
Effects of Jitter on Quality of Experience in Cloud Gaming

Thomas Flanagan, Carter Nakagawa, Michael Oliveira

Professor Mark Claypool

March 3 2023

This report represents the work of one or more WPI undergraduate students submitted

to the faculty as evidence of completion of a degree requirement. WPI routinely

publishes these reports on the web without editorial or peer review.

Abstract
The emergence of cloud technology has led to cloud-based video game

streaming (cloud gaming for short), which provides access to games without expensive

hardware. However, cloud gaming is susceptible to variations in latency that impact

performance and user experience. A better understanding of these effects can help

build systems to mitigate them. This project explores the impacts of jitter frequency and

magnitude on user experience. Four games, Bloons Tower Defense 6, Hollow Knight,

Hades, and CS:GO, were tested by having participants rate gameplay experience under

various jitter conditions. From this experiment, jitter magnitude was found to have a

significant, negative effect on user experience, while jitter frequency was found to be

inconclusive.

Table of Contents
1. Introduction 1
2. Background 3

2.1 Cloud Gaming Systems 3
2.1.1 Structure of Cloud Gaming Systems 3
2.1.2 Thick vs. Thin Client Architecture 3
2.1.3 Benefits of Cloud Gaming Systems 4
2.1.4 Growth of Cloud Gaming 4

2.2 Buffering and Latency 5
2.2.1 Delay 5
2.2.2 Jitter 5
2.2.3 Bitrate 5
2.2.4 Video Encoding and Compression 6
2.2.5 Sources of Latency 7
2.2.6 Reducing Visual Quality 7
2.2.7 Playout Buffers 8

2.3 User Experience 9
2.3.1 Measuring Quality of Experience (QoE) 9
2.3.2 Effect of Latency on Gaming Experience 10
2.3.3 Spatial Information/Temporal Information 11
2.3.4 Measuring Visual Fidelity 13
2.3.5 Deadline/Precision 14

3 Methodology 16
3.1 Game Selection 16

3.1.1 Game Classification 16
3.1.2 Selection Criteria 18

3.2 Study Implementation 21
3.2.1 Platform Selection 22
3.2.2 Pilot Study/Initial Design 23
3.2.3 Proctoring Script Design 24
3.2.4 Recruiting Participants 25
3.2.5 Adjustments to Initial Design 26
3.2.6 Final Procedure 26

4. Results 30
4.1 Demographics 30
4.2 Experimental Results Overview 32

4.2.1 Presentmon Metrics 32
4.2.2 Quality of Experience 34

4.3 Data Cleaning 35
4.3.1 Cleaning based on Experiment Errors 35

4.3.2 Cleaning by QoE Rating 36
4.4 Significance Testing 38

4.4.1 Performance Differences by Game 38
4.4.2 Differences in QoE by Game 38
4.4.3 Differences in QoE by Settings 40
4.4.4 Difference in QoE Z-scores by Settings 43

4.5 Trends in Data 45
4.5.1 Univariate Regression (QoE) 45
4.5.2 Univariate Regressions (Z-Score) 48
4.5.3 Multivariate Regressions (QoE) 51

5. Conclusion 55
6. Future Work 57
References 59
Appendix 62

Participant Question Sheet 62
Router Machine Script 64
Client Machine Script 65
Recruiting Email 66
Game Tutorial Sheets 67
Consent Form 71

1

1. Introduction
While there are multiple benefits to cloud-based streaming that improve on the

current standard of local gaming, latency can have significant negative impacts on

gaming experience. As a first step at addressing this issue, many researchers study the

effects of latency on player experience to understand which aspects need to be

improved and how these improvements can be made (Claypool and Claypool, 2010).

However, current literature on latency in cloud gaming and streaming overall has

focused primarily on the effects of constant latency, also known as delay (Schmidt et al.,

2017). Non-constant latency, known as jitter, is less understood and may have a

separate and significant effect on the quality of cloud-based game streaming.

Previous studies have looked for relationships between network conditions and

quality of experience. Studies into non-interactive video playback found the amount of

delay with an equivalent impact on quality of experience as an interrupt in playback

(Barman, 2018). Studies in interactive media have concluded the types of interaction

that impact quality of experience the most when degraded (Claypool and Claypool,

2010). They have also found the effect of delay on quality of experience. However, there

is little existing research on the effects of interrupts on quality of experience in

interactive media.

Our main goal is to better understand the effects of jitter in the context of cloud

gaming systems. The findings from this study on jitter can be used for the improvement

of cloud gaming systems. Specifically, a better understanding of jitter can be used by

playout buffer management to improve in-game experience. We accomplish this by

measuring the effects of jitter on player experience through a study recording

participants’ response to jitter of varying frequency/magnitude.

This project explores the relationship between the different aspects of jitter and

the quality of experience across a variety of game genres, visual complexities, and

camera types. The first step of this process was the selection of games to be tested,

decided by comparing game genres, camera types, and spatial/temporal information

metrics (International Telecommunications Union, 2008). Following that, a streaming

platform was selected that fit the studies requirements, including that the streaming

software be open-source and support the selected games. Pilot studies were then done

2

to identify specific experimental conditions with varying jitter magnitude and frequency

to be used in the experiment. Users were then recruited from the student body via

email. These users played the selected games at all experimental conditions and rated

their experience on a 1-5 quality of experience (QoE) scale. Performance metrics were

also recorded through the use of the presentmon tool (Montgomery, 2022). Scripts were

used to automate much of this process, keeping proctor interference to a reasonable

minimum. In addition to QoE, demographic information about users was also recorded,

including age, gender, and previous gaming experience.

Following the experiment, demographic analysis and data cleaning were carried

out to characterize the data and ensure its quality. The rest of the analysis focused on

the relation between jitter frequency/magnitude and QoE, first attempting to identify

significant differences between experimental conditions. ANOVA tests identified

significant differences between differing magnitude settings, but not conclusively

between different frequency settings. Further analysis focused on modeling the relations

between jitter and user experience. This analysis identified a negative relationship

between jitter magnitude and average QoE, computed through kernel density estimates,

suggesting that QoE decreases with increasing jitter magnitude in a roughly linear way.

No such relationship was found for jitter frequency, though some tests suggested that it

may have some effect, with average QoE showing a slight decrease as the frequency of

interrupts increases.

The rest of this paper is organized as follows: Chapter 2 outlines background

information needed to understand this project. Chapter 3 explains the methodology of

the experiment, and how that methodology was developed. Chapter 4 describes the

data gathered from the experiment, and analyzes it to find a relationship between jitter

and quality of experience. Chapter 5 outlines our conclusions based on the data

gathered. Chapter 6 describes possible future work related to this topic.

3

2. Background
This section describes the preliminary information needed for this project. This

includes cloud gaming systems (2.1), the specifics of buffering/latency (2.2), and

quantifying user experience (2.3).

2.1 Cloud Gaming Systems
“Cloud computing” refers to the practice of running an application on a remote

server and interfacing with it using a client service, “cloud gaming” is much the same

except that the application in question is a video game.

2.1.1 Structure of Cloud Gaming Systems
In a cloud gaming system, the client provides the necessary tools to interface

with a video game–typically, this means a controller, a display, and some form of

speakers. This client takes the user input from the controller and sends it over the

internet to the host, which takes the input into account while running the game itself

while simultaneously streaming the video and audio of its output back to the client.

Ideally, this results in a seamless experience on the client end, where the audiovisual

outputs respond as soon as physically possible to their inputs on the controller, as

would appear to be the case if their device were running the game without interfacing

with the cloud system.

2.1.2 Thick vs. Thin Client Architecture
Cloud gaming requires that some computations must be done by the client while

others are done by the host. This leads to the description of some cloud systems as

having a “thick” client architecture or a “thin” client architecture. In the case of thick

client architectures, most of the computations are done on the client end, with the

thickest possible architecture being the entire program running locally. The opposite is a

thin client architecture, where most of the computing and data are handled by the server

(J. Gaskin, 2011). Since a thicker client architecture would already require a more

powerful machine like a PC or console that could run games locally, these are not the

4

targets for game streaming platforms. With thinner architectures being focused on, the

inputs and audiovisual output need to be handled on the client end, while the server

needs to interpret those inputs once they arrive, run the game, and also send the game

data back to the client. Because this requires a comparatively large amount of data to

be transmitted, latency has more significant impact than might be seen in the same

conditions for cloud applications with thick client architectures.

2.1.3 Benefits of Cloud Gaming Systems
Cloud gaming is mostly sought after for the low barrier to entry on the part of the

player: it streamlines the experience of getting started with playing a game as much as

possible and reduces any requirements in memory or other hardware components.

Additionally, it keeps things simple by making games compatible across platforms, the

data being stored on the same server with the clients themselves being

interchangeable. While it introduces issues regarding network latency, these are

becoming less relevant due to the advent of 5G networks increasing the bandwidth

available to a significant amount of the potential market as well as ushering in

advancements in cloud computing architectures which can help to further optimize the

performance of cloud gaming services (Shatzkamer, 2022).

2.1.4 Growth of Cloud Gaming
While cloud-based gaming services have been introduced by some companies

already associated with the video game industry such as Microsoft and Nvidia in

addition to big tech companies like Amazon and Facebook, their market share remains

fairly small and accounts for only 6% of consumer spending on video games (K.

Browning, 2021). In order for the sector to grow, cloud gaming services have to

overcome several key hurdles, both technical and commercial. With regards to the

technical hurdles, the main issues concern the necessity of a particularly strong internet

connection and the extent to which that affects the overall game performance and user

experience (S. Naji, D. Abrahams, 2022).

5

2.2 Buffering and Latency
Latency poses a significant issue for cloud gaming systems, as it can cause

significant degradation in a user’s gameplay experience. In this section, methods for

characterizing latency and mitigating its negative effects in a cloud gaming system are

described.

2.2.1 Delay
Delay is a measure of time for data to transfer between network locations. It is

typically measured in milliseconds. Networks naturally have some amount of delay, due

to needing to process and route data as well as the time the data takes to physically

travel. The amount of delay on a local network is usually trivial compared to the reaction

time of the average person (K. A. Rahman et al, 2019). When delay is significantly

large, it can make a game feel less responsive. This is because the game takes longer

to react to inputs, and can feel sluggish to control. However, humans can generally

adapt to small amounts of delay by leading their inputs ahead of when they would

normally enter them. For the purpose of our study, delay will refer to a constant amount

of additional delay added to a local network.

2.2.2 Jitter
Jitter is a measure of an inconsistent amount of time taken for data to transfer

between network locations. Rapid and unpredictable changes from jitter can disorient a

player in a way that constant delay would not. A human can not easily adapt to random

change in response time, making the effects of jitter a topic of interest. The individual

periods of delay that characterize jitter are referred to as interrupts. Different frequency

and magnitude of these interrupts leads to different forms of jitter. Differences in these

forms of jitter are of particular interest.

