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Abstract 
The world estimate for plastic pollution is expected to rise above 300 million tons annually. 

This prompts the need for alternative chemical recycling solutions, such as pyrolysis. Pyrolysis, 

high temperature, high pressure reactions, could prove to be a sustainable method to recycle 

plastics and produce fuel oil. Collecting waste plastic to convert it to fuel via pyrolysis could help 

significantly reduce the number of waste plastics, though accurately predicting the oil yield 

remains a challenge. One way to predict the outcomes of these reactions is through machine 

learning. In this work, 310 datapoints were collected of plastic pyrolysis data already existing in 

the literature to create models that accurately predict the oil yield of a reaction based on the reaction 

conditions. These models were created using Scikit-learn’s random forest regression and 

classification methods. Due to the modest size of the compiled literature data set, emphasis was 

placed upon incrementally improving the methods over iterations by variable selection, 

constraining input variables and the output oil yield, and by selectively removing error-prone, 

outlier data. From the models’ results, it was concluded that machine learning methods could 

provide a viable way to predict pyrolysis oil yields.  
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Introduction 

 Plastic’s increased usage throughout the world, especially within the industry, has 

increased global pollution. As the world estimate for plastic pollution is expected to rise, there is 

a need for more sustainable methods of its disposal. One promising sustainable option for 

disposing and recycling plastics is through pyrolysis, a chemical process that decomposes plastics 

at high temperatures in the absence of oxygen. Pyrolysis can effectively degrade plastics and poses 

as a viable method of recycling to be used for future plastic materials or the production of oil. 

 Having more sustainable methods for disposing of plastic would decrease the accumulation 

of such pollutants. Finding these alternatives will create a more circular process that reduces excess 

waste products and promises a cleaner environment. However, one roadblock preventing the 

widespread use of pyrolysis is its chemical complexity. Kinetic modeling of reactions is difficult 

and time-consuming, especially due to the presence of multiple sub-reactions and vast amounts of 

feed compositions. An understanding of such kinetic reaction models requires extensive 

development and knowledge of theory. 

 Emerging technology in data science and machine learning can expedite the optimization 

process. The application of machine learning allows for reaction data to be analyzed to discover 

patterns and model processes faster than experimentally producing kinetic models. Machine 

learning algorithms are typically trained on a large collection of data and then tested on new data 

to independently determine their accuracy and validity. The objective of this research was to 

explore and effectively use machine learning methods to predict pyrolysis oil yields. From this 

novel approach, machine learning shows promise for future success and optimization.  

  

Background 

Pyrolysis 

 Currently, global plastic production is estimated at 300 million tons per year and is 

expected to rise.1 Since plastics are petrochemical hydrocarbons that include other additives that 

make them difficult to biodegrade, the acceleration of plastic production paired with its inability 

to decompose poses a problem for the future. Fortunately, sustainable methods of plastic disposal 

are being developed to recycle millions of tons of accumulated plastic waste. In the past decade, 

chemical recycling processes through pyrolysis have been explored to decompose polymer plastics 

into monomers of a char or oils.1 These monomers of the plastic are then repolymerized to form 

into other products including aromatic compounds, alternative fuels, or raw polymers that could 

be reformed into another generation of plastic products. 

While pyrolysis fuels are high in energy, the process is energy-intensive.2 Currently, it 

takes 1.047 MJ to convert 1 kg of polyethylene (PE) plastic into liquid oil. Moreover, further 

energy is then required to refine this oil into usable products which in turn releases similar levels 

of emissions to conventional fossil fuels.1 The large energy demand for the operation of these 

reactions on an industrial scale, paired with the irregular quality of plastic feedstock available 

creates setbacks towards pyrolysis’ economic feasibility.3 However, there is potential for greater 

success for future pyrolysis refineries that utilize other renewable processes such as solar and 
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hydroelectric to assist in producing oils. Through integrating renewable technologies, the high 

energy required to operate pyrolysis reactions could be mitigated and reduce the overall emissions 

of the process. Thus, these refineries would maximize economic and environmental benefits with 

minimal waste production.1   

Another method toward building the feasibility of industrial pyrolysis processes is through 

the utilization of catalysts. Catalysts facilitate and speed up pyrolysis reactions ultimately making 

these processes more efficient. It has been recorded that catalytic pyrolysis carries greater potential 

to convert plastic to liquid oil, and through the lowered operating temperature and reaction time, 

increases the oil’s quality.1 Also, the addition of catalysts alters the liquid product's physical 

properties such as viscosity and decreases the oil’s density, flash point, boiling range, and high 

heating value (HHV). Some examples of common catalysts utilized in pyrolysis are Iron (III) 

oxide, Calcium hydroxide, fluid catalytic cracking (FCC), natural zeolite, or synthetic zeolite.1 

Through a given catalyst, its BET surface area, pore size, pore-volume, and acidity will affect its 

impact on the reaction. Catalyst acidity has been researched to be the most influential in pyrolysis 

through its ability to remove impurities from liquid oil and promote more catalytic cracking.1 

Moreover, this acidity increases the gasoline range of hydrocarbons within the produced liquid oil. 

Moreover, innovations into nano-catalysts are in development that could ensure reliable yield and 

performance of these reactions.1 

Understanding the kinetics of pyrolysis reactions is essential to further optimize the 

process. The primary modeling utilized for pyrolysis is radical chain kinetics, which focuses on 

the thermal degradation of the reactants.4 The decomposition of polymers is complex as there are 

multiple intermediary steps and reactions.5 In one study, to completely model the gas products of 

polyethylene, the model contained equations for: the chain initiation to form two primary radicals, 

the chain initiation to form one primary radical and one allyl type radical, termination, the primary 

radical abstracting, the secondary radical abstracting, β-scission, and had to account for the H-

abstraction which is illustrated in Figure 1 below.4 
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Figure 1: Thermal kinetics responsible for H-abstraction sub reactions within pyrolysis. 

 

While the complexity of these models is evident, research on the utilization of pyrolysis 

kinetics has been conducted especially for determining the efficiency of operating conditions and 

feedstock purity. In 2011, a study by Khaghanikavkani and Farid observed the activation energies 

and pre-exponential factor for the pyrolysis of polyethylene plastic when operating conditions and 

feedstock composition were varied.6 Under isothermal and non-isothermal conditions within a 

semi-batch reactor, two different kinetic operating parameters and the activation energies of the 

reactions were determined. The non-isothermal trial recorded the reactor temperature, the 

respective activation energies, and pre-exponential factor values. The results revealed a correlation 

between the carbon numbers and the activation energies, while also revealing that major 

discrepancies may have been caused to unpredicted heat transfers from the reactor. 

 Another study measured the kinetics of the thermal degradation of polyethylene and 

polystyrene.5 The kinetic model focused on: the initiation reactions to form the first radicals, the 

propagation reactions of intermediate radicals, β-scission of radicals to form unsaturated molecules 

and smaller radicals, the Alkyl radical isomerization via (1,4) and (1,5) H-transfer, the H-

abstraction reaction (H-metathesis) on the polymer chain, and the termination reactions. By testing 

different mixtures of polyethylene and polystyrene feedstocks, and running at various 

temperatures, more accurate kinetics on how long these polymer residues last at a given 

temperature were determined. While time and resource-intensive, understanding the thermal 

kinetics of polyethylene pyrolysis could be utilized to increase the accuracy of predictive 

modeling. 

One of the many roadblocks that are hindering the implementation of industrial pyrolysis 

processes is the complex reaction kinetics. While kinetic models for pure-fed plastic streams prove 

to be difficult to model with kinetics initially, especially considering Figure 1 above, introducing 
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a mixed plastic stream drastically increases the complexity and intricacy of modeling the process’s 

kinetics. While kinetic models for polymers have been developed, due to the variance in feed 

components when applied to real-world scenarios, the model’s accuracy is drastically altered.4 In 

addition, the wide variety of factors of pyrolysis make comparison of kinetics difficult between 

differently designed reactions.  

While experiments to optimize these reactions are time-consuming and expensive, kinetic 

modeling research has offered the opportunity to utilize machine learning to model these reactions 

and avoid the complexities inherent in the application of pyrolysis to an industrial, real-world 

process. Through this analysis, the operating conditions that yield the best products can be 

determined and cut through the traditional complexities of kinetic modeling. Already, preliminary 

experiments have been conducted around the validity of machine learning models as opposed to 

laboratory experimentation.  

 

Machine Learning 

 Currently, the machine learning literature in the pyrolysis space is sparse. One paper 

compared applying the machine learning methods of decision trees and neural networks toward 

reducing the computational time of detailed kinetic models of biomass pyrolysis.7 From the 

research performed by Hough et al., two different types of multi-layer feed-forward networks 

looked at the efficiencies and performance from each of the learning pathways. One of these 

networks worked as a “full net” by using a single neural net and predicting 30 outcomes.7 The 

other utilized 30 independent nets that all predicted single results. In comparison to a kinetic ODE 

model developed by the same group, the ODE took 4.7 seconds of code execution time compared 

to 1.1 x 104 s for decision trees and 1.7 x 104 s for the neural nets. While the neural network model 

proved effective, decision trees were ultimately favored picked over them for faster training times 

and simplicity. From the results, impressive accuracy in predicting the kinetic models for lignin 

pyrolysis was discovered. 

 Further literature has focused on developing predictive models for biomass yields.8 The 

success of these models provides hope that while novel, machine learning research can continue 

and be built upon. With machine learning processes, data is split into training and test sets where 

the model interprets the training set to predict the test set. One of the more popular machine 

learning techniques is called Random Forest (RF). RF utilizes decision trees to parse the dataset 

for patterns. RF is popular within research due to its ability to work with small data sets, understand 

higher dimensional relationships, and has been found to be more accurate than linear regression 

methods for pyrolysis modeling.8 Therefore, the RF algorithm has become one of the primary 

methods for early research on pyrolysis machine learning. With RF, either regression or 

classification can be performed. Regression predicts an exact number, for example, an oil yield 

from 0 to 100%. Classification predicts categorically, for example predicting either a 0 or 1 

representing two groups above and below a certain oil yield. The current literature has solely 

reported random forest regression results. 
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 As part of establishing a working algorithm, the dataset must be pre-processed. One method 

of pre-processing is imputing missing data from a dataset. K Nearest Neighbors Imputation (KNN) 

is a popular type of imputer used to estimate ranges of data. The imputer looks at data that is similar 

to the point that it is trying to predict, or its nearest neighbors, and forms an educated guess as to 

what the missing data could be.9 These missing sections or parts of data are a common problem in 

machine learning and data science. KNN is dubbed a lazy learner because it waits until 

classification is instructed to it rather than having prior knowledge about the data set. Other 

imputation methods such as using the mean, median, and mode of data are also common practice.10  

Previous biomass studies such as one done by Tang et al. observed success using RF 

algorithms when comparing it to multiple linear regression (MLR).8 To determine the accuracy of 

each model, R2 and the root mean square error (RMSE) metrics were used.8 R2 is a statistical 

measurement to see how much the dependent variable is affected by the change in the independent 

variable. RMSE determines how far away certain data is from the line of best fit by measuring the 

difference between predicted values and the actual values.11 Below, Equations 1 and 2, show how 

R2 and RMSE are calculated. The goal was to predict bio-oil yield and hydrogen content using 

datasets with 137 and 264 datapoints, respectively. For inputs, pyrolysis conditions such as the 

heating rate, particle size, and temperature were included. In addition, the paper included either 

the proximate or ultimate composition information as inputs. The proximate information was fixed 

carbon, ash, and volatiles. The ultimate compositions were the C-H-O-N compositions. For the 

MLR method, the R2 was measured at 0.166 for the proximate yield, and 0.284 for the ultimate 

yield. Moreover, the RMSE’s were measured at 7.45 and 7.96 respectively. When compared to 

RF, the accuracy massively improved, with an R2 of 0.92 for the proximate yield and 0.87 for the 

ultimate yield. The RSME’s measured 2.13 and 3.05 respectively. This report showcased the 

impressive accuracy that RF regression models could produce in correspondence to biomass 

reactions.  

 

𝑅2 = 1 −
∑ (𝑌𝑖

𝑒𝑥𝑝 − 𝑌𝑖̂)
2𝑁

𝑖=1

∑ (𝑌𝑖
𝑒𝑥𝑝 − 𝑌𝑎𝑣𝑒

𝑒𝑥𝑝)2𝑁
𝑖=1

 
 

(1) 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝑌𝑖

𝑒𝑥𝑝 − 𝑌𝑖̂)2
𝑁

𝑖=1
 

 

(2) 

 

In another study, bio-char yield and the carbon contents of bio-char (C-char) based on the 

pyrolysis data of lignocellulosic biomass were modeled. In total, the research group used 245 

datasets for bio-char and 128 datasets for C-char all comprised from previous publications.12 

Through a random forest (RF) algorithm, the study separated input data into four categories: 

Biomass Structural Components (Lignin, Cellulose Hemicellulose, (L-C-H)) and Ash, Element 

Compositions (C-H-O-N), the particle size of biomass, and pyrolysis conditions (Heating Rate, 

Highest Treatment Temp (HTT), residence time (RT)). Then, through 5-fold cross-validation 

following the training and testing of the model, three methods were run twice: One with all data 
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in except C-H-O-N, another with all inputs except L-C-H, and finally with all inputs.12 Figure 2 

showcases the resultant graphs from the respective trials. The idea to test different inputs helped 

build this study’s methodology and approach to the developed pyrolysis of plastics dataset.  

 

Figure 2: Comparison of predicted bio-char yield/C-char and actual values using test data with different 

inputs: (A) all inputs except C-H-O-N, (B) all inputs except L-C-H, (C) all inputs. The red lines refer to 

the line y = x (i.e. predicted values = true values).12 

In the methods of Zhu et al.’s research, the bio-char yields prediction ranged from R2 values 0.8 

to 0.85 with RMSE between 3.4 to 4.0. Both the models with all inputs and all inputs but C-H-O-

N performed the best. These results showcased the models in predicting the yield with a 

comfortable accuracy measurement. Furthermore, in the tests focused on predicting C-char, the 

model showcased its accuracy with R2 values from 0.75 to 0.85, and RMSE’s from 5.8 to 6.9.12  

 In one of the only published studies on pyrolysis of plastics with machine learning, a feed-

forward neural network model utilized a small 24 point dataset of several mixed consumer plastics 

compositions (HDPE, LDPE, PP, and PS) to determine the oil yield of non-recycled plastics.13 

These four compositions were used as the only inputs for predicting yield rather than using 

pyrolysis conditions. However, the paper only included data between 400 and 500℃. The paper 

assumed that the plastic inputs were between 2 to 3 mm in particle size, and all had reaction times 

of 30 minutes. Through the model, a mean squared error (MSE) of 0.11 was computed. When 

comparing the experimental results from the dataset to the predicted curve, the MSE was found to 

be 2.64 x 10-4. This reported value of MSE reported that the model fits almost perfectly to the 
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predicted yields. Reported R2 values were above 0.9 in both the training and validation datasets 

only further validating their model.13  

Through the success of the predictive power from such as small data set size, the power of 

optimization through machine learning was realized. The success of this paper and others inspired 

this team to attempt to test the random forest algorithms of plastics pyrolysis, which has shown 

success for biomass pyrolysis. To expand the size of the training and test sets from the Abnisa et 

al. paper, the collection of pyrolysis of plastics dataset was necessary.13 Instead of testing a model 

on only plastic mixtures, all plastic feeds would be included along with reaction conditions in the 

literature search. Overall, the goal was to explore a synthesis of methods utilized by the limited 

literature as well as discover new information from the novel approach of applying random forest 

on a plastics dataset.  
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Methods  

Primary Dataset Creation and Characteristics 

 The primary data set, which was used to create all the machine learning models, as well as 

to create subsets of data, was compiled from an analysis of relevant literature. Variables collected 

included the plastic composition percentages, being made up of some amount of high-density 

polyethylene (HDPE), low-density polyethylene (LDPE), polypropylene (PP), polystyrene 

(polyS), polyvinylchloride (PVC), and polyethylene terephthalate (PET). The other variables 

included the reaction conditions with which pyrolysis was carried out, as well as the quantifiable 

results of the process. These variables include reaction temperature (T) in Celsius, heating rate 

(HR) in Celsius per minute, particle size (PS) in millimeters, feed size (FS) in grams, 

residence/reaction time (RT) in minutes, nitrogen sweep flow rate (𝑁2 Rate) in nitrogen per 

minute, the presence of a catalyst (Cat), reactor type (R type), and included three different 

dependent variables being oil yield, gas yield, and char yield. The inclusion and search of these 

variables were inspired by the papers that utilized machine learning to predict biomass pyrolysis 

using feed characteristics and pyrolysis conditions. In addition, the utilization of the plastics 

compositions was inspired by the Abnisa et al. paper which achieved successful results from only 

24 data points.13 After a literature search, the primary dataset consisted of 310 unique data points, 

amassed from 37 different articles. 

