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Abstract 

Wildfires pose a significant threat to residential structures in the wildland urban interface. 

Firebrands are the primary cause of home ignition because they can be transported miles from the 

flame front and ignite spot fires on or in very close proximity to dwellings. The overall project 

goal was to use a performance-based design approach to quantify the associated wildfire exposures 

and determine the feasibility of protecting residential structures from wildfires using an automatic 

fixed exterior fire-fighting system. The project team defined specific fire scenarios in which 

firebrands could ignite a home, determined an appropriate fire-fighting agent and put forth a 

proposed system design that includes the specification of system components and development of 

system discharge criteria and operation duration. 
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Capstone Design Statement  
This project meets the requirements of the Accreditation Board for Engineering and Technology 

(ABET) for a Capstone Design Project. By addressing a number of different realistic constraints, 

as outlined below, the project team was able to apply knowledge and skills acquired in earlier 

course work to solve a real world engineering problem.  

 

Economic 

The cost of this system will ultimately be a limiting factor that controls the number of homeowners 

who will decide to install the system on their home. Although a complete cost analysis was not 

completed, the cost of several components was compared to inform certain decisions. For example, 

radiant energy detectors could potentially provide effective fire detection around the home. 

Unfortunately, they are prohibitively expensive. The linear heat detectors that we recommended 

can provide equivalent performance at a fraction of the cost.  

 

Environmental 

Since this system will be discharging on the exterior of a building, it has the potential to directly 

impact the environment surrounding the home. The use of a chemical foam concentrate was 

identified as the main environmental concern. NFPA 1150 Standard on Foam Chemicals for Fires 

in Class A Fuels was used to determine whether the specified foam concentrate meets established 

environmental regulations. This standard addresses mammalian toxicity limits (acute oral and 

dermal toxicity), aquatic toxicity, and biodegradability. The Class A foam concentrate that has 

been specified for this system meets all of the restrictions of NFPA 1150 and therefore we believe 

that the system will be environmentally safe.  

 

Ethical 

The design in this project is meant to protect the lives of people. Therefore, when designing the 

system proposed in this report, ethical decisions regarding risk and danger to people and the 

environment were strongly considered. The American Society of Civil Engineers has adopted a 

Code of Ethics to Guide Engineering Practices. Although all aspects of this code were not 

applicable, there were several canons of the code that we made efforts to actively uphold. First, 

engineers shall hold paramount the safety, health, and welfare of the public. Every decision that 

we made throughout the project served to create a final product that would be able to best protect 

the homes of those who chose to install it. Additionally, engineers shall perform services only in 

areas of their competence and shall only issue true statements. By carefully defining the project 

scope and also identifying limitations of the project, we were able to keep the project within the 

confines of areas that we felt competent in. 

 

Health and Safety  

Any fire suppression system, when designed and installed properly, will increase the level of safety 

in a particular structure. This system has been designed to preserve the structural integrity of 

residential structures during a wildfire event. The Society of Fire Protection Engineering 



iii 
 

 
 

Performance Based Design Guide is an industry standard for solving engineering problems such 

as this one. By following the process in this guide and incorporating information from the National 

Fire Protection Association, Underwriters Laboratories, and FM Global, we are confident that this 

system will perform as intended to protect residential structures during a wildfire.  

 

Manufacturability 

To ensure that the system is easy to install, we have specified commercially available components 

that are already being manufactured. A manufacturer has been specified for each system 

component, but the engineer involved in each installation would have the freedom to select 

equivalent components from different manufacturers based on regional availability, pricing, or 

other considerations.  

 

Sustainability 

Sustainability is an important aspect for the desirability and success of any design. In connection 

to the economic design constraint, having a sustainable product will allow maintenance costs to be 

low which benefits the user or owner. The use of sustainable materials in the design is also 

advantageous to the environment. The proposed design and materials in this project report 

incorporate the importance of sustainability, as they are environmentally safe and tested and listed 

for external fire protection purposes. Using components that are weather resistant and listed for 

external use will allow the system to remain in place for as long as possible with minimal 

maintenance.  
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Professional Licensure Statement 
Licensure is a process required for an individual to practice a regulated profession. Licensure must 

be administered by a state-level authority. The licensing process and requirements vary from state 

to state, but generally involve the same basic steps.  

 

First, individuals must graduate from an Accreditation Board for Engineering and Technology 

(ABET) accredited engineering program. After, the graduate must take and pass the Fundamentals 

of Engineering (FE) exam to obtain their Engineering in Training (EIT) certification. Each exam 

incorporates fundamental topics such as calculus and physics as well as discipline-specific 

material. For example, the Civil Engineering FE Exam has questions on structural engineering, 

surveying, geotechnical engineering, and transportation engineering. After passing this exam, 

individuals must complete 4 years of work experience before applying for the Principles and 

Practice of Engineering (PE) exam. The number of years of work experience is one of the 

requirements that typically varies between states. Once the PE exam is passed, the individual will 

obtain their professional engineering license, granting them the ability to approve and stamp design 

documents for construction.  

 

Obtaining a professional engineering license is a big accomplishment for any engineer, as it is a 

result of hard work and dedication to their profession. As this licensure advances careers, it also 

puts greater responsibilities on those that obtain it. Professional Engineers hold the safety of the 

design and of the people who are involved in the design and construction, as well as the people 

that will utilize the final product. They are held accountable for any liability that could result from 

the project. Licensure is important to the public because it sets uniform standards and ensures that 

individuals who are responsible for engineering designs have met minimum requirements for 

education and work experience.
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Executive Summary 

Wildfires in the United States are becoming more severe and more frequent. In an attempt to 

minimize the impact of wildfires, the United States Forest Service spent over 3.1 billion dollars on 

fire suppression in 2018; this accounted for over 50% of their budget (Amadeo, 2019; National 

Interagency Fire Center, 2018). Despite the money spent on fire suppression, over 25,000 

structures burned down as a result of wildfires in 2018; 18,000 of these structures were residences 

(National Fire Protection Association, 2019). Homes in areas where human development mixes 

with the natural environment, also known as the wildland urban interface (WUI), are typically at 

the most risk. (Bracmort, 2014). The primary threat to structures in the WUI is firebrands. 

Depending on wind conditions, firebrands can be carried many miles away and arrive well before 

the flame front (Maranghides et al, 2013). Firebrands have the potential to initiate spot fires by 

igniting vegetation around the home and the structure itself (Caton and Gorham, 2016). 

Firefighters who combat the flame front are not able to protect every structure; they will typically 

focus on extinguishing structure fires only if it will help their overall mission of stopping the 

wildfire spread (Hall Rivera, 2018). There are commercially available residential exterior 

suppression systems for wildfire management, but the effectiveness, performance and reliability 

of these residential systems remain in question. The commercially available systems that we 

researched use water as the suppressant. We identified foam as having the potential for more 

efficient fire suppression in an exterior setting. Foam concentrates lower the surface tension of 

water to allow improved penetration of the agent into fuels and certain foam solutions adhere better 

to vertical and horizontal surfaces. Additionally, foam systems require a lesser water demand and 

the suppressant can remain in place after discharging to provide enhanced exposure protection 

(Perry, 2001).  

The overall goal of this project was to determine the feasibility of protecting residential structures 

from wildfire exposures using a fixed exterior firefighting system. We followed a performance-

based design approach for this project consisting of the following steps: 

1. Define project scope 6. Develop trial designs 

2. Identify goals 7. Evaluate trial designs 

3. Define objectives 8. Modify design as necessary and re-evaluate  

4. Develop performance criteria 9. Select Final Design 

5. Develop fire scenarios and design fires  

A realistic fire scenario was developed and analyzed to model a pathway of home ignition via 

firebrand exposures. Firebrand exposures are a threat until the direct flame front has passed the 

house, which can take up to an hour from the time that the first firebrands begin to fall on or in 

close proximity to the house. Once initial ignition occurs, however, firebrands that fall on the house 
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contribute negligible heat compared to the growing fire, but do pose the threat of multiple ignition 

sources. In the scenario examined, firebrand accumulation in a mulch bed at the base of the home 

causes the mulch to ignite. The mulch fire ignites ornamental bushes planted within the mulch bed. 

Radiation from the bush and mulch fires then causes the siding of the home to ignite. The flames 

spread vertically up the wall until they reach the eaves. With no intervention from a fire fighting 

system, the time from mulch ignition to flames reaching the eaves was approximated to be 79 

seconds. A conservative estimate of this fully developed fire is 3 MW, which includes the burning 

mulch, bushes and walls. With a fire fighting system in place, the fire scenario calculations indicate 

that the system will begin to discharge suppressant about 62 seconds after ignition.  