2.2.3 Bitrate
Bitrate refers to the amount of bits in an amount of time that can be transferred

over a connection. Generally measured in megabytes/second, it is a limiting factor in

6

video streaming. The maximum frame rate and resolution for a video stream is limited

by the bitrate of the connection, as video with more frames or a higher resolution

requires sending more bits to transfer the increased amount of data in the same amount

of time. If the network connection of the client is not fast enough to match the desired

rate of data transfer, the video stream cannot get all of the information it needs in real

time, and sacrifices have to be made. Lowering the bitrate of the video stream to below

the average speed of the network connection will restore a smooth playback, but results

in lower visual quality.

2.2.4 Video Encoding and Compression
A fully uncompressed video file consisting of every pixel of every frame is

impractical for most applications, including video streaming. On top of lossless

compression algorithms which can help reduce the overall file size, video encoding

formats exist which simplify how the video is stored to a point that humans cannot

perceive the difference. If necessary due to file size/bandwidth constraints, the files can

also be further compressed even if artifacts of the process are perceptible.

Compression is done by identifying redundant information and representing it

using fewer bits. For video signals, redundancy is identified in four categories: spatial,

temporal, perceptual, and statistical. Spatial redundancy is found when neighboring

pixels within a single frame are similar, such as if there is a large area that is all the

same color. Temporal redundancy occurs when neighboring frames are similar, such as

if a large area of the picture does not change for several consecutive frames.

Perceptual redundancy occurs due to quirks of the human eye, such as its difficulty

discerning between slightly different colors of the same brightness. Statistical

redundancy further improves the compression of the other redundancies to encode

more frequently occurring image parameters with fewer bits than others.

Redundancy in audio signals is found in four categories: threshold of hearing,

masking, stereophonic irrelevance, and statistical redundancy. Redundancy in the

threshold of hearing is found due to the fact that the dynamic range between the

threshold of hearing and threshold of pain for the volume of audio differs depending on

frequency, particularly in that the highest and lowest frequencies audible to the human

7

ear do not need as much resolution to be faithfully reproduced. “Critical bands” refer to

bands of frequencies that the human ear can distinguish between, forming a perceptual

pitch scale. A loud frequency being played reduces the dynamic range of hearing for the

rest of its critical band, meaning a technique called frequency masking can be applied

where quiet enough frequencies within that band do not need to be encoded. Similarly,

once the masking frequency is removed, the masking effect can be gradually removed

over the course of about .2 seconds, and when introduced it can fade in for about 50

ms; this is known as temporal masking. Stereophonic irrelevance refers to the fact that

the human ear can not perceive stereo effects at lower frequencies, so those can be

encoded as mono (Austerberry, 2005).

2.2.5 Sources of Latency
Latency is a measurement of the amount of time it takes some input to produce

some output in a machine. Latency is typically measured in milliseconds. There are

many sources of latency when using a computer, and some sources are easier to

mitigate than others. Between input from a mouse or keyboard, the machine processing

input, the HDMI connection transferring a frame, and output from the monitor, a typical

computer interaction has up to 50ms of latency due to hardware limitations (K. A.

Rahman et al, 2019). The issue of latency is confounded when data is transmitted

between machines over a network. Cloud gaming operates by reading user input on the

client machine, sending that input over a network to the server machine, processing that

input on the server machine, and sending rendered frames back to the client machine to

display. On top of the traditional sources of latency when playing a game, sending and

receiving information over a network adds a potentially significant amount of additional

latency. If a client’s network connection is slow or unstable, sacrifices can be made in at

least one aspect of the stream in order to compensate for the network limitations. These

options include: bitrate, framerate, and buffer size.

2.2.6 Reducing Visual Quality
When a client does not have enough bandwidth to support a stream, interrupts

will occur, as the playback cannot fetch frames fast enough to produce a smooth output.

8

Lowering the frame rate or bitrate of the stream reduces the amount of bandwidth

required to keep that stream smooth. This reduces the visual quality, but is unavoidable

when the network connection simply does not have the bandwidth for a higher quality

stream. Most cloud gaming platforms automatically reduce the frame rate or bitrate

when detecting a low bandwidth connection. Our experiment attempts to avoid changes

in the visual quality of the stream, in order to avoid confounding variables when

measuring the quality of experience.

2.2.7 Playout Buffers
When a client experiences high or unstable latency between sending a packet of

inputs and receiving frames of video, frames can be buffered to improve the stability

and smoothness of playback despite frames arriving after large and varying amounts of

time. While having a larger buffer size allows for more leeway in the time a packet

arrives, it can impact the quality of experience for the player by making the game harder

to properly control. The alternative option is to allow interrupts to happen, and accept

playback which is not smooth. For non-interactive video streams, interrupts have a

much more significant effect on the quality of experience, so larger delays are more

acceptable if they prevent interrupts. Figure 1 shows the relationship between

interrupts, buffering, and quality of experience (J. Allard et al, 2020). About 30 seconds

of buffering is equal in annoyance as about two interrupts during playback.

Figure 1: Amount of annoyance with increasing delay time and number of interrupts for

non-interactive video. Approximation of an equivalence line between interrupts and

buffer delay. (J. Allard et al, 2020)

9

The interactivity of cloud gaming means that buffering impacts quality of

experience at much smaller buffer sizes than in non-interactive video. Rather than

taking two to four seconds of delay to noticeably impact quality of experience, less than

500ms of delay impacts quality of experience (S. Schmidt et al, 2017). An important part

of developing a cloud gaming platform is figuring out how to balance the line between

allowing interrupts versus buffering playback and adding additional delay.

2.3 User Experience
The goal of improving user experience is a main motivator in cloud gaming

research. Understanding the effects of latency in a cloud gaming system from a user’s

perspective can help identify aspects that matter most. This section outlines various

methods to quantify and characterize gameplay experience.

2.3.1 Measuring Quality of Experience (QoE)

In order to investigate the effects of latency on cloud gaming services, different

metrics are used to measure the in-game quality of experience (QoE). These metrics

may be subjective or objective, with both types revealing different aspects of the gaming

experience. Some measures aim to characterize games to show how different

categories of games respond differently to latency. Other measures are concerned with

the visual fidelity of a game as it is streamed to the client. Player opinion is also an

important factor, so player ratings of game playability or general quality are also

considered.

However, not all metrics are considered equally important or useful depending on

the context of a given study. For our study, we are focused on metrics that measure

user experience, so we would prioritize metrics concerned with player experience and

gameplay type rather than measures of visual quality. Additionally, certain measures

may be more strongly correlated to gameplay quality than others. For example, previous

research has shown player rating of playability to be a more significant metric than

visual quality when estimating overall QoE (A. Wahab et al., 2021). We also will take

10

into account how these metrics respond to latency. Existing literature describes multiple

effects of latency on overall QoE, such as research by Schmidt et al. suggesting that

changes in game “pace” affects QoE much more than changes in visual perspective (S.

Schmidt et al., 2017).

2.3.2 Effect of Latency on Gaming Experience

To understand the relationship between latency and gaming experience, we have

to also understand the ways in which latency manifests in-game. As mentioned above,

latency in cloud gaming systems is a result of the time it takes for data to be transferred

between client and server. While latency affects all game data that has to go through

this network connection, it is more and less perceptible by the player depending on the

context and game aspect. When looking at the ways a player may perceive latency, we

broadly categorize such effects as input or video delay based on objective and

subjective differences.

Input delay refers to the time between a player inputting a command and the

result of the command appearing in the video stream. From a technical perspective, this

effect is distinct because the degree of delay depends on the round-trip time from the

client to the server and back. This is because the command is inputted client-side, sent

to the server and processed, then affects the video stream sent back to the client. As a

result, this kind of latency is often more perceptible than “one-way” latency, as the total

delay will always be greater. This type of latency can also be more disorienting, as it

makes it difficult for players to control a game accurately.

Video delay refers to the time it takes for the video stream of a game to be

transferred from the host to the client. This is affected by the one-way delay from host to

client, so this delay will generally be less than input delay. Video delay is a part of input

delay but can also exist without player input (e.g. delay during a cutscene). While it may

not have as much of an effect on player performance, it can still make gameplay

unpleasant for a player if the effect is perceptible.

Both of these effects can vary in perceptibility and significance with changes in

latency. For example, relatively constant latency may not have as much of an effect on

11

player experience as jitter. Additionally, constant latency at low levels may be

imperceptible, but at higher levels may significantly impact gameplay.

2.3.3 Spatial Information/Temporal Information
One way we can categorize games is by their visual complexity. A standard

method for this is to measure the spatial information (SI) and temporal information (TI)

for a representative video recording of a game (International Telecommunications

Union, 2008). Both values are calculated per frame, with the maximum values across all

frames representing the SI and TI for a given recording.

In general terms, SI is calculated by comparing the brightness of each pixel in the

filtered image of a given frame. The variation in brightness across all pixels is what

determines the SI value for that frame. Games with high contrast visuals will therefore

tend to have higher SI values.

The TI value is computed by comparing the change in brightness for each pixel in

a given frame from its brightness in the previous frame. As with SI, the variation of the

change in brightness for all pixels in a given frame is what determines the final TI value.

Games with sudden visual changes occurring irregularly across the screen will tend to

have higher TI values.

12

Figure 2: SI/TI values for game clips measured by Barman et al., two clips included per

game (N. Barman et al., 2018).

Figure 3: Distribution of frame-by-frame SI and TI values for each game clip from the

study by Barman et al., visualized as box plots (N. Barman et al., 2018).

13

Previous studies have investigated the relationship between SI/TI values and

subjective video quality. In the context of video game footage, Barman et al. found that

the SI/TI for a game was related to the game’s perceived visual quality when the

footage was distorted (Barman et al., 2018). For games with moderate SI/TI, study

participants reported similar levels of perceived quality at similar levels of distortion,

controlled by changing the bitrate and resolution of pre-recorded footage. Games at SI

or TI extremes, whether low or high, had much more variable perceived quality. This

research also showed that SI/TI was a more important metric than game genre in

predicting perceived quality of game visuals.

2.3.4 Measuring Visual Fidelity

For cloud gaming systems, another area of interest is the fidelity of video streams

over the connection between host and client. Measuring how faithfully the image is

reproduced client-side can be done through multiple metrics, including peak

signal-to-noise ratio (PSNR) and structural similarity index measure (SSIM). PSNR is

defined as the ratio of a signal’s power to the power of any distorting noise. In the case

of cloud gaming or other streaming services, it depends on the quality of the connection

between host and server. SSIM, first introduced in 2004 by Wang et al., predicts the

perceived image quality of a compressed image by comparing properties of the original

and the compressed image (Z. Wang et al., 2004). Unlike PSNR, SSIM takes into

account factors such as luminance and contrast masking that can better account for

how the human eye perceives image quality. The two metrics are correlated and can

predict each other but differ in sensitivity to specific kinds of image degradation (A. Horé

and D. Ziou, 2010). While some research suggests that PSNR is a less reliable metric

across more varied encoding settings and video content type, it remains a reliable and

simple metric when applied with specific context in mind (Q. Huynh-Thu and M.

Ghanbari, 2012).