 In some cases, estimation had to be used to determine the value for a specific variable when 

making the dataset. This was due to the source of that datapoint perhaps being conveyed through 

graphical means, given with a certain amount of uncertainty attached to it, or given as a range of 

values. The lattermost of these was typical for feed and particle sizes. For cases using uncertainty, 

these were ignored, and when ranges of values were given, an arithmetic average was taken for 

use in the primary dataset. Additionally, not every data source included each type of independent 

variable. For example, many studies did not include a nitrogen sweep gas, nor did some report a 

reaction time or residence time. This problem existed for numerous independent variables and is 

illustrated by Table 1. All the sources used to create the primary set reported feed composition, 

temperature, yield data, and no mention of a catalyst was taken to mean that no catalyst was present 

during the reaction. All 37 papers from which data were collected can be found and referenced in 

Appendix A. Catalyst characteristics such as the catalyst type, particle size, amount, and surface 

area were collected but not used for model information due to lack of consistency between the 

reporting of catalyst information. When being input into the model, catalysts were denoted with 

either a 0 or 1. Zero indicated that no catalyst was present in the reaction and one indicated that 

there was a catalyst. For reactor type, several scenarios arose for determining the appropriate 

category. To limit the variables for reactor type, five categories were decided on for the model: 

batch, fixed bed, fluidized bed, horizontal tube, and semi-batch. Literature papers either included 

one of these categories directly or provided a description that was used to sort the data points 

towards one of these five categories. For example, one paper by Palafox-Ludlow & Chase from 

2001 used a modified microwave oven, which was sorted into the batch category for the model.14 

Reactor type was modeled similarly to catalyst. Each reactor type (batch, fixed bed, fluidized bed, 

horizontal tube, and semi-batch) was given its own column in an input excel csv file. These 

columns had a 1 for the reactor used for the reaction and a zero in place of all the other reactors. 
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This is a process called one-hot encoding which is common in machine learning.15 The two 

datasets, one being the raw unedited version and the model ready dataset can be found in the 

supplemental materials submitted alongside this paper. Note that neither N2 flow rate nor residence 

time data were used to make the models. This was due to low reporting with residence time 

appearing in roughly 22% of the papers and 54% reporting the N2 flow rate. 

Table 1: Percentage of papers that reported pyrolysis conditions. Note: 100% of papers included 

temperature and compositions. 

  

Heating 

Rate 

Particle 

Size 

Feed 

Size 

Residence 

Time 

Reaction 

Time 

N2 Flow 

Rate 

Data Points 238 217 207 69 177 126 

% of Entries 

Reporting 
84 70 78 22 65 54 

 

Dataset Visualization  

 Throughout the 310 data point dataset, it was necessary to visualize the features within it 

to graphically understand the data that had been collected. Before running and choosing models, 

these investigations helped guide testing. Even though the dataset was small, there were many 

ways in which the dataset could be manipulated to create a vast number of permutations. Because 

of this, the dataset needed to be constrained in certain ways to focus on research. One of the 

primary differentiations between data points was whether the collected point was influenced by a 

catalyst or not. Overall, there were 99 catalyst datapoints and 211 non-catalyst data points as 

visualized in Figure 3 below.  

 

 

Figure 3: Datapoints with catalysts and without catalysts. 

 Another key part of the dataset was the composition of the plastic feed whether it was 

HDPE, LDPE, PP, PolyS, PVC, or PET. A chart indicating the distribution of pure feeds and mixed 

feeds with respect to temperature can be seen in Figure 4. Overall, there were 209 pure feeds of 
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plastics and 101 mixed feeds of plastics reported from the research articles. Ideally, more mixed 

feed data would be useful, especially for future applications to plastic wastes, however, the current 

literature was focused on pure feeds. Figure 4 displayed that mixed feeds were most prevalent 

within the 400 to 550 °C range, whereas pure feed data expanded uniquely into the higher 

temperature data points above 700 °C. For this reason, a temperature range of 400 to 550°C 

included a high combination of mixed and pure feeds. This was an important development because 

a primary goal was to develop a model that could handle mixed feeds.  

 

 

Figure 4: Distribution of pure feeds (Blue) and mixed feeds (Orange) across various temperatures. 

Concerning the pure feeds themselves, HDPE, LDPE, and PP made up the majority with 

65, 53, and 56 data points, respectively. There were 21 pure PolyS points, 13 pure PET points, and 

only one pure PVC point. The spread of composition percentages was also visualized using Figure 

5 below. For the compositions of HDPE, LDPE, PP, and PolyS, there were similar spreads. LDPE, 

PP, and PolyS themselves appeared the most similar. PVC and PET data were sparser between the 

compositions of 40 and 90%.  
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Figure 5: Plastic composition spreads for each plastic type organized by plastic number. 

 Similar to catalyst data, the reactor type was considered as an input variable and was 

recorded from literature data. Figure 6 displays the distribution of reactor types for all data points. 

Most of the data were from batch reactors, consisting of 200 total data points. This indicated that 

potentially a model with only batch data could be a good focus for an algorithm. The next most 

common were fixed bed and fluidized bed at 50 and 42 data points, respectively. Horizontal tube 

reactor data had 15 data points, all from one study from Quesada et al.16 There were only three 

semi-batch points from one paper by Kumar & Singh.17  

 

Figure 6: Reactor type dataset distribution for the five reactor types. 

 In addition to observing the features collected for the model, understanding the output of 

the model was also important. Plotted in Figure 7 was the number of datapoints for each oil yield. 
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To better visualize this, oil yields were rounded to the nearest 5. For example, 91.2 would become 

90, and 78.7 would become 80. The most common oil yields were around 70 to 85%. When 

observing the split of the data, around 89 datapoints were below 50% oil yield and 221 were above 

50% oil yield. The importance of this was that the model would have more information on data 

above 50% yield based on data points alone. Furthermore, it indicated that performing oil yield 

cutoff testing and classification of oil yields above or below a certain threshold could be useful 

and was worth testing.   

 

 

Figure 7: Oil yield distribution of datapoints. Note: Oil yield was rounded to the nearest 5 to make for a 

cleaner visual. 

Machine Learning Models  

 From the dataset, various models were created using several different strategies to 

investigate how different portions of the dataset would react to the algorithm. For making models, 

missing data was a common problem. This was due to differences between reported pyrolysis 

conditions in the literature. There were two approaches towards this problem, omitting data with 

missing conditions or imputing the data. Several of the models included imputed data and others 

did not. These models were named Model A through Model I. A description of each is present in 

Table 2. Model A was based on the hypothesis that reaction time data was a critical feature in 

conjunction with temperature and composition to predict oil yields. For this reason, this model 

included every literature data point that reported a reaction time. The rest of the data for this model 

was imputed with the KNN method. Model B included every data point and was chosen to see 

how the model reacted to imputing all the missing data not reported by literature. Model C was 

developed based on a strategy from Abnisa et al. where a neural net model was used to predict oil 

yields. For this model, only composition data was used as the input features.13 Furthermore, only 

compositions between 400 to 500 °C and 0 to 3.5mm particle size were included. Model D included 

all the data reported from batch reactors. This was considered because most of the data, around 
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two-thirds, were from batch processes. Model D, similarly, with A and B had missing data imputed 

with KNN. Models E and F were attempts at modeling the process without data imputation. Model 

E did not include reaction time as a feature. Whereas Model F did not include feed size nor reaction 

time. Reaction time was not included in either Model E or F to preserve as many data points as 

possible compared to the imputed model. If unimputed reaction time was included, then the Model 

E and F would be reduced to 82 and 101 datapoints, respectively. Models A through F were tested 

with the random forest regressor. In addition to these, three different models were tested with a 

random forest classification method. These were Model G, H, and I. Model G was Model B 

adapted for classification. Similarly, Model H and I were based on Model F and adapted for 

classification. Model I used a simple binary classification, either 0 or 1, and Model H used the 

grouping method where oil yield ranges were assigned numbers, either 1-4 or 1-7 depending upon 

the test being performed. 

 

Table 2: Different models developed for regression and classification random forest algorithm with data 

points and descriptions 

Model Data Points Description 

A 182 Imputed, Unimputed Reaction Time Data 

B 310 Imputed, All Data 

C 199 Unimputed, Based on Abnisa et al. 201913 

D 200 Imputed, Batch Reactor Data Only 

E 132 Unimputed, Feed Size included 

F 171 Unimputed, Feed Size not included 

G 310 Imputed, Based on Model G for classification 

H 171 Unimputed, Based on Model F for classification, Grouping Method 

I 171 Unimputed, Based on Model F for classification 

 

Data Model Subset Creation 

 From the original 310-point data set, numerous subsets of models were created for different 

machine learning analyses. While there were many ways to segregate the data, there were three 

main categories of these subsets: 

I. Removal of specific independent variables 

II. Variable constraints 

III. Oil yield constraints 

From a chemical kinetics perspective, not every variable that was included in the primary dataset 

was as useful as the other. For example, the mass of the feed placed into a reactor surely does not 

affect the yield of the reaction as much as the temperature or the heating rate. For this reason, many 

trials were included that removed certain independent variables from contention within the 

machine learning algorithm. Another important reason to remove certain variables was for trials 

that did not include data imputation; any variable missing a very large amount of data would need 

to be removed, such as 𝑁2 flow rate, as indicated by Table 1. In addition, variables would also be 
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added piecewise to the model where compositions would be tested alone, then add temperature, 

and more to observe the effect on the model’s results. 

 Some variables were constrained, meaning that only values that appeared in a certain range 

would be taken and used in the machine learning analysis. For example, Figure 8 displayed that 

most of the temperature data exist between 400°𝐶 and 600°C, with some outlier data points. With 

the hypothesis that removing certain outlying datapoints would increase the accuracy of resulting 

models, some variables for specific trials were constrained within a range of values. 

 

Figure 8: Distribution of temperature datapoints compared to the oil yield, for the primary dataset. 

Because the RF model requires a sizable amount of information to accurately predict output 

variables, outlier input variables could cause problems. This can be more easily visualized at 

temperatures around 200 or 300°C, where the model has very little information to draw from, only 

5 data points. It was unreasonable to expect that the model will have enough information to make 

an accurate prediction with such a small amount of information, so the choice was made to test 

how constraining variables would affect the performance of the models. Similarly, the dataset had 

a wide range of particle sizes reported from literature ranging from 0.225 to 50 mm. Figure 9 

displays the particle size distribution throughout the dataset. Out of the 218 data points reported 

from the literature with particle size included, 174 of them were below 5mm and 133 were below 

3.5mm. Based on this distribution and the constraints imposed by the Abnisa et al paper, another 

feature cutoff was tested in between 0 and 3.5mm particle size.13  

 The dependent variable of the dataset, the oil yield, was another variable that was 

constrained in the machine learning analyses. Due to the large distribution of yields, seen in Figure 

7, the decision was made to focus some machine learning algorithms on certain ranges of oil yields. 

This was tested for both the regression and classification models. For the regression models, tests 
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were conducted to predict data within oil yield ranges of 60 to 100% for example. For 

classification, the decision was typically made to focus the oil yield on areas above 60%. This cut-

off was also increased to 70% and 80% to view the differences inaccuracy. Since the area of the 

highest importance to the practical use of pyrolysis is areas of high yield, the focusing of the model 

in those areas should help to improve its accuracy.  

 

Figure 9: Particle size distribution throughout the primary dataset. 

 

Application of Machine Learning  

 For the machine learning algorithm, both Random Forest regression and classification 

using Scikit-Learn’s library were used. This was chosen due to random forest’s popularity for 

regression problems, its simplicity, and its application in biomass pyrolysis literature. The inputs 

used to train the model were called features. The features used depended on the model being run. 

Oil yield was the output of each model. For each model run, a dataset was broken down into a 

training and test dataset with a split of 80% of the data in the training set and 20% of the data in 

the testing set. The model trains on the 80% and cannot interact with the separated 20% testing 

dataset. The random forest regressor and classification functions were run with 𝑛−𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠 =

1000 and the remainder of settings were left as default from the scikit-learn library.18 After training 

was complete, the trained algorithm was run on the test set to see how well the model performed. 

Statistics for assessing regressors mean absolute error (MAE) and root mean absolute error 

(RMSE) was used. For classification models, accuracy % was used as a metric. To collect data as 

fast and complete as possible, models were run for 100 simulations. Each simulation would have 

a unique train and test split as well as metrics. These metrics were averaged throughout the 100 

simulations to use one number to describe how well the algorithm performed for that model. The 

code for these simulations can be found in Appendices D and E. For missing data that needed to 

be imputed, the KNN method was utilized. When running the KNN code the number set for N 
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nearest neighbors was determined by taking the square root of the dataset size.19 If an even number 

was the result, the number would be rounded up to the nearest odd number. This was done because 

KNN requires an odd number to decide which number to impute in case of a missing value.9  

 Regardless of whether imputed data was used or not, cross-validation was used as a method 

to test the robustness of the model. If the difference between the validation metric and test metric 

was high, then the model may not be considered robust no matter how well the test set performed. 

Cross-validation is a method where data in the training set is divided into subsets called fold or 

bin. All subsets besides one are then used to train the model and the last is used for a validation 

test. After each subset is tested once, a validation score can be averaged. Two different methods 

were attempted for cross-validation: one supplied by the scikit-learn library and a stratified method 

developed using Python.18 The code for these can be found in Appendices F and G respectively. 

The scikit-learn method was a function named ‘cross_val_score’ which separated the model 

training set into the desired cross folds and outputs a validation score for the chosen metric. The 

number of cross folds was set to five and the rest of the parameters were left as the defaults from 

the scikit-learn library. The stratified method involved pre-separating a dataset into 5 equally 

representative excel prep sheets of oil yields. This was done due to the uneven distribution of oil 

yields within the collected dataset. An example of this split can be seen in Appendix C. After 

splitting the data into five different prep groups, these were inputted into a python code that 

shuffled each prep sheet. From there, 20% of each prep sheet was removed randomly to represent 

a test set. The remaining data in each of the five prep sheets would be split into five new groups. 

These new groups were known as the cross-validation bins. Each cross-validation bin would 

contain 20% of the data from each prep sheet. From here, the random forest algorithm was run 

with four of the cross-validation bins as the train set and the last as the validation set. This would 

repeat four more times so that each cross-validation bin would be the validation set once. From 

the five simulations, the metrics of MAE and RMSE were gathered for each. These were then 

averaged to determine the validation score of a particular model. This method was visualized with 

Figure 10 below. 

 

Figure 10: Stratified cross validation diagram flowchart. 
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Model Evaluation 

 Numerous parameters were calculated for several different RF regression and classifier 

models to test their accuracy. For regression, these metrics were the mean absolute error (MAE), 

and the root-mean-square error (RMSE), defined as follows, 

 

𝑀𝐴𝐸 =
(∑ |𝑒𝑖|

𝑛
𝑖=1 )

𝑛
 

 

(3) 

𝑅𝑀𝑆𝐸 = √
(∑ |𝑒𝑖|2𝑛

𝑖=1 )

𝑛
 

 

(4) 

 

where 𝑒𝑖 represents the difference between measured and actual values. MAE was a metric where 

all the errors were summed and divided by the total data points predicted. RMSE, as defined in the 

background, highlighted how far from the line of best fit predicted data was. Throughout the 

process of creating and running different random forest models on the pyrolysis dataset, all results 

for regressors were compared via these two metrics to determine broadly which performed the 

best. For classification, accuracy was a measure of the percentage of times the model predicted the 

correct category. 

 

  



23 

 

Results 

Random Forest Regression 

 Random forest regression was the primary machine learning method used to make 

predictions on pyrolysis oil yield. Within RF itself, there were many ways to tweak the model to 

produce more valuable and accurate results. The next four sections detail the results of these 

methods. For reference, Appendix B contains all results from this section.  

Piecewise Addition of Variables 

 

 For piecewise models, the first test was run using only compositions as the input variables 

to predict oil yield. This was run as an initial base test since all the composition data was reported 

from literature and no data needed to be directly imputed. After that, the temperature was added 

as a variable since all literature sources reported temperature as well. The temperature was also 

tested on its own. As a result of literature reporting all these values, each of these tests was 310 

data points. The results from this test are represented in Figure 11 below for MAE and RMSE. 

Using only compositions, the model performed around 14 and 18 for MAE and RMSE 

respectively. When using temperature only as an input feature, the prediction of the algorithm 

worsened to 16.4 MAE and 20.5 for RMSE. The combination of the two improved the prediction 

to 11.3 and 16.3 for MAE and RMSE respectively. This indicated that the addition and removal of 

features did play a critical role in determining model performance.  

 

Figure 11: Initial testing of using only compositions, temperature, and a combination of the two to 

predict oil yield. The result is the % for MAE and RMSE for the Oil Yield 

 It was also of interest to see if the addition of other variables affected and improved the 

model on top of compositions and temperature. These two variables were the catalyst and reactor 

type. Both were one hot encoded into the algorithm. This was tested stepwise, first with a catalyst 

13.9

16.4

11.3

18

20.5

16.3

0

5

10

15

20

25

Compositions Temperature Compositons and

Temperature

P
re

d
ic

ti
o
n
 M

et
ri

c 
%

MAE

RMSE



24 

 

added on top of compositions and temperature and then reactor type was tested with compositions 

and temperature separately. Finally, the two were tested together. The results can be seen in Figure 

12 below. Overall, reactor type had more effect than catalyst on its own bringing the MAE down 

from 11.3 to 10.5 and RMSE down from 16.3 to 15.1. Adding both together resulted in slightly 

similar results to only adding the reactor type feature with a change in MAE from 11.3 to 10.3 and 

RMSE 16.3 to 14.8. However, the overall effect was not as large as it was when the temperature 

was added to the model.  

 

Figure 12: Observing if adding catalyst and reactor type improved the model from having only the 

compositions and temperature. 

Nevertheless, this further showed that the addition of features improved model 

performance overall. From this, the effect of removing features from the developed models 

described in the Machine Learning Models section was attempted. This involved removing 

features that were not reported for all 310 data points such as feed size.  