We are recommending a fixed pipe compressed air foam system to protect homes from the 

firebrand exposures. This system consists of open nozzles installed at the eaves of the home to 

cover the walls and the ground around the home. The suppression system is split into four deluge 

zones that operate independently in order to conserve resources. The piping for each zone will run 

back to an enclosure in the backyard that houses the air cylinders, foam supply tank, and the control 

panel cabinet. We estimated a 6-ft by 6-ft space for this enclosure, while the water tank can be 

installed underground nearby. FireFlex was identified as the major manufacturer of fixed pipe 

compressed air foam systems, and their Integrated Compressed Air Foam (ICAF) System offers 

most of the components that were needed for this design. FireFlex does not specify a detection 

system for use with their ICAF System. Based on the conditions around the home and the 

characteristics of the fire scenario, we identified linear heat detection system as the best way to 

detect fires on the exterior of the home. When installed at two levels on each side of the home, 

linear heat detection can effectively detect fires in a timely manner. The detection system specified 

is also able to discriminate against short circuits to protect against nuisance alarms.  

The threat of firebrand exposures was determined to be 1 hour. Therefore, the system must be 

equipped with sufficient resources to operate for this duration. It was determined that the system 

should discharge a minimum of 0.087 gpm/ft2 over the design area. We are specifying compressed 

air foam at a 1 to 4 expansion ratio using a Class A foam concentrate proportioned at 0.3%. Based 

on these specifications, the system requires a minimum of 1310 gallons of water and 6 gallons of 

foam concentrate to discharge two zones for 1 hour. Additionally, the system will need sufficient 

power to operate independently since the power can be cut off in areas where a wildfire is occuring. 

It was determined that the detection system can be powered for 96 hours using two 12-Volt, 55 

Amp-Hour batteries. Once the detection system actuates the ICAF system, the pressure from the 

air cylinders is enough to discharge the compressed air foam at the required density. Therefore, a 

fire pump is not required.  

After obtaining the results of our project, we were able to conclude that the proposed system design 

is a feasible option to protect homes against firebrand exposures. The fire scenario calculations 

indicate that the proposed system design will be able to detect a fire, activate, and discharge foam 

within enough time to stop the flames from reaching the eaves of the home. All of the required 

components are commercially available, and the system will not occupy an excessive amount of 



3 
 

 
 

space. Compressed air foam is more effective than water at suppressing Class A fires and the 

proposed system design will use less water than a water spray system. The total water flow rate 

for our system is 22 gpm, while FM would require at least 60 gpm for an exterior water spray 

system to protect this design area. Additionally, the Class A foam concentrate that we have 

specified is environmentally safe and non-toxic. This system, if installed at multiple properties, 

could relieve some of the stress on first responder assets as they make efforts to stop the advance 

of the flame front. 

As we came to our recommendations, we found that there were several aspects of our analysis and 

design that could be further investigated to advance our proposed concept. FireFlex compressed 

air foam systems are only tested and listed with foam concentrates for use on Class B fires 

(flammable and combustible liquid fires).  Additional work on the fire exposures and necessary 

system discharge would build confidence with our proposed system.  Second, FireFlex uses a 

proprietary software for determining the hydraulic requirements of the system that is not 

distributed to the public. Third, by creating a system prototype or scaled model, future teams could 

test the system on Class A fires and determine an optimum expansion ratio and discharge density. 

Fourth, the enclosure of the components of the system has not been developed. The material and 

the specific design of the enclosure needs to be specified in more detail so that temperatures and 

other conditions within the enclosure can be properly maintained for effective system performance. 

Fifth, there is no one size fits all layout for the suppression system, as our simple house design is 

not universal to all homes in the WUI.  Sixth, the aesthetics of the system could be improved; there 

will be pipes running along the siding of the house, nozzles attached to eaves, and a storage 

enclosure. The enclosure size may also restrict installations in small properties.  

We did not consider the cost of the system installation during the design process. Further efforts 

are required to make an estimate of the proposed system cost and understand how the cost would 

change as the home size varies. Future research could also involve testing the activation time and 

determining ideal placement of the linear heat detectors on the wall. Our timeline assumes that the 

lower level of the linear heat detection will activate first. If the fire ignites the wall above this 

point, the detection system would be rendered ineffective and the system would not discharge in 

time. In terms of notification and user interface, a mobile app could be developed to provide 

homeowners with the ability to monitor the system integrity and potentially actuate the system 

manually. Since the proposed design combines products and systems that are already 

manufactured, some aspects of the system are not as effective as they would be if they had been 

specifically designed for this purpose. For example, special application nozzles with an extended 

horizontal coverage in one direction could be developed to protect the wall more efficiently with 

fewer nozzles. Another useful study could involve an investigation of the effect of compressed air 

foam on various construction materials. Homeowners will want to know if the foam discharge will 

damage their home before they invest in the system. It would also be advantageous to know how 

long the foam takes to dissipate after discharge.  
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1.0 Introduction 

Wildfires in the United States are becoming more severe and more frequent. When comparing the 

time periods of 1970 to 1986 and 1986 to 2003, there are substantial differences in wildfire 

statistics. Wildfires in the latter time period burned four times as often, five times longer, and six 

times more land (Bradford, 2018). In an attempt to minimize the impact of wildfires, the United 

States Forest Service spent over 3.1 billion dollars on fire suppression in 2018; this accounted for 

over 50% of their budget (Amadeo, 2019; National Interagency Fire Center, 2018). Despite the 

money spent on fire suppression, over 25,000 structures burned down as a result of wildfires in 

2018; 18,000 of these structures were residences (National Fire Protection Association, 2019). 

When considering costs resulting from structure loss, rebuilding, deaths, and tourism loss, the 

annual cost of wildfires is estimated to be in excess of 71.1 billion dollars (Levy, 2018). In reality, 

the costs are likely much greater due to difficulty in capturing the indirect costs associated with 

wildfires. Homes in areas where nature and the built environment meet, also known as the wildland 

urban interface (WUI), are typically at the most risk. (Bracmort, 2014). In California, over 75% of 

the 10,000 structures that burned from 2000 to 2013 were located in an area classified as WUI 

(Kramer et. al., 2018).  

 

The primary threat to structures in the WUI is firebrands. The number of firebrands generated from 

burning fuels is so great that terms like “storm” and “blizzard” are used to describe the scene 

(Caton et al. 2016). Depending on wind conditions, firebrands can be carried many miles away 

and arrive well before the flame front. In one wildfire, firebrands arrived an hour before the flame 

front, from 6 miles away (Maranghides et al, 2013). Firebrands have the potential to initiate spot 

fires by igniting fuel beds and structures. The accumulation of small piles of brands have shown 

to contribute a high enough heat flux to ignite the home or vegetation around it. Certain parts of 

homes are specifically vulnerable to ignition by firebrands because they encourage firebrand 

buildup (Caton and Gorham, 2016). 

 

Fire officials often recommend evacuations of residents in the wildland urban interface because 

the safety of residents is the primary concern in wildfire events (Cal Fire, 2019). In certain high-

wildfire risk parts of the United States, residents can even be obligated by law to evacuate during 

a fire event (Lindroth, 2005). Once residents leave their homes, they are not able to defend against 

the approaching fire. Firefighters who combat the flame front are not able to protect every 

structure; they will typically focus on extinguishing structure fires only if it will help their overall 

mission of stopping the wildfire spread (Hall Rivera, 2018). Any other structure that ignites will 

be left to burn, which necessitates the development of an external suppression system that can 

protect residences in vulnerable areas even after the occupants have evacuated.  

 

There are existing residential exterior suppression systems for wildfire management, but the 

effectiveness, performance and reliability of existing residential systems remains in question. One 

main concern is the effectiveness of the suppressant. Water is a popular choice for fire suppression, 
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because of its relatively wide availability and excellent cooling capabilities. Unfortunately, it also 

has drawbacks that may limit its effectiveness in an exterior fire suppression system when 

considering a wildfire scenario. Water has a very high surface tension, which gives it a limited 

ability to penetrate fuels, such as wood and plastics. Water does not adhere to vertical surfaces or 

remain in place after being discharged (Ecuatepi, 2017). As a result, water spray systems must 

discharge a high density of water continuously for the entire duration of the fire even, which 

requires storage of massive amounts of water. However, even with large storage tanks of water, it 

is likely that the water supply will be exhausted before complete extinguishment of the burning 

house over the duration of the fire event. (FIRESafe Marin, 2019).  

 

There are other fire suppression systems that are commonly used to fight fires inside of buildings 

CO2, clean agents, water mist, and foam systems are available for use to control, suppress, and 

extinguish different types of these interior fires. Of these products, foam solutions have 

characteristics that exhibit the best potential for use in an exterior setting. Foam solutions lower 

the surface tension of water to allow better penetration of the agent into fuels and adheres to 

vertical and horizontal surfaces. Additionally, foam systems require much lower amounts of water, 

and remain in place after discharging (Perry, 2001).  