14

2.3.5 Deadline/Precision
Many of the metrics discussed so far are concerned with video quality and apply

to streaming services in general. However, it is also important to consider qualities

unique to gaming services. The deadline/precision model proposed by Claypool and

Claypool is a suitable option, focusing on player actions and input latency (Claypool and

Claypool, 2006). This model considers the deadline and precision for individual player

actions throughout gameplay. In this context, deadline is defined as the length of time a

player may take to perform an action, while precision is defined as the accuracy

required to successfully accomplish an action. Both measures are subjective, though

objective measures of game mechanics may be considered to establish relative

deadline/precision between actions (e.g. measuring target size or gameplay speed).

Figure 4: Examples of game actions categorized by genre visualized in the

deadline/precision space (M. Claypool and K. Claypool, 2006).

In the study by Claypool and Claypool, deadline and precision were shown to be

significant in predicting the effects of latency on player experience. The study modified

mechanics of a 3rd person shooter game, including avatar size and projectile speed, in

order to vary deadline and precision. The researchers also controlled latency between

the host and client machines. Player performance, including score and other metrics,

15

were used to measure in-game experience. The results showed that games with high

precision and tight deadlines tend to be more negatively affected by latency. With such

conditions, player inputs often result in unexpected outcomes, which negatively affects

performance.

In our research, we consider the deadline/precision model to be a useful addition

to other metrics, particularly for its relevance to player experience specifically. As

discussed previously, input lag is an important aspect of latency in cloud gaming

services that is not accounted for by other metrics.

16

3 Methodology
This section explains the process of creating a methodology for this experiment.

It presents the process used to select games for the experiment (Section 3.1) and how

the experiment was developed (Section 3.2).

3.1 Game Selection
This section outlines how games were classified before selection (Section 3.1.1)

and how games were selected to be used in the experiment (Section 3.1.2).

3.1.1 Game Classification
Previous studies suggest differences in perceived QoE adding delay to a game

can depend on spatial/temporal complexity. In order to study the effects of jitter on a

wide variety of spatial and temporal complexities, we used a number of different criteria

to classify a pool of candidate games. The pool was built from games owned by our IQP

team and the adjacent MQP team also working with Google Stadia (R. Darcey et al.,

2022). A total of 38 unique games were included in this initial assessment (Table 1). For

each game, either we or the MQP team captured 30 seconds of generic gameplay at

1080p resolution and 60 frames per second and used that footage to determine a

maximum SI and TI value for that game. The footage from the 16 games tested by us

was also used to determine average SI/TI, median SI/TI, and the standard deviation of

SI/TI for those games. Both personal and laboratory devices were used to collect this

initial footage. The camera type of the game was also recorded, and was marked as

one of “Fixed”, “2D side view”, “2D top-down view”, “3D first person”, or “3D third

person”. From this pool, we selected four games which covered a range of SI/TI values

and a range of camera types. We aim to choose games across a range of SI/TI values

to verify significant differences are also present when adding jitter. We also hypothesize

that the camera perspective of a game adds complexity to game visuals and the overall

experience that is not captured by SI/TI alone.

17

Table 1: All games included in the initial search for games.

Game Name Camera Type SI TI

Ages of Empire 2D Top 116.319 40.852

Assassin's Creed Origins 3D Third Person 78.656 63.227

Bloons Tower Defense 6 Fixed 59.270 21.159

Celeste 2D Side 65.376 42.530

Clone Hero Fixed 43.746 19.874

CS:GO 3D First Person 40.065 30.728

Cuphead 2D Side 52.272 64.680

Deep Rock Galactic 3D First Person 52.090 46.893

Don’t Starve 2D Top 45.170 10.762

Doom 3D First Person 65.614 71.608

Dragon Ball FighterZ 2D Side 143.123 96.685

Factorio 2D Top 68.621 30.117

Fall Guys 3D Third Person 63.158 59.696

Grand Theft Auto V 3D Third Person 83.597 43.313

Hades 2D Top 94.938 72.525

Hollow Knight 2D Side 41.646 25.829

Katamari Damacy REROLL 3D Third Person 58.664 37.965

Kenshi 2D Top 94.004 63.036

League of Legends 2D Top 88.538 36.586

Lego Star Wars: The Skywalker Saga 3D Third Person 88.897 56.178

Minecraft 3D First Person 45.215 34.107

Minecraft 3D First Person 90.600 64.284

Octopath 2D Side 109.810 65.814

Osu Fixed 78.502 37.068

Portal 3D First Person 68.658 56.801

PORTAL 2 3D First Person 31.638 29.623

Republic Commando 3D First Person 53.766 76.215

Rocket League 3D Third Person 63.943 41.310

Satisfactory 3D First Person 66.993 50.991

Sims 4 2D Top 59.524 45.183

Skyrim 3D First Person 53.923 29.892

Skyrim (First Person) 3D First Person 109.256 46.421

Skyrim (Third Person) 3D Third Person 108.316 36.511

18

Slay the Spire Fixed 53.725 72.303

SPORE 2D Top 30.187 5.534

Stellaris 2D Top 80.966 40.239

The Return of the Obra Dinn 3D First Person 195.080 94.119

The Talos Principle 3D First Person 57.179 41.020

The Witcher 3 3D Third Person 52.040 31.750

The Witcher 3 3D Third Person 87.410 59.923

World of Horror Fixed 103.370 30.397

Figure 5: Scatterplot of games by SI/TI values. Points are labeled with colors based on

camera-type as shown by the legend.

Figure 5 shows the results of SI/TI analysis for the 41 games collected by the

IQP and MQP teams. While the majority of games, regardless of camera type, fall

around the center of the distribution for both metrics, there are some outliers. Examples

of outliers include Spore on the low end of both SI and TI and DragonBall FighterZ on

the high end of both SI and TI.

3.1.2 Selection Criteria
In order to narrow down the initial pool of games, some additional criteria were

considered. Games with unavoidable exploratory or open-ended gameplay were

19

excluded, in order to keep the gameplay consistent between participants and trials.

Games with a steep learning curve were excluded to reduce the amount of time needed

to spend explaining the game and having the user practice. A player who does not feel

like they understand how to play a game may also react more negatively to the game as

a whole, which would affect their reported QoE. Although variations in skill were

expected, games that are easier to learn were prioritized.

Within these additional restrictions, we also wanted to find games which covered

a range of camera types and SI/TI values. We graphed the SI and TI over time for

games we considered at this point, and tested out playing the games with different jitter

settings to get a feel for how they would play. Four games were eventually selected that

fit this goal, as shown in Table 2. Example screenshots from each game are shown in

Figure 6. The SI and TI over time for each game selected is shown in Figure 7.

Table 2: Selected games and their considered criteria.

Title Publisher Release
Year

SI TI Camera Type

Bloons Tower

Defense 6

Ninja Kiwi 2018 Medium Low Fixed

Hollow Knight Team Cherry 2017 Medium Medium 2D Side

Hades Supergiant

Games

2018 High High 2D Top-Down

Counter-Strike:

Global Offensive

Valve

Corporation

2012 Medium Medium/

High

3D First-person

20

Figure 6: Example screenshots from Bloons TD6 (top-left), Hollow Knight (top-right),

Hades (bottom-left), CS:GO (bottom-right).

Figure 7: The SI and TI values over time for the four games Bloons TD6 (top-left),

Hollow Knight (top-right), Hades (bottom-left), CS:GO (bottom-right)

21

Bloons Tower Defense 6 (BTD6) is a tower defense game about placing

monkeys that pop balloons before they can travel across a track. It features a fixed

camera, with little amounts of visual change over time. For our experiment, the map

Monkey Meadow was played on Medium difficulty.

Hollow Knight is a metroidvania game featuring basic platforming, combat, and

exploration mechanics. It features a 2D camera giving a side view of the environment,

and a medium amount of visual change over time. For our experiment, a fresh save file

was played from the beginning through the linear tutorial section of the game, which

mostly consisted of platforming challenges and a small number of enemies near the

end.

Hades is a roguelike game about fighting waves of enemies in randomly ordered

rooms, growing stronger with upgrades at the end of each room. It features a 2D

isometric camera looking down at a character who can move in 4 directions, and a high

amount of visual change over time. For our experiment, a fresh save file was played

from the beginning with the default sword weapon, with participants being directed to

attempt a new run if they died.

Counter-Strike: Global Offensive (CS:GO) is a first person shooter which

primarily focuses on tight aiming controls and a fast time to kill. It features a 3D first

person camera. Though it only has a medium amount of visual change over time, this

change is exacerbated by the player directly controlling the character with their mouse,

rather than simply following their actions. For our experiment, the training course was

played from start to finish, which features time based shooting challenges but no actual

human or NPC enemies.

3.2 Study Implementation
This section outlines how a streaming platform was selected for the experiment

(Section 3.2.1), how the initial design of the experiment was created and tested (Section

3.2.2), how the script used by proctors during the experiment was developed (Section

3.2.3), the process of obtaining participants for the experiment (Section 3.2.4), how the

procedure was changed from the initial design over the course of the study (Section

3.2.5), and the final procedure used for the study (Section 3.2.6).

22

3.2.1 Platform Selection
Members of both the MQP and IQP teams researched 7 different platforms for

hosts and clients: GamingAnywhere, Moonlight, Sunshine, OpenStream, Parsec, Steam

Link, and Rainway. This was done in order to find a platform that fit the needs of the

study. For the study, it was necessary that the platform be open-source, have access to

a wide selection of games, and run with no significant latency. This was done to allow

flexibility in the study design and to prevent any latency from the platform itself from

interfering with the experiment. One other requirement was that the platform would not

compensate for latency through any sort of scaling (e.g. lowering the image resolution).

Based on these criteria, the platform Moonlight was chosen for the client and

OpenStream was chosen for the host.

Moonlight is a free, open-source implementation of NVIDIA’s GameStream

protocol (Bergeron et al., 2022). It is able to stream any PC game from a machine

compatible with the original GameStream protocol. Openstream is a free, open-source

hosting platform chosen for its compatibility with Moonlight in addition to previously

mentioned specifications (Openstream Team, 2020). Openstream was chosen over the

similar, Moonlight-compatible hosting service Sunshine due to ease-of-use and overall

quality.

The machines designated for the study were then configured with the streaming

software installed. The client machine, with Moonlight installed, was connected to the

host machine, with Openstream installed, through a router. The purpose of the router

was to control the latency in the host-client connection using NetEm, an extension of

built-in Linux traffic control capabilities (Hemminger et al., 2011).

While most of the criteria was verified by reviewing available documentation, it

was necessary to manually check for any scaling done by the platform. This was done

by running the platform on the host/client system and verifying visually that there were

no scaling effects present when jitter was added. The video stream on the client

machine was recorded so that segments with added jitter could be compared to

baseline conditions.

23

Figure 8: Screenshots for the game Osu run at 60 fps on the client machine with no

added jitter (top) and added jitter through NetEm (bottom).

Figure 8 shows screenshots from the client machine during this test. The game

Osu was chosen for this test because changes in resolution would be noticeable, as the

game graphics do not vary much throughout gameplay. No difference in visual quality

was observed between the two conditions.