 

Removal of Variables  

 Model F, derived from the primary data set, was an unimputed model, including all the 

features of the primary set except for the feed size and reaction time. This model was run three 

times after the base model to test removing specific features from the model. The specifics of each 

run for the model can be seen below in Table 3. 
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Table 3: Model F (171 Data Points) random forest results.  

Model MAE 

MAE Standard 

Deviation RMSE 

RMSE Standard 

Deviation Features 

F.1 8.8 1.5 13.0 2.1 T HR PS Cat R type 

F.2 8.9 1.4 13.4 2.2 T HR PS Cat - 

F.3 9.0 1.4 12.9 2.0 T HR - Cat R type 

F.4 9.5 1.4 13.7 2.0 T HR - Cat - 

 

The progression from Model F.1 to Model F.4 revealed that as features were removed, the 

resulting errors in the model generally increase. This stood to reason as Model F.1 contained only 

171 data points, meaning that a sizable percentage of raw data was lost with each iteration of 

feature removal. Models F.2 and Model F.3 are both missing a single feature, and both exhibit a 

slight uptick in MAE compared to the base model. The removal of the particle size and reactor 

type data, respectively, both caused similar increases in error. Of all the literature collected in this 

study, 65% of the reactions reported were carried out in a batch reactor. In comparison to the 

particle size data, values varied much more widely, between 0.225 and 50 mm, with many more 

unique values than the five possible reactor types. Despite this difference, the removal of the 

reactor type data, which contained less total information regarding the data set than the particle 

size data, resulted in a similar increase in MAE as compared to the removal of the particle size 

feature. The RMSE reported for F.3 was similar to the error reported by model F.1, which was 

understandable.  

 When both features were removed and tested in Model F.4, both error metrics increased 

largely compared to the base model F.1; both the MAE and RMSE increase by 0.7. It stands to 

reason that as more information was taken away from the model, that the model would become 

less accurate. The results from F.2 and F.3 seemed to suggest that this was not a perfectly linear 

trend and that there seemed to be a limit to the amount of data that can be removed from the model 

before an appreciable decrease in performance occurs. Additionally, this loss of information also 

appeared to compound upon itself. The removal of particle size and reactor type increased the 

MAE by about 0.1 and 0.2 respectively, but the removal of those features at the same time 

increased the MAE up to 0.7. This compounding error was important to take into consideration for 

the creation of any new models, as the loss of information can cause a decrease in model accuracy.  
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Independent Variable Constraints 

 Like the results above, other trials were created and run to test how constraining variables 

to be within a specific range of values would affect the overall performance of the RF regression 

model. Results for these trials are in Table 4.  

 

Table 4: Variable constraint analysis on models. 

Model MAE Std Dev RMSE 

Std 

Dev Constraint(s) Features 

A.1 8.30 1.60 12.50 2.80 None T HR 
P

S 
FS 

Rxn 

Time 
Cat R type 

A.2 7.50 1.40 11.00 2.20 
No >90 min 

Rxn Time 
       

A.3 8.40 1.60 12.10 2.40 

No >90 min 

Rxn Time & T 

>650 C 

       

B.1 8.66 1.10 13.20 1.80 None T HR 
P

S 
FS 

Rxn 

Time 
Cat R type 

B.5 8.45 1.46 12.32 2.30 400 to 500C        

B.6 8.14 1.73 12.32 2.90 

400 to 500 C 0 

-3.5 PS No 

1000 FS 

       

D.1 8.41 1.44 12.58 2.42 None T HR 
P

S 
FS 

Rxn 

Time 
Cat  

D.2 8.50 1.50 12.65 2.47 400 to 500C        

D.3 6.72 1.76 11.16 3.59 

400 to 500 C 0 

-3.5 PS No 

1000 FS 

       

 

All ‘X.1’ models were the basis for which the models containing cutoffs were compared. 

Within each model, placing constraints on specific variables resulted in both increases or decreases 

in the error. For example, with no constraints on Model A.1, the average MAE of 100 simulations 

was 8.30. Excluding all reaction times greater than 90 minutes decreased the MAE to 7.50. When 

more constraints were added on, the model worsened in A.3 with an increase to 8.40 MAE. In this 

model, all reaction times greater than 90 minutes were removed, as well as all data containing 

temperatures larger than 650°𝐶.  

 Model B tested different constraints. In this model, the only data considered were all those 

data points that contained a temperature between 400 and 500°C. A small decrease from an MAE 

of 8.66 to 8.45 was observed but was tempered by an increase in the standard deviation. Model 

B.6 contained three constraints, being excluding all temperature data outside the range of 400-

500°C, including only particle sizes with the range of 0-3.5 mm, and excluding feed size data of 

1000g. Despite the increase in constraints, Model B experienced a slight decrease in MAE and 

RMSE with these constraints which contrasts with the information gathered from Model A.  
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 Model D was like Model B, except that it did not include reactor data. This was because 

Model D used only batch reactor data. The first iteration of the model achieved an MAE of 8.41. 

Constraining the model to temperatures between 400 and 500°C produced a small uptick in error 

to 8.50 but adding the constraints on particle size (no values greater than 3.5 mm) and feed size 

(no values of 1000 g), decreased the model’s MAE to 6.72, the lowest of models tested. Including 

constraints helped to improve certain models more than others. From these tests, it was determined 

that Model D.3 produced the lowest MAE and second lowest RMSE value. To determine why this 

was the case it was necessary to individually test specific constraints as well as to visualize the 

data. Using Model B.6 as an example, feed size data of 1000g, as mentioned previously, was 

excluded. Included below, in Figure 13, is a chart depicting the variance between oil yields and 

feed size within the training and testing sets. In the figure, the red points were in the train set and 

the blue points were in the test set.  

 

 

Figure 13: Charts displaying the variance between feed sizes and oil yields. (Red) points are specific 

points that the model used in the training set. (Blue) points are those that the regressor used in the testing 

set. (A) shows the oil yield distribution compared to feed size and (B) shows the oil yield distribution 

compared to temperature. 

(A) 

(B) 
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Figure 13 provided a rationale for understanding why removing certain data points may 

have been beneficial. As can be seen in the first chart (A), there was a large amount of missing 

information for feed sizes between 400g and 1000 g, and at 1000g there was a great amount of 

variance between the oil yields. For this reason, it could have been beneficial to focus the model 

on feed sizes below 1000g, in hopes that this would improve performance instead of trying to focus 

on an area with only a small amount of data. With the temperature data in the second chart (B), 

most of the data exist within the range of 400-500°C, with a decent chunk of data existing at about 

550°C. Due to this wide range of values for both the temperatures and the oil yields at those 

temperatures, performance was improved in the models by constraining to an area where it may 

better train and test itself. Ideally, the temperature data would contain a relatively healthy 

distribution of red points and blue points, indicating that the model tested and trained itself on 

similar data points, which would lend itself to better predict oil yield. Because of the large swath 

of temperatures, the model may not be able to test itself for many different values. For example, 

in chart (B) displaying oil yield versus temperature, the model tested itself with the highest yield 

data points at both 600°C and 700°C, though it trained itself with lower yield data points. This 

could have been a source of error within the model due to the slight differences between the testing 

and training set; neither set of data contained a complete distribution of temperatures and yields. 

 

Oil Yield Constraints 

 The fourth method of feature engineering was to test the model which included data within 

a specific range of oil yields. As pyrolysis is a chemical process, the most beneficial physical result 

of a machine learning analysis would be to provide information that helps to maximize the oil yield 

for future reactions. As such, in some cases, oil yields that were below a certain threshold, for 

example, 40% or 60%, were removed from the data set and the model was trained and tested only 

upon those points which contained oil yields above those values. This was additionally beneficial, 

as for most of the models, high yield data points were the most plentiful, and as such, the model 

was able to predict them more accurately. Below is Figure 14 which is a parity plot displaying the 

difference between high and low yield data points with respect to the error from the predictions. 
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Figure 14: This chart indicated the closeness of predicted oil yield values to actual oil yield values for 

Model E. There was a noticeable decrease in accuracy for oil yield values between 20-60% versus 60-

80%.  

To include all the low yield data points would be to provide a more holistic model of 

pyrolysis, but from a perspective of pure utility, the most important values to predict correctly 

were those of high yields. Having a model that could predict well at high yields could help tailor 

reactions to operate as efficiently as possible and to produce as much oil as possible. There are 

essentially no benefits of operating at a low oil yield, and as such, it was beneficial to see how the 

RF models reacted to removing areas of low oil yield. Figure 15 below, displays the results of 

these tests on Models A and B. 
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Figure 15: The charts above indicate how the MAE of a model changed by varying the oil yield cutoff. 

Both models have no constraint to start, and successive bars indicate that only data above a certain oil 

yield was used within that model. Increasing the oil yield constraints was shown to increase the accuracy 

of Models A and B.  

 

For Models A.3 and B.3, both the MAE and RMSE of the model decreased drastically via 

the removal of low oil yield data. With no constraints on the data, Model A.3 output an MAE of 

8.4. When data below 40% oil yield was removed, the MAE decreased to 6.9, and when the all-oil 

yields below 60% were removed, the MAE decreased further to 4.8. Model B.3 exhibited similar 
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behavior. With no oil yield constraints, the MAE was 8.4, but with all data below 40% oil yield 

removed, the model’s MAE decreased to 6.8. Subsequent removal of oil yields below 60% 

returned an MAE of 4.8, and finally, removing data below 80% resulted in the best MAE of 2.9.  

Part of the removal and constraining of data included an inherent give and take within the models. 

For every constraint placed upon the oil yield, the dataset lost a significant portion of its 

information. Despite this loss, the benefit of tailoring this pyrolysis dataset to areas of high yield 

seemed to improve the model’s performance more than the loss of data detracted from the 

performance. There were likely a couple of reasons why this was the case. One was due to the 

large concentration of high yield data points within the primary dataset. Table 5 below illustrates 

both the MAE results of the models shown above, as well as the number of data points included in 

those models. Model B.3’s original run contained 265 data points, whereas its final run, at an oil 

constraint of >80%, including 95 data points, roughly a third of its original size. This indicated 

that the dataset was skewed toward regimes of high oil yield, which was understandable due to the 

importance of chemists and chemical engineers to operate pyrolysis reactions in these areas of high 

yield. Additionally, there was a level of hesitance in this analysis, as constraining the oil yield 

meant that the model had a smaller range of answers to report. Hence, the lower MAE was 

inevitable since a lower range of oil yields meant the error was constrained to that range. With this 

concession, the results, particularly at the 60% cutoff, were impressive, since within that range 

from 60 to 100% oil yield, the model could predict within 5%. This would provide enough 

accuracy to discern whether a model was closer to 60% or a higher 90% yield. Furthermore, if 

improved, these models could predict with increased clarity in the future.  

Table 5: Oil yield removal results. 

Model 
Oil Yield 

Constraint 
MAE 

RMSE 
Data Points 

A.3 
None 8.4 12.1 160 

40 6.9 9.9 139 
 60 4.8 6.4 110 

B.3 

None 8.7 13.2 265 

40 6.8 9.6 251 

60 4.8 6.7 201 

 80 2.9 4.1 95 

 

Overall, the performance of these models deviated from the literature sources of Zhu et al., 

where bio-char was predicted with RMSE values around 3.5 and Tang et al., where bio-oil was 

predicted with RMSE values around 3.8,12 This could have been due to several reasons. One of the 

most pressing being that these were predicted for biomass and not plastic and therefore input 

variables, especially for composition, differed greatly. In addition, the paper that predicted oil 

yields did so between 15% and 50% and the paper that predicted bio-char yield did so between 0% 

and 50% yield. The base models in this study predicted from 0% to 100% and therefore a larger 

MAE and RMSE could be expected compared to these studies. Furthermore, the predictions of 

yield constraints in Table 5 reflected RMSE values that were closer to the literature values for the 
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60% cutoff which had a range of 40%. A range of 40% more closely resembled the literature and 

RMSE’s of around 6 for Model’s A and B were not far from either Zhu et al. nor Tang et al.’s 

model performance. From this, it can be stated that there is promising room for improvement on 

plastic pyrolysis going forward with the results of this novel approach for random forest. In 

comparison to the Abnisa et al. paper with 24 datapoints for plastics pyrolysis, where the MSE 

was near zero, these models cannot reflect that level of accuracy. However, that paper used neural 

networks for computation not random forest. This indicated that potentially using neural networks 

could improve the results for this study further.  

Random Forest Classification 

 In addition to the regression models, classification was also used to predict oil yields. For 

one method, oil yields were determined on a binary basis. In this case, classification was used to 

predict above and below a specific oil yield, giving two possible answers. Alternatively, other tests 

with Model H used several classifications for ranges of oil yields where numbers for each category 

were assigned. Classification was tested piecewise like the regression models by adding variables 

that were complete from literature values. In addition, tests were run on both variations of the 

imputed Model G and unimputed Model I. 60% was used as the base oil yield cutoff for 

classification models. Higher cutoffs of 70% and 80% were also tested to observe the effects of 

that on the model.  

Piecewise Addition of Variables  

 Like the piecewise additions for the regression models, the classification models were 

tested with compositions only, temperature only, and a combination of the two to predict oil yields. 

The cutoff for the binary 0 or 1 was above or below 60% oil yield for these tests. All the models 

tested for piecewise addition contained all 310 data points. The results can be seen in Figure 16 

below. Using compositions only resulted in an accuracy of 77%, whereas temperature only data 

resulted in lower accuracy of 69%. Adding both together increased the accuracy to 83%. This was 

a similar trend to what was observed for the regression models where the combination of the two 

variables improved the model and that only temperature as an input did not perform as well as 

compositions only to predict oil yields.  
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Figure 16: Piecewise addition of variables of composition and temperature to observe the performance of 

the random forest classification model at 60%. 

 

For the piecewise method, the addition of catalyst and reactor type independently was also 

tested at the 60% yield cutoff. This followed a similar approach that was taken for the regression 

problems. These results can be seen in Figure 17 below. From these models, there was a slight 

improvement over only using the compositions and temperature to predict oil yields from 83% to 

85%. Both the independent addition of catalyst and reactor type on top of compositions and 

temperature resulted in the same accuracy of 85%. The addition of both together improved the 

accuracy to 88% which was the best out of all the piecewise models. These results were slightly 

different from the trends seen for the regression piecewise addition where the addition of reactor 

type performed better than the addition of catalyst.  
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Figure 17: Piecewise addition of variables of catalyst and reactor type to observe the performance of the 

random forest classification model at 60%. 

 

Oil Yield Grouping Classification  

 For oil yield grouping tests, the dataset was made up of 171 points (Model F) was divided 

into sections based on the total oil yield. This was named Model H. The goal of this method was 

to test to see if classifying the data into groups would yield better results than the regression models 

or binary classification. The groups were created by splitting up the oil yield percentages into 

categories. For example, the 171 data points were broken into 7 groups. The groups were created 

to make each group roughly the same number of data points be more representative of the whole 

model and not overpredict a certain group over another. The group breakdowns and the number of 

datapoints contained within each can be seen in Table 6. 
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Table 6: Oil yield grouping for classification Model H.1 and H.2 

Group # 

H.1 Oil Yield 

Range Data Points 

H.2 Oil Yield 

Range 

Number of Data 

Points 

1 0-30% 18 0-45% 36 

2 30-50% 29 45-60% 32 

3 50-65% 21 60-75% 56 

4 65-75% 24 75-100% 47 

5 75-80% 25 N/A N/A 

6 80-85% 32 N/A N/A 

7 85-100% 22 N/A N/A 

 

From Model H.1, after 100 runs the average accuracy resulted in 46%. Seeing the low 

accuracy result compared to all the piecewise models, an additional test was done with decreasing 

the number of groups from seven to four which increased the number of data points in each 

representative group. This was be referred to as Model H.2 and can also be seen in Table 7. The 

accuracy then increased to 60%. Comparing Model H.1 and Model H.2 directly showed that the 

smaller number of groups increased the accuracy of the model overall. However, neither accuracy 

was impressive compared to the models run with a binary oil yield result. Due to this, further 

attempts at grouping oil yields outside of the typical binary method were not attempted. 

 

 

Table 7: Classification grouping method results. 

Model 

Number Variables 
Accuracy 

(Average of 100 runs) 
Std 

Dev Points 

Model H.1 
T, HR, PS, 

no FS, Cat, 

R type 46% 8% 171 

Model H.2 
T, HR, PS, 

no FS, Cat, 

R type 60% 7% 171 
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Binary Classification of Models 

 The developed models for binary classification, Models G and I, were tested with several 

cutoffs of oil yields of 60%, 70%, and 80%. Model G was the classification version of Model B 

which contained 310 datapoints and Model I was the classification version of Model F which 

contained 171 datapoints. Model G included imputed data whereas Model I was not. The results 

for these simulations can be seen in Figure 18.  

 

Figure 18: Classification results at various oil yield cutoffs for the imputed Model G and unimputed 

Model I. 

 

 The accuracies for the 60% oil yield cutoff were 87% and 89% for Models G and I 

respectively. Interestingly, these models did not significantly outperform the 88% accuracy found 

by only using compositions, temperature, catalyst, and reactor type as input variables. This 

indicated that the extra variables of particle size, feed size, and reaction time did not appear to play 

a large role in determining classifier accuracy nor were those variables needed for a well-

performing classifier model. Furthermore, the results around 90% accuracy were extremely 

promising for a classifier’s use for determining oil yield. As the oil yield cutoff increased, the 

accuracy expectedly decreased due to fewer datapoints within each successive increase in the 

cutoff. The number of datapoints above and below the cutoffs for the imputed and piecewise 

models is visualized in Figure 19. For 60% yield, nearly two-thirds of the data was above the 

cutoff. The number of datapoints nearly evened out for the 70% cutoff and of the weight shifted 

to around only one-third of the data above the threshold for the 80% cutoff. Hence, maintaining 

high accuracy across the three cutoffs showed the success of the classification models even when 

the data was unevenly shifted towards predicting below 80%. Figure 20 displays the datapoint 

numbers for the unimputed model. The spread was like the 310 datapoint set where the 60% yield 

had nearly two-thirds above the cutoff. At the 70% cutoff, nearly half was above, and at 80% 

around only one-third was above. This similarity was a product of the spread of the dataset where 
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many datapoints were in the 60 to 90% oil range. In addition, this indicated that the slightly better 

performance of the unimputed model was not solely tied to a difference in datapoints above or 

below the threshold. 

