
1

Exploring Iterative Applications of Machine Learning on

Pyrolysis of Plastics

A Major Qualifying Project Report:

Submitted to the faculty of

Worcester Polytechnic Institute

In partial fulfillment of the requirements

For the degree of Bachelor of Science

In Chemical Engineering

By

Owen Ferrara

Eric Himebaugh

Matthew Rando

Christopher Skangos

Date: May 6th, 2021

Project Advisor: Michael Timko

This report represents the work of one or more WPI undergraduate students submitted to the

faculty as evidence of completion of a degree requirement. WPI routinely publishes these

reports on the web without editorial or peer review

2

Table of Contents
Acknowledgements ... 4

Abstract ... 5

Introduction .. 6

Background ... 6

Pyrolysis .. 6

Machine Learning.. 9

Methods .. 13

Primary Dataset Creation and Characteristics .. 13

Dataset Visualization ... 14

Machine Learning Models ... 17

Data Model Subset Creation ... 18

Application of Machine Learning .. 20

Model Evaluation .. 22

Results ... 23

Random Forest Regression ... 23

Piecewise Addition of Variables .. 23

Removal of Variables .. 24

Independent Variable Constraints .. 26

Oil Yield Constraints .. 28

Random Forest Classification .. 32

Piecewise Addition of Variables .. 32

Oil Yield Grouping Classification ... 34

Binary Classification of Models ... 36

Feature Importance .. 41

Regression Variable Importance ... 41

Classification Variable Importance ... 44

Cross-Validation .. 46

Python’s Sklearn ‘Cross_val_score’ on Regression Models .. 46

Python’s ‘Cross_val_score’ on Classification Models ... 48

Stratified Cross Validation Sampling Approach .. 48

Error Outlier Comparison .. 52

Future Directions and Improvements ... 56

Conclusion ... 57

References .. 58

3

Appendices .. 60

Appendix A: Literature Papers used for Data ... 60

Appendix B: All Model Results .. 62

Piecewise Model Regression Results .. 62

Regression Results for Models with Imputation ... 63

Regression Results for Models without Imputation ... 64

Regression Stratified Cross Validation Results.. 64

Piecewise Classification Results .. 65

Classification Model Results ... 66

Classification Feature Cutoff Model Results ... 66

Classification Stratified Cross Validation Results .. 67

Appendix C: Stratified Cross Validation Method Example .. 67

Appendix D: Random Forest Regressor 100 Simulations Code .. 71

Appendix E: Random Forest Classifier 100 Simulation Code .. 74

Appendix F: Python Cross_val_score Cross Validation for Regression and Classification Models 77

Appendix G: Stratified Cross Validation Method .. 78

Appendix H: Error Comparison Code .. 86

4

Acknowledgements

The team would like to thank our advisor Professor Michael Timko for his consistent guidance

throughout the course of this project, as well as the WPI Chemical Engineering Department. We

also thank Feng Cheng for assisting the team in accommodating to using Python and Scikit-learn.

Our team would also like to thank Elizabeth Belden for her help and feedback on developing

models and presentations. We also would like to thank Professor Randy Paffenroth, Wenjing Li,

and Rasika Karkare from the WPI Data Science Department for sharing their insight and

experience with machine learning algorithms with us.

5

Abstract
The world estimate for plastic pollution is expected to rise above 300 million tons annually.

This prompts the need for alternative chemical recycling solutions, such as pyrolysis. Pyrolysis,

high temperature, high pressure reactions, could prove to be a sustainable method to recycle

plastics and produce fuel oil. Collecting waste plastic to convert it to fuel via pyrolysis could help

significantly reduce the number of waste plastics, though accurately predicting the oil yield

remains a challenge. One way to predict the outcomes of these reactions is through machine

learning. In this work, 310 datapoints were collected of plastic pyrolysis data already existing in

the literature to create models that accurately predict the oil yield of a reaction based on the reaction

conditions. These models were created using Scikit-learn’s random forest regression and

classification methods. Due to the modest size of the compiled literature data set, emphasis was

placed upon incrementally improving the methods over iterations by variable selection,

constraining input variables and the output oil yield, and by selectively removing error-prone,

outlier data. From the models’ results, it was concluded that machine learning methods could

provide a viable way to predict pyrolysis oil yields.

6

Introduction

 Plastic’s increased usage throughout the world, especially within the industry, has

increased global pollution. As the world estimate for plastic pollution is expected to rise, there is

a need for more sustainable methods of its disposal. One promising sustainable option for

disposing and recycling plastics is through pyrolysis, a chemical process that decomposes plastics

at high temperatures in the absence of oxygen. Pyrolysis can effectively degrade plastics and poses

as a viable method of recycling to be used for future plastic materials or the production of oil.

 Having more sustainable methods for disposing of plastic would decrease the accumulation

of such pollutants. Finding these alternatives will create a more circular process that reduces excess

waste products and promises a cleaner environment. However, one roadblock preventing the

widespread use of pyrolysis is its chemical complexity. Kinetic modeling of reactions is difficult

and time-consuming, especially due to the presence of multiple sub-reactions and vast amounts of

feed compositions. An understanding of such kinetic reaction models requires extensive

development and knowledge of theory.

 Emerging technology in data science and machine learning can expedite the optimization

process. The application of machine learning allows for reaction data to be analyzed to discover

patterns and model processes faster than experimentally producing kinetic models. Machine

learning algorithms are typically trained on a large collection of data and then tested on new data

to independently determine their accuracy and validity. The objective of this research was to

explore and effectively use machine learning methods to predict pyrolysis oil yields. From this

novel approach, machine learning shows promise for future success and optimization.

Background

Pyrolysis

 Currently, global plastic production is estimated at 300 million tons per year and is

expected to rise.1 Since plastics are petrochemical hydrocarbons that include other additives that

make them difficult to biodegrade, the acceleration of plastic production paired with its inability

to decompose poses a problem for the future. Fortunately, sustainable methods of plastic disposal

are being developed to recycle millions of tons of accumulated plastic waste. In the past decade,

chemical recycling processes through pyrolysis have been explored to decompose polymer plastics

into monomers of a char or oils.1 These monomers of the plastic are then repolymerized to form

into other products including aromatic compounds, alternative fuels, or raw polymers that could

be reformed into another generation of plastic products.

While pyrolysis fuels are high in energy, the process is energy-intensive.2 Currently, it

takes 1.047 MJ to convert 1 kg of polyethylene (PE) plastic into liquid oil. Moreover, further

energy is then required to refine this oil into usable products which in turn releases similar levels

of emissions to conventional fossil fuels.1 The large energy demand for the operation of these

reactions on an industrial scale, paired with the irregular quality of plastic feedstock available

creates setbacks towards pyrolysis’ economic feasibility.3 However, there is potential for greater

success for future pyrolysis refineries that utilize other renewable processes such as solar and

7

hydroelectric to assist in producing oils. Through integrating renewable technologies, the high

energy required to operate pyrolysis reactions could be mitigated and reduce the overall emissions

of the process. Thus, these refineries would maximize economic and environmental benefits with

minimal waste production.1

Another method toward building the feasibility of industrial pyrolysis processes is through

the utilization of catalysts. Catalysts facilitate and speed up pyrolysis reactions ultimately making

these processes more efficient. It has been recorded that catalytic pyrolysis carries greater potential

to convert plastic to liquid oil, and through the lowered operating temperature and reaction time,

increases the oil’s quality.1 Also, the addition of catalysts alters the liquid product's physical

properties such as viscosity and decreases the oil’s density, flash point, boiling range, and high

heating value (HHV). Some examples of common catalysts utilized in pyrolysis are Iron (III)

oxide, Calcium hydroxide, fluid catalytic cracking (FCC), natural zeolite, or synthetic zeolite.1

Through a given catalyst, its BET surface area, pore size, pore-volume, and acidity will affect its

impact on the reaction. Catalyst acidity has been researched to be the most influential in pyrolysis

through its ability to remove impurities from liquid oil and promote more catalytic cracking.1

Moreover, this acidity increases the gasoline range of hydrocarbons within the produced liquid oil.

Moreover, innovations into nano-catalysts are in development that could ensure reliable yield and

performance of these reactions.1

Understanding the kinetics of pyrolysis reactions is essential to further optimize the

process. The primary modeling utilized for pyrolysis is radical chain kinetics, which focuses on

the thermal degradation of the reactants.4 The decomposition of polymers is complex as there are

multiple intermediary steps and reactions.5 In one study, to completely model the gas products of

polyethylene, the model contained equations for: the chain initiation to form two primary radicals,

the chain initiation to form one primary radical and one allyl type radical, termination, the primary

radical abstracting, the secondary radical abstracting, β-scission, and had to account for the H-

abstraction which is illustrated in Figure 1 below.4

8

Figure 1: Thermal kinetics responsible for H-abstraction sub reactions within pyrolysis.

While the complexity of these models is evident, research on the utilization of pyrolysis

kinetics has been conducted especially for determining the efficiency of operating conditions and

feedstock purity. In 2011, a study by Khaghanikavkani and Farid observed the activation energies

and pre-exponential factor for the pyrolysis of polyethylene plastic when operating conditions and

feedstock composition were varied.6 Under isothermal and non-isothermal conditions within a

semi-batch reactor, two different kinetic operating parameters and the activation energies of the

reactions were determined. The non-isothermal trial recorded the reactor temperature, the

respective activation energies, and pre-exponential factor values. The results revealed a correlation

between the carbon numbers and the activation energies, while also revealing that major

discrepancies may have been caused to unpredicted heat transfers from the reactor.

 Another study measured the kinetics of the thermal degradation of polyethylene and

polystyrene.5 The kinetic model focused on: the initiation reactions to form the first radicals, the

propagation reactions of intermediate radicals, β-scission of radicals to form unsaturated molecules

and smaller radicals, the Alkyl radical isomerization via (1,4) and (1,5) H-transfer, the H-

abstraction reaction (H-metathesis) on the polymer chain, and the termination reactions. By testing

different mixtures of polyethylene and polystyrene feedstocks, and running at various

temperatures, more accurate kinetics on how long these polymer residues last at a given

temperature were determined. While time and resource-intensive, understanding the thermal

kinetics of polyethylene pyrolysis could be utilized to increase the accuracy of predictive

modeling.

One of the many roadblocks that are hindering the implementation of industrial pyrolysis

processes is the complex reaction kinetics. While kinetic models for pure-fed plastic streams prove

to be difficult to model with kinetics initially, especially considering Figure 1 above, introducing

9

a mixed plastic stream drastically increases the complexity and intricacy of modeling the process’s

kinetics. While kinetic models for polymers have been developed, due to the variance in feed

components when applied to real-world scenarios, the model’s accuracy is drastically altered.4 In

addition, the wide variety of factors of pyrolysis make comparison of kinetics difficult between

differently designed reactions.

While experiments to optimize these reactions are time-consuming and expensive, kinetic

modeling research has offered the opportunity to utilize machine learning to model these reactions

and avoid the complexities inherent in the application of pyrolysis to an industrial, real-world

process. Through this analysis, the operating conditions that yield the best products can be

determined and cut through the traditional complexities of kinetic modeling. Already, preliminary

experiments have been conducted around the validity of machine learning models as opposed to

laboratory experimentation.

Machine Learning

 Currently, the machine learning literature in the pyrolysis space is sparse. One paper

compared applying the machine learning methods of decision trees and neural networks toward

reducing the computational time of detailed kinetic models of biomass pyrolysis.7 From the

research performed by Hough et al., two different types of multi-layer feed-forward networks

looked at the efficiencies and performance from each of the learning pathways. One of these

networks worked as a “full net” by using a single neural net and predicting 30 outcomes.7 The

other utilized 30 independent nets that all predicted single results. In comparison to a kinetic ODE

model developed by the same group, the ODE took 4.7 seconds of code execution time compared

to 1.1 x 104 s for decision trees and 1.7 x 104 s for the neural nets. While the neural network model

proved effective, decision trees were ultimately favored picked over them for faster training times

and simplicity. From the results, impressive accuracy in predicting the kinetic models for lignin

pyrolysis was discovered.

 Further literature has focused on developing predictive models for biomass yields.8 The

success of these models provides hope that while novel, machine learning research can continue

and be built upon. With machine learning processes, data is split into training and test sets where

the model interprets the training set to predict the test set. One of the more popular machine

learning techniques is called Random Forest (RF). RF utilizes decision trees to parse the dataset

for patterns. RF is popular within research due to its ability to work with small data sets, understand

higher dimensional relationships, and has been found to be more accurate than linear regression

methods for pyrolysis modeling.8 Therefore, the RF algorithm has become one of the primary

methods for early research on pyrolysis machine learning. With RF, either regression or

classification can be performed. Regression predicts an exact number, for example, an oil yield

from 0 to 100%. Classification predicts categorically, for example predicting either a 0 or 1

representing two groups above and below a certain oil yield. The current literature has solely

reported random forest regression results.

10

 As part of establishing a working algorithm, the dataset must be pre-processed. One method

of pre-processing is imputing missing data from a dataset. K Nearest Neighbors Imputation (KNN)

is a popular type of imputer used to estimate ranges of data. The imputer looks at data that is similar

to the point that it is trying to predict, or its nearest neighbors, and forms an educated guess as to

what the missing data could be.9 These missing sections or parts of data are a common problem in

machine learning and data science. KNN is dubbed a lazy learner because it waits until

classification is instructed to it rather than having prior knowledge about the data set. Other

imputation methods such as using the mean, median, and mode of data are also common practice.10

Previous biomass studies such as one done by Tang et al. observed success using RF

algorithms when comparing it to multiple linear regression (MLR).8 To determine the accuracy of

each model, R2 and the root mean square error (RMSE) metrics were used.8 R2 is a statistical

measurement to see how much the dependent variable is affected by the change in the independent

variable. RMSE determines how far away certain data is from the line of best fit by measuring the

difference between predicted values and the actual values.11 Below, Equations 1 and 2, show how

R2 and RMSE are calculated. The goal was to predict bio-oil yield and hydrogen content using

datasets with 137 and 264 datapoints, respectively. For inputs, pyrolysis conditions such as the

heating rate, particle size, and temperature were included. In addition, the paper included either

the proximate or ultimate composition information as inputs. The proximate information was fixed

carbon, ash, and volatiles. The ultimate compositions were the C-H-O-N compositions. For the

MLR method, the R2 was measured at 0.166 for the proximate yield, and 0.284 for the ultimate

yield. Moreover, the RMSE’s were measured at 7.45 and 7.96 respectively. When compared to

RF, the accuracy massively improved, with an R2 of 0.92 for the proximate yield and 0.87 for the

ultimate yield. The RSME’s measured 2.13 and 3.05 respectively. This report showcased the

impressive accuracy that RF regression models could produce in correspondence to biomass

reactions.

𝑅2 = 1 −
∑ (𝑌𝑖

𝑒𝑥𝑝 − 𝑌𝑖̂)
2𝑁

𝑖=1

∑ (𝑌𝑖
𝑒𝑥𝑝 − 𝑌𝑎𝑣𝑒

𝑒𝑥𝑝)2𝑁
𝑖=1

(1)

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝑌𝑖

𝑒𝑥𝑝 − 𝑌𝑖̂)2
𝑁

𝑖=1

(2)

In another study, bio-char yield and the carbon contents of bio-char (C-char) based on the

pyrolysis data of lignocellulosic biomass were modeled. In total, the research group used 245

datasets for bio-char and 128 datasets for C-char all comprised from previous publications.12

Through a random forest (RF) algorithm, the study separated input data into four categories:

Biomass Structural Components (Lignin, Cellulose Hemicellulose, (L-C-H)) and Ash, Element

Compositions (C-H-O-N), the particle size of biomass, and pyrolysis conditions (Heating Rate,

Highest Treatment Temp (HTT), residence time (RT)). Then, through 5-fold cross-validation

following the training and testing of the model, three methods were run twice: One with all data

11

in except C-H-O-N, another with all inputs except L-C-H, and finally with all inputs.12 Figure 2

showcases the resultant graphs from the respective trials. The idea to test different inputs helped

build this study’s methodology and approach to the developed pyrolysis of plastics dataset.

Figure 2: Comparison of predicted bio-char yield/C-char and actual values using test data with different

inputs: (A) all inputs except C-H-O-N, (B) all inputs except L-C-H, (C) all inputs. The red lines refer to

the line y = x (i.e. predicted values = true values).12

In the methods of Zhu et al.’s research, the bio-char yields prediction ranged from R2 values 0.8

to 0.85 with RMSE between 3.4 to 4.0. Both the models with all inputs and all inputs but C-H-O-

N performed the best. These results showcased the models in predicting the yield with a

comfortable accuracy measurement. Furthermore, in the tests focused on predicting C-char, the

model showcased its accuracy with R2 values from 0.75 to 0.85, and RMSE’s from 5.8 to 6.9.12

 In one of the only published studies on pyrolysis of plastics with machine learning, a feed-

forward neural network model utilized a small 24 point dataset of several mixed consumer plastics

compositions (HDPE, LDPE, PP, and PS) to determine the oil yield of non-recycled plastics.13

These four compositions were used as the only inputs for predicting yield rather than using

pyrolysis conditions. However, the paper only included data between 400 and 500℃. The paper

assumed that the plastic inputs were between 2 to 3 mm in particle size, and all had reaction times

of 30 minutes. Through the model, a mean squared error (MSE) of 0.11 was computed. When

comparing the experimental results from the dataset to the predicted curve, the MSE was found to

be 2.64 x 10-4. This reported value of MSE reported that the model fits almost perfectly to the

12

predicted yields. Reported R2 values were above 0.9 in both the training and validation datasets

only further validating their model.13

Through the success of the predictive power from such as small data set size, the power of

optimization through machine learning was realized. The success of this paper and others inspired

this team to attempt to test the random forest algorithms of plastics pyrolysis, which has shown

success for biomass pyrolysis. To expand the size of the training and test sets from the Abnisa et

al. paper, the collection of pyrolysis of plastics dataset was necessary.13 Instead of testing a model

on only plastic mixtures, all plastic feeds would be included along with reaction conditions in the

literature search. Overall, the goal was to explore a synthesis of methods utilized by the limited

literature as well as discover new information from the novel approach of applying random forest

on a plastics dataset.

13

Methods

Primary Dataset Creation and Characteristics

 The primary data set, which was used to create all the machine learning models, as well as

to create subsets of data, was compiled from an analysis of relevant literature. Variables collected

included the plastic composition percentages, being made up of some amount of high-density

polyethylene (HDPE), low-density polyethylene (LDPE), polypropylene (PP), polystyrene

(polyS), polyvinylchloride (PVC), and polyethylene terephthalate (PET). The other variables

included the reaction conditions with which pyrolysis was carried out, as well as the quantifiable

results of the process. These variables include reaction temperature (T) in Celsius, heating rate

(HR) in Celsius per minute, particle size (PS) in millimeters, feed size (FS) in grams,

residence/reaction time (RT) in minutes, nitrogen sweep flow rate (𝑁2 Rate) in nitrogen per

minute, the presence of a catalyst (Cat), reactor type (R type), and included three different

dependent variables being oil yield, gas yield, and char yield. The inclusion and search of these

variables were inspired by the papers that utilized machine learning to predict biomass pyrolysis

using feed characteristics and pyrolysis conditions. In addition, the utilization of the plastics

compositions was inspired by the Abnisa et al. paper which achieved successful results from only

24 data points.13 After a literature search, the primary dataset consisted of 310 unique data points,

amassed from 37 different articles.