3.2.2 Pilot Study/Initial Design

Following platform and game selection, initial study design began. At this point,

the broad outline of the study was as follows:

● Participant plays four different games

● For each game, the participant plays for a fixed time at varying settings of jitter

frequency/magnitude

● For each of these trials, the participant rates their quality of experience (QoE)

24

From this broad design, steps were taken to work out specific details. Firstly, the

effectiveness of the tool NetEm for accurately controlling jitter across the client/host

connection was verified. This was then extended to in-game tests, which were also

used to determine appropriate levels of jitter to use in the study. All four games chosen

for the study were tested at varying levels of jitter frequency/magnitude to identify

settings where game performance issues were barely noticeable, notable but tolerable,

and intolerable to the point of unplayability. These three settings were determined for

both frequency and magnitude independently, resulting in 9 different

frequency/magnitude combinations to test, along with the control condition (no jitter

added). The machine participants would play on would have a 1080p display and

display at 60 fps. The settings for each game would be adjusted to these settings. Each

participant would play the game for 60 seconds per trial, with 10 trials of randomly

chosen settings per game, and all four games played per person. For each trial, the

participant would record their QoE for that trial.

In conjunction with the technical components of the study, a survey collecting

demographic data as well as participant evaluations of in-game quality of experience

(QoE) was designed. Demographic questions identified participant age and gender, and

previous gaming experience. QoE questions asked participants to rate the gameplay on

a 1-5 scale, with the option to provide decimal values. The final version of the

questionnaire is located in the appendix.

These specifications were tested through a pilot study with IQP team members

as both participants and proctors. This was done to not only confirm that the settings

and procedure made sense, but also to gauge the length of the study. As the intended

duration of the study was one hour, it was necessary to ensure that the total time of the

trials and any other parts of the study would not exceed that window.

3.2.3 Proctoring Script Design

To ensure consistency throughout the study, Python scripts were used to

automate some parts of the process. These scripts can be found in the appendix.

25

One script was run on the machine acting as a router which randomly selected

the order of games and the order of trials within each game. Once a trial was started, it

would automatically apply the correct NetEm settings for that trial, and would alert when

the trial had ended. It also recorded the absolute time each trial took place at. This

script outputs a CSV file for each participant with the randomly selected order of trials

and information about those trials. This file was named according to a random

participant identifier selected by the proctor.

The other script used was run on the client machine in order to collect data on

the video stream. It launched a process of presentmon (Montgomery, 2022), which was

used to track the amount of time between frames for the Moonlight video stream. It

recorded the absolute time it began collecting data, to be matched up with the output of

the router machine script. Starting and stopping the script was handled by the proctor to

allow flexibility on a participant by participant basis. It outputs a file that was named

according to the same random participant identifier selected by the proctor for the other

script.

Many aspects of the study were not handled by script and left for the proctor to

handle. The proctor was responsible for setting up each game up until the segment

intended for the participant to play. It was decided that automating this through a script

would be unnecessary and inefficient, as each game would require a different sequence

of commands to reach the intended gameplay point. The proctor also was responsible

for telling the participant when to pause the game. Pausing was not automated so as

not to disorient the participant with a sudden loss of control. While this resulted in trials

going slightly over the fixed time due to delays in participants pausing, the additional

time was not considered in data processing, with only metrics from the fixed window

being considered. In the pilot study, it was also determined that additional time from

having the participant pause the game manually was not significant enough to be a

concern.

3.2.4 Recruiting Participants

Participants were recruited via an email sent to CS and IMGD undergraduates at

Worcester Polytechnic Institute. The email invited students to sign up for a 1-hour time

26

slot, with 56 available times over a two-week period. From this initial recruitment phase,

39 participants signed up. Participants were informed that they would be eligible for

compensation in the form of a $10 Amazon gift card and/or IMGD playtesting credit if

applicable. This email is included in the appendix.

3.2.5 Adjustments to Initial Design

Over the course of the study, it was necessary to adjust certain elements for

efficiency and data quality. Firstly, the trial time was decreased from 60 to 50 seconds.

This was done after three participants had completed the study, each taking longer than

the expected 1-hour total time. Certain elements of the study were more

time-consuming than initially thought (e.g. signing informed consent forms), so it was

necessary to save time in other parts of the study. Changing the trial time from 60 to 50

seconds was considered a minimal change, as it would still provide a meaningful

amount of data per trial.

Additionally, the proctoring policy was changed to allow proctors to guide

participants if they were stuck at a certain point in the game. This guidance from

proctors was infrequent, occurring 2-3 at most across a participant’s entire trial and only

in particular problem areas. This was especially important for games where the

gameplay segment was non-repetitive, such as the tutorial segment in CS:GO and the

post-death navigation back to gameplay in Hades. There were concerns that some

participants getting stuck and missing gameplay that other participants experienced

would have a significant effect on their overall experience. Therefore, it was deemed

necessary to have proctors give gameplay advice to participants when necessary for

them to progress.

3.2.6 Final Procedure
Participants were asked to arrive at a computer lab on campus for the

experiment. Each participant was given an identifier that was used to combine their data

later. The lab was arranged as shown in Figure 9, with the server and router machine

back to back with the client and form machine. Each machine needed to be set up to an

27

initial state for each participant. The server and client machine were connected via the

router machine to the same network. On the router machine, the proctor would launch

the router machine script with the participant’s identifier, which would direct the proctor

on which game needed to be set up first. On the server machine, the proctor would

launch OpenStream on the server machine, and then use Steam to launch the game

identified by the router machine script. On the client machine, the proctor would launch

the client machine script with the participant’s identifier. The proctor would then launch

Moonlight and connect the client machine to the server machine. On the form machine,

the proctor would open the Google Sheets form with the participant’s identifier. The

proctor would also open the Game Tutorials document found in the appendix for the

participant’s reference.

Figure 9: Layout of the lab. The computers used in the experiment are marked.

When the participant arrived, the proctor would ask them to sign the consent

form found in the appendix. The proctor would then seat the participant at the client and

form machines, and would ask them to fill out the demographic questions on the form

machine. Once the participant was done, the proctor would ask the participant to

practice the basic controls of the first game they would play. The participant was also

directed to view the game tutorials document for assistance in learning the controls of

28

the game. After about a minute of practice, the proctor would tell the participant to stop

and would begin the trials.

Each trial was started with a countdown for the participant to unpause the game.

At the same time, the proctor would hit “enter” on the router machine script, which would

start the trial. When the script outputs “STOP”, the proctor would ask the participant to

pause the game and fill out an entry on the form machine. This would repeat for ten

trials per game, and for four games in total. At the end, participants could optionally

enter their email into the form in order to receive compensation of IMGD playtesting

credit and a $15 Amazon gift card.

A simplified outline of the procedure is provided below for convenience. The

steps are the same as outlined in the above description, only in the form of an ordered

list.

1. Participant Arrival

a. The participant fills out the informed consent form (see Appendix).

b. The participant fills out the demographic survey (see Appendix).

c. The participant is also asked to confirm they have had no symptoms of

COVID-19 or contact with anyone who has.

2. Trial Period

a. Game is selected randomly by the script and set up by the proctor on the

host machine.

b. The participant is asked to read the instruction manual for the current

game (see Appendix).

c. The participant is asked whether they require a practice period to learn the

game controls. If so, a 1-2 minutes practice period is allowed as needed.

d. One of ten jitter magnitude/frequency settings is set randomly by the script

and the participant is instructed to begin playing.

e. Once the trial time has elapsed, the script informs the proctor who then

instructs the participant to pause.

f. The participant logs their perceived QoE through the survey .

g. Steps d-f are repeated nine more times until all ten settings have been

tested.

29

h. Steps a-g are repeated three times until all four games have been tested.

3. Post-trial Procedure

a. The participant is asked if they would like compensation in the form of

IMGD playtesting credit and a $15 Amazon gift card. If so, the participant

logs their email in the form.

b. The proctor asks the participant if they have any questions about the study

and answers them if possible.

30

4. Results
This section analyzes the results from the experiment described in Section 3.

This includes the demographic analysis (4.1), an overview of the results (4.2),

descriptions of data cleaning steps (4.3), and statistical analysis of the data (4.4, 4.5).

4.1 Demographics
Twenty-eight people participated in this study. Fourteen identified as male, twelve

identified as female, one identified as agender, and one did not respond. Ages ranged

from 18 to 22 years, with a median of 19 and a mean of 19.5. The distribution of

participant age is shown in the box-plot below (Figure 10). The red triangle marks the

mean, the red line marks the median, and the circles denote outliers.

Figure 10: Distribution of participant age

The mean, median, and standard deviation for participant gaming experience,

both general and game-specific, are listed in Table 3 below. Experience was rated on a

1-5 scale (1 = “very unfamiliar”, 5 = “very familiar”). Distributions of general and

game-specific experience ratings are shown in Figure 11. The median self-rating for

experience for each game was 2 for all games except for Hades, which was 1. The

average experience level for all four games is lower than the average overall gaming

experience level. This suggests that a significant portion of participants had not played

these games in the past. Hades had the greatest number of participants who rated their

experience as “Very unfamiliar”, and only one participant who rated it as “Very familiar”.

31

Figure 11: Distribution of participant gaming experience overall (left) and by game

(right)

Table 3: Metrics of center and variance for all demographic measures.

Demographic Metric Mean Median Standard Deviation

Age (years) 19.5 19 1.25

Gaming Experience (1-5) 4.23 4 0.81

BTD6 Experience (1-5) 2.46 2 1.47

Hollow Knight Experience (1-5) 2.31 2 1.38

Hades Experience (1-5) 1.92 1 1.44

CS:GO Experience (1-5) 1.92 2 1.07

32

4.2 Experimental Results Overview
This section outlines the metrics gathered and derived from presentmon.

Distributions of this data are also provided to give an overview of the data. These

distributions are analyzed to interpret what effect each NetEm setting has on the

streamed game.

4.2.1 Presentmon Metrics

In addition to demographic and QoE data, various metrics for performance and

latency were measured using presentmon. While the jitter was controlled through

NetEm as specified by the user, we measured the jitter on the client machine directly.

From the raw presentmon data, a script was used to calculate frames per second (fps),

the average number of interrupts per second, and the average total interrupt time per

second.

As presentmon records data frame-by-frame, it was trivial to calculate the frames

per second across a trial by dividing the number of frames recorded by the total time.

With no added jitter, the host-client setup was configured to stream video at 60 fps.

Interrupts were identified by finding delays between frames above the threshold

of ~33.33 milliseconds, the length of two frames. For each of these interrupts, the

interrupt time above the threshold in milliseconds was recorded as the interrupt length.

For a given trial, the total number of interrupts and the sum of interrupt time across

those interrupts was calculated by a script. The average number of interrupts was then

calculated as the total number of interrupts divided by the trial length. The average

interrupt length per seconds was calculated as the total interrupt time divided by trial

length. The individual lengths of each interrupt were also recorded.

Figure 12 shows these metrics, per trial, bucketed by the NetEm settings used

for that trial. The trial settings are shown on the y axis, with the first number indicating

the magnitude setting (in ms) used for that trial, and the second number showing the

frequency setting used for that trial. The trial labeled “0,0” is the control trial, where no

additional network manipulation was used. Each trial setting includes the number of

33

trials that were done with that setting. Box and whisker plots are used to display the

data. Circles denote outliers, green triangles denote the mean, and vertical orange lines

denote the median.