 

Figure 19: The number of datapoints above and below the oil yield cutoffs for classification models. This 

applied only to the imputed classification and piecewise models due to the inclusion of 310 datapoints. 

 

Figure 20: Unimputed model number of datapoints above and below the thresholds. 
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unimputed model performed better than the imputed model by an accuracy of around 5% at the 

80% cutoff. Despite the decrease in accuracy with an increase in yield cutoff, the results from 79% 
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temperature, catalyst, and reactor type data was run at the 70% and 80% yield cutoffs. Figure 21 

shows the results of this attempt. While the piecewise model had the highest accuracy for the 60% 

cutoff, it did not maintain a higher accuracy compared to Model G and I for the 70% and 80% 

cutoffs. Both the imputed Model G and unimputed Model I perform better by 10% for the 70% oil 

yield cutoff. This likely meant that increasing the features such as particle size and reaction time 

allowed the model to maintain high classification performance at the higher cutoffs. The piecewise 

model’s success at 60% remained impressive but was likely due to the larger number of datapoints 

above the cutoff since its accuracy significantly decreased when more datapoints moved below the 

threshold. The accuracy did not decrease largely from the 70% to 80% cutoff which resembles the 

trend that occurred to Model I at those cutoffs.  

 

 

Figure 21: Piecewise composition, temperature, catalyst, and reactor type at cutoffs of 60, 70, and 80% 

oil yield. 

  Feature cutoffs were also attempted with both the imputed and unimputed models. These 

feature cutoffs mirrored the strategies that were used for the regression models. First, Models I and 

G were tested with the constraint of 400 to 500 ℃ and then these models were additionally tested 

with the temperature constraint and a constraint within 0 to 3.5 𝑚𝑚 particle size. Each model was 

tested within the 60%, 70% , and 80% yield cutoffs. The datapoints for each of these models and 

associated feature cutoffs can be seen in Table 8 below.  

 
Table 8: Datapoints for each classification model at each cutoff. 

Feature Cutoffs Model G Datapoints Model I Datapoints 

None 310 171 

400 to 500 ℃ 199 124 

 400-500 ℃ & 0-3.5 𝑚𝑚 152 99 
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These were important to consider because as the cutoffs were added the models began to 

lose datapoints to train and test on. While this was inevitable with this strategy of feature 

engineering, it was important to know how many datapoints were removed with each cutoff. The 

results for each cutoff can be seen in Figures 22 and 23 below. For clarity, Model G was color-

coded blue, and Model I was color-coded orange. Like the regression models, the effect of feature 

cutoffs was largely model-dependent and in the case of classification, oil yield cutoff was 

dependent as well. Model G’s cutoffs saw consistent trends where increasing the cutoffs increased 

the accuracy at the 60% oil cutoff, steady accuracy at the 70% oil cutoff, and a decreasing accuracy 

at the 80% oil cutoff. It was interesting that feature cutoffs improved the lower yield cutoffs and 

negatively impacted the higher yield cutoffs. This could have been related to the number of 

datapoints which was lowered by increased feature removal combined with fewer datapoints above 

the oil prediction. 

 

Figure 22: Feature cutoffs accuracy result at each oil yield cutoff for the imputed Model G. 
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Figure 23: Feature cutoffs accuracy result at each oil yield cutoff for the unimputed Model I. 

 The imputed Model I provided different trends from the feature engineering. For the 60% 

yield cutoff, the initial 400 to 500℃ range of data provided a 7% increase in accuracy up to 96%. 

However, the next cutoff removing data outside of 0 to 3.5 mm particle size decreased the accuracy 

dramatically to 71%. The exact reason for this was unknown. While the unimputed model 

performed better initially, critical information might have been lost when the unimputed model 

was reduced to 99 data points as opposed to the imputed 152 data points at the 400 to 500℃ and 0 

to 3.5mm particle range. Another difference from the imputed model was that the unimputed 

Model I improved as feature cutoffs were added at the 70% oil yield cutoff level. The 80% yield 

cutoff provided a similar trend of decreasing accuracy percentage as more feature refining was 

increased. Overall, the unimputed Model I outperformed Model G with the feature cutoffs except 

for the low accuracy seen for increasing cutoffs at 60% oil yield. In addition, this data showed that 

models would need to be run independently to determine if feature removal could provide an 

increase in accuracy. Another important consideration was the tradeoff between a model that was 

broader with slightly lower accuracy than one that could only predict within a certain range of the 

data. Altogether, classification proved to be a successful and interesting viewpoint for machine 

learning on the pyrolysis dataset. The unimputed model slightly outperformed the imputed model 

at almost all oil yield cutoffs. Accuracies in the range of 80% to 90% were considered impressive 

especially for the small dataset size. Ideally, these classification results could be compared to 

literature, however, the pyrolysis machine learning literature space has solely focused on 

regression problems at this point. This data showed that a combination of the two, both regression 

and classification, could be a powerful tool in determining how well an algorithm could predict oil 

yields. First, the model could predict which data was above or below a specific oil yield, and then 

a regression model could be used to pinpoint the oil yield percentage.  
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Feature Importance 

 In addition to running the models and observing the machine learning metrics, the relative 

importance of each input variable was also determined for both the regression and classification 

problems. This was also done alongside the 100 simulations where each feature’s importance 

would be recorded for each simulation run and then averaged after completion. The importance 

scores all add up to 100%. To compute the importance, the importance method within the Python 

sci-kit learn library was used.  

 

Regression Variable Importance 

 Importance’s were recorded for several of the regression models. Initially, the importance 

was tested on the piecewise model with compositions, temperature, catalyst, and reactor type. 

Importance’s were also run on the base Model B.1 and E.1 to compare the difference between the 

imputed and unimputed model importance’s. Furthermore, Model D.3 was tested because D.3 

reported the best regression metrics after feature engineering. From testing the importance’s of the 

piecewise model, the temperature was by far the most important input into the model at 40%. This 

was followed by the compositions of PET, HDPE, and PolyS from 9% to 13%. Figure 24 below 

includes the results of these tests and the importance’s for running solely the compositions only 

was also included. With compositions alone, PET, HDPE, and PolyS remain the most important 

compositions and PP gained more importance than when included with the other variables. 

Interestingly, LDPE did not appear to have significant importance in either model. The lowest 

importance of PVC was likely due to there being only 7 datapoints out of the 310 that had PVC in 

them. Another interesting takeaway was the lack of importance the catalyst and reactor type had 

on the model. Added together the reactor type only contributed 10% importance total with the 

catalyst only being 4% of importance.  
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Figure 24: Piecewise model importance’s for regression. 

 

 For comparing the imputed base Model B.1 and unimputed base Model F.1 input 

importance’s, Figure 25 was included below. Model F.1 did not include feed size nor reaction time 

and for that reason, there was no importance score for those variables. Like the piecewise model, 

the importance’s of the catalyst and reactor type were low and almost were not important to the 

model at all. For Model F.1, the compositions remained roughly like the piecewise model, except 

for PET, which rose to 21%. Furthermore, the effect of temperature decreased but remained similar 

for both B.1 and F.1. The addition of particle size shifted the importance towards it for both models 

and it was the most important input as well at 24%. For the imputed model, the feed size and 

reaction time also appeared to play important roles and it appeared that the importance for PET 

and other compositions decreased due to the addition of those variables.  
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Figure 25: Feature importance's for Model's B.1 and F.1 to observe the differences in importance’s for 

the imputed and unimputed models. 

 

The importance of PET specifically was striking and was further shown by finding the 

importance’s for Model D.3 which provided the best MAE of around 6.8. These importance’s were 

included in Figure 26. For Model D.3, the importance of PET increased dramatically to 51% and 

the reaction time was the second most important variable at 22%. The importance of the rest of the 

compositions was strikingly low around 6% altogether. Particle size, feed size, and temperature’s 

importance all decreased as well to around 5%. The only variables that remained consistent with 

importance’s found for Model’s B.1 and F.1 were heating rate and catalyst. Due to the high 

importance of PET, Model D.3 was run over 100 simulations with no PET input variable. The 

result of this was an MAE of 9.3 and for this reason, the PET composition must have positively 

influenced the model and played a role in its MAE of 6.8. 
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Figure 26: Model D.3 feature importance's. This was performed because Model D.3 provided the best 

MAE from the regression models after feature engineering. 

 

Classification Variable Importance 

 The importance of classifiers was tested to compare to the regression importance’s to 

observe if the difference in method had an effect. For the classifiers, the piecewise model with 

compositions, temperature, catalyst, and reactor type was tested along with the base Models G.1 

and I.1. Model H importance’s were not run due to the low resulting accuracy score discussed in 

the last section. The results of the piecewise model are seen in Figure 27 and the results of G.1 and 

H.1 are in Figure 28. The piecewise results were like the regression piecewise importance’s. 

Temperature was 6% lower in importance but remained the most important variable.   
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Figure 27: Chart displaying variable importance for the piecewise classification model. 

For Models G.1 and I.1, a similar result to the regression models were seen where the unimputed 

model had more importance on the compositions than the imputed model. Furthermore, in both, 

the catalyst and reactor types still appeared to not play an important role in the classifiers either. 

The relative importance of PET, temperature, particle size, feed size, and reaction time were also 

consistent. This indicated that the RF regressor and classifier treated similar models with similar 

importance with respect to the input variables.  

 

Figure 28: Imputed Model G.1 and unimputed Model H.1 importance’s for comparison to the regression 

importance’s. 
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 In comparison to literature importance’s, there was a lack in pyrolysis of plastics machine 

learning overall. However, two papers reported RF importance’s in the biomass pyrolysis 

literature. For bio-oil yield, one paper found that the compositions were 60% of the importance. 

For biomass, compositions were fixed carbon, ash, and volatiles. The most important variables for 

process conditions were around 16% for heating rate and around 10% for particle size. 

Temperature had an importance around 5%. This was lower than expected considering the 

researchers expected the temperature to play the most important role of all pyrolysis conditions.8 

While this study focused on biomass, the results were compared to the results for pyrolysis of 

plastics. For the unimputed Model F.1, the compositions were around 50% in importance which 

was slightly lower than the biomass composition's importance. However, for the imputed model 

B.1, the importance of the compositions dropped to 23%. Interestingly, the models in this study 

found a similar trend with the importance of particle size as a pyrolysis condition of around 10%. 

A paper investigating RF regression to predict bio-char yield found that the temperature was the 

most important.12 While this met the expectations of the other paper, the comparison was difficult 

due to the end products of bio-oil and bio-char being different. Hence, a difference in what machine 

learning models would consider important for predicting each output seemed plausible. Altogether, 

further pyrolysis machine learning would need to be performed to determine whether the 

importance’s in this study match expectations. Nevertheless, these importance’s still provided 

critical insight into how the model performed and why it may have performed in a certain way.  

 

Cross-Validation  

 The primary method for gathering data for regression metrics of MAE and RMSE and 

classification accuracy for testing models was 100 simulations of the algorithm. However, it was 

also necessary to assess the robustness of the various models created. This was done by performing 

cross-validation on the models. This was performed as described in the methods using two 

approaches: Python’s ‘cross_val_score’ with 5 cross folds and a stratified sampling 5 cross-fold 

validation.  

 

Python’s Sklearn ‘Cross_val_score’ on Regression Models 

 Python’s cross-validation method allowed for the determination of regression and 

classification metrics utilizing a standard 5 cross-fold validation. Validation using Python’s cross-

validation initially revealed large discrepancies for regression models determined from 100 

simulations and the ‘cross_val_score’ function. These differences were often twice as large as the 

metrics from the simulation tests. For example, Table 9 below, displays the difference between the 

two for the unimputed models, Models E and F. The base 100 simulation runs of Model E, which 

had 132 datapoints, resulted in average MAE and RMSE of 8.99 and 12.8, respectively. However, 

‘cross_val_score’ resulted in an MAE and RMSE of 14.3 and 18.2, respectively. Model F, which 

had 171 datapoints, had even larger differences from an MAE of 8.75% from simulations and 

20.0% for ‘cross_val_score’. 
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Table 9: Differences between 100 simulations and ‘cross_val_score’ for MAE and RMSE in unimputed 

Models (E&F). 

Model 

 

100 Simulations ‘Cross_Val_Score’ 

MAE RMSE MAE RMSE 

E 8.99 12.8 14.3 18.2 

F 8.75 13.0 20.0 25.6 

  

 Similar discrepancies were seen in KNN imputed models as well. For example, the base 

run of Model B.1 had an MAE of 8.66 for simulations and an MAE of 14.9 from ‘cross_val_score’. 

In addition, the other regressions base models suffered similar differences between the testing and 

validation which is highlighted in Table 10. While the differences vary between the models, 

generally the ‘cross_val_score’ result was much higher than the simulation result. An exception to 

this would be for Model C. However, the Model C.1 simulation MAE was already high at 11.5. 

Discrepancy for RMSE was similar and this can be seen in the results in Appendix B.  

 

Table 10: Difference in MAE between base model runs of imputed models for 100 simulations vs 

‘cross_val_score’. 

Model 
100 Simulations 

MAE 

Python 

‘Cross_val_score’ 

MAE 

Absolute Difference in 

MAE 

A.1 8.3 13.3 5.0 

B.1 8.7 14.9 6.2 

C.1 11.5 14.3 2.8 

D.1 8.4 15.7 7.3 

 

 Like improvements or deterioration in simulation performance, whether or not feature 

engineering improved the validation score largely depended upon the specific model. For example, 

the cutoffs for Model B.6 from 400 to 500 °C and 0 to 3.5 mm particle size with no 1000g feed 

size datapoints improved the ‘cross_val_score’ on MAE from 14.9 to 12.6 when compared to the 

base B.1 model. The difference between the simulation and the validation also decreased from a 

MAE of 6.2 to 4.5. While this was an improvement, the difference of 4.5 was still not ideal.  

Alternatively, Model D showed lesser difference in the validation score once the exact same 

constraints were added (Model D.3). From D.1 to D.3, the validation score from ‘cross_val_score’ 

improved from an MAE of 15.7 to 8.78. RMSE also improved from 18.3 to 12.6. In addition, the 

difference between the simulation and ‘cross_val_score’ was only 2.1 for MAE and 1.4 for RMSE. 

Table 11 displays the disparities between MAE and RMSE for each model with the associated 

cutoffs performed. While in general there was associated improvement, the larger improvement 

was seen from the two imputed models B and D. Furthermore, this indicated that whether the 

model’s validation score improved or not based on feature engineering was model specific and not 

inherently tied to the constraints themselves.  
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Table 11: Absolute differences between simulations and ‘cross_val_score’ with MAE and RMSE. Note: 

models where cutoff from 400-500C, 0 to 3.5 mm, and no 1000g FS were used. 

Model Simulations 

MAE 

‘Cross_val_score’ 

MAE 

Absolute 

Difference 

in MAE 

Simulations 

RMSE 

‘Cross_val_score’ 

RMSE 

Absolute 

Difference 

in RMSE 

B.6 8.1 12.6 4.5 12.3 14.5 2.2 

D.3 6.7 8.8 2.1 11.2 12.6 1.4 

E.6 8.8 12.9 4.1 12.2 16.7 4.5 

F.6 8.0 17.1 9.1 12 21 9.0 

 

Python’s ‘Cross_val_score’ on Classification Models 

 In addition to the regression models, the Python ‘cross_val_score’ was also tested for the 

classification models. In general, the difference between the simulations and cross validation score 

were far less in the imputed Model G than in the unimputed models H and I. The differences 

between the simulated accuracy and the ‘cross_val_score’ can be seen below for all models in 

Table 12.  

Table 12: Difference between 100 Simulations and ‘cross_val_score’ for classification models in 

accuracy. 

Model Simulations ‘Cross_val_score’ Difference in Accuracy %  

G.1 87 82 5 

G.2 85 78 7 

G.3 79 72 7 

H.1 46 29 17 

H.2 60 38 22 

I.1 89 69 20 

I.2 85 51 34 

I.3 84 67 17 

 

 As shown in Table 12, the difference between cross validation accuracy and simulation 

accuracy was better for Model G. Whereas, Model’s H and I have similar large discrepancies that 

were seen in the regression models for the unimputed models. Model H performed poorly from 

the initial simulations and therefore it was not a surprise to see poor robustness from the model. 

From this, Model G appeared to be one of the more robust base models as compared to the other 

classification attempts. This showed that having more data and specifically imputed data, was more 

robust than not. From the simulations, however, Model I performed slightly better than Model G 

despite lower robustness from Python’s ‘cross_val_score’.  

 

Stratified Cross Validation Sampling Approach  

 In response to high differences between 100 simulation runs and ‘cross_val_score’ 

validation, it was hypothesized that the imbalance in oil yields within the data set could be 

causing problems. Due to this, ‘cross_val_score’ could have been separating data into five folds 

where some contained representative samples and others contained imbalanced ones. For 
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example, if a fold did not contain any low yield points, then the testing fold could have resulted 

in a poor validation for that cross fold. The solution for this was development of Python code 

that performed validation with randomly shuffled folds from user divided data. This code can be 

found in Appendix G. 

