCMs can also be used in air conditioning 

systems in buildings. The results of a small scale experimental study showed that up to 90% of a 

daily cooling load could be stored each night in a system in which a 30 mm (1.18”) thick packed 

bed of granular PCM [43]. 

In addition to laboratory studies, many numerical and computational studies can be found in the 

literature, indicating that PCMs can improve the thermal performance of buildings [44-46]. The 
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results of a study on a passive house duplex located in the U.S. state of Oregon showed that using 

PCM in a building can reduce the annual overheated hours, the total hours in a year that the inside 

temperature is above the occupant comfort level of 26 °C (78.8 °F), by 50% [47]. Another 

simulation showed that by utilizing a layer of PCM, the temperature fluctuation of the floors was 

considerably decreased and the ability of the floor to provide the necessary warmth during the cold 

part of the day was increased [48]. 

PCMs can also be used as an additive to increase the service life of concrete pavements [49]. Cyclic 

changes in temperature in cold and humid climates increase the number of freeze/thaw cycles 

experienced by the pavement, finally leading to failure [22, 25]. Using PCMs in pavements 

increases the thermal inertia of the media and reduces the potential of thermally induced 

deterioration, and thus, increases the service life of the pavement [26, 50, 51]. 

However, PCMs cannot be directly added to concrete as a liquid, because as a chemical 

component, they interfere with the hydration reactions occurring in the cementitious media [52]. 

Hydration reactions are a series of chemical reactions between cement and water that yield calcium 

silicate hydrates (C-S-H), the primary strength bearing phase in concrete. Anything that interferes 

with the hydration reaction diminishes the mechanical properties of the concrete. Therefore various 

carrier agents, such as high density polyethylene balls and rectangular steel pipes, have been 

introduced to indirectly incorporate PCMs into the cementitious materials [53, 54],  

This dissertation contains two main parts: laboratory experiments and computational simulations. 

The first part aims to evaluate the applicability of Lightweight Aggregate (LWA) to be used as a 

PCM carrier agent in cementitious materials. Even though it was previously suggested as a 

carrier [55], more investigations need to be conducted to study the problems associated with using 

LWA as a PCM carrier, such as the potential leakage of PCM out of the LWA and its effects on 
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different properties of the media, in depth. Also, the ability of Rice Husk Ash (RHA), a common 

material never before used to encapsulate PCM, as an alternative carrier agent is investigated. 

Various experiments are conducted to study the effects of incorporating RHA presoaked in PCM 

on different properties of the mortar. 

In the second part, COMSOL® Multiphysics software1 is used to study the application of PCMs in 

buildings and pavements. Although the efficiency of PCMs to decrease the energy usage in 

buildings and to increase the service life of pavements has been evaluated by different studies, few 

studies have investigated the changes in temperature of a structural or pavement element under 

specific, realistic temperature profiles. Therefore various models are developed to simulate 

temperature changes in PCM-impregnated concrete walls, as well as PCM-impregnated concrete 

pavements, under the real temperature profiles of different locations and for different periods 

of time. 

The efficiency of utilizing PCM-impregnated gypsum boards to improve the thermal performance 

of buildings was also investigated. This strategy can be used to achieve the desired thermal 

performance by the governmental plans and building codes for the buildings that already exist. 

Since the amount of PCM used could be varied in a given system until the optimum conditions are 

reached, i.e., until the desired energy efficiency and cost efficiency levels are attained, the models 

contained different percentages of PCMs. 

Four different criteria, including the decrease in the inside peak temperature, the delay in the 

occurrence of this peak, increase in the duration of being in the comfort zone, and reduction in the 

                                                 
1 This software is identified and explained in this study in order to specify the simulations and 

modeling procedures adequately. However, such identification is neither intended to imply 

recommendation or endorsement, nor is it intended to imply that this software is necessarily the 

best available for the purpose. 
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energy required by the HVAC system to keep the inside temperature in this range, are considered 

to evaluate the efficiency of PCM to improve the thermal performance of buildings. 



8 

 

 

 

 

 

 

 

      CHAAPTER TWO 

 MATERIALS 

Different materials such as aggregates, cement, Phase Change Materials (PCMs), etc., were used 

to conduct various experiments. These materials are widely available, however, most of them were 

provided from local resources. The materials were safely and attentively kept in a separate and 

marked cabinet in the laboratory that was used solely for material storage. The Material Safety 

Data Sheets (MSDS) of the chemicals were kept in the same cabinet. The used materials are 

identified here in order to specify the experimental procedure adequately. However, such 

identifications are neither intended to imply recommendation or endorsement, nor is it intended to 

imply that the materials or equipment identified are necessarily the best available for the purpose.  

 

2.1 Aggregates 

2.1.1 Sand 

Ordinary sand with a specific gravity of 2.61 from local sources was used. Sieve analysis was 

performed according to ASTM C136 to determine the size distribution of the aggregates. Sand 

particles larger than the sieve #4 and finer than sieve #100 were removed. This modified aggregate 
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size distribution was used for all mixes (Figure 2.1). The smooth graph shows that the aggregate 

was well distributed between all the particle sizes. 

 

Figure 2.1. Sieve size distribution for the sand 

 

2.1.2 Lightweight Aggregate (LWA) 

LWA is a porous aggregate that can absorb liquids by capillary action, which enables its use as a 

carrier for different liquids in cementitious media. The LWA used was expanded shale (Northeast 

Solite Corporation) with a specific gravity of 1.5. When LWA was used in mixes, it replaced sand 

on a volumetric basis; as such, the aggregate size distributions were the same in specimens with 

and without LWA. This means that the size distributions of sand, LWA, and mixtures thereof 

follow the distribution described in Section 2.1.1. 

 

2.1.2.1 Scanning Electron Microscopy of LWA 

Scanning Electron Microscopy (SEM) was used to study the porous structure of LWA. To 

create specimens for SEM, a small piece of the sample was placed in a plastic mold which was 

then filled with resin. After solidification, the sample was removed and a series of six sandpapers 
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(#120, #240, #600, 1µm, 0.3µm, 0.05µm) were used to polish the surface of the specimen. The 

surface was then sputter coated with a thin layer of gold. The porous structure of LWA is shown 

in Figure 2.2.  

 

Figure 2.2. SEM of the porous structure of LWA 

 

2.1.2.2 Absorption Test for LWA 

The water absorption capacity of the LWA was reported by the manufacturer to be equal 

to 17.5 wt. %. However, absorption tests were carried out to determine the amount of PCM that 

can be absorbed by LWA. The LWA was placed in mesh containers and soaked in PCM6 for 24 h. 

(The utilized PCMs are described below.) Afterwards, the mesh containers were kept in an oven 

at a constant temperature of 40 °C (104 °F) for one week. 

The weight change of the LWA was recorded daily. The test was done separately for each sieve 

size of aggregate (#8, #16, #30, #50, and #100) as well as for the mix following the size distribution 

described in Section 2.1.1. Although the finer particles seemed to absorb more PCM, this was 

actually due to the higher surface area per unit volume of the fine particles which caused PCM to 

simply adhere to the surface of the LWA particles (Figure 2.3, overleaf).  
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Figure 2.3. Apparent PCM absorbed by LWA 

 

A second test was carried out in this manner, but with sand in place of the LWA. Because sand is 

not porous and cannot absorb liquid, any increase in the weight of sand after soaking in the PCM 

is the result of PCM adhering to the surface. To estimate the net amount of PCM absorbed by the 

LWA, the amount ‘absorbed’ by sand was subtracted from the total amount absorbed by the 

LWA (Figure 2.4, overleaf). By this estimation, the capacity of LWA to absorb PCM is 

roughly 30 wt.% , which is larger than the amount of water that the LWA can absorb as reported 

by the manufacturer. This difference could be the result of different testing methods for measuring 

the absorption capacity of LWA, or the different chemical and physical properties of PCM and 

water, such as specific gravity and adhesion force between the PCM and the LWA. 
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Figure 2.4. PCM ‘absorbed’ by sand and the net amount of PCM absorbed by LWA 

 

2.2 Cement 

Type I Ordinary Portland Cement (OPC) conforming to ASTM standard C150 / C150M, with a 

specific gravity of 3.15, was used. Hydrating cement undergoes a series of chemical reactions 

between cement and water that yields calcium silicate hydrates (C-S-H), the primary strength 

bearing phase in concrete.  

 

2.2.1 Chemical Shrinkage of cement 

Cement hydration products occupy less physical volume than the reactants; thus, the cement paste 

undergoes a shrinkage known as chemical shrinkage that results in the formation of internal pores. 

The volume of this porosity is one of the important characteristics of a cement, therefore chemical 

shrinkage tests were conducted. To measure the chemical shrinkage of the cement paste, ASTM 

standard C1608-07 was followed. Five ampoules were partially filled with cement paste with a 

water/cement ratio of 0.4 by mass. Then the ampoules were completely filled with water and 
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covered by a cap with a capillary tube. To prevent evaporation, a drop of oil was added to the 

capillary tube after the water. The samples were kept in a water bath at 25 °C (77 °F), and the drop 

in the height of the water in the graded capillary tube was recorded over the first 115 h. 

The chemical shrinkage per unit mass of cement at time ‘t’ was computed as: 

𝐶𝑆(𝑡) =
ℎ(𝑡) − ℎ(60𝑚𝑖𝑛)

𝑀𝐶𝑒𝑚𝑒𝑛𝑡
 

(1) 

in which CS(t) is the chemical shrinkage at time t (mL/g cement); h(t) is the water level in capillary 

tube at time t (mL); h60min is the water level in capillary tube at time 60 min; and MCement is the mass 

of the cement (g). The final chemical shrinkage of the paste was calculated to be equal 

to 0.042 mL/g (1.162 in3/lb) (Figure 2.5), which is similar to the values of 0.046 mL/g 

(1.273 in3/lb) and 0.039 mL/g (1.080 in3/lb) determined by Merzuki and Pang, 

respectively, [56, 57]. The result of this test was not directly used to make a conclusion, rather, it 

was mainly done to measure one of the important characteristics of the utilized cement that was 

required for conducting other experiments. 

 

Figure 2.5. Chemical Shrinkage of the cement 
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2.3 Rice Husk Ash (RHA) 

Rice Husk Ash (RHA) was used as another carrier for the PCM. To produce RHA, rice husk was 

burned in an electric furnace at two different temperatures 300 °C (572 °F) and at 650 °C (1202 °F), 

separately. The burning duration was 6 h for each case. The ash burned at 300 °C (572 °F) was 

black in color and had a weight loss of 52%; the one burned at 650 °C (1202 °F) was white in color 

and had a weight loss of 81% (Figure 2.6). 

 

Figure 2.6. a) RHA burned at 300 °C (572 °F). b) RHA burned at 650 °C (1202 °F) 

 

2.3.1 Scanning Electron Microscopy of RHA 

The porous structure of the ash burned at 650 °C (1202 °F) was studied using electron microscopy. 

For sample preparation, small particles of powder were stacked on a specimen stub with double-

sided conductive tape. Compressed air was used to remove particles that were not tightly adhered 

to the tape. The images appeared to show that RHA powder had two sides with different level of 

porosities (Figure 2.7). 

 

Figure 2.7. SEM imaging of Rice Husk Ash burned at 650 °C (1202 °F) 
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2.3.2 X-Ray Diffraction and Fourier Transform Infrared spectroscopy of RHA 

XRD and FTIR tests were conducted on the RHA powders to study their crystal structure and 

chemical composition. The test procedures for the tests are described in Section 3.1.7 and 

Section 3.1.8, respectively. The results of the XRD test show that the ash burned at 300 °C (572 °F) 

had a completely amorphous structure and there is not any peak hump in that (Figure 2.8). The ash 

burned at 650 °C (1202 °F) had also mostly an amorphous structure, however, there is an 

amorphous hump, related to silica, created at to 23°-2ϴ that matches with the results presented 

in [58, 59]. Yu et al. also reported that RHA contains about 90 wt.% of silica [60]. 

 

Figure 2.8. XRD diffractograms and FTIR spectra of RHA 
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The results presented in another study show that for a RHA burned at a higher temperature, in 

addition to the hump at 23°-2ϴ that is related to silica, there is a smaller hump at 27°-2ϴ that is 

attributed to quartz [61]. These results suggest that burning rice husk at a low temperatures, close 

to 300 °C (572 °F), does not yield a material with crystal structure, but using higher temperatures 

results a more crystallite structure. 

FTIR spectra of both ashes shows a broad peak around 2700 cm-1 indicating C-H, a broad hump 

centered around 2100 cm-1 that could indicate C≡C, a hump around 1700 cm-1 indicating 

bending vibrations in water, a hump around 1300 cm-1 indicating S-O, and a hump centered 

around 900 cm-1 indicating Si-O and/or Al-O stretching vibrations (Figure 2.8). These results 

suggest that using different temperatures does not significantly change the chemical composition 

of RHA. 

 

2.4 Phase Change Materials (PCMs) 

Three different types of PCM with melting points of -10 °C, 6 °C, and 28°C (14 °F, 42.8 °F, 

and 82.4 °F, respectively) were used. These PCMs are referred to as PCM-10, PCM6, and PCM28, 

respectively. All of the PCMs were a paraffin blend with specific gravities less than one 

(about 0.8), and thermal conductivity of about 0.18 W/m·K (0.104 BTU/hr·ft·°F) in the liquid 

phase and 0.24 W/m·K (0.139 BTU/hr·ft·°F) in the solid phase. Based on the MSDS of the PCMs, 

they are all stable under normal conditions of handling and storage, inflammable under 400 °C 

(752 °F), have slight water solubility, and have a mild wax odor. 
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2.4.1 Differential Scanning Calorimetry of PCMs 

Differential Scanning Calorimetry (DSC) was conducted to measure the specific heat and heat of 

fusion of the PCMs. In this technique, heat flow through a small amount of PCM sample, 

about 20 g (0.7 oz.), was compared to a reference. A temperature rate of 1°C/min (1.8 °F/min) 

over a range of 30 °C (54 °F) was used for each PCM sample. When the PCM undergoes phase 

transition, a different amount of heat will be required to maintain the sample and the reference at 

the same temperature. During melting, the PCM absorbed heat, which increased heat flow and 

caused an upward peak in the heat flow as a function of time. During solidification, the PCM 

released the absorbed heat and decreased the needed heat flow, causing a downward peak in the 

graph (Figure 2.9). The differences among the magnitudes of three peaks of the graphs are because 

of the differences among the latent heats of fusion of the PCMs. 

 

Figure 2.9. Heat flow per unit mass of PCM vs. time, as determined by DSC 
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Both melting and solidification of the PCMs took place in a range of 6 °C (10.8 °F) (Figure 2.10). 

For all of the samples, solidification started at the temperature that was reported as the phase 

change temperature by the manufacturer; whereas melting started at a temperature 

roughly 10 °C (18 °F) lower than the reported temperature. The difference between calculated 

melting and solidifying temperatures may be because of experimental conditions, such as the 

amount of the material that is used for the test, pressure, cooling and heating rate, the presence of 

impurities, etc. [62].  

 

Figure 2.10. Heat flow per unit mass of PCM vs. temperature, as determined by DSC, where q0 is 

the heat flow in steady state condition per unit mass of the PCM, and A0 is the area under the 

peak of heat flow per unit mass of the PCM 
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𝐿 =  
∫ 𝑞. 𝑑𝑇

𝑇2

𝑇1

(𝑑𝑇/𝑑𝑡)
 

(2) 

where L is the latent heat per unit mass of the PCM (J/g); q is the heat flow per unit mass of the 

PCM (J/s·g); T1 is the temperature that phase change starts (°C ); T2 is the temperature that phase 

change ends (°C); and dT/dt is temperature change rate (°C/s).  

The properties of the PCMs reported by the company as well as determined here by DSC are 

provided in Table 2.1. These results are consistent with the results reported in other studies. 

Duti et al. reported the specific heat and latent heat of fusion of the organic PCMs to be equal 

to 2 J/g·K (0.48 BTU/lb·°F) and 190 J/g (83 BTU/lb), respectively [45]. Zhou et al. reported the 

specific heat of paraffin PCMs to be in the range of 2.1 J/g·K (0.502 BTU/lb·°F) and 2.16 J/g·K 

(0.516 BTU/lb·°F); and the latent heat of fusion of this type of PCMs to be in the range of 152 J/g 

(65 BTU/lb) to 244 J/g (104.9 BTU/lb) [63]. 