Figure 12: Distribution of various attributes of the presentmon data, per trial type.

The number of frames per second generally trends towards getting smaller with

both increasing magnitude and increasing frequency. However, the 120ms/f200 and

180ms/f200 settings have a higher framerate than 120ms/f750 and 180ms/f750

respectively, despite being the greatest two magnitudes and the highest frequency

options. We believe that this is due to the frequency being too high to fit the entire large

magnitude within a one second interval.

The number of interrupts per second is generally about 1.5 for the f1300 settings,

2.25 for the f750 settings, and 4.0 for the f200 settings. The 180 magnitude versions of

these, however, do not follow this pattern quite so closely, and tend to have fewer

interrupts per second than their lower magnitude equivalents.

34

The milliseconds of interrupt time per second generally trends towards getting

larger with both increasing magnitude and increasing frequency, however the 120, f200

and 180, f200 settings break this trend and have a smaller amount of interrupt time per

second. Since these are the same two settings which have a lower framerate, this

reduction in overall interrupt time is likely the reason why those trials have a lower

framerate, rather than a major change in the number of interrupts.

The milliseconds of interrupt time per interrupt gives a look into how the frame

interrupts appear on the client based on the NetEm settings. The control trial only has

12 interrupts across all 111 control trials, as no interrupts beyond those which would

normally occur were present in the control trials. This is an average of 0.1 interrupts per

control trial, or one interrupt in every ten control trials. For all non-control trials, there are

generally a large number of interrupts lasting some amount less than 500ms, and a

noticeable number of outliers starting at about 1000ms, with few outliers between

500ms and 1000ms. The 180 magnitude settings have a smaller total number of

interrupts than their 120 magnitude equivalents, however significantly more of their

interrupts last longer than 1000ms.

4.2.2 Quality of Experience
In order to analyze the initial effects of each setting on the reported quality of

experience, the QoE value reported for each trial was bucketed per setting and plotted

as well. Figure 13 shows these distributions.

35

Figure 13: Quality of Experience distributions, per trial type.

From this plot, the most significant differences occur when changing the

magnitude setting. Only minor changes happen when changing the frequency setting.

With increasing magnitude, the QoE tends to decrease. The control setting had a

median of 5, the 60ms magnitude trials had a median of 4, the 120ms magnitude trials

had a median of 3, and the 180ms magnitude trials had medians of 1 and 2.

4.3 Data Cleaning
This section outlines the methods and rationale used to clean the data. The

overall aim of data cleaning in this study was to remove data that did not accurately

reflect participant quality of experience and data that would significantly skew

calculations vital to the analysis.

4.3.1 Cleaning based on Experiment Errors

Overall, the experiment proceeded with few major errors. The main issue that

arose during the experiment, described in the previous section, was participants

misunderstanding game instructions and getting stuck. While care was taken to prevent

this after it was initially observed, the trials were not thought to be significantly affected

36

by this issue. Even if a participant got stuck, it would not result in outliers in the

presentmon data. Additionally, the participant’s gaming experience did not seem to be

significantly impacted based on QoE ratings.

The only instance of data cleaning where we removed data was for two trials

where the participant accidentally exited the streaming client. These trials were

excluded because they significantly skewed the presentmon metrics. When the

participant exited the streaming client, presentmon logged it as a single, extremely long

interrupt. The two trials that exhibited this problem were both from the same participant.

4.3.2 Cleaning by QoE Rating
Before proceeding with analysis of participant QoE data, it was necessary to

ensure that the QoE data was of good quality. This depended on the quality of

participant responses; participants who gave little thought to their responses may give

inaccurate QoE ratings. We looked for patterns in the data from individual users that

may reflect unreasonable responses. Three main patterns of poor quality data were

considered: unconditionally high ratings, unconditionally poor ratings, and no change in

ratings across games.

Figure 14: Distribution of mean QoE ratings across all trials per participant.

37

Figure 15: Distribution of standard deviation of QoE ratings across all trials per

participant

As shown in Figure 14 above, the majority of participants had QoE rating

averages between 2 and 4, which was considered a normal range. Only one participant

was identified who gave QoE ratings averaging outside of this range, participant 26 with

an average QoE rating of 1.58. As this QoE average is quite low,we scrutinized the QoE

ratings of this participant. If the user’s pattern of QoE scores was a seemingly random

mix of 1’s and 2’s, regardless of the experimental condition, it may show that the ratings

were given carelessly and should not be considered. However, the participant’s ratings

showed significant variety, with some trials having ratings of 4 or 5.

The standard deviation of participant QoE ratings was also calculated, the

distribution of which is shown in Figure 15. Most participants had a standard deviation

between 1 and 1.5. 3 participants were found to have a significantly lower standard

deviation (< 1). Participants 6, 21, and 23 had QoE rating standard deviations of 0.84,

0.59, and 0.78 respectively. However, all three of these participants had normal average

QoE ratings, between 2 and 4, with non-random patterns in their ratings. Based on this

analysis, we did not discard any QoE data.

38

4.4 Significance Testing
Preliminary statistical analysis was done to identify significant differences

between experimental conditions as well as confounding factors which may obscure

significant trends in the data.

4.4.1 Performance Differences by Game
One concern brought up in preliminary analysis was that different games may

perform differently with the same NetEm settings. Therefore, frame per second, average

interrupt length per second, and average number of interrupts per second for different

trials were compared using an ANOVA test, grouped by game. Table 4 reports the

results of these ANOVA tests. No significant difference in any performance metric was

observed between trials for different games. This suggests that performance differences

between games were not significant and are not a confounding factor.

Table 4: ANOVA test results for comparison of presentmon data between different

games

Comparison F-statistic p-value

By Game (fps) 0.0149 0.998

By Game

(Avg. Interrupt Length)

1.00 0.391

By Game

(# of Interrupts/sec)

0.433 0.730

4.4.2 Differences in QoE by Game
One potentially important factor in this experiment was the choice of game,

motivated by the idea that differences in gameplay would impact QoE. Table 5 below

39

shows the results of a one-way analysis of variance (ANOVA) test comparing QoE

ratings from trials grouped by game. The result shows that the choice of game does

seem to significantly impact QoE.

Table 5: ANOVA test results for comparison of QoE data between different game trials

Comparison F-statistic p-value

By Game 4.01 7.53e–3

To better understand this effect, pairwise t-tests between each group of trials

were also performed. The results are shown in Table 6 below. The main point of interest

is the statistical difference (p < 0.05) shown between QoE ratings for Bloons Tower

Defense 6 and those for all other games. However, no significant difference is observed

between any of the other three games. Additionally, with Bonferroni correction applied,

only Bloons Tower Defense 6 and CS:GO are statistically different (p < 0.0083).

Table 6: Pairwise t-tests between QoE ratings for trials grouped by game

Game 1 Game 2 p-value t-statistic

Bloon Tower Defense 6 Hollow Knight 0.012 -2.52

Hades 0.012 -2.53

CS:GO 0.0017 -3.15

Hollow Knight Hades 1.0 0.00

CS:GO 0.56 -0.590

Hades CS:GO 0.56 -0.590

40

As shown in Figure 16 below, the mean QoE rating for Bloons Tower Defense 6

is higher than those of other games. However, the difference is relatively small,

amounting to not even half a point on the 1-5 scale.

Figure 16: Average QoE ratings for each game with error bars representing 95%

confidence intervals.

4.4.3 Differences in QoE by Settings
After confirming consistent performance metrics and generally consistent QoE

ratings between games, the next step was to identify differences between experimental

conditions. As a preliminary step, ANOVA tests were performed comparing QoE ratings

between different settings. Table 7 below reports the results of these tests comparing

QoE ratings for trials with different magnitude and frequency settings. While the

magnitude setting was shown to be significant, no significant difference was found in

QoE ratings between frequency conditions. This matches the general trend in means

QoE ratings for each condition, shown in Figure 17. While the ANOVA test does not

necessarily confirm the observed downward trend in QoE at higher magnitudes, it does

suggest that significant differences do exist. The result for frequency settings also

matches the observed means for different frequencies and the lack of difference

between them.

41

Table 7: ANOVA test results for comparison of QoE values between trials with different

jitter settings (magnitude/frequency)

Comparison F-statistic p-value

Magnitude Settings (60ms,

120ms, 180ms)

379.47 2.55e-121

Frequency Settings (f200,

f750, f1300)

1.9527 0.142

Figure 17: Barplots showing average QoE values at different magnitude (left) and

frequency (right) settings for jitter with 95% confidence intervals.

While the initial ANOVA test showed no significant difference between frequency

settings, it was suggested that difference in magnitude may affect the data in such a

way that significant differences between frequency settings are obscured. To test this,

ANOVA tests were performed comparing QoE values between trials with different

frequency settings but the same magnitude settings (e.g., compare all trials with the

60ms magnitude condition grouping by frequency setting). The results of these tests are

reported in Table 8 below. At the 60ms and 120ms magnitude settings, the difference in

QoE ratings between trials with different frequency settings was still insignificant.

However, a significant difference was observed at the 180ms setting. The reasons for

this difference specifically at the 180ms setting are unclear, but potential explanations

42

are discussed later in this report. Overall, the results of these tests support the

conclusions that frequency does not significantly affect QoE.

Table 8: ANOVA test results for QoE values between trials with different jitter frequency

settings for individual magnitude conditions

Comparison F-statistic p-value

Frequency Settings

(60ms jitter magnitude)

0.151 0.860

Frequency Settings

(120ms jitter magnitude)

0.584 0.558

Frequency Settings

(180ms jitter magnitude)

11.6 1.38e-5

Additionally, a two-way ANOVA test run on the average and standard deviation of

each combination of NetEm settings and game tested shows the extent to which the

frequency and magnitude affect QoE as well as the extent to which their effects are

influenced by the game being tested. These results have some implications on models

for QoE, but also illustrate a need to normalize the QoE data for each game played,

which is explored in the next section. The results of these tests are shown in Table 9.

43

Table 9: P-values found with two-way ANOVAs for QoE scores bucketed by settings the

extent to which each settings’ scores are affected by the game being tested.

Color-coded such that p<.01 is green, p>.05 is red, and others are yellow.

Comparison Affects mean Mean affected

by game

Affects std

deviation

Std deviation

affected by

game

Magnitude settings
<0.0001 <0.0001 0.0335 0.613

Frequency settings
0.048 0.173 0.0158 0.250

All NetEm settings
<0.0001 0.0104 <0.0001 0.0829

4.4.4 Difference in QoE Z-scores by Settings
In addition to QoE analysis, the data was normalized by taking the z-score of

each trial relative to the user’s other QoE scores for the game they were playing. This

allowed for analysis irrespective of the differences in QoE between users and between

each game, meaning it can be used as a metric for how much the changing NetEm

settings affected the user’s experience. With the z-scores grouped into each of the ten

combinations of frequency and magnitude settings, an ANOVA test revealed that these

settings significantly influenced the z-scores. Two further ANOVA tests showed that the

three non-control NetEm settings for magnitude and frequency influenced the QoE

z-scores irrespective of one another. Due to our setup also resulting in the average

frame rate of a trial correlating highly with the average interrupt magnitude, the

significance of frame rate was also tested by taking the mean framerate between each

of the magnitude settings and categorizing trials by which of those its average frame

rate was closest to. The results of these tests are shown in Table 10 below.