 In some cases, estimation had to be used to determine the value for a specific variable when

making the dataset. This was due to the source of that datapoint perhaps being conveyed through

graphical means, given with a certain amount of uncertainty attached to it, or given as a range of

values. The lattermost of these was typical for feed and particle sizes. For cases using uncertainty,

these were ignored, and when ranges of values were given, an arithmetic average was taken for

use in the primary dataset. Additionally, not every data source included each type of independent

variable. For example, many studies did not include a nitrogen sweep gas, nor did some report a

reaction time or residence time. This problem existed for numerous independent variables and is

illustrated by Table 1. All the sources used to create the primary set reported feed composition,

temperature, yield data, and no mention of a catalyst was taken to mean that no catalyst was present

during the reaction. All 37 papers from which data were collected can be found and referenced in

Appendix A. Catalyst characteristics such as the catalyst type, particle size, amount, and surface

area were collected but not used for model information due to lack of consistency between the

reporting of catalyst information. When being input into the model, catalysts were denoted with

either a 0 or 1. Zero indicated that no catalyst was present in the reaction and one indicated that

there was a catalyst. For reactor type, several scenarios arose for determining the appropriate

category. To limit the variables for reactor type, five categories were decided on for the model:

batch, fixed bed, fluidized bed, horizontal tube, and semi-batch. Literature papers either included

one of these categories directly or provided a description that was used to sort the data points

towards one of these five categories. For example, one paper by Palafox-Ludlow & Chase from

2001 used a modified microwave oven, which was sorted into the batch category for the model.14

Reactor type was modeled similarly to catalyst. Each reactor type (batch, fixed bed, fluidized bed,

horizontal tube, and semi-batch) was given its own column in an input excel csv file. These

columns had a 1 for the reactor used for the reaction and a zero in place of all the other reactors.

14

This is a process called one-hot encoding which is common in machine learning.15 The two

datasets, one being the raw unedited version and the model ready dataset can be found in the

supplemental materials submitted alongside this paper. Note that neither N2 flow rate nor residence

time data were used to make the models. This was due to low reporting with residence time

appearing in roughly 22% of the papers and 54% reporting the N2 flow rate.

Table 1: Percentage of papers that reported pyrolysis conditions. Note: 100% of papers included

temperature and compositions.

Heating

Rate

Particle

Size

Feed

Size

Residence

Time

Reaction

Time

N2 Flow

Rate

Data Points 238 217 207 69 177 126

% of Entries

Reporting
84 70 78 22 65 54

Dataset Visualization

 Throughout the 310 data point dataset, it was necessary to visualize the features within it

to graphically understand the data that had been collected. Before running and choosing models,

these investigations helped guide testing. Even though the dataset was small, there were many

ways in which the dataset could be manipulated to create a vast number of permutations. Because

of this, the dataset needed to be constrained in certain ways to focus on research. One of the

primary differentiations between data points was whether the collected point was influenced by a

catalyst or not. Overall, there were 99 catalyst datapoints and 211 non-catalyst data points as

visualized in Figure 3 below.

Figure 3: Datapoints with catalysts and without catalysts.

 Another key part of the dataset was the composition of the plastic feed whether it was

HDPE, LDPE, PP, PolyS, PVC, or PET. A chart indicating the distribution of pure feeds and mixed

feeds with respect to temperature can be seen in Figure 4. Overall, there were 209 pure feeds of

15

plastics and 101 mixed feeds of plastics reported from the research articles. Ideally, more mixed

feed data would be useful, especially for future applications to plastic wastes, however, the current

literature was focused on pure feeds. Figure 4 displayed that mixed feeds were most prevalent

within the 400 to 550 °C range, whereas pure feed data expanded uniquely into the higher

temperature data points above 700 °C. For this reason, a temperature range of 400 to 550°C

included a high combination of mixed and pure feeds. This was an important development because

a primary goal was to develop a model that could handle mixed feeds.

Figure 4: Distribution of pure feeds (Blue) and mixed feeds (Orange) across various temperatures.

Concerning the pure feeds themselves, HDPE, LDPE, and PP made up the majority with

65, 53, and 56 data points, respectively. There were 21 pure PolyS points, 13 pure PET points, and

only one pure PVC point. The spread of composition percentages was also visualized using Figure

5 below. For the compositions of HDPE, LDPE, PP, and PolyS, there were similar spreads. LDPE,

PP, and PolyS themselves appeared the most similar. PVC and PET data were sparser between the

compositions of 40 and 90%.

0

10

20

30

40

50

60

70

80

90

100

200 300 400 500 600 700 800 900

O
il

 Y
ie

ld

Temperature (°C)

No Mix

Mix

16

Figure 5: Plastic composition spreads for each plastic type organized by plastic number.

 Similar to catalyst data, the reactor type was considered as an input variable and was

recorded from literature data. Figure 6 displays the distribution of reactor types for all data points.

Most of the data were from batch reactors, consisting of 200 total data points. This indicated that

potentially a model with only batch data could be a good focus for an algorithm. The next most

common were fixed bed and fluidized bed at 50 and 42 data points, respectively. Horizontal tube

reactor data had 15 data points, all from one study from Quesada et al.16 There were only three

semi-batch points from one paper by Kumar & Singh.17

Figure 6: Reactor type dataset distribution for the five reactor types.

 In addition to observing the features collected for the model, understanding the output of

the model was also important. Plotted in Figure 7 was the number of datapoints for each oil yield.

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6

C
o
m

p
o
si

ti
o
n
 %

Plastic Number Type

PET HDPE LDPEPVC PP PolyS

0

50

100

150

200

250

Batch Fixed Bed

Reactor

Fluidized Bed

Reactor

Horizontal

Tubular Reactor

Semi Batch

D
at

ap
o
in

ts

17

To better visualize this, oil yields were rounded to the nearest 5. For example, 91.2 would become

90, and 78.7 would become 80. The most common oil yields were around 70 to 85%. When

observing the split of the data, around 89 datapoints were below 50% oil yield and 221 were above

50% oil yield. The importance of this was that the model would have more information on data

above 50% yield based on data points alone. Furthermore, it indicated that performing oil yield

cutoff testing and classification of oil yields above or below a certain threshold could be useful

and was worth testing.

Figure 7: Oil yield distribution of datapoints. Note: Oil yield was rounded to the nearest 5 to make for a

cleaner visual.

Machine Learning Models

 From the dataset, various models were created using several different strategies to

investigate how different portions of the dataset would react to the algorithm. For making models,

missing data was a common problem. This was due to differences between reported pyrolysis

conditions in the literature. There were two approaches towards this problem, omitting data with

missing conditions or imputing the data. Several of the models included imputed data and others

did not. These models were named Model A through Model I. A description of each is present in

Table 2. Model A was based on the hypothesis that reaction time data was a critical feature in

conjunction with temperature and composition to predict oil yields. For this reason, this model

included every literature data point that reported a reaction time. The rest of the data for this model

was imputed with the KNN method. Model B included every data point and was chosen to see

how the model reacted to imputing all the missing data not reported by literature. Model C was

developed based on a strategy from Abnisa et al. where a neural net model was used to predict oil

yields. For this model, only composition data was used as the input features.13 Furthermore, only

compositions between 400 to 500 °C and 0 to 3.5mm particle size were included. Model D included

all the data reported from batch reactors. This was considered because most of the data, around

0

10

20

30

40

50

60

70

10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

D
at

ap
o
in

ts

Rounded Oil Yield %

18

two-thirds, were from batch processes. Model D, similarly, with A and B had missing data imputed

with KNN. Models E and F were attempts at modeling the process without data imputation. Model

E did not include reaction time as a feature. Whereas Model F did not include feed size nor reaction

time. Reaction time was not included in either Model E or F to preserve as many data points as

possible compared to the imputed model. If unimputed reaction time was included, then the Model

E and F would be reduced to 82 and 101 datapoints, respectively. Models A through F were tested

with the random forest regressor. In addition to these, three different models were tested with a

random forest classification method. These were Model G, H, and I. Model G was Model B

adapted for classification. Similarly, Model H and I were based on Model F and adapted for

classification. Model I used a simple binary classification, either 0 or 1, and Model H used the

grouping method where oil yield ranges were assigned numbers, either 1-4 or 1-7 depending upon

the test being performed.

Table 2: Different models developed for regression and classification random forest algorithm with data

points and descriptions

Model Data Points Description

A 182 Imputed, Unimputed Reaction Time Data

B 310 Imputed, All Data

C 199 Unimputed, Based on Abnisa et al. 201913

D 200 Imputed, Batch Reactor Data Only

E 132 Unimputed, Feed Size included

F 171 Unimputed, Feed Size not included

G 310 Imputed, Based on Model G for classification

H 171 Unimputed, Based on Model F for classification, Grouping Method

I 171 Unimputed, Based on Model F for classification

Data Model Subset Creation

 From the original 310-point data set, numerous subsets of models were created for different

machine learning analyses. While there were many ways to segregate the data, there were three

main categories of these subsets:

I. Removal of specific independent variables

II. Variable constraints

III. Oil yield constraints

From a chemical kinetics perspective, not every variable that was included in the primary dataset

was as useful as the other. For example, the mass of the feed placed into a reactor surely does not

affect the yield of the reaction as much as the temperature or the heating rate. For this reason, many

trials were included that removed certain independent variables from contention within the

machine learning algorithm. Another important reason to remove certain variables was for trials

that did not include data imputation; any variable missing a very large amount of data would need

to be removed, such as 𝑁2 flow rate, as indicated by Table 1. In addition, variables would also be

19

added piecewise to the model where compositions would be tested alone, then add temperature,

and more to observe the effect on the model’s results.

 Some variables were constrained, meaning that only values that appeared in a certain range

would be taken and used in the machine learning analysis. For example, Figure 8 displayed that

most of the temperature data exist between 400°𝐶 and 600°C, with some outlier data points. With

the hypothesis that removing certain outlying datapoints would increase the accuracy of resulting

models, some variables for specific trials were constrained within a range of values.

Figure 8: Distribution of temperature datapoints compared to the oil yield, for the primary dataset.

Because the RF model requires a sizable amount of information to accurately predict output

variables, outlier input variables could cause problems. This can be more easily visualized at

temperatures around 200 or 300°C, where the model has very little information to draw from, only

5 data points. It was unreasonable to expect that the model will have enough information to make

an accurate prediction with such a small amount of information, so the choice was made to test

how constraining variables would affect the performance of the models. Similarly, the dataset had

a wide range of particle sizes reported from literature ranging from 0.225 to 50 mm. Figure 9

displays the particle size distribution throughout the dataset. Out of the 218 data points reported

from the literature with particle size included, 174 of them were below 5mm and 133 were below

3.5mm. Based on this distribution and the constraints imposed by the Abnisa et al paper, another

feature cutoff was tested in between 0 and 3.5mm particle size.13

 The dependent variable of the dataset, the oil yield, was another variable that was

constrained in the machine learning analyses. Due to the large distribution of yields, seen in Figure

7, the decision was made to focus some machine learning algorithms on certain ranges of oil yields.

This was tested for both the regression and classification models. For the regression models, tests

0

10

20

30

40

50

60

70

80

90

100

200 300 400 500 600 700 800 900

%
 O

il
 Y

ie
ld

Temperature (°C)

20

were conducted to predict data within oil yield ranges of 60 to 100% for example. For

classification, the decision was typically made to focus the oil yield on areas above 60%. This cut-

off was also increased to 70% and 80% to view the differences inaccuracy. Since the area of the

highest importance to the practical use of pyrolysis is areas of high yield, the focusing of the model

in those areas should help to improve its accuracy.

Figure 9: Particle size distribution throughout the primary dataset.

Application of Machine Learning

 For the machine learning algorithm, both Random Forest regression and classification

using Scikit-Learn’s library were used. This was chosen due to random forest’s popularity for

regression problems, its simplicity, and its application in biomass pyrolysis literature. The inputs

used to train the model were called features. The features used depended on the model being run.

Oil yield was the output of each model. For each model run, a dataset was broken down into a

training and test dataset with a split of 80% of the data in the training set and 20% of the data in

the testing set. The model trains on the 80% and cannot interact with the separated 20% testing

dataset. The random forest regressor and classification functions were run with 𝑛−𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠 =

1000 and the remainder of settings were left as default from the scikit-learn library.18 After training

was complete, the trained algorithm was run on the test set to see how well the model performed.

Statistics for assessing regressors mean absolute error (MAE) and root mean absolute error

(RMSE) was used. For classification models, accuracy % was used as a metric. To collect data as

fast and complete as possible, models were run for 100 simulations. Each simulation would have

a unique train and test split as well as metrics. These metrics were averaged throughout the 100

simulations to use one number to describe how well the algorithm performed for that model. The

code for these simulations can be found in Appendices D and E. For missing data that needed to

be imputed, the KNN method was utilized. When running the KNN code the number set for N

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30 35 40 45 50 55

%
 O

il
 Y

ie
ld

Particle Size (mm)

21

nearest neighbors was determined by taking the square root of the dataset size.19 If an even number

was the result, the number would be rounded up to the nearest odd number. This was done because

KNN requires an odd number to decide which number to impute in case of a missing value.9

 Regardless of whether imputed data was used or not, cross-validation was used as a method

to test the robustness of the model. If the difference between the validation metric and test metric

was high, then the model may not be considered robust no matter how well the test set performed.

Cross-validation is a method where data in the training set is divided into subsets called fold or

bin. All subsets besides one are then used to train the model and the last is used for a validation

test. After each subset is tested once, a validation score can be averaged. Two different methods

were attempted for cross-validation: one supplied by the scikit-learn library and a stratified method

developed using Python.18 The code for these can be found in Appendices F and G respectively.

The scikit-learn method was a function named ‘cross_val_score’ which separated the model

training set into the desired cross folds and outputs a validation score for the chosen metric. The

number of cross folds was set to five and the rest of the parameters were left as the defaults from

the scikit-learn library. The stratified method involved pre-separating a dataset into 5 equally

representative excel prep sheets of oil yields. This was done due to the uneven distribution of oil

yields within the collected dataset. An example of this split can be seen in Appendix C. After

splitting the data into five different prep groups, these were inputted into a python code that

shuffled each prep sheet. From there, 20% of each prep sheet was removed randomly to represent

a test set. The remaining data in each of the five prep sheets would be split into five new groups.

These new groups were known as the cross-validation bins. Each cross-validation bin would

contain 20% of the data from each prep sheet. From here, the random forest algorithm was run

with four of the cross-validation bins as the train set and the last as the validation set. This would

repeat four more times so that each cross-validation bin would be the validation set once. From

the five simulations, the metrics of MAE and RMSE were gathered for each. These were then

averaged to determine the validation score of a particular model. This method was visualized with

Figure 10 below.

Figure 10: Stratified cross validation diagram flowchart.

22

Model Evaluation

 Numerous parameters were calculated for several different RF regression and classifier

models to test their accuracy. For regression, these metrics were the mean absolute error (MAE),

and the root-mean-square error (RMSE), defined as follows,

𝑀𝐴𝐸 =
(∑ |𝑒𝑖|

𝑛
𝑖=1)

𝑛

(3)

𝑅𝑀𝑆𝐸 = √
(∑ |𝑒𝑖|2𝑛

𝑖=1)

𝑛

(4)

where 𝑒𝑖 represents the difference between measured and actual values. MAE was a metric where

all the errors were summed and divided by the total data points predicted. RMSE, as defined in the

background, highlighted how far from the line of best fit predicted data was. Throughout the

process of creating and running different random forest models on the pyrolysis dataset, all results

for regressors were compared via these two metrics to determine broadly which performed the

best. For classification, accuracy was a measure of the percentage of times the model predicted the

correct category.

23

Results

Random Forest Regression

 Random forest regression was the primary machine learning method used to make

predictions on pyrolysis oil yield. Within RF itself, there were many ways to tweak the model to

produce more valuable and accurate results. The next four sections detail the results of these

methods. For reference, Appendix B contains all results from this section.

Piecewise Addition of Variables

 For piecewise models, the first test was run using only compositions as the input variables

to predict oil yield. This was run as an initial base test since all the composition data was reported

from literature and no data needed to be directly imputed. After that, the temperature was added

as a variable since all literature sources reported temperature as well. The temperature was also

tested on its own. As a result of literature reporting all these values, each of these tests was 310

data points. The results from this test are represented in Figure 11 below for MAE and RMSE.

Using only compositions, the model performed around 14 and 18 for MAE and RMSE

respectively. When using temperature only as an input feature, the prediction of the algorithm

worsened to 16.4 MAE and 20.5 for RMSE. The combination of the two improved the prediction

to 11.3 and 16.3 for MAE and RMSE respectively. This indicated that the addition and removal of

features did play a critical role in determining model performance.

Figure 11: Initial testing of using only compositions, temperature, and a combination of the two to

predict oil yield. The result is the % for MAE and RMSE for the Oil Yield

 It was also of interest to see if the addition of other variables affected and improved the

model on top of compositions and temperature. These two variables were the catalyst and reactor

type. Both were one hot encoded into the algorithm. This was tested stepwise, first with a catalyst

13.9

16.4

11.3

18

20.5

16.3

0

5

10

15

20

25

Compositions Temperature Compositons and

Temperature

P
re

d
ic

ti
o
n
 M

et
ri

c
%

MAE

RMSE

24

added on top of compositions and temperature and then reactor type was tested with compositions

and temperature separately. Finally, the two were tested together. The results can be seen in Figure

12 below. Overall, reactor type had more effect than catalyst on its own bringing the MAE down

from 11.3 to 10.5 and RMSE down from 16.3 to 15.1. Adding both together resulted in slightly

similar results to only adding the reactor type feature with a change in MAE from 11.3 to 10.3 and

RMSE 16.3 to 14.8. However, the overall effect was not as large as it was when the temperature

was added to the model.

Figure 12: Observing if adding catalyst and reactor type improved the model from having only the

compositions and temperature.

Nevertheless, this further showed that the addition of features improved model

performance overall. From this, the effect of removing features from the developed models

described in the Machine Learning Models section was attempted. This involved removing

features that were not reported for all 310 data points such as feed size.

Removal of Variables

 Model F, derived from the primary data set, was an unimputed model, including all the

features of the primary set except for the feed size and reaction time. This model was run three

times after the base model to test removing specific features from the model. The specifics of each

run for the model can be seen below in Table 3.

11.3 11.4
10.5 10.3

16.3 16.3
15.1 14.8

0

2

4

6

8

10

12

14

16

18

Compositons &

Temperature

Compositions,

Temperature, &

Catalyst

Compositions,

Temperature, &

Reactor Type

Compositions,

Temperature,

Catalyst, & Reactor

Type

P
re

d
ic

ti
o
n
 M

et
ri

c
%

MAE

RMSE

25

Table 3: Model F (171 Data Points) random forest results.

Model MAE

MAE Standard

Deviation RMSE

RMSE Standard

Deviation Features

F.1 8.8 1.5 13.0 2.1 T HR PS Cat R type

F.2 8.9 1.4 13.4 2.2 T HR PS Cat -

F.3 9.0 1.4 12.9 2.0 T HR - Cat R type

F.4 9.5 1.4 13.7 2.0 T HR - Cat -

The progression from Model F.1 to Model F.4 revealed that as features were removed, the

resulting errors in the model generally increase. This stood to reason as Model F.1 contained only

171 data points, meaning that a sizable percentage of raw data was lost with each iteration of

feature removal. Models F.2 and Model F.3 are both missing a single feature, and both exhibit a

slight uptick in MAE compared to the base model. The removal of the particle size and reactor

type data, respectively, both caused similar increases in error. Of all the literature collected in this

study, 65% of the reactions reported were carried out in a batch reactor. In comparison to the

particle size data, values varied much more widely, between 0.225 and 50 mm, with many more

unique values than the five possible reactor types. Despite this difference, the removal of the

reactor type data, which contained less total information regarding the data set than the particle

size data, resulted in a similar increase in MAE as compared to the removal of the particle size

feature. The RMSE reported for F.3 was similar to the error reported by model F.1, which was

understandable.

 When both features were removed and tested in Model F.4, both error metrics increased

largely compared to the base model F.1; both the MAE and RMSE increase by 0.7. It stands to

reason that as more information was taken away from the model, that the model would become

less accurate. The results from F.2 and F.3 seemed to suggest that this was not a perfectly linear

trend and that there seemed to be a limit to the amount of data that can be removed from the model

before an appreciable decrease in performance occurs. Additionally, this loss of information also

appeared to compound upon itself. The removal of particle size and reactor type increased the

MAE by about 0.1 and 0.2 respectively, but the removal of those features at the same time

increased the MAE up to 0.7. This compounding error was important to take into consideration for

the creation of any new models, as the loss of information can cause a decrease in model accuracy.

