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Abstract 

 

 

The objective of this project was to design and assemble an experimental apparatus to 

measure the interfacial adhesion between polymer-metal composites using varying surface 

conditions. The materials used for the polymer-metal composite are 420-grade Stainless Steel (SS) 

and Acrylonitrile Butadiene Styrene (ABS). A 90-degree peel tester was designed in SolidWorks® 

as an add-on to an Instron® 5944 Universal Testing Machine. The peel tester was fabricated using 

both computer numerical controlled machining and manual milling. Sample plates were polished 

by using several grits of sandpaper, buffing compounds and a sand belt before applying ABS onto 

their surface. Eight peel tests were performed on untreated ABS-SS samples where force and 

adhesion energy values were determined.  
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Chapter 1: Introduction 

 

 Composites are created by combining two or more materials that result in superior 

properties than those properties found in the individual materials themselves. While composites 

date back as far as 4000 B.C. (e.g., Egyptian papyrus paper), new composites involving polymer 

resin are in high demand in the automotive, aerospace, tooling, medicine, and infrastructure 

industries. One common method of producing composites is through the use of additive 

manufacturing (AM). Unlike subtractive manufacturing which creates composites by eliminating 

material, AM constructs composites in a layer-by-layer fashion; thus, making it low-waste. Among 

the different types of AM technology, fused deposition modeling (FDM) is the most prominent 

method for the additive manufacturing of polymers. Recently, the idea of polymer-metal 

composites is gaining popularity as the use of metal additives in polymers produces improvements 

in thermal conductivity and radiation shielding. However, the mechanical properties of polymer-

metal composites are still limited due to poor adhesion at the interfaces between the metal additive 

and the polymer matrix. 

 In order to enhance polymer-metal composite performance, the primary goal of this project 

is to assess how different surface treatments affect the interfacial adhesion of polymer-metal 

composites on the macro scale. The metal and polymer which is used in this MQP are 420-grade 

Stainless Steel (SS) and Acrylonitrile Butadiene Styrene (ABS), respectively. This project is also 

closely associated with the work done by Professor Lados’ MQP team (DL1-1901) which focused 

on the microscale of adhesion between SS and ABS.  

The objectives of this MQP are to design a tensile testing setup and to develop a protocol 

for quantifying the interfacial adhesion in various polymer-metal composites using metal additives 

with different composition, morphology, and surface condition. Through running multiple 

experiments for different surface treatments, the goal is to get insight into the interfacial failure 

mechanisms in SS and ABS composites by collecting full-field strain measurements and interfacial 

adhesion measurements. This data is then correlated to the corresponding strength and elongation 

values in order to enhance the mechanical performance of the composite. 
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1.1 Project Goals 

The goals of this project are to:   

1. Design and assemble a tensile tester which will gather full-field strain and 

interfacial adhesion measurements. The measurements will reveal how each surface 

treatment affects the mechanical properties of the polymer-metal composite. 

2. Develop protocols for testing and preparing SS-ABS composite samples with 

different surface treatments. 

3. Analyze which surface treatments, if any, improve the mechanical performance of 

SS-ABS composites and recommend ways to continue developing the project.  

 

1.2 Project Design Requirements, Constraints, and Other Considerations 

 The project design requirements only stated that a tensile tester is created. Thus, much 

flexibility was given in choosing which type of tensile tester could be made. After reviewing seven 

widely used tensile testers in research and industry, a peel tester was chosen for its simplicity and 

many advantages (explained further in Section 2.5.1.1). To save material, money, and time, the 

design for the peel test was based on creating an add-on for Professor Karanjgaokar’s Instron® 

5944 tabletop single column tabletop testing system (Figure 1). 

Figure 1. Instron® 5944 Tabletop Single Column Testing System [1] © Illinois Tool Works Inc.  

In the design of the peel tester, guidelines provided by the American Society of Testing 

and Materials (ASTM) for 90-degree peel tests [2] were followed. This document posed the 

following constraints: 
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1. In the samples, the thickness of the flexible adherend should be at least 0.60 mm 

(0.025 in) thick and the rigid adherend should be at least 1.60 mm (0.060 in) thick 

[2]. In this case, the flexible adherend is ABS and the rigid adherend is the SS 

sample plates.  

2. The testing machine should have the capability of maintaining a crosshead speed 

in the range of 12 mm/min (0.5 in/min) to 250 mm/min (10 in/min), “an adequate 

pen or computer response to record the force-extension curve,” self-aligning grips, 

a breaking load which falls between 15 to 85 percent of the full scale load range, 

and “the direction of the applied force needs to be through the centerline of the grip 

assembly” [2]. 

3. The unbonded end of the “flexible adherend must be bent perpendicular to the rigid 

adherend for clamping in the grip of the testing machine” and should be at least 25 

mm (1 in) in length [2]. 

4. At least 76 mm (3 in) of the flexible adherend must be pulled at a constant 

delamination speed [2]. 

5. Samples may only be compared when “specimen construction and test conditions 

are identical” [2]. 

 Aside from the guidelines provided from ASTM, the peel tester was also developed with 

the consideration that it will be used for the following years by graduate students and other MQP 

teams. Thus, it was essential that everything is documented in detail. 

 

1.3 Project Management 

 At first, the project team consisted of two members -- Jorge Luis Castillo and Amanda 

Toledo Barrios. Unfortunately, one-third into the project, Jorge left the project. Thus, the project 

was completed by the remaining member. At the time where the team was composed of two 

members, Jorge took charge of the initial tensile test design (as he knew how to use SolidWorks®) 

while Amanda documented everything and focused on finding suppliers for the required materials. 

Once Jorge was no longer part of the project, the SolidWorks® files were irretrievable so Amanda 

learned how to use SolidWorks and created an updated design. Once the design was finalized, all 

materials were ordered from McMaster-Carr. Using outside help from a student lab monitor at 

WPI Washburn Shops, all parts were manufactured using CNC and manual milling machines. As 
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a preliminary presentation to the final MQP presentations in late April, Amanda presented the 

design of the tensile tester in an AIAA Student conference at the University of Maryland, College 

Park in early April. The final project was presented on April 19, 2019, where Amanda was awarded 

an Aerospace MQP Award.  

 

1.4 MQP Objectives, Methods, and Standards 

1. Design and assemble a tensile tester 

a. SolidWorks® was used to make a model of the design. 

b. CNC machines and manual milling machines were used to fabricate the parts 

required for the peel tester. HSM Cam Software, an add-on to SolidWorks®, was 

used to develop the G-code for the CNC machines. 

c. Used the Instron® 5944 built-in load cell and computer to generate stress-strain 

results and interfacial adhesion data.  

2. Develop protocols for testing and preparing SS-ABS composite samples 

a. Used a grinder to cut the SS into identical-sized sample plates. 

b. Polished the SS plates by hand and then used a sand belt with buffing components 

to achieve a mirror finish.  

c. Followed ASTM standards for sample specifications (refer to Section 1.2). 

d. Used the same surface treatment methods used by Professor Lados’ MQP (DL1-

1901). 

3. Analyze surface treatment results on SS-ABS composite 

a. Due to time constraints and challenges encountered throughout the project, 

different surface treatments were not applied to the SS-ABS composite.  
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Chapter 2: Literature Review 

 

 Composites are a growing industry in the applications of automotive, aerospace, tooling, 

medicine, and infrastructure [3]. New man-made composites are researched and investigated every 

day because, without new materials, technology cannot advance. In this literature review, I discuss 

the history and roles of composites and explain how composites have advanced and will continue 

advancing through additive manufacturing technologies. I then review the concept of adhesion, an 

important measure of the quality of composites, and provide various ways that adhesion, along 

with other mechanical properties, can be measured.  