44

Table 10: ANOVA test results for QoE z-score values between different bucketings of

NetEm settings

Comparison F-statistic p-value F-crit

All NetEm settings 210.91 0 1.8890

Magnitude settings (control excluded) 701.31 0 3.0054

Frequency settings (control excluded) 3.3893 0.0341 3.0054

Framerate groups 608.61 0 3.0054

Moreover, these tests were done with each of the bucketing categories and the

game being tested to guide the modeling process. A two-way ANOVA was run on the

means and standard deviations of each of the combinations of buckets and games to

determine which variables are suitable for the purpose of modeling. The p-values for

each of the buckets are presented here in Table 11 so as to make the data more

readable, as in all cases when the p-value was below 0.05 the F-statistic was greater

than the F-critical value. These results validate the assumption that this normalizing

process gives an approximation of QoE which is not significantly affected by the game

being played. More detailed implications of this data are discussed later in this report.

45

Table 11: P-values found with two-way ANOVAs for QoE z-score values grouped by

settings and by framerate and the extent to which each category of buckets’ z-scores

are affected by the game being tested. Color-coded such that p<0.01 is green, p>0.05 is

red, and others are yellow.

Comparison Affects mean Mean affected

by game

Affects std

deviation

Std deviation

affected by

game

Magnitude settings
<0.0001 0.934 0.551 0.340

Frequency settings
0.0300 0.963 0.0234 0.874

Framerate buckets
<0.0001 0.758 0.00899 0.571

All buckets
<0.0001 0.992 <0.0001 0.0951

4.5 Trends in Data
This section outlines the statistical analysis performed with a focus on identifying

and characterizing significant relationships in the data.

4.5.1 Univariate Regression (QoE)
Ordinary least-squares regression was performed using each of the three

presentmon metrics to fit separate models for QoE. The results of these regressions are

summarized in Table 12 below. Both frames per second and average interrupt length

per second were found to be significant predictors of QoE. The number of interrupts per

second was not found to be significant from this regression. All regressions show poor

fitting on the data. Plots of experimental data with regressions lines are shown in Figure

18 below.

46

Table 12: Univariate regression summary

Predictive Variable Coeff. p-value Intercept R2

avg. interrupt length/sec -0.004 0.00 4.05 0.49

of interrupts/sec -0.039 0.22 2.95 0.001

frames/sec 0.065 0.00 0.335 0.49

Figure 18: Regression lines for average interrupt length/sec (left), interrupts/sec

(center), and fps (right) with scatterplots of experimental data

Following the initial regressions on the raw data, it was suggested that

performing regressions with average QoE as the response variable may better illustrate

relationships in the data. To do this, kernel density estimation was used to estimate the

distribution of QoE ratings across the range of values for each presentmon metric. This

was possible because participants in almost all cases chose to give integer ratings,

resulting in a discrete scale of QoE. Two trials did have decimal values for QoE rating

and were excluded from this analysis.

Kernel density estimation was performed for each QoE rating 1-5 for each

presentmon metric. These estimates were then corrected so as to reflect the

proportions of QoE ratings observed in the data. These estimated distributions are

shown as curves in Figure 19 below.

47

Figure 19: Distributions of QoE ratings 1-5 across ranges of average interrupt

length/sec (left), interrupts/sec (center), and fps (right)

These curves were then used to calculate average QoE estimates. Average QoE

was estimated as a weighted average of the densities of QoE ratings for a given

presentmon metric value. Using this method, it was possible to provide estimates for

average QoE across the full range of a given presentmon metric. Regressions were

once again performed using the QoE estimates as a response variable. The results of

these regressions are shown in Table 13 below. Once again, average interrupt length

per second and frames per second were found to be significant predictors of the

estimated average QoE, while the number of interrupts per second was not. These

regressions also show better fit as compared to the regression on the raw data, wth R2 >

0.9 for average interrupt length per second and fps. Graphs showing a curve of the

average QoE estimate as well as the regression line using that estimate are shown

below in Figure 20.

48

Table 13: Univariate regressions with average QoE summary

Predictive Variable Coeff. p-value Intercept R2

avg. interrupt length/sec -0.004 0.00 3.92 0.943

of interrupts/sec -0.033 0.142 2.99 0.011

frames/sec 0.062 0.00 0.3928 0.957

Figure 20: Plots of estimated avg. QoE curves and regression lines using average

interrupt length/sec (left), interrupts/sec (center), and fps (right)

4.5.2 Univariate Regressions (Z-Score)

Least-squares regression was performed using the three presentmon metrics for

separate models of the z-score normalizations of QoE. The results showed that similar

to QoE, the average interrupt length per second and frames per second were

significantly correlated with z-score while the number of interrupts per second was less

49

predictive. Also similarly to the QoE regressions, all regressions were poor fits for the

data. The regression results are shown in Table 14 below.

Table 14: Univariate regression summary (z-score)

Predictive Variable Coeff. Intercept R2

avg. interrupt length/sec -0.003 1.01 0.62

of interrupts/sec -0.0235 0.0531 0.001

frames/sec 0.0549 -2.15 0.62

Further analysis used k-means clustering to sort each non-control trial into the

closest of three buckets for each metric. The cluster centers are reported in Table 15

below.

Table 15: K-mean cluster centers

Presentmon Metric Low cluster

center

Medium cluster

center

High cluster

center

avg. interrupt length/sec 195.2 474.2 722.6

of interrupts/sec 1.4 2.5 4.1

frames/sec 17.3 38.3 48.2

Of the 27 possible combinations of these buckets, each non-control trial fit into

one of 14 combinations, three of which fit exactly one trial. An ANOVA test was run on

these 14 combinations as buckets for the z-scores which determined they were a

significant grouping (with a p-value of 0 and an F-statistic of 100.0 against an F-critical

value of 1.73). Least-squares regression was then run on the mean and standard

50

deviation (where applicable) of each of these combinations using each presentmon

metric. The results are shown in Table 16 below.

Table 16: Univariate regression for mean and standard deviation summary

Value predicted Predictive Variable Coeff. Intercept R2

Mean avg. interrupt length/sec -0.002 0.568 0.444

of interrupts/sec 0.0243 -0.371 0.001

frames/sec 0.0438 -1.74 0.63

Standard deviation avg. interrupt length/sec -3.3e-4 0.675 0.153

of interrupts/sec -0.0385 0.668 0.076

frames/sec 8.69e-3 0.252 0.466

These regressions in conjunction allow for the calculation of a 95% confidence

interval given one of the presentmon metrics, although the reliability of these predictions

appears to correspond with the p-values found previously. Graphs showing these

intervals superimposed over the z-score plots themselves can be seen in Figure 21.

51

Figure 21: Plots of z-score for number of interrupts per second (left), average interrupt

length (right), and frames per second (bottom) alongside their predicted means and

95% confidence intervals

4.5.3 Multivariate Regressions (QoE)
In addition to univariate regressions, multivariate regressions were performed

with average interrupt length per second and number of interrupts per second as

predictors. While average interrupt length per second was the only one of the two found

to be significant in univariate analysis, multivariate regression using both variables was

considered to provide an alternate perspective on these relations.

Two regressions were performed, with one fitted on all of the data and the other

fitted on data excluding 180ms magnitude and f200 frequency conditions. This was

done because high magnitude or frequency settings may have limited the number of

interrupts possible per second and vice versa. Therefore, at high magnitude or

frequency conditions, there may be some negative covariance between the average

interrupt length per second and the number of interrupts per second.

52

The results of multivariate regressions using average interrupt length per second

and interrupts per second are shown below in Table 17. The regression fit on the

complete dataset showed both the average interrupt length per second and the number

of interrupts per second to be significant predictors of QoE. The regression fit on data

excluding 180ms magnitude and f200 frequency conditions showed only average

interrupt length per second to be significant. While the first regression seems to conflict

with univariate regressions showing the number of interrupts per second to be

insignificant in predicting QoE, the results of the second regression aligns with the

univariate regression results. This may be due to the covariance effect previously

mentioned. As such, average interrupt length per second remains the only statistically

significant predictor.

Table 17: Multivariate regression results

Data Used R2 Predictor Coeff. p-value

All data 0.493 [Constant] 4.23 0.00

Avg. interrupt length/sec -0.0038 0.00

Interrupts/sec -0.080 0.00

180ms, f200 excluded 0.529 [Constant] 4.26 0.00

Avg. interrupt length/sec -0.0042 0.00

Interrupts/sec -0.076 0.29

As with the univariate regressions, further multivariate analysis focused on

interpreting estimates of average QoE data. Multivariate kernel density estimates were

used to find average QoE estimates varying by the average interrupt length per second

and the number of interrupts per second. Plots showing the distribution of QoE ratings

density estimates are shown below in Figure 22.

53

Figure 22: Density plots for each QoE rating 1-5 (ordered left to right, up to down).

Black to blue color gradient represents increasing density.

Following the same approach as the univariate density estimate, the average

QoE ratings across this space were determined by a weighted average of the densities

for each QoE rating. The average QoE across varying average interrupt length per

second and number of interrupts per second is shown below in Figure 23.

Figure 23: Density plot for average QoE. Black to blue color gradient represents

increasing QoE (1-5)

54

These plots visually confirm an inverse relationship between average interrupt

length per second and average QoE. Additionally, the plot for average QoE seems to

show a weak trend between the number of interrupts per second and average QoE, in

contrast to the regression results. However, it is important to note that average QoE

estimation across multiple variables involves much more extrapolation, reducing the

accuracy of the estimates. Figure 24 below shows the spread of trials across the same

space, showing that coverage may be insufficient to estimate QoE across both axes

with significant confidence.

Figure 24: Scatter plot of individual QoE ratings with avg. interrupt length/sec and

interrupts/sec as x and y axes respectively. Black to blue color gradient represents

increasing QoE.

55

5. Conclusion
This study aimed to build on previous work in the area of latency in cloud gaming

systems with a focus on understanding how user experience is impacted by latency. Of

specific interest to this study is work investigating jitter, a type of non-constant latency.

For cloud-based game streaming, jitter is characterized by the frequency and magnitude

of interrupts to the delay of video frames, which are delay spikes in a connection.

The specific goal of this study was to better characterize the relationship between

jitter and user experience. While previous work has established the effects of delay on

user experience, the topic of jitter in cloud gaming systems is still relatively unexplored.

Establishing the effects of jitter frequency and magnitude on user experience would

provide new insights. This study was designed to accomplish this by simulating jitter

conditions on a controlled setup and measuring user experience at different conditions.

Results from this study successfully identified significant effects of jitter on user

experience. A strong relationship was found between jitter magnitude and user QoE,

showing that increases in jitter magnitude generally lead to declines in user experience.

The study also characterized the relationship between jitter frequency and QoE, though

these results were less conclusive. The frequency of interrupts did not have a large

effect on user QoE, though some evaluations suggested that more interrupts did lead to

worse user experience.