 After running this method on several different regression models, it was clear that this 

validation method more accurately matched the data gathered by running 100 simulations. Table 

13 below includes a comparison between the average MAE and RMSE for the models that were 

also cross validated with this method. 

Table 13: Comparison between 100 simulations and the stratified cross validation method. 

 

Model 

100 Simulations Stratified Cross Validation 

MAE RMSE MAE RMSE 

A.1 8.3 12.5 8.8 12.9 

B.1 8.7 13.2 9.0 13.7 

D.3 6.7 11.2 7.2 11.6 

E.1 9.0 12.8 7.1 11.1 

F.6 8.0 11.8 7.3 11.1 

 

Base models were run with the stratified method for a means of comparison to other base models. 

A comparison between the base models for the differences in simulation, ‘cross_val_score’, and 

stratified validation MAE and RMSE can be seen in Figures 29 and 30, respectively. All results 

for the stratified method can be seen in Appendix B. 

 

Figure 29: MAE for base models A.1, B,1, D.1, and E.1 for simulations, python ‘cross_val_score’, and 

the stratified cross validation method. 
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Figure 30: RMSE for base models A.1, B.1, D.1, and E.1 for simulations, python ‘cross_val_score’, and 

the stratified cross validation method. 

Figures 29 and 30 display the clear difference in validation comparison to simulations 

between the ‘cross_val_score’ and the stratified method. In every case, the stratified method was 

closer and only deviated about 1% MAE difference for Model E.1. Altogether, this indicated that 

the stratified method was a better validation for all models and problems of this type where there 

are vast imbalances in data distribution. 

 In addition to running the regression models with the stratified cross validation approach, 

the classifier Models G and I were run as well using the exact same method as the regression 

problems. These were performed at the various yield cutoffs to determine if the stratified method 

carried through at each cutoff. The results of this can be see below in Figures 31 and 32 for Model 

G and I, respectively. Similarly, to the regression models, the stratified method more closely 

resembled the simulation results for Model G and I. Model G’s Python ‘cross_val_score’ 

validations were not vastly different from the simulations, but the stratified method still resulted 

in closer accuracy. Model I showed the performance of the stratified cross validation method more 

significantly. While ‘cross_val_score’ predicted the validation accuracy of Model I nearly and 

over 20% in accuracy off from the simulations, the stratified method was closer and, in some cases, 

higher in accuracy than the simulation accuracy results. In addition, for both the imputed Model 

G and unimputed Model I, the stratified method of cross validation-maintained success over each 

classification cutoff. Overall, this showed that the stratified method was also applicable to the 

classification models and that the classification models were more robust than initially considered 

using only the Python ‘cross_val_score’. 
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Figure 31: Model G classification model results for simulations, ‘cross_val_score’, and the stratified 

validation method. 

 

Figure 32: Model I classification model results for simulations, ‘cross_val_score’, and the stratified 

validation method. 
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Error Outlier Comparison  
 After running simulations, it was clear that certain datapoints were being predicted well 

whereas others were more temperamental. This was visualized by a parity plot shown in Figure 33 

which displays the predicted vs. actual oil yields of the model run. In Figure 33, Model B.1 was 

simulated once to display such a plot. As can be seen there was an outlier point around 30 predicted 

yield and 80 actual yield.  

 

Figure 33: Model B.1 simulation to display outliers in model predictions. 

These occurrences led to the development of code that would highlight datapoints that were 

predicted beyond a certain set range or error for example greater than 40% oil yield between the 

actual yield and predicted yield. This code can be found in Appendix H. In addition to this,  Model 

B.1 simulation was also run to determine outlier errors associated with particular features. This 

can be seen in Figures 34 and 35 that display the outlier error with points at associated temperatures 

and reaction times. In Figure 34, high errors were seen where there were few data around 700 °C. 

However, there was also high error seen in the bulk of the data from 350 to 500 °C. In addition, 

high error spans from short to long reaction times as seen in Figure 35. From this, it can be stated 

that high errors were not simply due to a lack of coverage in data alone. Although, spread out data 

might be one reason for errors, there were several other issues that could be at play. Pyrolysis is 

complex, and the use of only hundreds of data points, spanning nearly a dozen of different 

variables, was unlikely to truly capture every facet of the process.  
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Figure 34: Model B.1 errors between predicted and actual oil yield for datapoints at associated 

temperatures. 

 

Figure 35: Model B.1 errors between predicted and actual oil yield for datapoints at associated reaction 

times. 
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feature values and ending with an oil yield to create a unique label for each datapoint within the 
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running 500 simulations. The count indicated the number of times that each point deviated greater 

than or equal to 40% oil yield from its actual yield. Initially, it was hypothesized that potentially 

that catalyst points could have caused the issues. However, Model B.1 showed that catalyst points 

did not significantly make up the datapoints causing the highest amount of error.  

 

Table 14: Model B.1 500 simulations with a count of each time an associated datapoint resulted in 

greater than a 40% oil yield error. 

Associated 

Cell 

Oil Yield (%) Sum of count Catalyst % of 

runs 

27 24.0 109 no 21.8% 

16 93.1 82 no 16.4% 

46 79.2 73 no 14.6% 

26 11.2 58 no 11.6% 

8 28.5 44 no 8.8% 

219 28.6 32 no 6.4% 

235 18.3 28 yes 5.6% 

17 84.7 23 no 4.6% 

50 31.7 20 no 4.0% 

167 37.5 19 no 3.8% 

 

An interesting takeaway from these findings was that four data points made up around 64% 

of the errors above 40% oil yield for this model. Many of the datapoints in Table 14 were 

associated with lower oil yield ranging from 11.2 to 37.5% and two data points were roughly from 

the bulk of the data, 79.2% and 84.7%. Hence, there was a numerical indication on top of a 

graphical one that lower yields could be causing problems for the models. By further looking into 

the datapoints causing higher errors both datapoints associated with number 26 and 27 were from 

the same paper by Kumar & Singh 2011.17 The paper reported oil yields of 11.2 and 24.0% at 

pyrolysis reaction temperatures of 400 and 450 °C on pure HDPE. It was possible that the long 

reaction times of 760 and 290 minutes respectively could be causing issues with model since there 

was not many other data within that range of reaction times. Aside from an interesting occurrence, 

there was no indication that these datapoints were incorrect. Furthermore, a lack of existing 

literature within certain feature ranges was not solely unique to this occurrence. Model A.1 was 

run as a comparison to see if datapoint outlier error was replicable across models. Model A.1 ran 
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1500 simulations and Model B.1 ran 2500 simulations and accounting for errors larger than 40 oil 

yield. Table 15 visualized the 10 most common error points for each model by the percentage of 

number of runs each point appeared in. Cells were highlighted in blue if both appeared in the top 

ten of each model. The cells that were not highlighted were not present in the Model A.1 dataset 

and therefore could have never been repeated. From this, it can be stated that issues in error points 

were not completely model specific and that certain data points were causing issues for all RF 

simulations. 

 

Table 15: Model A.1 and B.1 comparison of errors of over 40% oil yield by % appearance and associated 

cell number. Blue cells indicate that associated data point was a common source of error for both models 

A.1 and B.1. 

Model A.1 Model B.1 

Cell Associated % Run 

Appearance 

Cell Associated % Run 

Appearance 

26 33.1% 27 20% 

27 30.8% 16 15% 

128 18.8% 46 13% 

167 6.8% 26 11% 

271 5.7% 8 8% 

132 1.4% 219 6% 

109 0.7% 235 5% 

139 0.4% 17 4% 

140 0.4% 50 4% 

99 0.3% 167 3% 

 

 Numerous new models were tested by removing data points that were the most inaccurate 

most often. Model D.3, one of the best performing regression models, was run with the error code 

with a threshold of greater than or equal to 20% oil yield in two iterations. The first time the top 

seven errors were removed and the next the top nine errors were removed. Model E.1 was also run 

with a similar method to visualize this on a unimputed model. For Model E.1, 18 points were 

removed over the course of two iterations for errors surpassing 30% oil yield. The classification 

Model I.2 was also run with 19 points removed over two iterations for the datapoints that were 

predicted wrong the most. Since Model I.2 was classification no direct oil yield percentage cutoff 

could be placed. The results of these models can be seen in Table 16 below for the classification 

model and Table 17 below for the regression models. Unsurprisingly, the classification improves 

from an accuracy on 85% to 93%, Model E.1 improved from 8.8 to 5.6 MAE, and Model D.3 

improved from 6.7 to 4.2 MAE.  

 Due to the dataset being small, it would be nearly impossible to make good predictions for 

every value for the included dependent variables. The act of removing erroneous data, while 

perhaps losing out on some of the chemistry occurring, helps to hone and improve the model for 

values of the dependent variables that have more datapoints. Nevertheless, error visualization and 

removal showcased the large effect that certain data points had on model accuracy. Additionally, 
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it was important to note that the large effect of outlier removal was likely due to the small size and 

spread of the data set. Furthermore, being able to locate and observe the datapoints was helpful in 

learning more about how the algorithms interacted with the data. Further studies of plastic 

pyrolysis machine learning should be done, not to remove more erroneous data points, but to add 

more data points to the areas of the data that were consistently predicted incorrectly. The increase 

in accuracy of the error removal models justifies this point. 

Table 16: Classification outlier removal on Model I.2. 

Model Accuracy % Data Points 

I.2 85 171 

I.2 B 87 162 

I.2 C 93 152 

 

 

Table 17: Regression outlier removal on Models E.1 and D.3. 

Model MAE RMSE Data Points 

D.3 6.7 11.2 114 

D.3 B 5.3 7.4 107 

D.3 C 4.3 5.9 98 

E.1 8.8 13.0 132 

E.1B 7.3 11.2 123 

E.1C 5.6 7.7 114 

 

Future Directions and Improvements  
 Altogether, the information and understanding gained by performing Random Forest 

algorithms on this pyrolysis dataset was a novel concept that revealed both successful, insightful, 

and promising results. However, many of the metrics reported in literature were often higher than 

those gained by this study. In the future, there are several ways that this work can be expanded 

upon and added to improve results and explore machine learning’s application further. One of 

these is by testing other machine learning methods. At the suggestion and interpretation of past 

literature, this study focused primarily on Random Forest. However, there are many more options 

for machine learning problems. These include: Neural networks, XGBoost, Support Vector 

Machines, Naive Bayes, and K-means algorithms. While Random Forest showed promise, other 

algorithms could be attempted to observe and or recontextualize the results from the dataset. In 

addition, further hyperparameter tuning could also be employed. In this study, focus was placed 

on developing models using feature engineering such as the additions, cutoffs, imputation, and 

development of models such as the batch only Model D to observe changes in performance metrics.  

Further hyperparameter tuning of each model individually could also improve results. 

 Another element of future improvement could be addition and future manipulation of the 

base 310 dataset. Before this study, pyrolysis of plastics data had not been aggregated from 

literature data in such a way. Several ways the dataset could be added to could be by further 
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literature search as well as performing experiments directly. Performing experiments would allow 

for gaps in the dataset to be filled and provide more information to the model that was not 

previously known. Controlling factors in a lab space would also eliminate the occurrence of 

missing data not being included from literature sources. Furthermore, one hot encoded variables 

such as reactor type and catalyst could be expanded upon to include more information such as 

reactor geometry and size and catalyst type and acidity. Overall, the possibilities for expanding 

upon this work is vast and the promise machine learning shows for both pyrolysis and chemical 

engineering are exciting. 

 

Conclusion  
 The machine learning methods instituted in this study of plastic pyrolysis are not solely 

limited to this chemical process. The piecewise addition of variables and variable constraint 

analyses may be used on any process. The same is true for the methods of cross validation. In this 

study, when it was found that a basic 5-fold cross validation failed to achieve similar results 

compared to the models, a stratified method was chosen instead which indicated the robustness of 

the random forest regressor and classifier models. The best regression model was found to be 

Model D.3 which achieved an MAE of 6.7. The best classifier models were found to have 

accuracies of 80-90%, with accuracy generally decreasing with increasing oil yield cutoffs. It was 

also found that outlier data points were a source of high error for many models, indicating the need 

to expand the data set for completeness of process variables. Additionally, a study of imputed 

models versus unimputed models was performed and it was found that there were only small 

differences in performance between the two, indicating the validity of using KNN on this pyrolysis 

dataset. The only models with significant differences between models with imputed versus 

unimputed data was for those testing different variable cutoffs. Also, within the random forest 

models, the importance of each variable was determined, and in the models, it was generally found 

that the reactor type and presence of a catalyst were not as important as the plastic feed 

composition. Further, plastic feed composition was found to be less important than variables such 

as temperature and feed size. While many of the models created were successful and exhibited 

MAE values of 8 or lower, the process of analyzing the dataset is of most use going forward. These 

methods may be extrapolated to different processes, or in the case of this pyrolysis data set, 

expanded to include more data in the future with more refined models.  
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Appendix B: All Model Results 

 

 For the model results, these have been split up between regression results and 

classification results. In addition, the piecewise results were separated from other model results 

due to the different naming system. For trials were the imputed regression results, two included 

for each model run. The stratified cross validation method results were separated as well 

independently from the simulations and python ‘cross_val_score’ since only a few models were 

run with the stratified method. This was due to time constraints and the use of the stratified 

method as a proof of concept where not all models needed to be run to prove efficacy.  

 

Piecewise Model Regression Results   

 

Table 19: Piecewise regression results. 

 100 Simulations Python ‘Cross_val_score’ 

 

 

Model MAE 
Std 

Dev 
RMSE 

Std 

Dev 
MAE Avg 

Std 

Dev 

RMSE 

Avg 

Std 

Dev 

Data 

Points 

Compositions 13.9 1.3 18 1.6 21.5 10.4 24.5 10.3 310 

Compositions 

with Temp 
11.3 1.3 16.3 1.7 19.82 9.76 23.22 9.5 310 

Only Temp 16.4 1.2 20.5 1.4 22.7 12.1 24.4 11.7 310 

Comps, 

Temp, & Rxn 

Time 

9.7 1.4 13.8 2.4 21.4 7.6 25.9 8.8 182 

Comps, 

Temp, & 

Catalyst 

11.4 1.4 16.3 1.9 19.6 9.9 23 9.6 310 

Comps, 

Temp, & R 

type 

10.5 1.3 15.1 1.9 18.3 8.8 22 8.2 310 

Comps, 

Temp, & 

Catalyst, & R 

type 

10.3 1.2 14.8 1.9 18.3 8.7 21.3 8.4 310 
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Regression Results for Models with Imputation 

Table 20: Imputed regression model results. 

 100 Simulations Python ‘Cross_val_score’  

Model MAE Std Dev RMSE 
Std 

Dev 
MAE  Std Dev RMSE  

Std 

Dev 

Data 

Points 

A.1 8.3 1.6 12.5 2.8 13.3 4.2 18.7 5.4 182 
 8.11 1.6 12.1 2.7      

A.2 7.5 1.4 11 2.2 15.2 8.1 19.6 7.4 176 
 7.3 1.1 10.7 1.9      

A.3 8.4 1.6 12.1 2.4 12.9 4.3 17.4 4.8 160 
 8.4 1.5 11.9 2.3      

A.4 6.9 1.3 9.9 1.7 10.6 3.3 13.6 4 139 
 6.9 1.4 9.7 2      

A.5 4.8 0.9 6.4 1.1 7.3 2.3 8.8 2.1 110 
 4.6 1 6.1 1.2      

B.1 8.66 1.1 13.2 1.8 14.9 3.6 19.4 4.5 310 

 8.65 1.3 12.9 1.9      

B.2 8.41 0.93 13.06 1.6 17.3 4.2 22.6 5 310 
 8.38 1.27 12.8 2.17      

B.3 8.43 1.2 12.9 1.9 17.1 4.3 22.3 5.1 265 
 8.69 1.3 13.42 2      

B.4 4.8 0.7 6.7 1 7.3 1.8 8.8 1.8 201 
 4.6 0.6 6.3 0.8      

B.5 8.45 1.46 12.32 2.3 15.8 4.8 20.09 5.93 198 
 8.51 1.19 12.5 1.97      

B.6 8.14 1.73 12.32 2.9 12.64 5.26 14.47 5.17 151 
 7.83 1.78 11.8 2.9      

C.1 11.5 1.4 15.6 2 14.25 1.23 19 1.8 199 
 11.4 1.5 15.4 2      

D.1 8.41 1.44 12.58 2.42 15.65 9.8 18.34 10.54 200 
 8.54 1.41 12.7 2.14      

D.2 8.5 1.5 12.65 2.47 11.1 4.34 14.24 5.18 152 
 7.99 1.65 11.9 2.7      

D.3 6.72 1.76 11.16 3.59 8.78 1.82 12.63 3.77 114 
 6.84 1.75 10.96 3.24      

D.4 6.86 1.6 10.72 2.93 8.83 2.65 13.15 4.88 114 
 6.65 1.56 10.77 2.95      

D.5 7.55 1.84 11.85 3.34 9.26 2.71 13.17 5.12 114 
 7.13 1.8 11.37 3.48      

D.6 7.08 1.81 11.31 3.74 8.86 2.06 12.68 3.82 114 
 7.42 2.02 11.86 3.91      

D.7 7.36 1.83 11.65 3.23 9.11 1.7 13.1 3.45 114 
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 7 1.6 11.02 3.04      

 

Regression Results for Models without Imputation 

Table 21: Regression results from unimputed Models F and E. 