 

The goal of this project is to assess the feasibility of an external automatic suppression system to 

protect one- & two-family residential structures against firebrand ignitions. To accomplish this 

goal, we used the performance-based design process outlined in the Society of Fire Protection 

Engineering Handbook to accomplish this project (Hurley, 2016). This process begins by 

developing goals, objectives, and performance criteria for this system. By considering the average 

size of homes in high wildfire risk areas as well as common house designs, we decided on a typical 

house design to use throughout the project. Next, several fire scenarios were developed to represent 

realistic pathways to ignition from firebrand exposures. The worst case scenario fire was identified 

and modeled in order to inform the development of a timeline of fire events. With all of this 

information in mind we proceeded to select a system type, identify system components, and 

propose a layout for the detection and suppression systems. The layout was then evaluated against 

the initial performance criteria to see if it could meet each performance criteria effectively.  
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2.0 Literature Review 

This chapter aims to provide background information and context for the development of an 

external suppression system for homes in danger of wildfire attacks. The section begins by 

describing wildfire scenarios including ignition and spread, as well as existing mitigation 

techniques. It progresses to explain the existing codes and standards that are applicable to this 

project. Next, the fire exposures to homes are discussed, with a focus on firebrands.  Then, there 

will be a discussion of available fire fighting, agents such as foam, followed by a discussion of the 

function and components of suppression systems and discusses the features of existing external 

suppression systems on the market. Finally, relevant stakeholders are identified.  

2.1 Wildfire Ignition and Spread 

Fire needs four things in order to burn: fuel, heat, oxygen and a sustained chemical reaction. In the 

wildland setting, oxygen is readily available in the atmosphere and fuel is typically available in 

large quantities in the form of trees, plants, and dead vegetation (Coffey, D). The third component, 

heat, is typically introduced by humans. Natural causes, namely wildfire and lava, are only 

responsible for 10 to 15% of wildfires in the United States. Humans are at fault for the remaining 

85 to 90% of ignitions (Wolters, 2019). The National Interagency Fire Center (2012) reports that 

humans cause an average of 61,375 fires each year, while lightning ignites 9,941 fires. A study 

from the University of Colorado in 2017 analyzed the United States Forest Service’s Fire Program 

Analyses-Fire Occurrence Database to attempt to break down the most common causes of human-

ignited fires. Figure 1 reflects the data from the study. (Daley, 2017). 

 
Figure 1. Most common causes of human-ignited fires.   

Power lines are another source of wildfires and have been the subject of a lot of media scrutiny. 

High winds can blow branches into power lines or snap power line poles, or the equipment can 

otherwise fail in a variety of ways. (Atkinson, 2018). In November of 2018, California based utility 
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company Pacific Gas and Electric made the decision not to de-energize power lines because of 

customer complaints, despite conditions that indicated high fire risk (St. John, 2018). A 

distribution line owned by Pacific Gas and Electric ignited what is known as the deadliest wildfire 

in California history, the Camp Fire, which would go on to kill 86 people and destroy 18,661 

structures (Trabish, 2019). Over the course of 2017 and 2018, Pacific Gas and Electric was blamed 

for a total of 35 wildfire ignitions (Atkinson, 2018). 

Wildfires are becoming more severe and more frequent. Four out of five of California’s largest 

fires of all time have occurred since 2012. When comparing the time periods of 1970 to 1986 and 

1986 to 2003, there are major differences in wildfire statistics. Wildfires burned four times as 

often, five times as long, and burned 6 times as much land in the latter period (Bradford, 2018). 

Climate change is one suspected cause of the increased wildfire problem. As greenhouse gases 

continue to accumulate in the atmosphere, temperatures are increasing around the planet. This, in 

combination with earlier snow melts, and the increased frequency and severity of droughts is 

making vegetation drier and easier to ignite (Coffey, 2018). Another major contributing factor to 

the current wildfire problem is fire suppression practices over the past century. The United States 

Government’s historical focus on total suppression of all wildfires has led to incredibly dense 

accumulations of both dead and live vegetation in forests. Once a fire does occur, it is more likely 

to be on a catastrophic scale because of the high fuel density (Bradford, 2018).  

2.1.1 Where Wildfires Occur 

Although wildfires can occur anywhere, statistics show that they are more likely to occur in certain 

areas. Figure 2, developed by the Insurance Information Institute, provides wildfire statistics by 

state (Insurance Information Institute, 2019).  

  
Figure 2. Ranking of top ten states in terms of number of fires 

and the number of acres burned in 2018. 

This figure shows that there is no certain correlation between the number of fires and the number 

of acres burned. In 2018 Texas had over 2,500 more wildfire events than California, but there was 
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over three times as much land burned in California. Nevada was number 2 when ranking states by 

the amount of burned area but did not even appear in the top ten list for number of fires. This 

suggests that states on the right side of the table tend to have fires that are more severe, while states 

on the left side of the table tend to have more frequent fires with less of an impact. From 2000 to 

2014, 12 of the 20 most destructive fires in the U.S. burned in California (Kramer et. al., 2018). 

An analysis of data from the U.S. Forest Service’s Fire Program Analysis Fire Occurrence 

Database (FPA FOD) conducted by The DataFace yielded Figure 3. It provides a useful 

visualization of where wildfires inflict the most damage across the country (Beckwith et. al., 2018).  

 
Figure 3. A visual map of the percentage of acres burned in each county in the United States 

from 1992 to 2015. Darker colors indicate less area burned (Beckwith et. al., 2018).  

Several noticeable trends that are visible on the map include the apparent lack of wildfires in the 

Northeast and the Midwest, and large amounts of land burned in the West and Southwest. It should 

be noted that Alaska and Hawaii are not shown to scale in this image.  

The wildland urban interface (WUI) is defined as the area “where humans and their development 

meet or intermix with wildland fuel (Bracmort, 2014). The WUI can be divided into two 

classifications. The interface area is where groups of buildings meet continuous stretches of 

vegetation, and the intermix area is where buildings are widely dispersed within vegetation 

(Kramer et. al., 2018). All 48 contiguous states contain land that is classified as WUI, and 10% of 
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the total land in the 48 contiguous states is classified as WUI (Bracmort, 2014). Additionally, over 

38% of homes in the United States are built on land in the WUI (Barth et. al., 2018). Human-

caused fire ignitions are the most common in the interface (Hammer et. al., 2005). Despite this, 

not all areas of the WUI have a high wildfire burning risk. There are extensive areas of WUI in the 

Northeast that have historically had a low chance of burning. (Kramer et.al., 2018). Figure 4 shows 

the total amount of buildings in each state destroyed by wildfires as well as the percentage of these 

buildings that fell within the WUI. (Kramer et. al., 2018).  

 

Figure 4. Percentage of total destroyed buildings located within 

the WUI, by state. Data is from 2000 to 2013.  

In California, Arizona, and Colorado, over 75% of buildings that were destroyed by fire were in 

the WUI. In Montana and Washington, both of which had over 200 buildings destroyed during this 

time period, less than 25% of the destroyed structures had been located in the WUI.  

2.1.2 Effects of Wildfires 

Wildfires are destructive events that can lead to significant property damage, injuries, and deaths. 

In 2017, more than 71,000 fires burned approximately 10 million acres of land across the United 

States (National Fire Protection Association, 2019). In 2018, the U.S Forest Service and the 

Department of the Interior Agencies spent over 3.1 billion dollars on wildfire suppression costs 

(National Interagency Fire Center, 2018). Annually, fire suppression costs account for over 50% 

of the U.S. Forest service budget. (Amadeo, 2019). Despite the significant money spent on 



10 
 

 
 

suppression, over 4,500 residential structures were destroyed by wildfires in 2015 (Dickie, 2016). 

Considering the direct cost of structure loss as well as costs from rebuilding, deaths, and tourism 

loss, the annual economic impact of wildfires is estimated to be anywhere from 71.1 billion to 

347.8 billion dollars (Levy, 2018). The estimate is limited in accuracy because it is difficult to 

capture all of the indirect costs associated with wildfires. From 2010 to 2017, annual wildfire 

fatalities generally ranged from 8 to 15. 2013 is the outlier; there were 34 deaths that year after 19 

firefighters died in a single fire in Arizona (National Interagency Fire Center). Intense flames 

during wildfires can also have negative environmental effects. Charred and damaged soil after a 

large fire can lead to landslides and floods in the area (American Forest Foundation, n.d.). 

Wildfires, while destructive, can have a variety of positive effects on the environment around them. 

One major advantage is that intermittent burning can reduce the severity of future fires (Blackman, 

2015). This is the principle behind techniques such as prescribed burning, in which controlled fires 

are purposely lit to burn excess dead fuel in the forest. Large amounts of nutrients are also returned 

to the soil by burning dead plant matter (American Forest Foundation, n.d.). These are nutrients 

that otherwise would have taken many years to be become available in the soil. The fire can also 

thin the forest canopies to allow more sunlight to reach the forest floor (Wolters, 2019) This, 

combined with the increased nutrient levels, will accelerate the growth of new plants and the larger 

trees that survived the fire. Certain species, such as the Sequoia Tree, depend on wildfires to trigger 

their seed opening cycles (deLacasta et. al., 2000; Wolters, 2019). Wildfires are also efficient 

killers of invasive plants, insects, or disease-ridden trees (American Forest Foundation, n.d.) 

Following the fire, native plants can repopulate the area. Certain species thrive in post-fire 

conditions, and the species composition of vegetation in an area can be altered by a fire event 

(Sackett, 1980). 