26

Independent Variable Constraints

 Like the results above, other trials were created and run to test how constraining variables

to be within a specific range of values would affect the overall performance of the RF regression

model. Results for these trials are in Table 4.

Table 4: Variable constraint analysis on models.

Model MAE Std Dev RMSE

Std

Dev Constraint(s) Features

A.1 8.30 1.60 12.50 2.80 None T HR
P

S
FS

Rxn

Time
Cat R type

A.2 7.50 1.40 11.00 2.20
No >90 min

Rxn Time

A.3 8.40 1.60 12.10 2.40

No >90 min

Rxn Time & T

>650 C

B.1 8.66 1.10 13.20 1.80 None T HR
P

S
FS

Rxn

Time
Cat R type

B.5 8.45 1.46 12.32 2.30 400 to 500C

B.6 8.14 1.73 12.32 2.90

400 to 500 C 0

-3.5 PS No

1000 FS

D.1 8.41 1.44 12.58 2.42 None T HR
P

S
FS

Rxn

Time
Cat

D.2 8.50 1.50 12.65 2.47 400 to 500C

D.3 6.72 1.76 11.16 3.59

400 to 500 C 0

-3.5 PS No

1000 FS

All ‘X.1’ models were the basis for which the models containing cutoffs were compared.

Within each model, placing constraints on specific variables resulted in both increases or decreases

in the error. For example, with no constraints on Model A.1, the average MAE of 100 simulations

was 8.30. Excluding all reaction times greater than 90 minutes decreased the MAE to 7.50. When

more constraints were added on, the model worsened in A.3 with an increase to 8.40 MAE. In this

model, all reaction times greater than 90 minutes were removed, as well as all data containing

temperatures larger than 650°𝐶.

 Model B tested different constraints. In this model, the only data considered were all those

data points that contained a temperature between 400 and 500°C. A small decrease from an MAE

of 8.66 to 8.45 was observed but was tempered by an increase in the standard deviation. Model

B.6 contained three constraints, being excluding all temperature data outside the range of 400-

500°C, including only particle sizes with the range of 0-3.5 mm, and excluding feed size data of

1000g. Despite the increase in constraints, Model B experienced a slight decrease in MAE and

RMSE with these constraints which contrasts with the information gathered from Model A.

27

 Model D was like Model B, except that it did not include reactor data. This was because

Model D used only batch reactor data. The first iteration of the model achieved an MAE of 8.41.

Constraining the model to temperatures between 400 and 500°C produced a small uptick in error

to 8.50 but adding the constraints on particle size (no values greater than 3.5 mm) and feed size

(no values of 1000 g), decreased the model’s MAE to 6.72, the lowest of models tested. Including

constraints helped to improve certain models more than others. From these tests, it was determined

that Model D.3 produced the lowest MAE and second lowest RMSE value. To determine why this

was the case it was necessary to individually test specific constraints as well as to visualize the

data. Using Model B.6 as an example, feed size data of 1000g, as mentioned previously, was

excluded. Included below, in Figure 13, is a chart depicting the variance between oil yields and

feed size within the training and testing sets. In the figure, the red points were in the train set and

the blue points were in the test set.

Figure 13: Charts displaying the variance between feed sizes and oil yields. (Red) points are specific

points that the model used in the training set. (Blue) points are those that the regressor used in the testing

set. (A) shows the oil yield distribution compared to feed size and (B) shows the oil yield distribution

compared to temperature.

(A)

(B)

28

Figure 13 provided a rationale for understanding why removing certain data points may

have been beneficial. As can be seen in the first chart (A), there was a large amount of missing

information for feed sizes between 400g and 1000 g, and at 1000g there was a great amount of

variance between the oil yields. For this reason, it could have been beneficial to focus the model

on feed sizes below 1000g, in hopes that this would improve performance instead of trying to focus

on an area with only a small amount of data. With the temperature data in the second chart (B),

most of the data exist within the range of 400-500°C, with a decent chunk of data existing at about

550°C. Due to this wide range of values for both the temperatures and the oil yields at those

temperatures, performance was improved in the models by constraining to an area where it may

better train and test itself. Ideally, the temperature data would contain a relatively healthy

distribution of red points and blue points, indicating that the model tested and trained itself on

similar data points, which would lend itself to better predict oil yield. Because of the large swath

of temperatures, the model may not be able to test itself for many different values. For example,

in chart (B) displaying oil yield versus temperature, the model tested itself with the highest yield

data points at both 600°C and 700°C, though it trained itself with lower yield data points. This

could have been a source of error within the model due to the slight differences between the testing

and training set; neither set of data contained a complete distribution of temperatures and yields.

Oil Yield Constraints

 The fourth method of feature engineering was to test the model which included data within

a specific range of oil yields. As pyrolysis is a chemical process, the most beneficial physical result

of a machine learning analysis would be to provide information that helps to maximize the oil yield

for future reactions. As such, in some cases, oil yields that were below a certain threshold, for

example, 40% or 60%, were removed from the data set and the model was trained and tested only

upon those points which contained oil yields above those values. This was additionally beneficial,

as for most of the models, high yield data points were the most plentiful, and as such, the model

was able to predict them more accurately. Below is Figure 14 which is a parity plot displaying the

difference between high and low yield data points with respect to the error from the predictions.

29

Figure 14: This chart indicated the closeness of predicted oil yield values to actual oil yield values for

Model E. There was a noticeable decrease in accuracy for oil yield values between 20-60% versus 60-

80%.

To include all the low yield data points would be to provide a more holistic model of

pyrolysis, but from a perspective of pure utility, the most important values to predict correctly

were those of high yields. Having a model that could predict well at high yields could help tailor

reactions to operate as efficiently as possible and to produce as much oil as possible. There are

essentially no benefits of operating at a low oil yield, and as such, it was beneficial to see how the

RF models reacted to removing areas of low oil yield. Figure 15 below, displays the results of

these tests on Models A and B.

30

Figure 15: The charts above indicate how the MAE of a model changed by varying the oil yield cutoff.

Both models have no constraint to start, and successive bars indicate that only data above a certain oil

yield was used within that model. Increasing the oil yield constraints was shown to increase the accuracy

of Models A and B.

For Models A.3 and B.3, both the MAE and RMSE of the model decreased drastically via

the removal of low oil yield data. With no constraints on the data, Model A.3 output an MAE of

8.4. When data below 40% oil yield was removed, the MAE decreased to 6.9, and when the all-oil

yields below 60% were removed, the MAE decreased further to 4.8. Model B.3 exhibited similar

8.4

6.9

4.8

0

1

2

3

4

5

6

7

8

9

10

None 40% 60%

M
A

E

Model A.3 Oil Yield Constraints

8.7

6.8

4.8

2.9

0

1

2

3

4

5

6

7

8

9

10

None 40% 60% 80%

M
A

E

Model B.3 Oil Yield Constraints

31

behavior. With no oil yield constraints, the MAE was 8.4, but with all data below 40% oil yield

removed, the model’s MAE decreased to 6.8. Subsequent removal of oil yields below 60%

returned an MAE of 4.8, and finally, removing data below 80% resulted in the best MAE of 2.9.

Part of the removal and constraining of data included an inherent give and take within the models.

For every constraint placed upon the oil yield, the dataset lost a significant portion of its

information. Despite this loss, the benefit of tailoring this pyrolysis dataset to areas of high yield

seemed to improve the model’s performance more than the loss of data detracted from the

performance. There were likely a couple of reasons why this was the case. One was due to the

large concentration of high yield data points within the primary dataset. Table 5 below illustrates

both the MAE results of the models shown above, as well as the number of data points included in

those models. Model B.3’s original run contained 265 data points, whereas its final run, at an oil

constraint of >80%, including 95 data points, roughly a third of its original size. This indicated

that the dataset was skewed toward regimes of high oil yield, which was understandable due to the

importance of chemists and chemical engineers to operate pyrolysis reactions in these areas of high

yield. Additionally, there was a level of hesitance in this analysis, as constraining the oil yield

meant that the model had a smaller range of answers to report. Hence, the lower MAE was

inevitable since a lower range of oil yields meant the error was constrained to that range. With this

concession, the results, particularly at the 60% cutoff, were impressive, since within that range

from 60 to 100% oil yield, the model could predict within 5%. This would provide enough

accuracy to discern whether a model was closer to 60% or a higher 90% yield. Furthermore, if

improved, these models could predict with increased clarity in the future.

Table 5: Oil yield removal results.

Model
Oil Yield

Constraint
MAE

RMSE
Data Points

A.3
None 8.4 12.1 160

40 6.9 9.9 139
 60 4.8 6.4 110

B.3

None 8.7 13.2 265

40 6.8 9.6 251

60 4.8 6.7 201

 80 2.9 4.1 95

Overall, the performance of these models deviated from the literature sources of Zhu et al.,

where bio-char was predicted with RMSE values around 3.5 and Tang et al., where bio-oil was

predicted with RMSE values around 3.8,12 This could have been due to several reasons. One of the

most pressing being that these were predicted for biomass and not plastic and therefore input

variables, especially for composition, differed greatly. In addition, the paper that predicted oil

yields did so between 15% and 50% and the paper that predicted bio-char yield did so between 0%

and 50% yield. The base models in this study predicted from 0% to 100% and therefore a larger

MAE and RMSE could be expected compared to these studies. Furthermore, the predictions of

yield constraints in Table 5 reflected RMSE values that were closer to the literature values for the

32

60% cutoff which had a range of 40%. A range of 40% more closely resembled the literature and

RMSE’s of around 6 for Model’s A and B were not far from either Zhu et al. nor Tang et al.’s

model performance. From this, it can be stated that there is promising room for improvement on

plastic pyrolysis going forward with the results of this novel approach for random forest. In

comparison to the Abnisa et al. paper with 24 datapoints for plastics pyrolysis, where the MSE

was near zero, these models cannot reflect that level of accuracy. However, that paper used neural

networks for computation not random forest. This indicated that potentially using neural networks

could improve the results for this study further.

Random Forest Classification

 In addition to the regression models, classification was also used to predict oil yields. For

one method, oil yields were determined on a binary basis. In this case, classification was used to

predict above and below a specific oil yield, giving two possible answers. Alternatively, other tests

with Model H used several classifications for ranges of oil yields where numbers for each category

were assigned. Classification was tested piecewise like the regression models by adding variables

that were complete from literature values. In addition, tests were run on both variations of the

imputed Model G and unimputed Model I. 60% was used as the base oil yield cutoff for

classification models. Higher cutoffs of 70% and 80% were also tested to observe the effects of

that on the model.

Piecewise Addition of Variables

 Like the piecewise additions for the regression models, the classification models were

tested with compositions only, temperature only, and a combination of the two to predict oil yields.

The cutoff for the binary 0 or 1 was above or below 60% oil yield for these tests. All the models

tested for piecewise addition contained all 310 data points. The results can be seen in Figure 16

below. Using compositions only resulted in an accuracy of 77%, whereas temperature only data

resulted in lower accuracy of 69%. Adding both together increased the accuracy to 83%. This was

a similar trend to what was observed for the regression models where the combination of the two

variables improved the model and that only temperature as an input did not perform as well as

compositions only to predict oil yields.

33

Figure 16: Piecewise addition of variables of composition and temperature to observe the performance of

the random forest classification model at 60%.

For the piecewise method, the addition of catalyst and reactor type independently was also

tested at the 60% yield cutoff. This followed a similar approach that was taken for the regression

problems. These results can be seen in Figure 17 below. From these models, there was a slight

improvement over only using the compositions and temperature to predict oil yields from 83% to

85%. Both the independent addition of catalyst and reactor type on top of compositions and

temperature resulted in the same accuracy of 85%. The addition of both together improved the

accuracy to 88% which was the best out of all the piecewise models. These results were slightly

different from the trends seen for the regression piecewise addition where the addition of reactor

type performed better than the addition of catalyst.

77%

69%

83%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Compositions Temperature Compositions &

Temperature

A
cc

u
ra

cy

60% Oil Yield

34

Figure 17: Piecewise addition of variables of catalyst and reactor type to observe the performance of the

random forest classification model at 60%.

Oil Yield Grouping Classification

 For oil yield grouping tests, the dataset was made up of 171 points (Model F) was divided

into sections based on the total oil yield. This was named Model H. The goal of this method was

to test to see if classifying the data into groups would yield better results than the regression models

or binary classification. The groups were created by splitting up the oil yield percentages into

categories. For example, the 171 data points were broken into 7 groups. The groups were created

to make each group roughly the same number of data points be more representative of the whole

model and not overpredict a certain group over another. The group breakdowns and the number of

datapoints contained within each can be seen in Table 6.

85% 85%
88%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Compositions, Temperature,

& Catalyst

Compositions, Temperature,

& Reactor Type

Compositions, Temperature,

Catalyst, & Reactor Type

A
cc

u
ra

cy

35

Table 6: Oil yield grouping for classification Model H.1 and H.2

Group #

H.1 Oil Yield

Range Data Points

H.2 Oil Yield

Range

Number of Data

Points

1 0-30% 18 0-45% 36

2 30-50% 29 45-60% 32

3 50-65% 21 60-75% 56

4 65-75% 24 75-100% 47

5 75-80% 25 N/A N/A

6 80-85% 32 N/A N/A

7 85-100% 22 N/A N/A

From Model H.1, after 100 runs the average accuracy resulted in 46%. Seeing the low

accuracy result compared to all the piecewise models, an additional test was done with decreasing

the number of groups from seven to four which increased the number of data points in each

representative group. This was be referred to as Model H.2 and can also be seen in Table 7. The

accuracy then increased to 60%. Comparing Model H.1 and Model H.2 directly showed that the

smaller number of groups increased the accuracy of the model overall. However, neither accuracy

was impressive compared to the models run with a binary oil yield result. Due to this, further

attempts at grouping oil yields outside of the typical binary method were not attempted.

Table 7: Classification grouping method results.

Model

Number Variables
Accuracy

(Average of 100 runs)
Std

Dev Points

Model H.1
T, HR, PS,

no FS, Cat,

R type 46% 8% 171

Model H.2
T, HR, PS,

no FS, Cat,

R type 60% 7% 171

36

Binary Classification of Models

 The developed models for binary classification, Models G and I, were tested with several

cutoffs of oil yields of 60%, 70%, and 80%. Model G was the classification version of Model B

which contained 310 datapoints and Model I was the classification version of Model F which

contained 171 datapoints. Model G included imputed data whereas Model I was not. The results

for these simulations can be seen in Figure 18.

Figure 18: Classification results at various oil yield cutoffs for the imputed Model G and unimputed

Model I.

 The accuracies for the 60% oil yield cutoff were 87% and 89% for Models G and I

respectively. Interestingly, these models did not significantly outperform the 88% accuracy found

by only using compositions, temperature, catalyst, and reactor type as input variables. This

indicated that the extra variables of particle size, feed size, and reaction time did not appear to play

a large role in determining classifier accuracy nor were those variables needed for a well-

performing classifier model. Furthermore, the results around 90% accuracy were extremely

promising for a classifier’s use for determining oil yield. As the oil yield cutoff increased, the

accuracy expectedly decreased due to fewer datapoints within each successive increase in the

cutoff. The number of datapoints above and below the cutoffs for the imputed and piecewise

models is visualized in Figure 19. For 60% yield, nearly two-thirds of the data was above the

cutoff. The number of datapoints nearly evened out for the 70% cutoff and of the weight shifted

to around only one-third of the data above the threshold for the 80% cutoff. Hence, maintaining

high accuracy across the three cutoffs showed the success of the classification models even when

the data was unevenly shifted towards predicting below 80%. Figure 20 displays the datapoint

numbers for the unimputed model. The spread was like the 310 datapoint set where the 60% yield

had nearly two-thirds above the cutoff. At the 70% cutoff, nearly half was above, and at 80%

around only one-third was above. This similarity was a product of the spread of the dataset where

87%
89%

85% 85%

79%

84%

50%

55%

60%

65%

70%

75%

80%

85%

90%

95%

G I

A
cc

u
ra

cy

Model

60% Oil

Yield

70% Oil

Yield

80% Oil

Yield

37

many datapoints were in the 60 to 90% oil range. In addition, this indicated that the slightly better

performance of the unimputed model was not solely tied to a difference in datapoints above or

below the threshold.

Figure 19: The number of datapoints above and below the oil yield cutoffs for classification models. This

applied only to the imputed classification and piecewise models due to the inclusion of 310 datapoints.

Figure 20: Unimputed model number of datapoints above and below the thresholds.

The imputed model matched the unimputed model at the 70% cutoff. However, the

unimputed model performed better than the imputed model by an accuracy of around 5% at the

80% cutoff. Despite the decrease in accuracy with an increase in yield cutoff, the results from 79%

to 84% at the highest cutoffs added to the promise that the classifier models were successful. Due

to the comparative performance by the piecewise addition model, the last piecewise model with

203

165

95
107

145

215

0

50

100

150

200

250

60% 70% 80%

D
at

ap
o
in

ts

Oil Yield Classificaiton Cutoffs

Above

Threshold

Below

Threshold

115

93

5456

78

117

0

20

40

60

80

100

120

140

60% 70% 80%

D
at

ap
o
in

ts

Oil Yield Classificaiton Cutoffs

Above Threshold

Below Threshold

38

temperature, catalyst, and reactor type data was run at the 70% and 80% yield cutoffs. Figure 21

shows the results of this attempt. While the piecewise model had the highest accuracy for the 60%

cutoff, it did not maintain a higher accuracy compared to Model G and I for the 70% and 80%

cutoffs. Both the imputed Model G and unimputed Model I perform better by 10% for the 70% oil

yield cutoff. This likely meant that increasing the features such as particle size and reaction time

allowed the model to maintain high classification performance at the higher cutoffs. The piecewise

model’s success at 60% remained impressive but was likely due to the larger number of datapoints

above the cutoff since its accuracy significantly decreased when more datapoints moved below the

threshold. The accuracy did not decrease largely from the 70% to 80% cutoff which resembles the

trend that occurred to Model I at those cutoffs.

Figure 21: Piecewise composition, temperature, catalyst, and reactor type at cutoffs of 60, 70, and 80%

oil yield.

 Feature cutoffs were also attempted with both the imputed and unimputed models. These

feature cutoffs mirrored the strategies that were used for the regression models. First, Models I and

G were tested with the constraint of 400 to 500 ℃ and then these models were additionally tested

with the temperature constraint and a constraint within 0 to 3.5 𝑚𝑚 particle size. Each model was

tested within the 60%, 70% , and 80% yield cutoffs. The datapoints for each of these models and

associated feature cutoffs can be seen in Table 8 below.

Table 8: Datapoints for each classification model at each cutoff.

Feature Cutoffs Model G Datapoints Model I Datapoints

None 310 171

400 to 500 ℃ 199 124

 400-500 ℃ & 0-3.5 𝑚𝑚 152 99

88%

77% 76%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

60% 70% 80%

A
cc

u
ra

cy

Oil Yield Cutoffs

39

These were important to consider because as the cutoffs were added the models began to

lose datapoints to train and test on. While this was inevitable with this strategy of feature

engineering, it was important to know how many datapoints were removed with each cutoff. The

results for each cutoff can be seen in Figures 22 and 23 below. For clarity, Model G was color-

coded blue, and Model I was color-coded orange. Like the regression models, the effect of feature

cutoffs was largely model-dependent and in the case of classification, oil yield cutoff was

dependent as well. Model G’s cutoffs saw consistent trends where increasing the cutoffs increased

the accuracy at the 60% oil cutoff, steady accuracy at the 70% oil cutoff, and a decreasing accuracy

at the 80% oil cutoff. It was interesting that feature cutoffs improved the lower yield cutoffs and

negatively impacted the higher yield cutoffs. This could have been related to the number of

datapoints which was lowered by increased feature removal combined with fewer datapoints above

the oil prediction.

Figure 22: Feature cutoffs accuracy result at each oil yield cutoff for the imputed Model G.