 100 Simulations Python ‘Cross_val_score’  

Model MAE Std Dev RMSE Std Dev MAE  Std Dev RMSE Std Dev 
Data 

Points 

F.1 8.75 1.49 12.97 2.11 20.04 5.19 25.62 4.87 310 

F.2 8.94 1.4 13.42 2.16 20.62 5.57 25.78 5.37 310 

F.3 9 1.39 12.85 2 17.38 5.23 21.29 5.06 310 

F.4 9.49 1.44 13.65 2.03 17.52 5.54 21.44 5.16 310 

F.5 8.51 1.68 12.03 2.3 21.1 10 25 11 124 

F.6 7.95 1.86 11.8 2.6 17.1 4.6 21.1 5.4 99 

E.1 8.99 1.62 12.82 2.46 14.3 3.21 18.2 4.2 132 

E.2 8.82 1.64 12.77 2.44 14.3 3.6 18.2 4.6 132 

E.3 9.36 1.57 13.14 2.2 17.44 5.2 21 5.7 132 

E.4 9.83 1.65 13.74 2.2 18.8 5.4 21.8 5.9 132 

E.5 8.82 1.94 12.16 2.7 13.9 7 17.3 7.7 94 

E.6 8.77 2.37 12.21 3.2 12.9 7.2 16.7 9.1 89 

E.7 12.42 1.8 16.4 2.6 16.9 6.6 20.6 7.6 132 

 

Regression Stratified Cross Validation Results 

Table 22: Stratified cross validation results for regression models. 

 100 Simulations Stratified Cross Validation  

Model MAE Std Dev RMSE Std Dev MAE 
Std 

Dev 
RMSE Std Dev 

Data 

Points 

B.1 8.66 1.1 13.2 1.8 9.04 0.7 13.7 1.8 310 

D.1 8.41 1.44 12.58 2.42 8.1 0.7 11.9 2.4 200 

D.3 6.72 1.76 11.16 3.59 7.2 1.9 11.6 3.8 114 

E.1 8.99 1.62 12.82 2.46 7.1 0.8 11.1 0.9 132 

E.5 8.82 1.94 12.16 2.7 9.3 2 12.5 3 94 

F.5 8.51 1.68 12.03 2.3 9.3 1.1 12.9 2 124 

F.6 7.95 1.86 11.8 2.6 7.33 1.3 11.1 2.1 99 
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Piecewise Classification Results 

Table 23: Piecewise classification results. Note: python cross validation was not run on most these 

models because they were solely created to compare simulation results. 

 100 Simulations Python ‘Cross_val_score’ 

Model 
Classification 

Cutoff (%) 
Accuracy 

Std 

Dev 
Accuracy 

Std 

Dev 
Datapoints 

Compositions 60 77% 5 73% 11 310 

Temperature 60 69% 5   310 

Compositions 

& 

Temperature 

60 83% 5 74% 11 310 

Comps, 

Temp, & 

Catalyst 

60 85% 5   310 

Comps, 

Temp, & R 

Type 

60 85% 5   310 

Comps, 

Temperature, 

Catalyst, & R 

Type 

60 88% 5   310 

Comps, 

Temperature, 

Rxn Time 

60 87% 5   182 

Comps, 

Temperature, 

Catalyst, & R 

Type 

70 77% 5   310 

Comps, 

Temperature, 

Catalyst, & R 

Type 

80 76% 5   310 

Compositions 80 71 5 69 3 310 

Compositions 

& 

Temperature 

80 73 6 65 5 310 
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Classification Model Results 

Table 24: Classification Model Results for models I and G. 

  100 Simulations Python ‘Cross_val_score’ 

Model 
Classification 

Cutoff 
Accuracy St Dev Accuracy 

Std 

Dev 

Data 

Points 

I.1 60% 89% 5% 69% 11% 171 

I.2 70% 85% 5% 51% 17% 171 

I.3 80% 84% 6% 67% 14% 171 

G.1 60% 87% 3% 82% 10% 310 

G.2 70% 85% 5% 78% 14% 310 

G.3 80% 79% 4% 72% 12% 310 

 

Classification Feature Cutoff Model Results 

 

Table 25: Feature cutoff results for classification models. 

Model 

Classification 

Cutoff Feature Cutoffs 

100 

Simulations 

Accuracy Std Dev Data Points 

I.4 60% None 89 5 171 

I.5 60% 400-500°C 96 5 124 

I.6 60% 

400-500°C & 0 to 

3.5mm 71 10 99 

I.7 70% None 85 5 171 

I.8 70% 400-500°C 89 6 124 

I.9 70% 

400-500°C & 0 to 

3.5mm 91 5 99 

I.10 80% None 84 6 171 

I.11 80% 400-500°C 81 8 124 

I.12 80% 

400-500°C & 0 to 

3.5mm 79 8 99 

G.4 60% None 87 3 310 

G.5 60% 400-500°C 92 4 199 

G.6 60% 

400-500°C & 0 to 

3.5mm 94 4 152 

G.7 70% None 85 5 310 

G.8 70% 400-500°C 85 6 199 

G.9 70% 

400-500°C & 0 to 

3.5mm 86 6 152 

G.10 80% None 79 4 310 

G.11 80% 400-500°C 75 6 199 

G.12 80% 

400-500°C & 0 to 

3.5mm 73 8 152 
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Classification Stratified Cross Validation Results 

Table 26: Classification results for stratified cross validation 

  100 Simulations Stratified Cross Validation 

Model 
Classification 

Cutoff 
Accuracy St Dev Accuracy 

Std 

Dev 

Data 

Points 

I.1 60% 89% 5% 89% 3% 171 

I.2 70% 85% 5% 89% 3% 171 

I.3 80% 84% 6% 83% 8% 171 

G.1 60% 87% 3% 86% 3% 310 

G.2 70% 85% 5% 86% 6% 310 

G.3 80% 79% 4% 83% 4% 310 

 

 

 

 

 

Appendix C: Stratified Cross Validation Method Example 

 Below is an example of the dataset splits for preprocessing before being input in the 

stratified validation code for Model D.1. Model D.1 contained a total of 200 datapoints which 

were split up into 5 prep sheets with 40 datapoints each. Each prep sheet therefore represented 

20% of the oil yields within the model. For example, sheet 1 contained 20% of the highest oil 

yields which ranged from 83% to 99% oil yield. Each sheet would be input into the python code 

found in Appendix G and then shuffled and sorted into the five cross validation bins. The splits 

of this data convey the oil yield spread disparity with excellent clarity. The first three splits were 

all over 70% oil yield. 

 

Table 27: Example stratified cross val example from Model D.1 

Split 1: 40 Datapoints 83 to 99% yield 

HDPE LDPE PP PS  PVC  PET Temperature 

Heating 
Rate  

Particle 
Size  

Feed 
Size 

Reaction 
Time  Catalyst 

Oil 
Yield  

0 0 0 100 0 0 350 10 2 10 60 0 99 

0 70 0 30 0 0 400 10 2 10 60 0 96 

0 0 0 100 0 0 450 10 2 10 58 0 96 

0 0 0 100 0 0 450 5 2 10 53 0 96 

0 0 0 100 0 0 430 10 3 474 20 0 95 

0 100 0 0 0 0 460 10 2 10 101 0 95 

0 0 100 0 0 0 500 5 4 35 60 0 95 

0 100 0 0 0 0 400 5 1 1 117 0 93 

0 68 16 16 0 0 430 11 3 22 20 0 93 

100 0 0 0 0 0 500 5 4 35 60 0 93 

0 0 0 100 0 0 450 15 2 10 58 0 93 

0 0 0 100 0 0 450 20 2 10 53 0 93 

0 16 16 68 0 0 430 10 3 538 20 0 92 

0 0 100 0 0 0 430 6 3 9 20 0 92 

0 33 33 33 0 0 430 11 3 419 20 0 91 

0 70 0 30 0 0 425 10 2 10 60 0 90 
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0 16 68 16 0 0 430 6 3 75 20 0 90 

0 100 0 0 0 0 430 10 3 10 20 0 90 

0 100 0 0 0 0 425 10 2 10 60 0 90 

0 0 100 0 0 0 400 10 50 1000 60 0 89 

0 0 100 0 0 0 380 3 2 10 61 1 86 

0 0 100 0 0 0 460 14 2 10 56 0 86 

0 0 100 0 0 0 380 3 2 10 61 1 85 

0 0 100 0 0 0 350 10 50 1000 60 0 85 

0 0 100 0 0 0 450 8 2 17 92 0 85 

0 0 100 0 0 0 500 20 3 20 52 1 85 

100 0 0 0 0 0 400 5 1 1 169 0 85 

100 0 0 0 0 0 430 3 1 10 350 0 85 

0 100 0 0 0 0 430 3 1 10 300 0 85 

0 100 0 0 0 0 430 3 1 10 300 0 84 

100 0 0 0 0 0 450 7 7 16 30 0 84 

0 34 66 0 0 0 460 13 2 10 62 0 84 

29 29 27 9 0 6 600 20 20 200 60 0 84 

0 0 100 0 0 0 500 20 3 20 55 1 84 

50 50 0 0 0 0 430 3 2 10 375 0 84 

0 70 0 30 0 0 450 10 2 10 60 0 84 

0 0 100 0 0 0 380 3 2 10 61 1 84 

0 0 100 0 0 0 450 5 2 10 56 0 83 

0 0 100 0 0 0 380 3 2 10 61 1 83 

Split 2: 40 Datapoints 80 to 83% yield 

0 0 100 0 0 0 500 20 3 20 56 0 83 

0 0 100 0 0 0 500 20 3 20 48 1 83 

0 0 100 0 0 0 450 15 2 10 56 0 83 

0 0 100 0 0 0 450 10 2 10 56 0 83 

33 33 33 0 0 0 450 8 2 17 92 0 82 

0 0 100 0 0 0 500 6 2 147 80 0 82 

29 29 27 9 0 6 500 20 6 54 30 0 82 

29 29 27 9 0 6 550 20 20 200 60 0 82 

0 100 0 0 0 0 500 20 3 20 74 1 82 

100 0 0 0 0 0 430 3 3 10 168 1 82 

0 100 0 0 0 0 450 5 2 10 97 0 82 

100 0 0 0 0 0 430 3 3 10 168 1 81 

0 100 0 0 0 0 450 10 2 10 97 0 81 

0 0 100 0 0 0 500 8 2 147 80 0 81 

100 0 0 0 0 0 500 14 3 50 69 0 81 

10 0 0 90 0 0 560 10 4 23 90 1 81 

90 0 0 10 0 0 560 10 4 23 90 1 81 

0 0 100 0 0 0 500 10 25 1000 120 0 81 

100 0 0 0 0 0 350 5 2 2 169 0 81 

0 0 0 100 0 0 450 10 17 1000 75 0 81 

0 0 100 0 0 0 500 10 2 147 80 0 81 

0 0 100 0 0 0 380 3 2 10 61 1 81 

29 29 27 9 0 6 500 20 20 200 60 0 81 

0 100 0 0 0 0 500 6 2 14 106 0 80 

0 100 0 0 0 0 450 14 2 17 80 1 80 

0 0 100 0 0 0 400 10 50 1000 30 0 80 

0 0 100 0 0 0 380 3 2 10 61 0 80 

100 0 0 0 0 0 430 3 3 10 168 1 80 

0 10 90 0 0 0 560 10 4 23 90 1 80 

70 0 0 30 0 0 560 10 4 23 90 1 80 

100 0 0 0 0 0 500 20 3 20 64 1 80 

33 33 33 0 0 0 500 20 3 20 66 1 80 

0 100 0 0 0 0 450 8 2 17 92 0 80 

100 0 0 0 0 0 450 8 3 17 92 0 80 

25 50 25 0 0 0 450 8 2 17 92 0 80 

25 50 25 0 0 0 450 12 2 17 80 0 80 

0 0 100 0 0 0 350 10 50 1000 30 0 80 

0 100 0 0 0 0 500 8 2 14 92 0 80 

0 0 100 0 0 0 450 10 25 1000 120 0 80 

Split 3: 40 Datapoints 72 to 79% yield 

0 50 50 0 0 0 450 8 2 17 92 0 79 

0 0 0 100 0 0 450 10 2 10 60 0 79 

100 0 0 0 0 0 600 13 3 50 75 0 79 

0 100 0 0 0 0 450 8 2 17 92 0 79 

0 100 0 0 0 0 450 14 2 17 80 0 79 

100 0 0 0 0 0 550 20 3 20 54 0 79 

100 0 0 0 0 0 500 20 3 20 69 1 79 

100 0 0 0 0 0 500 20 3 20 60 1 79 

33 33 33 0 0 0 500 20 3 20 73 1 79 

0 0 100 0 0 0 400 10 25 1000 120 1 78 

0 0 100 0 0 0 380 3 2 10 61 1 78 

0 0 100 0 0 0 500 14 2 147 80 0 78 

29 29 27 9 0 6 450 20 20 200 60 0 78 

0 30 70 0 0 0 560 10 4 23 90 1 78 

50 50 0 0 0 0 560 10 4 23 90 1 78 

0 100 0 0 0 0 500 20 3 20 80 1 78 

100 0 0 0 0 0 500 20 3 20 73 0 78 
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33 33 33 0 0 0 500 20 3 20 58 1 78 

0 0 100 0 0 0 400 10 25 1000 120 0 78 

100 0 0 0 0 0 450 8 3 17 80 1 77 

0 0 100 0 0 0 500 20 3 20 44 1 77 

33 33 33 0 0 0 500 20 3 20 74 0 77 

0 100 0 0 0 0 500 10 2 14 78 0 76 

0 100 0 0 0 0 500 20 3 20 83 0 76 

33 33 33 0 0 0 500 20 3 20 48 1 76 

29 29 27 9 0 6 500 10 7 54 30 0 76 

0 0 100 0 0 0 450 10 25 1000 120 1 76 

35 35 10 10 11 1 450 8 2 17 92 0 75 

0 0 100 0 0 0 380 3 2 10 61 1 75 

100 0 0 0 0 0 430 3 3 10 168 1 75 

30 70 0 0 0 0 560 10 4 23 90 1 75 

70 30 0 0 0 0 560 10 4 23 90 1 75 

0 100 0 0 0 0 500 20 3 20 70 1 75 

0 100 0 0 0 0 500 12 2 13 78 0 74 

100 0 0 0 0 0 430 3 3 10 168 1 74 

100 0 0 0 0 0 500 20 3 20 52 1 73 

0 0 90 0 0 10 400 10 25 1000 120 1 73 

0 100 0 0 0 0 450 15 2 10 101 0 73 

100 0 0 0 0 0 500 20 3 20 68 0 72 

Split 4: 40 Datapoints 52 to 71% yield 

0 100 0 0 0 0 500 14 2 13 78 0 71 

100 0 0 0 0 0 430 3 3 10 168 1 71 

0 0 0 100 0 0 500 5 4 35 60 0 71 

0 50 50 0 0 0 560 10 4 23 90 1 70 

50 0 0 50 0 0 560 10 4 23 90 1 70 

0 0 0 100 0 0 450 5 20 1000 75 1 70 

0 0 100 0 0 0 300 5 2 2 80 0 70 

0 0 100 0 0 0 300 10 50 1000 60 0 69 

100 0 0 0 0 0 430 3 3 10 168 0 69 

0 0 100 0 0 0 300 10 50 1000 30 0 69 

0 0 100 0 0 0 380 3 2 10 61 1 69 

0 0 100 0 0 0 450 20 2 10 55 0 68 

0 70 30 0 0 0 560 10 4 23 90 1 68 

30 0 0 70 0 0 560 10 4 23 90 1 68 

0 100 0 0 0 0 500 20 3 20 66 1 68 

100 0 0 0 0 0 430 3 3 10 168 1 68 

0 0 100 0 0 0 350 5 2 2 80 0 68 

0 0 0 100 0 0 500 10 2 10 60 0 67 

0 66 34 0 0 0 460 10 2 10 106 1 67 

0 0 100 0 0 0 380 3 2 10 61 0 65 

0 0 100 0 0 0 400 5 2 2 61 0 63 

0 66 34 0 0 0 460 10 2 10 106 0 63 

0 34 66 0 0 0 460 10 2 10 66 1 62 

0 100 0 0 0 0 550 5 1 1 77 1 62 

0 100 0 0 0 0 450 20 2 10 101 0 61 

90 10 0 0 0 0 560 10 4 23 90 1 61 

0 0 0 100 0 0 450 10 20 1000 75 1 60 

0 0 100 0 0 0 250 4 2 2 124 0 57 

0 0 100 0 0 0 460 10 2 10 59 1 57 

10 90 0 0 0 0 560 10 4 23 90 1 55 

0 0 75 0 0 25 450 10 25 1000 120 1 55 

0 0 100 0 0 0 380 3 2 10 61 1 55 

100 0 0 0 0 0 400 6 3 2 170 0 54 

25 25 0 50 0 0 450 10 19 1000 75 0 54 

0 0 100 0 0 0 450 10 20 1000 75 1 54 

0 0 50 50 0 0 450 10 20 1000 75 1 54 

0 0 100 0 0 0 500 10 25 1000 120 1 53 

0 0 100 0 0 0 250 10 50 1000 60 0 52 

0 50 0 50 0 0 450 10 20 1000 75 1 52 

Split 5: 40 Datapoints 52 to 71% yield 

0 100 0 0 0 0 460 10 2 10 104 1 50 

100 0 0 0 0 0 430 3 3 10 168 1 50 

13 13 25 50 0 0 450 10 19 1000 75 0 49 

44 0 21 13 12 9 500 5 8 35 60 0 49 

0 0 100 0 0 0 380 3 2 10 61 1 47 

0 0 65 0 0 35 500 10 25 1000 120 1 45 

0 50 0 50 0 0 450 10 20 1000 75 1 44 

0 50 50 0 0 0 450 10 20 1000 75 1 44 

0 25 25 50 0 0 450 10 20 1000 75 1 44 

0 0 100 0 0 0 450 10 15 1000 75 0 42 

50 50 0 0 0 0 450 10 20 1000 75 1 42 

100 0 0 0 0 0 550 5 1 1 73 1 41 

10 10 20 40 0 20 450 10 20 1000 75 0 40 

50 50 0 0 0 0 450 10 20 1000 75 1 40 

0 0 100 0 0 0 450 10 20 1000 75 1 40 

0 50 50 0 0 0 450 10 20 1000 75 1 40 

0 25 25 50 0 0 450 10 20 1000 75 1 40 

0 0 0 0 0 100 450 5 2 10 90 0 39 
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0 0 0 0 0 100 500 6 2 293 68 0 39 