Additionally, the results of this study shed light on how user experience in

different games is impacted by jitter. While all games tested in this study were similarly

affected, the baseline QoE values suggest that users may find some gameplay

experiences better or worse than others regardless of jitter. However, it was confirmed

that declines in user experience are similar across different games. Analysis was also

conducted using z-scores to normalize QoE values and remove differences in QoE by

game or participant bias. This analysis matched conclusions drawn from

non-normalized QoE analysis, showing that these trends occur regardless of game

choice or user preference.

Lastly, the results of this study further established relationships between jitter and

QoE through predictive models. Models predicting QoE using jitter magnitude showed

an approximately linear relationship between the two, suggesting that equal increases in

56

magnitude degrades user experience regardless of the initial and final magnitude.

Models using jitter frequency as a predictor did not establish a significant relationship

with user QoE. However, models including both magnitude and frequency as predictors

did identify both as being significant predictors of QoE, suggesting some effect of jitter

frequency on QoE. As with the results mentioned above, z-score based analysis

confirmed that game choice and user preference did not cause these differences.

57

6. Future Work
Future work could further investigate the effect of jitter magnitude on QoE. While

magnitude appears to be a significant predictor of QoE, the exact relationship could be

more thoroughly understood. A linear model as used in this study provided a decent fit,

but a validation of this model has not been performed. Future studies could aim to verify

the linear model for magnitude versus QoE by gathering a larger data set on which to

train and test a model. Non-linear models could also be explored and assessed. If

successful, this could provide a more accurate model for average QoE useful for other

research.

Additionally, the methods of QoE measurement used in this study could be

further developed. The kernel density estimates provided a generally decent estimate of

average QoE for the univariate regressions, but did not seem to hold up as well in the

multivariate context. Using a wider range of experimental conditions to give better

coverage of the range of data may improve the performance of this method.

Determining average QoE in a purely experimental way may also be useful, if only in

assessing the accuracy of the KDE-based estimate. These steps would allow for more

accurate and reliable measurement of average QoE that would aid in assessing user

experience in other studies.

Future studies could also expand on QoE measurement by making it easier for

participants to give decimal values. While this study aimed to do so, participants almost

always gave integer values for QoE. Having a wider range of possible values could

reveal clearer trends in the data. Other user experience metrics could be included as

well, such as user performance. Expanding on previous metrics and including others

would provide a more well-rounded assessment of user performance which may reveal

effects not seen from a more limited perspective.

The attempts to find differences in camera type did not result in significant

differences between the games studied. However, the game selection in this study was

limited and faced issues with confounding variables of player skill and image complexity.

Future studies could attempt to account for these variables in game selection and in

data analysis. This would allow for more confident, general conclusions about games as

a whole.

58

Further work could also be done to investigate the effects of interrupt frequency.

The results from this study generally showed that frequency was not significant, but

many factors prevented a thorough analysis. Experimental design meant to specifically

investigate frequency may help clarify these results. This could be done by

reconfiguring the NetEm settings to allow for more control of the number of magnitude

of interrupts. This would allow for more confident assessments of the true effect of

frequency on user experience.

59

References

J. Allard, A. Roskuski and M. Claypool, “Measuring and Modeling the Impact of Buffering and

Interrupts on Streaming Video Quality of Experience”, In Proceedings of the 18th International

Conference on Advances in Mobile Computing & Multimedia (MoMM), Chiang Mai, Thailand, 30

November - 2 December 2020. Online: http://www.cs.wpi.edu/~claypool/papers/buff-int/

D. Austerberry, “The Technology of Video and Audio Streaming”. 2nd ed., Focal, 2005.

N. Barman, S. Zadtootaghaj, S. Schmidt, M. G. Martini and S. Möller, "GamingVideoSET: A

Dataset for Gaming Video Streaming Applications," 16th Annual Workshop on Network and

Systems Support for Games (NetGames), 12-15 June 2018, pp. 1-6, doi:

10.1109/NetGames.2018.8463362.

M. Bergeron, Cameron Gutman, Diego Waxemberg, R. Aidan Campbell, “Moonlight Game

Streaming Project”, Accessed 3 March 2023, https://github.com/moonlight-stream.

K. Browning, “'Crucial Time' for Cloud Gaming, Which Wants to Change How You Play.” The

New York Times, The New York Times, 1 July 2021,

https://www.nytimes.com/2021/07/01/technology/cloud-gaming-latest-wave.html.

M. Claypool and K. Claypool, “Latency can kill: precision and deadline in online games”, In

Proceedings of the first annual ACM SIGMM conference on Multimedia systems (MMSys '10).

Association for Computing Machinery, New York, NY, USA, 22 February 2010, 215–222. doi:

10.1145/1730836.1730863

R. Darcey, B. Han, W. Zhang, “Jitter and Latency in Cloud Game Streaming, 2022

J. Gaskin. “Thin vs. Thick Clients.” Technology Solutions That Drive Business, 8 September

2022, https://biztechmagazine.com/article/2011/09/thin-vs-thick-clients.

S. Hemminger, “tc-netem”, Accessed 3 March 2023,
https://www.linux.org/docs/man8/tc-netem.html.

http://www.cs.wpi.edu/~claypool/papers/buff-int/
https://github.com/moonlight-stream
https://www.nytimes.com/2021/07/01/technology/cloud-gaming-latest-wave.html
https://biztechmagazine.com/article/2011/09/thin-vs-thick-clients
https://www.linux.org/docs/man8/tc-netem.html

60

A. Horé and D. Ziou, "Image Quality Metrics: PSNR vs. SSIM," 20th International Conference on

Pattern Recognition, 23-26 August 2010, pp. 2366-2369, doi: 10.1109/ICPR.2010.579.

Q. Huynh-Thu, M. Ghanbari, “The Accuracy of PSNR in Predicting Video Quality for Different

Video Scenes and Frame Rates”, Telecommun Systems, 2012, 49, pp. 35–48, doi:

10.1007/s11235-010-9351-x.

International Telecommunications Union, “Subjective Video Quality Assessment Methods for

Multimedia Applications”, April 6 2008, E 33690, Online:

https://www.itu.int/rec/T-REC-P.910-200804-S/en.

J. Montgomery, “PresentMon”, Accessed 3 March 2023,

https://github.com/GameTechDev/PresentMon

S. Naji, and D. Abrahams, “Cloud Gaming Is Being Sold as the next Stage of Video Game

Innovation, but Consumers Will Have the Last Word.” GamesIndustry.biz, GamesIndustry.biz, 14

March 2022,

https://www.gamesindustry.biz/cloud-gaming-is-being-sold-as-the-next-stage-of-video-game-inn

ovation-but-consumers-will-have-the-last-word-opinion.

Open-Stream Team, “Open-Stream”, Accessed 3 March 2023,
https://github.com/LS3solutions/openstream-server.

C. Perkins et al., “A Survey of Packet Loss Recovery Techniques for Streaming Audio.” IEEE

Network, vol. 12, no. 5, 1998, pp. 40–48, doi: 10.1109/65.730750.

K. A. Rahman, R. McCool, and G. Somadder, “Gaming in the Cloud: A Technical Deep Dive”,

Technical Talk at the Game Developer’s Conference (GDC) (presented by Google), San

Francisco, CA, USA, March 19, 2019. https://youtu.be/K33gctpveuk.

S. Schmidt, S. Zadtootaghaj, and S. Moller, "Towards the delay sensitivity of games: There is

more than genres," in Ninth International Conference on Quality of Multimedia Experience

(QoMEX), Erfurt, Germany, May 2017, pp. 1–6. doi: 10.1109/QoMEX.2017.7965676.

https://www.itu.int/rec/T-REC-P.910-200804-S/en
https://github.com/GameTechDev/PresentMon
https://www.gamesindustry.biz/cloud-gaming-is-being-sold-as-the-next-stage-of-video-game-innovation-but-consumers-will-have-the-last-word-opinion
https://www.gamesindustry.biz/cloud-gaming-is-being-sold-as-the-next-stage-of-video-game-innovation-but-consumers-will-have-the-last-word-opinion
https://github.com/LS3solutions/openstream-server
https://youtu.be/K33gctpveuk

61

K. Shatzkamer, “Google Cloud Brandvoice: Living on the Edge: How next-Gen Mobile Networks

Will Drive the Evolution of Cloud Computing.” Forbes, Forbes Magazine, 21 April 2022,

www.forbes.com/sites/googlecloud/2021/10/06/living-on-the-edge-how-next-gen-mobile-network

s-will-drive-the-evolution-of-cloud-computing/.

A. Wahab, N. Ahmad, M. G. Martini, and J. Schormans, "Subjective Quality Assessment for

Cloud Gaming," J, vol. 4, no. 3, pp. 404–419, August 2021, doi: 10.3390/j4030031.

Z. Wang, A. C. Bovik, H. R. Sheikh and E. P. Simoncelli, "Image Quality Assessment: From

Error Visibility to Structural Similarity," in IEEE Transactions on Image Processing, vol. 13, no. 4,

pp. 600-612, April 2004, doi: 10.1109/TIP.2003.819861.

http://www.forbes.com/sites/googlecloud/2021/10/06/living-on-the-edge-how-next-gen-mobile-networks-will-drive-the-evolution-of-cloud-computing
http://www.forbes.com/sites/googlecloud/2021/10/06/living-on-the-edge-how-next-gen-mobile-networks-will-drive-the-evolution-of-cloud-computing

62

Appendix

Participant Question Sheet
Background Information
Some questions are not required. Please fill this section out before continuing to the

experiment. For questions that ask you to rank from 0 to 5, consider the following scale:

1 - Very unfamiliar

2 - Somewhat unfamiliar

3 - A little familiar

4 - Somewhat familiar

5 - Very familiar

What is your age?

What is your gender?

Male

Female

Other ________________

Rate your level of experience with video games in general from 1 to 5 (required)

Rate your level of experience with CS:GO from 1 to 5 (required)

Rate your level of experience with Hades from 1 to 5 (required)

63

Rate your level of experience with Hollow Knight from 1 to 5 (required)

Rate your level of experience with Bloons Tower Defense 6 from 1 to 5 (required)

Game 1
Please follow this rating scale:

1 - Bad

2 - Below Average

3 - Average

4 - Above Average

5 - Good

1. Rate the quality of experience of the last segment of gameplay from 1 to 5

2. Rate the quality of experience of the last segment of gameplay from 1 to 5

(Each game had 10 total locations to rate QoE, with 4 total games).

