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ABSTRACT

Patient motion is a significant cause of artifacts in SPECT imaging. It is important to be

able to detect when a patient undergoing SPECT imaging is stationary, and when significant

motion has occurred, in order to selectively apply motion compensation. In our system,

optical cameras observe reflective markers on the patient. Subsequent image processing

determines the marker positions relative to the SPECT system, calculating patient motion.

We use this information to decide how to aggregate detected gamma rays (events) into

projection images (frames) for tomographic reconstruction.

For the most part, patients are stationary, and all events acquired at a single detector

angle are treated as a single frame. When a patient moves, it becomes necessary to split a

frame into subframes during each of which the patient is stationary. This thesis presents a

method for splitting frames based on hypothesis testing. Two competing hypotheses and

probability model are designed. Whether to split frames is based on a Bayesian recursive

estimation of the likelihood function. The estimation procedure lends itself to an efficient

iterative implementation. We show that the frame splitting algorithm performance is good

for a sample SNR. Different motion simulation cases are presented to verify the algorithm

performance. This work is expected to improve the accuracy of motion compensation in

clinical diagnoses.
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CHAPTER 1

INTRODUCTION

1.1 Problem Statement

Many patients undergo cardiac single photon emission computed tomography (SPECT)

imaging every year. SPECT system is shown in Figure 1.1, 1.2 and 1.3. SPECT data

acquisition requires the patient to remain still for a long time (around 15-20 minutes) to

guarantee image quality. However, in clinical practice patients often move, introducing

imaging artifacts. In the academic centers we know the body motion may occur in 25%

of studies and that 5% of the time, patient motion is significant enough to cause artifacts

which can mislead diagnosis [3, 4]. One study in T1-201 polar maps has shown that motion

of single pixel (6.4mm) can induce significant artifacts [17].

Compensation strategies for motion in SPECT imaging, although commercially avail-

able, are inadequate for robust clinical usage. For example, currently there are some cor-

rections for the attenuation and scatter physics effects. Also small, period patient motion

such as respiration can lead to blurring and loss of resolution. But these corrections all

need the patient motion compensation to remove the major patient shift factor for clinical

usage. Larger motions such as patient shift lead to more serious artifacts that may mask

or mimic perfusion defects. The use of external tracking devices for motion compensation,

bringing information independent of SPECT data, is expected to be much more robust.

In motion compensation, it is necessary to split frames accurately in order to get better

motion compensation results.

We know SPECT data may be acquired in either of two modes: frame mode or list

mode. In frame mode, a projection frame is produced at every detector angle. Individual

photons, i.e. detected events, are not recorded separately, only in aggregate. The detector

is stepped several degrees between frames until full 360deg coverage is obtained. In list

mode, each detected gamma ray (event), including timestamp is recorded in a file; hence
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Figure 1.1. SPECT (Single Photon Emission Computed Tomography) Imaging

Figure 1.2. Phillips IRIX Gamma Camera
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Figure 1.3. Polaris IR System View

the SPECT data comprises a large list. The list of events is adjusted to produce a corrected

set of motion-free observations instead of the integrate projection image frame. List mode

data may be converted to frame mode by summing all events at a given detector angle,

producing a frame at that angle. So after the compensation work, we may do the list mode

based reconstruction or do the frame mode based reconstruction after reformatting work.

When frame mode was used for motion compensation [2], patient motion at each frame

is related to the initial patient position. This works well in if the patient only moves between

frames, an impractical restriction. If SPECT data were acquired in list mode, and a new

frame created whenever the patient moved, this splitting frame approach could succeed

with any patient motion. Thus, the current problem is to split frames whenever significant

patient motion is detected.

For the most part during list mode data acquisition, patients are stationary, and all

events acquired at a single detector angle are treated as a single frame. When a patient

moves, it becomes necessary to split a frame into subframes during each of which the patient

is stationary. The detailed strategy for splitting frames accurately will be presented in the

subsequent parts.

3



1.2 Thesis Outline

The thesis begins with an introductory chapter, where the splitting frames problem and

the practical applications are discussed in general terms. The basic concepts and approaches

introduced in this chapter are explained in the subsequent parts of the thesis.

The remaining five chapters of the thesis are organized in four parts, as described here:

Chapter 2 reviews the previous work and background in motion compensation, our visual

tracking system and the splitting frames combination solution; Chapter 3 focuses on the

theory deduction and basic understand of splitting frames problem; Chapter 4 describes

the algorithm implementation, pseudo code, and algorithm optimization work; Chapter 5

covers different patient motion situation, the case study experiments results and analysis;

Chapter 6 discusses the future work and the thesis is concluded. All publications referred

to in the thesis are compiled in the bibliography.