87% 85%
79%

92%
85%

75%

94%

86%

73%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

60% 70% 80%

A
cc

u
ra

cy

Oil Yield Classificaiton Cutoffs

Model G None

400-500°C

400-500°C & 0 to

3.5mm

40

Figure 23: Feature cutoffs accuracy result at each oil yield cutoff for the unimputed Model I.

 The imputed Model I provided different trends from the feature engineering. For the 60%

yield cutoff, the initial 400 to 500℃ range of data provided a 7% increase in accuracy up to 96%.

However, the next cutoff removing data outside of 0 to 3.5 mm particle size decreased the accuracy

dramatically to 71%. The exact reason for this was unknown. While the unimputed model

performed better initially, critical information might have been lost when the unimputed model

was reduced to 99 data points as opposed to the imputed 152 data points at the 400 to 500℃ and 0

to 3.5mm particle range. Another difference from the imputed model was that the unimputed

Model I improved as feature cutoffs were added at the 70% oil yield cutoff level. The 80% yield

cutoff provided a similar trend of decreasing accuracy percentage as more feature refining was

increased. Overall, the unimputed Model I outperformed Model G with the feature cutoffs except

for the low accuracy seen for increasing cutoffs at 60% oil yield. In addition, this data showed that

models would need to be run independently to determine if feature removal could provide an

increase in accuracy. Another important consideration was the tradeoff between a model that was

broader with slightly lower accuracy than one that could only predict within a certain range of the

data. Altogether, classification proved to be a successful and interesting viewpoint for machine

learning on the pyrolysis dataset. The unimputed model slightly outperformed the imputed model

at almost all oil yield cutoffs. Accuracies in the range of 80% to 90% were considered impressive

especially for the small dataset size. Ideally, these classification results could be compared to

literature, however, the pyrolysis machine learning literature space has solely focused on

regression problems at this point. This data showed that a combination of the two, both regression

and classification, could be a powerful tool in determining how well an algorithm could predict oil

yields. First, the model could predict which data was above or below a specific oil yield, and then

a regression model could be used to pinpoint the oil yield percentage.

89%
85% 84%

96%
89%

81%

71%

91%

79%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

60% 70% 80%

A
cc

u
ra

cy

Oil Yield Classificaiton Cutoffs

Model I None

400-500°C

400-500°C & 0 to

3.5mm

41

Feature Importance

 In addition to running the models and observing the machine learning metrics, the relative

importance of each input variable was also determined for both the regression and classification

problems. This was also done alongside the 100 simulations where each feature’s importance

would be recorded for each simulation run and then averaged after completion. The importance

scores all add up to 100%. To compute the importance, the importance method within the Python

sci-kit learn library was used.

Regression Variable Importance

 Importance’s were recorded for several of the regression models. Initially, the importance

was tested on the piecewise model with compositions, temperature, catalyst, and reactor type.

Importance’s were also run on the base Model B.1 and E.1 to compare the difference between the

imputed and unimputed model importance’s. Furthermore, Model D.3 was tested because D.3

reported the best regression metrics after feature engineering. From testing the importance’s of the

piecewise model, the temperature was by far the most important input into the model at 40%. This

was followed by the compositions of PET, HDPE, and PolyS from 9% to 13%. Figure 24 below

includes the results of these tests and the importance’s for running solely the compositions only

was also included. With compositions alone, PET, HDPE, and PolyS remain the most important

compositions and PP gained more importance than when included with the other variables.

Interestingly, LDPE did not appear to have significant importance in either model. The lowest

importance of PVC was likely due to there being only 7 datapoints out of the 310 that had PVC in

them. Another interesting takeaway was the lack of importance the catalyst and reactor type had

on the model. Added together the reactor type only contributed 10% importance total with the

catalyst only being 4% of importance.

42

Figure 24: Piecewise model importance’s for regression.

 For comparing the imputed base Model B.1 and unimputed base Model F.1 input

importance’s, Figure 25 was included below. Model F.1 did not include feed size nor reaction time

and for that reason, there was no importance score for those variables. Like the piecewise model,

the importance’s of the catalyst and reactor type were low and almost were not important to the

model at all. For Model F.1, the compositions remained roughly like the piecewise model, except

for PET, which rose to 21%. Furthermore, the effect of temperature decreased but remained similar

for both B.1 and F.1. The addition of particle size shifted the importance towards it for both models

and it was the most important input as well at 24%. For the imputed model, the feed size and

reaction time also appeared to play important roles and it appeared that the importance for PET

and other compositions decreased due to the addition of those variables.

10%

6%
8% 9%

1%

13%

40%

4% 4% 3% 2% 1% 0%

31%

8%

17%

20%

2%

22%

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%
Im

p
o
rt

an
ce

 S
co

re
Compositions, Temperatrure,

Catalyst, & Reactor Type

Compositions Only

43

Figure 25: Feature importance's for Model's B.1 and F.1 to observe the differences in importance’s for

the imputed and unimputed models.

The importance of PET specifically was striking and was further shown by finding the

importance’s for Model D.3 which provided the best MAE of around 6.8. These importance’s were

included in Figure 26. For Model D.3, the importance of PET increased dramatically to 51% and

the reaction time was the second most important variable at 22%. The importance of the rest of the

compositions was strikingly low around 6% altogether. Particle size, feed size, and temperature’s

importance all decreased as well to around 5%. The only variables that remained consistent with

importance’s found for Model’s B.1 and F.1 were heating rate and catalyst. Due to the high

importance of PET, Model D.3 was run over 100 simulations with no PET input variable. The

result of this was an MAE of 9.3 and for this reason, the PET composition must have positively

influenced the model and played a role in its MAE of 6.8.

2%
3% 3%

4%

1%

10%

14%

4%

24%

19%

11%

2%
1%

0%
1% 1%

0%

7% 7% 7% 7%

0%

21%

13%

5%

24%

2% 2%
1% 1%

0%

5%

10%

15%

20%

25%

30%

Im
p
o
rt

an
ce

S
co

re
Model B.1

Model F.1

44

Figure 26: Model D.3 feature importance's. This was performed because Model D.3 provided the best

MAE from the regression models after feature engineering.

Classification Variable Importance

 The importance of classifiers was tested to compare to the regression importance’s to

observe if the difference in method had an effect. For the classifiers, the piecewise model with

compositions, temperature, catalyst, and reactor type was tested along with the base Models G.1

and I.1. Model H importance’s were not run due to the low resulting accuracy score discussed in

the last section. The results of the piecewise model are seen in Figure 27 and the results of G.1 and

H.1 are in Figure 28. The piecewise results were like the regression piecewise importance’s.

Temperature was 6% lower in importance but remained the most important variable.

1% 1% 1% 3%
0%

51%

5% 5% 6% 5%

22%

1%

0%

10%

20%

30%

40%

50%

60%
Im

p
o
rt

an
ce

 S
co

re

Model D.3

45

Figure 27: Chart displaying variable importance for the piecewise classification model.

For Models G.1 and I.1, a similar result to the regression models were seen where the unimputed

model had more importance on the compositions than the imputed model. Furthermore, in both,

the catalyst and reactor types still appeared to not play an important role in the classifiers either.

The relative importance of PET, temperature, particle size, feed size, and reaction time were also

consistent. This indicated that the RF regressor and classifier treated similar models with similar

importance with respect to the input variables.

Figure 28: Imputed Model G.1 and unimputed Model H.1 importance’s for comparison to the regression

importance’s.

9% 10% 9% 8%

1%

12%

34%

6%
4% 3% 3%

1% 0%
0%

5%

10%

15%

20%

25%

30%

35%

40%

Im
p
o
rt

an
ce

 S
co

re

3%

5%
4%

3%

1%

9%

13%

8%

16%

18%

11%

3%
2%

1% 1% 1%
0%

7%

11%

9%

6%

0%

15% 15%

9%

16%

3% 3%
2%

1%

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

20%

Im
p
o
rt

an
ce

 S
co

re

Model G.1

Model I.1

46

 In comparison to literature importance’s, there was a lack in pyrolysis of plastics machine

learning overall. However, two papers reported RF importance’s in the biomass pyrolysis

literature. For bio-oil yield, one paper found that the compositions were 60% of the importance.

For biomass, compositions were fixed carbon, ash, and volatiles. The most important variables for

process conditions were around 16% for heating rate and around 10% for particle size.

Temperature had an importance around 5%. This was lower than expected considering the

researchers expected the temperature to play the most important role of all pyrolysis conditions.8

While this study focused on biomass, the results were compared to the results for pyrolysis of

plastics. For the unimputed Model F.1, the compositions were around 50% in importance which

was slightly lower than the biomass composition's importance. However, for the imputed model

B.1, the importance of the compositions dropped to 23%. Interestingly, the models in this study

found a similar trend with the importance of particle size as a pyrolysis condition of around 10%.

A paper investigating RF regression to predict bio-char yield found that the temperature was the

most important.12 While this met the expectations of the other paper, the comparison was difficult

due to the end products of bio-oil and bio-char being different. Hence, a difference in what machine

learning models would consider important for predicting each output seemed plausible. Altogether,

further pyrolysis machine learning would need to be performed to determine whether the

importance’s in this study match expectations. Nevertheless, these importance’s still provided

critical insight into how the model performed and why it may have performed in a certain way.

Cross-Validation

 The primary method for gathering data for regression metrics of MAE and RMSE and

classification accuracy for testing models was 100 simulations of the algorithm. However, it was

also necessary to assess the robustness of the various models created. This was done by performing

cross-validation on the models. This was performed as described in the methods using two

approaches: Python’s ‘cross_val_score’ with 5 cross folds and a stratified sampling 5 cross-fold

validation.

Python’s Sklearn ‘Cross_val_score’ on Regression Models

 Python’s cross-validation method allowed for the determination of regression and

classification metrics utilizing a standard 5 cross-fold validation. Validation using Python’s cross-

validation initially revealed large discrepancies for regression models determined from 100

simulations and the ‘cross_val_score’ function. These differences were often twice as large as the

metrics from the simulation tests. For example, Table 9 below, displays the difference between the

two for the unimputed models, Models E and F. The base 100 simulation runs of Model E, which

had 132 datapoints, resulted in average MAE and RMSE of 8.99 and 12.8, respectively. However,

‘cross_val_score’ resulted in an MAE and RMSE of 14.3 and 18.2, respectively. Model F, which

had 171 datapoints, had even larger differences from an MAE of 8.75% from simulations and

20.0% for ‘cross_val_score’.

47

Table 9: Differences between 100 simulations and ‘cross_val_score’ for MAE and RMSE in unimputed

Models (E&F).

Model

100 Simulations ‘Cross_Val_Score’

MAE RMSE MAE RMSE

E 8.99 12.8 14.3 18.2

F 8.75 13.0 20.0 25.6

 Similar discrepancies were seen in KNN imputed models as well. For example, the base

run of Model B.1 had an MAE of 8.66 for simulations and an MAE of 14.9 from ‘cross_val_score’.

In addition, the other regressions base models suffered similar differences between the testing and

validation which is highlighted in Table 10. While the differences vary between the models,

generally the ‘cross_val_score’ result was much higher than the simulation result. An exception to

this would be for Model C. However, the Model C.1 simulation MAE was already high at 11.5.

Discrepancy for RMSE was similar and this can be seen in the results in Appendix B.

Table 10: Difference in MAE between base model runs of imputed models for 100 simulations vs

‘cross_val_score’.

Model
100 Simulations

MAE

Python

‘Cross_val_score’

MAE

Absolute Difference in

MAE

A.1 8.3 13.3 5.0

B.1 8.7 14.9 6.2

C.1 11.5 14.3 2.8

D.1 8.4 15.7 7.3

 Like improvements or deterioration in simulation performance, whether or not feature

engineering improved the validation score largely depended upon the specific model. For example,

the cutoffs for Model B.6 from 400 to 500 °C and 0 to 3.5 mm particle size with no 1000g feed

size datapoints improved the ‘cross_val_score’ on MAE from 14.9 to 12.6 when compared to the

base B.1 model. The difference between the simulation and the validation also decreased from a

MAE of 6.2 to 4.5. While this was an improvement, the difference of 4.5 was still not ideal.

Alternatively, Model D showed lesser difference in the validation score once the exact same

constraints were added (Model D.3). From D.1 to D.3, the validation score from ‘cross_val_score’

improved from an MAE of 15.7 to 8.78. RMSE also improved from 18.3 to 12.6. In addition, the

difference between the simulation and ‘cross_val_score’ was only 2.1 for MAE and 1.4 for RMSE.

Table 11 displays the disparities between MAE and RMSE for each model with the associated

cutoffs performed. While in general there was associated improvement, the larger improvement

was seen from the two imputed models B and D. Furthermore, this indicated that whether the

model’s validation score improved or not based on feature engineering was model specific and not

inherently tied to the constraints themselves.

48

Table 11: Absolute differences between simulations and ‘cross_val_score’ with MAE and RMSE. Note:

models where cutoff from 400-500C, 0 to 3.5 mm, and no 1000g FS were used.

Model Simulations

MAE

‘Cross_val_score’

MAE

Absolute

Difference

in MAE

Simulations

RMSE

‘Cross_val_score’

RMSE

Absolute

Difference

in RMSE

B.6 8.1 12.6 4.5 12.3 14.5 2.2

D.3 6.7 8.8 2.1 11.2 12.6 1.4

E.6 8.8 12.9 4.1 12.2 16.7 4.5

F.6 8.0 17.1 9.1 12 21 9.0

Python’s ‘Cross_val_score’ on Classification Models

 In addition to the regression models, the Python ‘cross_val_score’ was also tested for the

classification models. In general, the difference between the simulations and cross validation score

were far less in the imputed Model G than in the unimputed models H and I. The differences

between the simulated accuracy and the ‘cross_val_score’ can be seen below for all models in

Table 12.

Table 12: Difference between 100 Simulations and ‘cross_val_score’ for classification models in

accuracy.

Model Simulations ‘Cross_val_score’ Difference in Accuracy %

G.1 87 82 5

G.2 85 78 7

G.3 79 72 7

H.1 46 29 17

H.2 60 38 22

I.1 89 69 20

I.2 85 51 34

I.3 84 67 17

 As shown in Table 12, the difference between cross validation accuracy and simulation

accuracy was better for Model G. Whereas, Model’s H and I have similar large discrepancies that

were seen in the regression models for the unimputed models. Model H performed poorly from

the initial simulations and therefore it was not a surprise to see poor robustness from the model.

From this, Model G appeared to be one of the more robust base models as compared to the other

classification attempts. This showed that having more data and specifically imputed data, was more

robust than not. From the simulations, however, Model I performed slightly better than Model G

despite lower robustness from Python’s ‘cross_val_score’.

Stratified Cross Validation Sampling Approach

 In response to high differences between 100 simulation runs and ‘cross_val_score’

validation, it was hypothesized that the imbalance in oil yields within the data set could be

causing problems. Due to this, ‘cross_val_score’ could have been separating data into five folds

where some contained representative samples and others contained imbalanced ones. For

49

example, if a fold did not contain any low yield points, then the testing fold could have resulted

in a poor validation for that cross fold. The solution for this was development of Python code

that performed validation with randomly shuffled folds from user divided data. This code can be

found in Appendix G.

 After running this method on several different regression models, it was clear that this

validation method more accurately matched the data gathered by running 100 simulations. Table

13 below includes a comparison between the average MAE and RMSE for the models that were

also cross validated with this method.

Table 13: Comparison between 100 simulations and the stratified cross validation method.

Model

100 Simulations Stratified Cross Validation

MAE RMSE MAE RMSE

A.1 8.3 12.5 8.8 12.9

B.1 8.7 13.2 9.0 13.7

D.3 6.7 11.2 7.2 11.6

E.1 9.0 12.8 7.1 11.1

F.6 8.0 11.8 7.3 11.1

Base models were run with the stratified method for a means of comparison to other base models.

A comparison between the base models for the differences in simulation, ‘cross_val_score’, and

stratified validation MAE and RMSE can be seen in Figures 29 and 30, respectively. All results

for the stratified method can be seen in Appendix B.

Figure 29: MAE for base models A.1, B,1, D.1, and E.1 for simulations, python ‘cross_val_score’, and

the stratified cross validation method.

8.3 8.66 8.41
8.99

13.3

14.9
15.65

14.3

8.8 9.04
8.1

7.1

0

2

4

6

8

10

12

14

16

18

A.1 B.1 D.1 E.1

M
A

E

Model

Simulations Python Cross Val Stratified Cross Val

50

Figure 30: RMSE for base models A.1, B.1, D.1, and E.1 for simulations, python ‘cross_val_score’, and

the stratified cross validation method.

Figures 29 and 30 display the clear difference in validation comparison to simulations

between the ‘cross_val_score’ and the stratified method. In every case, the stratified method was

closer and only deviated about 1% MAE difference for Model E.1. Altogether, this indicated that

the stratified method was a better validation for all models and problems of this type where there

are vast imbalances in data distribution.

 In addition to running the regression models with the stratified cross validation approach,

the classifier Models G and I were run as well using the exact same method as the regression

problems. These were performed at the various yield cutoffs to determine if the stratified method

carried through at each cutoff. The results of this can be see below in Figures 31 and 32 for Model

G and I, respectively. Similarly, to the regression models, the stratified method more closely

resembled the simulation results for Model G and I. Model G’s Python ‘cross_val_score’

validations were not vastly different from the simulations, but the stratified method still resulted

in closer accuracy. Model I showed the performance of the stratified cross validation method more

significantly. While ‘cross_val_score’ predicted the validation accuracy of Model I nearly and

over 20% in accuracy off from the simulations, the stratified method was closer and, in some cases,

higher in accuracy than the simulation accuracy results. In addition, for both the imputed Model

G and unimputed Model I, the stratified method of cross validation-maintained success over each

classification cutoff. Overall, this showed that the stratified method was also applicable to the

classification models and that the classification models were more robust than initially considered

using only the Python ‘cross_val_score’.

12.5 13.2
12.6

12.8

18.7 19.4
18.3 18.2

12.9
13.7

11.9
11.1

0

5

10

15

20

25

A.1 B.1 D.1 E.1

R
M

S
E

Model

Simulations Python Cross Val Stratified Cross Val

51

Figure 31: Model G classification model results for simulations, ‘cross_val_score’, and the stratified

validation method.

Figure 32: Model I classification model results for simulations, ‘cross_val_score’, and the stratified

validation method.

87% 85%
79%

82%
78%

72%

86% 86%
83%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

60% 70% 80%

A
cc

u
ra

cy

Oil Yield Classificaiton Cutoffs

Model G

Simulations

Python Cross Val

Score

Stratified Cross Val

89%
85% 84%

69%

51%

67%

89% 89%
83%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

60% 70% 80%

A
cc

u
ra

cy

Oil Yield Classificaiton Cutoffs

Model I

Simulations

Python Cross Val

Score

Stratified Cross Val

52

Error Outlier Comparison
 After running simulations, it was clear that certain datapoints were being predicted well

whereas others were more temperamental. This was visualized by a parity plot shown in Figure 33

which displays the predicted vs. actual oil yields of the model run. In Figure 33, Model B.1 was

simulated once to display such a plot. As can be seen there was an outlier point around 30 predicted

yield and 80 actual yield.

Figure 33: Model B.1 simulation to display outliers in model predictions.

These occurrences led to the development of code that would highlight datapoints that were

predicted beyond a certain set range or error for example greater than 40% oil yield between the

actual yield and predicted yield. This code can be found in Appendix H. In addition to this, Model

B.1 simulation was also run to determine outlier errors associated with particular features. This

can be seen in Figures 34 and 35 that display the outlier error with points at associated temperatures

and reaction times. In Figure 34, high errors were seen where there were few data around 700 °C.

However, there was also high error seen in the bulk of the data from 350 to 500 °C. In addition,

high error spans from short to long reaction times as seen in Figure 35. From this, it can be stated

that high errors were not simply due to a lack of coverage in data alone. Although, spread out data

might be one reason for errors, there were several other issues that could be at play. Pyrolysis is

complex, and the use of only hundreds of data points, spanning nearly a dozen of different

variables, was unlikely to truly capture every facet of the process.

