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Chapter 1: Introduction 

In the wintertime, snowfall can cause dangerous conditions across the world. Among 

these dangerous conditions, snow on roads, car roofs, and windshields proves to be a hazard for 

all drivers. Snow on windshields can impair visibility, and snow on car roofs can fall off and hit 

other drivers or create obstacles on the road. Laws regarding snow on vehicles vary across the 

United States. In the state of Massachusetts, there are no laws that prevent motor vehicle 

operators from driving with snow on their vehicles (Massachusetts Registry of Motor Vehicles, 

2019). However, while there is no law that directly states that drivers must remove snow from 

their vehicle prior to operation, there are other laws that hold drivers accountable for accidents 

due to snow falling off their car. One Massachusetts law in particular, Chapter 85, Section 36, 

covers unsecured loads on cars. Another Massachusetts law, Chapter 90, Section 24, covers the 

reckless or negligent operation of a motor vehicle. Police officers can issue a $40 fine for a 

driver with obstructed windows and a $200 fine for driving with an unsecured load on the roof 

(Glaun, 2016). According to the Federal Highway Administration, weather-related vehicle 

crashes average nearly 1,235,000 each year, with 18% of these crashes caused by snow and sleet 

(Federal Highway Administration, 2016). 

 Removing snow from cars is an unappealing, time-consuming, and potentially dangerous 

task for even the average person. For people with disabilities or limited physical ability, 

removing snow from cars can be a nightmare. Staying outside for an extended period of time in 

cold weather conditions, as is often required when clearing snow from cars, increases the risk of 

frostbite and hypothermia. Frostbite can set in quickly, depending on temperature and wind chill. 

In -10°F conditions with no wind, frostbite symptoms begin appearing in less than thirty 

minutes. With the same temperature and wind speeds of 25 mph or higher, symptoms start 

appearing in less than 10 minutes (National Oceanic and Atmospheric Administration, 2019). 

Walking in icy conditions carries a risk of dangerous falls. Any methods to reduce or eliminate 

exposure to the cold and ice while providing the same effective safety of proper clearing of car 

snow are worth investigating. 

Many solutions have previously been created in an attempt to address this problem, but 

none are safe, highly effective, and practical. Most people who live in cold climates use a plastic 

scraper and brush to remove snow and ice from their car. Some companies use an adjustable 

stationary scraper for their fleet of trucks. There are multiple consumer sprays and online recipes 

for homemade solutions that are manually sprayed on the windshield of a car to remove snow 

and ice. None of these solutions eliminate the need for a human to go outside and be exposed to 

the elements, nor are they convenient. 

Most solutions to clearing cars and other road vehicles are conventionally manual efforts. 

Research conducted about drones’ role in replacing manual labor tasks find wide-ranging 

examples of drones completing tasks otherwise dangerous to humans, such as clearing ice from 

tall wind turbines or removing moss from residential home’s roofs. As the popularity of 

consumer drones rises, there is a distinct gap in this space for a drone solution that homeowners 
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can use to clear their car of snow to save time, while remaining safe from the cold weather. A 

drone solution to clearing the ice and snow off cars is in many ways an extension of these 

previous solutions, as they have similar components and tasks. However, each solution must be 

tailor-made to the problem at hand, and a snow-clearing drone is no exception. 

While many agriculture and cleaning drone platforms allow users to spray liquids, they 

are not specifically designed to spray deicing fluid on cars in cold conditions. This snow-drone 

unmanned aerial vehicle is specifically designed to spray deicing fluids on cars in cold 

conditions. There are a number of unique challenges that this task presents that existing 

commercial drones are not currently designed to accomplish, including carrying a large liquid 

payload and operating in colder weather where the electronics must be protected and operating 

temperatures are a concern. The goal of this project was to design, manufacture, and implement a 

drone solution to aid consumers in the removal of snow off of cars. The project focused on 

collecting case study data of different drone design and applications; designing the mechanical, 

electrical and computer systems of the unmanned aerial system; testing and evaluating the 

accuracy, repeatability and precision of the removal process; and presenting a comprehensive 

design summary with a compelling vision for the future of drones aiding society, specifically in 

the consumer space. 
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Chapter 2: Background 

2.1 Drone Design 

A drone is a form of Unmanned Aerial Vehicle (UAV), and a UAV together with all the 

related peripheral systems not physically contained on the UAV forms an Unmanned Aerial 

System (UAS).. Generally, small UAVs all share similar, high level designs and all have the 

same basic controllers. Most UAVs have three to eight rotors, with propellers that have two or 

more blades. The most common configuration for small UAV is four rotors with two-bladed 

propellers. Almost all small UAVs are flown using brushless motors. Brushless motors are 

powered by direct current (DC) from a battery and controlled with an electronic speed controller 

(ESC), which provides pulses of current to the motor coils, controlling the speed and torque of 

the motor. Without friction between the stator and the rotor, the efficiency of a brushless motor 

improves significantly. Heat and friction are reduced, optimizing the energy of the battery. This 

increases the power of the motor by 20-60 percent, depending on the battery. The brushless 

motors work similar to three-phase alternating current (AC) motors, they have three 

electromagnets that constantly turn on and off causing the magnets to spin the rotor. Because of 

the three-phases, each motor needs an ESC that regulates the speed of the motor. The ESC takes 

the throttle input and varies the switching rate of a network of field effect transistors. Changing 

the duty cycle, or frequency, of the transistor changes the speed of the motor. Another essential 

part of a small UAV is the flight controller of the drone. The flight controller determines the 

revolutions per minute (RPM) of each of the motors in response to an input. A command is sent 

to the flight controller from either a radio (manual control) or a pre-planned path, which 

determines how the flight controller manipulates the motors to complete the task. Common flight 

controllers have sensors inside, such as an inertial measurement unit (IMU), that helps the drone 

achieve stable flight. An IMU consists of multiple sensors that are important for autonomous 

flight, such as accelerometers and gyroscopes. Lastly, receivers (Rx) and transmitters (Tx) are 

used to control drones with a radio. Today, there are transmitters and receivers that can transmit 

and receive commands from miles apart, meaning someone could fly a small UAV that is not 

within line of sight. 

2.2 Drone Flight Control (Navigation) 

Drones use a variety of sensors for control and navigation. Inertial navigation is one of 

the most common techniques that drones use to navigate. To accomplish this task, sensors 

onboard the drone, such as an inertial measurement unit (IMU), measure acceleration and 

rotation to determine metrics like current orientation, speed, and position. This information is 

used in a feedback loop to help control and guide the drone. However, inertial sensors can be 

responsible for a large portion of noise in the data, which greatly affects the accuracy of the data. 

Another common sensor used on drones is a global positioning system (GPS) receiver. GPS 
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relies on a satellite network in orbit to determine the latitude and longitude of the receiver. The 

system works worldwide but is generally only accurate to a distance of about three meters, 

making its usefulness limited in the context of precise navigation and control work, such as for 

this project. 

Many drones have an onboard camera that can be used to aid in controlling and guiding 

the aircraft. The camera can have a live feed sent back to a person manually flying the drone, or 

the image can be processed automatically to provide feedback for flight control. While more 

complex to design using existing resources, computer vision allows for potentially more accurate 

data to be used when flying the drone. 

The most effective way to accomplish controlled flight of a drone is through sensor 

fusion. Sensor fusion is the combination of sensory data from different sources such that the 

resulting information has less uncertainty than when the data was processed individually. Most 

modern aircraft today navigate using a combination of GPS and inertial navigation, as neither is 

highly effective on its own. Adding in visual sensing from an imaging device will further allow 

for improved navigation as well as increased ability for other tasks. 

One of the most common ways to more precisely control an automated system is to use a 

Proportional Integral Derivative (PID) controller to manage motion and sensor feedback. PID 

loops calculate the difference between the desired value (setpoint) and the actual value and 

perform operations on the input data to reduce the overall error in the system. The three parts of 

PID control can be used as is or can be split up and used in a variety of combinations including 

P, PI, and PD, just to name a few examples. Proportional control multiplies the error by a set 

constant proportional gain, allowing a smaller response from the system as it approaches the 

setpoint. Integral control sums all previous states up to the current point to look at the past 

behavior of the system in order to apply an appropriate correction. Derivative control uses the 

current rate of change in the system to anticipate upcoming error and correct it accordingly. By 

leveraging a PID controller, a drone can fly steady, straight, and to its destination regardless of 

sensor noise and other environmental factors that could cause it to become unsteady. 

2.3 Custom Drone Part Materials 

As drone flying and building becomes more accessible to non-engineers, more and more 

people are designing and fabricating their own custom drone components. There have been 

numerous solutions that hobbyists utilize at home to manufacture their own drone elements, such 

as 3D printing and easily machined parts on manual machine shop tools. 

3D printing has become one of the most prevalent rapid prototyping tools for engineers to 

design and iterate their designs. Unlike other manufacturing methods, such as CNC milling or 

turning, 3D printing technology can produce more complex geometries in parts due to the 

addition of support material during the printing process. 3D printing also provides a cost saving 

solution and doesn’t require a technician to be present in order to operate the machine while the 

part is being manufactured. The aforementioned advantages of 3D printing led hobbyist drone 

builders to utilize this technology when designing and making their drones. However, critical 
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drone flight components must be fabricated to a high level of precision to protect the mechanical 

integrity of the drone, and unfortunately, most consumer grade 3D printers do not lend 

themselves to the level of precision required for designing a commercial drone. These 

inaccuracies often occur during printing. Parts often delaminate during the printing process, 

causing separation in the layers of the part and causing inaccuracies in geometry. Additionally, 

the resolution of the print needs to be adjusted by the design engineer to optimize nominal 

dimensions during printing (Kujawa, 2017). 

To resolve some of these issues, an easy solution to delaminated layers that have lifted 

during the print process is inserting a layer of a carbon fiber sheet to bolster the print surface (3D 

Printed Racing Drone - Will It Survive?, 2017). In addition to carbon fiber sheets under flat print 

surfaces, carbon fiber rods are also beneficial for elements that need to maintain an internal 

rigidity (Sandoval, Sanchez, & Sandoval, 2016). These rods reinforce the internal infill of 3D 

printed parts by combining the strength of the hexcomb plastic infill and lightweight, strong 

carbon fiber.  

The reason that carbon fiber is often used in conjunction with the 3D printed material is 

because of its resilient material properties. Carbon fiber has a very strong strength to weight ratio 

and a stiffness to weight ratio. These properties allow for carbon fiber elements to be very strong 

and not fracture under a high load, while also not deforming under high loads as well. Applying 

even a carbon fiber sheet to 3D printed material as mentioned above, gives the more brittle 3D 

printing material, often PLA or ABS plastic, a more rigid backbone as long as it is fixtured 

properly along the printed feature. Additionally, carbon fiber can be purchased in sheets that are 

incredibly flat, which is beneficial for mounting components like electronics and motors that 

need to be level. Carbon fiber is also used on its own in drone designs due to its lightweight 

properties, while being difficult to fracture from its high tensile strength. A number of drone 

components are commonly built from carbon fiber materials, including the center frame, landing 

gear, and rotor arms.  

The other commonly used material for custom drone elements is aluminum alloy, and 

most commonly aluminum 6061 alloy. While aluminum is heavier and has a lower yield strength 

than carbon fiber, it is far more machinable. Carbon fiber is a composite material, meaning you 

have to shape it when you make the original shape, which often is a tube or a sheet. Aluminum, 

however, is easily machinable, allowing someone to purchase a billet or tube of the stock 

machine it to whatever shape they desire on a mill or lathe. 

2.4 Drones in Weather Conditions (Snow) 

As with all aircraft, weather can have a significant impact on the ability of a drone to fly. 

Operating a drone in snow and cold temperatures presents a particular set of challenges. Flying 

in below-freezing weather will have a significant impact on the life of a battery, which typically 

is designed for optimal performance around 20º C (68º F) ambient temperature. A number of 

drone manufacturers have looked to solve this problem through battery insulators or heaters 

onboard the drone (Martinez, 2019). The cold can also impact other equipment like cameras and 
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electronics that do not operate well in low temperatures due to condensation on lenses and other 

components. 

Another challenge weather can create when attempting to fly a drone in the winter is 

wind. In order to maximize payload capacity and minimize costs, most drones have been 

designed to be as light as possible. As a result, the drone is affected by wind speeds and is unable 

to be safely flown with precise control in even moderately windy conditions. One study 

involving a drone found that it couldn’t be reliably flown in winds any faster than an average of 

8 km/h (Weber & Knaus, 2017). Any drone that is going to be operated in the winter needs to 

either compensate for the wind, or only be used during favorable conditions. 

Icing on the drone itself can be a serious hazard in the winter. Ice on the frame or 

propellers can significantly change the aerodynamics of the system or make it completely unable 

to fly. In order to combat icing, a drone should be stored indoors when not in use. The drone also 

needs to be visually inspected before and intermittently during flight, to ensure that no ice is 

building up (Dorr & Duquette, 2015). Choosing weather resistant materials will help prevent 

icing and generally help it hold up against harsh weather conditions. 