2.2 Wildfire Prevention and Risk Mitigation 

As wildfires continue to destroy millions of acres of land each year, tactics to prevent these 

disasters have become more prevalent (Insurance Information Institute, 2019). This section 

describes seven ways the authority has attempted to prevent wildfire ignition and development, as 

well as reducing the severity of these fires when they do occur.  

2.2.1 Prescribed Burning 

Prescribed burning employs intentional, controlled fires to burn excess surface fuel (Forest and 

Rangelands, 2014). The fires are carefully planned in advance and conducted at times when 

moisture levels are relatively high (Graham et. al., n.d.). Large fuels maintain moisture more 

effectively than surface fuels and are more likely to remain unharmed when a prescribed burn is 

conducted under moist conditions. A properly conducted prescribed burn will reduce the amount 

of litter while not affecting the total mass of woody fuels such as live, large trees. (Arthur, 

Blankenship & Alexander, 2017). A prescribed burning experiment conducted over 20 years by 

the United States Department of Agriculture showed that the total mass of dead fuels present in a 
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given area of forest could be reduced from 43 to 65% from a single prescribed burn (Sackett, 

1980). The most effective way to conduct prescribed burning is at regularly scheduled intervals. 

The time between burns varies depending on local conditions, but typically will not be less than 

one year (Sackett, 1980). Repeated burn treatments have been proven to be capable of reducing 

both the overall mass of dead fuel as well as the fuel continuity (Arthur, Blankenship & Alexander, 

2017; Sackett 1980). By minimizing the amount of surface fuel present on the forest floor, the risk 

of catastrophic wildfires can be reduced. (Forest and Rangelands, 2014). Prescribed burning is best 

used in tree stands with low densities and minimal amounts of ladder fuels. It is also useful on 

steep slopes that may prohibit mechanical treatment (Omi, Pollet, 1999). 

There are arguments against prescribed burning that prevent it from being implemented 

everywhere. Communities in the WUI are typically opposed to prescribed burning, even though it 

can reduce the risk of structure ignitions by lowering the risk of catastrophic fires and rapid fire 

spread. Some arguments against prescribed burning include inconvenient smoke production, 

negative aesthetic effects after the fire, and the risk of a fire “escaping” and spreading beyond the 

predetermined boundaries (Hesseln, 1999). Prescribed burns are restricted by law and are only 

scheduled during favorable weather conditions during which the fuel moisture, air temperature, 

wind speed, and humidity pose a low risk. One real concern regarding prescriptive burning is that 

it is not always precise in terms of burning the intended area (Omi, Pollet, 1999). When used over 

large areas, the unpredictable nature of fire can mean that there are varying densities of fuel left 

behind. Areas with large amounts of unburned fuel can form hotspots in future fires that can 

accelerate fire spread. Additionally, prescriptive burning requires that the personnel implementing 

it undergo extensive training to ensure the safety of the operation (Omi, Pollet, 1999). 

2.2.2 Livestock Grazing 

Considering the inherent risk involved in prescribed burning, several other methods of wildfire 

management have been developed. One of these methods is targeted livestock grazing. The 

introduction of more grazing animals to a region has been shown to correspond to a decrease in 

fire activity, spread, and connectivity if the animals are directed properly (Hessl et. al., 2016). By 

directing herds of animals (typically cattle) to eat the fine vegetation in certain areas, fire risk can 

be reduced by two main mechanisms. First, the overall amount of fine fuels available for 

combustion is reduced. Additionally, the fire spread can be restricted by interrupting fuel 

continuity. (Carlson, 2018). Throughout 2017 in Arizona, 31,000 acres of fuel were treated by 

grazing, while 33,000 acres of fuel were treated by mechanical tree thinning (Devoid, 2018). The 

United States Bureau of Land Management has also used targeted grazing on fine fuels, but these 

efforts have been mostly small scale (Carlson, 2018). While grazing is certainly a feasible strategy 

to manage vegetation, it can have negative effects if implemented without care. The main risk is 

overgrazing. This can create conditions that encourage the growth of invasive plants. Sometimes, 

these invasive plants are more flammable than the native ones; this can increase the fire risk 

(Devoid, 2018). 
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2.2.3 Mechanical Treatments 

Mechanical fuel treatments involve the cutting, removing, and rearranging of plants and trees. 

Depending on the forest characteristics, the activities might include thinning dense stands of trees, 

piling brush, pruning low branches on trees, or creating fuel breaks (United States Forest Service, 

n.d.). Overall, the goal is to remove highly flammable undergrowth to reduce the probability of 

catastrophic fires, help maintain and restore ecosystems, and protect human assets (Eng, 2012; 

United States Forest Service, n.d.). Mechanical treatments utilize hand tools, bulldozers, and wood 

chippers to reduce vegetation in forests that are too densely packed or otherwise too hazardous to 

burn. (Omi & Pollet, 1999; United States Forest Service, n.d.). Sites that have implemented a 

program for mechanical fuel treatment have exhibited a dramatic reduction in fire severity as well 

as the amount of scorching in the crowns of trees. The mechanical treatments remove small 

diameter trees and ladder fuels, preventing the fire from spreading to the crown level of larger 

trees. Another advantage of mechanical fuel treatment is the precision that these methods offer. 

Before beginning a treatment, the organization in charge will typically specify the number of trees 

that should remain per unit area. This is much more accurate than prescribed burning, especially 

across large areas (Omi & Pollet, 1999). There have been concerns from various environmental 

organizations about the impact of mechanical treatments on ecosystem health. Implementation of 

this strategy has actually been shown to increase the diversity and health of a forest ecosystem, 

while having a minimum effect on wildlife in the area (Eng, 2012). The main limitation of 

mechanical treatments is that they can be very labor intensive, especially in remote areas or those 

with limited accessibility such as steep slopes in a dense forest (Omi & Pollet, 1999). 

2.2.4 Herbicides 

The application of herbicides is the final method that is commonly used to manage vegetation to 

reduce fire risk. Herbicides typically consist of a solution of water with low concentrations of 

chemicals that are sprayed over large areas to kill or injure the above ground portion of certain 

plants (deCalesta et. al., 2000). Like the other vegetation management methods discussed, 

herbicide applications are typically the most effective when combined with other strategies. For 

example, particularly thick vegetation may require an initial mechanical treatment followed by an 

herbicide application to achieve desirable results (Texas Forest Service, n.d.) Targeting invasive 

species with selective herbicides can preserve the health of native plant ecosystems by reducing 

competition for nutrients in the soil and encouraging the growth of desirable plant species (Texas 

Forest Service, n.d.). By suppressing the growth of small vegetation, more nutrients, water, and 

sunlight remain to encourage the growth of large trees (deCalesta et. al., 2000). The end goals of 

herbicide use coincide with those of the other vegetation management methods discussed 

previously: reduce the overall amount of small vegetation, while maintaining a population of large 

trees, and inflicting a minimum amount of damage to the environment. Herbicides used today are 

generally regarded as safe for people and the environment, but it is still important to be mindful of 

the chemicals’ potential negative effects (Texas Forest Service). 
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2.2.5 Defensible Space 

Managing land to mitigate wildfire risks in the wildland urban interface presents unique challenges 

because of the interaction of natural and manmade fuels. One of the most effective and commonly 

used tools to reduce the risk of wildfire damage to structures in the WUI is the creation of 

defensible space (Syphard et. al., 2014). The underlying principle of defensible space creation is 

similar to the principle management strategies used in forests: interrupting the continuity of 

horizontal and vertical fuels will slow or stop fire spread. Horizontal fuels include natural tree litter 

on the ground, grass, and low shrubs. Vertical fuels, also called ladder fuels, are typically in the 

form of small trees or tall brush that will provide the fire a path to reach the crowns of large trees 

(Colorado State Forest Service, 2012). Creating a defensible space around a home involves 

modifying or clearing select vegetation around a structure to increase the chance of fire survival. 

Removing 100% of vegetation around a structure is not feasible nor does it provide the maximum 

benefits. Generally, removing about 50% of natural vegetation (assessed from a plan view) and 

ensuring minimal fuel continuity will be sufficient to protect a structure while also discouraging 

the invasion of exotic grasses that may actually be more flammable (Syphard et. al., 2014). 

Generally, wildfire professionals recommend creating a defensible space of 30 meters around the 

home (Barth et. al., 2018). A study conducted in California that studied survival of homes from 

eight different fire events indicated that increasing the amount of defensible space over 30 meters 

will likely not provide additional benefits. The largest decrease in home destruction was noted 

between homes that had a defensible space measuring from 0 to 7 meters and those with a space 

measuring from 8 to 15 meters (Syphard et. al., 2014). This suggests that providing even a small 

amount of defensible space can noticeably reduce the risk of home destruction in a wildfire event. 

The following is a list of common tasks that may be performed to create a defensible space around 

a home: (Colorado State Forest Service, 2012) 

● Prune branches up to 10 feet off the ground or one-third of the total tree height. 

● Remove dead branches and prune shrubs periodically. 

● Rake pine needles away from the base of large trees and from the house 

● Trim grass regularly to maintain grass height below 6 inches. 