2.1 History and Roles of Composites 

 According to the American Society of Testing and Materials (ASTM), a composite is a 

“substance consisting of two or more materials, insoluble in one another, which are combined to 

form a useful engineering material possessing certain properties not possessed by the constituents” 

[4]. In simpler terms, composites are created by combining two or more materials that result in 

superior properties than those properties found in the individual materials themselves. Before 

composites were officially defined, however, they were being utilized by ancient civilizations 

dating as far back as 4000 B.C. For example, the Egyptians invented papyrus paper by layering 

strips from the papyrus plant in two layers at 90-degree angles to each other [5]. Furthermore, 

around 3400 B.C., the Mesopotamian civilization created plywood by gluing wood strips at 

different angles. Some composites, such as those created by combining mud and straw or wood 

and clay to make bricks to create structures and buildings, are still used by civilizations today. 

Despite the early human use of composites, the composite industry did not take off until the early 

1900s with the development of polymer resins [3].  

 A century later, composites have made their way into every market sector including, 

automotive, aerospace, tooling, medicine, and infrastructure. Composites are manufactured for 

products characterized into three large categories: (1) consumer, (2) industry, and (3) advanced 

[3]. Consumer composites are used for products that typically require a cosmetic finish such as 

boats, recreational vehicles, bathroom fixtures, and sporting goods. Industry composites are used 

in applications “where corrosion resistance and performance (in adverse environments) are 

critical” [3]. Examples of industrial composite products include underground storage tanks, 

scrubbers, piping, fume hoods, water treatment components, and pressure vessels. Lastly, 
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advanced composites are “characterized by the use of high-performance resin systems and high-

strength, ultra-stiff fiber reinforcement” [3]. Advanced composites are highly used in the aerospace 

industry for military and commercial aircraft. The reasons these composites are highly attractive 

for the aerospace industry is that they save material and weight, they are easier than metals to mold 

into complex shapes, and they allow for shorter assembly times [4]. Among the most common 

advanced composites are epoxy resin and carbon fibers [3]. 

 

2.2 Additive Manufacturing 

 One way that composites are formed is through additive manufacturing. As defined from 

ASTM, additive manufacturing (AM) is “a process of joining materials to make objects from 3D 

model data, usually layer upon layer, as opposed to subtractive manufacturing methodologies” [5]. 

Other names for AM include additive fabrication, additive processes, additive techniques, additive 

layer manufacturing, layer manufacturing, and freeform fabrication [5]. Since the 1980s, AM 

technology has taken off and is widely used in many practical applications in aerospace, 

automotive, biomedical, energy and other fields [5]. Due to its success, the use of AM by 

independent service providers has seen a significant increase in revenue between the years of 1994 

and 2017 (Figure 2) [6]. In 2017 alone, an estimated $2.955 billion was generated from the sale of 

parts produced by additive manufacturing systems. This was a 36% increase from the $2.173 

billion reported for 2016 [6]. This trend is predicted to keep growing as AM is seen as a 

revolutionary technology that can change the world.  

 

Figure 2. Primary Revenue of AM from 1994 to 2017 (Adapted from [6]) ©2018 Wohlers Associates Inc. 
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2.2.1 Potential of Additive Manufacturing 

Traditional manufacturing such as casting, forming, molding, and machining are complex 

processes that involve tooling, machinery, computers, and robots. Furthermore, these processes 

are subtractive which means that “objects are created through the subtraction of material from a 

workpiece [7]. Since the final product is dependent on the capability of the tools used, there is a 

limit on the complexity of the product. On the other hand, AM allows for objects to be constructed 

from the ground up which makes a huge difference. Not only is AM a green technology since it 

wastes less material, but it also “allows designers to selectively place material only where it is 

needed” [7]. 

With AM technology, the need for assembly lines or supply chains can be diminished or 

even phased out. Conventional manufacturing typically involves a countless number of parts to be 

assembled. Most of the parts are typically shipped from outside providers in which their parts 

could have also been assembled and supplied by other providers [7]. By using AM, an entire final 

product or even pieces of the final product can be produced in a singular process in a factory rather 

than relying on the assembly of many smaller parts or shipping parts to other outside providers to 

complete the product. Eliminating the need to ship parts also greatly reduces the carbon footprint 

of manufacturing [7]. Furthermore, eliminating the need to ship parts expedites the distribution of 

designs. With AM files now available as a standardized digital file (.STL), these digital files can 

now be transferred everywhere via the internet and be printed in 3D by a printer that meets the 

design parameters (i.e. size, resolution, material) [7].  

Having AM files in stock can, in turn, get rid of inventories and inaccuracies from shipped 

products. With AM printers, products can be printed on demand and in the condition that the 

designer intended. This means that each manufacturing facility is “capable of printing a huge range 

of types of products without retooling—and each printing could be customized without additional 

cost” [7]. Moreover, there is no longer a need to depend on manufacturing platforms such as China. 

Instead, products can be made in the countries where the product is consumed [7]. Since printing 

‘.STL’ files in computer-controlled, operating the printer requires little to no expertise. Thus, 

printing processes often go unmonitored. This dramatically reduces the time to build products 

since products can be left to build overnight.  

 The six major categories in AM are (1) vat photopolymerization, (2) direct energy 

deposition, (3) material jetting, (4) binder jetting, (5) powder bed fusion, and (6) material 
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extrusion. Although there is a wide range of AM categories, each has its own variations in 

dimensional accuracy, surface finish and post-processing requirements [8]. As represented in 

Figure 3, within each category there are several corresponding technologies. 

Figure 3. Additive Manufacturing Technologies [8] © 2019 3D Hubs 

 

2.2.2 Main Categories of Additive Manufacturing 

 

 Vat photopolymerization uses the chemical reaction of photopolymer resins when exposed 

to light at a specific wavelength to create a solid [8]. The light is produced from the use of an 

ultraviolet laser which creates layers by curing and solidifying the photopolymer resin this 

category, the technologies are stereolithography (SLA), direct light processing (DLP), and 

continuous DLP (CDLP). SLA works in the same process as described above for vat 

photopolymerization. DLP is nearly identical to SLA in its method for producing parts but “the 

main difference is that DLP uses a digital light projector screen to flash a single image of each 

layer all at once” [8]. From the name, CDLP works exactly as DLP except that it prints in a 

continuously up motion (z-direction) [8]. Thus, CDLP accelerates the printing process because the 

printer is not required to stop after each layer is created. Vat polymerization processes are best 
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suited for making small parts with fine details and smooth surfaces such as jewelry. The main 

disadvantage of vat polymerization processes is that it produces brittle parts [8]. 

Material jetting is similar to the 2D ink jetting process. However, “instead of jetting drops 

of ink onto paper, material jetting 3D printers jet layers of liquid photopolymer onto a build tray 

and cure them instantly using UV light” [9]. The technologies under this category are material 

jetting, nanoparticle jetting (NP), and drop-on-demand (DOD). Material jetting is the same as 

mentioned above. NP utilizes a liquid that contains metal nanoparticles. As the liquid undergoes 

high temperatures, the liquid evaporates and leaves behind metal parts that are jetted [8]. Unlike 

the previously mentioned technologies, DOD is made up of two print jets where one print jet 

deposits the build materials while the other dissolves the support material [8]. Material jetting is 

great for realistic prototypes as it allows for “high detail, multicolor, multi-material prints” [10]. 

Models can also be made transparent and in bigger sizes than produced from SLA or fused 

deposition modeling (FDM). Just like vat polymerization, material jetting technologies also 

produce brittle parts. However, material jetting is more expensive than other AM technologies 

[10]. 

 Binder jetting uses a binding adhesive agent and powder materials (either ceramic-based 

or metal) to 3D print. Layers are built one at a time as the binding agent is dispensed onto the 

power bed. “When a layer is complete, the powder bed moves downwards and a new layer of 

powder is spread onto the build area” [8]. This process repeats until the product is done. 