2.5 Fluid Spraying 

Drones have already been proven useful for spraying applications, most commonly for 

agricultural purposes. Tasks such as spraying of pesticide and fertilizer, are completed quickly 

and efficiently by drones, while limiting the exposure of humans to potentially harmful 

chemicals. Most applications for spraying drones other than agriculture are far more small scale 

or precise in nature. With a similar focus on human safety as agriculture, Hercules drones from 

DroneVolt are designed for spraying residential house roofs and other hard-to-reach or 

dangerous areas that need washing or some form of liquid treatment (Hercules 20, n.d.). The use 

of drones for painting 3D surfaces has also been explored, as has the deicing of wind turbines. 

A variety of spraying strategies have already been employed for various different 

applications and industries. Many agricultural drones use multiple nozzles angled down, often 

attached below rotors. By attaching nozzles to the existing rotor arms, this configuration allows 

for more distributed spraying, while requiring less additional frame structure. The accuracy lost 

due to rotor wash interference is unimportant in agricultural applications due to the wide area 

coverage required in their efforts. Applications that require more accurate spraying, such as a 

painting drone, may favor a design with a fixture to extend the nozzle or nozzles outside of rotor 

wash to limit interference with accuracy. 

Any drone which plans to spray liquid must compensate for the thrust generated during 

spraying, either by factoring the force into the control model, or with a robust control system 

design that can more generally compensate for such errors. 
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2.6 Spray Nozzle Design 

The application of sprayed fluid is largely dependent on the geometry of the spray nozzle 

that the fluid is applied from. Each different shaped nozzle will produce a different pattern on the 

sprayed surface and optimizing this pattern can reduce time required for spraying (Sumner, n.d). 

These geometries can also affect the uniformity of the spray pattern, which if uneven may 

require reapplication. This factor, the “misting” of the sprayed fluid and particles spreading out 

past the intended nozzle geometry, is known as drift. Drift is a factor also influenced by the 

fluidics pump for the system. Reduction in drift can be achieved by ensuring the fluid pressure at 

the nozzle is what the nozzle is rated for, as pressures above or below can impact the drift of the 

fluid after exiting the nozzle.  

The three typical nozzle varieties for commercial agriculture applications are flat-fan, 

even flat-fan, and cone (Sumner, n.d). For flat-fan nozzles, the recommended pressure is 20-

30psi to reduce fluid particle drift, as the coarse particles begin to drift more at high or low 

pressures. Cone nozzles are more commonly used when particle drift is not an issue, or where the 

environment does not induce drift. These nozzles operate at higher pressures, compared to that of 

the flat-fans, at pressures of 40-80psi. Unlike the flat-fans, the particles tend to penetrate through 

layers of foliage or other non-rigid boundaries due to the smaller particle size (Sumner, n.d). 

Even flat-fans are similar in shape to the aforementioned flat-fan nozzles, however they provide 

an even distribution of application across the fan. The width of this band is determined by the 

nozzle height, and the advised pressures are between 20 and 30 psi to reduce drift. Cone nozzles 

do not necessarily guarantee spray uniformity so there are two different varieties: solid-cone and 

hollow-cone. Solid-cone nozzles will produce a uniform spray throughout the cone’s 

distribution, while hollow-cone will concentrate on the perimeter of the cone’s spray (Sumner, 

n.d). To ensure uniform spray pattern, regardless of the nozzle geometry, overlapping the outer 

edges of the individual nozzle sprays will result in better uniformity (Dorn, n.d). 

2.7 Deicing 

The most common application of commercial deicing is aircraft deicing, which is 

regulated by the Federal Aviation Administration (FAA). For this project, the drone needs to be 

able to remove snow, ice, and prevent further solidification of ice on car windshields, which is a 

problem the FAA deals with on aircraft. The FAA has regulated deicing and anti-icing fluids into 

four different categories depending on the chemical quality of the fluid: Types I to IV (Federal 

Aviation Administration, 2008). For most aircraft, removing ice is performed as a two-step 

process. The first step is deicing, which is the process of removing ice from a surface, followed 

by anti-icing, which is done to prevent more ice from forming. Anti-icing is generally the same 

chemical substance as deicing but has a higher active chemical concentration in the mixture. 

Deicing is accomplished by combining heated fluid and hydraulic force to remove a layer of ice 

off of surfaces (Wadel, 2016). In the case of aircrafts, separate deicing fluid and water tanks are 
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used in order to vary the mixture concentration depending on the weather conditions with a 

valve. The deicing fluid and water tank lines are in direct contact to make the mixture. 

There are a variety of solutions used for different methods in de-icing car’s windshields. 

The substance used for deicing and anti-icing varies greatly between different industries and 

consumer-grade products. A mixture of glycol and water (either propylene or ethylene glycol) is 

used on airplanes in accordance with FAA regulations. A commercial solution sold by many 

automobile retailers is made up of a solution of methanol and water. A variety of different 

homemade solutions exist including vinegar and water, which is often used for anti-icing, and 

isopropyl (rubbing) alcohol and water used for deicing. Thickening agents are often added to the 

mixture to increase the viscosity to prevent shearing forces from the wind blowing the substance 

off the surface. Dish soap is often used as a thickening agent in homemade solutions. Homemade 

pretreatment solutions also exist, which are generally made of a solution of white vinegar and 

water, which helps prevent ice from forming in the first place (AAA Automotive, n.d.). 

Some substances are superior in ice removal but could potentially be damaging to 

consumer’s cars by weakening the protective layers and leaving the paint exposed. Thus, there 

are several additional considerations to consider when choosing the deicing medium. Hot water, 

or heating a homemade solution to too high of a temperature can potentially damage car 

windshields by cracking it from thermal shock. Pretreatments made up of vinegar, alcohol-based 

deicing solutions, and dishwashing soap can remove car wax and will leave the finish exposed to 

the environment, which could potentially damage the car. 

 2.7.1  Environmental Impacts of Deicing Fluids 

The most well-studied, similar deicing solutions to analyze for environmental impact are 

aircraft deicing solutions. As with any unnatural mixture, most deicing solutions are relatively 

harmful to the environment, either by entering soil, mixing with water drainage, or evaporating 

into the atmosphere. That being said the glycol-based mixtures used on airplanes are by far the 

most harmful to the environment. Glycol based deicing fluids reduce dissolved oxygen levels in 

water, contaminate groundwater and surface drinking water, and can reduce, or completely 

eliminate, entire aquatic communities. Thus, areas with airports have a high concentration of 

these fluids in their stormwater drainage, and tend to send this drainage to wastewater treatment 

plants for processing due to the otherwise adverse effects these fluids would have on the 

surrounding environment (Environmental Protection Agency, 2012). Vinegar, methanol, and 

isopropyl alcohol are all solvents, and generally solvents are harmful to introduce to the 

environment. All three however, are considered to be among the more environmentally friendly 

solvents, with vinegar in particular being considered one of the least environmentally harmful of 

all solvents (Tobiszewski et al, 2017). 
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Chapter 3: Approach 

 The mission of this project is to design, manufacture, and implement a drone to aid in the 

removal of snow and ice off of cars. The project objectives are: 

1. Analyze existing drones and applications, as well as conduct research on the operation 

and regulation of drones and snow removal methods. 

2. Design the mechanical, electrical, and computer systems for a drone that is able to fly in 

mild winter weather conditions with a liquid payload of 4kg for removing snow and ice 

off of cars. 

3. Test and evaluate the accuracy, repeatability, and precision of autonomously/teleoperated 

cleaning the two windshields of a car in a real environment. 

4. Present a comprehensive design summary with a compelling vision for the future of 

drones aiding society, specifically focused on individual applications. 

5. Suggest future Major Qualifying Projects, or iterations for this project. 

3.1 Project Approach 

The idea for this project came from a video of a drone deicing wind turbines, because 

they are generally difficult to clean. The team, along with the project advisors, believed that the 

application of using a drone to deice could be used for many other applications, including 

cleaning snow off of cars. The project has a positive societal impact by helping humans avoid 

potentially hazardous cold weather conditions, where oftentimes the everyday person could be 

putting themselves at risk of frostbite, hypothermia, and even cold- or stress-induced heart 

attacks. Driving with snow on a vehicle can be dangerous for other cars and will also result in 

fines for the driver. The project presents an opportunity for automation of an everyday, 

potentially dangerous task and can improve the lives of vehicle drivers during the winter by 

saving time, saving money, and reducing the risk of injury. This would especially be helpful for 

elderly people, people with injuries, and for those with impaired motor skills or other physical 

disabilities. It is also important to consider the approach towards other applications of this drone 

beyond just an individual's single car. Other applications for this project on a larger scale include 

car dealerships, rental car services, shipping truck fleets, and airlines. Investing in an 

autonomous system to clean these complex spaces would have significant economic benefits. 

The project could also be applied to clean snow off of houses (gutters, windows, roofs), schools, 

roads, and parks. 

 The general approach for this project was based on research on existing agriculture 

drones. Drones that spray pesticides for large fields of crops is a similar concept to a drone to 

clean snow off of cars, so the team based the overall look and design of this drone off agriculture 

drones. An aerial system was decided on over other types of vehicles due to the versatility that a 

drone provides. In the winter, a rover would have to maneuver over different levels of snow and 

ice, which could prove difficult. Conversely, an aerial drone is free to move around without 
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restraint, provided that wind and other weather conditions have subsided. An aerial vehicle also 

does not require contact between itself and the car, preventing potential damage to the car. The 

drone also has six degrees of freedom, which allows for much more mobility compared to that of 

a ground robot with three. 

The team has set concrete milestones to create a functional drone by the end of the 

project timeline. Varying performance metrics were developed as well as design specifications 

for electrical, mechanical, and software, in order to determine a successful project. In addition to 

metrics, the team created goals that were to be accomplished through the design. These goals can 

later be adjusted as the project is developed. The first goal was to, at minimum, clean ice and 

snow from the car’s front windshield. The team decided on this task because the front windshield 

is the most important for drivers and the most time-consuming window to clear, and the team 

wanted this to be the primary focus to accomplish precisely before moving on to other sections 

of the car. Another design goal was to have the drone be relatively portable. Due to possible size 

and storage constraints for a consumer, the team wanted the drone to have a modular structure 

that could be more compact when stored. The team’s final goal is focused on modular 

components. The intent was to design the drone assuming the maximum weight of the fluid tank 

and power supply. 

The team developed a design process to follow for the development of the drone system 

for the purposes of this project. First, the team defines the problem: developing an easier way to 

automate cleaning snow and ice off of a car. After that, the team performs background research 

by conducting a literature review to learn more about how drones fly, what solutions currently 

exist for deicing, spraying mechanisms, drone regulations, and materials that can be used to 

make a drone. After the background research is completed, the team defines project 

specifications and requirements for a successful car-snow clearing drone, found in the later 

sections of this chapter. After the project criteria is decided, the team begins brainstorming and 

evaluating solutions for the core project problem. Based on the solutions, the team constantly 

iterates the design until it is feasible. From there, the team chooses a solution, develops a 

prototype, and tests the prototype. Based on the testing, necessary design changes are made, 

which leads to more testing. From there, the tested solution becomes the final product and the 

team communicates results via a presentation and written report. Figure 1 below shows a visual 

of the approach. 
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Figure 1. Approach Visual 

A project deliverable schedule, in the form of a Gantt Chart, was created to keep the team 

on track to complete the project. At the conclusion of the first project term, the team performed 

and annotated background research, defined project specifications and requirements, wrote a 

project proposal for acceptance and developed an initial design as a solution to the defined 

project. By the end of B term, the team wanted to enter a functional prototyping stage where they 

chose a solution, wanted to develop a prototype, and tested it, and wanted to test spraying and 

flying in snow conditions. By the end of C term, the team finalized testing and turned the 

working prototype into the final design. In D term, the team finalized the drone assembly and 

testing, finished the written report, and presented the results. 

3.2 Metrics 

In order to assess the ability of the system to meet its stated goals, the team plans to 

measure the performance of the project with established metrics. These performance metrics will 

determine the success of the project overall, while the engineering design metrics will evaluate 

the actual design and construction of the system. 

3.2.1 Performance Metrics 

The most important performance metrics will be determining if the drone can perform 

operations as intended with consistency and accuracy. The performance metrics that have been 

determined are: 
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● Capable of fully clearing a minimum of two inches of snow and de-icing the front 

windshield of an average-sized sedan 

● Drone is able to autonomously/semi-autonomously clear a car’s front windshield 

● Drone is able to operate in temperatures at and above -10°C (approximately 15°F) 

● Drone is able to fly in wind speeds of up to 10m/s  

● Drone is capable of carrying at least five liters (four kilograms) of spraying fluid 

as the payload 

● Drone is able to fly for at least 15 minutes while carrying the full payload 

3.2.2 Engineering Design Metrics 

The team plans to use a set of pre-defined engineering design metrics to measure the 

robustness and effectiveness of the design. The engineering design metrics are as follows:  

● No leaks in the fluid components 

● No short-circuiting of electronic components, or overloading of ESCs/Motors, 

due to weather conditions 

● Drone frame is structurally sound and does not deform when fully loaded, due to 

motor lift, or does not break, due to Von Mises stress 

● Drone is able to hover in one position without drifting 

● Drone is able to maneuver smoothly with a payload 

● Ability to manually define the car’s windshield using a four-point identification 

method 

3.2.3 Project Requirements 

This project is bound by both logistic and technical constraints from WPI that affect its 

design and fabrication components. This drone must be designed by the project team and 

fabricated using resources at WPI, such as 3D printers, laser cutters, and CNC machining. 