Table 2.1. Properties of PCM-10, PCM6, and PCM28 

 

PCM 

 

Phase Change 

Temperature  

(From 

Manufacturer) 

  

Measured temperature of 

initiation of phase change 
  

Specific Heat 

(Measured) 

  Heat of Fusion  

  Solidifying   Melting     
From 

Manufacturer 
  Measured 

PCM-10 
-9.5 ºC             

(15 °F)  
  

-10 °C         

(14 °F) 
  

-15 °C           

(5 °F) 
  

2.10 J/g·K 

(0.50 BTU/lb·°F) 
  

175 J/g     

(75 BTU/lb) 
  

192 J/g        

(83 BTU/lb) 

PCM6 
6 ºC             

(43 ºF)  
  

6 °C       

(43 °F) 
  

0 °C        

(32 °F) 
  

2.08 J/g·K 

(0.50 BTU/lb·°F) 
  

160 J/g     

(69 BTU/lb) 
  

178 J/g        

(77 BTU/lb) 

PCM28 
28 ºC           

(82 ºF) 
  

27 °C     

(81 °F) 
  

22 °C      

(72 °F) 
  

2.11 J/g·K 

(0.50 BTU/lb·°F) 
  

150 J/g     

(64 BTU/lb) 
  

161 J/g        

(69 BTU/lb) 
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All of the PCMs have almost the same specific heat, but they have different latent heats of fusion, 

with PCM-10 having the highest and PCM28 the lowest, causing the time between the melting and 

solidifying of PCM-10 and PCM28 to be the longest and shortest, respectively. It should be 

mentioned that the calculated latent heat during melting of PCM is equal to the calculated latent 

heat during solidification, with less than the 1.5% error that is attributed to the instrument’s 

accuracy. This confirms that all of the energy that is stored by the PCM during melting is released 

during solidification.  

 

2.5 Other materials 

WD-40, which is a lubrication oil, was used to cover the surface of some of the equipment such as 

the compressive strength molds, total shrinkage molds, and Vicat Needle setup to make it easier 

to demold the samples and also to protect the equipment against corrosion. Foamular
®

 250 Rigid 

Foam Insulation with the R-value of 10 was used to insulate the calorimetry apparatus. Also, to 

ensure good contact between different pieces of the calorimetry setup, a highly conductive thermal 

transfer medium, thermal gap filler pad, was used. Drinking water at room temperature was used 

for mixing the mortars.  
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    CHAPTER THREE 

 LABORATORY EXPERIMENTS 

A series of various laboratory experiments were conducted to study the effects of incorporating 

LWA, RHA, and PCM on the different chemical, physical, and mechanical properties of the 

mortars. The ASTM standard for each experiment was followed. In this chapter, at first the 

methodology of each experiment is explained, and then the results of the experiments are presented 

and compared with the results of other studies. 

 

3.1 Methodology 

3.1.1 Mix Proportioning 

Four sets of mixes, with twelve total mixes, were prepared. Set one, includes Mix 1, set two 

includes Mix 2, set three includes Mixes 3 and 4, and set four includes Mixes 5 to 7. For Mix 1, 

the control mix, only sand, cement, and water were used. For Mix 2, PCM was directly added to 

the mortar without using any carrier. In Mixes 3 and 4, LWA was used as the carrier. For these 

mixes, two different factors may affect the properties of the mortar: the carrier, which has a 

different composition and is mechanically weaker than sand, and the incorporation of the PCM, 

which may interfere with hydration reactions. In order to distinguish between the effects of 
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incorporating the PCM and the carrier, two mixes were prepared: Mix 3W in which LWA was 

presoaked in water, and Mix 3P in which LWA was presoaked in PCM. The mass of added water 

was 17.5 wt.% of LWA, the water absorbance capacity reported by the manufacturer. An equal 

volume of PCM (13.3 wt.% of LWA, due to the lower specific gravity) was used in Mix 3P. 

LWA presoaked in water provides internal curing for the mortar since it has the ability to absorb 

and keep the water inside its porous structure. When the mix water is consumed during hydration 

reactions, the LWA releases its absorbed water into the media due to the induced osmotic pressure; 

this eliminates or reduces the meniscus forces in the internal porosity and decreases the autogenous 

strain [64]. A comparison between internal curing and external curing is provided in Figure 3.1. 

In contrast with external curing, internal curing provides a uniform water supply for the 

entire media. 

 

Figure 3.1. Illustration of the difference between external and internal curing. The water-filled 

inclusions should be distributed uniformly and spaced close enough to provide coverage for the 

entire paste system [64] 
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The mass of incorporated LWA was calculated using the equation commonly used to determine 

mix proportions for systems in which water-soaked LWA is used to provide ‘internal curing’ [65]: 

𝑀𝐿𝑊𝐴 =
𝐶𝑓 × 𝐶𝑆 × 𝛼𝑚𝑎𝑥

𝑆 × ɸ𝐿𝑊𝐴,𝑚𝑎𝑥
 

(3) 

where MLWA is the mass of dry LWA per unit volume of mortar (kg/m3), Cf is the cement factor 

of the mortar (kg/m3), CS is the chemical shrinkage of the cement (g of water/g of cement), αmax 

is the maximum expected degree of hydration of cement, S is the saturation degree of LWA, 

and LWA, max is the water absorption capacity of lightweight aggregate (kg water/kg dry LWA). 

For all mixes, Cf was 585 kg/m3 (36.5 lb/ft3), CS was calculated by the chemical shrinkage test 

(following ASTM method C1608-07), αmax and S were assumed to be equal to 1.0 and 0.95, 

respectively, and LWA, max was reported by the manufacturer to be 0.175 kg/kg (0.175 lb/lb). For 

Mixes 4W and 4P, the absorption capacity of LWA was assumed to be equal to 30 wt.%, as 

calculated in Section 2.1.2.2. Therefore, the amount of water added to LWA for Mix 4W was 30% 

of the mass of LWA, and the same volume of PCM6 was added to LWA for Mix 4P.  

For Mixes 5 to 7, RHA was used as the PCM carrier agent. For these mixes, RHA replaced 10 wt.% 

of the cement. RHA has been widely used in concrete to replace cement [66-68], but it has not 

been used as a carrier agent to indirectly incorporate liquids into the mix. Therefore, the capacity 

of RHA to absorb liquids was not known, and thus, three different quantities of water and PCM 

were used to presoak the RHA. For Mix 5W, the mass of added water was equal to 80% of the 

RHA mass; for Mix 6W, the mass of added water was equal to 40% of the RHA mass; and for 

Mix 7W, the mass of added water was equal to 20% of the RHA mass. The same volumes of PCM 

were added to Mix 5P, Mix 6P, and Mix 7P, respectively. For all mixes, a water/cement ratio of 0.4 

by mass and an aggregate/mortar ratio of 0.55 by volume were used. The air content of all mixes 
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(necessary for the mix proportioning) was measured to be equal to 3 vol.% of the mortar (see 

Section 3.1.2). The mix proportioning of all mixes is provided in Table 3.1. 

 

 

Table 3.1. Mix Proportioning for 1000 cm3 (61 in3) of mortar, grams (lb) 

Mix # Sand LWA RHA Cement Water 
Presoaked 

Water 

Presoaked 

PCM 

1 1435.5 (3.16) - - 585.3 (1.29) 234.1 (0.52) - - 

2 1435.5 (3.16) - - 585.3 (1.29) 234.1 (0.52) - 21.1 (0.046) 

3W 1160.6 (2.56) 158.1 (0.35) - 585.3 (1.29) 234.1 (0.52) 27.7 (0.061) - 

3P 1160.6 (2.56) 158.1 (0.35) - 585.3 (1.29) 234.1 (0.52) - 21.1 (0.046) 

4W 1160.6 (2.56) 158.1 (0.35) - 585.3 (1.29) 234.1 (0.52) 47.4 (0.105) - 

4P 1160.6 (2.56) 158.1 (0.35) - 585.3 (1.29) 234.1 (0.52) - 36.0 (0.080) 

5W 1435.5 (3.16) - 58.5 (0.129) 526.8 (1.16) 210.7 (0.46) 46.8 (0.103) - 

5P 1435.5 (3.16) - 58.5 (0.129) 526.8 (1.16) 210.7 (0.46) - 35.6 (0.078) 

6W 1435.5 (3.16) - 58.5 (0.129) 526.8 (1.16) 210.7 (0.46) 23.4 (0.052) - 

6P 1435.5 (3.16) - 58.5 (0.129) 526.8 (1.16) 210.7 (0.46) - 17.8 (0.039) 

7W 1435.5 (3.16) - 58.5 (0.129) 526.8 (1.16) 210.7 (0.46) 11.7 (0.026) - 

7P 1435.5 (3.16) - 58.5 (0.129) 526.8 (1.16) 210.7 (0.46) - 8.9 (0.020) 
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3.1.2 Air Content 

The air content of the mixes was measured using the procedure outlined in ASTM C185. 

Incorporating pre-wet LWA or RHA did not have a significant effect on the air content of the 

mixes. For all of the mixes, the air content was measured to be about 3 vol.% of the mortar. 

 

3.1.3 Shrinkage 

3.1.3.1 Autogenous Shrinkage 

According to ASTM method C1698-09, autogenous shrinkage is “the bulk strain of a sealed 

specimen of a cementitious mixture, not subjected to external forces and under constant 

temperature, measured from the time of final setting until a specified age.” Chemical shrinkage 

produces voids in the cementitious binder of a mortar. If these voids are partially filled with water, 

inward meniscus forces will be generated that cause the matrix to undergo autogenous shrinkage. 

However, if the pores are kept filled, autogenous shrinkage does not take place. 

In order to record the autogenous shrinkage of the cement paste for each mixture, five samples of 

each mix were produced using flexible corrugated tubes. The samples were placed in zipped plastic 

bags and kept in a moist curing room for 28 days. The length of each sample was recorded at the 

final setting time and at intervals during the first 28 days to calculate L(t): 

𝐿(𝑡) = 𝐿𝑟𝑒𝑓 + 𝑅(𝑡) − 2 × 𝐿𝑝𝑙𝑢𝑔 (4) 

in which Lref is the length of the reference bar (mm); R(t) is the length reading of the mortar at 

each time (mm); and Lplug is the average length of the end plugs (mm). Using the length reading at 

any time period, the autogenous strain was calculated using: 

𝐴𝑢𝑡𝑜𝑔𝑒𝑛𝑜𝑢𝑠 𝑆𝑡𝑟𝑎𝑖𝑛 =
𝑅(𝑡) − 𝑅(𝑡𝑠𝑓)

𝐿(𝑡𝑠𝑓)
× 106

µ𝑚

𝑚
 

(5) 

in which R(t) is the length reading of the mortar at each time (mm), and R(tsf) is the length reading 

of the mortar at the final setting time (mm). 
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Autogenous shrinkage causes macroscopic volume changes in the media that can lead to early-age 

cracking [69, 70]. However, it can be eliminated by internal curing, where the water supplied by 

internal reservoirs keeps the pores fully saturated [69, 71-74]. Neutron radiography has been used 

to evaluate the water distribution around a pre-wetted LWA particle in a 6 mm × 13 mm 

(0.236” × 0.512”) cement mortar [75]. This study showed pre-wetted LWA provided a water 

supply for the mortar (Figure 3.2). The cement paste appears in the light gray, the dry LWA appears 

in the darker inclusion on the top part of cross-section, and the pre-wetted LWA is on the bottom 

and cannot be easily distinguished in the first images after mixing. With the progress of hydration 

(moving left to right across the top and bottom rows), water is released from the LWA to the 

cement paste. Locations in which the neutron signal increased correspond with water being 

absorbed from the paste and are shown in red, while the locations where the neutron signal 

decreased correspond with the release of water to the paste and are shown in blue. Water released 

from the LWA traveled at least 3 mm (0.118”) from the LWA into the cement paste in the first 

day; suggesting that the internal curing process is fast and that the water is distributed 

homogeneously from the LWA to at least 3 mm (0.118”) into the hydrating paste. 

 
Figure 3.2. Internal curing. The two indicated times in the lower right corner of each frame 

correspond to the times that were subtracted to create the shown image [75] 
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3.1.3.2 Total Shrinkage 

Total shrinkage tests were conducted based on ASTM method C596-07. Six samples from each 

mix were prepared using 25.4 mm × 25.4 mm × 292.1 mm (1” × 1” × 11.5”) prism molds. The 

molded samples were kept in zipped plastic bags in a curing room for 24 h. Once demolded, 

samples were submerged in water to cure for 48 h, and then were taken out and kept at room 

conditions for 25 more days. Measurements were taken on the day of demolding and periodically 

for the first 28 days. 

 

3.1.4 Calorimetry 

The hydration reactions between cement and water are exothermic. Some of the factors that affect 

the kinetics of these reactions are cement composition, fineness of cement, curing conditions, 

water to cement (w/c) ratio, and the presence of admixtures and additives [76]. The utilized cement, 

the curing conditions, and w/c ratio were kept constant over the course of all of the experimental 

procedures; therefore, when the LWA or RHA presoaked in PCM was used in the mortar, any 

reduction in the generated heat was attributed to the interference of the PCM with the hydration 

reaction. Similarly, when the carriers presoaked in water were incorporated in the mortar, any 

reduction in the generated heat was attributed to the changes in the water content of the mix. Two 

types of calorimetry experiments were conducted to evaluate the effect of incorporating LWA and 

RHA presoaked in PCM and water into the mortar on the hydration reaction between cement and 

water. 
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3.1.4.1 Semi-adiabatic Calorimetry 

Semi-adiabatic calorimetry tests were conducted in which 101.6 mm × 203.2 mm (4” × 8”) 

cylinders were filled with mortar and insulated on all the sides. A K-type thermocouple was 

embedded in the center of the cylinder and the temperature was recorded for three days by a data 

acquisition apparatus connected to a computer. A thermocouple was also used to record the 

ambient air temperature over the course of the experiment (Figure 3.3).  

This test was conducted on all of the mixes to study the effect of incorporating LWA and RHA 

presoaked in PCM and water. The PCM that was used in Mix 3P, Mix 4P, Mix 5P, Mix 6P, and 

Mix 7P was PCM6. In these tests, the percentage of utilized PCM in the carrier was different. 

However, in order to study the effect of incorporating different types of PCMs on the hydration 

reaction, another set of experiments needed to be conducted. To do that, Mix 4P was presoaked in 

PCM-10 and PCM28, and the results were compared to the results obtained from PCM6.   

 

 

Figure 3.3. Semi-adiabatic calorimetry set-up 
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3.1.4.2 Isothermal Calorimetry 

Isothermal calorimetry was also used for each mix to study hydration effects. For each mix, two 

ampoules were partially filled with the mortar sample, capped, and the caps were crimped in order 

to be sealed. The operation temperature of the machine was 25 ºC (77 ºF), and initial and final 

baselines were acquired over a period of 30 minutes. In order to provide an indication of variability, 

two specimens from the same mix were tested in neighboring calorimeter cells. 

For all samples, reference ampoules contained 10 g (0.35 oz.) of cement powder. The specific heat 

of each sample was equal to the specific heat of the reference. To calculate the equivalent sample 

mass, the specific heat of sand and LWA, cement, water, and PCM were taken as 0.76 J/g°C 

(0.182 Btu/lb°F), 0.75 J/g°C (0.179 Btu/lb°F), 4.18 J/g°C (0.998 Btu/lb°F), and 2.08 J/g°C 

(0.497 Btu/lb°F), respectively. The results were normalized per unit mass of cement in the 

sample. Similar to semi-adiabatic calorimetry, this test was also repeated for Mix 4P presoaked 

in PCM-10 and PCM28, and the results were compared to the results obtained from PCM6.   

 

3.1.5 Setting Time 

In order to evaluate the effect of PCM incorporation on mortar setting time, ASTM C191 (the 

Vicat needle method) was used to measure the initial and final setting time of the mixes. The 

penetration of the needle was recorded every 15 min and after allowing the needle to settle for 30 s. 

By definition, the initial setting time is the time when 25 mm (0.98”) of penetration is obtained, 

and the final setting time is when the needle does not sink visibly into the paste. 

Since hydration reaction yields stiff phases such as C-S-H in the matrix, anything that interferes 

with this reaction delays the creation of stiff products and delays the setting times. For this 

experiment, all three type of PCMs, PCM6, PCM-10, and PCM28, were used to examine the effect 
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of different types of PCMs, with different chemical structures, on the setting time of the mortar. 

Thus, this experiment was conducted on Mix 1, Mix 2, Mix 3P, and Mix 4P. 

 

 

3.1.6 Compressive Strength 

The compressive strength of a mortar or concrete is an important characteristic. Therefore, if any 

new material or additive was incorporated in a mortar or concrete, compressive strength tests need 

to be conducted to assure that the functionally is not drastically diminished. The compressive 

strength of a mortar increases over time as the hydration reaction progresses and rigid phases such 

as C-S-H are created. However, this test is mostly conducted on samples at ages of less than four 

weeks after mixing, because the main part of the hydration reactions takes place before this age. 

ASTM method C109 / C109M was followed for the compressive strength test. After mixing, 

mortar was placed in 50.8 mm (2”) cube stainless steel molds for 24 h, and after demolding, the 

cubes were kept in a curing room. Keeping the samples in the curing room prevents the water that 

exists in the mix from evaporating and helps the hydration reactions to properly take place. For 

each mix, three specimens were tested at ages of 3, 7, and 28 days. Since the loading rate directly 

affects the compressive strength, it was kept constant for all of the mixes and was chosen to be 

equal to 13.8 MPa/min (2,000 psi/min). The PCM used in Mix 2, Mix 3P, Mix 4P, Mix 5P, Mix 6P 

and Mix 7P was PCM6. 
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3.1.7 X-Ray Diffraction (XRD) 

XRD tests were conducted on the samples that contained LWA, RHA, and PCM to examine if 

incorporation of these materials affects the crystal structure of the mortars. After 28 days of curing, 

a specimen of Mix 1, Mix 4P, and Mix 5P was grounded to very fine powder (mesh #200) to 

prepare samples for XRD experiments. Mix 4P and Mix 5P were selected because they had the 

highest amount of PCM in them. For the XRD tests, about 0.5 g (0.018 oz.) of the powder was 

placed in the sample holder and was packed down tightly by spatula to prepare a relatively flat 

surface. A range of the angle 2θ from 10° to 65° with an interval of 0.05° was used. XRD tests 

were also conducted on RHA samples by grinding them to very fine powders. The same angle 

range was used for the RHA powders. 