Applications for binder jetting include molds for sand casting and aesthetic models such as 

architectural models [8]. While binder jetting is more cost-effective than selective laser melting 

(SLM) and direct metal laser sintering (DMLS), it produces parts with poorer mechanical 

properties [8].  

 Powder Bed Fusion (PBF) technologies “produce a solid part using a thermal source that 

induces fusion (sintering or melting) between the particles of a plastic or metal powder one layer 

at a time” [8]. PBF includes selective laser sintering (SLS), selective laser melting (SLM), direct 

metal laser sintering (DMLS), electron beam melting (EBM), and multi-jet fusion (MJF). As in 

the name, SLS uses a laser to induce fusion that sinters thin layers of powdered material one layer 

at a time [8]. After a part is completed, it has to be removed from the powder and cleaned. Both 

SLM and DMLS work in a similar fashion as SLS. The only big difference is that DMLS and SLS 

are used to produce metal parts. Furthermore, “SLM achieves a full melt of the powder, while 
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DMLS heats the powder to near melting temperatures until they chemically fuse together” [8]. 

Unlike the previous three PBF technologies, EBM uses a high energy beam instead of a laser in 

its process which produces layers at a faster rate and uses less energy [8]. MJF is a combination of 

SLS and material jetting technologies. A printer carriage similar to that for 2D inkjet printers prints 

by depositing fusing agent on thin layers of plastic powder. Simultaneously, a detailing agent is 

ejected near the edge of the part in order to prevent sintering. Then, a high-power infrared energy 

source passes over the build bed and sinters the areas where the fusing agent was dispensed. This 

leaves the rest of the powder untouched [8]. The main advantage of PBF technologies is that they 

do not require structural supports to print a certain design. For example, in Figure 4, to print the 

letter ‘T’ requires all of the structural support shown in light grey [9]. Another advantage is that 

polymer and metal PBF parts have very high strength, stiffness, and other mechanical properties 

that are comparable than the bulk material [8]. Limitations of PBF include shrinkage or distortion 

of the parts it produces and the difficulty in disposing of the powder produced.  

 

Figure 4. Structural Support Needed to Print the Letter “T” [9] 

 

Direct energy deposition (DED), also known as a metal deposition, melts powder material 

or wire and deposits the melted material to produce parts [8]. DED is comprised of two 

technologies called laser engineered net shape (LENS) and electron beam additive manufacture 

(EBAM). LENS technology is widely used to repair parts. With a deposition head that consists of 

a laser head, powder dispensing nozzles, and inert gas tubing, it creates a melt pool in the build 

area and then sprays powder into the pool so that it can solidify [8]. The process for creating parts 

with EBAM is similar to the process involved in LENS. However, EBAM welds metal powder or 

wire together by using an electron beam. Compared to the electron beams used in LENS, EBAM 

electron beams are more efficient and operate under a vacuum. EBAM technology is projected to 

be used for space applications in the future [8]. Overall, DED is great for making repairs to a part 
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or adding material to existing components. It is not, however, suitable for making parts from 

scratch [8].  

 Out of the previously mentioned AM categories, material extrusion is the most widely used 

3D printing technology because it is cost-effective and quick. Analogous to the process of 

squeezing toothpaste out of a tube, “extrusion technologies extrude materials through a nozzle and 

onto a build plate” [8]. The nozzle then continues to build layer-by-layer as programmed in a 

‘.STL’ file. The technology associated with material extrusion is called fused deposition modeling 

(FDM). Another commonly used term for FDM is fused filament fabrication (FFF) [8]. FDM uses 

strings of solid thermoplastic material in filament form and pushes it through a heated nozzle. As 

the material melts, it is placed at precise locations on the printing bed, building layer-by-layer, 

until the product is completed. FDM is widely used to produce plastic prototypes and functional 

prototypes from engineering materials such as acrylonitrile butadiene styrene (ABS), nylon, and 

polycarbonates (PC) [8]. The main disadvantages in FDM technology are that it faces dimensional 

accuracy problems and it is very anisotropic (i.e. physical properties are different when measured 

in different directions) [8]. Currently, FDM is being investigated as a technology to make new and 

advanced polymer-metal composites. 

 

2.3 Polymer-Metal Composites 

 Although not many applications for polymer-metal composites exist yet, their future is 

promising. Most studies done so far on these composites focus on the improvement of thermal 

conductivity and radiation shielding [11]. Perfecting these properties can lead to certain futuristic 

applications such as making aircraft undetectable in RADAR and even magnetic seals or locks. 

For example, if a fire is detected in an aircraft, a polymer-metal seal can automatically clasp 

together, preventing the fire to spread. Moreover, thermal conductivity is always a good property 

to have. In the leading edge of airfoils where skin friction is prominent, airfoils experience higher 

temperatures which are damaging. By increasing the thermal conductivity of the airfoil, the 

temperature can be better distributed.  

 Despite the potential for polymer-metal composites, progress is slow in coming up with 

the perfect mixture of both materials; this is due to the fact that polymers and metals do not like to 

bond together. In general, there are four types of bonds: (1) ionic, (2) covalent, (3) metallic, and 

(4) Van der Waals. “Ionic bonding is associated with ceramics, covalent bonding is associated 
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with polymers, metallic bonding is associated with metals, and van der Waals bonding is 

associated with molecular solids” [12]. Since covalent bonds are between nonmetals, metals 

cannot participate in covalent bonding. Thus, making polymers-metal composites is difficult.   

  

2.4 Adhesion 

 To improve the bonding between the polymer and metal interfaces, it is critical to 

understand how they stick together through adhesion. 

2.4.1 Importance of Adhesion 

 Adhesion plays a critical role in understanding failure mechanisms at the interface. In fact, 

adhesion is one of the critical damage mechanisms that occur in composites for two main reasons:  

1. in many composites, the adhesion strength between matrix and fiber dictates the resulting 

mechanical properties, and 

2. a large area is occupied by interfaces; hence damage is initially generated through interface 

fracture. 

 Thus, it is important to establish the relationship between adhesion and the resulting 

material properties through mechanical tests.    

 

2.4.2 Definition of Adhesion 

  Adhesion is “the state in which two surfaces are held together by interphase forces” [13]. 

When studying adhesion between materials, however, there are two types that can be measured: 

(1) basic adhesion and (2) practical adhesion.  

Basic adhesion relies solely on interfacial properties to signify the interfacial bond strength. 

To calculate it, you sum all the intermolecular or interatomic interactions together [7]. An example 

of a basic adhesion calculation involves observing the wetting behavior of the adherate in liquid 

form (Figure 5).  

 

 Figure 5. Contact Angle Between a Substrate and Liquid Adherate (Adapted from [14]) 
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By applying Young’s equation (2.1)  

                                                              𝛾𝑠 = 𝛾𝑖 + 𝛾𝐿𝑐𝑜𝑠𝜃               (2.1) 

 

where 𝛾𝑠 is the substrate/liquid interfacial free energy, 𝛾𝑖is the substrate surface free energy, 𝛾𝐿is 

the liquid surface free energy, and 𝜃 is the contact angle between 𝛾𝐿 and 𝛾𝑖, one can calculate the 

interfacial energy between the substrate and the adherate in liquid form  [14]. 

 Practical adhesion is calculated experimentally and is measured “in terms of forces and 

work of detachment or separation of the adhering phases” [15]. It is expressed in terms of tensile 

strength, peel strength, or shear strength. Peel strength is measured in terms of the force divided 

by the width required to maintain the continuous detachment of a strip of adherate from an 

adherend at a specified detachment rate. Tensile strength is defined as the force over area required 

to remove a specific area of the adherate when the entire area of the adherate is pulled in a direction 

perpendicular to the adherend surface. Shear strength is similar to tensile strength except that it is 

measured when the adherate is pulled in a direction parallel to the adherend surface [15].  