Constrained by time and money, the project has limited funding and must be completed by the 

end of the academic year. All design decisions made in this project must be backed by research 

through a literature review of existing technology. Additionally, to finalize the design of each 

drone component, significant prototyping must verify the design’s feasibility. 

3.3 Drone Design Process 

 In order to ensure that all the parts for the drone were compatible, a process was carried 

out to make sure all requirements for a drone that sprays are covered. When designing the drone, 

the main consideration was the payload or the amount of extra weight the drone had to carry. 

Therefore, the drone was designed around the idea of carrying a maximum of five kilograms, one 

of the team’s metrics. 
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3.3.1 Mechanical Structure 

In order to design and build a drone, criteria must be met to ensure that the drone 

performs the task effectively. When using a drone to spray deicing fluid on cars, the drone must 

be capable of lifting up a heavy payload. The payload consists of the deicing liquid, along with 

all the peripherals, required to fly, navigate, and spray deicing fluid. There are two options that 

can be used in order to lift a heavyweight with a drone: adding more rotors and motors onto the 

drone or increasing the size of the drone’s propellers. Both of these options come with 

advantages and disadvantages. The advantage of having six or eight rotors is the presence of 

redundancy in the system, meaning the aircraft can successfully land in the case that one of the 

motors fails. In addition, drones designed to have more rotors allow for the propellers on each 

arm to be smaller in comparison and allow the user to have less powerful motors. The main 

disadvantages of a six or eight rotor drone, as compared to a four-rotor drone, are increased 

overall energy consumption and a greater number of parts that can fail. An X4 configuration 

drone would offer reduced energy consumption and fewer points of failure, but would require 

larger propellers, and more powerful motors, than a configuration with more rotors in order to 

create more thrust for lifting heavy objects. The system is more stable and reliable in an X4 

configuration, but in the case that a rotor fails, the drone would also not be able to safely land. 

Therefore, flight dependent components are soldered together extremely well, and the primary 

components are inspected thoroughly prior to every flight. In addition, the team will ensure the 

drone will hover slightly above ground at the beginning of every flight to make sure all motors 

are operating properly before takeoff. The team wanted to design propeller guards but did not 

have the resources for such a large drone. After examining the advantages and disadvantages, an 

X4 configuration drone was chosen, not only because the snow-drone will not be lifting more 

than 20 pounds and will only be performing short missions within close proximity of the user, 

but also because it is most cost-effective based on the amount of funding available for this 

project. As seen in Figure 2, the basic frame design will be composed of a top and bottom center 

plate with four arms that will clamp into the center of the frame between the two plates. These 

plates also hold all the electronics of the drone. A third plate sits below the bottom plate, housing 

both the batteries. In order for the drone to carry the spraying gear and be able to take off and 

land, the landing gear is attached to the center frame, which creates an open space for the 

spraying gear to occupy between the landing gear. A plastic cover, vacuum formed out of ABS, 

will protect all the electronics and battery from the natural elements and will ensure the drone is 

professional and reusable. ABS has safe operating temperatures from -20°C to 80°C, which is 

lower than the -10°C that the drone is intended to operate in. 
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Figure 2. Exploded view of the center frame assembly and hardware 

3.3.2 Part Selection 

Drones must be designed to be as lightweight and durable as possible. To maximize both 

conditions, part and material selection becomes a crucial element of drone design. In order to lift 

a payload of 5000g with an X4 configuration, the team estimated the MTOW (maximum takeoff 

weight) of the aircraft by adding all the weights of all major parts of the drone, shown in figure 

two. Dividing the MTOW by four gives the amount of weight that each motor will need to lift at 

around 50% power. By focusing on each motor only using 50% power, a greater than 2:1 power 

to weight ratio is ensured to prioritize efficiency and add a factor of safety. After calculating the 

thrust each motor must produce, motor spec sheets are reviewed to find what motor will produce 

the desired thrust. Most drone motor manufacturers release test bench specifications of each of 

the motors they sell combined with different size propellers. To properly operate the motors on 

the drone simultaneously, an on-board flight controller is necessary. The flight controller should 

enable the drone to hover in place using a combination of sensors and GPS. Other peripherals 

found on the drone include an IR camera for detecting the snow/ice on the car and a sensor to 

detect deicing fluid levels. 

3.3.2.1 Materials 

The drone is mainly constructed out of carbon fiber and aluminum. The frame, which is 

composed of the three plates, the rotor arms, and the landing gear, are all 3D printed or stock 

carbon fiber that have been waterjet cut. Carbon fiber enables the aircraft to be lighter and more 

energy-efficient, while still being very strong and durable. 3D printed parts are fairly lightweight 
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and are able to be rapidly manufactured. The hardware on the drone is all made of 6061 and 

7075 aluminum, which also contributes to the drone being lightweight. 7075 aluminum has a 

density of 2.810 g/cm³, compared to steel, which has a density of 8.05 g/cm³, making it a 

lightweight structural metal. The fasteners, in particular, were specially ordered to be 7075 

aluminum alloy in order for the drone to be as lightweight as possible. Fasteners are used 

throughout the assembly, so choosing aluminum screws, which are not commonly used, greatly 

helped reduce the overall weight. Having lightweight hardware allows the drone to cut weight 

from components that are necessary to have on the drone, while aluminum is still metal, steel is 

much heavier. The cover of the drone is made of vacuum-formed ABS plastic, which is 

waterproof and lightweight. 

3.3.3 Fluid Selection 

Based on background research performed by the team on the widely used fluids for de-

icing applications and their environmental impacts (refer to 2.7 Deicing), the team is using a 

mixture of isopropyl alcohol and water in the final drone solution. Based on research, isopropyl 

alcohol is an easy at-home solution that is recommended by AAA to be effective at cleaning 

snow and ice off of car’s windshields and has a relatively low environmental impact. Although 

this is the solution the team is using, alternative solutions should be explored with extensive 

testing. 

3.3.4  Software Functionality and Architecture 

 Software on the drone will provide four main functionalities to support its mechanical 

and electrical features: controls, spray & fluid management, navigation, and computer vision. 

The below categories can be implemented as classes, with key functionalities as functions or sets 

of functions for each class. They can be combined together into a state machine that 

methodically and automatically controls the drone in its snow-clearing efforts from start-up and 

take-off to landing and shut-down. In 3.3.4.5 High-Level Workflow, architecture and 

functionality are visually represented. 

3.3.4.1 Controls 

Controls will allow the drone to adjust for outside forces through the management of how 

the drone moves. The controls functionality will focus on two main aspects: maintaining constant 

position and the ability to move at constant speeds along any or all axes. These control 

algorithms will allow the drone to reliably move in predictable patterns and adapt to changing 

conditions to ensure proper coverage when spraying. 

3.3.4.2 Spray & Fluid Management 

Key functionalities necessary for the drone to properly spray a car and manage its fluid 

reserves are digital control of both on and off functionality, as well as spraying pressure will 
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allow for efficient snow and ice removal by spraying. Additionally, monitoring of fluid reserves 

will allow the drone operator to be notified when the drone requires a refill, therefore, ensuring 

that the drone does not attempt an operation that it cannot complete due to lack of fluid. 

3.3.4.3 Navigation 

While motion is directly determined by controls, navigation feeds instructions to the 

control system, and together, they move the drone to where it needs to go. Navigation is 

responsible for two main functionalities: location and pathing. The drone must be able to keep 

track of its location relative to important landmarks such as its initial takeoff point, the target car, 

and any relevant obstacles to avoid. Additionally, the drone must be able to generate efficient 

paths that get the drone between destinations and provide comprehensive spraying coverage of 

the target car, all while maximizing the precision of drone motion. 

3.3.4.4 Computer Vision 

Just as controls account for variation in motion, computer vision allows the drone to 

account for variation in the environment. Computer vision will provide three main 

functionalities: snow detection, car location verification, and obstacle detection. Snow detection, 

using infrared images, will inform the drone of its progress, as well as parts of the car it needs to 

return to in order to complete its snow-clearing operation. Car location verification checks that 

corners of the target car are where the drone expects them to be, updating navigation with both 

the car’s orientation as well as confirmation or adjustment of the car’s stored location. 

3.3.4.5 High-Level Workflow 

 
Figure 3. High-Level Workflow 
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Chapter 4: Design 

 Throughout B term, the team focused their efforts on designing the mechanical, 

electrical, and software components of a drone to de-ice and clear snow off of cars. The overall 

design can be viewed in Figure 4 below. In the rest of this section, each of the individual 

components will be explored in more detail and explained how they contribute to the overall 

assembly. 

 
Figure 4. Overall Drone Design 

4.1 Design Specifications 

Based on the team’s background research, project mission, objectives, and approach, the 

team decided to build an X-4 configuration drone. The X-4 configuration was chosen because 

having only 4 motors simplifies the design/build process, is cheaper to build and consumes less 

energy than hexa/octocopters leading to longer flight times. Approximate weight calculations 

were performed on parts selected in order to determine the necessary motor and propeller size. 

The team determined a 28-inch propeller, and thus a 1200mm size drone (diagonal motor to 

motor distance), is required based on the weight calculations affected by the mechanical and 

electrical components. The team assumed a 5000g payload, equating to approximately 5 liters of 

de-icing fluid based on the weight of water, and designed the drone, based on this weight. 

4.1.1  Drone Weight Specifications and Motor/Propeller Selection 

It is vital to pick out the correct motor and propeller combination when building a drone 

to ensure the drone will safely hover, navigate, and perform its desired tasks with a payload. An 

important measure to follow when picking out the correct motor and propeller combination is to 

make sure the drone has a 2:1 power to weight ratio. This factor of safety will ensure that the 
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drone can safely operate in situations where the drone is not using maximum power. Table 1 

below contains all the parts of the drone and their respective weights in grams. 

Table 1. Component Weight and MTOW Calculation 

Component Weight (grams) Weight (lb)   

Battery (22,000 mAh) 2696 5.944   

Motors (x4) 1108 2.443   

ESC (x4) 292 0.644   

Propeller (x4) 240 0.529   

Flight Controller + Cables 100 0.220   

FPV Gear 50 0.110   

RC Receiver 20 0.044   

Frame 2000 4.409   

Tank 670 1.477 Payload (grams) 4317.96 

Fluid (1 gallon, 5 L) 3782.96 8.340 

Total (without battery) 

(grams) 3810 

Pump 285 0.628 Total (grams) 11493.96 

Nozzles + Beam + Tubes 250 0.551 Total (lb) 25.34 

Since the Maximum Takeoff Weight (MTOW) of the drone is 11494g (25.34 lb), the 

drone should be able to lift that amount at ~50% power, ensuring a 2:1 power to weight factor of 

safety. To get the amount of thrust each motor is responsible for, the MTOW is divided by four. 

Therefore, each one of the four motors of the drone is responsible for carrying 2873.5g (6.34 lb). 

From this, the team looked at specification sheets to identify what motor would produce around 

2800g of thrust at 50% power. The team selected the T-Motor UII 190KV brushless motor with a 

T-Motor carbon fiber 711.2mm x 233.68mm (28in x 9.2in) propeller. This motor and propeller 

combination has an upward thrust of ~2800g at around 55% throttle at an efficiency of 11.5 g/W. 

4.1.2 Drone Flight Data 

Using eCalc’s online electric motor calculator, the team calculated predictive flight data 

based on the drone’s motors, propellers, ESCs, battery, and weight. In order to calculate these 

predictive numbers, a user must input all major components of the desired drone into the 

calculator for it to calculate the flight data. The table below shows some metrics from the four 

conditions analyzed. One measure that is calculated on eCalc is estimated flight time, Table 2 

shows that at MTOW (Drone & five liters of Fluid) the drone will fly a total of 16 minutes. 

When carrying only half a tank of fluid the drone gets an additional four minutes of flight time. 

Once the team begins testing the amount of fluid actually needed to clean a minimum of two 

https://www.ecalc.ch/
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inches of snow off of a car, the team will determine the actual flight time based on this actual 

data. Additionally, these flight times will change depending on the weight of the fluid being 

carried, and as the drone sprays the fluid, there will be less weight onboard thus increasing 

possible flight time. 