4



CHAPTER 2

BACKGROUND

The splitting frames strategy is expected to improve the accuracy of motion compen-

sation in clinical diagnoses. We know in the academic centers, researchers usually make

the ”patients” comfortable and control the imaging environment. These ”low-likelihood”

patients are less likely to move than those who are more likely to have disease. In the clin-

ical cases, actual patient motion would be one of the most important factors. Significant

motion can result in the image artifacts that may be erroneously interpreted as perfusion

defects. The false-positive interpretations with motion may be as high as 27 percent [13].

Although there are some real cardiac motions, but the significant cardiac motion is seldom.

The image artifacts are mainly caused by the patient motion.

2.1 Motion Compensation

When patient undergoing SPECT, it is necessary to record the sequence of patient posi-

tion in order to selectively apply motion compensation. A number of approaches have been

developed to detect and correct for body motion using only emission data. Motion artifacts

can be reduced by manual shifting of individual projection images before reconstruction.

For example, Fitzgerald [7] suggested having the technologist or physician view the cine,

sonogram, or linogram of the acquisitions and interactively move the projection data to

compensate for motion. But the effectiveness of procedure is dependent on the operator

and it is time-consuming. There are also many automatic or semiautomatic methods for

motion compensation in SPECT studies. One way is to place external radioactive markers

on the patient’s body within the camera heads, and detect the motion of these markers.

William J. Geckle [20] described an algorithm to track the center of the heart in successive

projections and correct its motion based on realignment of the center to a fixed point in

space. Barakat [16] proposed an algorithm to detect motion in projection data from triple
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scan SPECT imaging. This algorithm permits the acquisition of three full sets of SPECT

data which can be adequately combined in order to reconstitute a motion-free set of pro-

jection data. Fulton [18] uses full 3D reconstruction, which places some limitations on the

nature or timing of the motion which can be corrected. In the motion correction with full

3D reconstruction, sometimes researchers have to assume the patient remains stationary

during the acquisition of individual projection and only moves between projections. The

above methods use frame data. That is, when the six cameras are at a fixed angle and a

”frame” or image is acquired. Individual photons, i.e. detected events, are not recorded

separately, only in aggregate. We tried list mode data based motion compensation [8]. The

list of events is adjusted to produce a corrected set of motion-free observations instead of the

integrate projection image frame. After the compensation and reformatting, we do 3D re-

construction based on the ordered subsets expectation maximization (OSEM) algorithm for

comparison. In [18] Hutton proposed a method to model patient motion in reconstruction

by dividing projection data into subsets where no motion occurs. In [15] Bruyant proposed a

compensation method based on the knowledge of the patient state during list-mode SPECT

data acquisition. Our splitting frames strategy, verifying motion decision, can be applied

in either motion compensation approach in future.

In the whole system, by synchronizing with visual tracking system, SPECT diagnostic

imaging is expected be improved. Usually the SPECT system scans 20-30 minutes, visual

tracking system runs at the same time with 25frames/second acquisition speed. Since the

optical cameras are synchronized with SPECT, the spheres(markers) as shown in Figure

2.1 on patient, can be observed to get the patient motion raw data. The raw motion will

be imported to the splitting frames strategy, for applying motion compensation selectively.

2.2 Previous Work

Most previous approaches of making decision for patient motion have relied on acquired

projection data and they detect motion with consistency checks or motion tracking. Our

approach is based on optical tracking of the patient using a pair of web cameras to acquire

stereo images. The stereo images are analyzed by a Visual Tracking System that records

locations of stereo images on the patient surface over time. Patient surface motion can infer

6



Figure 2.1. Reflective Markers on Black Garment - Objective

motion within the patient body, which will be used to correct for actual patient motion[12].

The cameras are directed at reflective markers placed on the surface of a tight fitting garment

worn by the patient[14]. By comparing the positions of the spheres on patient body between

time slots, we can record patient movement and get the patient position in 3D space. The

splitting frames work is base on the whole system to verify and make decision for patient

motion.

2.3 Splitting Frame Solutions Overview

This thesis presents a method for splitting frames based on hypothesis testing. Two

competing hypotheses and probability model were designed. We propose to automatically

decide if and where to split each frame, and consider recursive splitting of resulting sub

frames. This splitting frames strategy for motion compensation can work well for any

patient motion.