 

2.5 Surface Treatment of Metals 

 Whether adhesion is determined via practical or basic adhesion, one way to improve 

adhesion at the interface of two materials is through the application of surface treatments. Surface 

treatments have been found to increase mechanical properties such as tensile strength and ductility 

(MQP DL1-1901). Surface treatments of metals are done by either physically altering the interface 

or by chemically increasing the chemical bonds between a metal and polymer matrix.  

Physical treatments are used frequently on metals to roughen their surfaces. This can 

improve adhesion, according to a common mechanical interfacing theory, as it provides more 

surface area for adhesion to take force [16]. A common method that increases the surface area 

for adhesion is mechanical abrasion. Mechanical abrasion can be done both quickly and 

inexpensively, through sandblasting, wire brushing, or with sandpaper [17]. However, surfaces 

cannot typically be consistently and accurately controlled on the microscale level, due to the 

imprecise nature of abrasion; therefore, it is inappropriate for some metal surface modification, 

such as with powders. 

Chemical treatments are also utilized to alter the surface geometry of some metals. In 

general, chemical treatments of metals can be categorized into two groups: etching treatments 
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and additional treatments. Etching treatments are processes in which a metal's surface is exposed 

to an acidic environment in order to modify its contours. Acid etching can be further broken 

down into other categories: pickling, passivation, chelating, and electropolishing [18]. Pickling, 

which is done with both weak and strong acids, such as hydrofluoric acid, eliminates impurities 

from the surface by removing a small portion of the surface material of the metal. Passivation, 

which is done with acids such as nitric acid, oxidizes the surface of the metal, thus removing 

impurities and increasing the oxide layer thickness. Chelating, often done with carboxylic acids, 

removes light surface contaminants. Finally, electropolishing, done with acids like sulfuric acid, 

both removes surface impurities and smooths the surface [18]. Variations in acid selections can 

be made depending on the desired surface effect and extent of material alteration. 

Addition treatments, which change the surface characteristics of metal by adding 

compounds or elements to its surface, have the same goal as other surface treatments; they seek 

to modify and improve properties such as wear resistance, corrosion resistance, hardness, 

wetting, adhesion, friction or appearance [19]. Addition treatments, or surface coatings, can 

include paints, synthetic coatings, adhesive films, pigments, oxide layers, and much other metals 

and chemical coatings. Adhesion promoters, or coupling agents, act at the interface of an organic 

polymer and inorganic surface to enhance the adhesion between the two materials [20]. Silane 

coupling agents are very commonly used in surface modification of microparticles to alter 

wetting and adhesion characteristics of the substrate.  

2.6 Adhesion Measurement Methods 

 Measurement methods to measure practical adhesion are categorized as destructive or 

nondestructive. Destructive methods involve applying a load to a coating in a manner that the 

resulting damage can be analyzed. Nondestructive methods “typically apply a pulse of energy to 

the coating/substrate system and then try to identify a specific portion of the energy that can be 

assigned to losses occurring because of mechanisms operating only at the interface” [21]. The 

majority of adhesion measurements fall into the destructive category. 

2.6.1 Most Common Destructive Tests 

 Since substrate coatings range from being either soft and flexible to hard and brittle, 

different destructive tests apply for each situation. For example, a peel test produces the best result 

for a soft and flexible coating. Oppositely, a scratch test is limited to hard and brittle coatings. 

Tests that work well for a range of coatings are pull tests, indentation debonding tests, and beam-

bending tests.  
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2.6.1.1 Peel Tests 

 The most common configurations of the peel tests are the 90-degree peel test, the 180-

degree peel test, the climbing drum peel test, and the T peel test as shown in Figure 6. 

 

Figure 6.  Common configurations for peel tests: (a) 90-degree peel test, (b) 180-degree peel test, (c) 

climbing drum peel test, and (d) the T peel test (Adapted from [21]) 

 

The 90-degree peel test (Figure 6a) is by far the most prevalent and studied test as “it is a 

favored test for flexible coatings on rigid substrates” [21]. When space is constrained, however, it 

is advantageous to use the 180-degree peel test (Figure 6b) instead. Ideally, a peel test can be set 

up at any angle between 0 and 180 degrees but, maintaining either a 90-degree or 180-degree angle 

reveals more information on how interfacial adhesion varies between both modes I (tensile loads) 

and mode II (shear loads), respectively.  

 Climbing drum peel tests (Figure 6c) are predominantly used in the tire industry to test the 

adhesion of rubbers. Due to the fact that they maintain a constant radius of curvature, climbing 

drum peel tests simplify the numerical analysis of the data collected [21]. Finally, if you are finding 

the adhesion energy between two flexible adherends, a T peel test (Figure 6d) is the most suitable 

test.  

 Overall, peel tests have many advantages. One huge advantage is that sample preparation 

for peel tests is easy. In particular, samples can be treated with multiple surface treatments and 

then be ranked for the coating adhesion to the substrate. Another advantage is that peel tests allow 

for the direct study of the rate dependence of adhesion strength on the rate of delamination. This 

is due to the fact that the rate of delamination can be controlled by the testing equipment. Lastly, 

the peel test can be used in a multitude of controlled temperatures and environments [21]. 

 On the other hand, one of the challenges that peel tests face is that they do not accurately 

predict how a coating performs in actual usage. This is due to the fact that peel tests place high 

strain levels at the peel-bend of the coating which in turn skew the results of delamination of the 
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substrate. Another disadvantage is that peel tests can only be used to test tough and flexible 

substrates. Lastly, it is difficult to initiate the peel strip if the substrate has strong adhesion [21]. 

2.6.1.2 Pull Tests 

A pull test setup (Figure 7) requires two additional materials aside from the coating and 

the substrate being tested. These materials are a test stud or test dolly and an adhesive. The test 

dolly is typically made from stiff (high-modulus) metal or ceramic material. An adhesive (e.g. 

epoxy) is then used to stick the test dolly to the coating. A tensile test apparatus then pulls the 

dolly upwards.  

 

 

Figure 7. Pull Test Setup [22]. © DFD Instruments 

 

Pull tests can be used to examine a wide variety of coatings including “relatively soft 

flexible polymer coatings to hard brittle coatings” [21]. Qualitatively, pull tests allow for easy 

visualization of the pull-off fracture surface to determine whether the failure was cohesive or 

interfacial between the coating and the substrate.  Quantitatively, pull tests produce stress fields 

that make it easy to observe the most vulnerable flaw. Moreover, sample preparation for pull 

tests is relatively easy [21].  

Although a simple concept, a pull test has many flaws. The main flaw of this technique is 

that data analysis is very difficult as there is a large variation in the test data. This is due to the 

fact that there are rapid uncontrollable failure modes. For example, if the load is not applied 

properly to the test dolly, there will be an off-axis component of force which will “induce a 

bending moment to the sample in addition to the tensile load” [21]. Even if the sample is 

experiencing full tensile loading, any bonding weaknesses or defects will be accentuated. Since 

all samples are not perfect, the aforementioned will occur every time and failure will propagate 
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until complete separation. Failure can also occur in multiple failure modes. Thus, to deal with 

these complexities, the pull test has to be run multiple times concurrently with statistical analysis 

in order to obtain reliable data.  

 

2.6.1.3 Indentation Debonding Tests 

  The indentation debonding test works by using an indenter to compress the coating directly 

onto the indenter tip. Figure 8 demonstrates the stages of this test. At first, the indenter makes 

contact with the coating (Figure 8a). As the force F is increased, the indenter penetrates the surface 

of the coating (Figure 8b) which causes plastic deformation from the substrate to pile up around 

the indenter tip. When the tensile stress exceeds the strength of the bonds, delamination of the 

substrate occurs. This results in the debonded area as shown in Figure 8c. By taking measurements 

of the maximum and minimum dimensions of the debonded area, a peeling parameter can be found 

that relates “the limit of adhesion between a specific combination of substrate and bonded polymer 

layer” [23]. 