Table 2. Estimated Flight Data Gathered Using eCalc 

 No Payload Empty Tank 
2.5 Liter of Fluid 

(Half Tank) 

5 Liter of Fluid 

(MTOW) 

Flight Time (min) 39 25 20 16 

Electric Power (W) 1057 1057.9 1057.9 1,057.90 

Case Temperature (0C) 85 85 85 85 

Thrust-Weight Ratio (N/N) 3.5 2.6 2.2 1.9 

4.2 Mechanical Design 

A structurally sound mechanical design is imperative for the success of this project. If 

any mechanical component fails, the drone will fail at performing the project objective. It was 

important to take a number of considerations into account when designing the drone, including 

the operating temperature, mechanical stress and strain, forces caused from lift, and vibrations, 

among many other considerations. This section will explore the mechanical design and part 

selection of the key components. 

4.2.1 Frame 

The drone consists of a central control system compartment, four rotor arms, and two 

main landing gear legs. The center compartment contains two areas to mount the control system 

electronics, such as the flight controller. Electronics that are sensitive to vibration will sit on 

standoffs with rubber feet in order to dampen vibration. There are two main plates in the center, 

each holding key electronics for the function of the drone. These two plates are protected by a 

cover that will be vacuum formed from the negative of the center frame. Under the two plates is 

a battery plate, which supports the heavy battery of the drone, which is attached via two carbon 

fiber rods and rubber washers so that it is easy to remove if needed. 
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Figure 5. SolidWorks model of drone’s center frame assembly 

The drone’s landing gear is made of four carbon fiber circular rods that are attached in 

pairs at the base by a horizontal beam and attached to the center plate of the drone. The 

connecting brackets are 3D printed from ABS plastic in halves to fit around the rods and 

tightened by using a set of screws and bolts. The legs are angled outward at 100 degrees relative 

to the horizontal and have a wider base. This wide base helps centralize the center of mass and 

assists when the done is not perfectly balanced when coming down for landing. A wider base 

increases the probability that the drone will not tip when landing by offering greater stability and 

strength to support the drone. 

 
Figure 6. SolidWorks model of drone’s landing gear assembly 
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4.2.2 Spray System 

In order to melt the snow and ice off of the windshield of the car, a deicing fluid is 

sprayed from the drone onto the car. There are a variety of different chemical mixtures, 

discussed earlier in the report, that can be used for this purpose. All potential options involve 

mixing a different chemical with water to lower the mixture’s freezing point. For this 

application, the system uses isopropyl alcohol and water mixture for removing snow and de-

icing. 

The system used on the drone is largely modeled after similar systems used on agriculture 

drones that are used to spray fields. The drone holds a tank made of lightweight high-density 

polyethylene mounted underneath the center compartment that stores all of the fluid needed for 

de-icing. The tank has a 5-Liter capacity, as this is the smallest volume tank of this type that is 

commercially available. While large, the tank will never need to be filled with more than one 

four liters (80% capacity) in order to complete a task. The tank features an upward-facing inlet 

and downward-facing outlet so that it can be easily refilled without disassembly of the system. 

Fluid is gravity-fed to the bottom of the tank where it is pumped into the spray line with 

an onboard 24V brushless motor diaphragm pump. The pump will be fastened to the bottom of 

the tank and will push liquid through the spray line. The spray line consists of 8mm soft PVC 

tubing that runs to three separate nozzles mounted along a spray bar. This spray bar is actuated 

by servo-driven poly-cord pulleys that drive the spray bar. Both the rotating spray bar and 

multiple nozzle features were selected to allow for maximum coverage of the car windshield to 

be achieved without needing extreme precision in-flight control of the drone. A servo was 

chosen because the rotating spray bar does not need to rotate across an angle of more than 

approximately 60 degrees. The spraying mechanism can rotate on the pitch axis of the drone, 

while the drone itself can rotate in the yaw direction, which allows the spray bar to have two 

degrees of freedom. 

 
Figure 7. Fluidics Diagram 
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The fluidic tank, pump, nozzles, and connectors purchased for this project were 

specifically designed for agricultural drones that spray a high volume of fluid. The pump has a 

flow rate of 5.5 liters per minute at a pressure of 276 psi within the tubing. Each individual 

nozzle has a flow rate of 0.6 liters per minute over a flat-fan (110 degrees) spray pattern. The fan 

pattern will allow the liquid to be prayed across a width of 2.1 meters. This will provide adequate 

coverage as the average width of a car windshield is just under 2 meters. The following diagram 

in Figure 7 depicts how the fluidic components interact in the system, and Figure 8 shows a 

detailed view of the system flow in CAD. The latter diagram below, Figure 9, shows the two 

degrees of freedom that the spraying mechanism has: pitch, from the spray-bar servo actuation, 

and yaw, from the drone’s orientation rotating about its center axis. 

 
Figure 8. SolidWorks view of the spray-bar system 

 

 
Figure 9. Degrees of Freedom for the Spraying Mechanism 
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4.2.3 Rotor Arms 

The length of the rotor arm is dependent on the swept diameter of the propellers. Due to 

the larger 28” (711mm) overall diameter of this drone propellers, each rotor arm is 

approximately 400mm long, with 50mm of this length constrained to the center frame assembly 

in order to prevent deflection from the thrust force. These arms are designed using commercially 

available, rectangular carbon fiber tubes. Carbon fiber was chosen so that the rotor arms were 

lightweight yet rigid and strong. To ensure that the chosen materials and the design of the collars 

fixturing the arms to the center frame would perform as intended, the project team utilized 

SolidWorks Simulations to perform static analyses as well as simplified hand calculations. With 

a force of 67N of thrust from the rotor at the end of the arm, the SolidWorks simulation 

demonstrates that the maximum deformation, shown in green, is 0.45mm (shown in Figure 10). 

A force of 67 Newtons was chosen because each motor and propeller combination produce a 

maximum thrust of 6761 grams, which is equivalent to 67 Newtons. The team used a simple free 

body diagram (FBD) model to check if the SolidWorks simulation was valid, and this model is 

shown in Figure 11. The results of this model tell the project team that while the numeric value 

for the deflection is not identical to the value from the FEA, the magnitude is the same. The team 

recognizes that the FBD model is not perfect; the thrust force from the propellers is not a point 

load, but a distributed force through the motor mount plates, and the FBD neglects to account for 

the rotor assembly with the motors, propellers, and motor mounts. However, the simplified 

model from the FBD yields a deflection value that has the same magnitude of the deformation, 

which is sufficient as a check to the simulation. This amount of deformation from both 

calculations is minimal, thus removing concerns on the rotor arms being deformation limited.  

 
Figure 10. SolidWorks deformation analysis of a rotor arm [left] unit scale [right] 
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Figure 11. FBD model of the rotor arm 

Equation 1. Deflection calculation for a rotor arm 

 

 
Similarly, examining the results of the simulation checking for stress on the system, the 

maximum von Mises stress level does not surpass approximately 5MPa, shown in Figure 12 in 

green/yellow, meaning the carbon fiber bar will not fracture due to the reaction force from the 

rotor. The carbon fiber chosen has an approximate ultimate strength of 3.5 GPa, a level of 

strength magnitudes higher than the stresses the arms will ever endure during normal operation. 

 
Figure 12. SolidWorks stress analysis of a rotor arm [left] unit scale [right] 

The results of both SolidWorks simulations confirmed to the project team that the 

proposed design for the rotor arms, along with the design of the fixturing collars and the spacing 

between them was suitable for this application. Additionally, the team expanded this simulation 

of the rotor arm, to examine the center frame assembly of the drone with all four rotor arms 
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attached with the same thrust force applied from all four propellers. This simulation allowed the 

team to examine the stresses and strains on the brackets used to mount the rotor arms to the two 

center frame plates, as the failure of these brackets would be disastrous to continual use of the 

drone system. However, even with a factor of safety of 1.5 or 2, based on most commercial 

standards, the simulated stress is far below the threshold for component failure. The results 

shown in Figure 13 and Figure 14 demonstrate that in the benchtop SolidWorks simulation, the 

brackets do not show questionable stresses and strains, and are within reason for the selected 

aluminum alloy they are machined from. 

 
Figure 13. SolidWorks stress analysis of the center frame brackets [left] unit scale [right] 

 

 
Figure 14. SolidWorks strain analysis of the center frame brackets [left] unit scale [right] 
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Similarly to the deflection calculations the team performed to verify the FEA simulation, 

the project team made a simple model and calculated the resultant forces that each of the rotor 

arm brackets should be experiencing due to the external thrust force from the propeller at the end 

of the arm. This model was shown in Figure 11 and restated below, as well as the calculations 

used to analyze the resultant forces R1 and R2 in Equation 2. 

 
Figure 11. FBD model of the rotor arm 

 

Equation 2. Resultant forces calculations for rotor arm mounting brackets 

 

The team additionally needed to confirm that these resultant forces were not excessive and would 

not be beyond the ultimate strength of the bolts chosen to hold the rotor arms onto the center 

frame. The team took the 16.69mm2 surface area that one bolt has on the carbon fiber center 

frame plates, and divided it by each resultant force to calculate the distributed force along that 

surface area and compared it to the ultimate strength of the zinc-plated steel the bolts were 

comprised of, these calculations are seen in Equation 3 below. The steel has an ultimate strength 

of 1172Mpa or 1172N/mm2, which is far above the resultant distributed force of 31.86 N/mm2 

and 35.82N/mm2 respectively for R1 and R2 confirming that the bolts will not become 

uncompromised during flight. These values give an additional safety factor of 2.0 as well, seeing 

as the simplified model in Equation 2 is symmetric, and all values are calculated for one side, 

and these values would be split across both screws in each location. 
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Equation 3. Calculations for distributed force on center frame bolts 

 

One of the byproducts of this rectangular arm geometry is the need for custom designed 

and manufactured motor mounts. Using the technical specifications for the selected motors, the 

team decided to utilize a compression driven design for the motor mount assembly. The motor 

mount assembly, as seen in Figure 15, is reducible to two machined plates that have reliefs that 

fit onto the top and bottom of the carbon fiber extrusion. The top plate has countersunk holes to 

mount the motor onto, and the bottom has another set of countersunk holes to thread the two 

pieces together. The benefit of this design is that it is easy to both manufacture and assemble.  

 

Figure 15. SolidWorks model of the rotor arm assembly 

4.2.4 Custom Part Fabrication 

Although there are a number of parts that will be purchased for this project, there is still a 

large number of custom-engineered parts that will need to be fabricated at WPI. The table below, 

Table 3, outlines each of the components that will be fabricated. A bill of materials for the 

physical parts in the assembly can be viewed in Appendix B. Drone Component Bill of 

Materials and a bill of materials for all electronic components purchased by the team can be 

viewed in Appendix C. Assembly Bill of Materials. 
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Table 3. Parts and Manufacturing Method 

Subtractive Manufacturing Additive Manufacturing Other 

Motor Mounts 

(from Aluminum 6061) 

Landing Gear Brackets and 

Tank Mounts 

Electronics Cover 

(vacuum formed) 

Carbon Fiber Center Frame, 

Anti-Vibration Mounts 

(waterjet) 

Spray Bar Servo Assembly 

 

An isometric view of the final mechanical assembly of the drone without the cover is presented 

in Figure 16 below. In summary, the drone has an approximate motor-to-motor diagonal 

distance of 45” (1150mm) with a square top-down side length of 32” (814mm) as seen in Figure 

17 below. 

 
Figure 16. Isometric Top View (without cover) 
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Figure 17. Drone dimensions from a top-down view 

4.3 Electrical Design 

The drone will carry a number of sensors on board that will help it autonomously 

navigate to and clear snow and ice from vehicles. 

4.3.1 Flight Controller Sensors 

The primary sensor used for navigation is a GPS receiver that will be able to determine 

the drone’s latitude and longitude. The Holybro Pixhawk GPS module uses a Ublox Neo-m8n 

which has accuracy of approximately 2.5m (Kikutis et al., 2017). The drone’s location can be 

compared to the known location of the car found on the map plug in on QGroundControl to 

inform the control system about which direction it should be headed in, or if it has arrived at the 

desired location. Additionally, the flight controller is equipped with multiple accelerometers and 

gyroscopes, enabling determination of the drone’s orientation throughout flight. 

4.3.2 Peripheral Sensors 

One sensor used onboard the drone will be an infrared (IR) camera to detect thermal 

differences between the spraying fluid, the car, and snow. This camera is capable of detecting 

temperatures from as low as -40°C to as high as 300°C. The MLX90640 thermal Camera 
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breakout is calibrated by the manufacturer to be precise enough to detect a temperature 

difference of as little as 1°C. Combining a thermal camera with computer vision capabilities will 

allow the drone to detect where it has been sprayed and where it has not, as the liquid coming 

from the drone will be warmer than the snow and ice around that it is trying to move. The car 

windshield will remain at a temperature above freezing for a longer period of time if clear of 

snow, allowing for verification of how clear of snow the windshield is. 

A stereo camera mounted with servo control to rotate about the pitch will provide depth 

information. Using this depth information, cars can be differentiated from the surrounding 

environment through their unique contours, even with snow on them, and the drone can be 

localized relative to its target car on a more precise level than GPS can provide. This information 

can further be used to provide locational context to readings from the above-mentioned IR 

camera to allow for the determination of locations where snow patches still remain. 