53

Figure 34: Model B.1 errors between predicted and actual oil yield for datapoints at associated

temperatures.

Figure 35: Model B.1 errors between predicted and actual oil yield for datapoints at associated reaction

times.

 To continue to investigate error reported by the model, many simulations were run on both

Models A.1 and B.1 to compare the datapoints that resulted in high reoccurring predictive outliers

for those models. Due to the method, data points were discerned via a concatenation of associated

feature values and ending with an oil yield to create a unique label for each datapoint within the

code. In this section, these have been simplified to a single number based on their location in the

master dataset. Table 14 contains the 10 highest outlier error producing points for Model B.1 after

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

45.0

0 200 400 600 800 1000

O
il

 Y
ie

ld
 %

 E
rr

o
r

Temperature °C

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

45.0

0 20 40 60 80 100 120 140 160 180

O
il

 Y
ie

ld
 %

 E
rr

o
r

Reaction Time (Minutes)

54

running 500 simulations. The count indicated the number of times that each point deviated greater

than or equal to 40% oil yield from its actual yield. Initially, it was hypothesized that potentially

that catalyst points could have caused the issues. However, Model B.1 showed that catalyst points

did not significantly make up the datapoints causing the highest amount of error.

Table 14: Model B.1 500 simulations with a count of each time an associated datapoint resulted in

greater than a 40% oil yield error.

Associated

Cell

Oil Yield (%) Sum of count Catalyst % of

runs

27 24.0 109 no 21.8%

16 93.1 82 no 16.4%

46 79.2 73 no 14.6%

26 11.2 58 no 11.6%

8 28.5 44 no 8.8%

219 28.6 32 no 6.4%

235 18.3 28 yes 5.6%

17 84.7 23 no 4.6%

50 31.7 20 no 4.0%

167 37.5 19 no 3.8%

An interesting takeaway from these findings was that four data points made up around 64%

of the errors above 40% oil yield for this model. Many of the datapoints in Table 14 were

associated with lower oil yield ranging from 11.2 to 37.5% and two data points were roughly from

the bulk of the data, 79.2% and 84.7%. Hence, there was a numerical indication on top of a

graphical one that lower yields could be causing problems for the models. By further looking into

the datapoints causing higher errors both datapoints associated with number 26 and 27 were from

the same paper by Kumar & Singh 2011.17 The paper reported oil yields of 11.2 and 24.0% at

pyrolysis reaction temperatures of 400 and 450 °C on pure HDPE. It was possible that the long

reaction times of 760 and 290 minutes respectively could be causing issues with model since there

was not many other data within that range of reaction times. Aside from an interesting occurrence,

there was no indication that these datapoints were incorrect. Furthermore, a lack of existing

literature within certain feature ranges was not solely unique to this occurrence. Model A.1 was

run as a comparison to see if datapoint outlier error was replicable across models. Model A.1 ran

55

1500 simulations and Model B.1 ran 2500 simulations and accounting for errors larger than 40 oil

yield. Table 15 visualized the 10 most common error points for each model by the percentage of

number of runs each point appeared in. Cells were highlighted in blue if both appeared in the top

ten of each model. The cells that were not highlighted were not present in the Model A.1 dataset

and therefore could have never been repeated. From this, it can be stated that issues in error points

were not completely model specific and that certain data points were causing issues for all RF

simulations.

Table 15: Model A.1 and B.1 comparison of errors of over 40% oil yield by % appearance and associated

cell number. Blue cells indicate that associated data point was a common source of error for both models

A.1 and B.1.

Model A.1 Model B.1

Cell Associated % Run

Appearance

Cell Associated % Run

Appearance

26 33.1% 27 20%

27 30.8% 16 15%

128 18.8% 46 13%

167 6.8% 26 11%

271 5.7% 8 8%

132 1.4% 219 6%

109 0.7% 235 5%

139 0.4% 17 4%

140 0.4% 50 4%

99 0.3% 167 3%

 Numerous new models were tested by removing data points that were the most inaccurate

most often. Model D.3, one of the best performing regression models, was run with the error code

with a threshold of greater than or equal to 20% oil yield in two iterations. The first time the top

seven errors were removed and the next the top nine errors were removed. Model E.1 was also run

with a similar method to visualize this on a unimputed model. For Model E.1, 18 points were

removed over the course of two iterations for errors surpassing 30% oil yield. The classification

Model I.2 was also run with 19 points removed over two iterations for the datapoints that were

predicted wrong the most. Since Model I.2 was classification no direct oil yield percentage cutoff

could be placed. The results of these models can be seen in Table 16 below for the classification

model and Table 17 below for the regression models. Unsurprisingly, the classification improves

from an accuracy on 85% to 93%, Model E.1 improved from 8.8 to 5.6 MAE, and Model D.3

improved from 6.7 to 4.2 MAE.

 Due to the dataset being small, it would be nearly impossible to make good predictions for

every value for the included dependent variables. The act of removing erroneous data, while

perhaps losing out on some of the chemistry occurring, helps to hone and improve the model for

values of the dependent variables that have more datapoints. Nevertheless, error visualization and

removal showcased the large effect that certain data points had on model accuracy. Additionally,

56

it was important to note that the large effect of outlier removal was likely due to the small size and

spread of the data set. Furthermore, being able to locate and observe the datapoints was helpful in

learning more about how the algorithms interacted with the data. Further studies of plastic

pyrolysis machine learning should be done, not to remove more erroneous data points, but to add

more data points to the areas of the data that were consistently predicted incorrectly. The increase

in accuracy of the error removal models justifies this point.

Table 16: Classification outlier removal on Model I.2.

Model Accuracy % Data Points

I.2 85 171

I.2 B 87 162

I.2 C 93 152

Table 17: Regression outlier removal on Models E.1 and D.3.

Model MAE RMSE Data Points

D.3 6.7 11.2 114

D.3 B 5.3 7.4 107

D.3 C 4.3 5.9 98

E.1 8.8 13.0 132

E.1B 7.3 11.2 123

E.1C 5.6 7.7 114

Future Directions and Improvements
 Altogether, the information and understanding gained by performing Random Forest

algorithms on this pyrolysis dataset was a novel concept that revealed both successful, insightful,

and promising results. However, many of the metrics reported in literature were often higher than

those gained by this study. In the future, there are several ways that this work can be expanded

upon and added to improve results and explore machine learning’s application further. One of

these is by testing other machine learning methods. At the suggestion and interpretation of past

literature, this study focused primarily on Random Forest. However, there are many more options

for machine learning problems. These include: Neural networks, XGBoost, Support Vector

Machines, Naive Bayes, and K-means algorithms. While Random Forest showed promise, other

algorithms could be attempted to observe and or recontextualize the results from the dataset. In

addition, further hyperparameter tuning could also be employed. In this study, focus was placed

on developing models using feature engineering such as the additions, cutoffs, imputation, and

development of models such as the batch only Model D to observe changes in performance metrics.

Further hyperparameter tuning of each model individually could also improve results.

 Another element of future improvement could be addition and future manipulation of the

base 310 dataset. Before this study, pyrolysis of plastics data had not been aggregated from

literature data in such a way. Several ways the dataset could be added to could be by further

57

literature search as well as performing experiments directly. Performing experiments would allow

for gaps in the dataset to be filled and provide more information to the model that was not

previously known. Controlling factors in a lab space would also eliminate the occurrence of

missing data not being included from literature sources. Furthermore, one hot encoded variables

such as reactor type and catalyst could be expanded upon to include more information such as

reactor geometry and size and catalyst type and acidity. Overall, the possibilities for expanding

upon this work is vast and the promise machine learning shows for both pyrolysis and chemical

engineering are exciting.

Conclusion
 The machine learning methods instituted in this study of plastic pyrolysis are not solely

limited to this chemical process. The piecewise addition of variables and variable constraint

analyses may be used on any process. The same is true for the methods of cross validation. In this

study, when it was found that a basic 5-fold cross validation failed to achieve similar results

compared to the models, a stratified method was chosen instead which indicated the robustness of

the random forest regressor and classifier models. The best regression model was found to be

Model D.3 which achieved an MAE of 6.7. The best classifier models were found to have

accuracies of 80-90%, with accuracy generally decreasing with increasing oil yield cutoffs. It was

also found that outlier data points were a source of high error for many models, indicating the need

to expand the data set for completeness of process variables. Additionally, a study of imputed

models versus unimputed models was performed and it was found that there were only small

differences in performance between the two, indicating the validity of using KNN on this pyrolysis

dataset. The only models with significant differences between models with imputed versus

unimputed data was for those testing different variable cutoffs. Also, within the random forest

models, the importance of each variable was determined, and in the models, it was generally found

that the reactor type and presence of a catalyst were not as important as the plastic feed

composition. Further, plastic feed composition was found to be less important than variables such

as temperature and feed size. While many of the models created were successful and exhibited

MAE values of 8 or lower, the process of analyzing the dataset is of most use going forward. These

methods may be extrapolated to different processes, or in the case of this pyrolysis data set,

expanded to include more data in the future with more refined models.

58

References

1 Rashid Miandad, M. R., Mohammad A. Barakat, Asad S. Aburiazaiza, Hizbullah Khan,

Iqbal M. I. Ismail, Jeya Dhavamani, Jabbar Gardy, Ali Hassanpour and Abdul-Sattar

Nizami. Catalytic Pyrolysis of Plastic Waste: Moving Toward Pyrolysis Based

Biorefineries. Frontiers in Energy Research, doi:https://doi.org/10.3389/fenrg.2019.00027

(2019).

2 R.Miandad, M. A. B., Asad S.Aburiazaiza, M.Rehan, A.S.Nizami. Catalytic pyrolysis of

plastic waste: A review. Process Safety and Environmental Protection 102, 822-838,

doi:https://doi.org/10.1016/j.psep.2016.06.022 (2016).

3 Muhammad Saad Qureshi, A. O., Hanna Pihkola, Ivan Deviatkin, Anna Tenhunen, Juha

Mannila, Hannu Minkkinen, Maija Pohjakallio, Jutta Laine-Ylijoki. Pyrolysis of plastic

waste: Opportunities and challenges. Journal of Analytical and Applied Pyrolysis 152,

doi:https://doi.org/10.1016/j.jaap.2020.104804 (2020).

4 T. Faravelli, G. B., C. Scassa, M. Perego, S. Fabini, E. Ranzi, M. Dente. Gas product

distribution from polyethylene pyrolysis. Journal of Analytical and Applied Pyrolysis 52,

doi:https://doi.org/10.1016/S0165-2370(99)00032-7 (1999).

5 Tiziano Faravelli, G. B., Mauro Colombo, Eliseo Ranzi, Mario Dente. Kinetic modeling of

the thermal degradation of polyethylene and polystyrene mixtures. Journal of Analytical

and Applied Pyrolysis 70, 761-777, doi:https://doi.org/10.1016/S0165-2370(03)00058-5

(2003).

6 Elham Khaghanikavkani, M. M. F. Thermal Pyrolysis of Polyethylene: Kinetic Study.

CSCanada Energy Science and Technolog 2, 1-10,

doi:10.3968/j.est.1923847920110201.597 (2011).

7 Blake R. Hough, D. A. C. B., Daniel T. Schwartz, Jim Pfaendtner. Application of machine

learning to pyrolysis reaction networks: Reducing model solution time to enable process

optimization. Computers and Chemical Engineering 104, 56-63,

doi:https://doi.org/10.1016/j.compchemeng.2017.04.012 (2017).

8 Qinghui Tang, Y. C., Haiping Yang, Ming Liu, Haoyu Xiao, Ziyue Wu, Hanping Chen,

and Salman Raza Naqvi. Prediction of Bio-oil Yield and Hydrogen Contents Based on

Machine Learning Method: Effect of Biomass Compositions and Pyrolysis Conditions.

Energy Fuels 34, 11050-11060, doi:https://doi.org/10.1021/acs.energyfuels.0c01893

 (2020).

9 ShichaoZhang. Nearest neighbor selection for iteratively kNN imputation. Journal of

Systems and Software 85, 2541-2552, doi:https://doi.org/10.1016/j.jss.2012.05.073 (2012).

10 Rajat M.Thomas, W., PaulZhutovsky, Guidovan Wingen. Chapter 14 - Dealing with

missing data, small sample sizes, and heterogeneity in machine learning studies of brain

disorders. Machine Learning Methods and Applications to Brain Disorders, 249-266,

doi:https://doi.org/10.1016/B978-0-12-815739-8.00014-6 (2020).

11 Cort J. Willmott, K. M. Advantages of the mean absolute error (MAE) over the root mean

square error (RMSE) in assessing average model performance. Climate Research 30, 79-

82, doi:doi:10.3354/cr030079 (2005).

12 Xinzhe Zhu, Y. L., Xiaonan Wang. Machine learning prediction of biochar yield and

carbon contents in biochar based on biomass characteristics and pyrolysis conditions.

Biosource Technology 288, doi:https://doi.org/10.1016/j.biortech.2019.121527 (2019).

https://doi.org/10.3389/fenrg.2019.00027
https://doi.org/10.1016/j.psep.2016.06.022
https://doi.org/10.1016/j.jaap.2020.104804
https://doi.org/10.1016/S0165-2370(99)00032-7
https://doi.org/10.1016/S0165-2370(03)00058-5
https://doi.org/10.1016/j.compchemeng.2017.04.012
https://doi.org/10.1021/acs.energyfuels.0c01893
https://doi.org/10.1016/j.jss.2012.05.073
https://doi.org/10.1016/B978-0-12-815739-8.00014-6
https://doi.org/10.1016/j.biortech.2019.121527

59

13 Faisal Abnisa, S. D. A. S., Mohd Fauzi bin Zanil, Wan Mohd Ashri Wan Daud, Teuku

Meurah Indra Mahlia. The Yield Prediction of Synthetic Fuel Production from Pyrolysis

of Plastic Waste by Levenberg–Marquardt Approach in Feedforward Neural Networks

Model. Polymers, doi:https://dx.doi.org/10.3390%2Fpolym11111853 (2019).

14 Carlos Ludlow-Palafox, H. A. C. Microwave-Induced Pyrolysis of Plastic Wastes.

Industrial & Engineering Chemistry Research 40, 4749-4756,

doi:https://doi.org/10.1021/ie010202j (2001).

15 Kedar Potdar, T. P., Chinmay Pai. A Comparative Study of Categorical Variable Encoding

Techniques for Neural Network Classifiers. International Journal of Computer

Applications 175, doi:http://dx.doi.org/10.5120/ijca2017915495 (2017).

16 L. Quesada, A. P., V.Godoy, F.J.Peula, M.Calero, G. Blázquez. Optimization of the

pyrolysis process of a plastic waste to obtain a liquid fuel using different mathematical

models. Energy Conversion and Management 188, 19-26,

doi:https://doi.org/10.1016/j.enconman.2019.03.054 (2019).

17 Sachin Kumar, R. K. S. Recovery of hydrocarbon liquid from waste high density

polyethylene by thermal pyrolysis. Brazilian Journal of Chemical Engineering 28,

doi:https://doi.org/10.1590/S0104-66322011000400011 (2011).

18 Pedregosa et al., Scikit-learn: Machine Learning in Python, <https://scikit-

learn.org/stable/about.html#citing-scikit-learn> (2011).

19 Nadkarni, P. Chapter 10 - Core Technologies: Data Mining and “Big Data”. Clinical

Research Computing A Practitioner's Handbook

187-204, doi:https://doi.org/10.1016/B978-0-12-803130-8.00010-5 (2016).

https://dx.doi.org/10.3390%2Fpolym11111853
https://doi.org/10.1021/ie010202j
http://dx.doi.org/10.5120/ijca2017915495
https://doi.org/10.1016/j.enconman.2019.03.054
https://doi.org/10.1590/S0104-66322011000400011
https://scikit-learn.org/stable/about.html#citing-scikit-learn
https://scikit-learn.org/stable/about.html#citing-scikit-learn
https://doi.org/10.1016/B978-0-12-803130-8.00010-5

60

Appendices

Appendix A: Literature Papers used for Data

Table 18: Citations for literature papers used for data within this study.

Dataset References

Bagri, R., & Williams, P. (2002). Catalytic pyrolysis of polyethylene. Journal of Analytical and Applied

Pyrolysis, 63(1), 29-41. https://doi.org/10.1016/S0165-2370(01)00139-5
Zhao, D., Wang, X., Miller, J., & Huber, G. (2020). The Chemistry and Kinetics of Polyethylene Pyrolysis:

A Process to Produce Fuels and Chemicals. ChemSusChem, 13(7), 1764-1774.

https://doi.org/10.1002/cssc.201903434
Al-Salem, S. (2019). Thermal pyrolysis of high density polyethylene (HDPE) in a novel fixed bed reactor system

for the production of high value gasoline range hydrocarbons (HC). Process Saftey and Enviromental Protection,

127, 171-179. https://doi.org/10.1016/j.psep.2019.05.008
Marcilla, A., Beltrán, M., & Navarro, R. (2009). Thermal and catalytic pyrolysis of polyethylene over HZSM5

and HUSY zeolites in a batch reactor under dynamic conditions. Applied Catalysis B: Environmental, 86(1-2),

78-86. doi: 10.1016/j.apcatb.2008.07.026
F. Pinto., P. Costa., I. Gulyurtlu., I. Cabrita. (1999). Pyrolysis of plastic wastes. Effect of plastic waste

composition on product yield,

Journal of Analytical and Applied Pyrolysis,

51(1-2), 39-55, ISSN 0165-2370,https://doi.org/10.1016/S0165-2370(99)00007-8.
Seo, Y., Lee, K., & Shin, D. (2003). Investigation of catalytic degradation of high-density polyethylene by

hydrocarbon group type analysis. Journal of Analytical and Applied Pyrolysis, 70(2), 383-398.

https://doi.org/10.1016/S0165-2370(02)00186-9
Kumar S. & Singh, R. (2011). Recovery of Hydrocarbon Liquid from Waste High Density Polyethylene by

Thermal Pyrolysis. Brazilian Journal of Chemical Engineering, 28(4), 659- 667.

https://www.scielo.br/pdf/bjce/v28n4/a11v28n4.pdf
J.M. Encinar & J.F. González. (2008). Pyrolysis of synthetic polymers and plastic wastes. Fuel Processing

Technology, 89(7), 678-686, ISSN 0378-3820, https://doi.org/10.1016/j.fuproc.2007.12.011.
Williams, E. A., & Williams, P. T. (1997). The pyrolysis of individual plastics and a plastic mixture in a fixed

bed reactor. Journal of Chemical Technology & Biotechnology: International Research in Process,

Environmental and Clean Technology, 70(1), 9-20.
Ludlow-Palafox, C., & Chase, H. (2001).