 

Figure 8. Stages of an Indentation Debonding Test: (a) Beginning Indentation, (b) Indentation before 

Debonding, (c) Debonding (Adapted from [23]) 

 

 The indentation debonding test has many advantages. Among the top advantages are that 

it is applicable to a wide variety of coating and substrate systems (e.g. soft flexible or hard brittle), 

it does not require a lot of work to prepare samples, and it is readily available as commercial 

equipment. In fact, the equipment is available off-the-shelf in the form of “indentation test 

equipment and powerful microscopes with digital interferometers for evaluating both substrate 

damage and deformation” [21]. This ensures that the experiment will have quality control. This 

test also offers quantitative (e.g. a limit of adhesion) and qualitative (e.g. estimation of coating 

durability) results.  
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 On the other hand, a major disadvantage of the indentation debonding test is that it 

experiences complex modes of loading which involve “high compressive stress and high shear 

strains” [21]. These complex modes of loading produce erroneous results for coating substrate 

systems that are subjected to large temperature gradients as they experience different load 

conditions and delamination on the edges. Furthermore, if dealing with a hard coating, the 

indentation debonding test generates large hoop stress which causes radial cracking in both the 

coating and the substrate. Thus, having multiple modes of loading also leads to the complication 

of interpreting the data collected and also understanding how the coating is delaminating. To 

produce more accurate results, indentation debonding tests should be applied only to coatings that 

will “endure abrasive conditions and contact with potentially penetrating surfaces” [21].  

 

2.6.1.4 Scratch Tests 

 The scratch test is similar to the indentation debonding test in the way that it uses an 

indenter, or stylus, to apply pressure to the coating-substrate system except now the indenter is 

translated along the surface. This test is performed by either applying a progressive (linearly 

increasing) load or a constant load until delamination occurs [21]. A visualization of the scratch 

test is represented in Figure 9.  

 

Figure 9. Schematic of Scratch Test [21] 

 

 

 Scratch tests are highly popular in industry and academia due to its versatility for 

evaluating a wide range of coating-substrate systems. The indenter itself serves as a tool for finding 

coating hardness and other elastic properties. By using an additional instrument, such as acoustic 

spectroscopy, more information can be discovered on “surface topography, mechanical properties, 

and modes of deformation and delamination” [21]. Moreover, there is ease in sample preparation 

for the scratch test. 
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 Unfortunately, the scratch test is limited to hard brittle coatings. This is due to the fact that 

soft metals and polymers tend to deform around the indenter. As a result, the coating only piles up 

around the edges of the scratch track and in front of the indenter. Furthermore, acoustic 

spectroscopy is not useful since soft coatings will not produce a signal where the failure occurs. 

Some coatings are also impossible to achieve complete removal which is required for proper 

adhesion strength analysis [21].  

 Another limitation about the scratch test is that it is mechanically complex. The pushing 

down of the indenter on the coating and substrate induces a lot of high stresses and deformations 

to the coating-substrate system. This causes a lot of highly nonlinear viscoplastic material 

behaviors and failure modes which have not been studied in depth [21]. Thus, simply applying 

elastic mechanical equations to the data collected does not take care of this problem.  

 

2.6.1.5 Beam-Bending Tests 

While the indenter test is mechanically complex, beam-bending tests are more simple to 

use and provide qualitative results that are easier to understand. Since there exist extensive 

studies on the mechanics of bending beams, it is easy to find solutions for nearly any beam 

configuration. The load-displacement curve data can be converted into fracture toughness or 

surface fracture results that can be directly attributed to fracture mechanics models [21]. 

Amongst the most commonly used beam-bending tests are the three-point bend test, the standard 

double-cantilever beam test, and the wedge test (Figure 10). 

  

Figure 10. Common Beam-Bending Tests: (a) Three-point bend test, (b) Standard double 

cantilever beam test, (c) wedge test (Adapted from [21]) 

 

 The three-point bend test is used to evaluate elastic modulus in bending, stress-strain 

behavior, fracture toughness, and failure limits in bending [24]. As shown in the three-point bend 

test setup (Figure 10a), the convex side of the sample is placed in tension while the outer fibers 

are subjected to maximum stress and strain. Failure occurs when the strain or elongation exceeds 
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the material’s limits [24]. Moreover, this test is perfect “for investigating the effect of different 

surface preparation procedures and adhesive formulations on the adherend/substrate adhesion 

strength” [21]. 

The double cantilever beam test, also known as the DCB test, works by pulling apart a 

sandwich of adherents and adhesive by applying equal and opposite loads at an edge. The setup, 

as shown in Figure 10b, involves gluing two identical beams of a substrate with a thin layer of 

adhesive. To ensure that the adhesive has a controlled thickness, some sort of spacer such as Teflon 

is inserted between the beams [21]. This technique is primarily used to study the strength and 

reliability of structural adhesives required to bond lightweight and high-performance composite 

materials [21]. 

 Unlike the double cantilevered test which requires two beams to be pulled apart, the wedge 

test forces a wedge into the adhesive sandwiched by the substrates (Figure 10c). This inserted 

wedge then creates a constant load at a level right before crack propagation initiates. The sample 

can then be tested in different environmental conditions (e.g. high temperatures and humidity) to 

track the progress of any pre-existing crack [21]. Depending on how a crack propagates identifies 

whether the bond between the adhesive and substrate is good or bad. For example, if a short crack 

occurs and it remains in the adhesive layer, then the bond is good. In contrast, a bad bond is when 

the crack is relatively long and propagates along the adhesive-substrate interface [21]. Due to the 

ease and cheap cost of fabricating samples, this test is widely used in the aircraft industry to 

“evaluate the durability of sandwich layers of thin aluminum sheets bonded with an adhesive” 

[21].  

 As stated in the introduction of this section, the main advantage of beam-bending tests is 

that they produce results that can easily be analyzed qualitatively due to the extensive research and 

findings from fracture mechanics. Since fracture mechanics is one of the most studied topics in 

applied mechanics, it is highly likely that stress and strain solutions already exist for a given beam 

configuration; if none exists, it can be found through more analysis. Another advantage of beam-

bending tests is that sample preparation is easy. Thus, a large number of samples can be fabricated 

at a time and tested under a wide variety of conditions [21].  
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2.6.2 Most Common Nondestructive Tests 

Unlike destructive tests which measure the force required to pull apart stuck together 

materials, nondestructive tests focus on measuring “some quantity that depends on how well two 

materials are joined at their common interface” [21]. In particular, the concept behind 

nondestructive adhesion tests focuses on determining the ability to transmit strain/deformation 

across an interface and to transmit vibrations along an interface [21]. Two types of nondestructive 

tests are the dynamic modulus test and the surface acoustic waves test.  

 

2.6.2.1 Dynamic Modulus Test 

 The dynamic modulus test uses theory from the atomic relaxation phenomena in thin films. 

The apparatus, as depicted in Figure 11, can be used “to measure the internal friction and dynamic 

modulus of thin, reed-like specimens” [21]. A harmonic driving force is applied to the tip of the 

reed and then removed. After removing the force, the resulting damped vibration is measured by 

another set of electrodes near the base of the sample [21]. Provided that the length, thickness, and 

density of the reed are known, the modulus (E) of the reed can be found through equation 2.2 [21]: 

where  

 

  

 

 

 

 

‘ 
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Figure 11. Typical Dynamic Modulus Test Setup (Adapted from [21]) 

 

The dynamic modulus test is most useful in “the research-and-development laboratory for 

specialized applications of the adhesion of thin films to microelectronic substrate materials such 

as silicon and vitreous silica” [21]. The main advantages of this test are that it is nondestructive 

and it is capable of evaluating both adhesion strength and the thermal-mechanical properties of 

thin films by measuring internal friction. Internal friction is important because it can identify 

“defect structures and impurity migration along grain boundaries in metal films and is also a 

sensitive way to detect the glass transition and secondary relaxation processes in polymer coatings” 

[21].  