 

3.1.8 Fourier Transform Infrared Spectroscopy (FTIR) 

FTIR tests were conducted on the samples that contained LWA, RHA, and PCM to examine if 

incorporation of these materials affects the chemical composition of the mortars. Similar to XRD, 

a specimen of Mix 1, Mix 4P, and Mix 5P was grounded to very fine powder (mesh #200) after 28 

days of curing to prepare samples for FTIR experiments. The sample size for the FTIR test was 

about 5 mg (0.00018 oz.). All the samples were studied in the range of the wavenumber (λ) 

from 600 cm-1 to 4100 cm-1 and an interval of 2 cm-1. To eliminate the error introduced by the 

machine and/or by the ambient condition, the test was at first conducted when no sample was 

placed in the machine, and the results from this background run were subtracted from the actual 

test results. FTIR tests were also conducted on RHA samples by grinding them to very fine 

powders. The same wavenumber range was used for the RHA powders. 
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3.1.9 Guarded Longitudinal Comparative Calorimetry (GLCC) 

To evaluate the effect of different PCMs on the thermal properties of mortar, the guarded 

longitudinal calorimetry technique was used. A programmable cold plate was used to produce a 

temperature gradient (and thus heat flow) through a sample stack. This stack was composed of a 

cube sample placed in between two Pyroceram 9606 meter bars of known thermal conductivity. 

Thermal transfer media was used to ensure good contact between the cold plate and lower meter 

bar, as well as between the sample and the meter bars. K-type thermocouples were used to record 

the temperature at the thermal transfer media (Figure 3.4-a). Insulation, Foamular® 250, was 

placed around the sample stack to eliminate axial heat loss and ensure unidirectional heat flow. 

The insulation was surrounded with aluminum plates in contact with the cold plate to neutralize 

the temperature gradient through the insulation, and the entire stack was covered with a final layer 

of insulation (Figure 3.4-b). 

 

Figure 3.4 a) The meter bar/sample/meter bar stack. Sample between two meter bars, with 

thermocouples embedded in thermal transfer media. b) Final arrangement of the longitudinal 

calorimeter, showing cold plate and insulation 
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ASTM standard methods D5470-12 and E1225-09 describe procedures for determining the 

thermal properties of solid materials by means of the guarded-comparative-longitudinal heat flow 

technique. Due to the different melting temperature of the PCMs investigated, two different 

temperature profiles were used; the first one for the samples that contain PCM6 and PCM-10, and 

the second one for the samples that contain PCM28 (Figure 3.5). 

In both cases, the cold plate was cooled at a rate of 2 °C/h (3.6 °F/h) over 50 h. At the target 

temperatures of -25 °C and -10 °C (-13 °F and 14 °F), respectively, the temperature was kept 

constant for 4 h to allow the sample to reach equilibrium. Then, the temperature was increased to 

the initial temperature at a rate of 4 °C/h (7.2 °F/h) within 12 h 30 min. It should be noted that this 

was an arbitrarily selected temperature profile intended to display general behavior, and other 

temperatures and conditions could be applied during this test. 

 

Figure 3.5. The two temperature profiles applied to the samples as the thermal load. Profile #1 

for samples presoaked in PCM6 and PCM-10, and Profile #2 for sample presoaked in PCM28 

-22

-2

18

38

58

78

98

-30

-20

-10

0

10

20

30

40

0 10 20 30 40 50

T
em

p
er

at
u
re

 (
°C

) 

Time (Hours)

#2

#1

4h 12.5h 4h

2 °C/h (3.6 °F/h)
4 °C/h 

(7.2 °F/h)

T
em

p
er

at
u
re

 (
°F

)

25h2h



34 

 

The 50.8 mm (2”) cube mortar samples were placed between two Pyroceram 9606 meter bars of 

known thermal conductivity. The thermal conductivity of this material is a function of temperature 

and can be calculated by [77]: 

𝜆𝑃𝐶 =  −0.0061(𝑇) + 4.2013        (−50 °𝐶 <  𝑇 < 40 °𝐶) (6) 

where λPC is the thermal conductivity of the Pyroceram (W/m·K) and T is the temperature (°C). 

More information about Pyroceram 9606 can be found in [78]. 

To record the temperature at different points of the meter bar/sample/meter bar stack, an array of 

four thermocouples with an accuracy of 0.1 °C (0.18 °F) was used. By knowing the thermal 

conductivity of the meter bars and using the temperature recorded at different points, heat flow 

through the samples was calculated. By definition, heat flow is the rate of energy passing through 

a sample due to a temperature gradient. The needed equations to calculate these two parameters 

are provided in ASTM E1225-09, D5470-12, and C1045-07. It should be mentioned that these 

equations are proposed for steady state conditions, while the current experimental program was 

performed in a quasi-steady state condition. Therefore cooling and heating rates were assigned to 

be relatively low to reach almost steady state conditions. The heat flow per unit area for the bottom 

and top Pyroceram meter bars can be calculated by: 

𝑞𝐵 = 𝜆𝑃𝐶 ×
𝑇1 − 𝑇0

𝑑𝑃𝐶
 

𝑞𝑇 = 𝜆𝑃𝐶 ×
𝑇3 − 𝑇2

𝑑𝑃𝐶
 

 

(7) 

 

where T0, T1, T2, and T3, are the temperatures at the bottom of the lower meter bar, at the top of 

the lower meter bar, at the bottom of the upper meter bar, and at the top of the upper meter bar, 
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respectively (°C); qB and qT are the heat flow per unit area through the lower and upper meter bars, 

respectively (J/s.m2); and dPC is the thickness of the meter bars (m). 

Using the heat flow per unit area through the top and bottom meter bars, the heat flow through the 

sample can be calculated by: 

qSample =
qT + qB

2
 

QSample = qSample. A 

 

(8) 

where qsample is the average heat flow per unit area through the sample (J/s·m2); Qsample is the 

average heat flow (J/s) through mortar sample, and A is the cross-sectional area of the sample (m2). 

Heat flow vs. average temperature of the samples under the two temperature profiles was also 

graphed. The average temperature of the sample was calculated as: 

𝑇𝑎𝑣𝑔 =
𝑇1 +  𝑇2

2
 

(9) 

Farnam et al. used this calorimetry set up and graphed heat flow as a function of average 

temperature to evaluate the effect of deicing salt on the freeze/thaw damage of mortars [79]. 
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3.2 Results and Discussion 

3.2.1 Shrinkage 

3.2.1.1 Autogenous Shrinkage 

Autogenous Shrinkage test was conducted to examine if LWA and RHA, as the carriers for water 

and PCM, release a portion of the presoaked liquids out of their porous structure. If the voids in 

the bulk cement paste are empty of water, inward meniscus forces will be generated that cause the 

matrix to undergo autogenous shrinkage. However, if the pores are kept filled, autogenous 

shrinkage will be reduced. Therefore, the reduction in the autogenous shrinkage in the mixes 

in which presoaked LWA or RHA is incorporated shows that the presoaked liquid has leaked out 

of the carrier. 

For Mix 1 (the control), the hydration reactions consume much of the pore solution, inducing 

menisci and leading to autogenous shrinkage that increased over time (Figure 3.6-a, overleaf). At 

day seven, the autogenous shrinkage was -154 µm/m, and it reached -435 µm/m after four weeks. 

Autogenous shrinkage for the first week of a mortar with w/c ratio of 0.35 wt.% was reported to 

be equal to -178 µm/m by Zhutovsky et al. [80]. Tazawa et al. argued that the 

autogenous shrinkage of a mortar is affected by w/c ratio, and it increases with decreases in the 

w/c ratio. Their research showed that the autogenous shrinkage of a mortar at the age of 28 days 

is equal to -520 µm/m, -1220 µm/m, -1490 µm/m, and -4240 µm/m for w/c ratio to 40 wt.%, 

30 wt.%, 23 wt.%, and 17 wt.%, respectively [81]. 

For Mix 3W, pre-wetted LWA provided internal curing for the mortar; thus not only was the 

autogenous shrinkage completely mitigated, but there was a slight expansion in the specimen’s 

length (Figure 3.6-a). Lura et al. have attributed such expansion to the water provided by the LWA 

providing the cement paste with a saturated curing condition, lowering the surface  
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Figure 3.6. Autogenous Shrinkage. a) Mixes with LWA as the carrier. b) Mixes with RHA as 

the carrier 

 

tension between the cement gel particles, and therefore no capillary pressure develops to oppose 

the expansion of the solid phase [82]. Bentur et al. also showed that incorporation of LWA in the 

Saturated Surface Dry (SSD) condition not only eliminates the autogenous shrinkage, but also 

causes expansion in concrete, however, LWA in air dry condition cannot provide internal curing 

for concrete [71]. 

Similarly, Mix 3P (containing LWA presoaked in PCM6), underwent autogenous expansion 

(Figure 3.6-a). Since the volume of PCM in which the LWA was soaked was equal to the volume 
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of LWA porosity, this result suggests that a portion of PCM has been released by LWA to the 

media or that some PCM from the surface of the LWA entered the mix. This shows that LWA 

cannot completely keep the PCM inside its porous structure, and a portion of PCM leaks out of the 

LWA over the course of hydration reaction. Thus, LWA cannot perfectly perform as a PCM 

carrier; however, in view of its compatibility with the cementitious media and low cost, it can be 

considered as an efficient PCM carrier. It should be mentioned that no study was found discussing 

the leakage of PCM out of LWA. 

The same pattern was observed for the mixes with RHA presoaked in water or PCM6 (Figure 3.6-

b). For all of these mixes, autogenous expansion occurred, implying that a portion of water and 

PCM had stuck on the surface of RHA, or leaked out of the RHA pores, and thus entered the bulk 

cement paste. The expansion level for Mix 7W, where the water/RHA was 20 wt.%, was close to 

the results of Mix 3W, where LWA was used as the carrier. The water absorption capacity of LWA 

was reported to be equal to 17.5 wt.%. This suggests that the capacity of RHA to absorb water is 

closer to 20 wt.%. 

The two forces that are involved in the water leakage out of RHA pores are the adhesion force 

between the RHA surface water molecules, and the osmose force from the bulk cement paste. 

Kovler et al. discussed that leakage of water out of the RHA particles depends on the suction force 

from the cement paste [83]. At early ages, the water content of the cement paste is still high, thus 

only water in the big pores of the RHA particles will be released. However, when the hydration 

reaction proceeds, it consumes the water in the paste and reduces the water content of the paste. 

Therefore the difference in relative humidity between the cement paste and RHA pores increases, 

which leads to the increase of osmotic forces. This causes the cement paste to suck the water out 
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of the finer pores of RHA [84]. However, the much finer pores, i.e. smaller than 4 nm in diameter, 

in RHA particles remain water-filled for a very long period of time [85]. 

It should be mentioned that in addition to LWA, other materials such as saturated superabsorbent 

polymer particles were suggested to be used as a water supply to provide extra water for hydration 

reaction [86]; however, RHA presoaked in water was not previously used for internal curing 

purposes. 

Water/RHA was not selected to be less than 20 wt.%, because even with this percentage, the mix 

had a very low workability, and it was difficult to cast in molds. RHA has a high specific surface 

area (50 – 100 m2/g (244 – 488 kip2/lb) [58]), thus RHA particles that are in partially saturated or 

saturated surface dry condition may absorb mix water and lower the workability of the mortar. In 

the case that a lower percentage of water is used, additives like superplasticizers could be used to 

reach the desirable workability. 

 

3.2.1.2 Total Shrinkage 

In the total shrinkage mechanism, all three shrinkage mechanisms, chemical, autogenous, and 

drying, take place simultaneously. Chemical shrinkage takes place because the hydration reactions 

occur and the chemical products occupy less space than the reactants; autogenous shrinkage takes 

place because the pores are created in the bulk cement paste and the inward meniscus forces are 

generated; and since the specimens are kept at room condition and the water in the paste 

evaporates, the water content of the paste is reduced and thus the volume of the mortar shrinks. 

For Mix 1, since no external curing and/or internal curing was provided and also the hydration 

reactions took place over time causing a decrease in the water content, the shrinkage increased 

(Figure 3.7). Since the ASTM C596-07 standard recommends that the shrinkage values should not 
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be prefixed with a minus sign, the absolute value of the results are presented. The rate of the 

shrinkage was higher in the first 14 days because the main part of the reaction and water 

evaporation take place during the first two weeks after mixing. 

Persson argued that increasing the w/c ratio not only does not eliminate the total shrinkage, but 

also increases it [87]. The total shrinkage of Mix 1, with w/c ratio of 0.4 was measured to be equal 

to 0.061%. The total shrinkage of a mix with w/c ratio of 0.35 was reported to be equal to 0.052% 

that is less because of its lower water content [87]. However, Hansen argued that the relative 

ambient humidity affects the total shrinkage because it affects the rate of water evaporation from 

the mix. An increase in relative humidity decreases the total shrinkage because it decreases the 

water loss of the mix  [88].  

For Mix 3W, where a portion of the sand was replaced by LWA, total shrinkage increased. It is 

established in some studies that the lower restraint provided by LWA can lead to increased total  

 

Figure 3.7. Total Shrinkage for mixes in which the carrier was presoaked in water 
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shrinkage compared with mixtures containing only sand [89]. This also shows that additional water 

provided by LWA may not be effective in reducing the total shrinkage of the mortar, because the 

extra water may evaporate over time. Qian et al. also showed that even by incorporating 

superplasticizer, the total shrinkage of mortar or concrete cannot be eliminated [90]. 

The same trend can be observed for the mixes to which RHA presoaked in water was added 

(Figure 3.7). A portion of cement was replaced by RHA in these mixes and therefore less C-S-H, 

the primary binding phase in cementitious binders, was produced during the hydration reactions. 

It is possible that the lower strength of RHA compared to the strong phase of C-S-H provided less 

restraint against shrinkage and therefore the total shrinkage increased. Considering the standard 

deviations of Mixes 5W, 6W, and 7W, it can be concluded that, since extra water in the media will 

evaporate over time, presoaking RHA in more water does not make a difference in the level of 

total shrinkage in the long term. For the mixes in which the carrier was presoaked in PCM the 

results had the same trend; incorporating LWA and RHA in the mix increased the total shrinkage 

and the amount of presoaked PCM did not make a meaningful difference in the results.  

 

3.2.2 Calorimetry 

3.2.2.1 Semi-adiabatic Calorimetry 

The semi-adiabatic calorimetry test was conducted to examine if water or PCM leaks out of LWA 

and/or RHA and interferes in the hydration reactions. Incorporation of LWA and RHA presoaked 

in PCM and water decreased the magnitude, and delayed the onset of, the peak temperature for all 

the mixes (Figure 3.8, overleaf). For Mix 1, the control, the peak temperature reached 58.2 °C 

(136.8 °F) and occurred at 13 h 30 min; however, for Mix 2, where the PCM  
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Figure 3.8. Semi-adiabatic Calorimetry for mixes with carrier presoaked in PCM6 

 

was directly added to the mix, the peak temperature was 52.9 °C (127.2 °F) and took place 

at 15 h 50 min. This means that incorporating PCM in the cementitious media without using a 
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For mix 3P, where the amount of pre-soaked PCM was equal to the LWA absorption capacity 

reported by the manufacturer (17.5 wt.%), the peak temperature reached 55.7 °C (132.3 °F) and 

was delayed by 30 min. This shows that using LWA as the PCM carrier can prevent PCM from 

interfering with the hydration reaction. However the small reduction in the peak temperature and 

the short retardation is attributed to the effects of the PCM that was stuck on the surface of LWA 

particles and/or had leaked out the LWA pores (Figure 3.8). Bentz and Turpin showed that if LWA 

is used as PCM carrier and the amount of presoaked PCM was equal to the capacity of LWA, there 

will be a very small reduction and delay in reaching to the peak temperature [49]. 

For mix 4P, where the amount of LWA pre-soaked in PCM was equal to the LWA absorption 

capacity measured by the absorption test described in Section 2.1.2.2 (30 wt.%), the reduction in 

peak temperature and the delay in that was about the same with Mix 2, where no carrier was used. 

This suggests that since the capacity of LWA to absorb PCM was overestimated by the absorption 

test, and a large portion of the presoaked PCM leaked into the bulk cement paste (Figure 3.8). 