4.3.3 Electronics Parts and Wiring 

To drive all four motors the drone is equipped with four HOBBYWING XRotor PRO 

50A ESCs rated for six cell batteries. The drone has a HolyBro Pixhawk 4 flight controller, 

which enables the drone to hover in place using GPS and fly semi-autonomously (waypoint 

coordinate navigation). The entire drone is powered by a 22.2V 25C 6S 22000mAh battery 

which provides power to not only the propulsion and flight control system but the spraying 

mechanism as well. When flown manually the drone is controlled by FrSky’s Taranis x9d Plus 

which communicates with the onboard FrSky L9R receiver. 

 
Figure 18. Drone Wiring Diagram 

https://www.hobbywingdirect.com/products/xrotor-pro-50a-esc-dual-pack?variant=4159024260
https://www.hobbywingdirect.com/products/xrotor-pro-50a-esc-dual-pack?variant=4159024260
https://www.hobbywingdirect.com/products/xrotor-pro-50a-esc-dual-pack?variant=4159024260
https://docs.px4.io/v1.9.0/en/flight_controller/pixhawk4.html
https://docs.px4.io/v1.9.0/en/flight_controller/pixhawk4.html
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4.4 Software Design 

With all of the sensors and electronics onboard, controlling a drone can be complicated. 

However, the selected Pixhawk flight controller was designed specifically to support an open-

source autopilot software created by ArduPilot called ArduCopter. ArduCopter particularly 

specializes in controlled flight when given spatial positioning instructions, including both 

controls of specific destination locations and flight speeds. ArduPilot’s Mission Planner 

simplifies flight plan creation, with an interface designed for selecting GPS-based waypoints and 

altitudes. ArduPilot’s “Software In The Loop Simulator” enabled realistic testing, simulating 

parameters including wind conditions, drone battery state, and GPS positioning. 

4.4.1 Precision Localization 

While the aforementioned software packages enable larger-scale navigation, GPS does 

not provide the detailed and relative localization necessary for accurately spraying a car. As 

mentioned above in section 4.3.2, the mounted stereo camera compensates for GPS inaccuracy 

when fine-tuning the drone’s current location. Frame transforms and known drone geometries 

enable conversion of depth readings to useful relative positioning for both the drone in general 

and specific cameras on the drone, allowing the drone to more precisely spray only remaining 

snow on its target car. 

4.4.2 Computer Vision 

Computer vision is the digital analysis of images and their patterns to extract useful 

information from said images and patterns. Often used to detect objects or features, determine 

information from detected objects or features, or filter out unimportant portions of images, 

computer vision provides invaluable information that allows the drone to compensate for 

differences between an expected environment and reality. Some of the computer vision 

techniques employed to localize the drone include edge detection and feature matching, 

examples of which can be seen in Figure 19 and Figure 20 respectively. 

 



 

 

Car-Snow Clearing Drone MQP - 32 

 
Figure 19. Edge detection example (left) from “Edge Detection in Opencv 4.0, A 15 Minutes Tutorial”, 

https://www.sicara.ai/blog/2019-03-12-edge-detection-in-opencv. 

Edge detection will allow for identifying different regions in IR images, in order to 

provide the drone with information about regions of the car that are significantly warmer than 

other regions, denoting regions that have been cleared of snow. 

 
Figure 20. Feature matching example (right) from “OpenCV: Feature Matching”, 

https://docs.opencv.org/3.4/dc/dc3/tutorial_py_matcher.html 

https://www.sicara.ai/blog/2019-03-12-edge-detection-in-opencv
https://docs.opencv.org/3.4/dc/dc3/tutorial_py_matcher.html
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Feature matching allows for recognizing data patterns such as shapes of a car wheel or 

the angle of a windshield, which can be combined together to enable car identification and 

orientation. 

Images and video captured by the IR camera are analyzed using OpenCV to detect where 

snow is on the windshield. Images are first thresholded by temperature to create a binarized 

image that highlights a region of interest. The binarized images are then modified through 

processes called opening and closing. Opening is a process in which the whites region of a 

binary image is shrunk then expanded, and is often used to remove noise in an image. Closing is 

a process in which the white regions of a binary image are expanded then shrunk, and is often 

used to fill small gaps in the white regions of a binary image. Once cleaned of noise and gaps in 

objects, the centroid (center of mass) associated with each distinct shape in the binarized image 

is identified to enable identification of every distinct remaining patch of snow. These centroids 

are then classified as either in range to be sprayed by the drone or out of range, thus requiring the 

drone to move either forward or backward to clear them. 
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Chapter 5: Results 

This section of the report details the results the project team has demonstrated through the 

academic D-term in April 2020. It covers the roadblocks faced by the team in regard to part 

acquisition and faulty electronics, as well as the mechanical, electrical, and software testing and 

functionality exhibited by the drone. 

5.1 Preliminary Roadblocks 

5.1.1 COVID-19 Pandemic 

Nearly every engineering project encounters unexpected difficulties, and many of these 

projects must adjust to compensate for these unforeseen circumstances. The largest challenge 

this project faced as it neared its conclusion was a global pandemic. Coronavirus disease, often 

abbreviated as COVID-19, is a highly infectious respiratory disease whose outbreak began in 

Wuhan, China in December 2019 (Kolifarhood et al, 2020). The outbreak spread to become a 

global pandemic in the following months, causing the closing of all except for the most essential 

businesses in most regions worldwide. Most or all United States colleges and universities, 

including WPI, changed all in-person classes to be online and mandated that, barring extenuating 

circumstances, all students, faculty, and staff must leave campus. 

The main effects of the COVID-19 pandemic on this project manifested as limitation or 

prevention of part acquisition, facility access, and team centralization. Even before the United 

States government and WPI administration began to take preventative measures, the team was 

beginning to feel the effects of COVID-19. Necessary parts sourced from China were delayed 

due to temporary and indefinite business closings that resulted in halting of manufacturing and 

shipping operations. The team had prepared to spend the first few weeks of D-term on finishing 

drone assembly and testing. Instead, the team barely had enough time and opportunity to remove 

the partially assembled drone and all relevant parts from the MQP lab before all WPI facilities 

were closed. With the team scattered across the country, only one member able to work on the 

physical drone, and no access to manufacturing or testing facilities for the remainder of the 

project, the team was forced to reassess project goals and pivot their focus. Extensive testing of 

the drone was no longer feasible, and the team redirected much of their focus towards analysis, 

simulation, ideation for future work, and getting the drone off the ground for its maiden flight. 

The rest of this paper (starting in Chapter 5: Results) is a reflection of the effects of the 

coronavirus and the work the team was able to accomplish with the extenuating circumstances. 

5.1.2 Part Acquisition 

One of the most substantial challenges that the team encountered was part acquisition. 

Due to a limited budget and the desire to make the drone as lightweight as possible, the team 

made critical design decisions to purchase a number of the components from suppliers in China. 
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While items from these suppliers overseas were often less expensive than local suppliers, a 

number of the parts had long lead times of approximately two weeks to one month. As 

mentioned, the team chose to purchase as many parts in carbon fiber as possible to minimize the 

drone’s weight, and all of these carbon fiber parts had to be shipped internationally. Namely, the 

carbon fiber rotor arms, propellers, center frame plates, and landing gear rods in addition to 

aluminum screws and nuts, had large lead times that prevented the team from moving forward 

quickly with assembly. Long lead times and part acquisition often put the team behind schedule 

when assembling the drone components in C-term. 

Once the carbon fiber stock for the center frame and battery plate had arrived, the team 

encountered another roadblock: figuring out how to cut it to shape with all the holes for 

mounting. At the time of assembly, there were no resources available at WPI accessible to 

students that could be used to cut carbon fiber sheets. The team was able to outsource the cutting 

to HydroCutter, a waterjet cutting facility in North Oxford, MA. The president and owner of 

HydroCutter, Tom Gravel, worked with the team to cut the carbon fiber plate stock on his 

waterjets. However, a problem occurred when one of the water-jet clamps snapped mid-

operation, snapping one of the carbon fiber plates. Due to this error, the team had to order a new 

piece of stock, which took approximately two weeks to arrive, putting the team behind schedule 

again. 

5.1.3 Improper Fittings 

Another oversight by the team was realizing that not all of the components purchased 

have the same size connectors. Namely, the pump has a 10mm barbed output for a 10mm inner 

diameter (ID) tube, while the sprayers have a 8mm outer diameter (OD) input. Thus, the team 

could not use the same tubing for all components, so the tubing had to be changed between parts. 

Connectors exist to step-down tubing from 12mm OD to 8mm OD, however, most tubing sold in 

the United States have a minimum of 14mm OD, and there are no connectors to go from 14mm 

OD to 8mm OD. Therefore, the team designed a 3D printed barbed fitting for 10mm ID tubing to 

5mm ID tubing to go from the pump to the spray nozzles. The team ordered a 10mm ID x 12mm 

OD tubing from a supplier in China to use the step-down connector and were only able to install 

this component at the beginning of D-term. This, latest fluidics component, improves the 

reliability of the fluidics system. 

5.1.4 Issues Encountered 

The final iteration of the drone has five ESCs, four of them for the four motors which the 

propellers are attached to and one to drive the spraying system diaphragm pump. The team 

decided to first test the sprayer system since it would take them less time to wire the pump 

compared to the four ESC/motors of the propulsion system. The team first soldered the ends of 

the ESC to both the pump leads and the power distribution board (PDB). Next the team plugged 

in the signal wire of the ESC to the radio receiver and then connected the test battery (1300mah 6 

cell) into the XT60 connector of the PDB. The team had already paired the receiver to the radio 
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before beginning the pump testing. As the team increased the throttle of the radio, the motor on 

the diaphragm started twitching, but did not spin. Therefore, the team identified the faulty 

component to be either the ESC or the diaphragm pump’s brushless motor. The casing of the 

pump was opened to inspect the diaphragm pump, however, after visual inspection, the team 

decided the brushless motor looked to be in a reliable working condition. Since it is very difficult 

to determine if an ESC is faulty based on visual inspection, the team tested the pump with the 

rotor ESCs, which successfully identified the ESC as the faulty part. After replacing the ESC, the 

team tested the pump again and the pump started spinning and successfully pumped water 

through the lines. The team determined that the ESC arrived faulty from the manufacturer, and 

therefore purchased another ESC from a different manufacturer. As soon as the new ESC 

arrived, the team connected it to the pump and tested the pump, which worked flawlessly. 

Another unexpected roadblock occupied the change in rotor arm tube geometry that is 

discussed in 5.2.4  Rotor Arm Iterations. The tube stock material for the rotor arms does not 

have a 45° chamfer on the corners, which was an important geometric feature used when the 

motor mounts were designed. 

5.2 Drone Assembly 

5.2.1 Initial Part Configuration 

The project team assembled the drone landing gear, spray-bar assembly, and laid out all 

of the flight and power electronics over the course of C-term. By the end of the term, the team 

had all components assembled except for the redesigned motor mounts, but they were able to 

verify that all components worked in synchronization. To accomplish the assembly, the team 

fabricated all of the components required to assemble the frame and sub-assemblies of the drone. 

5.2.2  Landing Gear Assembly 

 The team was able to successfully fabricate all of the components for the drone landing 

gear. The carbon fiber tubes that comprise the landing gear struts were cut to length and 

assembled with all the 3D printed connectors and brackets to hold them together. These landing 

gear brackets were printed in PLA from the 3D printers available in WPI’s Foisie Innovation 

Studio Prototyping Lab. Additionally, the project team began to reprint the tank mounts and 

center frame mounts using a chopped carbon fiber Onyx filament used to print on the 

Markforged 3D printer available in the WPI Robotics Engineering offices and labs. These carbon 

fiber mounts were iterated with a new material so that the mount will be stronger than the PLA 

plastic, and far more lightweight. 
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Figure 21. Fully assembled landing gear mounted to the drone center frame 

5.2.3  Spray-bar Iterations 

The spray-bar used to mount the fluid sprayers underwent several different iterations 

since the project team began to fabricate parts for the drone assembly. The design was initially 

derived from a SolidWorks sketch to ensure that the transmission angle would be close to 90°. 

The center-to-center distance between the grounded points at the center of the servo and the 

spray-bar was chosen to ensure that the driving links did not collide, seeing as the crank link and 

bar cannot collide. Figure 22 shows the range of motion the spray-bar rocker moves through 

when the crank sweeps through a 90° motion, the resulting range is about 80°, which is an 

acceptable range of motion because the spray-bar will never need to move outside of a 90° range 

to spray an element of a car. 
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Figure 22. SolidWorks sketch of linkage mechanism rotating through 90° 

Including the initial design for the actuation mechanism for the spray-bar, the team produced 

four iterations of the actuating mechanism (shown in Figure 23). The project team originally 

chose to use a small 25g servo motor but found that it did not supply the torque required to rotate 

the spray-bar. The subsequent iterations used different motors or servos, including a Pololu 35T 

motor, however this option was not lightweight, and served to be troublesome to control and 

required more voltage than the Pixhawk 4 flight controller was able to give it. The final iteration 

of this actuation mechanism uses a commonly found 95g servo and rotates a four-bar linkage that 

rotates a collar-link epoxied to the spray-bar. This servo was easily controlled using PWM 

signals and was tested using an Arduino UNO. 
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Figure 23. CAD models of the four iterations prepared for the spray-bar actuation mechanism 

Figure 24 below shows a close-up of the spray bar mechanism, with the fluid components 

connected with the pump and the spray nozzles.  