0 100 0 0 0 0 500 10 2 10 60 0 38 

0 0 0 0 0 100 450 10 2 10 90 0 35 

0 0 0 0 0 100 500 8 2 293 68 0 34 

0 0 50 50 0 0 450 10 20 1000 75 1 34 

0 0 0 0 0 100 500 10 2 293 68 0 32 

100 0 0 0 0 0 300 6 2 2 169 0 31 

0 0 0 0 0 100 500 12 2 293 68 0 30 

0 20 20 20 0 20 450 10 20 1000 75 1 30 

0 0 0 0 0 100 450 15 2 10 67 0 30 

0 0 0 0 0 100 450 20 2 10 67 0 29 

0 0 0 0 0 100 500 14 2 293 68 0 29 

0 90 10 0 0 0 560 10 4 23 90 1 29 

0 20 20 20 0 20 450 10 20 1000 75 1 28 

50 50 0 0 0 0 450 10 16 1000 75 0 25 

0 0 50 50 0 0 450 10 20 1000 75 0 25 

25 25 50 0 0 0 450 10 20 1000 75 0 24 

100 0 0 0 0 0 450 20 1 20 290 0 24 

0 100 0 0 0 0 550 5 1 1 77 1 18 

100 0 0 0 0 0 550 5 1 1 73 1 17 

0 0 0 0 0 100 500 5 4 35 60 0 15 
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Appendix D: Random Forest Regressor 100 Simulations Code 

import pandas as pd 

import numpy as np 

import io  

import statistics 

from sklearn.ensemble import RandomForestRegressor 

from sklearn.model_selection import train_test_split 

from google.colab import files 

import seaborn as sns 

import matplotlib.pyplot as plt 

from sklearn.metrics import r2_score 

from sklearn.metrics import mean_squared_error 

from sklearn.neural_network import MLPRegressor 

from statistics import mean 

from sklearn.metrics import accuracy_score 

from sklearn.ensemble import RandomForestClassifier 

from sklearn.metrics import f1_score 

%matplotlib inline 

 

uploaded = files.upload() 

features = pd.read_csv('some data set') 

features.head(5) 

 

# Labels are the values we want to predict 

labels = np.array(features['Oil Yield ']) 

 

#Needed to do this loop because one of the csv's kept outputting strings. Not sure why 

#for i in range(len(labels)): 

 # labels[i]= float(labels[i]) 

 

# Remove the labels from the features 

# axis 1 refers to the columns 

features= features.drop('Oil Yield ', axis = 1) 

 

# Saving feature names for later use 

 

feature_list = list(features.columns) 

 

# Convert to numpy array 

features = np.array(features) 

#Regression 

#Create many simulations at once  

 

#In compare_vis first number is how many desired simulations, second is the feature index eg Temp is 6 

HDPE is 0  

#MAE, RMSE ,and R^2 will also be highlighted  

#could run this with any ML just need to adjust metrics and code for model prediction 

#Creating open lists to put train test splits in 

train_features_lists = [] 

test_features_lists = [] 

train_labels_lists = [] 
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test_labels_lists = [] 

 

R2_collect = [] 

MAE_collect = [] 

RMSE_collect = [] 

# Put in number of tests desired and the number associated with each feature 

def compare_vis(tests,Feature_Name): 

 

  for i in range(tests): 

    if i <=tests: 

      train_features, test_features, train_labels, test_labels = train_test_split(features, labels, test_size = 0.20

) 

      train_features_lists.append(train_features.tolist()) 

      test_features_lists.append(test_features.tolist()) 

      train_labels_lists.append(train_labels.tolist()) 

      test_labels_lists.append(test_labels.tolist()) 

      

    #Number of tests results in arrays for train test split being put into the holder lists created outside of the

 function 

      #Each train and test set is a 3 layer list. These are created until number of desired lists are created  

 

  else: 

    #Once all are created graphing and models can run  

 

    for i in range(tests): 

      train_f_list_1 =[] 

      test_f_list_1 =[] 

      train_l_list_1 =[] 

      test_l_list_1 =[] 

 

      test = train_features_lists[i] 

      test_2 = test_features_lists[i] 

      test_3 = train_labels_lists[i] 

      test_4 = test_labels_lists[i] 

      #Code puts each simulations splits into variables called test-

test_4 each correspond to a split. These are overridden for each simulation  

      ''' 

      for y in range(len(test)): 

        train_f_list_1.append(test[y][Feature_Name]) #looks at created list and puts each desired feature fro

m each list of lists within each simulation  

        train_l_list_1.append(test_3[y]) #puts oil yeild associate with that simulation into a list to be graphed

  

 

         

      for c in range(len(test_2)): 

        test_f_list_1.append(test_2[c][Feature_Name]) #separate for loop for the test set since the test set is s

maller than the train but does the same function 

        test_l_list_1.append(test_4[c]) #as the foor loop above  

  

      plt.scatter(train_f_list_1, train_l_list_1, c='r') #plots training data on scatter plot in red  

      plt.scatter(test_f_list_1, test_l_list_1, c='b') #plots testing data on scatter plot in blue 
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      plt.ylabel('Oil Yeild') 

      plt.xlabel(feature_list[Feature_Name]) #Plots the feature name based on given input  

      plt.show() 

      ''' 

      #where code goes for desired model runs 

      rf = RandomForestRegressor(n_estimators = 1000) 

      rf.fit(test, test_3) 

 

      predictions = rf.predict(test_2) 

      errors = abs(predictions - test_4) 

 

      #where the metrics go   

      #MAE 

      mae=round(np.mean(errors), 2) 

      #print('Mean Absolute Error:', mae) 

      MAE_collect.append(mae) 

    

      #RMSE 

      rms = mean_squared_error(test_4, predictions, squared=False) 

      rms = round(rms, 2) 

      #print('The Root Mean Square Error (RMSE) is', rms) 

      RMSE_collect.append(rms) 

 

      #R2 Score 

      score=r2_score(test_4, predictions) 

      #print('The R Squared Value is', score) 

      R2_collect.append(score) 

 

compare_vis(100,0) 

 

#Getting the average and standard deviations of all MAE and RMSE for simulations 

 

R2_avg = mean(R2_collect) 

R2_std = statistics.pstdev(R2_collect) 

MAE_avg = mean(MAE_collect) 

RMSE_avg = mean(RMSE_collect) 

MAE_std = statistics.pstdev(MAE_collect) 

RMSE_std = statistics.pstdev(RMSE_collect) 

 

print("R2 Mean ", round(R2_avg,2)) 

print("R2 Standard Deviation ", round(R2_std, 2)) 

 

print("MAE Mean ", round(MAE_avg,2)) 

print("MAE Standard Deviation ", round(MAE_std, 2)) 

 

print("RMSE Mean ", round(RMSE_avg,2)) 

print("RMSE Standard Deviation ", round(RMSE_std,2)) 
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Appendix E: Random Forest Classifier 100 Simulation Code 

import pandas as pd 

import numpy as np 

import io  

import statistics 

 

from sklearn.ensemble import RandomForestRegressor 

from sklearn.model_selection import train_test_split 

from google.colab import files 

import seaborn as sns 

import matplotlib.pyplot as plt 

from sklearn.metrics import r2_score 

from sklearn.metrics import mean_squared_error 

from sklearn.neural_network import MLPRegressor 

from statistics import mean 

from sklearn.metrics import accuracy_score 

from sklearn.ensemble import RandomForestClassifier 

from sklearn.metrics import f1_score 

 

%matplotlib inline 

 

features = pd.read_csv('some data set') 

features.head(5) 

 

# Labels are the values we want to predict 

labels = np.array(features['Oil Yield ']) 

 

#Needed to do this loop because one of the csv's kept outputting strings. Not sure why 

#for i in range(len(labels)): 

 # labels[i]= float(labels[i]) 

 

# Remove the labels from the features 

# axis 1 refers to the columns 

features= features.drop('Oil Yield ', axis = 1) 

 

# Saving feature names for later use 

 

feature_list = list(features.columns) 

 

# Convert to numpy array 

features = np.array(features) 

 

#Classifier 

#Create many simulations at once   

 

#In compare_vis first number is how many desired simulations, second is the feature index eg Temp is 6 

HDPE is 0  

#MAE, RMSE ,and R^2 will also be highlighted  

#could run this with any ML just need to adjust metrics and code for model prediction 



75 

 

 

#Creating open lists to put train test splits in 

train_features_lists = [] 

test_features_lists = [] 

train_labels_lists = [] 

test_labels_lists = [] 

 

Acc_collect = [] 

# Put in number of tests desired and the number associated with each feature 

def compare_vis(tests,Feature_Name): 

 

  for i in range(tests): 

    if i <=tests: 

      train_features, test_features, train_labels, test_labels = train_test_split(features, labels, test_size = 0.20

) 

       

      train_features_lists.append(train_features.tolist()) 

 

      test_features_lists.append(test_features.tolist()) 

 

      train_labels_lists.append(train_labels.tolist()) 

 

      test_labels_lists.append(test_labels.tolist()) 

       

      #Number of tests results in arrays for train test split being put into the holder lists created outside of th

e function 

      #Each train and test set is a 3 layer list. These are created until number of desired lists are created  

 

  else: 

    #Once all are created graphing and models can run  

 

    for i in range(tests): 

      train_f_list_1 =[] 

      test_f_list_1 =[] 

      train_l_list_1 =[] 

      test_l_list_1 =[] 

 

      test = train_features_lists[i] 

      test_2 = test_features_lists[i] 

      test_3 = train_labels_lists[i] 

      test_4 = test_labels_lists[i] 

 

      

       

      #Code puts each simulations splits into variables called test-

test_4 each correspond to a split. These are overridden for each simulation  

 

      for y in range(len(test)): 

        train_f_list_1.append(test[y][Feature_Name]) #looks at created list and puts each desired feature fro

m each list of lists within each simulation  
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        train_l_list_1.append(test_3[y]) #puts oil yeild associate with that simulation into a list to be graphed

  

 

         

      for c in range(len(test_2)): 

        test_f_list_1.append(test_2[c][Feature_Name]) #separate for loop for the test set since the test set is s

maller than the train but does the same function 

        test_l_list_1.append(test_4[c]) #as the foor loop above  

  

      #plt.scatter(train_f_list_1, train_l_list_1, c='r') #plots training data on scatter plot in red  

      #plt.scatter(test_f_list_1, test_l_list_1, c='b') #plots testing data on scatter plot in blue 

      #plt.ylabel('Oil Yeild') 

      #plt.xlabel(feature_list[Feature_Name]) #Plots the feature name based on given input  

      #plt.show() 

       

      #where code goes for desired model runs  

      

      #Classifier Code 

      clf = RandomForestClassifier(n_estimators=1000) 

      clf.fit(test, test_3) 

      predictions = clf.predict(test_2) 

      accuracy = accuracy_score(test_4,predictions) 

      Acc_collect.append(accuracy) 

 

compare_vis(100,0) 

Acc_avg = mean(Acc_collect) 

Acc_std = statistics.pstdev(Acc_collect) 

print("Accuracy Mean ", round(Acc_avg,2)) 

print("Accuracy Standard Deviation ", round(Acc_std,2)) 
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Appendix F: Python Cross_val_score Cross Validation for Regression and Classification 

Models 

#Regressor Cross Validation 

scores_2 = cross_val_score(rf,features,labels,cv=5,scoring='neg_mean_absolute_error') 

scores_3 = cross_val_score(rf,features,labels,cv=5,scoring='neg_root_mean_squared_error') 

#'neg_root_mean_squared_error' 

#'neg_mean_absolute_error' 

print(scores_2) 

print("MAE Mean ", round(np.mean(scores_2), 2)) 

print("MAE Std Dev ", round(np.std(scores_2), 2)) 

print(scores_3) 

print("RMSE Mean ", round(np.mean(scores_3), 2)) 

print("RMSE Std Dev ", round(np.std(scores_3), 2)) 

 

#Classification Cross Validation 

classification_score = cross_val_score(clf, features, labels, cv =5, scoring = 'accuracy') 

print(classification_score) 

print("Accuracy Mean ", round(np.mean(classification_score), 2)) 

print("Accuracy Std Dev ", round(np.std(classification_score), 2)) 
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Appendix G: Stratified Cross Validation Method 
#This code performs the Stratified Cross Validation Method 

import pandas as pd 

import numpy as np 

import io  

import statistics  

 

from sklearn.ensemble import RandomForestRegressor 

from sklearn.model_selection import train_test_split 

from google.colab import files 

import seaborn as sns 

import matplotlib.pyplot as plt 

from sklearn.metrics import r2_score 

from sklearn.metrics import mean_squared_error 

from statistics import mean  

from sklearn.metrics import accuracy_score 

from sklearn.ensemble import RandomForestClassifier 

 

%matplotlib inline 

 

uploaded = files.upload() 

 

#Where each dataset split is added to variable names (each CSV should have a different 'distrubution of the data') 

sample_1 = pd.read_csv('a') 

sample_2 = pd.read_csv('b') 

sample_3 = pd.read_csv('c') 

sample_4 = pd.read_csv('d') 

sample_5 = pd.read_csv('e') 

#Shuffling All Sets 

 

#Takes each added csv which became a dataframe and splits it randomly into 5 sets which are also dataframes  

shuffled_1 = sample_1.sample(frac=0.8) 

result_1 = np.array_split(shuffled_1, 5)  

 

shuffled_2 = sample_2.sample(frac=0.8) 

result_2 = np.array_split(shuffled_2, 5)  

 

shuffled_3 = sample_3.sample(frac=0.8) 

result_3 = np.array_split(shuffled_3, 5)  

 

shuffled_4 = sample_4.sample(frac=0.8) 

result_4= np.array_split(shuffled_4, 5)  

 

shuffled_5 = sample_5.sample(frac=0.8) 

result_5 = np.array_split(shuffled_5, 5)  

 

#Spliting All Sets  

 

#This takes each dataframe from the shuffles and assocaites it with a variable that can be added to each "k-fold" 

#Each dataframe becomes and array which then becomes a list (necesary because second part of the code was create

d dealing with list' first) 

split_1a =np.array(result_1[0]).tolist() 

split_2a =np.array(result_1[1]).tolist() 

split_3a =np.array(result_1[2]).tolist() 

split_4a =np.array(result_1[3]).tolist() 
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split_5a =np.array(result_1[4]).tolist() 

 

split_1b =np.array(result_2[0]).tolist() 

split_2b =np.array(result_2[1]).tolist() 

split_3b =np.array(result_2[2]).tolist() 

split_4b =np.array(result_2[3]).tolist() 

split_5b =np.array(result_2[4]).tolist() 

 

split_1c =np.array(result_3[0]).tolist() 

split_2c =np.array(result_3[1]).tolist() 

split_3c =np.array(result_3[2]).tolist() 

split_4c =np.array(result_3[3]).tolist() 

split_5c =np.array(result_3[4]).tolist() 

 

split_1d =np.array(result_4[0]).tolist() 

split_2d =np.array(result_4[1]).tolist() 

split_3d =np.array(result_4[2]).tolist() 

split_4d =np.array(result_4[3]).tolist() 

split_5d =np.array(result_4[4]).tolist() 

 

split_1e =np.array(result_5[0]).tolist() 

split_2e =np.array(result_5[1]).tolist() 

split_3e =np.array(result_5[2]).tolist() 

split_4e =np.array(result_5[3]).tolist() 

split_5e =np.array(result_5[4]).tolist() 

 

#Regression: Adding all splits to associated k fold sets 

 

#Each k fold should have the necesary splits of data from the csvs entered  

t1 = split_1a + split_1b + split_1c + split_1d + split_1e 

t2 = split_2a + split_2b + split_2c + split_2d + split_2e 

t3 = split_3a + split_3b + split_3c + split_3d + split_3e 

t4 = split_4a + split_4b + split_4c + split_4d + split_4e 

t5 = split_5a + split_5b + split_5c + split_5d + split_5e 

 

#Creat lists to put MAE in and RMSE in  

MAE_Holder=[] 

RMSE_Holder =[] 

 

#Brute Force Method  

 

#Cross Fold 1 : 1-4 Train 5 is test  

 

training_1 = t1+t2+t3+t4 

testing_1 = t5 

training_1_labels_1=[] 

training_1_features_1=[] 

testing_1_labels_1 =[] 

testing_1_features_1 = [] 