The same phenomenon was observed in mixes where RHA was the carrier and contained 20 wt.% 

of PCM (Mix 7P). However, a larger decrease in peak temperature and a longer delay were 

observed when more PCM was used in Mix 6P with 40 wt.% and Mix 5P with 80 wt.% of PCM 

incorporated in RHA, respectively. This suggests that a portion of PCM leaked out of the RHA 

and that, similar to the LWA, RHA cannot completely contain PCM inside its porous structure. It 

should be added that in general, the mixes with RHA had a lower peak temperature compared to 

the mixes with LWA as a carrier because of the lower cement content in those mixes (Figure 3.8). 

Similar results were obtained when LWA and RHA were presoaked in water (Figure 3.9).  For 

Mix 3W, where the pre-soaked water in the LWA was 17.5 wt.%, there was about 3% reduction 

in the peak temperature. Since a portion of water leaks out of the carrier, incorporating LWA and 
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RHA presoaked in water increases water content of the mix. Water has a larger heat capacity than 

cement, sand, or LWA; a mix will therefore reach a reduced peak temperature as the water absorbs 

energy. Also, for a fixed volume, larger w/c means less cement per unit volume, and thus less heat 

generation. These results match with other studies where it is shown that incorporating LWA 

presoaked in water into the cementitious materials lowers the peak temperature and delays that, 

because of the larger heat capacity of water [91]. 

For Mix 4W, where the amount of pre-soaked water is more than the LWA’s capacity, the decrease 

and delay in peak temperature is more. Also, for mixes with RHA as the carrier, Mixes 5W, 6W, 

and 7W, the peak temperature is decreased and delayed which shows that the w/c ratio had been 

increased; this suggests that the pre-soaked water has leaked out of the RHA (Figure 3.9). 

 

 

Figure 3.9. Semi-adiabatic Calorimetry for mixes with carrier presoaked in water 
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The effect of the type of incorporated PCM was studied by incorporating LWA presoaked in 

PCM6, PCM-10, and PCM28 (Figure 3.10). In Mix 4P, the amount of PCM exceeds the LWA 

capacity, therefore a relatively large amount of PCM enters the bulk cement paste and the effect 

of that on the hydration reaction would be visible. All of the PCMs are paraffin waxes that are 

made of hydrocarbon chains; however, the difference in their chemical composition made a slight 

difference in their effect on the hydration reaction. The effect of PCM6 and PCM28 look almost 

the same, however, PCM-10 seems to have a smaller effect on the hydration reaction (Figure 3.10). 

Another study also showed that the effect of PCM on the hydration reaction was dependent on the 

PCM type [26]. 

 

Figure 3.10. Semi-adiabatic calorimetry test to study the effect of PCM type on the hydration 

reaction. Mix 4P with incorporated LWA presoaked in PCM6, PCM-10, and PCM28 
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3.2.2.2 Isothermal Calorimetry 

Isothermal calorimetry tests were conducted on all the mixes to better understand the effect of 

incorporating LWA and RHA presoaked in PCM and water on the hydration reaction between 

cement and water. This test is more precise than semi-adiabatic calorimetry. For Mix 1, the control, 

the heat flow reached to 0.0047 W/(g of cement) after 4 h 15 min (Figure 3.11). This primary peak 

is the result of the hydration of Alite (tricalcium silicate, with the oxide notation of 3CaO.SiO2). 

The hydration of Alite is described as [76]: 

2𝐶𝑎3𝑆𝑖𝑂5 + 6𝐻2𝑂 → 3𝐶𝑎𝑂 · 2𝑆𝑖𝑂2 · 3𝐻2𝑂 + 3𝐶𝑎(𝑂𝐻)2  (10) 

This is a fast reaction that releases a large amount of heat over a short period of time and controls 

the set time and the initial strength of the mortar. 

There is a secondary peak with the magnitude of 0.0041 W/(g of cement) at the age of 6 h 50 min. 

This peak is the result of the creation of Belite phase (dicalcium silicate, with the oxide notation 

of 2CaO.SiO2). The hydration of Belite can be described as [76]: 

 

Figure 3.11. Isothermal calorimetry for mixes with carrier presoaked in PCM6 
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2𝐶𝑎2𝑆𝑖𝑂4 + 4𝐻2𝑂 → 3𝐶𝑎𝑂 · 2𝑆𝑖𝑂2 · 3𝐻2𝑂 + 𝐶𝑎(𝑂𝐻)2   (11) 

This is a slow reaction that releases a relatively small amount of heat at a longer time and adds 

strength to the mortar over long time periods. Alite and Belite account for more than 70 wt.% of 

Ordinary Portland Cement-based clinker, and thus their hydration of them forms the major 

properties of a cementitious system [76]. Therefore, there is not a visible third peak corresponding 

to the hydration of other phases in the isothermal calorimetry graphs. It should be mentioned that 

since a 45-minute equilibrium period was used when setting up the experiment during which data 

were not recorded, the peaks corresponding to the hydration of phases such as Aluminate 

(tricalcium aluminate with the oxide notation of 3CaO.Al2O3) and/or Ferrite (tetracalcium 

aluminoferrite with the oxide notation of 4CaO.Al2O3.Fe2O3) also are not visible. 

For Mix 2, where PCM was directly added to the mortar, the primary peak had a magnitude 

of 0.0040 W/(g of cement) and took place after 5 h 5 min. The secondary peak had a magnitude 

of 0.0032 W/(g of cement) and took place after 9 h 10 min. This means that the primary peak was 

decreased by 17% and was delayed by 20%, and the secondary peak was decreased by 21% and 

was delayed by 32%. These decreases and delays in the peak are attributed to the interference of 

the PCM with the hydration reactions. The results also suggest that the hydration of Belite is 

somewhat more affected by this interference than Alite (Figure 3.11). 

For Mix 3P, where the amount of pre-soaked PCM was equal to the LWA absorption capacity 

reported by the manufacturer (17.5 wt.%), the primary peak had a magnitude 

of 0.0044 W/(g of cement) and took place after 4 h 20 min. The secondary peak had a magnitude 

of 0.0037 W/(g of cement) and took place after 7 h 20 min. This means that the primary peak was 

decreased by only 7% and was delayed by 4%, and the secondary peak was decreased by 10% and 

was delayed by 7% (Figure 3.11). These results match with another research where the peak and 
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magnitude of the heat flow was reduced and delayed by 16% and 12%, respectively, where LWA 

presoaked in PCM was incorporated in the mix [26]. This reduction and delay was attributed to 

the effect of PCM to encourage the production of reaction products that produce less heat. 

For Mix 4P, where the amount of presoaked PCM into the LWA was equal to the LWA absorption 

capacity measured by the absorption test described in Section 2.1.2.2 (30 wt.%), the primary peak 

had a magnitude of 0.0041 W/(g of cement) and took place after 4 h 45 min. The secondary peak 

had a magnitude of 0.0034 W/(g of cement) and took place after 8 h 10 min. This means that the 

primary peak was decreased by more than 15% and was delayed by 15%, and the secondary peak 

was decreased by 17% and was delayed by 19% (Figure 3.11). 

Similar to the semi-adiabatic results, comparison of the results for Mix 3P and 4P suggest that the 

absorption capacity of LWA was overestimated by the absorption test, and when LWA is 

presoaked in extra PCM, LWA cannot effectively hold all of the PCM inside its porous structure. 

However, if the amount of pre-soaked PCM in the LWA is equal to the absorption capacity of the 

LWA, LWA can effectively hold the PCM inside its porous structure and prevent it from 

interfering with the hydration reaction. But even in this case, LWA releases a small portion of 

PCM to the bulk cement paste. 

Similar results can be obtained when RHA is used as the PCM carrier (Figure 3.11). For Mix 7P 

with 20 wt.% of PCM pre-soaked in RHA, the decrease and delay in the heat flow peak is almost 

the same as for Mix 3P. Unlike the semi-adiabatic calorimetry, the results of this test were 

normalized with the mass of cement available in the mix, thus the peak heat flows of the mixes 

with RHA as the carrier were not affected by the lower cement content in the mix. This suggests 

that the absorption capacity of RHA is about 20 wt.%. However, a more accurate experiment is 

required to better estimate the RHA absorption capacity. For Mix 6P and 5P with 40 wt.% 
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and 80 wt.% of PCM pre-soaked in RHA, respectively, a bigger decrease and longer delay in both 

primary and secondary heat flow peaks were observed (Figure 3.11). 

Similar results were obtained when LWA and RHA were presoaked in water (Figure 3.12). By 

incorporating LWA presoaked in water in the mortar, Mix 3W, there is a small reduction in the 

peak heat flow and a retarding effect. LWA releases water to the mix which increases the w/c of 

the mortar. Water has a larger heat capacity than other components in the mix, and thus the heat 

capacity of the mortar that has pre-wet LWA increases. This reduces the peak of the heat flow [91]. 

For Mix 4W, where more water is presoaked in LWA, the reduction in the peak of heat flow and 

its delay are more (Figure 3.12). 

These results are in contrast with the results presented by Pane et al. [92]. Their results showed 

that the peak of heat flow was diminished and slightly delayed for mixtures with lower water 

content. They argued that since the since the space available for the growth of hydration products 

is smaller, the hydration is diminished and retarded for the systems with lower water content.  

 

Figure 3.12. Isothermal calorimetry for mixes with carrier presoaked in water 
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Incorporating RHA presoaked in water, Mix 5W, 6W, and 7W, yields similar results: the more 

water in the mix, the smaller the peak in the heat flow. This again suggests that the carriers release 

a portion of the presoaked water to the bulk cement paste and/or the water that was stuck to the 

surface of the carrier particles enters the bulk. Unlike semi-adiabatic calorimetry, the results of 

this test were normalized with the mass of cement available in the mix, thus the peak heat flows 

of the mixes with RHA as the carrier were not affected by the lower cement content in the mix 

(Figure 3.12). 

The effect of the PCM type of the hydration reaction was studies by presoaking LWA in PCM6, 

PCM-10, and PCM28 (Figure 3.13). Similar to semi-adiabatic calorimetry, the results of this test 

also show that the effect of PCM6 and PCM28 are quite similar, but the effect of PCM-10 is 

slightly less, which is attributed to the different chemical composition of each PCM. These results 

match with those of another study where the effect of PCM on the hydration reaction was reported 

to be dependent on the PCM type [26]. 

 

Figure 3.13. Isothermal calorimetry test to study the effect of PCM type on the hydration 

reaction. Mix 4P with incorporated LWA presoaked in PCM6, PCM-10, and PCM28 

0

0.001

0.002

0.003

0.004

0.005

0 4 8 12 16

H
ea

t 
F

lo
w

 (
W

/g
 C

em
en

t)

Time (Hours)

  1

PCM-10

PCM6

PCM28



51 

 

3.2.3 Setting Time 

For Mix 1, the control, the initial and final setting times were equal to 120 min and 180 min, 

respectively. In the case that PCM6 was used, when it was directly added to the mix, Mix 2, the 

initial setting time was delayed 25% and the final setting time was delayed by 41%. The existence 

of a large amount of a PCM in the mix drastically affected the hydration reaction and retarded the 

rate of nucleation and growth of hydrates. Therefore the formation of stiff phases was delayed and 

it took a longer time until the mortar was stiff enough to prevent the needle’s penetration 

(Table 3.2). 

For Mix 3P, and in the case of PCM6, the LWA kept PCM inside its porous structures and 

prevented it from interfering with the hydration reaction. Therefore, the delays in the initial and 

final setting times were only 12.5% and 16.7%. These small delays are attributed to the effect of 

the PCM that was stuck to the surface of LWA aggregates and/or the portion on PCM that was 

leaked out of LWA. When the amount of presoaked PCM was more than the LWA absorption 

capacity, Mix 4P and in the case of PCM6, the delay in both of the setting times were close to the 

case that no LWA was used (Table 3.2). 

 

Table 3.2. Setting Time (min) 

Mix # 
  PCM6   PCM-10   PCM28 

  
Initial   Final 

  
Initial   Final 

  
Initial   Final 

1 
  

120 
  

180 
  

120 
  

180 
  

120 
  

180 
            

2 
  

150 
  

255 
  

150 
  

240 
  

75 
  

135 
            

3P 
  

135 
  

210 
  

120 
  

180 
  

90 
  

150 
            

4P 
  

150 
  

240 
  

135 
  

225 
  

75 
  

135 
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Similar results were obtained in the case that PCM-10 was used. However, the effect of PCM-10 

was relatively lower than the effect of PCM6. The difference is attributed to difference in the 

chemical properties of the two PCMs. These results match with the results of the calorimetry tests 

(Table 3.2). Uchikawa et al. and Lv et al. also reported that the setting time of cement paste 

would be delayed by adding organic admixtures and PCMs, respectively, since they act as 

retarders [93, 94]. However, Kim et al. argued that incorporation of PCM in the mixture decreases 

the initial and final setting time because it works as an accelerator and expedites the hydration 

reaction of cement [95].  

In the case of PCM28, the initial and final setting times were decreased for all the mixes. PCM28 

is solid at room temperature and had to be kept in the oven at a temperature of 40 °C (104 °F) 

before mixing with the LWA. Mixing was done at room temperature which was below the melting 

point of PCM28. Therefore, right after molding the mortar, PCM28 started to solidify and cause 

the aggregate particles to stick together. This created a stiffer mortar in a shorter time and 

decreased the apparent setting time. Comparing the results of setting times for Mixes 2, 3P, and 4P, 

and for the cases that PCM28 is utilized, shows that a larger amount of PCM utilized in the mix 

causes a more pronounced effect on the initial and final setting times. The biggest effect was 

observed from Mix 2, in which no carrier was used, where the initial and final setting times were 

decreased by 37.5% and 33.3%, respectively. 

 

3.2.4 Compressive Strength 

The compressive strength of Mix 1 increased over the period of 28 days, however, the rate of 

increase diminished over the time (Figure 3.14, overleaf). The compressive strength increased 

by 20% (from 33 MPa to 39.5 MPa (4.79 ksi to 5.73 ksi)) over the period between day three and 
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day seven after mixing, but it increased by only 16% (from 39.5 MPa to 45.7 MPa (5.73 ksi 

to 6.63 ksi)) for the period between day seven and day 28 after mixing. This is because the main 

part of hydration of major phases such as Alite, Belite, and Aluminate take place during the first 

few days and the hydration rate decreases over time. 

For Mix 2, where PCM was directly added to the mix, the compressive strength was drastically 

decreased (Figure 3.14). The compressive strength of Mix 2 at the age of 28 days 

reached 36.1 MPa (4.93 ksi), a decrease of 21% compared to the control mix. This decrease was 

because of the interference of PCM with the hydration reaction. Also, the PCM that exists in the 

matrix could act as a retardant by coating cement particles and hampering the transport of water 

into those particles [26]. Since the utilized PCM had a lower density than any other material in the 

mix, it accumulated on the top of the mortar as a layer of wax and made the mixing process harder 

and more time consuming. Even after molding, there was a relatively thick layer of PCM stuck on 

the top of the mix. This shows that incorporation of PCM directly to the mortar not only decreases 

the compressive strength, but also causes practical, aesthetics, and safety problems when they are 

used as construction or pavement materials. 

 

Figure 3.14. Compressive strength test for mixes with LWA as the carrier 
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For Mix 3W, with water-soaked LWA providing internal curing, the compressive strength was 

slightly lower than that of the control. Regarding the relatively high w/c that was used and the 

curing of the samples in the moisture room, all the samples had good curing condition and the 

internal curing was not a big advantage for Mix 3W. However, the presoaked water in LWA caused 

the mix to have a slightly higher w/c ratio and thus a slightly lower compressive strength. In 

addition to that, LWA is mechanically weaker than sand, which caused the samples that include 

LWA to have lower compressive strengths. However, regarding the error bars, this does not seem 

to be a meaningful decrease in compressive strength (Figure 3.14). Behnood et al. also reported 

that the compressive strength of concrete slightly decreases by increasing the w/c [96]. 

The compressive strength of Mix 3P was further decreased, attributed to the PCM that was stuck 

to the surface of LWA particles and/or the PCM that leaked out of LWA. The PCM can cover the 

surface of cement particles and diminish the hydration reaction. However, since the presoaked 

PCM was equal to the LWA absorption capacity, this did not drastically decrease the compressive 

strength (Figure 3.14). 

Other studies show that the lower strength of LWA compared to sand and also the PCM covering 

the surface of sand particles and reducing the connection force between the sand and the bulk 

cement paste are the reasons for the diminished compressive strength of a mortar that incorporates 

LWA presoaked in PCM [26, 97]. Ling et al. argued that incorporating PCMs decreases the 

compressive strength of concrete, however, it remains within the range appropriate for most 

construction purposes [98]. For both Mix 4W and Mix 4P, there was a larger reduction in 

compressive strength. The presoaked water and PCM in these two mixes exceeded the LWA 

capacity. For Mix 4W, the w/c of the mortar was therefore further increased and for Mix 4P, the 

hydration reaction was further diminished by the PCM. Also, the existence of the PCM in the 
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mortar may cover the sand particles and reduce the connecting force between the binder and the 

aggregates (Figure 3.14). 