64

Router Machine Script
import random, os
import numpy as np
import pandas as pd
from datetime import datetime, timedelta
import time

games = ["Hades", "Hollow Knight", "Bloons TD6", "CS:GO"]

commands = ["echo",
"sudo tc qdisc add dev eth0 root netem delay 0.1ms 60ms distribution f200 rate 1000mbit",
"sudo tc qdisc add dev eth0 root netem delay 0.1ms 120ms distribution f200 rate 1000mbit",
"sudo tc qdisc add dev eth0 root netem delay 0.1ms 180ms distribution f200 rate 1000mbit",
"sudo tc qdisc add dev eth0 root netem delay 0.1ms 60ms distribution f750 rate 1000mbit",
"sudo tc qdisc add dev eth0 root netem delay 0.1ms 120ms distribution f750 rate 1000mbit",
"sudo tc qdisc add dev eth0 root netem delay 0.1ms 180ms distribution f750 rate 1000mbit",
"sudo tc qdisc add dev eth0 root netem delay 0.1ms 60ms distribution f1300 rate 1000mbit",
"sudo tc qdisc add dev eth0 root netem delay 0.1ms 120ms distribution f1300 rate 1000mbit",
"sudo tc qdisc add dev eth0 root netem delay 0.1ms 180ms distribution f1300 rate 1000mbit"]

commandsValues = {"echo":[0, 0],
"sudo tc qdisc add dev eth0 root netem delay 0.1ms 60ms distribution f200 rate 1000mbit":["60",

"f200"],
"sudo tc qdisc add dev eth0 root netem delay 0.1ms 120ms distribution f200 rate 1000mbit":["120",

"f200"],
"sudo tc qdisc add dev eth0 root netem delay 0.1ms 180ms distribution f200 rate 1000mbit":["180",

"f200"],
"sudo tc qdisc add dev eth0 root netem delay 0.1ms 60ms distribution f750 rate 1000mbit":["60",

"f750"],
"sudo tc qdisc add dev eth0 root netem delay 0.1ms 120ms distribution f750 rate 1000mbit":["120",

"f750"],
"sudo tc qdisc add dev eth0 root netem delay 0.1ms 180ms distribution f750 rate 1000mbit":["180",

"f750"],
"sudo tc qdisc add dev eth0 root netem delay 0.1ms 60ms distribution f1300 rate 1000mbit":["60",

"f1300"],
"sudo tc qdisc add dev eth0 root netem delay 0.1ms 120ms distribution f1300 rate 1000mbit":["120",

"f1300"],
"sudo tc qdisc add dev eth0 root netem delay 0.1ms 180ms distribution f1300 rate 1000mbit":["180",

"f1300"]}

subjectID = input("subjectID: ")

random.shuffle(games)

df = pd.DataFrame(columns=["game", "mag", "freq", "start", "end"])

for game in games:
os.system("sudo tc qdisc del dev eth0 root")
print("Set up " + game + " for the participant")
print("Allow user to practice the game for a couple of minutes")
random.shuffle(commands)
for idx, command in enumerate(commands):

input("TRIAL " + str(idx + 1) + " - press enter to start the trial")
start = datetime.today()
os.system("sudo tc qdisc del dev eth0 root")
os.system(command)
time.sleep(50)
print("STOP! Tell the user to stop playing now!")
df.loc[len(df.index)] = [game, commandsValues[command][0], commandsValues[command][1], start,

start+timedelta(seconds=50)]
os.system("sudo tc qdisc del dev eth0 root")
df.to_csv(subjectID + "results.csv")

65

Client Machine Script
import sys,os,time
import ctypes

def is_admin():
try:

return ctypes.windll.shell32.IsUserAnAdmin()
except Exception as e:

print(e)
return False

if not is_admin():
print("Please run this file with right click + 'run as administrator'.")
input()
sys.exit(0)

identifier = input("Enter the participant identifier: ")
stamp = time.strftime('%y.%m.%d-%H.%M.%S')

fileName = identifier+'_'+stamp+'.csv'

os.system('C:/Users/claypool/Desktop/PresentMon-1.8.0-x64.exe -process_name Moonlight.exe -output_file
C:/Users/claypool/Desktop/STADIA_IQP/results/%s -no_top'%(fileName))

66

Recruiting Email

Hello everyone!

As part of our IQP, we are looking for participants to take part in a user study that explores

how latency and jitter can impact the user’s experience with cloud-based game streaming.

The study should take about an hour per person, and involve playing four different games

and answering survey questions as you play.

You will be compensated with a $15 Amazon Gift Card for your time.

Additionally, participation can count for IMGD playtesting credit, if you need it.

Participation is voluntary, you may leave at any time. The study does include a game with

many bright flashing lights, so if you are prone to epileptic seizures please do not

participate. Apart from this, there is no/minimal risk for this user study and this study has

been approved by the IRB at WPI.

To sign up for a slot, please pick a time on slottr [omitted].

If you have any further questions, feel free to reach out to any of us:

Thomas Flanagan (tmflanagan@wpi.edu)

Carter Nakagawa (clnakagawa@wpi.edu)

Michael Oliveira (mjoliveira@wpi.edu)

Professor Claypool (claypool@wpi.edu)

67

Game Tutorial Sheets
CS:GO

Mouse - Moves your camera, allowing you to look in a different direction.
Left Mouse Button - Fires your weapon. Some weapons (like pistols) must be tap
fired by repeatedly pressing the button, some (like SMGs, rifles) allow you to hold
down the button to spray or tap the button to fire slower but more accurately.
Scroll wheel - Cycle between weapons.
W A S D - Moves your position in space, used similar to arrow keys.
E - Picks up or put down a weapon where you are looking at. Also used to open
doors.
R - Reloads your weapon.
Ctrl - Hold to “kneel”/”crouch”, lowering your height and making you move slower.
Space bar - Jump. Can be used to get over short obstacles.
Esc - Pause the game.

Firing individual shots or in short bursts is more accurate than holding down the fire
button.

Your radar is at the top left of your
screen. It shows the layout of the
map and the location of bomb sites.
Bomb sites are labeled with a capital
letter and a red coloring.

Your weapons and ammo count are
at the bottom right of your screen.
You can switch to a different weapon
using the number key next to a
weapon, or by scrolling to it with the
scroll wheel.

68

Hades
W - Move forward
A - Move left
S - Move backward
D - Move right
Space - Dash (can be combined with W A S D to specify direction)
Left Click - Normal attack (can be combined with dash for a dash-attack)
Right Click - “Cast”, projectile attack
E - Interact with objects or other prompts
Q - “Special”, attack that damages enemies in a circle around you

General Tips
Your overall goal is to proceed through the different rooms by defeating all enemies
in each room.

There are trap panels on the floor
which will damage you if you step on
them after a delay.

When you’ve cleared all enemies from a
room, you proceed to the next room by
interacting with the doorways with
orbs.

Some enemies will have armour which
makes them immune to stun while
they attack. Once you damage them
enough, the armour will go away and
they will behave like normal enemies.

69

Hollow Knight
Arrow keys - Move your character
Z - Jump
X - Attack
A - Press and hold this once your meter glows white to heal

Unfilled meter with health at 2/4

Usable amount of meter

Note that unlike many other games, your jump stops rising immediately if you let go
of the jump button, so only let go if you have safe ground directly below you

70

Bloons Tower Defense 6
Mouse - Move cursor, select menu items
Esc - Pause hotkey
Space - Fast-forward hotkey

Bloons Tower Defense 6 is a tower-defense game where you place down “towers” (in
this case, monkeys) to prevent “invaders” (in this case, balloons) from progressing
through a set path on the screen

Every time a balloon makes it to the end of the path, you lose one life (counted with
the heart in the upper-left corner). If this counter reaches zero, the game ends.

Towers cost money, which is earned by popping balloons. Money can also be used to
upgrade existing towers (you can do this by clicking on the tower you want to
upgrade), though placing new towers (which is done via the menu on the right) may
be necessary since each one can only attack with a certain frequency in a certain
range.

71

Consent Form
Informed Consent Agreement for Participation in a Research Study

Investigators: Carter Nakagawa, Michael Oliveira, Thomas Flanagan
Contact Information:
Professor Mark Claypool - claypool@wpi.edu
Carter Nakagawa - clnakagawa@wpi.edu
Michael Oliveira - mjoliveira@wpi.edu
Thomas Flanagan - tmflanagan@wpi.edu
Title of Research Study: IQP - Latency and Jitter for Google Stadia Games
Sponsor: Professor Mark Claypool

Introduction
You are being asked to participate in a research study. Before you agree, however, you must be
fully informed about the purpose of the study, the procedures to be followed, and any benefits,
risks or discomfort that you may experience as a result of your participation. This form presents
information about the study so that you may make a fully informed decision regarding your
participation.

Purpose of the study:
The goal of this study is to measure the effects of latency and jitter on player experience in
cloud gaming systems. We aim to investigate how different degrees of jitter frequency and
magnitude impact the overall quality of experience for players.

Procedures to be followed:
During this study you will be expected to play 4 different games on a desktop computer for a set
amount of time (~12-15 minutes per game). For each game, you will have a 1-2 minute period to
practise the basic controls of the game before we start collecting data. The gameplay will be
divided into 10 “rounds”. Between rounds, we will pause the game and ask you questions about
your experience. The experiment will take a total of about 1 hour to complete.

Risks to study participants:
Video games have a risk of causing seizures due to potential flashing lights and other seizure
inducing visuals. This risk is only applicable to those with a history of seizures. If you have a
history of seizures, you are advised to not participate in this study.

The 4 games that you will be asked to play are:
Bloons TD 6 - ESRB rated E, no associated warnings.
Hollow Knight - ESRB rated E 10+, contains fantasy violence, mild blood, and insect-like
creatures.
Hades - ESRB rated T, contains alcohol Reference, blood, mild language, suggestive Themes,
and violence.
Counter Strike: Global Offensive - ESRB rated M, contains blood and intense violence.

72

If you are uncomfortable with the content of any of these games, you are advised to not
participate in this study.

Benefits to research participants and others:
None.

Record keeping and confidentiality:
For this study, we will record basic demographic information (age/gender) as well as your
answers to survey questions. Any interaction with the desktop computer used for testing may be
recorded. Records of your participation in this study will be held confidential so far as permitted
by law. However, the study investigators, the sponsor or its designee and, under certain
circumstances, the Worcester Polytechnic Institute Institutional Review Board (WPI IRB) will be
able to inspect and have access to confidential data that identify you by name. Any publication
or presentation of the data will not identify you.

Compensation or treatment in the event of injury:
There is minimal risk associated with this study. Please note that you do not give up any of your
legal rights by signing this statement.

Payment:
All participants will be compensated with one $15 Amazon gift card. All participants will be given
2 IMGD playtesting credits.

For more information about this research or about the rights of research participants, or
in case of research-related injury, contact:
Researchers - See contact information at the beginning of this document.
IRB Manager - Ruth McKeogh, Tel. 508 831-6699, Email: irb@wpi.edu
Human Protection Administrator - Gabriel Johnson, Tel. 508-831-4989, Email:
gjohnson@wpi.edu

Your participation in this research is voluntary. Your refusal to participate will not result in
any penalty to you or any loss of benefits to which you may otherwise be entitled. You may
decide to stop participating in the research at any time without penalty or loss of other benefits.
The project investigators retain the right to cancel or postpone the experimental procedures at
any time they see fit.

73

By signing below, you acknowledge that you have been informed about and consent to be a
participant in the study described above. Make sure that your questions are answered to your
satisfaction before signing. You are entitled to retain a copy of this consent agreement.

__ _________________________
Participant Signature Date

__
Participant Name (Please print)

__ _________________________
Signature of Person who explained this study Date