Whether to split frames is based on a Bayesian recursive estimation of the likelihood

function. The estimation procedure lends itself to an efficient iterative implementation. We

show that the frame splitting algorithm performance is good for a sample SNR. Different

motion simulation cases are presented to verify the algorithm performance. After splitting

frames for motion compensation, the selective motion may be applied to correct the SPECT

7



reconstruction. This work is expected to improve the accuracy of motion compensation in

clinical diagnoses.
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CHAPTER 3

STATISTICAL MODEL FOR SPLITTING TIME-SERIES FRAMES

In the problem of verifying patient motion, the motion decision is indirectly observ-

able from the observed patient motion data in SPECT system, since the noise is in the

observation of a real world phenomenon. Statistical estimation can deal with this problem.

By introducing the recursive estimation, the motion decision is updated continuously after

getting new sub-frames. With the Bayesian view on motion decision, both the sought pa-

rameters and observed motion are stochastic entities. In our Statistical model presented

in the following sections, the patient motion decision and splitting frames decision can be

inferred.

3.1 Model Construction based on Bayesian Theory

After synchronizing the visual tracking system with SPECT system, we have patient

position data. For the patient position, we defined the hierarchical objective structure,

shown in Figure 3.1. There are four objective levels. The first level is frame objective

level , which indicates the aggregated frames we recorded for patient motion and need to

be splitted. The second level is time objective level. Each frame corresponds to it’s own

recorded timestamp. The third level is image/sphere objective level. There are usually have

N(N ≈ 20) spheres on patient body, which is monitored in SPECT system. The fourth level

is patient motion objective level. The location(x, y, z) of each sphere indicates the motion

in consequent time slots.

Two competing hypotheses can be acting for one frame, respectively:

H0: There is no patient motion in this frame. Then the location of spheres on patient

is the detected coordinates with noise which is assumed to be a zero-mean Gaussian noise

with variance σ2.

H1: There is patient motion in this frame.

9
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Figure 3.1. Hierarchical Data Structure for Splitting Frames

3.2 Maximum Likelihood Estimation

We need to decide whether there is patient motion based on two probabilities Pr(H0|X)

and Pr(H1|X), where X is the observed data. From Bayesian theory, we can obtain the

following equations.

Pr(H1|X) =
Pr(H1)Pr(X|H1)

Pr(X)
(3.1)

Pr(H0|X) =
Pr(H0)Pr(X|H0)

Pr(X)
(3.2)

Assume there are N spheres and denote the location of the i-th sphere by Xi. As we

stated previously, the probability function is correspond to Gaussian laws of mean (xi, yi, zi)

and variance σ2. Here we assume the noise is white.

Pr(Xi|H0) =
1

(2πσ2)
3
2

exp(−(x− xi)2 + (y − yi)2 + (z − zi)2

2σ2
) (3.3)

By computing the Norm of the location of the i − th sphere in the time series, we can

obtain the likelihood function for the i − th sphere. Xi(t) is the observed blobs location

vector in consecutive frames. ui is the mean value for these observed blobs location vector.

Pr(Xi(t)) =





1

(2πσ2)
3
2
exp(− ||(Xi(t)−ui)||2

2σ2 ) if 0 ≤ t ≤ t′ − 1,

1

(2πσ2)
3
2
exp(− ||(Xi(t)−ui−∆)||2

2σ2 ) if t′ ≤ t ≤ T − 1.
(3.4)

The joint probability distribution of N spheres in time series can be expressed as follow-

ing:

10



Pr(X0(t),X1(t), ...,XN−1(t)) =
N−1∏

i=0

Pr(Xi(t)) (3.5)

Let us denote the likelihood function L0 associated with hypothesis H0, and the like-

lihood function L1 associated with hypothesis H1. After each hypothesis is expressed in

statistical terms, L0 and L1 can be inferred from the maximum probability of

L0 = MAX{ui}{Pr(X0(0, 1, ..., T − 1),X1(0, 1, ..., T − 1), ...,XN−1(0, 1, ..., T − 1))} (3.6)

L1 = MAX{ui,t′,∆}{Pr(X0(0, 1, ..., t′−1), ...,XN−1(0, 1, ..., t′−1),X0(t′, ..., T−1), ...,XN−1(t′, ..., T−1))}
(3.7)

That is to say, for hypothesis H0 and H1, the maximum joint probability also can be

expressed as follows,

L0 = MAX{ui}
T−1∏

t=0

N−1∏

i=0

Pr(Xi(t)) (3.8)

L1 = MAX{ui,t′,∆}{
t′−1∏

t=0

N−1∏

i=0

Pr(Xi(t))}{
T−1∏

t=t′

N−1∏

i=0

Pr(Xi(t))} (3.9)

In the equation (3.9) we assume there certainly has one motion in time t′. With com-

paring the result L1 and L0 and computing them recursively, we will make the final motion

decision for the SPECT frames.