For all of the mixes with RHA as the PCM carrier the compressive strength was drastically 

decreased (Figure 3.15). There are several parameters that may have diminished the compressive 

strength in these mixes, including: 

- RHA is a weaker material compared to sand or LWA. Therefore, replacement of the 

aggregates with RHA yields a weaker mortar. 

- A portion of the cement was replaced by RHA; therefore, the cement content was decreased 

and there was less creation of the rigid phase of C-S-H. If RHA is burned at a high 

temperature (above 800 °C (1472 °F)) and is ground to extremely fine powder in the range 

of the cement particle size (5 µm to 45 µm (196 µin to 1772 µin)), it shows pozzolanic 

behavior and enhances the compressive strength [67, 68, 99]. But the utilized RHA was 

burned at 650 °C (1202 °F), and was not ground into fine powder since it was meant to be 

used as the PCM carrier and grinding would lead to a reduced volume of pores in each 

particle. 

 

Figure 3.15. Compressive strength test for mixes with RHA as the carrier 
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- The RHA presoaked in water exceeded the absorption capacity of RHA and thus entered 

the bulk cement paste, resulting in an increase in water content of Mix 5W and Mix 6W. 

- The RHA presoaked in PCM exceeded the absorption capacity of RHA and thus entered 

the bulk cement paste and interfered with the hydration reaction. It may also have covered 

the surface of sand particles and reduced the connective forces between them and the bulk 

cement paste (Mix 5P and 6P). 

Comparing the results of Mix 2 with Mix 5P, 6P, and 7P shows that using a weak carrier for PCM, 

such as RHA, can decrease the compressive strength by as much as when the PCM is directly 

added to the mix (Figure 3.15). However, using RHA makes the mixing easier and faster and also 

prevents the PCM from accumulating on the top of mortar. Therefore, due to the compatibility of 

RHA with cementitious media, it may be considered a good candidate for being used as a PCM 

carrier, especially for applications in which high compressive strength is not required. 

 

3.2.5 XRD and FTIR 

XRD diffractograms of Mix 1 show a peak at 23°-2ϴ indicative of calcite and/or hydrotalcite, a 

well-defined peak at 27°-2ϴ indicative of aragonite, a hump centered around 28.5°-2ϴ 

indicative of calcite and/or C-S-H, a wide hump centered around 46°-2ϴ indicative of calcite, a 

hump at 50°-2ϴ indicative of C-S-H, and a hump centered around 60°-2ϴ indicative of calcite 

and/or hydrotalcite (Figure 3.16, overleaf). C-S-H does not have a completely crystalline structure, 

however the humps at 27°-2ϴ and 50°-2ϴ are attributed to its structure [100, 101]. XRD results 

elsewhere also show well-defined peaks at 23°-2ϴ and 27°-2ϴ for concrete [102].  

To study the stability of the PCM structure, Zhang et al. conducted XRD tests on a composite 

PCM, based on n-octadecane and expanded graphite, undergoing cyclic melting and solidifying. 

The results showed that the XRD pattern of the composite PCM after 50 cycles of melting and 
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solidifying was almost as that of it before applying the cycles, indicating that the PCM exhibits 

good structural stability [103]. 

 

Figure 3.16. XRD diffractograms and FTIR spectra of Mix 1, Mix 4P, and Mix 5P. C = Calcite, 

A = Aragonite, Hd = Hydrotalcite, CSH = Calcium Silicate Hydrate (C-S-H), Al = alumina 
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The FTIR spectrum of this Mix 1 shows broad peaks around 3400 cm-1 indicating water, a 

broad peak centered around 1300 cm-1 that could indicate C-O bonds, a peak at 980 cm-1 indicating 

Si-O and/or Al-O stretching vibrations, and a weak peak around 760 cm-1 likely to indicate C-O 

bending vibrations. Similar results can be observed for the mixes with LWA or RHA presoaked in 

PCM, Mixes 4P and 5P respectively. The results of XRD and FTIR experiments show that the 

incorporation of the PCM in the media does not drastically change the crystal structure and 

chemical composition of the mortar, respectively (Figure 3.16). The FTIR results reported by 

Jeong et al. also show that incorporation of PCMs in a concrete that is made of other pozzolanic 

materials, such as silica fume, does not change the chemical properties of the composite [104].  

These results imply that the reduced strength and heat evolution observed in mixtures containing 

the PCM are due to mechanical considerations, such as at the sand/cement interface, or chemical 

effects, such as reducing the overall reactivity of the system (and not the production of alternative 

phases). 

 

3.2.6 Guarded Longitudinal Comparative Calorimetry 

This test was conducted to see how incorporating different PCMs in mortar affects the mortar’s 

thermal properties. This test was carried out only on the mixes in which LWA was used as the 

carrier. The presoaked PCM in LWA was as low as the absorption capacity of LWA, 17 wt.%, to 

avoid overestimating the effect of PCM by utilizing extra quantities in the mixtures. Therefore the 

test was solely done on Mix 3P, but with different presoaked PCMs, i.e., PCM6, PCM-10, and 

PCM28. Regarding the melting point of the utilized PCM, the cold plate was programmed with 

the two different temperature profiles described in Figure 3.5. However, to better illustrate the 

generated results, the tests were initially carried out on Mix 3W under both temperature profiles. 
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Changes in temperature at different points of the meter bar/sample/meter bar stack were recorded 

when Mix 3W underwent temperature Profile #1 and Profile #2, (Figure 3.17-a) and (Figure 3.17-

b), respectively. 

When the temperature approached 0 °C (32 °F), the slope of the temperature vs. time curve for the 

upper side of the sample (T2) changed. There are two points where this change in the slope took 

place, the first one due to the solidifying and the second one due to the melting of water. This 

change in the slope is due to the latent heat of incorporated water when it undergoes solid/liquid 

phase transition. By definition, the latent heat of a material is the amount of heat energy that is 

needed to change the phase of that material without changing its temperature. 

 
Figure 3.17. Temperature profile for the sample with LWA presoaked in water (Mix 3W). 

a) Under the temperature Profile #1. b) Under the temperature Profile #2 
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During thawing, applied heat converts the ice at a temperature of 0 °C (32 °F) to water at a 

temperature of 0 °C (32 °F). This phase transition delays the increase in the temperature of the 

sample during heating. A similar effect happens during cooling, when the transition from water to 

ice delays the decrease in the temperature of the sample. For Profile #2, the change in the slope is 

less because the entire sample does not reach 0 °C (32 °F) (Figure 3.17-b). 

Graphs of heat flow vs. average temperature of Mix 3W under Profile #1 and Profile #2 are shown 

in (Figure 3.18-a) and (Figure 3.18-b), respectively.  

 
Figure 3.18. Heat flow vs. average temperature for sample with LWA presoaked in water 

(Mix 3W). a) Under the temperature Profile #1. b) Under the temperature Profile # 2 



61 

 

These graphs show how the latent heat of water changes the heat flow of the sample when it 

undergoes a cooling/heating cycle. During both heating and cooling, there is a peak in the heat 

flow around the temperature of 0 °C (32 °F) where the incorporated water melts and freezes, 

respectively. For Profile #2, the peaks are smaller because the entire samples does not get to 0 °C 

(32 °F) (Figure 3.18-b). 

For Mix 3P, which contains LWA presoaked in PCM6, in addition to the latent heat of water, the 

latent heat of the incorporated PCM changes the temperature profile (Figure 3.19). During cooling, 

when the average temperature gets close to 6°C (42.8 °F), the PCM6 undergoes an exothermic 

solidification and decreases the slope of the changing in temperature. The reverse occurs during 

heating. 

 

Figure 3.19. Temperature profile for the sample with LWA presoaked in PCM6 and under the 

Temperature Profile #1 

 

The heat flow of this sample is shown as a function of average temperature (Figure 3.20, overleaf). 

There are two peaks that are the result of freezing and thawing of water, as well as two peaks that 

are due to the absorption and release of heat by the PCM6. During heating, when the average 

temperature of the sample gets closer to the melting point of PCM6, PCM absorbs the heat, and 

thus, the heat flow increases. During cooling, when the average temperature of the  
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Figure 3.20. Heat flow vs. average temperature for sample with LWA presoaked in PCM6 under 

temperature Profile #1 

sample is close to the melting point, PCM6 releases the heat energy which leads to increases in the 

absolute value of the heat flow through the sample. 

The results for the samples with PCM-10 are shown in Figure 3.21. As the temperature of the 

upper side of the sample does not get to the melting point of the PCM, the change in the slope that 

is the result of phase transition of PCM cannot be seen, whereas the changes in slope because of 

the freezing and melting of the water can be seen. 

 
Figure 3.21. Temperature profile for the sample with LWA presoaked in PCM-10 and under the 

temperature Profile #1 
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In the heat flow graph (Figure 3.22), two peaks are due to the freezing and thawing of water, 

and two due to solidifying and melting of PCM-10. The peaks related to the phase transitions of 

PCM-10 are small, because the entire sample does not get to the melting point of the PCM-10. 

 
Figure 3.22. Heat flow vs. average temperature for sample with LWA presoaked in PCM-10 and 

under temperature Profile #1 

 

The sample that included PCM28 was subjected to temperature Profile #2 (Figure 3.23). As the 

entire sample does not get to 0 °C (32 °F), the change in the slope of the temperature profile 

because of the freezing and thawing of water is negligible, whereas there are two changes in the 

slope that are the result of the phase transition of PCM28. 

 
Figure 3.23. Temperature profile for the sample with LWA presoaked in PCM28 and under 

temperature Profile #2 
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For the heat flow vs. average temperature graph (Figure 3.24), there are two peaks because of 

freezing and thawing of water and two peaks due to the phase transition of PCM28. The peaks that 

are related to freezing and thawing of water are very small, because the upper side of the sample 

does not get to the melting point of water. The results presented in this section match with the 

results reported in another study where the existence of PCM in the mortar was shown to change 

the slope of the temperature profile when it got close to the melting temperature of the PCM [30]. 

These results show how the phase transition of the PCM incorporated in concrete can absorb and 

release heat energy and modify the temperature profile and heat flow rate of a sample. The latent 

heat of fusion of PCM and water increases the thermal inertia of the mixture and therefore affects 

the rate of temperature changes through the sample. 

Since the latent heat of fusion of water is higher than that for the utilized PCMs2, the peaks 

associated with the freezing and melting of water are larger. The results suggest that utilizing 

PCMs that have higher latent heats of fusion leads to larger slope changes in the temperature profile 

and bigger peaks in the heat flow graphs.  

 

Figure 3.24. Heat flow vs. average temperature for sample with LWA presoaked in PCM28 and 

under temperature Profile #2 

                                                 
2 Latent heat of fusion of water is 334 J/g (143.6 BTU/lb). 
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3.3 Summary of the chapter 

Various experiments were discussed in this chapter to better understand the effect of incorporating 

PCMs on different chemical, physical, and mechanical properties of cementitious materials. The 

results suggest that the PCM should not be directly added to the mixtures, rather, it should be 

indirectly incorporated into the mix using a carrier. LWA and RHA were investigated as two 

potential carriers for the PCM. Considering the results of the experiments and their availability 

and compatibility with the cementitious media, LWA and RHA can be used as PCM carriers; 

however, they cannot perfectly hold PCM inside their structures. The calorimetry tests showed 

that the incorporation of PCMs can enhance the thermal inertia of cementitious media and thus 

suggested that they can be used to improve the thermal performance of buildings and pavements. 

However, the performance of PCM-impregnated structural and pavement elements needs to be 

studied when they are subjected to real temperature profiles. Although such investigations can be 

done by laboratory experiments, these experiments are usually costly, time consuming, and in 

some cases very hard to do. Therefore, computational simulations can be conducted instead of 

laboratory experiments. As described in the next chapter, a computational model of structural and 

pavement elements was developed, and the efficiency of PCMs to improve thermal performance 

was studied using real temperature profiles from different U.S. cities. 
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CHAPTER FOUR 

 COMPUTATIONAL SIMULATION 

One of the goals of this study was to apply the temperature profiles of different cities to structural 

and pavement elements in order to investigate the ability of PCMs to modify the inside temperature 

of buildings and the core temperature of concrete pavements. The investigation time period for 

each of these studies was selected to be one week and two months, respectively. Instead of 

laboratory experiments, this investigation was done by computational simulation. The temperature 

profile of a location provided in the Typical Meteorological Year (TMY) databases contains 168 

datapoints in a week and 1,440 datapoints in two months3; however, the experimental cold plate 

apparatus can be programmed with only eight set-points. Also, the use of an appropriate model 

can be both more rapid and more accurate than laboratory experiments. 

                                                 
3 These durations are the selected durations for the simulations. 
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4.1 Outline 

4.1.1 COMSOL Modeling 

In the first section of this chapter, the physics and the corresponding mathematical equations are 

described. It is also shown how material properties and different physical phenomena were 

modeled in the COMSOL software, and how the simulations were conducted. 

 

4.1.2 Validation of the Model 

In the second section, the accuracy of the COMSOL model is validated by comparing its results 

with the results obtained from Guarded Longitudinal Comparative Calorimeter (GLCC) 

experiments (Section 3.2.6). This validation needed to be done before using the model to apply 

real4 temperature profiles to simulated structural and pavement elements. To do this, two 

temperature profiles were applied to the samples in the GLCC and the results were compared to a 

similar model undergoing the same profiles in COMSOL. This test was done for three samples; 

the first contained LWA presoaked in water and the other two contained LWA presoaked in either 

PCM6 (with a melting point of 6 ºC (42.8 ºF)), or PCM28 (with melting point of 28 ºC (82.4 ºF)). 

Profile #1 was used for the samples incorporating water or PCM6; and Profile #2 was used for the 

sample incorporating PCM28 (please see Section 3.2.6). 

The values that were assigned to the materials’ parameters in the COMSOL model (physical 

properties, dimensions, etc.) matched the values that were used in the laboratory setup. Therefore, 

the results of the model should match with the results of the experiment. To have a quantitative 

                                                 
4 The temperature profiles obtained from TMY databases are statistically derived from real data, and are 

generated by putting the hourly collected temperature of different months of different years together to 

establish the temperature profile for a year as a whole.  
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criterion, the Coefficient of Determination (R2) was calculated for different cases. This number 

indicates how well the modeling results fit the experimental results [105]. The Coefficient of 

Determination can be calculated by: 

𝑅2 = 1 −
∑(𝑇𝑖 − 𝑡𝑖)2

∑(𝑇𝑖 − 𝑇̅)2
 

(12) 

where for each temperature profile, Ti is the temperature at each time step obtained from laboratory 

experiments, 𝑇̅ is the laboratory average temperature, and ti is the temperature at each time step 

calculated by the COMSOL model. An R2 of one would indicate that the COMSOL temperature 

profile perfectly fits the temperature profile obtained from the laboratory experiment, while an R2 

of zero would indicate that the two sets of temperature profiles do not fit at all. 

 

4.1.3 Simulations 

Finally, in the third section, various COMSOL models are generated and studied to better 

understand the application of PCMs in buildings and pavements. In the first model, a PCM-

impregnated concrete wall is studied under real temperature profiles; in the second model, a brick-

and-mortar wall equipped with a PCM-impregnated gypsum board is studied under sine function 

temperature profiles as well as real temperature profiles; finally, in the third model, a concrete 

pavement was studied under real temperature profiles. 

 

4.1.3.1 PCM-impregnated concrete walls 

A concrete wall with a thickness of 203 mm (8”) and with different percentages of PCM was 

studied. TMY data were used to simulate the real temperature changes of different cities as the 

input file for the COMSOL model. TMY is a collection of selected weather data for a specific 

location and for a specific period of time. The National Renewable Energy Laboratory’s latest 
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TMY collection (TMY3) was based on data for 1,020 locations in the U.S. between the years 

of 1991 and 2005 [106]. TMY2 provides the same set of data for fewer locations from 1961 

to 1990 [107]. These two different TMY datasets were used to have a wide range of temperatures 

available for the simulations. 

To illustrate how the incorporation of PCMs in walls modifies the inside temperature of buildings, 

the simulation was first conducted on a temperature profile sample with a short duration (one day). 

However, in order to have a more comprehensive study, the temperature profiles of twelve U.S. 

cities, with longer durations (one week), were simulated in order to compare the lengths of time 

during which the inside temperature stays in the comfort zone for conventional and PCM-

impregnated concrete. 

For all the structural models, the occupant comfort zone was defined as the range of 22.2 °C (72 °F) 

to 24.4 °C (76 °F) [108], and thus, the melting point of the simulated PCM was selected to 

be 23.3 °C (74 °F). The heat of fusion of the simulated PCM was set to be equal to that of PCM28, 

i.e. 150 J/g (64 BTU/lb) (please see Table 2.1). 

 

4.1.3.2 Walls equipped with PCM-impregnated gypsum boards 

For the second model, a brick-and-mortar wall with different thicknesses and equipped with a layer 

of gypsum board with a thickness of 25 mm (0.98”) and with different percentages of PCM was 

studied. The cross-sections of the four walls are shown in Figure 4.1, overleaf. They consist of two 

halves of bricks on the sides with a layer of mortar between them, and a layer of gypsum board. 