 
Figure 24. Close-up of spray-bar on the built drone 

5.2.4  Rotor Arm Iterations 

Apart from the spray-bar actuation mechanism, the only elements of the drone assembly 

that have changed over the course of the project were the components on the rotor arms. 

Originally, the team had a carbon fiber stock set aside for the arms, and all CAD models were 

based on the cross-section geometry of that stock. However, because of cost savings and stock 

availability, the team purchased and implemented a different selection of carbon fiber stock to be 

used as the rotor arms (Figure 25). Changing the geometry of the stock saw the project team 

iterating the motor mounts and center frame mounted to conform with this new tube stock. To 
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conform to this new geometry, the team redesigned the geometry on the motor mount blocks that 

fixture to the rotor arm tube, as well as mount onto each rotor motor. 

 
Figure 25. Cross-section of the carbon fiber tube stock used as rotor arms 

5.2.5  Electrical Components 

 The team was able to assemble all the electronics components of the drone. The 

electronics components were broken into three parts: the flight management unit, the thermal 

imaging unit, and the spraying unit. For the flight management unit, the team soldered wires to 

the PDB where the ESCs connect to and soldered bullet leads connected to the end of the wires. 

This creates a reliable connection between the PDB and ESCs but makes it easy for the leads to 

be disconnected quickly if needed. Bullet connectors were also soldered to the motors in order to 

connect them easily to the ESCs. After the power unit was soldered, it was attached to the 

bottom plate of the center frame with nylon screws. The flight controller was then secured to the 

anti-vibration plate with double sided foam tape. Once those two units were put in place, sensors 

and peripheries like the GPS puck and receiver were able to be connected. For the spraying unit, 

the team soldered the diaphragm pump motor to a designated ESC which was soldered to the 

PDB. The last unit to be assembled was the thermal imaging unit. For this unit the team soldered 

the thermal camera to a Raspberry Pi Zero W, and soldered pigtails to the Pi where it will be 

powered from. After all the components were soldered and mounted, the team flashed the flight 

controller with PX4, set up the radio controller, and calibrated all the onboard sensors. 

https://www.raspberrypi.org/products/raspberry-pi-zero-w/
https://www.raspberrypi.org/products/raspberry-pi-zero-w/
https://www.raspberrypi.org/products/raspberry-pi-zero-w/
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5.3 Individual Component Testing 

5.3.1  Spray Testing 

In addition to flying the drone, the other critical task was to spray and remove snow off of 

a car. At the early stages of C-term, the team wired the pump and ran it to test it with bottles of 

water. With limited documentation on the pump, the team discovered that they could adjust the 

flow rate by rotating a single screw attached to a spring on the inside. With the pump set to the 

maximum flow rate, the team could adjust the pump effectiveness with the hand-held flight 

controller. Then, the team mounted the pump to the tank with a custom carbon fiber mount and 

rubber anti-vibration stand-offs. The team first tested a single sprayer with the pump, and then 

connected all three sprayers together, the latter test is shown in Figure 26. 

 
Figure 26. Remote test of three sprayers operating simultaneously 

The team was able to effectively run the sprayers remotely outside with the on-board 

battery and hand-held flight controller. The current nozzles create a misting effect, and the team 

planned to experiment with different nozzle opening sizes, which is a recommendation for future 

years (refer to 7.1 Mechanical Recommendations). 

5.3.2  Motor Testing and ESC Calibration 

To simplify soldering and wire management, the Pixhawk 4 comes with a PDB that all 

the motor ESCs can be connected to. The team soldered all the power leads of the ESCs to the 

PDB and then soldered the bullet connectors to the three motor wires on both the ESCs and the 

brushless motors. The bullet connectors make it easy to change the direction of the brushless 

motors, since the only thing that would have to be done is unplug two wires and reconnect them 

to the wire they were not originally connected to. After all the soldering of the wires to the PDB 
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and to the bullet connectors, the team calibrated and tested all four main motors (motors used for 

propulsion). Additionally, the ESCs were all independently calibrated. First, one team member 

turned on the radio and put the throttle stick to the top position. After, the second team member 

plugged in the PDB test battery, once the motor made two beeps the first team member lowered 

the throttle stick to the bottom position. This procedure was then done on the remaining 6 parts, 

three ESCs and three motors. Calibrating an ESC involves teaching the ESC what range of 

throttle inputs the ESC should respond to. The ESC needs to know what PWM value on the 

throttle channel corresponds with which of the motors being off, and what PWM value 

corresponds with a full throttle. 

5.4 Initial Software Functionality 

5.4.1 Flight Control and Navigation 

The team was able to set up and upload the firmware to be used on the onboard flight 

controller. The Pixhawk was set up and able to read data from its integrated gyroscope, 

barometer, magnetometer, and accelerometers. Readings were also able to be taken from the 

GPS module attached to the Pixhawk. Testing accuracy of the GPS would be difficult, so the 

team assumed that the GPS was accurate to within 3 feet as per the manufacturer specifications. 

All of this data is utilized by the autopilot for stable and controlled flight. 

 

5.4.2 Thermal Camera 

The IR thermal camera was attached to the Raspberry Pi using communication over I2C. 

The camera was shown to display the temperature difference between sprayed fluid, snow, and 

the surrounding area. The images captured on the camera were set up to be recorded 

automatically on each flight so that the video could be reviewed afterwards for the purposes of 

debugging and demonstration. The camera is mounted onto the drone using its custom 3D 

printed case (seen in Figure 27). Examples of images captured by the camera can be found in 

Figure 28. 
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Figure 27. Thermal camera case 

 
Figure 28. False colored & grayscale images from the thermal camera of a hand (left & right) and snow (center) 

 Figure 29 is the result of processing a generic thermal image of a teapot pouring tea into 

a cup using OpenCV, with darker, cool colors indicating lower temperatures and lighter, warm 

colors indicating higher temperatures. The image processing identified the tea remaining in the 

pot, the stream of tea from the pot to the cup, and the tea within the cup as three distinct entities 

with their own identifying centroid. 

 
Figure 29. Thermal image of teapot, thresholded binarization, & grayscale image with overlaid centroids. Original image 

retrieved from https://cdn.static-economist.com/sites/default/files/images/2014/08/blogs/babbage/20140816_stp503.jpg 

Figure 30 is the result of processing a grayscale image of a hand and a grayscale image 

of a car captured by the drone’s IR camera, with darker grays representing lower temperatures 

and lighter grays representing higher temperatures. In the hand’s case, only one object is 

https://cdn.static-economist.com/sites/default/files/images/2014/08/blogs/babbage/20140816_stp503.jpg
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identified in the image. The binarized hand image shows one of the limitations of lower 

resolution infrared cameras, which have a harder time accurately representing the temperature of 

narrower objects. In order to capture the pinky of the hand, a lower threshold was used, which 

caused some noise between the middle three fingers to be considered part of the hand. The car 

image was captured by the same 24x32 camera but was scaled up afterwards. Even with scaling 

up, details are similarly difficult to determine in originally low-resolution images, but the car 

itself is identified effectively, nonetheless. 

 
Figure 30. Image of hand from IR camera and image of car from IR camera, thresholded binarization of each, & grayscale 

image with overlaid centroid(s) of each 

 5.5 Drone Set-Up 

Once the drone was fully built including the center frame, rotor arms, landing gear, 

spray-bar, and tank, it was necessary to perform some additional set-up steps in order to fly. It 

was important to assemble the drone to make sure the landing gear was angled correctly to the 

center frame. From there, the center frame was removed from the landing gear to connect the 

necessary electronics, and the top plate could be removed to access the PDB. Additionally, it was 

necessary to leave the propellers off of the drone until after all of the set-up steps and just before 

it was going to fly in order to calibrate the motor ESCs. 

Initially, to connect the electrical components as per the diagram in 4.3.3 Electronics 

Parts and Wiring, each of the motor ESCs signal wires (white) were soldered to the PDB in 

each of the respective motor solder pads labeled M1-M4. The ground wire (black) was soldered 

to a ground connection on the PDB near the motor solder pads. Bullet connectors were used to 

create longer wires to connect the ESCs to the respective motors through the rotor arms. 

The 3D printed onyx carbon fiber flight controller plate was attached to the top plate with 

the anti-vibration ring stand-offs. The FC was then attached to the plate using foam pads. The 

GPS puck was mounted to the GPS stand using the foam sticky pads. The GPS stand was then 

attached to the top frame using foam pads pointing in the same direction as the FC. The PDB 

could then be wired to the FC and all of the peripherals could be wired to the FC. The diagram 

for the Pixhawk 4 FC with all of the necessary connections is labeled below in Figure 31. 

Figure 32 below shows the corresponding FC connections on the PDB in addition to the motor 

ESC signal wires and the pump ESC connection. The pump ESC signal wire is wired directly to 

the receiver. 
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Figure 31. Flight Controller Electrical Connections 

 
Figure 32. Power Distribution Board Electrical Connections 

 After all of the multi-pin connections were made between the FC, PDB, and peripherals 

such as the receiver, telemetry radio, and GPS the wires needed to be covered with a nylon 

sleeve. Since the carbon fiber plates were waterjet, they are extremely sharp and could cut the 

low gage wires, so they needed to be protected with nylon sleeves. 

 Once the drone was completely wired and all peripherals were mounted to the center 

frame using the foam sticky tape, the center frame was re-assembled with the rotor arms as well. 

It was then necessary to balance the motors and center frame as seen in Figure 33 below. 

Leveling all the motors and center frame is crucial for the drone to stay stable during flight. Even 

objects were placed at the end of each rotor arm, and in the middle of each rotor arm, and then a 

level was placed on the center frame and spun around the top of each motor to measure if they 

were level. If they were not level, the center frame screws were adjusted until both the center 

frame and motors were level. 
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Figure 33. Leveling the Drone 

 When the drone was eventually leveled, calibration could begin. First, the Taranis radio 

channels needed to be adjusted to be in AETR mode, meaning that CH1 is set to Ail, CH2 Ele, 

CH3 Thr, and CH4 Rud. Then the latest PX4 firmware update was installed on the Pixhawk4 FC. 

In order to do this, the QGroundControl software was installed on a PC. One telemetry radio was 

connected via USB to the computer, while the other was wired to the drone for wireless 

communication. From there, the drone flight preparations began. 

 In the QGroundControl program, the vehicle needed to first be specified and set-up. 

Under the airframe tab, “quadrotor x” was chosen with the “generic quadcopter” option selected 

in the drop down as shown in Figure 34. This specified that the configuration of the team’s 

drone was X4 and custom built. 

 
Figure 34. QGroundControl, Airframe Tab 

After the airframe was specified, the sensors needed to be calibrated. With the drone still 

resting level on the block (not yet mounted to the landing gear and rest of the assembly), the 

“sensors” tab was selected in QGroundControl. There, calibration of the Pixhawk 4’s compass, 

gyroscope, accelerometer, and level horizon were performed by rotating and orienting the FC 

and frame. The menu for this tab can be viewed in Figure 35 below. 



 

 

Car-Snow Clearing Drone MQP - 47 

 

 
Figure 35. QGroundControl, Sensors Tab 

The next tab is radio setup. With the Taranis radio connected to the receiver, the 

QGroundControl program required the team to move the controller sticks so that the program 

could map movement to the throttle and angular adjustment in the roll, pitch, and yaw directions. 

Figure 36 below shows the radio calibration tab. 

 
Figure 36. QGroundControl, Radio Tab 

The next requirement to setting up the drone for flight was located in the flight mode tab. 

Six flight modes were established in order for the drone to take-off, perform the navigation and 

spraying requirement, and then land. The flight modes programmed can be viewed in Figure 37 

below. Channel 5 on the Taranis radio is used to switch between the flight modes. In addition, 

channel 6 is used to arm the drone prior to take-off. This is essentially an “enable” switch. 
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Figure 37. QGroundControl, Flight Modes Tab 

The last calibration requirement prior to flying was calibrating the power. In the “power” 

tab, the user specified the number of cells in the LIPO battery used, the maximum voltage, and 

the minimum voltage. In addition, the user calibrated the motor ESCs through this power tab by 

pressing the “calibrate” button as shown in Figure 38 below. 

 
Figure 38. QGroundControl, Power Tab 

 After all of this calibration was performed, the motors could be tested by arming the 

drone using the Taranis radio, and then varying the throttle on the left stick. The direction of the 

motors was analyzed and changed on the ESCs so that motors diagonally across from each other 

were rotating in the same direction, CW, and the other pair of motors diagonal were rotating in 
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the opposite direction, CCW. Refer to A.2 Drone Physics and Flight for an explanation of how 

drones operate with respect to the direction of propellers. Then, the propellers could be mounted 

to the motors in preparation for flight. 