3.3 The Signal-To-Noise Ratio

The Signal-to-Noise Ratio is one important factor to measure the splitting frames strat-

egy. Signal-to-Noise Ratio(SNR) is the mean power carried by the meaningful information

divided by the mean power carried by the noise:

SNR(dB) = 10log10(Psignal/Pnoise) (3.10)

We compute SNR for different case studies to measure the performance.

11



CHAPTER 4

SPLITTING FRAMES FOR MOTION COMPENSATION

4.1 Algorithm Description

In Chapter 3, the basic splitting frames algorithm is designed. The algorithm description

is as following:

Algorithm SFA I (spheres locations, timestamps, frames numbers N)

1. With the no-motion hypothesis, calculate the maximum joint Gaussian distribution

probability L0 of m spheres for n sub-frames in time series.

2. With the one-motion hypothesis in the i-th sub-frame, calculate the maximum joint

probability L1 of m spheres for the first (i−1) sub-frames and the other (n−i+1) sub-frames.

3. If the frame splitting criterion is met (L1 > L0), do the splitting operation at the

i-th sub-frame, otherwise process new input data or exit the SFA algorithm.

4. After the splitting operation, treat the first (i−1) sub-frames and the other (n−i+1)

sub-frames as new frames respectively and perform the SFA algorithm recursively.

This algorithm computation complexity is O(N2lgN).

4.2 Speeding Up the Splitting Frames Algorithm

If a large set of input frames(with many spheres in one frame) is utilized, the splitting

frames implementation in Chapter 3 is time consuming. Also to take the statistics compu-

tation result more reasonable and tractable, we design the fast implementation for it. and

will take further log computation for the analysis. From the equation (1), we have:

12



ln(Pr(H0|X)) = ln(
Pr(H0)Pr(X|H0)

Pr(X)
) (4.1)

ln(Pr(H1|X)) = ln(
Pr(H1)Pr(X|H1)

Pr(X)
) (4.2)

To compare the value of equation (3.8) and equation (3.9), we need to compute ln((Pr(H1)Pr(X|H1))

and ln(Pr(H0)Pr(X|H0))

From equation (3.3) we have

Pr(X|H0) =
1

(2πσ2
0)

3
2

exp(−||X−X0)||2
2σ2

0

) (4.3)

Pr(X|H1) =
1

(2πσ2
1)

3
2

exp(−||X−X1||2
2σ2

1

) (4.4)

If there is no motion, we have

ln(Pr(H0|X)) > ln(Pr(H1|X)) (4.5)

Then

ln(Pr(H0))− ln(2πσ2
0)

3
2 − ||X−X0)||2

2σ2
0

> ln(Pr(H1))− ln(2πσ2
1)

3
2 − ||(X−X1)||2

2σ2
1

(4.6)

ln(
Pr(H0)
Pr(H1)

) + ln(
σ3

1

σ3
0

) >
1
2
(
||(X−X0)||2

σ2
0

− ||(X−X1)||2
σ2

1

) (4.7)

Motion decision threshold T = ln(Pr(H0)
Pr(H1)) + ln(σ3

1

σ3
0
) We assume σ0 = σ1, thus motion

decision threshold T = σ2ln(Pr(H0)
Pr(H1)). In the multi dimension space, when blobs location X is

located above the threshold space, we will make the motion decision. The Splitting Frames

Algorithm(SFA) uses hypothesis testing to decide and reset the frames for the location of

blobs on patient body in SPECT. We have two competing hypotheses for patient motion

decision and define the likelihood ratio criterion to decide on patient motion.

13



To speed up the Splitting Frames Algorithm, likelihood computation is also iteratively

expressed and converted to linear computation. The computation complexity is O(n) after

the conversion.

With the expression of Maximum Likelihood Estimation as follows:

L1 = MAX{ui,t′,∆}{
t′−1∏

t=0

N−1∏

i=0

Pr(Xi(t))}{
T−1∏

t=t′

N−1∏

i=0

Pr(Xi(t))} (4.8)

The non-linear computation can be converted to linear computation as follows:

L1 = MAX{ui,R,∆}{
R−1∑

t=L

(X(t)− X̄L)2 +
H∑

t=R

(X(t)− X̄H)2} (4.9)

Where L, R and H are variance based on the recursive computation.

R−1∑

t=L

(X(t)− X̄L)2 =
R−1∑

t=L

((X(t))2 + (X̄L)2 − 2X(t)X̄L)

=
R−1∑

t=L

(X(t))2 + (R− L)X̄2
L − 2X̄L(R− L)X̄L

=
R−1∑

t=L

(X(t))2 − (R− L)X̄2
L

(4.10)

Based on this derivation ,we can express L1 iteratively.