The gypsum board was placed in the inner surface of the wall. Including the thickness of the 

gypsum board, the total thicknesses of the models are 100 mm (3.94”), 150 mm (5.91”), 200 mm 

(7.87”), and 250 mm (9.84”), respectively. 
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Figure 4.1. Cross-section of the walls equipped with PCM-impregnated gypsum board 

 

 

Three sine temperature profiles with the amplitudes of 10 °C, 20 °C, and 30 °C (18 °F, 36 °F, 

and 54 °F, respectively), a reference temperature of 22 °C (71.6 °F), and a period of 24 h, were 

applied to the models. These temperature profiles were named T10, T20, and T30, respectively 

(Figure 4.2). Utilizing different amplitudes makes it possible to study the effect of the difference 

between the peak and the lowest temperature (the amplitude of the applied temperature) on the 

efficiency of PCMs. The melting point of the PCM was selected to be equal to the reference 

temperature. It should be mentioned that the reference temperature of 22 °C (71.6 °F) is an 

arbitrary number, and using another reference point does not change the results. 

 
Figure 4.2. Sine temperature profiles 
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Four different criteria, including Time Lag (ɸ), Decrement Factor (f), duration of being in the 

comfort zone, and the energy required to keep the inside temperature in the comfort zone were 

used to evaluate the efficiency of PCMs to improve the thermal performance of buildings. By 

definition, time lag is the difference between the times that the peak temperature occurs inside and 

outside of the wall. Also, the decrement factor can be calculated by [109] 

𝑓 =
𝐴𝑥=0

𝐴𝑠𝑎
 

(13)   

where 𝐴𝑥=0 is the difference between the maximum temperature and minimum temperature of 

inside of the wall, and 𝐴𝑠𝑎 is this difference for the outside of the wall. Time Lag and Decrement 

Factor are illustrated in Figure 4.3. 

 

Figure 4.3. Time Lag and Decrement Factor in a wall [109] 

 

The third criterion was the time duration that the inside temperature stays in the occupant comfort 

zone. For that, two comfort levels were introduced; for level 1, the comfort zone was the reference 

temperature ±1.5 °C (±2.7 °F), and for level 2, the comfort zone was the reference 

temperature ±3.0 °C (±5.4 °F). The melting temperature of the PCM was set equal to the reference 
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temperature and its heat of fusion was selected to be equal to 161 J/g (69 BTU/lb) that is equal to 

the heat of fusion of PCM28 (Table 2.1). 

Finally, the fourth parameter was the energy required by a HVAC system to keep the room 

temperature in the comfort zone. The inside of the wall is in contact with the room air, therefore 

the heat energy can be transferred from the wall to the air by convection [110]:  

𝑑𝑄

𝑑𝑡
= ℎ𝐴(𝑇𝑅 − 𝑇𝑠) → 𝑄 = ℎ𝐴 ∫ (𝑇𝑅 − 𝑇𝑠)𝑑𝑡

𝑡2

𝑡1

 
(14) 

where Q is the heat energy (J), h is the heat transfer coefficient (assumed to be 5 (W/m2.K) for free 

air [110]). A is the area of the wall in contact with the air (m2), 𝑇𝑅 is the room temperature, and 𝑇𝑠 

is the temperature of the inside of the wall (K). The integral term in Equation 14 presents the area 

under the temperature-time curve. If the room temperature is in the occupant comfort zone, the 

HVAC system will not be engaged. But if the room temperature falls outside this zone, the HVAC 

system needs to use energy to adjust the temperature. Therefore the mentioned area is an index of 

the energy that is used by the HVAC system to bring the room temperature back to the comfort 

zone. This area was calculated by Simpson's trapezoidal integration method (Figure 4.4). 

 
Figure 4.4. The area under the inside temperature graph that is outside the comfort range 
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In addition to the walls subjected to sine temperature functions, a wall with a total thickness 

of 250 mm (9.84”) was studied under real temperature profiles. A one-week profile for each of six 

cities was selected and applied to the model as thermal loads. Different PCM percentages were 

incorporated in the gypsum board. Since the time lag and the decrement factor are defined only 

for sine functions, only the two criteria of duration of being in the comfort zone and the energy 

required to keep the inside temperature in the comfort zone were used to evaluate the efficiency of 

the PCM. Similar to the case of PCM-incorporated concrete wall, the occupant comfort zone was 

defined as the range of 22.2 °C (72 °F) to 24.4 °C (76 °F), and thus, the melting point of the 

simulated PCM was selected to be 23.3 °C (74 °F). Also, the heat of fusion of the simulated PCM 

was set to be equal to that of PCM28. 

A simplified cost analysis was also conducted for the walls equipped with PCM-incorporated 

gypsum boards under real temperature profiles. This cost analysis was based on the electricity rates 

reported in governmental catalogs provided for each state (Table 4.1).  

 

Table 4.1. Electricity rates for different cities 

City (State) 

  Residential Rates (cents/kWh)   

Source 

  On-peak hours   Off-peak hours   Ratio   

Portland (OR)   26.900   6.700   4.0   [111] 

San Antonio (TX)   21.900   9.200   2.4   [112] 

Miami (FL)   17.392   2.885   6.0   [113] 

Concord (NH)   13.299   1.940   6.9   [114] 

Minot (ND)   13.634   2.220   6.1   [115] 

Elko (NV)   37.594   4.329   8.7   [116] 
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The electricity rates are divided into on-peak hours and off-peak hours for all cities. The ratio 

between these two tariffs is also presented in the table. 

For each case, the cost of energy used by the HVAC system to keep the inside temperature in the 

comfort zone was calculated by multiplying the used energy obtained from Equation (14) to the 

electricity rates provided in Table 4.1. The on-peak hours and off-peak hours are allocated to 

different parts of a day in different states. Therefore, a MATLAB code was developed to multiply 

the energy used in each part of the day by the electricity rate specified for that part of the day for 

that case. The assumptions and considerations of the cost analysis were: 

 - The absolute total cost for each case was not calculated, rather, the percentage reduction 

 in energy and cost was calculated. This means that since the actual area of the building 

 would be required for calculating the total cost, the problem was solved for one square 

 meter  (or one square foot) of the described wall, and the percentage of change was 

 calculated.  

 - In some of the states, the on-peak hours and off-peak hours are allocated to different 

 parts of a day in different months of the year. However, for these states, the rates that are 

 presented in Table 4.1 belongs to the months of the year that match with the months of 

 the year that were used in the simulations. 

 - The simulation time periods of the cities do not match with the effective dates of the 

 electricity rates. The rates are extracted from the catalogs that were mostly updated 

 in 2016. However, the ratio between on-peak Hours and off-peak Hours rates is the 

 parameter that is important in these calculations. It was assumed that these ratios have 

 stayed constant over the years for all the cases. 
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 - For each state, there is a monthly service fee in addition to the cost of the used 

 electricity. This extra fee was not included in cost analysis and only the costs related to 

 the power usage were considered. 

  - For some states, there is an extra charge for usage over a specific limit. This fee  was 

 not included in the calculations. 

 

4.1.3.3 PCM-impregnated concrete pavement 

For the third model, a concrete pavement with a thickness of 203 mm (8”) was studied under 

different temperature profiles, and the efficiency of incorporating PCM with a melting point close 

to the freezing temperature of water in order to decrease the number of freeze/thaw cycles 

experienced by the pavement was evaluated. It should be mentioned that freeze/thaw degradation 

is not a significant degradation mechanism in all locations because it only exists in certain 

environmental conditions – only locations that have sufficiently wet climates, as the concrete must 

be saturated with water for damage to occur, and that reach freezing temperatures regularly, are 

subject to significant freeze/thaw degradation [26].    

In the United States, locations that meet these criteria are parts of the Northwest including 

California, parts of the Southeast, most of the Midwest and Mid-Atlantic, and the entire Northeast. 

In this study, it was assumed that there is enough moisture available in the environment for all the 

case studies and therefore the temperature of the pavement is the only parameter that affects the 

number of freeze/thaw cycles. Further, although it is well known that the freezing point of pore 

solution in concrete is lower than that of water and depends on the exact chemistry of the pore 

solution, for comparative purposes 0 °C (32 °F) was chosen as the freezing point [49]. 
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4.2 COMSOL Multi-physics Modelling, Equations, and Boundary Conditions 

A 2D heat transfer model was generated by using the COMSOL Multiphysics® software package 

to simulate the temperature changes in structural elements under real temperature profiles. The 

involved physics were heat transfer by conduction, convection, and radiation. The conduction heat 

transfer equation for a system without a heat source is described by [110]: 

𝜕

𝜕𝑥
(𝜆

𝜕𝑇

𝜕𝑥
) +

𝜕

𝜕𝑦
(𝜆

𝜕𝑇

𝜕𝑦
) = 𝜌𝐶𝑝

𝜕𝑇

𝜕𝑡
 

 (15) 

where λ is the thermal conductivity of the material (W/m·K), T is temperature (K), ρ is the density 

of the material (kg/m3), and 𝐶𝑝 is the specific heat of the material (J/kg·K). For constant thermal 

conductivities of the materials, the equation is reduced to: 

𝜕2𝑇

𝜕𝑥2
+

𝜕2𝑇

𝜕𝑦2
=

𝜌𝐶𝑝

𝜆

𝜕𝑇

𝜕𝑡
 

(16) 

Initially, a model was generated to compare the results of the simulation with the results of a 

laboratory experiment. The setup involved a 50.8 mm × 50.8 mm (2” × 2”) mortar sample placed 

between two Pyroceram meter bars that, in turn, were encased in insulation. This comparison was 

done to validate the accuracy of the COMSOL model (Figure 4.5). 

 

Figure 4.5. a) COMSOL heat transfer model geometry, mesh, and boundary conditions. 

b) Laboratory set up (Insulations are not shown in this picture) 
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Equation 16 is second order in the spatial coordinates in the x and y directions and first order in 

time; therefore, two boundary conditions in each direction and one initial condition need to be 

specified. The first boundary condition in the y-direction was the heat load that was applied to the 

bottom layer of the model: 

𝑇(𝑦 = 0, 𝑡) = 𝑇𝑖𝑛𝑝𝑢𝑡  (17) 

The other three boundary conditions were based on the conservation of thermal energy at the sides 

of the model: 

−𝜆
𝜕𝑇

𝜕𝑥
= ℎ[𝑇∞ − 𝑇𝑠] , −𝜆

𝜕𝑇

𝜕𝑦
= ℎ[𝑇∞ − 𝑇𝑠] 

(18) 

where λ is the thermal conductivity of the material (W/m·K), T is temperature (K), h is the heat 

transfer coefficient (assumed to be 5 W/m2·K for free air [110]), 𝑇∞ is the ambient temperature 

(assumed to be room temperature, i.e., 296.15 K), and 𝑇𝑠 is the temperature of the material 

surface (K). 

For the initial condition, the entire system was assumed to be at room temperature before the heat 

load was applied. Therefore:   

𝑇(𝑥, 𝑦, 𝑡 = 0) = 𝑇𝑅  (19)  

where 𝑇𝑅 is the room temperature and assumed to be 296.15 K. The surface radiation of the sides 

is described by [110]: 

λ
𝜕𝑇

𝜕𝑥
= 𝜀𝜎(𝑇∞

4 − 𝑇𝑠
4)  

 λ
𝜕𝑇

𝜕𝑦
= 𝜀𝜎(𝑇∞

4 − 𝑇𝑠
4) 

  

(20) 
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where ε is the surface emissivity and σ is the Stefan-Boltzmann constant. The properties of the 

materials are provided in Table 4.2. This was modeled as “Surface-to-Ambient Radiation” in the 

COMSOL software (Figure 4.6). 

Table 4.2. COMSOL material properties inputs 

Material   
Density 

(kg/m3) 
  

Heat capacity 

at constant 

pressure 

(J/kg·K) 

  

Thermal 

conductivity 

(W/m·K) 

  

Latent 

heat of 

fusion 

(J/g) 

  
Surface 

emissivity 

Mortar   2200   880   1.4   -   0.94 

Brick   1920   840   1.0   -    0.75 

Gypsum   1380   1090   0.25   -   0.93  

Water   997   4180   0.6   

334 
  - 

Ice   918   2052   2.1     - 

Pyroceram   2600   790   Equation 6* 
  -   0.85 

Insulation   24.8   1300   0.0285   -   0.95 

* 𝜆𝑃𝐶 =  −0.0061(𝑇) + 4.2013        (−50 °𝐶 <  𝑇 < 40 °𝐶) 

 

 

Figure 4.6. Modeling “Surface-to-Ambient Radiation” in COMSOL software 
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Equation 16 describes heat transfer in solid media, but for a model with a porous media, more 

equations are involved. Mortar that is a mix of sand, cement, and water was the main media under 

consideration. This media was modeled as “Heat Transfer in Porous Media” (Figure 4.7). The 

volume fraction of mortar was defined as 𝛳𝑚, and thus the volume fraction of the porosity (the 

volume fraction filled with PCM) was equal to (1 − 𝛳𝑚). Therefore, the effective thermal 

conductivity of the media was defined as: 

𝜆𝑒𝑓𝑓 = 𝜆𝑚𝛳𝑚 + 𝜆𝑃𝐶𝑀(1 − 𝛳𝑚)  (21) 

The subscript m stands for mortar. 

Similarly: 

(𝜌𝐶𝑝)𝑒𝑓𝑓 = 𝜌𝑚𝐶𝑝,𝑚𝛳𝑚 + 𝜌𝑃𝐶𝑀𝐶𝑝,𝑃𝐶𝑀(1 − 𝛳𝑚)  (22) 

 

Figure 4.7. Modeling “Heat Transfer in Porous Media” in COMSOL software 
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The PCM was modeled as “Heat Transfer with Phase Change”, with β as the volume fraction of 

PCM at phase 1 (Figure 4.8). Therefore, the effective density of PCM was equal to: 

𝜌𝑃𝐶𝑀 = 𝜌𝑝ℎ𝑎𝑠𝑒1𝛽 + 𝜌𝑝ℎ𝑎𝑠𝑒2(1 − 𝛽)  (23) 

Similarly: 

𝜆𝑃𝐶𝑀 = 𝜆𝑝ℎ𝑎𝑠𝑒1𝛽 + 𝜆𝑝ℎ𝑎𝑠𝑒2(1 − 𝛽) (24) 

𝐶𝑝,𝑃𝐶𝑀 =
1

𝜌𝑃𝐶𝑀
(𝜌𝑝ℎ𝑎𝑠𝑒1𝐶𝑝,𝑝ℎ𝑎𝑠𝑒1𝛽 + 𝜌𝑝ℎ𝑎𝑠𝑒2𝐶𝑝,𝑝ℎ𝑎𝑠𝑒2(1 − 𝛽)) + 𝐿

𝜕𝛼𝑚

𝜕𝑇
 

 (25) 

where Cp is the specific heat (J/kg·K), L is the latent heat of fusion (J/kg), and 𝛼𝑚 is: 

𝛼𝑚 =
1

2
×

𝜌𝑝ℎ𝑎𝑠𝑒2(1 − 𝛽) − 𝜌𝑝ℎ𝑎𝑠𝑒1𝛽

𝜌𝑝ℎ𝑎𝑠𝑒2(1 − 𝛽) + 𝜌𝑝ℎ𝑎𝑠𝑒1𝛽
 

 (26) 

 

Figure 4.8. Modeling “Heat Transfer with Phase Change” 
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In Equation 26, 𝛼𝑚 presents the mass percentage of PCM that is transferred from phase 1 to 

phase 2. Also, in Equation 25, the term 𝐿
𝜕𝛼𝑚

𝜕𝑇
 presents the effect of the latent heat of fusion on the 

specific heat of PCM as a function of the mass percentage of PCM that is transferred from phase 1 

to phase 2. This term will be equal to zero when the temperature is not close to the PCM’s melting 

point; however, when the temperature gets closer to the PCM’s melting point, the phase of PCM 

starts to change, and because of its latent heat of fusion, the PCM starts to either absorb or release 

heat energy. This phenomenon instantaneously changes the specific heat of the PCM (Figure 2.10). 

The temperature transition interval between Phase 1 and Phase 2 of the PCM was selected to 

be 3 °C (5.4 °F). This number was selected based on the results of Differential Scanning 

Calorimetry tests (Section 2.4.1). Modeling the temperature changes was a time dependent 

problem that was carried on as a “Time Dependent Study.” The time intervals and the relative 

tolerance were selected to be 1 second and 0.01, respectively; however, they were modified 

depending on the problem. For the cases with high percentages of PCM, both of them were reduced 

to a smaller number in order to obtain accurate results and smooth graphs. 
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4.3 Verifying the validity of the COMSOL model 

By applying the temperature profiles as thermal loads to the base of the sample stack, the 

temperature at the tops of the specimens changed gradually when the average temperature of the 

specimen was not close to the phase transition temperatures of water or PCM. When the average 

temperature approached the phase transition temperature, the slope of the temperature profile 

changed as a result of the latent heat of fusion of water or PCM. The COMSOL model was 

supposed to accurately calculate the gradual temperature changes in the specimen, and also 

correctly calculate the effect of the latent heat of fusion of the incorporated water and PCMs during 

the phase changes. 