 

for i in range(len(training_1)): 

  training_1_features_1.append(training_1[i][0:(len(training_1[i])-1)]) 

  training_1_labels_1.append(training_1[i][-1]) 
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for i in range(len(t5)): 

  testing_1_features_1.append(t5[i][0:-1]) 

  testing_1_labels_1.append(t5[i][-1]) 

  

training_1_features_1 = np.array(training_1_features_1) 

training_1_labels_1= np.array(training_1_labels_1) 

testing_1_features_1 = np.array(testing_1_features_1) 

testing_1_labels_1 = np.array(testing_1_labels_1) 

 

rf = RandomForestRegressor(n_estimators = 1000) 

rf.fit(training_1_features_1, training_1_labels_1) 

 

predictions_1 = rf.predict(testing_1_features_1) 

errors_1 = abs(predictions_1 - testing_1_labels_1) 

mae_1 = round(np.mean(errors_1), 2) 

rmse_1 = (mean_squared_error(testing_1_labels_1, predictions_1, squared=False)) 

MAE_Holder.append(mae_1) 

RMSE_Holder.append(rmse_1) 

 

#Cross Fold 2 Train 1,2,3,5 Test 4  

 

training_1 = t1+t2+t3+t5 

testing_1 = t4 

training_1_labels_1=[] 

training_1_features_1=[] 

testing_1_labels_1 =[] 

testing_1_features_1 = [] 

 

for i in range(len(training_1)): 

  training_1_features_1.append(training_1[i][0:(len(training_1[i])-1)]) 

  training_1_labels_1.append(training_1[i][-1]) 

 

for i in range(len(t4)): 

  testing_1_features_1.append(t4[i][0:-1]) 

  testing_1_labels_1.append(t4[i][-1]) 

  

training_1_features_1 = np.array(training_1_features_1) 

training_1_labels_1= np.array(training_1_labels_1) 

testing_1_features_1 = np.array(testing_1_features_1) 

testing_1_labels_1 = np.array(testing_1_labels_1) 

 

rf = RandomForestRegressor(n_estimators = 1000) 

rf.fit(training_1_features_1, training_1_labels_1) 

 

predictions_1 = rf.predict(testing_1_features_1) 

errors_1 = abs(predictions_1 - testing_1_labels_1) 

mae_1 = round(np.mean(errors_1), 2) 

rmse_1 = (mean_squared_error(testing_1_labels_1, predictions_1, squared=False)) 

MAE_Holder.append(mae_1) 

RMSE_Holder.append(rmse_1) 

 

#Cross Fold 3 Train 1,2,4,5 Test 3  

 

training_1 = t1+t2+t4+t5 

testing_1 = t3 

training_1_labels_1=[] 
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training_1_features_1=[] 

testing_1_labels_1 =[] 

testing_1_features_1 = [] 

 

for i in range(len(training_1)): 

  training_1_features_1.append(training_1[i][0:(len(training_1[i])-1)]) 

  training_1_labels_1.append(training_1[i][-1]) 

 

for i in range(len(t3)): 

  testing_1_features_1.append(t3[i][0:-1]) 

  testing_1_labels_1.append(t3[i][-1]) 

  

training_1_features_1 = np.array(training_1_features_1) 

training_1_labels_1= np.array(training_1_labels_1) 

testing_1_features_1 = np.array(testing_1_features_1) 

testing_1_labels_1 = np.array(testing_1_labels_1) 

 

rf = RandomForestRegressor(n_estimators = 1000) 

rf.fit(training_1_features_1, training_1_labels_1) 

 

predictions_1 = rf.predict(testing_1_features_1) 

errors_1 = abs(predictions_1 - testing_1_labels_1) 

mae_1 = round(np.mean(errors_1), 2) 

rmse_1 = (mean_squared_error(testing_1_labels_1, predictions_1, squared=False)) 

MAE_Holder.append(mae_1) 

RMSE_Holder.append(rmse_1) 

 

#Cross Fold 4 Train 1,3,4,5 Test 2 

 

training_1 = t1+t3+t4+t5 

testing_1 = t2 

training_1_labels_1=[] 

training_1_features_1=[] 

testing_1_labels_1 =[] 

testing_1_features_1 = [] 

 

for i in range(len(training_1)): 

  training_1_features_1.append(training_1[i][0:(len(training_1[i])-1)]) 

  training_1_labels_1.append(training_1[i][-1]) 

 

for i in range(len(t2)): 

  testing_1_features_1.append(t2[i][0:-1]) 

  testing_1_labels_1.append(t2[i][-1]) 

  

training_1_features_1 = np.array(training_1_features_1) 

training_1_labels_1= np.array(training_1_labels_1) 

testing_1_features_1 = np.array(testing_1_features_1) 

testing_1_labels_1 = np.array(testing_1_labels_1) 

 

rf = RandomForestRegressor(n_estimators = 1000) 

rf.fit(training_1_features_1, training_1_labels_1) 

 

predictions_1 = rf.predict(testing_1_features_1) 

errors_1 = abs(predictions_1 - testing_1_labels_1) 

mae_1 = round(np.mean(errors_1), 2) 

rmse_1 = (mean_squared_error(testing_1_labels_1, predictions_1, squared=False)) 
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MAE_Holder.append(mae_1) 

RMSE_Holder.append(rmse_1) 

 

#Cross Fold 5 Train 2,3,4,5 Test 1 

training_1 = t2+t3+t4+t5 

testing_1 = t1 

training_1_labels_1=[] 

training_1_features_1=[] 

testing_1_labels_1 =[] 

testing_1_features_1 = [] 

 

for i in range(len(training_1)): 

  training_1_features_1.append(training_1[i][0:(len(training_1[i])-1)]) 

  training_1_labels_1.append(training_1[i][-1]) 

 

for i in range(len(t1)): 

  testing_1_features_1.append(t1[i][0:-1]) 

  testing_1_labels_1.append(t1[i][-1]) 

  

training_1_features_1 = np.array(training_1_features_1) 

training_1_labels_1= np.array(training_1_labels_1) 

testing_1_features_1 = np.array(testing_1_features_1) 

testing_1_labels_1 = np.array(testing_1_labels_1) 

 

rf = RandomForestRegressor(n_estimators = 1000) 

rf.fit(training_1_features_1, training_1_labels_1) 

 

predictions_1 = rf.predict(testing_1_features_1) 

errors_1 = abs(predictions_1 - testing_1_labels_1) 

mae_1 = round(np.mean(errors_1), 2) 

rmse_1 = (mean_squared_error(testing_1_labels_1, predictions_1, squared=False)) 

MAE_Holder.append(mae_1) 

RMSE_Holder.append(rmse_1) 

 

#Note: Did not need to rename variabes since python overwrites the new variables onece redefined 

 

print("MAE:", MAE_Holder) 

print("MAE Std Dev:", statistics.pstdev(MAE_Holder)) 

print("MAE Mean:", mean(MAE_Holder)) 

 

print("RMSE:", RMSE_Holder) 

print("RMSE Std Dev:", statistics.pstdev(RMSE_Holder)) 

 

print("RMSE Mean:", mean(RMSE_Holder)) 

 

#Classifier Test 

#Adding all splits to associated k fold sets 

 

#Each k fold should have the necesary splits of data from the csvs entered  

t1 = split_1a + split_1b + split_1c + split_1d + split_1e 

t2 = split_2a + split_2b + split_2c + split_2d + split_2e 

t3 = split_3a + split_3b + split_3c + split_3d + split_3e 

t4 = split_4a + split_4b + split_4c + split_4d + split_4e 

t5 = split_5a + split_5b + split_5c + split_5d + split_5e 
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#Creat lists to put Accuracies in  

Accuracy_Holder = [] 

 

#Brute Force Method  

 

#Cross Fold 1 : 1-4 Train 5 is test  

 

training_1 = t1+t2+t3+t4 

testing_1 = t5 

training_1_labels_1=[] 

training_1_features_1=[] 

testing_1_labels_1 =[] 

testing_1_features_1 = [] 

 

for i in range(len(training_1)): 

  training_1_features_1.append(training_1[i][0:(len(training_1[i])-1)]) 

  training_1_labels_1.append(training_1[i][-1]) 

 

for i in range(len(t5)): 

  testing_1_features_1.append(t5[i][0:-1]) 

  testing_1_labels_1.append(t5[i][-1]) 

  

training_1_features_1 = np.array(training_1_features_1) 

training_1_labels_1= np.array(training_1_labels_1) 

testing_1_features_1 = np.array(testing_1_features_1) 

testing_1_labels_1 = np.array(testing_1_labels_1) 

 

clf = RandomForestClassifier(n_estimators=1000) 

clf.fit(training_1_features_1, training_1_labels_1) 

predictions_1 = clf.predict(testing_1_features_1) 

accuracy = accuracy_score(testing_1_labels_1,predictions_1) 

Accuracy_Holder.append(accuracy) 

 

#Cross Fold 2 Train 1,2,3,5 Test 4  

 

training_1 = t1+t2+t3+t5 

testing_1 = t4 

training_1_labels_1=[] 

training_1_features_1=[] 

testing_1_labels_1 =[] 

testing_1_features_1 = [] 

 

for i in range(len(training_1)): 

  training_1_features_1.append(training_1[i][0:(len(training_1[i])-1)]) 

  training_1_labels_1.append(training_1[i][-1]) 

 

for i in range(len(t4)): 

  testing_1_features_1.append(t4[i][0:-1]) 

  testing_1_labels_1.append(t4[i][-1]) 

  

training_1_features_1 = np.array(training_1_features_1) 

training_1_labels_1= np.array(training_1_labels_1) 

testing_1_features_1 = np.array(testing_1_features_1) 

testing_1_labels_1 = np.array(testing_1_labels_1) 

 

clf = RandomForestClassifier(n_estimators=1000) 
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clf.fit(training_1_features_1, training_1_labels_1) 

predictions_1 = clf.predict(testing_1_features_1) 

accuracy = accuracy_score(testing_1_labels_1,predictions_1) 

Accuracy_Holder.append(accuracy) 

 

#Cross Fold 3 Train 1,2,4,5 Test 3  

 

training_1 = t1+t2+t4+t5 

testing_1 = t3 

training_1_labels_1=[] 

training_1_features_1=[] 

testing_1_labels_1 =[] 

testing_1_features_1 = [] 

 

for i in range(len(training_1)): 

  training_1_features_1.append(training_1[i][0:(len(training_1[i])-1)]) 

  training_1_labels_1.append(training_1[i][-1]) 

 

for i in range(len(t3)): 

  testing_1_features_1.append(t3[i][0:-1]) 

  testing_1_labels_1.append(t3[i][-1]) 

  

training_1_features_1 = np.array(training_1_features_1) 

training_1_labels_1= np.array(training_1_labels_1) 

testing_1_features_1 = np.array(testing_1_features_1) 

testing_1_labels_1 = np.array(testing_1_labels_1) 

 

clf = RandomForestClassifier(n_estimators=1000) 

clf.fit(training_1_features_1, training_1_labels_1) 

predictions_1 = clf.predict(testing_1_features_1) 

accuracy = accuracy_score(testing_1_labels_1,predictions_1) 

Accuracy_Holder.append(accuracy) 

 

#Cross Fold 4 Train 1,3,4,5 Test 2 

 

training_1 = t1+t3+t4+t5 

testing_1 = t2 

training_1_labels_1=[] 

training_1_features_1=[] 

testing_1_labels_1 =[] 

testing_1_features_1 = [] 

 

for i in range(len(training_1)): 

  training_1_features_1.append(training_1[i][0:(len(training_1[i])-1)]) 

  training_1_labels_1.append(training_1[i][-1]) 

 

for i in range(len(t2)): 

  testing_1_features_1.append(t2[i][0:-1]) 

  testing_1_labels_1.append(t2[i][-1]) 

  

training_1_features_1 = np.array(training_1_features_1) 

training_1_labels_1= np.array(training_1_labels_1) 

testing_1_features_1 = np.array(testing_1_features_1) 

testing_1_labels_1 = np.array(testing_1_labels_1) 
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clf = RandomForestClassifier(n_estimators=1000) 

clf.fit(training_1_features_1, training_1_labels_1) 

predictions_1 = clf.predict(testing_1_features_1) 

accuracy = accuracy_score(testing_1_labels_1,predictions_1) 

Accuracy_Holder.append(accuracy) 

 

#Cross Fold 5 Train 2,3,4,5 Test 1 

training_1 = t2+t3+t4+t5 

testing_1 = t1 

training_1_labels_1=[] 

training_1_features_1=[] 

testing_1_labels_1 =[] 

testing_1_features_1 = [] 

 

for i in range(len(training_1)): 

  training_1_features_1.append(training_1[i][0:(len(training_1[i])-1)]) 

  training_1_labels_1.append(training_1[i][-1]) 

 

for i in range(len(t1)): 

  testing_1_features_1.append(t1[i][0:-1]) 

  testing_1_labels_1.append(t1[i][-1]) 

  

training_1_features_1 = np.array(training_1_features_1) 

training_1_labels_1= np.array(training_1_labels_1) 

testing_1_features_1 = np.array(testing_1_features_1) 

testing_1_labels_1 = np.array(testing_1_labels_1) 

 

clf = RandomForestClassifier(n_estimators=1000) 

clf.fit(training_1_features_1, training_1_labels_1) 

predictions_1 = clf.predict(testing_1_features_1) 

accuracy = accuracy_score(testing_1_labels_1,predictions_1) 

Accuracy_Holder.append(accuracy) 

 

print("Accuracy:", Accuracy_Holder) 

print("Accuracy Std Dev:", statistics.pstdev(Accuracy_Holder)) 

print("Accuracy", mean(Accuracy_Holder) 
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Appendix H: Error Comparison Code 
import pandas as pd 

import numpy as np 

import io  

 

from sklearn.ensemble import RandomForestRegressor 

from sklearn.model_selection import train_test_split 

from google.colab import files 

import seaborn as sns 

import matplotlib.pyplot as plt 

from sklearn.metrics import r2_score 

from sklearn.metrics import mean_squared_error 

from sklearn.model_selection import train_test_split 

%matplotlib inline 

uploaded = files.upload() 

features = pd.read_csv('Some data set') 

features.head(5) 

 

# Labels are the values we want to predict 

labels = np.array(features['Oil Yield ']) 

 

# Remove the labels from the features 

# axis 1 refers to the columns 

features= features.drop('Oil Yield ', axis = 1) 

 

# Saving feature names for later use 

 

feature_list = list(features.columns) 

 

# Convert to numpy array 

features = np.array(features) 

Code that runs simulations and puts errors for cell ids into a dataframe 

from collections import Counter 

from itertools import chain 

def error_finder(tests): 

 

  simulations_all = [] #holds keys, predictions, and errors  

  simulations_keys = [] #holds only the keys 

 

  #Gets ids of all codes  

  feature_strings = [[str(x) for x in inner_int] for inner_int in features] 

  code_ids = [["".join(inner_comps[0:len(feature_list)])] for inner_comps in feature_strings] 

  #Might want to add ids if that is helpful  

  for i in range(tests): 

    train_features, test_features, train_labels, test_labels = train_test_split(features, labels, test_size = 0.20) 

 

    test_features_variable = test_features.tolist() 

    test_labels_variable= test_labels.tolist() 

 

   

     

    rf = RandomForestRegressor(n_estimators = 1000) 

    rf.fit(train_features, train_labels); 

     

    predictions = rf.predict(test_features) 
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    errors = abs(predictions - test_labels) 

     

 

    #Converting the test features to strings so they can be concatenated 

    test_feature_strings = [[str(x) for x in inner_int] for inner_int in test_features_variable] 

    #Convert features to one cell by concatenating for the length of the feature list  

    new_strings_conc =  [["".join(inner_comps[0:len(feature_list)])] for inner_comps in test_feature_strings] 

 

    #Convert test labels as strings  

    test_label_strings = [str(oil) for oil in test_labels_variable]  

 

    #Putting Yields, predictions, and errors with feature ID. Yields get appended 

    for i in range(len(new_strings_conc)): 

      new_strings_conc[i].append(test_label_strings[i]) 

 

     

    new_strings_conc_2 = [[''.join(inner_comps[0:2])] for inner_comps in new_strings_conc] 

 

    for i in range(len(new_strings_conc)):     

      new_strings_conc_2[i].append(predictions[i]) 

      new_strings_conc_2[i].append(errors[i]) 

 

    #Separate entry if error is more than x (could change this) 

     

    large_error_list = [] #contains keys, predictions, and errors  

    large_error_keys = [] 

    for i in range(len(new_strings_conc_2)): 

      if new_strings_conc_2[i][-1] >=10: 

        large_error_list.append(new_strings_conc_2[i]) 

 

        for keys in range(len(large_error_list)): 

          large_error_keys.append(large_error_list[keys][0]) 

 

    simulations_all.append(large_error_list) 

    simulations_keys.append(large_error_keys)    

 

    #Counts number of times a certain cell appears 

    no_of_lists_per_name = Counter(chain.from_iterable(map(set, simulations_keys))) 

 

    for name, no_of_lists in no_of_lists_per_name.most_common(): 

        if no_of_lists == 1: 

            break # since it is ordered by count, once we get this low we are done 

        #print(f"'{name}' is in {no_of_lists} lists") 

 

  #Create a dataframe with IDs and number of errors 

  error_df = pd.DataFrame.from_dict(no_of_lists_per_name, orient='index').reset_index() 

  error_df = error_df.rename(columns={'index':'ID', 0:'count'}) 

  print(error_df) 

   

  error_df.to_excel(excel_writer ="error_compare.xlsx")             

  from google.colab import files 

  files.download('error_compare.xlsx') 

 

error_finder(100) 

 