L1 =
R−1∑

t=L

(X(t))2 − (R− L)X̄2
L +

H∑

t=R

(X(t))2 − (H −R + 1)X̄2
H

=
H∑

t=L

(X(t))2 − ((R− L)X̄2
L + (H −R + 1)X̄2

H)

(4.11)

With the expression of Maximum Likelihood Estimation as follows:

L1 = MAX{ui,t′,∆}{
t′−1∏

t=0

N−1∏

i=0

Pr(Xi(t))}{
T−1∏

t=t′

N−1∏

i=0

Pr(Xi(t))} (4.12)

The non-linear computation can be converted to linear computation as follows:
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L1 = MAX{ui,R,∆}{
R−1∑

t=L

(X(t)− X̄L)2 +
H∑

t=R

(X(t)− X̄H)2} (4.13)

Where L, R and H are variance based on the recursive computation.

R−1∑

t=L

(X(t)− X̄L)2 =
R−1∑

t=L

((X(t))2 + (X̄L)2 − 2X(t)X̄L)

=
R−1∑

t=L

(X(t))2 + (R− L)X̄2
L − 2X̄L(R− L)X̄L

=
R−1∑

t=L

(X(t))2 − (R− L)X̄2
L

(4.14)

Based on this derivation ,we can express L1 iteratively.

L1 =
R−1∑

t=L

(X(t))2 − (R− L)X̄2
L +

H∑

t=R

(X(t))2 − (H −R + 1)X̄2
H

=
H∑

t=L

(X(t))2 − ((R− L)X̄2
L + (H −R + 1)X̄2

H)

(4.15)

The pseudo code is as follows:

sum1 = 0;

sum2 =
∑H

t=L(X(t))2;

for(R = L; R <= H; R++)

{
sum1 = sum1 + X(R);

sum2 = sum1 - X(R);

X̄L = sum1 / (R - L);

X̄H = sum2 / (H - R + 1);

L(R) =
∑H

t=L(X(t))2 − ((R− L)X̄2
L + (H −R + 1)X̄2

H)

}

In this fast implementation, the motion decision can be made in linear complexity O(N).
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CHAPTER 5

EXPERIMENTS AND CASE STUDIES

In chapter 3 and chapter 4, the splitting frames algorithm is represented. Some simula-

tion experiments, case studies and analysis will be showed in this chapter.

5.1 Case Study I

Simulation results are shown in Figures 5.1 and 5.2. Figure 5.1 shows the time-varying

positions of markers in the presence of patient motion. The hierarchical steps to split frames

for motion compensation are presented in Figure 5.2, where the probability L1 for every

possible motion time instant is shown.

There are 150 simulated data points in Figure 5.2. In (a), the probability L1 for every

possible motion during the first scan is shown, which is denoted by “Level 1” in the figure.

From the figure, we can see that the L1 at time 120 is the largest. So there is one motion at

t′ = 120. We then divide the input data into two frames [1, 119] and [120, 150], and apply

the same frame splitting algorithm.

There is no motion detected for the second part. The L1 results for the first part [1,

119] are shown in (b) as “Level 2”. We can easily see from (b) that there is one motion at

t′ = 90. The first part [1,119] is then divided into [1, 89] and [90, 119], and our splitting

frame algorithm is applied to them respectively until all motions are found.

There are four motions in the input simulated patient position data, and the detections

by our splitting frame algorithm are shown in Figure 5.2 from “Level 1” to “Level 4”.

5.2 Case Study II

Another experimental results are shown in Figure 5.3, Figure 5.4, Figure 5.6 and Figure

5.5. Figure 5.3 shows the time-varying positions of markers in the presence of patient
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Time-varying Positions of Spheres on Patient Body
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Figure 5.1. Time-varying Positions of Spheres on Patient Body in SPECT

motion. In Figure 5.4, the three dimension components of time-varying positions of markers

are shown. The hierarchical steps to split frames for motion compensation are presented in

Figure 5.5, where the probability L1 for every possible motion time instants is shown.

There are 150 simulated data points in Figure 5.5. In (a), the probability L1 for every

possible motion during the first scan is shown, which is denoted by “Level 1” in the figure.

From the figure, we can see that the L1 at time 120 is the largest. So there is one motion at

t′ = 120. We then divide the input data into two frames [1, 119] and [120, 150], and apply

the same frame splitting algorithm.

There is no motion detected for the second part. The L1 results for the first part [1,

119] are shown in (b) as “Level 2”. We can easily see from (b) that there is one motion at

t′ = 90. The first part [1,119] is then divided into [1, 89] and [90, 119], and our splitting

frame algorithm is applied to them respectively until all motions are found.