For the sample incorporating LWA presoaked in water, the calculated gradual changes of 

temperature for both the declining temperature (at a rate of 2 °C/h (3.6 °F/h)) and the increasing 

temperature (at a rate of 4 °C/h (7.2 °F/h)) are in agreement with the results of the laboratory setup 

(Figure 4.9-a, overleaf). The COMSOL model also accurately simulates the effects of the phase 

change of water when sample temperatures approach the freezing point. The same conclusions can 

be reached for the samples incorporating LWA presoaked in PCM6 or PCM28, Figure 4.9-b and 

Figure 4.9-c, respectively. R2 for the samples incorporating LWA presoaked in water, PCM6, and 

PCM28 were equal to 0.97, 0.97, and 0.96, respectively. This shows that the computational model 

can accurately calculate changes in temperature both due to the gradual temperature changes and 

the phase transition of water and PCM. 
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Figure 4.9. Comparison between results of the laboratory experiments and results of the 

COMSOL models 
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4.4 Results and Discussion 

4.4.1 PCM-impregnated concrete walls 

The temperature profile of the first day of July 1992 for Worcester, Massachusetts was applied to 

a concrete specimen containing 0 vol.%, 10 vol.%, or 30 vol.% of PCM (Figure 4.10). The results 

of the simulation demonstrate how including PCM in the concrete increases the thermal inertia of 

the media and thus makes the changes in the inside temperature smoother. Further, the duration 

for which the inside temperature stays within the occupant comfort range increases from 10 h for 

the sample without PCM to 13 h 30 min for the sample with 10 vol.% PCM (a 35% increase) and 

to 16 h 30 min for the sample with 30% by volume of PCM (a 65% increase). This happens because 

when the outside temperature rises, the latent heat of fusion of PCM absorbs the applied heat load 

and prevents drastic temperature changes on the inside of the specimen; and during the night when 

the outside temperature drops, the PCM releases the absorbed heat and keeps the inside warmer. 

 

Figure 4.10. First day of July 1992 – Worcester (MA) 
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In order to have a more comprehensive study, temperature profiles with one week duration 

for 12 U.S. cities were studied. Depending on the maximum and minimum temperatures, the 12 

cities were divided into three categories: cold, moderate, and hot (Table 4.3). These cities were 

selected from various parts of the U.S. to investigate the efficiency of PCMs in different locations. 

The ‘hot’ category included Austin, Texas; Delta, Utah; Casa Grande, Arizona; and Reno, Nevada, 

with maximum temperatures of 35 °C (95 °F), 35 °C (95 °F), 41 °C (105.8 °F), and 33.3 °C 

(91.9 °F), respectively. 

Table 4.3. Temperature properties of the selected cities 

Category City (State) 

  
Period of Time 

(week of) 

  Temperature °C (°F) 

    Minimum   Average   Maximum 

Hot 

Climate 

Austin (TX)   First / Jun. 2003   15.6 (60.1)   25.7 (78.3)   35 (95) 

Delta (UT)   Second / Jul. 2000   13.5 (56.3)   24.4 (75.9)   35 (95) 

Casa Granda (AZ)   Third / Jun. 2001   17.3 (63.1)   30.8 (87.4)   41 (105.8) 

Reno (NV)   Fourth / Aug. 1987   9.4 (48.9)   22.2 (72)   33.3 (91.9) 

Moderate 

Climate 

Boston (MA)   Fourth / Jun. 2002   15.6 (60.1)   24 (75.2)   33 (91.4) 

Grand Forks (NV)   Third / Jun. 1998   11 (51.8)   18.1 (64.6)   28 (82.4) 

San Diego (CA)    First / Sep. 1990   18.9 (66)   22.6 (72.7)   28 (82.4) 

New York (NY)   First / Sep. 1979   20.6 (69.1)   24.8 (76.6)   28.9 (84) 

Cold 

Climate 

Miles City (MT)   First / Jun. 2002   6.7 (44.1)   17.2 (63)   27.8 (82) 

Chicago (IL)   Second / May 2003   9 (48.2)   15 (59)   29 (84.2) 

Worcester (MA)   First / Jun. 1990   6.3 (43.3)   16.4 (61.5)   27.8 (82) 

Hulton (ME)   Fourth / Jul. 2004   5.9 (42.6)   17.9 (64.2)   29.8 (82) 
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For the first four days of the Austin simulation, the maximum temperature was above 32.2 °C 

(90 °F), which is significantly above the upper limit of the comfort zone and also the melting point 

of the PCM. Therefore the PCM cannot keep the inside temperature in the occupant comfort zone 

(Figure 4.11-a, overleaf). But for the last three days of the simulation, the oscillation of temperature 

is close to the comfort zone, and therefore the PCM can effectively increase the length of time for 

which the inside temperature is in the comfort zone. In the case that 30 vol.% of PCM is used, the 

inside temperature of the last three days stays in the comfort zone. 

The same conclusion can be reached for the other three cases that are in this category (Figure 4.11-

b to Figure 4.11-d). Increasing the percentage of PCM from 10% to 30% increases the duration of 

time during which the inside temperature is in the comfort zone. When the variation in temperature 

for a single day is about 16.7 °C (30 °F), 30% PCM can effectively keep the inside temperature in 

the comfort zone. When the temperature difference is more than 20 °C (36 °F), the PCM cannot 

completely keep the temperature in the comfort zone, but instead delays the time at which the 

temperature becomes uncomfortable. 
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Figure 4.11. Hot climate category – changes in temperature for one week duration 
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The ‘moderate’ temperature category includes Boston, Massachusetts; Grand Forks, Nevada; San 

Diego, California; and New York City, New York. The average temperatures of these locations 

are in the comfort zone. In Boston, the maximum temperature for the first day is 27.8 °C (82 °F), 

which is relatively close to the comfort zone (Figure 4.12-a, overleaf). Therefore, not all the 

incorporated PCM will turn to liquid, and thus not enough heat energy will be stored in the PCM. 

When the minimum temperature of the following night falls to 15.6 °C (60.1 °F), the PCM cannot 

provide the required heat energy to keep the inside temperature in the comfort zone. But for the 

third day, the maximum temperature during the day is 30 °C (86 °F), therefore the PCM stores 

enough heat energy to make it possible to keep the inside temperature in the comfort zone for the 

following night. The same general behavior is observed for Grand Forks (Figure 4.12-b) and San 

Diego (Figure 8-c). The temperature oscillation of New York is very close to the comfort zone and 

the minimum temperature during the nights is only 1.1 °C (2 °F) less than the lower limit of the 

comfort zone. Therefore the PCM, especially when 30% is used, can keep the inside temperature 

in the comfort zone almost for the entire week (Figure 4.12-d). 
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Figure 4.12. Moderate climate category – changes in temperature for one week duration 
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The ‘cold’ climate category includes Miles City, Montana; Chicago, Illinois; Worcester, 

Massachusetts; and Hulton, Maine. The minimum temperature of these cities is 

about 5.6 °C (42.1 °F). For the first three days of the Miles City temperature profile, the outside 

temperature is below the comfort zone during the nights and barely goes above the upper limit of 

comfort zone during the days (Figure 4.13-a, overleaf). Therefore no heat energy is stored in the 

PCM, and the inside temperature does not stay in the occupant comfort zone, even for the case 

that 30% PCM is used. But for the last three days of the week, as the temperature oscillates evenly 

above and below the comfort zone, PCM can effectively keep the inside temperature in the comfort 

zone. This shows that in addition to the percentage of the incorporated PCM, the temperature 

change range plays an important role in the effectiveness of the PCM. The same results can be 

reached for the other cities in this category (Figure 4.13-b to Figure 4.13-d).  
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Figure 4.13. Cold climate category – changes in temperature for one week duration 
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The data generated from the computational model were used to calculate the percentage increase 

in the occupant comfort duration for different locations (Table 4.4). For each case, the number of 

hours that the inside temperature stays in the comfort zone is calculated for samples 

containing 0%, 10%, and 30% by volume PCM. For specimens containing 10% PCM, Delta saw 

the greatest increase, with the duration of being in the occupant comfort zone increased by 53.7%. 

For San Diego this increase was less than 22%. This shows that the efficiency of PCM to increase 

the occupant comfort is dependent on the profile temperature. The same conclusion can be reached 

for the cases that 30% PCM was used. In Chicago, the increase in being in the comfort zone was 

up to 78%. In San Diego this number was as low as 25%, which is even less than in some of the 

other cases where 10% PCM was used. Comparing the cases of San Diego and New York shows that 

even for the cases with the same comfort duration without utilizing PCM, the 

Table 4.4. Increase in the occupant comfort duration 

Category City (State) 

  Duration of being in the comfort zone for one week (Hours) 

  0% PCM   10 vol.% PCM   30 vol.% PCM 

  Duration   Duration   Increase %   Duration   Increase % 

Hot 

Climate 

Austin (TX)   92   118   28.3   130   41.3 

Delta (UT)   82   126   53.7   140   70.7 

Casa Granda (AZ)   38   50   31.6   62   63.2 

Reno (NV)   77   114   48.1   130   68.8 

Moderate 

Climate 

Grand Forks (ND)   47   66   40.4   70   48.9 

Boston (MA)   98   120   22.4   134   36.7 

San Diego (CA)    105   128   21.9   132   25.7 

New York (NY)   105   130   23.8   156   48.6 

Cold 

Climate 

Miles City (MT)   44   64   45.5   72   63.6 

Chicago (IL)   28   40   42.9   50   78.6 

Worcester (MA)   72   96   33.3   114   58.3 

Hulton (ME)   70   94   34.3   102   45.7 

Average of percentage increase 

± Standard deviation 
  35.5% ± 7.6%   51.2% ± 11.3% 
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efficiency of PCM is dependent on the applied temperature profile and PCM percentage.  

To investigate the effect of ambient temperature differences on the efficiency of PCM 

incorporation, the percentage increase in the duration of being in the comfort zone was graphed as 

a function of temperature difference between day and night for one single day (Figure 4.14). When 

the temperature difference in a day is as low as 5 °C (9 °F), the comfort duration can be almost 

doubled if 30 vol.% PCM is used. For the same temperature difference, the comfort duration can 

be increased by more than 50% when 10 vol.% PCM is used. These numbers are respectively 

about 90 % and 40% when the temperature difference is 9 °C (16.2 °F) for 30% and 10% PCM. 

But when the temperature difference in a day is as high as 20 °C (36 °F), the efficiency for both 

cases will be dropped to about 15%. This shows the PCM efficiency is highly dependent on the 

temperature difference between day and night. 

 

Figure 4.14. Efficiency of PCM as a function of temperature difference 

 

These results match with the results of a study on a passive house duplex located in the U.S. state 

of Oregon where utlizing PCM in a building was reported to be able to reduce the annual 

overheated hours, the total hours in a year that the inside temperature is above the occupant comfort 
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level of 26 °C (78.8 °F), by 50% [47]. Another laboratory test showed that using PCM panels in a 

building can reduce interior peak temperatures by 4.43 °F (2.46 °C) during the summertime [40]. 

 

4.4.2 Walls equipped with PCM-incorporated gypsum boards  

4.4.2.1 Sine Function Temperature Profiles 

The results of the wall with different thicknesses and no PCM in their gypsum boards, under 

temperature profiles T10, T20, and T30, shows that as expected, with increase in the wall 

thickness, the peak temperature decreases and the time lag increases (Figure 4.15). 

 

Figure 4.15. Temperature changes in walls with the thicknesses of 100 mm (3.94”), 150 mm 

(5.91”), 200 mm (7.87”), and 250 mm (9.84”) and with 0 vol.% of PCM under sine function 

temperature profiles with different amplitudes 
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However, the increase in the time lag is the same for all the temperature profiles (Figure 4.16). 

This means that for a wall with a specific thickness, the time lag is independent from the amplitude 

of the input sine temperature profile5. Also, by increasing the wall thickness, the increment factor 

decreases for all the temperature profiles. This drop is bigger for the sine function with bigger 

amplitude. These results suggest that by increasing the wall thickness the inside temperature can 

be controlled, however, there are structural, architectural, and economical restrictions on the 

maximum thickness of the walls. 

The same temperature profiles were applied to the 250 mm (9.84”) wall with different percentages 

of PCM incorporated in its gypsum board. When the temperature rises, the PCM absorbs the 

applied heat energy and turns to liquid, and thus reduces the peak temperature. When the applied  

 

Figure 4.16. Time Lag and Decrement Factors for walls with different thicknesses and 

with 0 vol.% of PCM and under sine temperature profiles with different amplitudes 

                                                 
5 The amplitude of the sine function input temperature will appear as a constant in the solution of 

the heat transfer differential equation, and the arguments of the exponential and sine functions in 

the solution will not be a function of this amplitude. 
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temperature drops below the melting temperature, the PCM releases the heat energy that was 

absorbed initially and thus increases the minimum temperature. This suggests that PCMs can be 

used as passive heat storage units in the walls that make the inside temperature changes profile to 

have smaller peaks. This effect increases by incorporating more PCM; however, PCM has a limited 

latent heat of fusion and therefore it cannot completely eliminate changes in temperature 

(Figure 4.17). 

The results of the effects of different percentages of PCM on the Time Lag and Decrement Factor 

shows that by increasing the PCM percentage, the time lag increases. This increase is bigger when 

the applied temperature has a smaller amplitude. This is because of limited latent heat of fusion of 

the PCM. The decrement factor decreases by increasing the PCM percentage. When 50 vol.% of  

 

Figure 4.17. Temperature changes in 250 mm (9.84”) wall with 0 vol.%, 10 vol.%, 30 vol.%, and 

50 vol.% of PCM in the gypsum board under sine temperature profiles with different amplitudes 
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the gypsum board volume is replaced with PCM and for the temperature profile with the magnitude 

of 10 °C (18 °F) is applied, this factor can be as low as 8% which means more than 90% of the 

peak temperature is damped (Figure 4.18). Comparing Figure 4.17 and Figure 4.18 shows that 

using PCMs is more efficient in reducing the amplitude of the temperature than increasing the 

thickness of the wall. The effects of the latent heat capacity of PCM on the time lag and the 

decrement factor was studied by Asanand Sancaktar, who reported that there is an exponential 

relationship between time lag and heat capacity and inverse exponential relationship between 

decrement factor and heat capacity [109].  

The increase of time spent in the comfort zone for the 250 mm (9.84”) wall, with different 

percentages of PCM incorporated in its gypsum board under different temperatures profiles is 

presented in Table 4.5, overleaf. For T10 and for the first comfort level6, by using 30 vol.% PCM, 

the inside temperature stays in the comfort zone for the entire time, therefore increasing the PCM 

percentage does not increase the comfort duration.  

 

Figure 4.18. Time Lag and Decrement Factors for 250 mm (9.84”) wall with different PCM 

percentages in its gypsum board and under sine temperature profiles with different amplitudes 

                                                 
6 The comfort levels are described in Section 4.1.3.2. 
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Table 4.5. The effect of PCM on the comfort duration and the area out of the comfort zone for 

sine function temperature profiles 

Input 
PCM 

vol.% 

  
Percentage increase in the comfort 

time duration 
  

Percentage decrease in the area out 

of the comfort zone
* 

  
22 ± 1.5 °C 

71.6 ± 2.7 °F 
  

22 ± 3.0 °C 

71.6 ± 5.4 °F 
  

22 ± 1.5 °C 

71.6 ± 2.7 °F 
  

22 ± 3.0 °C 

71.6 ± 5.4 °F 

T10 

10   29   0   82   100 

30   41   0   100   100 

50   41   0   100   100 

T20 

10   69   18   43   63 

30   181   29   88   95 

50   202   33   98   100 

T30 

10   75   26   26   35 

30   208   97   73   84 

50   323   118   92   93 

* It is described in Section 4.1.3.2 

For the level 2, without using PCM, the entire graph falls inside the comfort zone, therefore using 

PCM does not increase the comfort duration. For all of the input temperatures, the ability of PCM 

to increase the comfort duration is higher for the first level of comfort, because when the 

temperature tolerance is larger, even without PCM a relatively large portion of the inside 

temperature stays within the comfort zone. This suggests that PCM are more applicable when a 

narrower range of comfort zone is desired (Table 4.5).  

These results suggest that utilizing PCM-incorporated gypsum boards can be effective in 

improving the thermal performance of the buildings. The other advantages of these boards are 

being flexible for the alteration and refurbishment of a conventional building. However, problems 

such as long-term thermal behavior of PCM-impregnated wallboards, durability, fire rating and 

heat transfer enhancement, architectural considerations, etc., still need to be addressed [117]. 
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4.4.2.2 Real Temperature Profiles 

To evaluate the efficiency of PCM-incorporated gypsum board at increasing the comfort duration 

under real temperature inputs, the real temperatures of six cities were applied to the model. The 

cities include Portland, Oregon; San Antonio, Texas; Miami, Florida; Concord, New Hampshire; 

Minot, North Dakota; and Elko, Nevada. These cities are located in different parts of the US, and 

their temperature parameters, such as peak temperature, the lowest temperature, and the difference 

between day and night temperatures, are completely different. Therefore, by studying theses 

climates, it would be possible to evaluate the efficiency of PCMs for different climates. For each 

city, one week was selected. Using a longer period of time yields more comprehensive and reliable 

results; however, the goal here is to demonstrate how PCM works in different climates and how 

the optimum percentage of PCM in different cases can be calculated. 