Microwave-Induced Pyrolysis of Plastic Wastes. Industrial & Engineering Chemistry Research, 40, 4749-4756.
Quesada, L., Pérez, A., Godoy, V., Peula, F., Calero, M., & Blázquez, G. (2019). Optimization of the pyrolysis

process of a plastic waste to obtain a liquid fuel using different mathematical models. Energy Conversion And

Management, 188, 19-26. doi: 10.1016/j.enconman.2019.03.054
Singh, R., Ruj, B., Sadhukhan, A., & Gupta, P. (2019). Impact of fast and slow pyrolysis on the degradation of

mixed plastic waste: Product yield analysis and their characterization. Journal Of The Energy Institute, 92(6),

1647-1657. doi: 10.1016/j.joei.2019.01.009
Kumar, S., & Singh, R. (2011). Recovery of hydrocarbon liquid from waste high density polyethylene by thermal

pyrolysis. Brazilian Journal Of Chemical Engineering, 28(4), 659-667. doi: 10.1590/s0104-66322011000400011
Ahmad, I., Khan, M., Khan, H., Ishaq, M., Tariq, R., Gul, K., & Ahmad, W. (2014). Pyrolysis Study of

Polypropylene and Polyethylene Into Premium Oil Products. International Journal Of Green Energy, 12(7), 663-

671. doi: 10.1080/15435075.2014.880146
Anene, A., Fredriksen, S., Sætre, K., & Tokheim, L. (2018). Experimental Study of Thermal and Catalytic

Pyrolysis of Plastic Waste Components. Dept of Process, Energy and Enviormnetla Technology, University of

South-Eastern Norway. DOI:10.3390/su10113979
FakhrHoseini, S. & Dastanian. (2013). Predicting Pyrolysis Products of PE, PP, and PET Using NRTL Activity

Coefficient Model. Journal of Chemistry, Article ID 487878. https://doi.org/10.1155/2013/487676
Absina, F., Sharuddin, S., Zanil, M., Daud, W., & Mahlia, T. (2019). The Yield Prediction of Synthetic Fuel

Production from Pyrolysis of Plastic Waste by Levenberg–Marquardt Approach in Feedforward Neural Networks

Model. Polymers (Basel), 11(11), 1853. doi: 10.3390/polym11111853
Uddin, A., Koizumi, K., Murata, K., & Sakata, Y. (1996). Thermal and catalytic degradation of structurally

different types of polyethylene into fuel oil. Polymer Degredation and Stabliltiy, 56(1), 37-44

https://doi.org/10.1016/j.psep.2019.05.008
https://doi.org/10.1016/j.psep.2019.05.008
https://doi.org/10.1016/j.psep.2019.05.008

61

Miandad, R., Barakat, M, Aburiazaiza, A., Rehan, M., Ismail, I., Nizami, A. (2017). Effect of plastic waste types

on pyrolysis liquid oil. International Biodeterioration & Biodegradation, 119, 239-252.

https://doi.org/10.1016/j.ibiod.2016.09.017
Bajus, M. & Hájeková, E. (2010). Thermal Cracking of the Model Seven Components Mixed Plastics into

Oils/Waxes. Slovak University of Technology.Retrieved from

https://www.researchgate.net/profile/Elena_Hajekova/publication/47394502_THERMAL_CRACKING_OF_TH

E_MODEL_SEVEN_COMPONENTS_MIXED_PLASTICS_INTO_OILSWAXES/links/00b7d52e
Bajus, M. & Hájeková, E. (2008). Copyrolysis of oils/waxes of individual and mixed polyalkenes cracking

products with petroleum fraction. Fuel Processing Technology, 89(11), 1047-1055.

https://doi.org/10.1016/j.fuproc.2008.04.007
Wiiliams, P. & Slaney, E. (2007). Analysis of products from the pyrolysis and liquefaction of single plastics and

waste plastic mixtures. Resources, Conservation and Recycling, 51(4), 754, 769.

https://doi.org/10.1016/j.resconrec.2006.12.002
Muhammad, C., Onwudili, J., Williams, P. (2015). Thermal Degradation of Real-World Waste Plastics and

Simulated Mixed Plastics in a Two-Stage Pyrolysis–Catalysis Reactor for Fuel Production. Energy Fuels, 29(4),

2601-2609. https://doi.org/10.1021/ef502749h
Singh, R. & Ruj, B. (2016). Time and temperature depended fuel gas generation from pyrolysis of real world

municipal plastic waste. Fuel, 174(15), 163-171. https://doi.org/10.1016/j.fuel.2016.01.049
Mastral, F., Esperanza, E., Garcı́a, P., & Juste, M. (2002). Pyrolysis of high-density polyethylene in a fluidised

bed reactor. Influence of the temperature and residence time. Journal of Analytical and Applies Pyrolysis, 63(1),

1-15. https://doi.org/10.1016/S0165-2370(01)00137-1
Liu, Y., Qian, Y., Wang, Y. (2000). Pyrolysis of polystyrene waste in a fluidized-bed reactor to obtain styrene

monomer and gasoline fraction. Fuel Processing Technology, 63(1), 45-55.https://doi.org/10.1016/S0378-

3820(99)00066-1
Onwudili, J., Insura, N., & Williams, P. (2009). Composition of products from the pyrolysis of polyethylene and

polystyrene in a closed batch reactor: Effects of temperature and residence time. Journal of Analytical and

Applies Pyrolysis, 86(2), 293-303. https://www.sciencedirect.com/science/article/pii/S0165237009001119
Sakata, Y., Uddin, A., & Muto, I. (1999). Degradation of polyethylene and polypropylene into fuel oil by using

solid acid and non-acid catalysts. Journal of Analytical and Applies Pyrolysis, 51(1-2), 135-55.

https://doi.org/10.1016/S0165-2370(99)00013-3
Martynis, M., Mulyazmi, M., Winada, E., & Harahap, A. (2019). Thermal Pyrolysis of Polypropylene Plastic

Waste into Liquid Fuel: Reactor Performance Evaluation. IOP Confrence: Materials Science and Engineering,

543. doi:10.1088/1757-899X/543/1/012047
Papuga, S., Gvero, P., & Vukić, L. (2015). Temperature and time influence on the waste plastics pyrolysis in the

fixed bed reactor. Thermal Science, 20, 154. DOI: 10.2298/TSCI141113154P
López, A. Marco, I., Caballero, B., Laresgoiti, M., & Adrados, A. (2011). Influence of time and temperature on

pyrolysis of plastic wastes in a semi-batch reactor. Chemical Engineering Journal, 173(1), 62-71.

https://doi.org/10.1016/j.cej.2011.07.037
Williams, P., & Williams, E. (1999). Fluidised bed pyrolysis of low density polyethylene to produce

petrochemical feedstock. Journal Of Analytical And Applied Pyrolysis, 51(1-2), 107-126. doi: 10.1016/s0165-

2370(99)00011-x
Mastral, F., Esperanza, E., Berrueco, C., Juste, M., & Ceamanos, J. (2003). Fluidized bed thermal degradation

products of HDPE in an inert atmosphere and in air–nitrogen mixtures. Journal Of Analytical And Applied

Pyrolysis, 70(1), 1-17. doi: 10.1016/s0165-2370(02)00068-2
Ajibola, A., Omoleye, J., & Efeovbokhan, V. (2018). Catalytic cracking of polyethylene plastic waste using

synthesised zeolite Y from Nigerian kaolin deposit. Applied Petrochemical Research, 8, 211-217.

https://doi.org/10.1007/s13203-018-0216-7
Jadhao, S. & Seethamraju, S. (2020). Pyrolysis Study of mixed plastics waste. IOP Conf. Ser.: Mater. Sci. Eng.,

736. Retrived from https://iopscience.iop.org/article/10.1088/1757-899X/736/4/042036/pdf
Panda, A., Alotaibi, A., Kozhevnikov, I., & Shiju, N. (2020). Pyrolysis of Plastics to Liquid Fuel Using Sulphated

Zirconium Hydroxide Catalyst. Waste and Biomass Valorization, 11, 6337-6345. Retrived from

https://link.springer.com/article/10.1007/s12649-019-00841-4
Sembiring et al. (2018). Catalytic Pyrolysis of Waste Plastic Mixture. IOP Conf. Ser.: Mater. Sci. Eng., 316.

Retrived from https://iopscience.iop.org/article/10.1088/1757-899X/316/1/012020/pdf

62

Appendix B: All Model Results

 For the model results, these have been split up between regression results and

classification results. In addition, the piecewise results were separated from other model results

due to the different naming system. For trials were the imputed regression results, two included

for each model run. The stratified cross validation method results were separated as well

independently from the simulations and python ‘cross_val_score’ since only a few models were

run with the stratified method. This was due to time constraints and the use of the stratified

method as a proof of concept where not all models needed to be run to prove efficacy.

Piecewise Model Regression Results

Table 19: Piecewise regression results.

 100 Simulations Python ‘Cross_val_score’

Model MAE
Std

Dev
RMSE

Std

Dev
MAE Avg

Std

Dev

RMSE

Avg

Std

Dev

Data

Points

Compositions 13.9 1.3 18 1.6 21.5 10.4 24.5 10.3 310

Compositions

with Temp
11.3 1.3 16.3 1.7 19.82 9.76 23.22 9.5 310

Only Temp 16.4 1.2 20.5 1.4 22.7 12.1 24.4 11.7 310

Comps,

Temp, & Rxn

Time

9.7 1.4 13.8 2.4 21.4 7.6 25.9 8.8 182

Comps,

Temp, &

Catalyst

11.4 1.4 16.3 1.9 19.6 9.9 23 9.6 310

Comps,

Temp, & R

type

10.5 1.3 15.1 1.9 18.3 8.8 22 8.2 310

Comps,

Temp, &

Catalyst, & R

type

10.3 1.2 14.8 1.9 18.3 8.7 21.3 8.4 310

63

Regression Results for Models with Imputation

Table 20: Imputed regression model results.

 100 Simulations Python ‘Cross_val_score’

Model MAE Std Dev RMSE
Std

Dev
MAE Std Dev RMSE

Std

Dev

Data

Points

A.1 8.3 1.6 12.5 2.8 13.3 4.2 18.7 5.4 182
 8.11 1.6 12.1 2.7

A.2 7.5 1.4 11 2.2 15.2 8.1 19.6 7.4 176
 7.3 1.1 10.7 1.9

A.3 8.4 1.6 12.1 2.4 12.9 4.3 17.4 4.8 160
 8.4 1.5 11.9 2.3

A.4 6.9 1.3 9.9 1.7 10.6 3.3 13.6 4 139
 6.9 1.4 9.7 2

A.5 4.8 0.9 6.4 1.1 7.3 2.3 8.8 2.1 110
 4.6 1 6.1 1.2

B.1 8.66 1.1 13.2 1.8 14.9 3.6 19.4 4.5 310

 8.65 1.3 12.9 1.9

B.2 8.41 0.93 13.06 1.6 17.3 4.2 22.6 5 310
 8.38 1.27 12.8 2.17

B.3 8.43 1.2 12.9 1.9 17.1 4.3 22.3 5.1 265
 8.69 1.3 13.42 2

B.4 4.8 0.7 6.7 1 7.3 1.8 8.8 1.8 201
 4.6 0.6 6.3 0.8

B.5 8.45 1.46 12.32 2.3 15.8 4.8 20.09 5.93 198
 8.51 1.19 12.5 1.97

B.6 8.14 1.73 12.32 2.9 12.64 5.26 14.47 5.17 151
 7.83 1.78 11.8 2.9

C.1 11.5 1.4 15.6 2 14.25 1.23 19 1.8 199
 11.4 1.5 15.4 2

D.1 8.41 1.44 12.58 2.42 15.65 9.8 18.34 10.54 200
 8.54 1.41 12.7 2.14

D.2 8.5 1.5 12.65 2.47 11.1 4.34 14.24 5.18 152
 7.99 1.65 11.9 2.7

D.3 6.72 1.76 11.16 3.59 8.78 1.82 12.63 3.77 114
 6.84 1.75 10.96 3.24

D.4 6.86 1.6 10.72 2.93 8.83 2.65 13.15 4.88 114
 6.65 1.56 10.77 2.95

D.5 7.55 1.84 11.85 3.34 9.26 2.71 13.17 5.12 114
 7.13 1.8 11.37 3.48

D.6 7.08 1.81 11.31 3.74 8.86 2.06 12.68 3.82 114
 7.42 2.02 11.86 3.91

D.7 7.36 1.83 11.65 3.23 9.11 1.7 13.1 3.45 114

64

 7 1.6 11.02 3.04

Regression Results for Models without Imputation

Table 21: Regression results from unimputed Models F and E.

 100 Simulations Python ‘Cross_val_score’

Model MAE Std Dev RMSE Std Dev MAE Std Dev RMSE Std Dev
Data

Points

F.1 8.75 1.49 12.97 2.11 20.04 5.19 25.62 4.87 310

F.2 8.94 1.4 13.42 2.16 20.62 5.57 25.78 5.37 310

F.3 9 1.39 12.85 2 17.38 5.23 21.29 5.06 310

F.4 9.49 1.44 13.65 2.03 17.52 5.54 21.44 5.16 310

F.5 8.51 1.68 12.03 2.3 21.1 10 25 11 124

F.6 7.95 1.86 11.8 2.6 17.1 4.6 21.1 5.4 99

E.1 8.99 1.62 12.82 2.46 14.3 3.21 18.2 4.2 132

E.2 8.82 1.64 12.77 2.44 14.3 3.6 18.2 4.6 132

E.3 9.36 1.57 13.14 2.2 17.44 5.2 21 5.7 132

E.4 9.83 1.65 13.74 2.2 18.8 5.4 21.8 5.9 132

E.5 8.82 1.94 12.16 2.7 13.9 7 17.3 7.7 94

E.6 8.77 2.37 12.21 3.2 12.9 7.2 16.7 9.1 89

E.7 12.42 1.8 16.4 2.6 16.9 6.6 20.6 7.6 132

Regression Stratified Cross Validation Results

Table 22: Stratified cross validation results for regression models.

 100 Simulations Stratified Cross Validation

Model MAE Std Dev RMSE Std Dev MAE
Std

Dev
RMSE Std Dev

Data

Points

B.1 8.66 1.1 13.2 1.8 9.04 0.7 13.7 1.8 310

D.1 8.41 1.44 12.58 2.42 8.1 0.7 11.9 2.4 200

D.3 6.72 1.76 11.16 3.59 7.2 1.9 11.6 3.8 114

E.1 8.99 1.62 12.82 2.46 7.1 0.8 11.1 0.9 132

E.5 8.82 1.94 12.16 2.7 9.3 2 12.5 3 94

F.5 8.51 1.68 12.03 2.3 9.3 1.1 12.9 2 124

F.6 7.95 1.86 11.8 2.6 7.33 1.3 11.1 2.1 99

65

Piecewise Classification Results

Table 23: Piecewise classification results. Note: python cross validation was not run on most these

models because they were solely created to compare simulation results.

 100 Simulations Python ‘Cross_val_score’

Model
Classification

Cutoff (%)
Accuracy

Std

Dev
Accuracy

Std

Dev
Datapoints

Compositions 60 77% 5 73% 11 310

Temperature 60 69% 5 310

Compositions

&

Temperature

60 83% 5 74% 11 310

Comps,

Temp, &

Catalyst

60 85% 5 310

Comps,

Temp, & R

Type

60 85% 5 310

Comps,

Temperature,

Catalyst, & R

Type

60 88% 5 310

Comps,

Temperature,

Rxn Time

60 87% 5 182

Comps,

Temperature,

Catalyst, & R

Type

70 77% 5 310

Comps,

Temperature,

Catalyst, & R

Type

80 76% 5 310

Compositions 80 71 5 69 3 310

Compositions

&

Temperature

80 73 6 65 5 310

66

Classification Model Results

Table 24: Classification Model Results for models I and G.

 100 Simulations Python ‘Cross_val_score’

Model
Classification

Cutoff
Accuracy St Dev Accuracy

Std

Dev

Data

Points

I.1 60% 89% 5% 69% 11% 171

I.2 70% 85% 5% 51% 17% 171

I.3 80% 84% 6% 67% 14% 171

G.1 60% 87% 3% 82% 10% 310

G.2 70% 85% 5% 78% 14% 310

G.3 80% 79% 4% 72% 12% 310

Classification Feature Cutoff Model Results

Table 25: Feature cutoff results for classification models.

Model

Classification

Cutoff Feature Cutoffs

100

Simulations

Accuracy Std Dev Data Points

I.4 60% None 89 5 171

I.5 60% 400-500°C 96 5 124

I.6 60%

400-500°C & 0 to

3.5mm 71 10 99

I.7 70% None 85 5 171

I.8 70% 400-500°C 89 6 124

I.9 70%

400-500°C & 0 to

3.5mm 91 5 99

I.10 80% None 84 6 171

I.11 80% 400-500°C 81 8 124

I.12 80%

400-500°C & 0 to

3.5mm 79 8 99

G.4 60% None 87 3 310

G.5 60% 400-500°C 92 4 199

G.6 60%

400-500°C & 0 to

3.5mm 94 4 152

G.7 70% None 85 5 310

G.8 70% 400-500°C 85 6 199

G.9 70%

400-500°C & 0 to

3.5mm 86 6 152

G.10 80% None 79 4 310

G.11 80% 400-500°C 75 6 199

G.12 80%

400-500°C & 0 to

3.5mm 73 8 152

67

Classification Stratified Cross Validation Results

Table 26: Classification results for stratified cross validation

 100 Simulations Stratified Cross Validation

Model
Classification

Cutoff
Accuracy St Dev Accuracy

Std

Dev

Data

Points

I.1 60% 89% 5% 89% 3% 171

I.2 70% 85% 5% 89% 3% 171

I.3 80% 84% 6% 83% 8% 171

G.1 60% 87% 3% 86% 3% 310

G.2 70% 85% 5% 86% 6% 310

G.3 80% 79% 4% 83% 4% 310

Appendix C: Stratified Cross Validation Method Example

 Below is an example of the dataset splits for preprocessing before being input in the

stratified validation code for Model D.1. Model D.1 contained a total of 200 datapoints which

were split up into 5 prep sheets with 40 datapoints each. Each prep sheet therefore represented

20% of the oil yields within the model. For example, sheet 1 contained 20% of the highest oil

yields which ranged from 83% to 99% oil yield. Each sheet would be input into the python code

found in Appendix G and then shuffled and sorted into the five cross validation bins. The splits

of this data convey the oil yield spread disparity with excellent clarity. The first three splits were

all over 70% oil yield.