● Store wood piles and combustible materials away from the house when possible 

Different jurisdictions in the United States provide guidelines for defensible spaces based on local 

conditions. These guidelines may be enforced by community-based ordinances or by state-wide 

laws. As of 2005, California State law requires a defensible space of at least 30 meters around the 

home. However, local ordinances and many insurance companies across the state can require a 

defensible space up to 91 meters (Syphard, et. al., 2014). Real life studies have proven that creating 

and maintaining defensible spaces around homes can be effective in reducing the risk of structure 

ignition during wildfires. For instance, 83% of homes with defensible spaces in the 2010 Four Mile 

Canyon Fire survived the fire, compared to 63% of homes that did not have defensible spaces. 

Homes that had followed new policies (post-2000) to create their defensible spaces had a 100% 
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survival rate (Barth et. al., 2018). This suggests that as our understanding of fire increases over 

time, the strategies used to combat it become more effective.  

2.2.6 Fire Resistant Building Materials 

Creating a defensible space around residential structures is one action that can be taken to reduce 

home ignition risks from wildfires, but this alone is usually not enough. There are several different 

types of materials that can be used on the exterior of a residential structure to increase fire 

resistance and reduce home ignition risks from wildfires. Ignition resistant materials will resist 

ignition or sustained flaming combustion. This definition, provided in the latest edition of NFPA 

1144 Standard for Reducing Structure Ignition Hazards from Wildland Fire Hazards, is not 

entirely quantifiable and leaves some room for interpretation. A noncombustible material will not 

ignite, burn, support combustion, or release combustible vapors when subjected to heat. Materials 

can be classified as noncombustible by passing ASTM E136 (Standard Test Method for Behavior 

of Materials in a Tube Furnace at 750oC) or ASTM E562 (Standard Test Method for Behavior of 

Materials in a Tube Furnace with a Cone Shaped Airflow Stabilizer, at 750oC) (NFPA 1144, 

2018). Certain recommendations for building materials are simply suggestions and guidelines, 

while others are mandated by laws, codes, and standards. NFPA 1144 provides requirements for 

new construction in WUI areas. A major limitation of fire-resistant materials is that it is much 

easier to implement new construction. There is typically nothing forcing existing homes into 

compliance (Colorado State Forest Service, 2012). One requirement of NFPA 1144 is that all roof 

coverings shall be tested and rated as Class A by ASTM E108 or UL790. These test methods assess 

the fire resistance of roof coverings exposed to fires outside of a building. A covering may be 

awarded a Class A, B, or C rating, with Class A being the most fire resistant. Common Class A 

roof coverings include concrete shingles, clay shingles, and mineral reinforced shingles. Metal 

sheet roofing and fiber cement shingles can also achieve a Class A rating with a gypsum board 

underlayment.  Bricks, stone, and concrete blocks are commonly used to build walls when a fire 

rated material is required; these materials can all achieve a 2-hour fire resistance rating. Below is 

a summary of NFPA 1144 requirements: 

● Exterior walls shall be ignition resistant materials, fire retardant treated wood, 

noncombustible material, or have a 1-hour fire resistance rating 

● Roof coverings shall be tested and rated as Class A by ASTM E108 or UL790 

● Roof gutters, downspouts, and connectors shall be noncombustible and covered to 

minimize debris accumulation 

● Vents shall be rested and rated to resist the intrusion of flames or ember by ASTM 

E2886, or be screen with non-combustible 1/8-inch wire 

● Eaves shall be enclosed with fire retardant treated wood, ignition resistant materials, 

noncombustible materials, or materials tested and approved to resist wildfire penetration 

by ASTM E2957-15 
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● All overhanging projections (i.e. decks, balconies, patio covers, etc.) shall be constructed 

of heavy timber, noncombustible materials, fire retardant treated wood, or ignition 

resistant materials. 

2.2.7 De-Energizing Power Lines 

Power companies in wildfire-prone areas monitor humidity levels, temperatures, and high winds 

to predict when conditions may present a high fire risk. When a certain parameter is exceeded (i.e. 

wind gusts over 45 mph), the power distribution lines in the area are supposed to be de-energized 

to mitigate wildfire risk (St. John, 2018). Cameras and weather stations are used to monitor local 

conditions. Regular equipment inspections, infrastructure upgrades, and vegetation management 

can also mitigate wildfire risk (Trabish, 2019). The California Public Utilities Commission has 

adopted rules that will require utilities companies to de-energize power lines under certain 

conditions (Walton, 2018). Power companies are often reluctant to turn off the power because of 

backlash from customers. Following a line de-energization in October of 2018, California based 

Pacific Gas and Electric received 146 claims from customers, 25 of which claimed business loss 

or economic impacts (Trabish, 2019). This, combined with economic losses from not being able 

to sell electricity for the duration of the shut-down, will often keep power companies from de-

energizing when conditions indicate they should. There is legislation in the works that aims to help 

utility companies offset some of the financial impacts associated with line de-energization 

(Walton, 2018). 

2.3 Wildfire Suppression, Control, and Extinguishment 

The previous section discussed actions that can be taken to reduce the intensity and likelihood of 

wildfires, but suppression and control methods are still needed once a wildfire ignites. The 

following methods are utilized by firefighting crews to manage and extinguish fires. 

2.3.1 Aerial Firefighting 

The first line of defense against wildfires, particularly those in remote locations, is aerial 

firefighting. Aircrafts are almost always able to reach the fire front before ground crews and can 

begin creating fire lines to control the spread of the fire (Calkin et. al, 2013). Direct attacks can be 

used to wet, smother, or quench the fire by application of the suppressant directly to the flames or 

burning fuel. Indirect attacks are typically executed when the fire is spreading rapidly and involve 

dropping the suppressant a distance away from the flame front to establish a control line (United 

States Department of Agriculture, 2019). Water and Class A Foams are typically used for direct 

attacks to cool the fire. Chemical retardant mixtures that will coat fuels and remain effective over 

time are used for indirect attacks (Gould et. al., 2007).  
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2.3.2 Ground Crew Firefighting 

Firefighting crews on the ground work to extinguish, suppress, and control wildfires in various 

ways. One basic but effective method is the establishment of control lines. Control lines work on 

the principle of depriving the fire of fuel (Pedro Mountain Fire, 2019). Control lines may include 

roads, rocky features, or water features. Where these features do not exist, firefighters will remove 

all vegetation and dig down to mineral soil using either hand tools or bulldozers (Idaho Firewise, 

n.d.). The terms “control line” and “fireline” are often used interchangeably, but experts generally 

agree that there is a difference. A control line is a general term for any constructed or natural 

barriers used to control a fire, while a fireline is the portion of the control line that is constructed 

by digging down to bare mineral soil (National Wildfire Coordinating Group, n.d.). Fire lines are 

typically constructed to be from 6 inches to 3 feet wide, depending on the intensity of the fire and 

fuels present. The line needs to be wide enough to prevent smoldering, burning, or spotting by 

embers that may blow or roll across (National Park Service, 2017). Fires may jump control lines 

even when there is no fuel left in the immediate area, especially in windy conditions. To minimize 

the potential for this and increase the size of the control line, firefighters use a technique called 

burnout (Idaho Firewise, n.d.). Burnout involves igniting the unburned fuel within established 

control lines. Control lines may be constructed a great distance away from fast moving fires to 

ensure fire fighter safety. Burnouts can quickly treat large areas between the control line and the 

fire front to cut of the fuel supply from the main fire as soon as possible (Pedro Mountain Fire, 

2019). Hotspotting is another technique that involves identifying and focusing on the most intense 

or fastest spreading parts of a fire (USDA Forest Service, n.d.). Hotspotting may take the form of 

concentrated attacks by using dirt or water to knock down the flames, or by building temporary 

fire lines to provide more time to construct the control line (National Wildfire Coordinating Group, 

1996).  

A less common, but very effective method to control wildfires is the use of explosives for various 

purposes. Explosives can rapidly build control lines by scattering debris and loosening mineral 

soil. A small crew with explosives can be deployed faster than a larger crew with traditional tools. 

Furthermore, this technique is more environmentally friendly than using bulldozers (National 

Wildfire Coordinating Group, 1996). Explosives can also be detonated directly at the flame front 

to knock down flames. The rapid pressure change and accompanying impulse of air can push 

flames away from the fuel (Hughes, 2014).  Unfortunately, explosives are expensive and the 

individuals handling them must be highly trained (National Wildfire Coordinating Group, 1996). 

These are likely the two major reasons that limit the use of explosives. 

In some cases, the best action may be to allow the fire to burn. Over the past century, the United 

States Government’s policy of total suppression has created overgrown, dense forests that end up 

leading to more destructive fires (Oregon Forest Research Institute, n.d.). In the late 1970’s, around 

the same time that prescribed burning began gaining traction, the government began to allow the 

use of managed wildfires. This practice involves using unplanned ignitions to meet various 

objectives (Forest and Rangelands, 2014). The use of managed wildfires can significantly reduce 
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suppression costs as well as reduce damage and costs from future fires by decreasing the amount 

of fuel available to burn (Calkin, et. al., 2013). Under current laws, only the federal government is 

allowed to make the decision to allow fires to burn (Forest and Rangelands, 2014). Once the 

decision is made to allow a fire to burn, the fire’s progress is closely monitored. The decision may 

change if the conditions become unsafe, particularly in the case of a change in wind direction that 

might drastically alter the fire’s behavior (Rott, 2018). By strategically choosing to use these 

inevitable events to meet forest management goals and objectives, government agencies are able 

to save money, time, and resources. 