The results show that by increasing the PCM percentage, the duration of being in the comfort zone 

increases for all the cities but this increase is not the same for all the cases (Table 4.6, overleaf). 

For the case of Concord, this duration was increased by up to 40% when 50% of the gypsum board 

volume was replaced by PCM; however, with the same amount of PCM for the case of San 

Antonio, this increase was as low as 4%. 

This is because for the case of Concord, the highest and lowest temperatures were close to the 

comfort zone, i.e. the difference between the temperatures of day and night was low; therefore, the 

PCM was able to absorb a considerable amount of the applied heat energy during the days and 

release it during the nights. In contrast to the case of Concord, the temperature difference between 

day and night was very high for the case of San Antonio. The latent heat of fusion of PCM is 

limited, therefore, it was not able to absorb all the applied heat and thus, the duration of  
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Table 4.6. The effect of PCM on the comfort duration and the area out of the comfort zone for 

walls equipped with PCM-impregnated gypsum boards under real temperature profiles 

City       

(State) 

Period of 

Time 

(week of) 

PCM 

vol.% 
  

Percentage of 

increase in the 

comfort time 

duration 

  

Percentage 

of reduction 

in the area 

out of 

comfort zone 

  

Energy  

Efficiency 

Factor 

Portland 

(OR) 

First 

Mar. 2002 

10   7   24   2.4 

30   16   25   0.8 

50   29   35   0.7 

San Antonio 

(TX) 

Second 

Aug. 1990 

10   1   5   0.5 

30   2   7   0.2 

50   4   10   0.2 

Miami     

(FL) 

Third 

May 2000 

10   2   6   0.6 

30   3   8   0.3 

50   5   12   0.2 

Concord 

(NH) 

Third 

Aug. 2004 

10   8   12   1.2 

30   32   31   1.0 

50   38   45   0.9 

Minot     

(ND) 

Second 

Jun. 1980 

10   8   17   1.7 

30   23   39   1.3 

50   29   43   0.9 

Elko       

(NV) 

Second 

Jun. 2001 

10   8   12   2.5 

30   14   28   0.9 

50   20   36   0.7 

 

being in the comfort zone was not efficiently increased. This shows that the efficiency of PCM is 

completely dependent on the outside temperature profile. 

Considering the utilized PCM percentages and the percentage increase in being in the comfort 

zone shows that there is not a linear relationship between these two parameters. For the case of 

Minot, when the amount of utilized PCM was increased by three times (from 10 vol.% 

to 30 vol.%), the effectiveness of the PCM was also increased by about three times (from 8% 

to 23%). However, when the amount of utilized PCM was quintupled (from 10 vol.% to 50 vol.%), 
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the effectiveness of the PCM was increased by less than four times. The results suggest that by 

increasing the PCM percentage, its efficiency decreases. 

The same pattern was observed for the decrease in the area out of the comfort zone (Table 4.6). 

This area is important because it is an index of the required energy by the HVAC system to keep 

the inside temperature in the comfort zone. For all the cases, the percentage of the area out of the 

comfort zone was decreased when the amount of utilized PCM was increased. Again for the case 

of Concord, this area was decreased by 45% when 50 vol.% of PCM was used; however, this 

number was as low as 10% for the case of San Antonio. 

These results match with the results presented by Pieppo et al. [118] and Feldman et al. [119] 

where the energy saving in buildings by utilizing PCM walls with approximately the same 

percentages of the PCM was reported to be between 5% to 20% and about 22%, respectively, 

depending on the climate and temperature profile of the location. Hittle reported that by 

incorporating PCMs in floor tiles, the annual heating costs of a building can be greatly 

reduced [120] 

Athienitis et al. also reported that the utilization of PCM-impregnated gypsum wallboard was 

shown to reduce maximum room temperatures by about 4 °C (7.2 °F) during the day and can 

significantly reduce the heating load at night [39]. The results of an outdoor test room experiment 

indicated that the peak temperature in PCM-impregnated wallboards can be as much as 10 °C 

(18 °F) lower than the peak temperature in the control test room during sunny days [121]. Another 

research showed that up to 90% of a daily cooling load could be stored each night in a system in which 

a 30 mm (1.18”) thick packed bed of granular PCM has been used [43]. However, the reults of this 

study suggets that the effciency of PCMs was overestimated in that research. Considering the results 

shown in the area out of comfort zone column and the values in the PCM percentage column shows 
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that there is not a linear relationship between the amount of utilized PCM and the decrease in the 

area out of the comfort zone. As an example, for the case of Miami, this decrease in the area out 

of the comfort zone was only doubled (from 6% to 12%) when the amount of utilized PCM was 

increased by five times (from 10 vol.% to 50 vol.%), respectively. Therefore, an Energy Efficiency 

Factor (EEF) was introduced to find the energy-wise optimum percentage of PCM for each case. 

This factor was calculated by dividing the value of the percentage decrease in the area out of 

comfort zone by the value of the PCM percentage (Table 4.6). 

The results show that for all the cases, by increasing the amount of utilized PCM, the EEF was 

decreased. This means that by doubling the amount of PCM, for instance, the effectiveness of 

PCM to decrease the energy required by HVAC system will not be doubled. For the case of 

Portland, the PCM efficiency was dropped from 2.4 to 0.8 and 0.7 when the PCM percentage was 

increased from 10 vol.% to 30 vol.% and 50 vol.%, respectively. For San Antonio, this factor was 

the same when 30 vol.% and 50 vol.% of PCM were used. In between the all, Concord by 25% 

had the lowest and Elko by 72% had the highest drop in PCM-efficiency when the PCM content 

was increased from 10 vol.% to 50 vol.%. 

Cost analysis was also conducted to evaluate the efficiency of PCM-equipped gypsum boards to 

reduce the electricity costs regarding to air-conditioning in buildings. If the electricity rates were 

the same for all the parts of a day, the percentage of reduction in costs for each case was exactly 

the same as percentage of reduction in the energy required by the HVAC system to keep the inside 

temperature in the comfort zone for that case; because the total cost was equal to the energy 

consumed by the HVAC system multiplied in a constant number (the electricity rate). However, 

the electricity rates for the on-peak hours and off-peak hours are not the same. 
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The results show that by increasing the PCM percentage, the electricity costs of the HVAC system 

were reduced for all the cases (Table 4.7). In the case of Minot, the air-conditioning cost was 

reduced by one quarter when 50 vol.% of the gypsum boards was replaced by PCM. For the same 

case, 10% of the costs were reduced by incorporating 10 vol.% of PCM. However, this reduction 

in costs was as low as 7% and 3% for both Miami and San Antonio when 50 vol.% and 10 vol.% 

of PCM were used, respectively. 

Similar to energy, a Cost Efficiency Factor (CEF) was used to find the economic-wise optimum 

percentage of PCM for each case. This factor was calculated by dividing the value of the 

percentage decrease in the costs by the value of the PCM percentage. The results show that  

 

Table 4.7. Costs analysis for walls equipped with PCM-impregnated gypsum boards under real 

temperature profiles 

City (State) Ratio 
PCM 

vol.% 

Percentage of 

reduction in costs 

Cost  

Efficiency 

Factor 

Portland (OR) 4.0 

10 15 1.5 

30 17 0.6 

50 21 0.4 

San Antonio (TX) 2.4 

10 3 0.3 

30 4 0.2 

50 7 0.1 

Miami (FL) 6.0 

10 3 0.4 

30 5 0.2 

50 7 0.1 

Concord (NH) 6.9 

10 6 0.6 

30 14 0.5 

50 20 0.4 

Minot (ND) 6.1 

10 10 0.9 

30 21 0.7 

50 25 0.5 

Elko (NV) 8.7 

10 5 0.5 

30 12 0.4 

50 16 0.3 
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similar to EEF, CEF was also decreased when the PCM percentage was increased, i.e., CEF was 

the efficiency of PCM to reduce the costs of air-conditioning was maximum when only 10 vol.% 

of PCM was used. Comparing the results of Table 4.6 with Table 4.7 shows that CEF is always 

smaller than EEF. This means that the efficiency of PCM to reduce the energy used by the HVAC 

system is smaller than the efficiency of that to reduce the cost of air-conditioning. The electricity 

rates are lower during off-peak Hours; therefore, although a considerable amount of energy was 

used by the HVAC system during these hours, the costs of that were not considerable compared to 

the costs during the on-peak hours. 

The results of this section show that utilizing PCM-impregnated gypsum boards in new buildings 

could be a reliable and effective strategy to achieve the thermal performance desired by 

governmental plans and building codes. On the other hand, following this strategy in existing 

buildings represents a huge opportunity for accomplishing governmental plans. Existing buildings 

were mostly built before the recognition and implementation of thermal efficiency in buildings 

codes. For instant, more than half of California’s 13 million residential units and over 40% of the 

commercial buildings were built before 1978, when the first building energy efficiency standards 

were implemented [8]. Thus, most of these buildings do not meet the current energy code 

requirements. Therefore, adding a layer of PCM-impregnated gypsum board, or replacing 

conventional wall layers with these boards, could have a significant contribution to achieving the 

desired level of thermal performance of the buildings. 

 

4.4.3 Concrete Pavements 

In addition to increasing occupant comfort in buildings, PCMs can be used to increase the service 

life of concrete pavements by decreasing the number of freeze/thaw cycles that they 
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experience [26]. To evaluate the effectiveness of PCMs at decreasing the number of freeze/thaw 

cycles experienced by concrete pavements, the temperature profiles of two sequential months in 

six different cities were applied to models that contained different percentages of a PCM. As 

described earlier, only in locations that have sufficiently wet climates and that regularly reach 

freezing temperatures are subject to significant freeze/thaw degradation. Therefore the cities of 

Blacksburg, Virginia; Lancaster, Pennsylvania, Montpelier, Vermont; New York City, New York; 

Oxford, Connecticut; and Portland, Maine, which all are located in the northeast part of the U.S., 

were selected. 

For each city, the two harshest sequential months of year, in which the temperature drops to the 

freezing point most often, were used. (TMY puts the temperature of the sequential months that 

belong to different years next to each other to create the data for one entire year. For example, in 

the case of Blacksburg city, January 1996 is followed by February 1999). The models 

contained 0 vol.%, 10 vol.%, or 30 vol.% PCM. The melting point of the utilized PCM was 

selected to be equal to 2 °C (35.6 °F), which is slightly above the freezing temperature of water. 

Finally, the temperature at the depth of 101 mm (4”) was considered as the parameter to count for 

the number of freezing cycles (Table 4.8, overleaf). 

When 10 vol.% PCM by volume was used, the reduction in the number of freeze/thaw cycles 

varied between 11.5% to 18.5%, and on average, about one sixth of the freeze/thaw cycles were 

eliminated. When 30 vol.% PCM was used, the reduction percentage varied between 29.4% 

and 41.7% depending on the temperature profile of the city, and on average, about one third of the 

cycles was mitigated. 
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Table 4.8. Percentage reduction in the number of freeze/thaw cycles experienced by the 

pavement 

City 

(State) 

Two 

months 

period of 

time 

  Number of freeze/thaw cycles 

  0% PCM   10 vol.% PCM   30 vol.% PCM 

  Number   Number   Reduction %   Number   Reduction % 

Blacksburg 

(VA) 

Jan. 1996 

Feb. 1999 
  18   15   16.7   11   38.9 

Lancaster 

(PA) 

Jan. 2002  

Feb. 2002 
  26   23   11.5   16   38.5 

Montpelier 

(VT) 

Mar. 1995 

Apr. 1991 
  24   20   16.7   14   41.7 

New York 

(NY) 

Jan. 1976 

Feb. 1988 
  17   14   17.6   12   29.4 

Oxford 

(CT) 

Feb. 2000 

Mar. 2005 
  27   22   18.5   18   33.3 

Portland 

(ME) 

Apr. 1998 

Jun. 2001 
  31   27   15.1   19   38.4 

Average of percentage reduction  

 ± Standard Deviation 
  15.2% ± 2.4%   35.6% ± 4.2% 

 

The results match with the results presented in another study where it was shown that the presence 

of a PCM in the concrete pavement efficiently decreases the annual number of freeze/thaw cycles 

experienced by the pavement [49]. This percentage decrease was as high as 100% for Tampa, 

Florida, and as low as 19% for Cheyenne, Wyoming. However, the average percentage decrease 

for 12 cities from different parts of the U.S. was reported to be about 29%. 

In another study, CONCTEMP program, developed at National Institute of Standards and 

Technology (NIST), was used to investigate the effectiveness of incorporating different 

percentages of PCMs in concrete to increase the service life of bridge decks [26]. It was shown 
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that this efficiency was dependent on the location of the bridge deck. For states such as Utah, 

Wyoming, Montana, and Colorado, located in the central part of the U.S., incorporating a PCM 

did not increase the service life, since freeze/thaw damage was not the limiting parameter for the 

service life of bridge decks. However, incorporation of 50 kg/m3 (3.12 lb/ft3) of PCM was effective 

in increasing the service life of bridge decks by at least one year in states such as Georgia, 

Alabama, Mississippi, Tennessee, and Louisiana, located in the south-east part of the U.S; as well 

as Oregon and Washington, located in the north-west part of the U.S. These results show that using 

PCMs in concrete pavements can effectively reduce the number of freeze/thaw cycles experienced 

by the pavement; however, its efficiency is dependent on the input temperature profile and the 

weather conditions. 
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4.5 Summary of the chapter 

Studying the efficiency of PCMs to improve the thermal performance of buildings and pavements 

under real temperature profiles by laboratory experiments was found to be very time consuming, 

expensive, and in some cases impractical. Therefore, a series of computational models were 

generated to carry out this investigation. The accuracies of the models were validated by 

comparing their results with the results of the Guarded Longitudinal Comparative Calorimetry 

experiment. The real temperature profiles of different cities and with different durations, extracted 

from TMY database, were applied to the models as thermal loads. All the building and pavement 

models had the same core, however they were customized with respect to their application. 

The results showed that incorporation of PCMs directly into the concrete walls increases the 

duration of the inside temperature to stay within the comfort zone. Also, utilizing PCM-

impregnated gypsum boards decreases the peak temperature and delays the occurrence, increases 

the comfort duration, and decreases the energy and cost required by the HVAC system to keep the 

inside temperature within the comfort zone. However, it was shown that the efficiency of PCM 

decreases when the amount of utilized PCM increases, both energy-wise and cost-wise. Finally, 

incorporation of PCMs in concrete pavements was found efficient to reduce the number of 

freeze/thaw cycles experienced by the pavement.  
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      CHAPTER FIVE 

 CONCLUSION AND FUTURE WORK 

5.1 Conclusion 

Improving the thermal performance of buildings and defining different strategies to achieve Zero-

Net-Energy (ZNE) buildings has been the topic of many governmental plans. Utilizing PCM-

incorporated gypsum boards was shown to be a promising strategy to achieve the aforesaid 

objectives. These boards not only can be used in new buildings, but also can be added to existing 

buildings to improve their thermal performance. Utilizing these boards delays the occurrence and 

decreases the magnitude of the inside peak temperature, increases the duration of being in the 

occupant comfort zone, and meaningfully decreases the cost and energy required by the HVAC 

system to keep the inside temperature in this range. Since a large portion of the total energy 

consumption in the world is allocated to heating and cooling buildings, the decrease in the required 

energy for buildings’ air-conditioning not only decreases the required energy and costs, but also 

reduces the emission of harmful gases such as CO2 to the environment. On the other hand, 

incorporating PCMs in concrete pavements were shown to increases pavement service life, and 

thus, reduce the required maintenances’ costs. 
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Moreover, as part of strategy for incorporating PCM in concrete walls and pavements, the 

problems associated with utilizing Lightweight Aggregate (LWA) as a PCM carrier were studies 

in depth through laboratory experiments. Also, the applicability of Rice Husk Ash (RHA), a 

common material never before used to encapsulate PCM, as a PCM carrier agent was investigated. 

The results show that both LWA and RHA can absorb and contain liquids in their porous structure; 

and regarding their compatibility with the cementitious media, they can be used as PCM carriers. 

However, it was shown that the carriers release a portion of PCM into the bulk cement paste, but 

the chemical composition of the media does not change drastically. 

 

5.2 Future Work 

To continue this study, the following works are suggested: 

- Generate a more comprehensive computational model, which can take into account the 

effects of solar radiation and air humidity, and increase the simulation period to one entire 

year for different models to obtain more realistic results. 

- Conduct more studies to find the optimum melting temperature of the utilized PCMs for 

different applications. In addition, a comprehensive cost analysis should be conducted to 

compare the efficiency and life cycle costs of PCMs to alternative methods.  

- Perform more investigations in order to address the problems associated with LWA and 

RHA as PCM carrier agents. 

- Introduce novel PCM carrier agents, and compare their efficiency with the aforesaid carrier 

agents. 
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