5.6 Flying 

One of the most important results to touch upon is the operation and flight of the drone. 

Due to the COVID-19 pandemic as discussed earlier, the team was displaced with only one team 

member having access to the drone. By the last week of D-term, the drone flight was tested on 

campus. The drone successfully flew to the six feet height that the team estimated it would be 

operating at for a majority of the time, due to this being the typical height of the top of a car’s 

windshield. However, when the drone reached the six feet height, the drone began to get unstable 

and oscillate. As a result, the team landed the drone and decided to evaluate what could have 

caused the issues encountered. Some reasons that the team came up for unstable flight included 

calibration errors, structural issues, an unlevel center frame, or requiring a control loop to be 

implemented. The team believes that if there were not extenuating circumstances in D-term, they 

would be able to solve the stability issues encountered. 

Another important thing to note is that all of the drone systems could be operated with the 

Taranis radio. This includes the roll, pitch, and yaw of the motors, controlling the speed of the 

motors (and thus, the thrust), and the pump and sprayer unit. The team was able to successfully 

spray remotely mid-flight with just the radio and the drone.  
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Chapter 6: Conclusion 

Snowfall creates many challenges and dangers every winter for those living in the colder 

regions of the world. Removing snow from a car can be a time-consuming, labor intensive, and 

dangerous task. For those of limited physical ability, clearing snow and ice from a car can be 

difficult, if not impossible. For some businesses, the labor spent clearing snow off of a fleet of 

cars adds up to be a significant cost. Everyone who drives has to get the snow off of their vehicle 

in order to safely operate it and not risk the safety of others. 

Fortunately, as this project has demonstrated, advances in UAV technology has allowed 

for the vehicle snow clearing process to be automated. Due to its efficient but effective design, 

the drone is capable of taking off and spraying a car with deicing fluid. The fluid is able to be 

stored onboard the drone and pumped through multiple nozzles that allow for optimal windshield 

coverage. Additionally, other sensing components such as a GPS receiver and an IR camera give 

the drone potential autonomous flight and additional car identification capabilities. 

This drone meets the majority of the criteria outlined in 3.2 Metrics, including being 

designed to operate in cold temperatures, carry a five liter (approximately one gallon) liquid 

payload, and is structurally sound, leak free. The team was able to test the flight and spraying 

capabilities and get the drone off the ground to a height of approximately six feet. 

In addition, the drone is designed in such a way that could allow for it to be easily used 

for a variety of other applications separate from the goals of this project, including, but not 

limited to: 

● Clearing snow from the roofs of buildings 

● Washing vehicles 

● Disinfecting a dangerous area 

● Small-scale firefighting 

● Spraying for mosquitoes or other disease carrying insects 

 Additionally, the team intended to design the drone to be a standalone unit that had all 

necessary flight and operation capabilities on board. This project, with the same frame and 

design, could be expanded to allow for tethered power and spraying with a ground unit in order 

to lessen the weight of the drone and allow for greatly increased flight time. 

This car-snow clearing drone was successfully able to fly and spray deicing fluid in a 

way that could be used to clear the snow and ice from a car windshield. Despite technical, fiscal, 

and weather limitations, the project was clearly able to demonstrate the feasibility of using a 

drone to help people clear the snow from their car in order to improve their quality of life and 

reduce the risks associated with such an activity. Figure 39 below shows the fully assembled 

drone the team was able to accomplish after four terms of work. 
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Figure 39. Finalized drone build 
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Chapter 7: Recommendations for Future Iterations 

Due to the complexity of this project and factors outside of the team’s control, such as 

COVID-19,long part lead times, and insufficient funding, there were a number of goals that the 

project team had that they were unable to achieve. Both the team and the advisors began this 

project with the intent for this to be a multi-year project, with initial goals set for the first 

iteration. The ideas we had for the future included a number of mechanical, electrical, and 

software recommendations. 

7.1 Mechanical Recommendations 

 With the truncation of the term of this project, the team compiled a series of 

recommendations to improve the mechanical structure of the drone and its sub-assemblies. These 

recommendations will cover components that require further testing for validity, as well as 

components that need further design iterations. The first recommendation for future work would 

be to re-manufacture the spray-bar actuation mechanism. The team developed the CAD models 

for a fourth iteration of this component to allow for a servo, as opposed to a motor, but were not 

able to finish reprinting it due to the cancellation of D-term on campus. These models can serve 

as reference to a future team to decide if a linkage system would be preferable to move the spray-

bar. Additionally, a future iteration of this component would include a smoother bearing surface 

that the bar would rotate inside, as the current iteration uses bronze bushings that are slightly 

undersized compared to the carbon fiber tubing, requiring that the inner diameters be reamed to 

fit adequately. Secondly, the project team recommends that an electronics housing component be 

manufactured to cover the sensitive electrical components mounted on the center frame. This 

electronics housing has been modeled by the team, and the CAD model can be found in the CAD 

repository compiled by the project team. The project team recommends that this component be 

made of a durable plastic material that is weather-proof to allow for flight in snowy weather. One 

solution that could be explored for this component would be to vacuum-form a sheet of ABS 

plastic to the desired shape to sufficiently cover the center frame. In order to manufacture this 

component with vacuum-forming, the negative of the cover will first need to be manufactured. 

 The project team has additional recommendations for future iterations of the project that 

would require design challenges that this initial iteration was not able to solve. The team 

recognizes the design challenge that accompanies protecting the car from the drone in the case of 

failure in the flight controls. The team offers the task of a mechanical solution to future project 

iterations to design components to protect the car from the propellers colliding with the 

windshields or body of the car, as the team was not able to come up with a viable solution with 

the funding and materials provided, as the team was not able to come up with a viable solution 

with the funding and materials provided. With increased ability to test the drone in future 

versions, a subsequent team will be able to formulate safety measures to protect both the drone 

and the car. Lastly, the project team had made the design decision to build the drone to be 

operated detached from a ground station, making the system more mobile for autonomous flight. 
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However, the team acknowledges that the drone has the potential to be tethered to a ground 

station, giving the drone more flight time (refer to the idea for this project in 3.1 Project 

Approach, a tethered drone cleaning a windmill blade). A tethered solution could include a 

mobile ground station that gives the drone the ability to have a larger deicing fluid reservoir, as 

well as an external power supply. Both these additional capabilities would allow the drone 

system to spray more deicing fluid and fly for a longer period of time if the system was powered 

from a continuous power supply. However, implementing these tethered solutions would require 

further design considerations to alter how the spraying system works, as well as the electrical 

engineering task of incorporating an external power supply. While future iterations of this project 

could have other mechanical focused changes made to the structure of the drone, these 

recommendations are all tasks that the project team determined to be the most logical iterations 

of the current design. 

7.2 Electrical Recommendations 

Some of the improvements that can be made to the electronics include upgrading to a real 

time kinematics (RTK) system, adding a stereo camera, and adding a companion computer. First, 

upgrading the current GPS sensor with an RTK system will increase the accuracy of the drone 

from its current accuracy of three feet to being accurate to the centimeter. With this in place, the 

drone will more accurately spray de-icing fluid where programmed to, and the drone operator 

can more accurately determine the position of the drone. Another electronic component that the 

drone would benefit from would be a stereo camera and a companion computer. These systems 

would allow the drone to autonomously map out the object it wants to de-ice and be able to 

create paths and targets for where it needs to spray the fluid. With this system on board, the 

drone will also benefit from the anti-collision systems that could also be implemented, as noted 

in Section 7.2. A good choice for a companion computer is the NVIDIA Jetson, which is 

lightweight, but powerful. The addition of these systems creates a drone that, when programmed 

correctly, can take-off, de-ice and land fully autonomously. The vision for this project going 

forward is transitioning from a manual operator to autonomous flight that only requires an 

operator to start the drone. 

7.3 Software Recommendations 

 Due to timing, budget, and drone-access limitations and roadblocks, most software plans 

were cut or low-priority in comparison to work on the physical drone systems or other aspects of 

the project. Opportunities for software improvements include two major categories: computer 

vision, and autonomation. 

 While some research and work on thermal imaging was accomplished with this project, 

timing and non-snow weather conditions restricted how much useful data could be collected for 

actual tuning of this software. By the time the IR camera was secured, most opportunities for 

recording snowy conditions similar to what the drone would experience had passed, and the 
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winter the team experienced had very minimal snowfall. With access to the camera during snowy 

months and a fully built drone, plenty of meaningful data can be gathered to refine the thermal 

imaging software, particularly for identifying what parts of a windshield have been cleared and 

what parts still have snow covering them. 

 The other primary intended computer vision functionality for this project, depth sensing, 

had to be cut due to budget and time restrictions. While GPS can get the drone close to the car 

and thermal imaging can distinguish the car from its surroundings if its temperature is 

significantly different from these surroundings, not all cars have remote starting features or 

similar that would cause such a temperature difference. However, using either a stereo camera 

((mentioned above in 7.3 Software Recommendations) or two cameras mounted on different 

places on the drone, one would be able to sense depth, and thus object shapes, independent of 

temperature. Using artificial intelligence techniques such as Feature Matching (discussed in 4.4.2

 Computer Vision), the stereo images can be analyzed to identify the car and its position 

and orientation relative to the drone. With this information, the drone can properly be oriented 

relative to the car and combined with the snow-clearing progress information from the IR 

camera, the car can be accurately and efficiently cleared. 

 Due to the team’s primary focus being on getting the drone and its peripherals assembled 

and functioning, there is plenty of opportunity for automation. With teleoperated flight test data 

and improved car identification and localization, the automated flight plan outlined in 3.3.4.5 

High-Level Workflow can be realized. This automation has multiple components, including 

flight path plans for clearing snow, spray pattern management, reorientation routines when the 

drone is off-course, and on-board resource (i.e. power and deicing fluid) contingency routines. 

7.4 General Recommendations 

 Aside from specific recommendations that fit under the three categories (mechanical, 

electrical, and software) the team came up with additional recommendations. Two general 

recommendations that the current team recommends future teams look into are: a variety of de-

icing fluids and their efficiency in cleaning a car, and the environmental impacts of these fluids. 

Background 2.7 Deicing outlines research performed on existing mixtures for de-icing used 

widely across different industries. Due to the drone not being operational in the winter and the 

team not receiving a significant amount of snow in 2020, the team was only able to test one 

solution, isopropyl alcohol and water, manually. Further solutions should be investigated to 

determine their efficiency and environmental impact. Another general recommendation the team 

has was connecting the Raspberry Pi to the flight controller via an on-screen display, in order to 

be able to fly the drone via first person view. 

 Two more general recommendations that the team came up with relate to the spraying 

mechanism. The team had intended to test various nozzles and their effectiveness at clearing 

snow and ice off of cars, but, due to the coronavirus, shipping from China was slowed and the 

team was displaced, as noted earlier. The team recommends that different nozzle shapes be tested 

(as discussed in 2.6 Spray Nozzle Design) in addition to nozzles that allow different flow rates. 
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The flow rate that is best for de-icing the car should be determined. In addition, the team 

recommends using a step-down voltage regulator to power the Arduino directly from the flight 

controller. The Arduino powers the spray bar servo using the PWM outputs. 
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Appendix A. Additional Background 

A.1 Introduction to Drones 

The Introduction to Drones section provides a basic overview of what a drone is and 

when it was invented. The key element of the background is to understand how drones were 

invented and how they’ve evolved over time. For the purpose of this paper, a drone will be 

defined as a multi-rotor remote-controlled pilotless aircraft.  

A.1.1 History of Rotary Aircrafts 

Rotor Aerial Vehicles, also known as UAVs have been in existence for hundreds of 

years. As Igor Sikorsky, a Russian-American aviation pioneer known as the father of the 

helicopter described, “The idea of a vehicle that could lift itself vertically from the ground and 

hover motionless in the air was probably born at the same time that man first dreamed of flying” 

(Sikorsky Helicopters, 1997). The first type of flying “rotor” vehicles were Chinese tops, a toy 

children would play with made out of a bamboo stick and a propeller made of feathers 

(Leishman, 2006). This toy has been being played with since 400 B.C.E. The toy is spun 

manually to produce lift and propel itself into free flight when released. Other examples of early 

rotorcrafts designs and concepts can date to Leonardo Da Vinci’s Helicopter drawings but have 

only been around 100 years since there have been big advances in rotary aircraft (Leishman, 

2006). The pioneers of rotorcraft, Stanley Hiller and Igor Sikorsky, are known as the fathers of 

helicopters because of their work with rotary vehicles, which have become a major part of 

modern aviation due to their ability to take-off and land vertically.  