2.3.4 Protecting Homes in the WUI 

With an increasing number of homes in the WUI, firefighters are faced with the task of protecting 

more structures from wildfires. Because of a limited number of resources, firefighters need to 

perform a structural triage to determine where to focus their resources. Homes can be split into 

three groups: 

● Category 1 – Needs little/no protection, will likely survive without intervention. 

● Category 2 – Needs protection but is defendable with a reasonable amount of resources. 

● Category 3 – Non-defendable/not worth defending. Will require too many resources, too 

much time, or would be unsafe to defend. 

Firefighters will typically focus their efforts on homes in Category 2 in order to save as many 

homes as possible (Herlihy, 2008). Once firefighters have selected a home to protect, they will 

begin working around the exterior of the structure. If there is time, they will remove ignitable 

materials, close windows and awnings, and cover vents (National Wildfire Coordinating Group, 

1996). Depending on the resources available, firefighters may then pre-wet fuels in the area with 

different agents (Department of Homeland Security, 2013). Even when there are resources and 

manpower available to protect a home, firefighters may be restricted by government policy. The 

Forest Service Manual prohibits the U.S. Forest Service from acting to suppress fire on structures, 

except for those that will reduce the overall risk of fire spread (Hall Rivera, 2018). The National 

Wildfire Coordinating Group’s Wildfire Suppression Tactics Reference Guide (1996) breaks up 

the development of fire risk around the home into four stages: 

1.      Spotting Zone – Flame front has not arrived and firebrands may ignite spot fires. 

This stage can last for hours. Spot fires should be extinguished quickly. 

2.      Full Containment – Control lines will be able to stop the flame front from reaching 

the structure. 

3.      Partial Containment – Control lines and water can be used to split the fire around 

the home. Fire will move past structure before full control can be established. 

4.      No Containment – Fire cannot be stopped or knocked down before it reaches the 

structure. At this point, all hose lines shall be directed to the structure. 
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Ultimately, no property is worth a firefighter’s life, and crews are always careful to properly assess 

risks before committing to protection (National Wildfire Coordinating Group, 1996). The 

Australian Government is a proponent of the active-defense shelter in place strategy. Controversial 

in the United States for the inherent risk involved, this strategy involves residents sheltering in 

their homes during the passage of the flame front. They also spend time outside the home before 

and after the flame front passes to extinguish any spot fires (Australian County Fire Authority, 

2008). In some parts of the United States, residents are legally obligated to evacuate during a 

wildfire event (Lindroth, 2005). This clearly conflicts with the shelter in place strategy.  

2.4 Exposures and Ignition 

There are several ways a residential structure can ignite during a wildfire. Fuel on or around the 

structure such as siding, roofing, and deck materials or surrounding vegetation can all be at risk of 

ignition. In WUI fires, the heating of fuels causes flammable gases to be released until the 

flammable gases ignite on their own (auto-ignition) or are ignited by a spark (piloted ignition). 

The threat of ignition is posed to residences comes from three exposure sources which include 

radiant heat from the flame, direct flame contact from burning vegetation, and firebrands (Caton 

et al, 2016).  

2.4.1 Radiation 

Radiation is the heat energy that is emitted from the wildfire, and it is the one of the exposure 

conditions that can cause ignition of homes in wildfire events. Flames emit radiant heat that can 

travel away from the flame until they hit an object in their path. The radiant heat must be sustained 

at a high level for certain exposure duration in order to ignite a building material. Even if the 

radiation levels are not high enough to cause the building materials to auto-ignite, lower radiant 

heat levels can cause the material to pre-heat. This can cause the fuel to be more likely to ignite if 

later exposed to direct flame contact (Quarles, 2012). A study was conducted to understand the 

heat flux needed to ignite building materials. In the study, wooden wall assemblies were set up at 

varied distances for a burning fire and the heat flux was measured at the wall as a function of time. 

This test found that it’s not an exact heat flux that causes ignition, but rather a certain accumulation 

of heat over time. The ignition threshold was found to be the flux-time integral value of 11,500 

kJ/m2. This means that any heat flux would have to be applied for a certain amount of time in order 

to reach this value before ignition could occur. If the flux-time integral does not reach the ignition 

threshold, the exposure is not strong enough for wall ignition. (Cohen, 2004). Critical heat flux for 

ignition has been calculated to be between 10 and 13 kW/m2 for a range of wood products. For 

exposure to a constant heat flux, ignition times for solid wood typically ranged from 3 seconds for 

heat flux of 55 kW/m2 to 930 seconds for heat flux of 18 kW/m2 (White Dietenberger 2001). The 

actual crown fires produced in the study did not ignite the wooden panels at 20 m and beyond. 

Another study found that fuel samples exposed to a variant heat flux reached critical surface 

temperatures faster than under constant heat flux. Ultimately, the research done on radiant heat 

exposure has shown that unless flames are close to a structure, the structure is not likely to ignite 
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(Cohen 2000). The threat of radiative heat is greatly reduced by tending to the surrounding fuel 

and removing vegetation that can fuel the flames. Case studies of WUI fires have shown an 

approximate structure survival rate of 90 percent when vegetation is cleared between 10 and 20 

meters away (Cohen 2004). 

2.4.2 Direct Flame Contact 

Direct flame contact is the second method by which a structure can ignite during a wildfire event. 

By following recommended wildfire risk mitigation techniques such as clearing away brush and 

wildland fuels, the threat of direct flame contract to the home can be significantly reduced. Only 

when nearby fuels catch on fire does direct flame contact become a threat. Studies have shown 

that direct flame contact can contribute fluxes of 50-70 kW/m2 for laminar flames and 20-40 

kW/m2 for turbulent flames.  Similarly to radiation from the main flame front, these fluxes are 

high enough to ignite combustible parts of structures if applied for enough time (Quintiere, n.d.). 

2.4.3 Firebrands 

Firebrands are pieces of flaming or smoldering debris that travel downwind of the flame front 

through the air (Urban et al, 2019). Firebrands are considerably the greatest threat to structures in 

the WUI because of their ability to travel far and ignite spot fires (Caton et al., 2016). Historical 

fires have proven that firebrands pose a serious threat to fire spread. In the London Fire of 1666, 

firebrands caused the roof of Saint Paul’s Cathedral to ignite despite desperate efforts to save the 

church by creating a defense line. Firebrands have bypassed natural barriers such as rivers in the 

Chicago Fire of 1871 and roads in the San Francisco Fire of 1906. Firebrands even had the ability 

to spread the fire from mainland Japan across the sea to Moon Island in the 1923 Tokyo Fire (Koo 

et al. 2010). The Commonwealth Scientific and Industrial Research Organization conducted 

research on spot fires during the 2003 Canberra Fires and found that over 60% of the burned 

structures were the ignited only by firebrands, and that over 90% of the burned structures were 

destroyed without being contacted by direct flames of the fire (Leonard and Blanchi 2005). 

Although it is difficult to quantify the number of ignitions that are caused by firebrands, there is 

clear evidence that these traveling embers are a contributor to the spread of wildfires, and it has 

been estimated that a majority of the structures lost in wildfires were ignited via firebrands 

(Maranghides & Mell 2013). One piece of evidence corroborating this idea is when a house burns 

down in a community where the flame front did not pass through, and all of the surrounding houses 

remain untouched. This indicates that a firebrand created a spot fire which caused the destruction 

of a home. In severe wildfires, firebrands will shower down like rain. Evidence of the effects of 

firebrands was presented by Jack Cohen when he investigated the Cerro Grande Fire in 2000. 

Figure 5 shows a completely destroyed home surrounded by relatively untouched vegetation. The 

home was separated from other burning homes by a road (Cohen, 2000). This provides evidence 

that firebrands ignited the home or fuels around the home that then caused it to ignite. 
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Figure 5. Evidence of firebrand effects in isolated 

burn (Cohen, 2000). 

The ignition of a fuel by a firebrand can be broken down into three individual processes: firebrand 

generation, propagation/transportation, and target fuel ignition. Figure 6 by Urban et. al. shows the 

three steps of how firebrands initiate spot fires downwind of the flame front. 

  
Figure 6. The three sub-processes of how firebrands ignite spot fires (Urban, 

2019). 

2.4.3.1 Generation 

The first sub-process in firebrand spot fire ignitions is generation. Many studies have been 

conducted to gain an understanding of the generation of firebrands from vegetation, structural 

components, full structures, and actual fires in the WUI (Caton et al., 2016). Figure 7 shows that 

hot particles and embers can be generated by powerline arcing, arc-welding, and break-off of 

pieces from burning materials. The third method will be the focus of this discussion because the 
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majority of the ember generation during fires in the WUI comes from the burning of vegetative 

and structural materials. The size of firebrands was found to vary anywhere between 5 and 40 

millimeters in diameter and the weight can vary between 0.1 and 3 grams (Manzello et al 2007a). 