There are four motions in the input simulated patient position data, and the detections

by our splitting frame algorithm are shown in Figure 5.5 from “Level 1” to “Level 4”. The

corrected patient positions after splitting frames and resetting motions are shown in Figure

5.6, which are averaged during the intervals between consecutive motions.
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Figure 5.2. Hierarchical Maximum Likelihood Estimation for Splitting Frames

18



Time-Varying Spheres Positions on Patient Body
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Figure 5.3. Time-varying Positions of Spheres on Patient Body in SPECT

5.3 Case Study III

Another experimental results are shown in Figure 5.7, Figure 5.9, Figure 5.10, Figure

5.11, Figure 5.12, and Figure 5.8. Figure 5.7 shows the Y component of time-varying

positions of markers in the presence of patient motion. The hierarchical steps to split

frames for motion compensation are presented in Figure 5.9, Figure 5.10, Figure 5.11, and

Figure 5.12, where the probability L1 for every possible motion time instant is shown.

There are 30000 simulated data points in Figure 5.7. In Figure 5.9, the probability L1

for every possible motion during the first scan is shown. From the figure, we can see that

the L1 at time 15000 is the largest. So there is one motion at t′ = 15000. We then divide

the input data into two frames [1, 14999] and [15000, 30000], and apply the same frame

splitting algorithm.

Continuing this process, we are able to find all patient motions. There is one motion

detected for the second part (time interval [15000, 30000]). And there are two motions

detected for the first part (time interval [1, 14999]). There are four motions in the input

simulated patient position data, and the detections by our splitting frame algorithm are

shown in Figure 5.9 to Figure 5.12. The corrected patient positions after splitting frames

and resetting motions are shown in Figure 5.8.
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X Component in Time-Varying Spheres Positions
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Y Component in Time-Varying Spheres Positions
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Z Component in Time-Varying Spheres Positions
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Figure 5.4. Time-varying Positions Components of Spheres
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Maximum Likelihood Esitmation
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Figure 5.5. Hierarchical Maximum Likelihood Estimation for Splitting Frames
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Spheres Positions on Patient Body after Motion Reset
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Figure 5.6. Corrected Positions after Splitting Frames and Resetting Motion

Y Component for Time-vaying Spheres Position
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Figure 5.7. Large Scale Motion Case Studies

Y Component for Time-vaying Sphere Positions
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Figure 5.8. Corrected Positions after Splitting Frames and Resetting Motion
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Maximum Likelihood Estimation
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Figure 5.9. Maximum Likelihood Estimation for Time Interval [1, 30000]
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Figure 5.10. Maximum Likelihood Estimation for Time Interval [1, 14999]
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Figure 5.11. Maximum Likelihood Estimation for Time Interval [8000, 14999]
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Figure 5.12. Maximum Likelihood Estimation for Time Interval [15000, 30000]

5.4 Case Study IV

Another experimental results are shown in Figure 5.13, Figure 5.14, and Figure 5.15.

Figure 5.13 shows the time-varying positions of markers in the presence of patient motion.

In Figure 5.14, the X component of time-varying positions of markers is shown. The hier-

archical steps to split frames for motion compensation are presented in Figure 5.15, where

the probability L1 for the possible motion time instants is shown.

From Figure 5.13, we can see there is a large jump in patient positions at time 75, and

the positions go back at time 76. So this jump is actually caused by environmental noise,

and it should be detected as a false motion.

There are 150 simulated data points in Figure 5.15. From the figure, we can see that

The L1 at time 75 and 76 is not the largest. And the L1 at time 72 is the largest, but

the jump at time 72 is very small. So our splitting frame algorithm will not stop here, and

output no motion. This is the desired result.

Another experimental results are shown in Figure 5.16, Figure 5.17, and Figure 5.18.

Figure 5.16 shows the time-varying positions of markers in the presence of patient motion.

The hierarchical steps to split frames for motion compensation are presented in Figure 5.15,

where the probability L1 for the possible motion time instants is shown. The corrected

patient positions after splitting frames and resetting motions are shown in Figure 5.18.

From Figure 5.16, we can see there is a large jump in patient positions at time 75, and

the positions stay there for 5 time intervals and go back at time 80. So this jump is a real

24



Time-varying Spheres Positions
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Figure 5.13. Time-varying Positions of Spheres on Patient Body in SPECT

X Component in Time-varying Spheres Positions
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Figure 5.14. The X component of Time-varying Positions of Spheres on Patient Body in
SPECT
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Figure 5.15. Maximum Likelihood Estimation for Splitting Frames
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Time-varying Sphere Positions
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Figure 5.16. Time-varying Positions of Spheres on Patient Body in SPECT

patient move, which is not caused by environmental noise, and it should be detected as a

real motion.