Since the reeds have to be constructed exactly the same, any inaccuracies yield inaccurate 

data. Thus, a disadvantage of the dynamic modulus test is that sample preparation is difficult. 

Furthermore, the samples are limited to a specific configuration. Also, the nondestructive nature 

of the dynamic modulus test makes it difficult to relate it to any of the other standard tests 

mentioned in Section 2.5.1.  
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2.6.2.2 Surface Acoustic Waves Test 

 Surface acoustic waves (SAWs) are a special class of waves that propagate only on the 

surface of a material. By using piezoelectric coupling or another controllable method, the SAWs 

test monitors high-frequency waves as they propagate throughout a structure [21]. Figure 12 

represents the typical SAWs test setup. The transducer on one side generates the SAWs and 

propagates them to the other transducer on the other side. As the waves travel through the interface 

between the coating and the substrate, velocity and amplitude effects are monitored.  A shift in 

velocity represents “dispersion effects that are detectable when several different frequencies are 

present” [21]; thus, revealing loss mechanisms such as poor coupling between the coating and 

substrate.  

Figure 12. Surface Acoustic Waves Test Setup [21] 

 

 One advantage of the SAWs test is that it is a nondestructive test. Thus, it can be used in 

real-time as a quality control tool. Instead of using a transducer to initiate waves, a laser pulse 

along with interferometry (techniques for superimposing waves) as a detector can also be used 

[21]. This allows for fast coating inspections without damaging them. Another advantage is the 

SAWs test “can be calibrated against standard destructive adhesion measurement experiments to 

provide quantitative results related to surface fracture energies” [21]. 

 Despite its many advantages, the SAWs test does not yield direct adhesion strength data. 

In addition, the setup of the apparatus and sample preparation is very tedious and non-trivial. For 

instance, the SAWs test has to be calibrated against a more standard test in order to properly 

compare results [21]. Also, since most materials do not have natural piezoelectric behavior (i.e. 

quartz substrates), coupling the input and output transducers to the substrate is a challenge [21]. 

At times, other methods of coupling the electric signal (i.e. coupling fluid) to the substrate must 

be used. This just further complicates the experiment [21].  
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Chapter 3: Methodology 

 

 After comparing the different adhesion measurement methods as described in Chapter 2, a 

peel test was selected as the basis for the design of the testing apparatus due to its ease of use and 

the simplicity involved in sample preparation. Once the peel test was assembled, the project moved 

onto its next stage: specimen fabrication. This process involved a lot of trial and error until a 

working method was finally established.  

3.1 Testing Apparatus Design 

 Under the peel test section (Section 2.6.1.1), the tests which were examined were the 90-

degree peel test, the 180-degree peel test, the climbing drum peel test, and the T peel test. The peel 

test which was selected for the final design was a variation of the 90-degree peel test. The 

inspiration for a custom made 90-degree peel test originated from Srdjan Kisin’s Ph.D. dissertation 

from Technische Universiteit Eindhoven [25]. In his thesis, Kisin studied the interfacial adhesion 

between copper and ABS. He designed a 90-degree peel tester, as shown in Figure 13, where a 

motor moves a load cell along rails at 45 degrees, thus maintaining the peel arm at a constant 90-

degree angle.   

 

Figure 13. Srdjan Kisin’s Peel Test Design [25]. © 2006 Srdjan Kisin 

 

3.1.1 Design Summary and Terminology 

  Taking a similar approach, an adaptor for the Instron® 5944 crosshead was created to 

maintain the load cell at a 45-degree angle. The load cell then attaches to a clamp where the tip of 

the peel arm attaches. To ensure that the peel arm of the sample was maintained at a 90-degree 

angle, a triangular mount was created at an incline of 45 degrees. The mount attaches to a 
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breadboard which screws down to the base beam of the Instron® 5944. A plate is then mounted 

on top of the mount which contains slots for the sample plates of SS and ABS to screw into. As 

the crosshead moves upward along the column, the ABS is peeled off at a constant 90-degree 

angle. The terminology for the Instron® 5944 is demonstrated below in Figure 14.  

Figure 14. Instron® 5944 Components [26]. © Illinois Tool Works Inc. 

 

Thus the main components which were fabricated for this design are the: (1) adapter, (2) 

clamp, (3) mount support, (4) mounting plate, and (5) sample plate. Parts (1) through (4) were 

made from Aluminum 6061 as it is a very soft and lightweight metal that is easy to machine. These 

parts were fabricated from a combination of CNC machining and manual milling. For those parts 

made in the CNC machine, HSMWorks CAM software, a plugin for SolidWorks®, was used to 

develop the G-code. The sample plates were cut out from a larger piece of SS via a grinder. Each 

component is shown in the final setup (Figure 15) and is explained in detail in the following 

sections. 
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Figure 15. Fabricated Components of Peel Test Design 

 

3.1.2 Adapter 

As shown in Figure 16, the adapter was created such that one face would be at 45 degrees 

while the other face would be parallel to the crosshead surface. The 45-degree face is attached to 

the load cell by a cap-head screw while the parallel face attaches to the crosshead by a hex-bolt 

screw. Both faces have holes for dowel pins. The purpose of the dowel pins is to maintain 

alignment such that the adapter and load cell do not rotate during operation. The load cell and the 

crosshead have built-in places for the dowel pins (Figure 17 and 18) which were mirrored in the 

adapter. The adapter was created from a manual milling machine. Since the size of the adapter was 

underestimated, extra aluminum was welded onto the adapter in order to fit the dowel holes.  
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Figure 16. Machined Adapter 

 

 

 

Figure 17. Load Cell with Dowel Pin © 2012 McMaster-Carr Supply Company 
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Figure 18. Crosshead Mounting Dimensions [26] © Illinois Tool Works Inc.  

 

3.1.3 Clamp 

 The bottom of the load cell has two sets of through holes where other accessories made 

by Instron® such as grips and fixtures can attach and be held together by a clevis pin (Figure 19). 

Thus, a similar cylindrical piece with a through hole was made in the clamp so that it could 

attach to the load cell (Figure 20).  The front of the clamp has 90-degree faces where the tip of 

the peel arm attaches to the longest face (Figure 21). The peel is arm is then clamped down by a 

rectangular piece with two screws (Figure 22). As can be seen in Figure 23, the angle made 

between the peel arm and the plate where the sample is mounted is maintained at 90 degrees.  

The clamp was made via CNC machinining and manual milling machining. The 

rectangular piece which completes the clamp was made by using a horizontal band saw to cut a 

block of aluminum 6061 and then using a manual milling machine to drill holes.  
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Figure 19. Load Cell and Clevis Pin Diagram [27] © Illinois Tool Works Inc. 

 

 

Figure 20.  Machined Clamp (Back View) 

 

 

 

 

Figure 21. Clamp CAD Model (Side View) 
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Figure 22. Machined Clamp (Front View) 

 

 

Figure 23. Angle Configuration of Testing Setup 
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3.1.4 Mount Support 

 The mounting support (Figure 24) is made up of three main parts: (1) the elevator base, (2) 

the breadboard, and (3) the triangular wedges. The elevator base (Figure 25) allows for the 

triangular wedges to be screwed on from the bottom up in a countersink fashion so that the screw 

heads do not stick out. This is necessary since the breadboard threads are made in only one 

direction (top to bottom) and thus the bottom of the triangular wedges cannot directly screw onto 

the breadboard. The elevator base then attaches to the breadboard by placing screws from the top 

of the breadboard surface to the bottom. Since the breadboard has many rows of threaded holes, 

the elevator base is free to move along the length of the breadboard as needed. The breadboard 

then attaches to the base of the Instron® by four screws (Figure 26).  