Table 27: Example stratified cross val example from Model D.1

Split 1: 40 Datapoints 83 to 99% yield

HDPE LDPE PP PS PVC PET Temperature

Heating
Rate

Particle
Size

Feed
Size

Reaction
Time Catalyst

Oil
Yield

0 0 0 100 0 0 350 10 2 10 60 0 99

0 70 0 30 0 0 400 10 2 10 60 0 96

0 0 0 100 0 0 450 10 2 10 58 0 96

0 0 0 100 0 0 450 5 2 10 53 0 96

0 0 0 100 0 0 430 10 3 474 20 0 95

0 100 0 0 0 0 460 10 2 10 101 0 95

0 0 100 0 0 0 500 5 4 35 60 0 95

0 100 0 0 0 0 400 5 1 1 117 0 93

0 68 16 16 0 0 430 11 3 22 20 0 93

100 0 0 0 0 0 500 5 4 35 60 0 93

0 0 0 100 0 0 450 15 2 10 58 0 93

0 0 0 100 0 0 450 20 2 10 53 0 93

0 16 16 68 0 0 430 10 3 538 20 0 92

0 0 100 0 0 0 430 6 3 9 20 0 92

0 33 33 33 0 0 430 11 3 419 20 0 91

0 70 0 30 0 0 425 10 2 10 60 0 90

68

0 16 68 16 0 0 430 6 3 75 20 0 90

0 100 0 0 0 0 430 10 3 10 20 0 90

0 100 0 0 0 0 425 10 2 10 60 0 90

0 0 100 0 0 0 400 10 50 1000 60 0 89

0 0 100 0 0 0 380 3 2 10 61 1 86

0 0 100 0 0 0 460 14 2 10 56 0 86

0 0 100 0 0 0 380 3 2 10 61 1 85

0 0 100 0 0 0 350 10 50 1000 60 0 85

0 0 100 0 0 0 450 8 2 17 92 0 85

0 0 100 0 0 0 500 20 3 20 52 1 85

100 0 0 0 0 0 400 5 1 1 169 0 85

100 0 0 0 0 0 430 3 1 10 350 0 85

0 100 0 0 0 0 430 3 1 10 300 0 85

0 100 0 0 0 0 430 3 1 10 300 0 84

100 0 0 0 0 0 450 7 7 16 30 0 84

0 34 66 0 0 0 460 13 2 10 62 0 84

29 29 27 9 0 6 600 20 20 200 60 0 84

0 0 100 0 0 0 500 20 3 20 55 1 84

50 50 0 0 0 0 430 3 2 10 375 0 84

0 70 0 30 0 0 450 10 2 10 60 0 84

0 0 100 0 0 0 380 3 2 10 61 1 84

0 0 100 0 0 0 450 5 2 10 56 0 83

0 0 100 0 0 0 380 3 2 10 61 1 83

Split 2: 40 Datapoints 80 to 83% yield

0 0 100 0 0 0 500 20 3 20 56 0 83

0 0 100 0 0 0 500 20 3 20 48 1 83

0 0 100 0 0 0 450 15 2 10 56 0 83

0 0 100 0 0 0 450 10 2 10 56 0 83

33 33 33 0 0 0 450 8 2 17 92 0 82

0 0 100 0 0 0 500 6 2 147 80 0 82

29 29 27 9 0 6 500 20 6 54 30 0 82

29 29 27 9 0 6 550 20 20 200 60 0 82

0 100 0 0 0 0 500 20 3 20 74 1 82

100 0 0 0 0 0 430 3 3 10 168 1 82

0 100 0 0 0 0 450 5 2 10 97 0 82

100 0 0 0 0 0 430 3 3 10 168 1 81

0 100 0 0 0 0 450 10 2 10 97 0 81

0 0 100 0 0 0 500 8 2 147 80 0 81

100 0 0 0 0 0 500 14 3 50 69 0 81

10 0 0 90 0 0 560 10 4 23 90 1 81

90 0 0 10 0 0 560 10 4 23 90 1 81

0 0 100 0 0 0 500 10 25 1000 120 0 81

100 0 0 0 0 0 350 5 2 2 169 0 81

0 0 0 100 0 0 450 10 17 1000 75 0 81

0 0 100 0 0 0 500 10 2 147 80 0 81

0 0 100 0 0 0 380 3 2 10 61 1 81

29 29 27 9 0 6 500 20 20 200 60 0 81

0 100 0 0 0 0 500 6 2 14 106 0 80

0 100 0 0 0 0 450 14 2 17 80 1 80

0 0 100 0 0 0 400 10 50 1000 30 0 80

0 0 100 0 0 0 380 3 2 10 61 0 80

100 0 0 0 0 0 430 3 3 10 168 1 80

0 10 90 0 0 0 560 10 4 23 90 1 80

70 0 0 30 0 0 560 10 4 23 90 1 80

100 0 0 0 0 0 500 20 3 20 64 1 80

33 33 33 0 0 0 500 20 3 20 66 1 80

0 100 0 0 0 0 450 8 2 17 92 0 80

100 0 0 0 0 0 450 8 3 17 92 0 80

25 50 25 0 0 0 450 8 2 17 92 0 80

25 50 25 0 0 0 450 12 2 17 80 0 80

0 0 100 0 0 0 350 10 50 1000 30 0 80

0 100 0 0 0 0 500 8 2 14 92 0 80

0 0 100 0 0 0 450 10 25 1000 120 0 80

Split 3: 40 Datapoints 72 to 79% yield

0 50 50 0 0 0 450 8 2 17 92 0 79

0 0 0 100 0 0 450 10 2 10 60 0 79

100 0 0 0 0 0 600 13 3 50 75 0 79

0 100 0 0 0 0 450 8 2 17 92 0 79

0 100 0 0 0 0 450 14 2 17 80 0 79

100 0 0 0 0 0 550 20 3 20 54 0 79

100 0 0 0 0 0 500 20 3 20 69 1 79

100 0 0 0 0 0 500 20 3 20 60 1 79

33 33 33 0 0 0 500 20 3 20 73 1 79

0 0 100 0 0 0 400 10 25 1000 120 1 78

0 0 100 0 0 0 380 3 2 10 61 1 78

0 0 100 0 0 0 500 14 2 147 80 0 78

29 29 27 9 0 6 450 20 20 200 60 0 78

0 30 70 0 0 0 560 10 4 23 90 1 78

50 50 0 0 0 0 560 10 4 23 90 1 78

0 100 0 0 0 0 500 20 3 20 80 1 78

100 0 0 0 0 0 500 20 3 20 73 0 78

69

33 33 33 0 0 0 500 20 3 20 58 1 78

0 0 100 0 0 0 400 10 25 1000 120 0 78

100 0 0 0 0 0 450 8 3 17 80 1 77

0 0 100 0 0 0 500 20 3 20 44 1 77

33 33 33 0 0 0 500 20 3 20 74 0 77

0 100 0 0 0 0 500 10 2 14 78 0 76

0 100 0 0 0 0 500 20 3 20 83 0 76

33 33 33 0 0 0 500 20 3 20 48 1 76

29 29 27 9 0 6 500 10 7 54 30 0 76

0 0 100 0 0 0 450 10 25 1000 120 1 76

35 35 10 10 11 1 450 8 2 17 92 0 75

0 0 100 0 0 0 380 3 2 10 61 1 75

100 0 0 0 0 0 430 3 3 10 168 1 75

30 70 0 0 0 0 560 10 4 23 90 1 75

70 30 0 0 0 0 560 10 4 23 90 1 75

0 100 0 0 0 0 500 20 3 20 70 1 75

0 100 0 0 0 0 500 12 2 13 78 0 74

100 0 0 0 0 0 430 3 3 10 168 1 74

100 0 0 0 0 0 500 20 3 20 52 1 73

0 0 90 0 0 10 400 10 25 1000 120 1 73

0 100 0 0 0 0 450 15 2 10 101 0 73

100 0 0 0 0 0 500 20 3 20 68 0 72

Split 4: 40 Datapoints 52 to 71% yield

0 100 0 0 0 0 500 14 2 13 78 0 71

100 0 0 0 0 0 430 3 3 10 168 1 71

0 0 0 100 0 0 500 5 4 35 60 0 71

0 50 50 0 0 0 560 10 4 23 90 1 70

50 0 0 50 0 0 560 10 4 23 90 1 70

0 0 0 100 0 0 450 5 20 1000 75 1 70

0 0 100 0 0 0 300 5 2 2 80 0 70

0 0 100 0 0 0 300 10 50 1000 60 0 69

100 0 0 0 0 0 430 3 3 10 168 0 69

0 0 100 0 0 0 300 10 50 1000 30 0 69

0 0 100 0 0 0 380 3 2 10 61 1 69

0 0 100 0 0 0 450 20 2 10 55 0 68

0 70 30 0 0 0 560 10 4 23 90 1 68

30 0 0 70 0 0 560 10 4 23 90 1 68

0 100 0 0 0 0 500 20 3 20 66 1 68

100 0 0 0 0 0 430 3 3 10 168 1 68

0 0 100 0 0 0 350 5 2 2 80 0 68

0 0 0 100 0 0 500 10 2 10 60 0 67

0 66 34 0 0 0 460 10 2 10 106 1 67

0 0 100 0 0 0 380 3 2 10 61 0 65

0 0 100 0 0 0 400 5 2 2 61 0 63

0 66 34 0 0 0 460 10 2 10 106 0 63

0 34 66 0 0 0 460 10 2 10 66 1 62

0 100 0 0 0 0 550 5 1 1 77 1 62

0 100 0 0 0 0 450 20 2 10 101 0 61

90 10 0 0 0 0 560 10 4 23 90 1 61

0 0 0 100 0 0 450 10 20 1000 75 1 60

0 0 100 0 0 0 250 4 2 2 124 0 57

0 0 100 0 0 0 460 10 2 10 59 1 57

10 90 0 0 0 0 560 10 4 23 90 1 55

0 0 75 0 0 25 450 10 25 1000 120 1 55

0 0 100 0 0 0 380 3 2 10 61 1 55

100 0 0 0 0 0 400 6 3 2 170 0 54

25 25 0 50 0 0 450 10 19 1000 75 0 54

0 0 100 0 0 0 450 10 20 1000 75 1 54

0 0 50 50 0 0 450 10 20 1000 75 1 54

0 0 100 0 0 0 500 10 25 1000 120 1 53

0 0 100 0 0 0 250 10 50 1000 60 0 52

0 50 0 50 0 0 450 10 20 1000 75 1 52

Split 5: 40 Datapoints 52 to 71% yield

0 100 0 0 0 0 460 10 2 10 104 1 50

100 0 0 0 0 0 430 3 3 10 168 1 50

13 13 25 50 0 0 450 10 19 1000 75 0 49

44 0 21 13 12 9 500 5 8 35 60 0 49

0 0 100 0 0 0 380 3 2 10 61 1 47

0 0 65 0 0 35 500 10 25 1000 120 1 45

0 50 0 50 0 0 450 10 20 1000 75 1 44

0 50 50 0 0 0 450 10 20 1000 75 1 44

0 25 25 50 0 0 450 10 20 1000 75 1 44

0 0 100 0 0 0 450 10 15 1000 75 0 42

50 50 0 0 0 0 450 10 20 1000 75 1 42

100 0 0 0 0 0 550 5 1 1 73 1 41

10 10 20 40 0 20 450 10 20 1000 75 0 40

50 50 0 0 0 0 450 10 20 1000 75 1 40

0 0 100 0 0 0 450 10 20 1000 75 1 40

0 50 50 0 0 0 450 10 20 1000 75 1 40

0 25 25 50 0 0 450 10 20 1000 75 1 40

0 0 0 0 0 100 450 5 2 10 90 0 39

70

0 0 0 0 0 100 500 6 2 293 68 0 39

0 100 0 0 0 0 500 10 2 10 60 0 38

0 0 0 0 0 100 450 10 2 10 90 0 35

0 0 0 0 0 100 500 8 2 293 68 0 34

0 0 50 50 0 0 450 10 20 1000 75 1 34

0 0 0 0 0 100 500 10 2 293 68 0 32

100 0 0 0 0 0 300 6 2 2 169 0 31

0 0 0 0 0 100 500 12 2 293 68 0 30

0 20 20 20 0 20 450 10 20 1000 75 1 30

0 0 0 0 0 100 450 15 2 10 67 0 30

0 0 0 0 0 100 450 20 2 10 67 0 29

0 0 0 0 0 100 500 14 2 293 68 0 29

0 90 10 0 0 0 560 10 4 23 90 1 29

0 20 20 20 0 20 450 10 20 1000 75 1 28

50 50 0 0 0 0 450 10 16 1000 75 0 25

0 0 50 50 0 0 450 10 20 1000 75 0 25

25 25 50 0 0 0 450 10 20 1000 75 0 24

100 0 0 0 0 0 450 20 1 20 290 0 24

0 100 0 0 0 0 550 5 1 1 77 1 18

100 0 0 0 0 0 550 5 1 1 73 1 17

0 0 0 0 0 100 500 5 4 35 60 0 15

71

Appendix D: Random Forest Regressor 100 Simulations Code

import pandas as pd

import numpy as np

import io

import statistics

from sklearn.ensemble import RandomForestRegressor

from sklearn.model_selection import train_test_split

from google.colab import files

import seaborn as sns

import matplotlib.pyplot as plt

from sklearn.metrics import r2_score

from sklearn.metrics import mean_squared_error

from sklearn.neural_network import MLPRegressor

from statistics import mean

from sklearn.metrics import accuracy_score

from sklearn.ensemble import RandomForestClassifier

from sklearn.metrics import f1_score

%matplotlib inline

uploaded = files.upload()

features = pd.read_csv('some data set')

features.head(5)

Labels are the values we want to predict

labels = np.array(features['Oil Yield '])

#Needed to do this loop because one of the csv's kept outputting strings. Not sure why

#for i in range(len(labels)):

 # labels[i]= float(labels[i])

Remove the labels from the features

axis 1 refers to the columns

features= features.drop('Oil Yield ', axis = 1)

Saving feature names for later use

feature_list = list(features.columns)

Convert to numpy array

features = np.array(features)

#Regression

#Create many simulations at once

#In compare_vis first number is how many desired simulations, second is the feature index eg Temp is 6

HDPE is 0

#MAE, RMSE ,and R^2 will also be highlighted

#could run this with any ML just need to adjust metrics and code for model prediction

#Creating open lists to put train test splits in

train_features_lists = []

test_features_lists = []

train_labels_lists = []

72

test_labels_lists = []

R2_collect = []

MAE_collect = []

RMSE_collect = []

Put in number of tests desired and the number associated with each feature

def compare_vis(tests,Feature_Name):

 for i in range(tests):

 if i <=tests:

 train_features, test_features, train_labels, test_labels = train_test_split(features, labels, test_size = 0.20

)

 train_features_lists.append(train_features.tolist())

 test_features_lists.append(test_features.tolist())

 train_labels_lists.append(train_labels.tolist())

 test_labels_lists.append(test_labels.tolist())

 #Number of tests results in arrays for train test split being put into the holder lists created outside of the

 function

 #Each train and test set is a 3 layer list. These are created until number of desired lists are created

 else:

 #Once all are created graphing and models can run

 for i in range(tests):

 train_f_list_1 =[]

 test_f_list_1 =[]

 train_l_list_1 =[]

 test_l_list_1 =[]

 test = train_features_lists[i]

 test_2 = test_features_lists[i]

 test_3 = train_labels_lists[i]

 test_4 = test_labels_lists[i]

 #Code puts each simulations splits into variables called test-

test_4 each correspond to a split. These are overridden for each simulation

 '''

 for y in range(len(test)):

 train_f_list_1.append(test[y][Feature_Name]) #looks at created list and puts each desired feature fro

m each list of lists within each simulation

 train_l_list_1.append(test_3[y]) #puts oil yeild associate with that simulation into a list to be graphed

 for c in range(len(test_2)):

 test_f_list_1.append(test_2[c][Feature_Name]) #separate for loop for the test set since the test set is s

maller than the train but does the same function

 test_l_list_1.append(test_4[c]) #as the foor loop above

 plt.scatter(train_f_list_1, train_l_list_1, c='r') #plots training data on scatter plot in red

 plt.scatter(test_f_list_1, test_l_list_1, c='b') #plots testing data on scatter plot in blue

73

 plt.ylabel('Oil Yeild')

 plt.xlabel(feature_list[Feature_Name]) #Plots the feature name based on given input

 plt.show()

 '''

 #where code goes for desired model runs

 rf = RandomForestRegressor(n_estimators = 1000)

 rf.fit(test, test_3)

 predictions = rf.predict(test_2)

 errors = abs(predictions - test_4)

 #where the metrics go

 #MAE

 mae=round(np.mean(errors), 2)

 #print('Mean Absolute Error:', mae)

 MAE_collect.append(mae)

 #RMSE

 rms = mean_squared_error(test_4, predictions, squared=False)

 rms = round(rms, 2)

 #print('The Root Mean Square Error (RMSE) is', rms)

 RMSE_collect.append(rms)

 #R2 Score

 score=r2_score(test_4, predictions)

 #print('The R Squared Value is', score)

 R2_collect.append(score)

compare_vis(100,0)

#Getting the average and standard deviations of all MAE and RMSE for simulations

R2_avg = mean(R2_collect)

R2_std = statistics.pstdev(R2_collect)

MAE_avg = mean(MAE_collect)

RMSE_avg = mean(RMSE_collect)

MAE_std = statistics.pstdev(MAE_collect)

RMSE_std = statistics.pstdev(RMSE_collect)

print("R2 Mean ", round(R2_avg,2))

print("R2 Standard Deviation ", round(R2_std, 2))

print("MAE Mean ", round(MAE_avg,2))

print("MAE Standard Deviation ", round(MAE_std, 2))

print("RMSE Mean ", round(RMSE_avg,2))

print("RMSE Standard Deviation ", round(RMSE_std,2))

74

Appendix E: Random Forest Classifier 100 Simulation Code

import pandas as pd

import numpy as np

import io

import statistics

from sklearn.ensemble import RandomForestRegressor

from sklearn.model_selection import train_test_split

from google.colab import files

import seaborn as sns

import matplotlib.pyplot as plt

from sklearn.metrics import r2_score

from sklearn.metrics import mean_squared_error

from sklearn.neural_network import MLPRegressor

from statistics import mean

from sklearn.metrics import accuracy_score

from sklearn.ensemble import RandomForestClassifier

from sklearn.metrics import f1_score

%matplotlib inline

features = pd.read_csv('some data set')

features.head(5)

Labels are the values we want to predict

labels = np.array(features['Oil Yield '])

#Needed to do this loop because one of the csv's kept outputting strings. Not sure why

#for i in range(len(labels)):

 # labels[i]= float(labels[i])

Remove the labels from the features

axis 1 refers to the columns

features= features.drop('Oil Yield ', axis = 1)

Saving feature names for later use

feature_list = list(features.columns)

Convert to numpy array

features = np.array(features)

#Classifier

#Create many simulations at once

#In compare_vis first number is how many desired simulations, second is the feature index eg Temp is 6

HDPE is 0

#MAE, RMSE ,and R^2 will also be highlighted

#could run this with any ML just need to adjust metrics and code for model prediction

75

#Creating open lists to put train test splits in

train_features_lists = []

test_features_lists = []

train_labels_lists = []

test_labels_lists = []

Acc_collect = []

Put in number of tests desired and the number associated with each feature

def compare_vis(tests,Feature_Name):

 for i in range(tests):

 if i <=tests:

 train_features, test_features, train_labels, test_labels = train_test_split(features, labels, test_size = 0.20

)

 train_features_lists.append(train_features.tolist())

 test_features_lists.append(test_features.tolist())

 train_labels_lists.append(train_labels.tolist())

 test_labels_lists.append(test_labels.tolist())

 #Number of tests results in arrays for train test split being put into the holder lists created outside of th

e function

 #Each train and test set is a 3 layer list. These are created until number of desired lists are created

 else:

 #Once all are created graphing and models can run

 for i in range(tests):

 train_f_list_1 =[]

 test_f_list_1 =[]

 train_l_list_1 =[]

 test_l_list_1 =[]

 test = train_features_lists[i]

 test_2 = test_features_lists[i]

 test_3 = train_labels_lists[i]

 test_4 = test_labels_lists[i]

 #Code puts each simulations splits into variables called test-

test_4 each correspond to a split. These are overridden for each simulation

 for y in range(len(test)):

 train_f_list_1.append(test[y][Feature_Name]) #looks at created list and puts each desired feature fro

m each list of lists within each simulation

76

 train_l_list_1.append(test_3[y]) #puts oil yeild associate with that simulation into a list to be graphed

 for c in range(len(test_2)):

 test_f_list_1.append(test_2[c][Feature_Name]) #separate for loop for the test set since the test set is s

maller than the train but does the same function

 test_l_list_1.append(test_4[c]) #as the foor loop above

 #plt.scatter(train_f_list_1, train_l_list_1, c='r') #plots training data on scatter plot in red

 #plt.scatter(test_f_list_1, test_l_list_1, c='b') #plots testing data on scatter plot in blue

 #plt.ylabel('Oil Yeild')

 #plt.xlabel(feature_list[Feature_Name]) #Plots the feature name based on given input

 #plt.show()

 #where code goes for desired model runs

 #Classifier Code

 clf = RandomForestClassifier(n_estimators=1000)

 clf.fit(test, test_3)

 predictions = clf.predict(test_2)

 accuracy = accuracy_score(test_4,predictions)

 Acc_collect.append(accuracy)

compare_vis(100,0)

Acc_avg = mean(Acc_collect)

Acc_std = statistics.pstdev(Acc_collect)

print("Accuracy Mean ", round(Acc_avg,2))

print("Accuracy Standard Deviation ", round(Acc_std,2))

77

Appendix F: Python Cross_val_score Cross Validation for Regression and Classification

Models

#Regressor Cross Validation

scores_2 = cross_val_score(rf,features,labels,cv=5,scoring='neg_mean_absolute_error')

scores_3 = cross_val_score(rf,features,labels,cv=5,scoring='neg_root_mean_squared_error')

#'neg_root_mean_squared_error'

#'neg_mean_absolute_error'

print(scores_2)

print("MAE Mean ", round(np.mean(scores_2), 2))

print("MAE Std Dev ", round(np.std(scores_2), 2))

print(scores_3)

print("RMSE Mean ", round(np.mean(scores_3), 2))

print("RMSE Std Dev ", round(np.std(scores_3), 2))

#Classification Cross Validation

classification_score = cross_val_score(clf, features, labels, cv =5, scoring = 'accuracy')

print(classification_score)

print("Accuracy Mean ", round(np.mean(classification_score), 2))

print("Accuracy Std Dev ", round(np.std(classification_score), 2))