There are 150 simulated data points totally in Figure 5.5. In (a), the probability L1 for

every possible motion during the first scan is shown, which is denoted by “Level 1” in the

figure. From the figure, we can see that the L1 at time 75 is the largest. So there is one

motion at time=75. We then divide the input data into two frames [1, 74] and [75, 150],

and apply the same frame splitting algorithm.

There is no motion detected for the first part, and we do not show the results for the

first part for brevity. The L1 results for the seconde part [75, 150] are shown in (b), which

is denoted by “Level 2”. We can easily see from (b) that there is one motion at time=80.

The second part [75, 150] is then divided into [75, 79] and [80, 150], and our splitting

frame algorithm is applied to them again. Because there are no motions in both parts, our

splitting frame algorithm will stop, and report all motions found.

There are two motions in the input simulated patient position data, which are found

using our splitting frame algorithm as shown in Figure 5.17. The corrected patient positions

after splitting frames and resetting motions are shown in Figure 5.18.

5.5 Discussion

In the splitting frames problems for motion compensation in SPECT, the hypotheses

are verified to make decision. We have studied the basic statistical algorithm and optimized
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Figure 5.17. Hierarchical Maximum Likelihood Estimation for Splitting Frames

Sphere Positions after Motion Reset
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Figure 5.18. Corrected Patient Positions after Splitting Frames and Resetting Motion
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algorithm for this problem. The recursive computation verifies the hypotheses at each

iteration, regarding the state sequence as unobserved data. The algorithm can filter the

impulse noise in sequences. This property of the algorithm is useful, because patient motion

is not recognized until the position value is held for a while. Also the performance of

the algorithm should be climbing with shorter time in SPECT, usually 15 minutes in the

practical application, with the small data sets.
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CHAPTER 6

CONCLUSION

6.1 Conclusion

The hypothesis testing based method has been taken for splitting frames problem for

motion compensation in SPECT. [9]The Bayesian recursive estimation methods are applied

in our decision. In the splitting frames algorithm after converting to linear computation and

iteratively expression likelihood value, the performance is good for sample SNR. Even if the

recursive computation is somehow time-consuming, the simulations in large scale data show

the acceptable results after optimizing implementation. Different motion cases are discussed

as well to verify the algorithm accuracy. Simulation experiment results demonstrate this

accurate and efficient splitting frames algorithm. The results from this work show that this

type complex problem can be handled with the statistical Bayesian method. One of the

future challenges is to apply this algorithm to the practical SPECT and VTS system.

6.2 Future Work

In our implementation, we assume the problem is based on Gaussian distribution. The

conceptual recursive update of the posterior status works very well, but it should be very

hard to implement when the problem is of nonlinear and non-Gaussian character. A trade off

between making decision accuracy and implementing complexity is controlled under sample

SNR in simulating implementations. The algorithm can be used in the verification of 3D

sphere motion decision, as well as the verification of 2D blobs motion decision. In future,

we can continue to construct some probability density functions to measure the splitting

frames reliability. There are a lot interesting problems left to solve, both theoretical and

practical area.

29



BIBLIOGRAPHY

[1] Bretthorst, G. Larry, 1988, Bayesian Spectrum Analysis and Parameter Estimation in
Lecture Notes in Statistics, 48, Springer-Verlag, New York, New York;

[2] B.Feng, H.C. Gifford, R.D. Beach, G. Boening, M.A. Gennert, M.A. King, ”Use of
the three-dimensional Gaussian interpolation in the projector/backprojector pair for
compensation of the known rigid-body motion in SPECT,” In Fully Three-Dimensional
Image Reconstruction Meeting on Radiology and Nuclear Medicine, Salt Lake City, July,
2005.

[3] E.H.Botvinick, Y.Y. Zhu, W.J. O’Connell and M.W. Dae, ”A quantitative assessment
of patient motion and its effect on myocardial perfusion SPECT images,” Journal of
Nuclear Medicine, Vol. 34, Issue 2, 303-310, Feb. 1993.

[4] F.M. Prigent, M. Hyun, D.S. Berman and A. Rozanski, ”Effect of motion on thallium-
201 SPECT studies: a simulation and clinical study,” Journal of Nuclear Medicine, Vol.
34, Issue 11 1845-1850, Nov. 1993.