It is important to note that as shown in Figure 23 of Section 3.1.3, the triangular wedges 

are 45-45-90 degree triangles. Having a 45-degree incline is vital for measurement accuracy to 

maintain the peel arm of the sample at 90-degrees during the peel. This can only happen if the 

incline on the triangle and the inclined face of the adapter are parallel to each other. Also shown 

in Figure 24, the inclined faces of the triangular wedges have four holes where the plate which 

holds the samples attaches.  

The elevator base and triangular wedges were made using a horizontal band saw and a 

manual milling machine. The breadboard was already available in Professor Karanjgaokar’s lab. 

The only adjustments made to the breadboard were the holes needed in order to mount it to the 

bottom of the Instron®. These holes were also made by a manual milling machine.  
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Figure 24. Machined Mount Support 

 

 

 

Figure 25. Elevator Base CAD Model 
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Figure 26. Breadboard Adjustment [27] © Illinois Tool Works Inc. 

 

3.1.5 Mount Plate 

 The mounting plate (Figure 27) attaches to the triangular wedges by four countersunk 

screws on the hypotenuse surface of the wedges. Thus, the mounting plate makes a 45-degree 

angle to the breadboard and the surface of the adapter (Figure 23). The mounting plate also 

includes four through holes where screws can hold a sample plate by using hex nuts. All holes 

were made using a drill press. To countersink the holes required, a countersink drill bit was used.  

 

 

Figure 27. Mount Plate CAD Model 
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3.1.6 Sample Plates  

A total of eight sample plates were cut out from two 420-grade hardened stainless steel 

plates via a grinder. Following the constraints put in place by ASTM (Section 1.2), the sample 

plates (Figure 28) were designed so that the peel arm met the minimum length of 1 inch and that 

at least 3 inches of the ABS could be peeled off.    

The sample plate surfaces were also smoothed out and polished (in preparation for 

surface treatments) by the following protocols: 

1. Applied 120, 220, 320, 400, and 600 grit sandpaper (silicon carbide paper) 

simultaneously with WD-40 oil in the stated order to smooth out the sample plate surface 

and to remove any scratches or pits. 

2. Utilized three buffing compounds (Figure 29) in the belt-sander to achieve a mirror-finish 

on the sample plate surface. The buffing compounds were applied in the order of least 

abrasive to most abrasive: White Rouge, Red Rouge, and Emery Cake (Black).  

 

 

 

 

Figure 28. Sample Plate CAD Model 
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Figure 29. Buffing Compound Set for Polishing SS Plates © 2019 Formax Manufacturing 

 

3.2 Specimen Fabrication 

 With the SS plates ready, the next step was to prepare the samples. In a process of trial 

and error, four different experimental methods were tried to achieve good adhesion between the 

metal and polymer interface. The first two methods involved using the liquid form of ABS. The 

last two methods involved using ABS strips or a combination of ABS strips with liquid ABS. 

The fourth method was eventually selected as the protocol for making the ABS-SS composites.  

3.2.1 Experimental Methods 

The first method involved using the following steps: 

1. Pour liquid ABS into a 3D-printed mold over the SS plate 

2. Place the sample on a spin-coater and run two times to achieve a uniform thickness 

3. Wait 30 minutes until the ABS properly adheres to the SS plate 

4. Use a blade to scrape 1.5 inches of the ABS to create a peel arm 

This method created non-uniform samples with varying widths and a lot of porosity. Since the 

liquid ABS was made by dissolving acetone with ABS pellets, the evaporating acetone created a 

lot of pores.  

The second method was similar to the first method except that the sample was degassed 

in a vacuum degassing chamber between steps 2 and 3. This was done with an attempt to get rid 

of the trapped gases in the ABS. Another idea was to degas the liquid ABS itself before pouring 
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it into the mold but liquid ABS solidifies really quickly. Thus, this was not achievable. Both 

degassing techniques had no success. 

 The third method involved using a roll of ABS strip purchased from McMaster-Carr®. 

The following steps used in this method were: 

1. Heat up the SS plate in an oven to 150°C for 20 minutes 

2. Immediately apply ABS strip to hot SS plate 

3. Use another SS plate (at room temp.) to sandwich the ABS strip with the hot SS plate 

4. Use a blade to scrape 1.5 inches of the ABS to create a peel arm 

The temperature of 150°C was determined as the temperature required to melt a small piece of 

ABS strip on a SS plate while heated on a hot plate. This method was very hard to achieve. Once 

the SS plate was taken out of the oven, the ABS strip needed to be placed on the SS plate 

immediately and accurately. Furthermore, the ABS tended to adhere only in the middle of the SS 

plate rather than on the sides.  

 The fourth method was based on the concept that polymers like to stick better to 

polymers rather than metals. Thus, by using the liquid ABS as a “glue” to stick the ABS strip 

onto the SS plate, a successful method was found. This process is described below: 

1. Sandwich ABS strip between two SS plates & place on a hot plate of 220°C for 5 minutes  

2. Apply liquid ABS to one side of the ABS strip and place on the SS plate 

3. Use a roller to evenly spread out the strip on the SS surface (roll 20 times up and down) 

4. Place in an oven heated to 50°C for 20 minutes 

5. Use a blade to scrape 1.5 inches of the ABS to create a peel arm 

 

 

 

 

 

 

 

 

 

 Figure 30. Flattening the 

ABS Strip 
Figure 31. Applying Liquid ABS to 

the ABS Strip 
Figure 32. Finished ABS-SS 

Sample (Untreated) 
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3.2.2 Surface Treatments 

 To observe how surface treatments affect the adhesion of ABS-SS composites, two 

different surface treatments were chosen to modify the surface of the SS plates both physically and 

chemically. These treatments are acetic acid etching (30 vol% solution) and silane coupling. These 

treatments were selected from the best results achieved from Professor Lados’ MQP (DL1-1901) 

since acetic acid etching was found to increase tensile strength while the silane coupling increased 

ductility. The procedures shown in the following sections for each treatment are also based on the 

same procedures developed from Professor Lados’ MQP (DL1-1901) which involved SS powders 

instead of plates.  

3.2.2.1 Acetic Acid Etching (30 Vol% Solution) 

 The procedure for acetic acid etching entailed three main steps: 

1. Measure out 40 mL of acetic acid for a 200 mL beaker. Dilute acetic acid from stock 

room with deionized (DI) water, as necessary, to achieve 20vol% acetic acid. 

2. Heat up the beaker with the acetic acid on a hot plate to 55ºC, measuring with a digital 

thermometer. 

3. Submerge the SS plate in the beaker for 120 minutes. 

After etching the surface, the same procedures described by method four is used to attach the 

ABS to the SS surface.  

3.2.2.2 Silane Coupling 

 Silane coupling is done with a solution of 1vol% APDS (3-

aminopropylmethyldiethoxysilane), 4vol% DI water, and 95vol% ethanol. The procedure is: 

1. Pour 190 mL of ethanol and 8 mL of DI water into a 250 mL beaker. 

2. Using a pipette, measure out 2 mL of APDS (3-aminopropylmethyldiethoxysilane) into a 

graduated cylinder and add to the beaker containing ethanol and water. 

3. Allow the 1%(volume/volume) silane solution sit in the beaker for 20 minutes, stirring 

the mixture briefly with a glass rod at 5-minute intervals to allow for hydrolysis and 

silanol formation. Immediately use solution with SS plate. 

After applying the silane couple surface treatment to the SS plate, the same procedures 

described by method four is used to attach the ABS to the SS surface.  
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Chapter 4: Results and Analysis 

 A total of eight samples were prepared of untreated ABS-SS composites. Each sample was 

mounted to the testing apparatus and run with a delamination rate (i.e., rate of peeling) of 20 

mm/min. Due to time constraints, the surface treatments were not implemented. The data collected 

by the Instron® will be displayed and analyzed in this section. 