The first progress with quadcopters came in the early 20th century with Etienne 

Oemichen, a French engineer and helicopter designer. His research started with an aircraft he 

built in 1920 called the Oemichen No.1. This aircraft was powered by a 25 hp engine that spun 

two rotors. Sadly, this aircraft failed to produce the necessary thrust to lift the vehicle off the 

ground. Therefore, Oemichen built the Oemichen No. 2 aircraft with 4 rotors and 8 propellers, 

driven by a 120 horsepower engine, which was later swapped for a 180 horsepower engine. This 

aircraft is now recognized as a famous multirotor aircraft advancement, first flying unassisted in 

1922, and flying for several minutes in 1923. The following year this aircraft set the first-ever 

Federation Aeronautique Internationale distance record for helicopters. In the 1920’s Oemichen 

was able to fly the vehicle more than 1,000 times, where he was able to improve stability and 

control of the vehicle. Even with his success, Oemichen thought the machine was not practical, 

and abandoned the design to start working on single rotor aircrafts (Munson, 1968).  

In the same time period, the Army Air Corps contracted Dr. George de Bothezat and Ivan 

Jerome to create an aircraft capable of flying vertically. They created a vehicle that was only able 

to get 1.8 meters off the ground and fly a maximum of 1 minute and 42 seconds. Just as 

Oemichen was discouraged and abandoned his ideas, the Army Air Corps did not continue with 

the project. From the 1920’s through the early 2000s, minimal research into multi-rotor vehicles 
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occurred, especially ones capable of lifting passengers or heavy payloads, with the only 

exception being tiltrotor-style crafts, such as the Osprey. More recently, companies have been 

looking into quadrotors and researching their use for passenger chartering, or as cargo vehicles. 

One example is the Bell Boeing Quad Tiltrotor project, which is a part of the U.S. Army’s Joint 

Heavy Lift program. 

A.1.2 History of Drones 

Unmanned Aerial Vehicles were first created 170 years ago (Buckley, 1999). These 

“drones” were used in 1839 when Australian soldiers attacked the city of Venice with unmanned 

balloons filled with explosives. These “drones”, or unmanned balloons, were unsuccessful and 

therefore not widely adopted. The first pilotless winged aircraft was built in 1916 by Great 

Britain, called the Ruston Proctor Aerial Target (Dronethusiast, 2018). This aircraft was based on 

a design by Nikola Tesla and was controlled via radio like many modern day drones. American 

Engineers observed this advancement in the British technology and later created an alternative, 

the Hewitt-Sperry Automatic Airplane. The plane was upgraded and mass produced under the 

name Kettering Bug. During World War II and the Cold War, UAV technologies were being 

researched and developed. However, these new mechanisms were still seen as unreliable and 

expensive (Dronethusiast, 2018). Although drones were previously associated with military 

operations because of their initial uses, drones today are used for a wide variety of tasks. Some 

of today’s drone functions include: delivery, surveillance, mapping, agriculture, natural disaster 

relief and even autonomous transportation vehicles. 

A.2 Drone Physics and Flight 

Understanding the science behind how drones operate is essential to determine the design 

specifications and parts required to design a functional drone. There are a number of factors that 

contribute to drones being able to lift off the ground and fly, especially with a payload. Drone 

flight is often compared to that of remote control (RC) helicopters, but in reality, they have 

significant functional differences. While RC helicopters can fly with one main rotor, drones 

require multiple rotors in order to achieve the control necessary to be self-reliant. Michael Perry, 

a public relations manager at the popular consumer drone company DJI, said that “having more 

than one propeller gives drones more fail-safes. For instance, if one of the motors fails, the 

aircraft can still stay aloft with the remaining motors working in concert to compensate” (Pullen, 

2015). The controls, navigation systems, and sensors (discussed further in section 2.4) allow 

drones to have a level of autonomy, where the systems on-board can communicate with each 

other to overcome any difficulties or failure during flight. This autonomy allows them to stay 

steady when a strong gust of wind passes, for example. Drones are capable of flying, hovering, 

or navigating without pilot input, making drones unique compared to other aircraft. 

There are two main factors to consider about how drones fly: physics, and the relation of 

one rotor with another in order to navigate. Drones use rotors for propulsion and navigation 
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control. The spinning blades push air down, which creates an opposite force from air pushing 

back on the rotors. This creates lift and pushes the drone off the ground. In order for a drone to 

lift off the ground, the force of lift needs to overcome the weight of the drone. Ultimately, drones 

need to control the upward and downward forces from the rotors in order to control flight. The 

faster these rotors spin, the greater the force of lift is and the faster the acceleration off the 

ground. The more rotors on a drone, the more lift a drone will generate, which allows it to carry a 

heavier payload. Drones can do three main functions: hover, climb, and descend. In hovering, the 

upward lifting force from the rotors equals the downward force from gravity acting on the drone. 

When climbing, there is a non-zero upward force that is greater than the downward force. In 

order to descend, the downward force from weight must be greater than the upward force of lift 

(Allain, 2017).  

The other main factor is how rotors rotate in relation to the other rotors. In the most 

common drone configuration, X4 (four rotors), the rotors diagonally opposite from each other 

rotate in the same direction. In Figure 1a, rotors 1 and 3 are both spinning clockwise while rotors 

2 and 4 spin counterclockwise. In the hovering state of the drone, the net angular momentum is 

zero, which means that all rotors have the same net rotational velocity. Some rotors may have 

different velocity, but the net rotational velocity would add up to be zero. Rotation about the 

vertical center axis can be caused by decreasing (or increasing) the angular velocity of a rotor so 

that the drone has a net angular momentum. However, when changing the angular velocity of 

one rotor, you also need to change the angular velocity of the opposite pair of rotors, with the 

same, but opposite, magnitude, in order to compensate for the change so the drone doesn’t tip or 

descend. For the drone to move in a direction, a forward component of thrust from the rotors is 

needed. As seen in Figure 1b, in order to move in a linear direction while still hovering, the 

drone decreases the angular velocity of the front rotors (2 and 3 in Figure 40) and increases the 

angular velocity of the rear rotors (1 and 4 in Figure 41). Since the rotors in each pair spin 

opposite directions, the angular momentum is still zero (Allain, 2017). 

 

 
Figure 40. Rotations of Drone Rotors in Hovering State (Allain, 2017) 

Figure 41. Rotations of Drone Rotors in a Forward Motion State (Allain, 2017) 
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A.3 Regulations 

Drone law and regulation in the United States is primarily federal mandated. Federal law 

requires registration of drones as well as compliance with FAA guidelines for model aircraft. 

Within Massachusetts, Boston is the only city that has additional laws, requiring that recreational 

drones are flown in city parks. 

FAA guidelines are similar in their restriction of both recreational and commercial 

drones. Additionally, while the FAA only requires that commercial drone pilots receive a 

Remote Pilot Certificate from them, they have indicated plans to implement a pilot certification 

requirement for recreational drones in the future. FAA guidelines for flying a drone for 

recreational purposes are as follows (Federal Aviation Administration, 2019): 

 

1. Register your drone, mark it on the outside with the registration number (PDF), 

and carry proof of registration with you. 

2. Fly only for recreational purposes. 

3. Follow the safety guidelines of a community based organization. 

4. Fly your drone at or below 400 feet when in uncontrolled or "Class G" airspace. 

This is airspace where the FAA is not controlling manned air traffic. To determine 

what type of airspace you are in, refer to the mobile application that operates your 

drone (if so equipped) and/or use other drone-related mobile applications. 

Knowing your location and what airspace you're in will also help you avoid 

interfering with other aircraft. 

5. Do NOT fly in controlled airspace (around and above many airports) unless you 

receive an airspace authorization for operations in controlled airspace through 

LAANC (Low Altitude Authorization and Notification Capability), before you 

fly. 

6. You are flying at a recreational flyer fixed site that has a written agreement with 

the FAA. The FAA has posted a list of approved sites and has depicted them as 

blue dots on a map. Each fixed site is limited to the altitude shown on this map, 

which varies by location. 

7. Keep your drone within your line of sight, or within the visual line-of-

sight(VLOS) of a visual observer who is co-located and in direct communication 

with you. 

8. Do NOT fly in airspace where flight is prohibited. Airspace restrictions can be 

found on our interactive map, and temporary flight restrictions can be found here. 

Drone operators are responsible for ensuring they comply with all airspace 

restrictions. 

9. Never fly near other aircraft, especially near airports. 

10. Never fly over groups of people, public events, or stadiums full of people. 

11. Never fly near emergencies such as any type of accident response, law 

enforcement activities, firefighting, or hurricane recovery efforts. 
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12. Never fly under the influence of drugs or alcohol. 

Additional guidelines for commercial drones that are not being used for payload delivery are as 

follows (Federal Aviation Administration, 2019): 

1. Drone must weigh less than 55 lb (25000 g) 

2. Drone cannot fly under a covered structure or inside a covered stationary vehicle 

3. Drone must be flown during daylight or civil-twilight (30 min before official 

sunrise to 30 min after official sunset) 

4. Drone cannot be flown above 100 mph 

5. No person may act as a remote pilot in command or as a visual observer for more 

than one drone operation at a time 

6. Maximum altitude of 400 feet above ground level (AGL) or, if higher than 400 

feet AGL, remain within 400 feet of a structure.  

7. May operate from a moving non-aerial vehicle if operating over a sparsely 

populated area 

8. Cannot carry hazardous materials 

9. Preflight inspection by remote pilot in command is required 

10. A person may not operate a small unmanned aircraft if they know or has reason to 

know of any physical or mental condition that would interfere with the safe 

operation of a small UAS. 

 WPI has drone-specific policy restricting their operation by WPI students or faculty as 

part of WPI academic research in addition to FAA guidelines outlined above. WPI policy states 

that that any WPI employee or student wishing to operate a drone as part of WPI academic 

research must notify the Office of Public Safety. Additionally, if operating said drone outdoors, 

the WPI employee or student must do so as a 14 CFR Part 107 Pilot in Command for drones 

weighing less than 55 lb or obtain a Certificate of Waiver or Authorization issued by the FAA 

(Policies, n.d.). 

 Out of all of these restrictions and mandates, one of the most notably restrictive is the 

requirement for a drone to be operated within line of sight of the operator or a visual observer. 

This requirement restricts the ability of a drone to legally operate autonomously in a legal 

manner, even on private property. Any drone that would need to travel somewhere to operate 

would be significantly limited in its range of operation, especially if the operator is using the 

drone to prevent exposure to weather conditions and thus plans to remain indoors. Furthermore, a 

drone operating autonomously would still need to be monitored in person the entire time, 

partially negating the value provided by automating the drone's operation.  
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Appendix B. Drone Component Bill of Materials 

Table 4. Part Bill of Materials 

Part Link Description 

Flight Controller Link Pixhawk 4 Flight Controller 

Receiver Link FrSky L9R Long Range Receiver (9/12ch Non-Telemetry) 

Telemetry Radio Link Holybro 100mW Transceiver Telemetry Radio Set 

Spray Nozzle Link Agricultural Spray Nozzle (8mm) 

Tank Link 5L Agricultural Drone Tank 

Pump Link Eaglepower Brushless Diaphragm Water Pump 

Camera Link PIM365 IR Camera 

Motor Link Lumenier LU8 II 190kv Professional Motor 

Propeller Link 28” Folding Propellers 

Motor ESC Link HOBBYWING XRotor Pro 50A ESC 

Pump ESC Link HOBBYWING XRotor 40A ESC COB 

Battery Link Tattu Lipo 22.2V 25C 6S 22000mAh 

Cross Connector 

Quick Fittings 

Link Cross Connector Quick Fittings Connector (8mm OD hose) 

PVC Plastic Tubing Link 8mm OD x 5mm IDSoft PVC Plastic Tubing 

PVC Plastic Tubing Link 12mm OD x 10mm ID PVC Plastic Tubing 

 

 

 

 

 

 

https://www.getfpv.com/pixhawk-4-autopilot-and-neo-m8n-gps-pm07-combo.html
https://www.getfpv.com/frsky-l9r-long-range-receiver-9-12-non-telemetry.html
https://www.getfpv.com/index.php/holybro-100mw-transceiver-telemetry-radio-set-v3-915mhz.html?ccartCamp=65956434.2&recoSrc=6m-dl-multisess-alpha-abt:6196,3m-dl-multisess-alpha-avt:6196
https://www.aliexpress.com/item/33012729038.html
https://www.aliexpress.com/item/32844351570.html
https://www.aliexpress.com/item/32950084499.html
https://www.digikey.com/product-detail/en/pimoroni-ltd/PIM365/1778-1231-ND/9606191
https://www.getfpv.com/lumenier-lu8-ii-190kv-professional-motor.html
http://store-en.tmotor.com/goods.php?id=399
https://www.hobbywingdirect.com/products/xrotor-pro-50a-esc-dual-pack?variant=4159024260
https://www.hobbywingdirect.com/products/xrotor-40a-esc?variant=955949541
https://www.genstattu.com/tattu-22000mah-22-2v-25c-6s1p-lipo-battery-pack-with-as150-xt150-plug.html
https://www.mcmaster.com/5225k116-5225K116
https://www.mcmaster.com/5233k117
https://www.aliexpress.com/item/4000005257840.html?sendGoodsCountry=&serviceName=EMS_ZX_ZX_US&tmLog=&businessType=$couponShareDTO.bizType&invitationCode=$couponShareDTO.spreadCode&spreadType=$couponShareDTO.spreadType
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Appendix C. Assembly Bill of Materials 
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