[5] Jaynes, E.T. (1998) Probability Theory : The Logic of Science

[6] J.D. Morgenstern, M.A. Gennert, S. Nadella, N. Kumar, G.C. Speckert, P.P. Bruyant,
M.A. King. ”A real time multi-threaded system to detect patient motion in SPECT
imaging using multiple optical cameras.” Medical Imaging Conference IEEE 2004 Rome,
Italy - M5-74.

[7] J. Fitzgerald and P. G. Danias, ”Effect of motion on cardiac SPECT imaging: recogni-
tion and motion correction.” J. Nucl. Cardiol, vol.8, no. 6, pp.701-706, Nov.2001

[8] L. Ma, S. Gu, S. Nadella, P.P. Bruyant, M.A. King, M.A. Gennert, A practical rebinning-
based method for patient motion in SPECT imaging, Int. Conf. Computer Graphics,
Imaging and Visualization, Beijing, China, July 2005.

[9] L. Ma, B. Feng, J. McNamara, M.A. Gennert, M.A. King, Splitting Frames Based on
Hypothesis Testing for Patient Motion Compensation in SPECT, Accepted in IEEE
Nuclear Science Symposium and Medical Imaging Conference, California, Nov, 2006.

[10] ME Casey, H Gadagkar and D Newport 1995 ”A component based method for normal-
isation in volume PET” Proceedings of the 3rd International Meeting on Fully Three-
Dimensional Image Reconstruction in Radiology and Nuclear Medicine, Aix-les-Bains,
France.

[11] Matsumoto N, Berman DS, Kavanagh PB, Gerlach J, Hayes SW, Lewin HC, Fried-
man JD, Germano G. ”Quantitative assessment of motion artifacts and validation of a
new motion-correction program for myocardial perfusion SPECT.” J Nucl Med. 2001
May;42(5):687-94.

30



[12] M.A. Gennert, P.P. Bruyant, M.V. Narayanan, and M.A. King. ”Assessing a system to
detect patient motion in SPECT imaging using stereo optical cameras.” Nuclear Science
Symposium Conference Record, 2002 IEEE , Volume: 3 , 10-16 Nov 2002 Page(s): 1567
-1570. IEEE

[13] MH Hudson, RS Larkin, ”Accelerated image reconstruction using ordered subsets of
projection data.” IEEE Trans Med Imaging vol 13, pp. 601-609, 1994.

[14] P.P. Bruyant, M.A. Gennert, G.C. Speckert, R.D. Beach, J.D. Morgenstern, N. Kumar,
S. Nadella and M.A. King. ”A robust visual tracking system for motion detection in
SPECT: Hardware solutions.” Medical Imaging Conference IEEE 2004 Rome, Italy -
M5-266.

[15] P.P. Bruyant, M.A. Gennert, G.C. Speckert, R.D. Beach, J.D. Morgenstern, N. Kumar,
S. Nadella, M.A. King, ”A Robust Visual Tracking System for Motion Detection in
SPECT: Hardware Solutions,” In IEEE Trans. Nuclear Science, 2005.

[16] Pellot-Barakat, M. Ivanovich, D. A. Weber, A. Herment, D. K. Shelton; ”Motion De-
tection of Motion in Triple Scan SPECT Imaging”; 0018-9499, 1998, IEEE Trans. Nucl.
Sci., vol. 45(4): pp. 2238-2244, August 1998.

[17] R. Eisner, A. Churchwell, T. Noever, D. Nowak, K. Cloninger, D. Dunn, W. Carlson, J.
Oates, J. Jones and D. Morris, ”Quantitative analysis of the tomographic thallium-201
myocardial bullseye display: critical role of correcting for patient motion,” Journal of
Nuclear Medicine, Vol. 29, Issue 1 91-97, Jan. 1988

[18] R R Fulton, B F Hutton, M Braun, B Ardekani and R Larkin, ”Use of 3D reconstruction
to correct for patient motion in SPECT”, Phys. Med. Biol. 39 563-574 1994.

[19] R.R.Fulton, S.Eberl, S.R.Meikle, B.F.Hutton, and M. Braun, ”A practical 3D tomo-
graphic method for correcting patient head motion in clinical SPECT.” IEEE Trans.
Nucl. Sci., vol. 46: pp. 667-672, June 1999.

[20] William J. Geckle, Terry L. Frank, Jonathan M. links and Lewis C. becker, ”Correction
for Patient and Organ Movement in SPECT: Application to Exercise Thallium-201
Cardiac Imaging”, J. Nucl. Med. Vol. 29, PP:441- 450, 1995

[21] Zellner, A., (1980), in Bayesian Statistics, J. M. Bernardo, ed., Valencia Univer- sity
Press, Valencia, Spain.

31