4.1 Data Collection 

 Each sample was mounted such that the peel arm was maintained at a 90-degree angle with 

respect to the surface of the sample surface (Figure 33). Using Bluehill® Universal Software, the 

software compatible with the Instron®, the correct values were input about the specimen such as 

the length of the peel arm and the width of the specimen. To obtain a value of average peel force 

to use in the adhesion energy formula, peel force and displacement were chosen as parameters for 

the software to record. Before starting a test, two buttons for balancing the forces and zeroing the 

displacement were pressed.  

 

 

Figure 33. Peel Arm Mounted at 90-Degree Angle 

 

 Concurrently with the peeling of a sample, the Bluehill® Universal software produced a 

plot of peel force in kiloNewtons versus the displacement of the ABS peeled in millimeters. A 

sample of this graph is shown in Figure 34. As can be seen, there is a region where the peel force 

is relatively stable. These are the values of interest which need to be averaged to determine the 

average peel force value.  
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Figure 34. Instron® Force [kN] vs. Displacement [mm] Graph 

 

 The values recorded for force and displacement were then exported into a Microsoft® 

Excel file (Figure 35) where the AVERAGE() command was used on the steady peel force values 

to determine the average peel force value.  

 

 

Figure 35. Steady-State Peeling Section of Force [kN] vs. Displacement [mm] Graph 

 

 For the data shown in Figures 34 and 35, the average peel force was found to be 

approximately 1.278 Newtons. Using a peel width of 1 inch (25.4 millimeters) and the peel force 

value, those values were then substituted into the adhesion energy formula (Equation 2.1) where 

the adhesion energy resulted as 0.0503 Newtons per millimeter. This process was repeated for all 

samples. The results are shown in the following section. 
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4.2 Results & Analysis 

 The data collected for eight ABS-SS samples are shown in Table 1. As can be seen, the 

data for sample 3 did not record at all. Other samples, such as sample 5 and sample 8, produced 

very skewed data. Thus, sample 3, 5, and 8 were outliers and not considered for the final value of 

the peel force and adhesion energy.  

 The potential causes for such drastic readings in samples 3, 5, and 8 can be caused by 

inconsistent peel arm lengths or by varying times in letting the ABS dry on the SS plate before 

testing the samples. Another cause can be the accuracy that the load cell can measure. According 

to a load cell specification sheet from Instron®, “accuracy has been found to be equal to or better 

than 0.025% of the load cell rated output or 0.25% of the indicated load” [28].  

 

Table 1. Data for Untreated ABS-SS Samples (With Outliers) 

 

 

 

 

 

 

 

 

 After removing the outliers (Table 2), the final peel force value and adhesion energy value 

was found to be approximately 2.7 Newtons and 0.01 Newtons per millimeter, respectively. For 

reference, the peel force required to pull Scotch® tape (same dimensions and delamination rate) 

is 0.7 Newtons. This value was confirmed both by my testing apparatus and through literature [29]. 

 

 

 

 

 

 

 

 

Sample 

 
Avg. Peel Force 

(N) 
Adhesion Energy 

(N/mm) 

1 1.277050223 0.050277568 

2 2.227272727 0.087687903 

3 - - 

4 3.88 0.152755906 

5 11.7125 0.461122047 

6 2.985714286 0.117547807 

7 3.124137931 0.087687903 

8 0.287545126 0.011320674 
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Table 2. Final Data for Untreated ABS-SS Samples (Without Outliers) 

 

 

 

 

 As mentioned previously, results for the acetic acid etched and silane coupling surface 

treatments were not obtained due to time constraints. These treatments will instead be implemented 

in future work.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sample 

 
 Peel Force (N) 

 
Adhesion Energy 

(N/mm) 

1 1.277050223 0.050277568 

2 2.227272727 0.087687903 

3 3.88 0.152755906 

4 2.985714286 0.117547807 

5 3.124137931 0.087687903 

Average Values: 2.698835033 0.099191417 
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Chapter 5: Summary, Conclusions, Recommendations, Broader Impacts 

 

5.1 Summary 

 In a time where polymer-metal composites are gaining popularity in the automotive, 

aerospace, tooling, medicine, and infrastructure industries due to improved thermal conductivity 

and radiation shielding properties, they are still limited due to poor adhesion at the interfaces 

between the metal additive and the polymer matrix. To enhance polymer-metal composite 

performance, different surface treatments must be assessed to understand how each affects the 

interfacial adhesion. The first step required before running experiments is to design an 

experimental apparatus that is capable of measuring interfacial adhesion energy.  

 After evaluating seven different categories of adhesion measurement methods, the peel test 

was selected as the basis for the design due to its many advantages. One of these advantages 

includes the fact that add-on parts could be made to an Instron® 5944, a tabletop column testing 

system that was already available in the Structures and Material Lab on campus. Thus, this saved 

both time and money.  

 A total of five parts were manufactured for the peel test apparatus by using a combination 

of methods such as CNC, manual milling machining, drill press, grinder, and sand belt. Most parts 

were made from Aluminum 6061 as it is a very lightweight and soft metal. The sample plates were 

made from 420-grade SS and follow the guidelines put in place by ASTM® International. 

 To adhere the ABS to the SS plates, a lot of trial and error was involved before a final 

working method was selected. Once this method was solidified, a total of eight untreated ABS-SS 

specimens were prepared and tested with a delamination rate of 20 millimeters per minute. 

Ignoring the outliers, an average peel force of approximately 2.7 Newtons was determined to pull 

ABS of SS. Associated with this peel force value and a sample width of one inch, the adhesion 

energy value was calculated to be 0.01 Newtons per millimeter. Due to a shortage of time in the 

project, acetic acid etching and silane coupling surface treatments were not applied to the SS plates. 
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5.2 Conclusions 

 A testing apparatus was successfully designed and manufactured to measure the interfacial 

adhesion for polymer metal composites. Initial results were obtained for peel tests of untreated 

ABS-SS composites for 90-degree peel angles. Through this series of experiments, I gained 

experience in computer-aided design software (SolidWorks, HSM CAM) and machining (CNC, 

Manual). Challenges encountered in this research project were primarily in the fabrication of the 

ABS-SS test specimens. Several iterations of fabricating the samples were necessary before I 

developed a sustainable methodology.  

5.3 Future Work 

To continue developing this work, I will be conducting three more terms of directed research the 

following year as an extension of this project. During my research, I aim to:  

1.  Apply two surface treatments to the SS-ABS composite. The two different surface 

treatments that will be applied to the SS plates are (based of MQP team DL1-1901): (1) 

acetic acid etched (30 vol% solution), and (2) silane coupling. The data collected can then 

be compared to the results from the other MQP team.   

2. Utilize a profilometer to measure the surface roughness of the samples before and after 

surface treatments. This will provide a better understanding of how the interfaces are 

being affected.  

3. Dive deeper into the data by relating semi-empirical analytical models that quantify 

adhesion energy. By studying these models, the cohesive law can be generalized for 

predicting modulus or strength.  

5.4 Broader Impacts 

 Polymer-metal composites are gaining popularity due to their economic benefits and global 

and societal potential. Compared to carbon-fiber nanotubes, which are also polymers with metal 

additives, polymer-metal composites are a low-cost alternative because of their simple production 

through the use of additive manufacturing (AM) technology. Thus, they can be more widely used 

in all sectors of industry.  

 Polymer-metal composites also have radiation shielding capabilities which are a big 

investment in the defense sector. For example, by using polymer-metal composites in tanks, 

submarines, and aircraft, each can be made undetectable under RADAR. In addition, polymer-
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metal composites can promote safety. One concept that is currently in development is that of 

magnetic seals or locks. For instance, if a short-circuit were to occur on an aircraft, departments 

within the aircraft can utilize magnetic seals to automatically close off and prevent the spread of 

fire. 

 Aside from polymer-metal composites, the testing apparatus developed in this project can 

be used to test other composite systems such as biological systems. For example, the interfacial 

adhesion can be examined to understand the mechanics of soft cellular materials. Research like 

this is currently being investigated over cell adhesion [30]. 
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