One study investigated the ability of roof materials to produce firebrands and found that wood-

shingled roofs to produce the most firebrands and the maximum size was 38 mm by 38 mm with 

a thickness of 19 mm and weight of 3 grams (Koo et al., 2010). Two studies burned different fuel 

sources: one burned Douglas-fir trees (Manzello et al 2007a) and the other burned structures 

(Vodvarka 1969). The two studies found that larger fuel sources generate bigger firebrands. These 

studies were all conducted in lab settings and did not account for actual conditions like wind speed. 

Suzuki et al. conducted an experiment burning full-scale structures that were exposed to a 6 m/s 

wind. More than 90% of the firebrands generated and collected from these structures weighed less 

than 1 gram and had an area of less than 10 cm2 (Suzuki et al., 2014). 

2.4.3.2 Transportation 

The second stage is transportation. Firebrands are transported by wind or by the plume of fire. The 

forces acting on firebrands in the air are the drag force due to the motion of wind, lofting by the 

plume, gravity, and cooling (Urban 2019).  George M. Byram concluded that the hot air of the 

plumes from intense fires can carry embers high into the air and drop them far ahead of the front 

(Koo et al., 2010). As the scale of the fire increases, the plume size increases and more firebrands 

are lofted into the air (Urban et al, 2019). Therefore, as the fire gets bigger, it generates more 

firebrands which then help to further propagate the fire. Wind conditions are also a critical factor 

that affects the transport of firebrands. Strong wind conditions can increase the buoyant force in 

the plume. As a result, the plume is able to loft larger firebrands and transport firebrands further 

(Koo et al., 2010). Firebrands were found more than 10 km away from the flame in the Peshtigo 

Fire of 1871 (Koo et al, 2010). In addition, a NIST report on a community outside of San Diego 

that was affected by the 2007 Witch Creek and Guejito Fires found that firebrands can arrive one 

hour before the flame front and travel up to 9 kilometers (Maranghides et al, 2013). Models have 

shown that strong winds allow firebrands to travel further, but the increased flight time causes 

firebrand mass to decrease (Koo et al., 2010). This might cause firebrands to have less energy 

available to ignite a fuel bed after traveling far distances. Finally, a study was conducted by 

Vodvarka in which he collected firebrand data after an accidental fire. In this case, firebrands were 

found up to 274 meters away from the fire during which winds were fully developed at 10-25 miles 

per hour. Review of previous studies indicates that the distance a firebrand can travel is dependent 

on how high the plume lofts the firebrands as well as wind speeds during a fire.  

2.4.3.3 Fuel Ignition 

In order for fires to propagate through the wildland urban interface, fuels must continue to ignite 

in the path of the fire. Ignition is defined as the process by which a sustained combustion reaction 

occurs between a combustible material and an oxidizer, resulting in the release of heat. (Urban, 

2108). Firebrands have the ability to directly ignite structures by landing on them or ignite 
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surrounding fuels that subsequently contribute radiative heat and direct flame exposures to the 

structure (Urban and Fernandez-Pello 2018).  

 

Ignition is a complex process that depends on many different variables. On a basic level, ignition 

will occur if the firebrand has enough energy to heat the fuel to a certain temperature. This 

temperature is the peak at which the pyrolysis reaction occurs, which is a general approximation 

for the temperature at which ignition can occur (Urban and Fernandez-Pollo 2018). This critical 

temperature is not the same for all fuels because it depends on the aforementioned factors. Whether 

or not ignition occurs when a firebrand contacts a fuel depends on (1) the properties of the 

firebrand, (2) the fuel, and (3) the ambient conditions.   

1. The amount of energy supplied by firebrands depends on the size and the temperature of 

the brand when it lands on a fuel source (Urban 2018). The state of the firebrand upon 

landing can also affect the ignition probability. The two states are flaming and smoldering. 

2. The properties of the fuel that affect ignition are the density, porosity, heat capacity, 

thermal conductivity and moisture content (Urban and Fernandez-Pollo 2018). 

3. The ambient conditions also affect ignition by influencing the rate of pyrolyzate production 

and gas phase ignition. According to Fernandez-Pello, the most influential ambient 

conditions are “the gas flow velocity around the combustible material, thermal radiation 

from or to adjacent sources, and the ambient pressure and oxygen concentration” 

(Fernandez-Pello, 2011).  Greater wind speeds were found to increase the ignition 

probability by supplying more oxygen (Koo et al. 2010).   

Research in the field has begun to study and try to quantify the factors that affect the ignition of a 

fuel bed by a firebrand. Manzello et al. studied firebrand deposition in materials configured at 

different angles. He found that while accumulations of firebrands are capable of igniting common 

building materials, singular firebrands were not. Manzello et al. also exposed deck structures to 

firebrand showers driven by constant wind speeds. It was found that firebrand piles of 7 to 25 

grams could initiate flaming ignition of the deck when exposed to an 8 m/s wind. When wind was 

applied at a speed of 6 m/s, a larger mass of firebrands was needed to ignite the deck (Manzello et 

al. 2012). Dowling conducted firebrand tests in bridge beams that were spaced 10 millimeters 

apart. The tests found that a 7-gram pile of firebrands induced ignition. Firebrands were studied at 

the University of Maryland to characterize their thermal properties. A single firebrand was shown 

to peak below 20 kW/m2. The largest firebrand piles tested, with 9.6 grams of firebrands, were 

able to sustain a heat flux over 10 kW/m2 for over 16 minutes. For firebrand pile masses between 

4 and 10 grams the average peak heat flux ranged from 40-60 kW/m2 (Hakes et al. 2018). Like the 

previous exposures of radiation and direct flame contact, it was necessary to maintain a critical 

heat flux for a given time to cause ignition and time to ignition decreased as heat flux increased. 

An important result of this study was that airflow was required for ignition and would produce 

higher heat fluxes. This corroborates the finding of Manzello et al. that wind plays a key role in 

ignition. Lastly, this study found that re-radiation and reheating within a pile of firebrands are 
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contributing factors in the ignition of fuels, and these two processes are absent for single firebrands 

(Hakes et al., 2018). More research is needed to identify specific conditions that will result in 

ignition. Current literature suggests that an increase in wind and firebrand pile mass increases the 

likelihood of fuel ignition. 

The combustion of a fuel can be categorized into three different types: flaming, glowing, and 

smoldering. Flaming combustion is gas-to-gas phase where the fuel has been turned into its 

gaseous phase and reacts with the oxidizer causing a visible open flame. Glowing and smoldering 

combustion occurs in the absence of open flame and is a reaction between the solid phase of the 

fuel and the oxidizer (White Dietenberger 2001). The difference is that glowing combustion 

produces a light from the fuel where smoldering produces neither flame nor light.  Most firebrands 

stop flaming combustion and therefore land on fuels in a smoldering state but continue to generate 

heat through chemical reactions when in contact with the fuel (Caton et al 2016). The firebrands 

can cause the fuel to begin smoldering and then transition into flaming. For example, contact of 

firebrands with plywood at an angle of 60 degrees caused smoldering ignition that transitioned 

into flaming ignition (Manzello et al., 2009). High heat fluxes of 40 to 70 kW/m2 can produce 

flaming ignition of wood and glowing combustion can occur at heat fluxes less than 40 kW/m2 

(Ellis, 2012). 

2.4.4 Vulnerabilities of Structures  

As a wildfire travels through the WUI, structures are exposed to the three aforementioned exposure 

methods. Certain components of the structure are particularly susceptible to ignition by these 

exposure methods, including the roof, deck, siding, and surrounding areas. These components are 

identified in Figure 7 below. 

 

Figure 7. Vulnerability points of ignition on a home (Caton, 2016) 
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Certain roof materials increase the risk of ignition because they are easily ignitable. Wood shake 

and shingle roofs are two examples of materials that have a large surface area of flammable 

material. Wood shakes are known to produce a large number of firebrands; it was estimated after 

the 1991 Oakland Hills fire that non-retardant wood shake roofs caused the ignition of ten further 

homes (Caton, 2016). Important characteristics of roofs to prevent ignition and discourage fire 

propagation are the ability to resist fire spread into the attic, resistance to flame spread onto the 

roof covering, and resistance to firebrand generation (Caton, 2016). One study performed at the 

Insurance Institute for Business and Home Safety ran a full-scale experiment to expose a roof to a 

firebrand shower. The results showed that even fire rated roofs are susceptible to ignition at the 

crevices where the roof and siding intersect (Quarles, 2012). 

Gutters are another pathway through which a home can ignite due to the buildup of dead material 

which can be easily ignited by firebrands upon landing in the gutter. Vents and eaves provide an 

opening for brands to enter the residence, but mesh can be used to reduce the potential for ignition 

(Manzello, 2010). Another major vulnerability point on the home is the wall. Direct flame contact 

and radiation are the two exposures that mainly cause side wall ignition, especially where corners 

of walls join as wind can cause the flame to recirculate in the corner and lead to a higher risk of 

ignition (Canton, 2016).  