78

Appendix G: Stratified Cross Validation Method
#This code performs the Stratified Cross Validation Method

import pandas as pd

import numpy as np

import io

import statistics

from sklearn.ensemble import RandomForestRegressor

from sklearn.model_selection import train_test_split

from google.colab import files

import seaborn as sns

import matplotlib.pyplot as plt

from sklearn.metrics import r2_score

from sklearn.metrics import mean_squared_error

from statistics import mean

from sklearn.metrics import accuracy_score

from sklearn.ensemble import RandomForestClassifier

%matplotlib inline

uploaded = files.upload()

#Where each dataset split is added to variable names (each CSV should have a different 'distrubution of the data')

sample_1 = pd.read_csv('a')

sample_2 = pd.read_csv('b')

sample_3 = pd.read_csv('c')

sample_4 = pd.read_csv('d')

sample_5 = pd.read_csv('e')

#Shuffling All Sets

#Takes each added csv which became a dataframe and splits it randomly into 5 sets which are also dataframes

shuffled_1 = sample_1.sample(frac=0.8)

result_1 = np.array_split(shuffled_1, 5)

shuffled_2 = sample_2.sample(frac=0.8)

result_2 = np.array_split(shuffled_2, 5)

shuffled_3 = sample_3.sample(frac=0.8)

result_3 = np.array_split(shuffled_3, 5)

shuffled_4 = sample_4.sample(frac=0.8)

result_4= np.array_split(shuffled_4, 5)

shuffled_5 = sample_5.sample(frac=0.8)

result_5 = np.array_split(shuffled_5, 5)

#Spliting All Sets

#This takes each dataframe from the shuffles and assocaites it with a variable that can be added to each "k-fold"

#Each dataframe becomes and array which then becomes a list (necesary because second part of the code was create

d dealing with list' first)

split_1a =np.array(result_1[0]).tolist()

split_2a =np.array(result_1[1]).tolist()

split_3a =np.array(result_1[2]).tolist()

split_4a =np.array(result_1[3]).tolist()

79

split_5a =np.array(result_1[4]).tolist()

split_1b =np.array(result_2[0]).tolist()

split_2b =np.array(result_2[1]).tolist()

split_3b =np.array(result_2[2]).tolist()

split_4b =np.array(result_2[3]).tolist()

split_5b =np.array(result_2[4]).tolist()

split_1c =np.array(result_3[0]).tolist()

split_2c =np.array(result_3[1]).tolist()

split_3c =np.array(result_3[2]).tolist()

split_4c =np.array(result_3[3]).tolist()

split_5c =np.array(result_3[4]).tolist()

split_1d =np.array(result_4[0]).tolist()

split_2d =np.array(result_4[1]).tolist()

split_3d =np.array(result_4[2]).tolist()

split_4d =np.array(result_4[3]).tolist()

split_5d =np.array(result_4[4]).tolist()

split_1e =np.array(result_5[0]).tolist()

split_2e =np.array(result_5[1]).tolist()

split_3e =np.array(result_5[2]).tolist()

split_4e =np.array(result_5[3]).tolist()

split_5e =np.array(result_5[4]).tolist()

#Regression: Adding all splits to associated k fold sets

#Each k fold should have the necesary splits of data from the csvs entered

t1 = split_1a + split_1b + split_1c + split_1d + split_1e

t2 = split_2a + split_2b + split_2c + split_2d + split_2e

t3 = split_3a + split_3b + split_3c + split_3d + split_3e

t4 = split_4a + split_4b + split_4c + split_4d + split_4e

t5 = split_5a + split_5b + split_5c + split_5d + split_5e

#Creat lists to put MAE in and RMSE in

MAE_Holder=[]

RMSE_Holder =[]

#Brute Force Method

#Cross Fold 1 : 1-4 Train 5 is test

training_1 = t1+t2+t3+t4

testing_1 = t5

training_1_labels_1=[]

training_1_features_1=[]

testing_1_labels_1 =[]

testing_1_features_1 = []

for i in range(len(training_1)):

 training_1_features_1.append(training_1[i][0:(len(training_1[i])-1)])

 training_1_labels_1.append(training_1[i][-1])

80

for i in range(len(t5)):

 testing_1_features_1.append(t5[i][0:-1])

 testing_1_labels_1.append(t5[i][-1])

training_1_features_1 = np.array(training_1_features_1)

training_1_labels_1= np.array(training_1_labels_1)

testing_1_features_1 = np.array(testing_1_features_1)

testing_1_labels_1 = np.array(testing_1_labels_1)

rf = RandomForestRegressor(n_estimators = 1000)

rf.fit(training_1_features_1, training_1_labels_1)

predictions_1 = rf.predict(testing_1_features_1)

errors_1 = abs(predictions_1 - testing_1_labels_1)

mae_1 = round(np.mean(errors_1), 2)

rmse_1 = (mean_squared_error(testing_1_labels_1, predictions_1, squared=False))

MAE_Holder.append(mae_1)

RMSE_Holder.append(rmse_1)

#Cross Fold 2 Train 1,2,3,5 Test 4

training_1 = t1+t2+t3+t5

testing_1 = t4

training_1_labels_1=[]

training_1_features_1=[]

testing_1_labels_1 =[]

testing_1_features_1 = []

for i in range(len(training_1)):

 training_1_features_1.append(training_1[i][0:(len(training_1[i])-1)])

 training_1_labels_1.append(training_1[i][-1])

for i in range(len(t4)):

 testing_1_features_1.append(t4[i][0:-1])

 testing_1_labels_1.append(t4[i][-1])

training_1_features_1 = np.array(training_1_features_1)

training_1_labels_1= np.array(training_1_labels_1)

testing_1_features_1 = np.array(testing_1_features_1)

testing_1_labels_1 = np.array(testing_1_labels_1)

rf = RandomForestRegressor(n_estimators = 1000)

rf.fit(training_1_features_1, training_1_labels_1)

predictions_1 = rf.predict(testing_1_features_1)

errors_1 = abs(predictions_1 - testing_1_labels_1)

mae_1 = round(np.mean(errors_1), 2)

rmse_1 = (mean_squared_error(testing_1_labels_1, predictions_1, squared=False))

MAE_Holder.append(mae_1)

RMSE_Holder.append(rmse_1)

#Cross Fold 3 Train 1,2,4,5 Test 3

training_1 = t1+t2+t4+t5

testing_1 = t3

training_1_labels_1=[]

81

training_1_features_1=[]

testing_1_labels_1 =[]

testing_1_features_1 = []

for i in range(len(training_1)):

 training_1_features_1.append(training_1[i][0:(len(training_1[i])-1)])

 training_1_labels_1.append(training_1[i][-1])

for i in range(len(t3)):

 testing_1_features_1.append(t3[i][0:-1])

 testing_1_labels_1.append(t3[i][-1])

training_1_features_1 = np.array(training_1_features_1)

training_1_labels_1= np.array(training_1_labels_1)

testing_1_features_1 = np.array(testing_1_features_1)

testing_1_labels_1 = np.array(testing_1_labels_1)

rf = RandomForestRegressor(n_estimators = 1000)

rf.fit(training_1_features_1, training_1_labels_1)

predictions_1 = rf.predict(testing_1_features_1)

errors_1 = abs(predictions_1 - testing_1_labels_1)

mae_1 = round(np.mean(errors_1), 2)

rmse_1 = (mean_squared_error(testing_1_labels_1, predictions_1, squared=False))

MAE_Holder.append(mae_1)

RMSE_Holder.append(rmse_1)

#Cross Fold 4 Train 1,3,4,5 Test 2

training_1 = t1+t3+t4+t5

testing_1 = t2

training_1_labels_1=[]

training_1_features_1=[]

testing_1_labels_1 =[]

testing_1_features_1 = []

for i in range(len(training_1)):

 training_1_features_1.append(training_1[i][0:(len(training_1[i])-1)])

 training_1_labels_1.append(training_1[i][-1])

for i in range(len(t2)):

 testing_1_features_1.append(t2[i][0:-1])

 testing_1_labels_1.append(t2[i][-1])

training_1_features_1 = np.array(training_1_features_1)

training_1_labels_1= np.array(training_1_labels_1)

testing_1_features_1 = np.array(testing_1_features_1)

testing_1_labels_1 = np.array(testing_1_labels_1)

rf = RandomForestRegressor(n_estimators = 1000)

rf.fit(training_1_features_1, training_1_labels_1)

predictions_1 = rf.predict(testing_1_features_1)

errors_1 = abs(predictions_1 - testing_1_labels_1)

mae_1 = round(np.mean(errors_1), 2)

rmse_1 = (mean_squared_error(testing_1_labels_1, predictions_1, squared=False))

82

MAE_Holder.append(mae_1)

RMSE_Holder.append(rmse_1)

#Cross Fold 5 Train 2,3,4,5 Test 1

training_1 = t2+t3+t4+t5

testing_1 = t1

training_1_labels_1=[]

training_1_features_1=[]

testing_1_labels_1 =[]

testing_1_features_1 = []

for i in range(len(training_1)):

 training_1_features_1.append(training_1[i][0:(len(training_1[i])-1)])

 training_1_labels_1.append(training_1[i][-1])

for i in range(len(t1)):

 testing_1_features_1.append(t1[i][0:-1])

 testing_1_labels_1.append(t1[i][-1])

training_1_features_1 = np.array(training_1_features_1)

training_1_labels_1= np.array(training_1_labels_1)

testing_1_features_1 = np.array(testing_1_features_1)

testing_1_labels_1 = np.array(testing_1_labels_1)

rf = RandomForestRegressor(n_estimators = 1000)

rf.fit(training_1_features_1, training_1_labels_1)

predictions_1 = rf.predict(testing_1_features_1)

errors_1 = abs(predictions_1 - testing_1_labels_1)

mae_1 = round(np.mean(errors_1), 2)

rmse_1 = (mean_squared_error(testing_1_labels_1, predictions_1, squared=False))

MAE_Holder.append(mae_1)

RMSE_Holder.append(rmse_1)

#Note: Did not need to rename variabes since python overwrites the new variables onece redefined

print("MAE:", MAE_Holder)

print("MAE Std Dev:", statistics.pstdev(MAE_Holder))

print("MAE Mean:", mean(MAE_Holder))

print("RMSE:", RMSE_Holder)

print("RMSE Std Dev:", statistics.pstdev(RMSE_Holder))

print("RMSE Mean:", mean(RMSE_Holder))

#Classifier Test

#Adding all splits to associated k fold sets

#Each k fold should have the necesary splits of data from the csvs entered

t1 = split_1a + split_1b + split_1c + split_1d + split_1e

t2 = split_2a + split_2b + split_2c + split_2d + split_2e

t3 = split_3a + split_3b + split_3c + split_3d + split_3e

t4 = split_4a + split_4b + split_4c + split_4d + split_4e

t5 = split_5a + split_5b + split_5c + split_5d + split_5e

83

#Creat lists to put Accuracies in

Accuracy_Holder = []

#Brute Force Method

#Cross Fold 1 : 1-4 Train 5 is test

training_1 = t1+t2+t3+t4

testing_1 = t5

training_1_labels_1=[]

training_1_features_1=[]

testing_1_labels_1 =[]

testing_1_features_1 = []

for i in range(len(training_1)):

 training_1_features_1.append(training_1[i][0:(len(training_1[i])-1)])

 training_1_labels_1.append(training_1[i][-1])

for i in range(len(t5)):

 testing_1_features_1.append(t5[i][0:-1])

 testing_1_labels_1.append(t5[i][-1])

training_1_features_1 = np.array(training_1_features_1)

training_1_labels_1= np.array(training_1_labels_1)

testing_1_features_1 = np.array(testing_1_features_1)

testing_1_labels_1 = np.array(testing_1_labels_1)

clf = RandomForestClassifier(n_estimators=1000)

clf.fit(training_1_features_1, training_1_labels_1)

predictions_1 = clf.predict(testing_1_features_1)

accuracy = accuracy_score(testing_1_labels_1,predictions_1)

Accuracy_Holder.append(accuracy)

#Cross Fold 2 Train 1,2,3,5 Test 4

training_1 = t1+t2+t3+t5

testing_1 = t4

training_1_labels_1=[]

training_1_features_1=[]

testing_1_labels_1 =[]

testing_1_features_1 = []

for i in range(len(training_1)):

 training_1_features_1.append(training_1[i][0:(len(training_1[i])-1)])

 training_1_labels_1.append(training_1[i][-1])

for i in range(len(t4)):

 testing_1_features_1.append(t4[i][0:-1])

 testing_1_labels_1.append(t4[i][-1])

training_1_features_1 = np.array(training_1_features_1)

training_1_labels_1= np.array(training_1_labels_1)

testing_1_features_1 = np.array(testing_1_features_1)

testing_1_labels_1 = np.array(testing_1_labels_1)

clf = RandomForestClassifier(n_estimators=1000)

84

clf.fit(training_1_features_1, training_1_labels_1)

predictions_1 = clf.predict(testing_1_features_1)

accuracy = accuracy_score(testing_1_labels_1,predictions_1)

Accuracy_Holder.append(accuracy)

#Cross Fold 3 Train 1,2,4,5 Test 3

training_1 = t1+t2+t4+t5

testing_1 = t3

training_1_labels_1=[]

training_1_features_1=[]

testing_1_labels_1 =[]

testing_1_features_1 = []

for i in range(len(training_1)):

 training_1_features_1.append(training_1[i][0:(len(training_1[i])-1)])

 training_1_labels_1.append(training_1[i][-1])

for i in range(len(t3)):

 testing_1_features_1.append(t3[i][0:-1])

 testing_1_labels_1.append(t3[i][-1])

training_1_features_1 = np.array(training_1_features_1)

training_1_labels_1= np.array(training_1_labels_1)

testing_1_features_1 = np.array(testing_1_features_1)

testing_1_labels_1 = np.array(testing_1_labels_1)

clf = RandomForestClassifier(n_estimators=1000)

clf.fit(training_1_features_1, training_1_labels_1)

predictions_1 = clf.predict(testing_1_features_1)

accuracy = accuracy_score(testing_1_labels_1,predictions_1)

Accuracy_Holder.append(accuracy)

#Cross Fold 4 Train 1,3,4,5 Test 2

training_1 = t1+t3+t4+t5

testing_1 = t2

training_1_labels_1=[]

training_1_features_1=[]

testing_1_labels_1 =[]

testing_1_features_1 = []

for i in range(len(training_1)):

 training_1_features_1.append(training_1[i][0:(len(training_1[i])-1)])

 training_1_labels_1.append(training_1[i][-1])

for i in range(len(t2)):

 testing_1_features_1.append(t2[i][0:-1])

 testing_1_labels_1.append(t2[i][-1])

training_1_features_1 = np.array(training_1_features_1)

training_1_labels_1= np.array(training_1_labels_1)

testing_1_features_1 = np.array(testing_1_features_1)

testing_1_labels_1 = np.array(testing_1_labels_1)

85

clf = RandomForestClassifier(n_estimators=1000)

clf.fit(training_1_features_1, training_1_labels_1)

predictions_1 = clf.predict(testing_1_features_1)

accuracy = accuracy_score(testing_1_labels_1,predictions_1)

Accuracy_Holder.append(accuracy)

#Cross Fold 5 Train 2,3,4,5 Test 1

training_1 = t2+t3+t4+t5

testing_1 = t1

training_1_labels_1=[]

training_1_features_1=[]

testing_1_labels_1 =[]

testing_1_features_1 = []

for i in range(len(training_1)):

 training_1_features_1.append(training_1[i][0:(len(training_1[i])-1)])

 training_1_labels_1.append(training_1[i][-1])

for i in range(len(t1)):

 testing_1_features_1.append(t1[i][0:-1])

 testing_1_labels_1.append(t1[i][-1])

training_1_features_1 = np.array(training_1_features_1)

training_1_labels_1= np.array(training_1_labels_1)

testing_1_features_1 = np.array(testing_1_features_1)

testing_1_labels_1 = np.array(testing_1_labels_1)

clf = RandomForestClassifier(n_estimators=1000)

clf.fit(training_1_features_1, training_1_labels_1)

predictions_1 = clf.predict(testing_1_features_1)

accuracy = accuracy_score(testing_1_labels_1,predictions_1)

Accuracy_Holder.append(accuracy)

print("Accuracy:", Accuracy_Holder)

print("Accuracy Std Dev:", statistics.pstdev(Accuracy_Holder))

print("Accuracy", mean(Accuracy_Holder)

86

Appendix H: Error Comparison Code
import pandas as pd

import numpy as np

import io

from sklearn.ensemble import RandomForestRegressor

from sklearn.model_selection import train_test_split

from google.colab import files

import seaborn as sns

import matplotlib.pyplot as plt

from sklearn.metrics import r2_score

from sklearn.metrics import mean_squared_error

from sklearn.model_selection import train_test_split

%matplotlib inline

uploaded = files.upload()

features = pd.read_csv('Some data set')

features.head(5)

Labels are the values we want to predict

labels = np.array(features['Oil Yield '])

Remove the labels from the features

axis 1 refers to the columns

features= features.drop('Oil Yield ', axis = 1)

Saving feature names for later use

feature_list = list(features.columns)

Convert to numpy array

features = np.array(features)

Code that runs simulations and puts errors for cell ids into a dataframe

from collections import Counter

from itertools import chain

def error_finder(tests):

 simulations_all = [] #holds keys, predictions, and errors

 simulations_keys = [] #holds only the keys

 #Gets ids of all codes

 feature_strings = [[str(x) for x in inner_int] for inner_int in features]

 code_ids = [["".join(inner_comps[0:len(feature_list)])] for inner_comps in feature_strings]

 #Might want to add ids if that is helpful

 for i in range(tests):

 train_features, test_features, train_labels, test_labels = train_test_split(features, labels, test_size = 0.20)

 test_features_variable = test_features.tolist()

 test_labels_variable= test_labels.tolist()

 rf = RandomForestRegressor(n_estimators = 1000)

 rf.fit(train_features, train_labels);

 predictions = rf.predict(test_features)

87

 errors = abs(predictions - test_labels)

 #Converting the test features to strings so they can be concatenated

 test_feature_strings = [[str(x) for x in inner_int] for inner_int in test_features_variable]

 #Convert features to one cell by concatenating for the length of the feature list

 new_strings_conc = [["".join(inner_comps[0:len(feature_list)])] for inner_comps in test_feature_strings]

 #Convert test labels as strings

 test_label_strings = [str(oil) for oil in test_labels_variable]

 #Putting Yields, predictions, and errors with feature ID. Yields get appended

 for i in range(len(new_strings_conc)):

 new_strings_conc[i].append(test_label_strings[i])

 new_strings_conc_2 = [[''.join(inner_comps[0:2])] for inner_comps in new_strings_conc]

 for i in range(len(new_strings_conc)):

 new_strings_conc_2[i].append(predictions[i])

 new_strings_conc_2[i].append(errors[i])

 #Separate entry if error is more than x (could change this)

 large_error_list = [] #contains keys, predictions, and errors

 large_error_keys = []

 for i in range(len(new_strings_conc_2)):

 if new_strings_conc_2[i][-1] >=10:

 large_error_list.append(new_strings_conc_2[i])

 for keys in range(len(large_error_list)):

 large_error_keys.append(large_error_list[keys][0])

 simulations_all.append(large_error_list)

 simulations_keys.append(large_error_keys)

 #Counts number of times a certain cell appears

 no_of_lists_per_name = Counter(chain.from_iterable(map(set, simulations_keys)))

 for name, no_of_lists in no_of_lists_per_name.most_common():

 if no_of_lists == 1:

 break # since it is ordered by count, once we get this low we are done

 #print(f"'{name}' is in {no_of_lists} lists")

 #Create a dataframe with IDs and number of errors

 error_df = pd.DataFrame.from_dict(no_of_lists_per_name, orient='index').reset_index()

 error_df = error_df.rename(columns={'index':'ID', 0:'count'})

 print(error_df)

 error_df.to_excel(excel_writer ="error_compare.xlsx")

 from google.colab import files

 files.download('error_compare.xlsx')

error_finder(100)