2.5 Water Spray vs. Alternative Systems 

While there are consistent and dependable procedures to extinguish interior house fires, methods 

to suppress exterior fire exposures, specifically those due to wildfire, have not been proven. 

Several suppressants have been used in attempts to smother wildfire, including water, foam, and 

gel. Each suppressant presents unique advantages and disadvantages in regards to wildfire 

suppression.  

2.5.1 Water 

Although water may seem like an obvious fire suppressant due to its high specific heat and cooling 

potential, it is not the most efficient suppression agent to protect homes from wildfires. Water has 

a very high surface tension, causing droplets to roll off of fuel rather than penetrate and into the 

fuel bed. Due to this same characteristic, water does not adhere to vertical surfaces (Ecuatepi, 

2017). Therefore, water would be ineffective in fighting fires that ignite the sides of homes. 

Furthermore, large amounts of water would have to be discharged at a constant high velocity to 

suppress a wildfire attack on a home. Existing external home suppression systems have used water 

tanks in the range of 5,000 gallons, and even then, the water supply would likely be exhausted 

before complete extinguishment of the fire (FIRESafe Marin, 2019). The amount of water and 

storage area that is required for an external water spray system is unrealistic for residences to 

implement. 
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2.5.2 Foam 

Foam concentrates contain characteristics that enhance the properties of water. Different types of 

foam concentrates have been developed for specific applications. One foam that is commonly used 

for fire suppression is Aqueous Film Forming Foam (AFFF). AFFF contains fluorinated carbon-

chain compounds, which make chemicals called perfluoro octane sulfonic acid (PFOS) and 

perfluorooctanoic acid (PFOA). Although effective in extinguishing large fires, these chemicals 

are “mobile chemicals that persist indefinitely in the environment, bioaccumulate in humans and 

animals over long periods of time, and bio-magnify as they are consumed up the food chain” (New 

Jersey DEP, 2019). These environmental impacts of AFFF have caused several lawsuits. AFFF is 

typically used to extinguish Class B fires which are flammable liquid pool fires in locations such 

as chemical plants and oil refineries (ITRC, 2018). Therefore, it is not relevant to wildfire 

suppression.  

Class A foam, however, is a common suppressant used to fight Class A fires. Class A fires are 

fires involving ordinary combustibles such as wood or paper. Wildfires fall under this category 

(Mitrokostas, 2018). Class A foam is a combination of water, air, glycol, and hydrocarbon-based 

surfactants that create a bubbly mixture with a lower surface tension and density than water (Perry, 

2001). These characteristics allow better penetration into the fuel bed, as well as adhesion to 

vertical surfaces. Foam also creates an oxygen barrier by forming a blanket over the fuel. By 

removing oxygen from the fire, the foam stops the combustion reaction between the oxygen and 

fuel. Furthermore, the bubbles release moisture, absorb heat, and produce steam to cool the fuel 

(Chemguard, 2019). The bubbles also help water to expand, resulting in a lower amount of water 

required for suppression, which is advantageous in areas susceptible to drought (National Wildfire 

Coordinating Group, 1993). A 10:1 expansion ratio creates 90% air, 9.9% water, and 0.1% 

concentrate. With a very low amount of water, the foam still has the ability to cover large areas. 

Expansion ratios can range from 1:1 (low expansion) to 1000:1 (high expansion), where low 

expansion has a greater density and high expansion has a lower density. Typically, the percent 

concentrate ranges from 0.1% to 1% (National Fire Protection Association, 2017).  

Like all chemical suppressing agents, the use of Class A foam has its disadvantages. First, as a 

low-density product used outdoors, foam is susceptible to wind (Tafreshi, 1998). Second, the foam 

concentrate poses environmental concerns. The surfactants in Class A foam have previously been 

found to alter properties of soil, change infiltration rates, and increase hydrophobic contaminants 

in soils which could affect surface water (Perry, 2001). However, as foam concentrate 

compositions have been tested and refined, recent tests have found class A foam to be 

environmentally friendly and biodegradable (McNeal, 2018). As such, Class A foam has gained 

environmental and safety approval from both FM Global and UL. Refer to background section 3.0 

“Codes and Standards” for NFPA references regarding test methods for the physical properties 

and environmental effects of Class A foam.  
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2.5.3 Gel 

Where foam consists of air protected by water, gel consists of water surrounded by a polymer. 

This creates a thicker substance that is wind resistant. Gel creates a strong barrier between oxygen 

and fuel, and cools the heat source (Petrillo, 2018). A gel product that has proven effective against 

wildfires is GelTech’s “FireIce.” In addition to removing oxygen and heat from the fire, FireIce 

prevents reignition of the fuel. GelTech also claims its product to be environmentally friendly and 

non-toxic. FireIce has recently gained approval from UL (GelTech, 2018).  

While gel suppression products present their advantages, they also contain several disadvantages. 

Gel is only effective when wet, and therefore does not provide long-term fire suppression (Megroz 

2018). Gel agents also have a short shelf life, are difficult and expensive to clean up, and can stain 

homes (Consumer Fire Products, 2010). Since gel is normally applied by hose, it inconveniently 

requires personnel to be at the site of the fire. Gel is also is a slippery substance, which makes it 

dangerous for personnel to move around while using it (Megroz 2018). Furthermore, if the surface 

being protected is not completely covered by the gel, fire will burn around it (Consumer Fire 

Products, 2010).  

2.6 Suppression Systems 

Fire suppression systems can be manual or automatic. Manual systems require personnel to 

physically activate the system after notification of a fire event, while automatic systems will start 

immediately in response to the initiation of a fire detection device. Suppression systems classified 

by the piping configuration, the type of suppressant that is used, and the method of delivery. The 

following sections break down the different classifications of suppression systems. 

2.6.1 Wet-pipe System 

A wet-pipe spray system contains water in its piping system for immediate discharge when 

individual spray nozzle heads open due to fire detection. The nozzles are heat actuated by a glass 

bulb filled with a glycerin-based liquid, or by a fusible link containing a heat sensitive alloy. When 

the bulb heats to a certain temperature, the liquid expands, breaks the bulb, and opens the nozzle. 

Similarly, when the fusible link heats up, the alloy melts and opens the nozzle (QRFS, 2019). Wet-

pipe systems are typically used indoors, where there is no risk of the water freezing inside the 

pipes (Muresan, 2019).  

2.6.2 Dry-pipe System 

A dry-pipe spray system contains pressurized air or nitrogen inside its pipes. When an individual 

spray nozzle head is opened, the pressurized air is pushed out of the spray nozzle. The release of 

air causes a pressure drop in the system, activating the fire pump, which propels water through the 

pipes for discharge. Dry-pipe spray systems are common in areas that are susceptible to freezing 

(Muresan, 2019).  
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2.6.3 Preaction System 

Similar to a dry-pipe sprinkler system, a pre-action system contains pressurized air or nitrogen in 

its pipes. However, a pre-action system requires two different events to activate spray discharge. 

When a detection device recognizes a fire, the system’s pre-action valve is prompted to open, 

which allows water to flow through the pipes. Water will only discharge if individual nozzles 

receive another form of detection and open to release the water. A pre-action system protects 

against false alarms. It is used in areas susceptible to freezing that store water-sensitive materials 

(Muresan, 2019).  

2.6.4 Deluge System 

A deluge system contains unpressurized dry piping. When a fire is detected and the deluge system 

is activated, foam-water flows through the pipes and discharges through every nozzle head in the 

system. This is unlike dry-pipe, wet-pipe, and pre-action systems, where nozzles open individually 

depending on the location of the fire. Deluge systems are necessary in high-hazard occupancy 

classifications, such as chemical and power plants, and aircraft hangars (Muresan, 2019). 

2.6.5 Water and Foam Suppression Systems 

There are numerous different suppressants that can be used to meet the goals of a particular 

situation. Two common suppression agents are water and foam. A water mist system a distribution 

system connected to a water supply or a water and atomizing media supplied that is equipped with 

one or more nozzles capable of delivering water mist intended to control, suppress, or extinguish 

fires (NFPA 750, 2019). A water spray system is an automatic or manually activated actuated fixed 

pipe system connected to a water supply and equipped with water spray nozzles designed to 

provide a specific water discharge and distribution over the protected surfaces or areas (NFPA 15, 

2017).  A foam water spray system is a piping network connected to a source of foam concentrate 

a water supply. The system uses either air aspirating or non-air aspirating nozzles to discharge 

foam onto the fire (NFPA 16, 2019). A compressed air foam system injects pressurized air into a 

stream of foam solution. Foam is generated through pipe friction or a mixing device, which creates 

a uniform network of bubbles (NFPA 11, 2016). 

2.7 Detection Systems 

In order to activate an automatic suppression system, there must be a detection system. The brain 

of a detection system is the Fire Alarm Control Panel (FACP). FACPs are powered by a constant 

power source from the home. They have the ability to power the fire alarm devices, receive signals 

from these devices, and automatically start the fire suppression system or notify personnel of a fire 

event. Detection devices are connected to FACPs through wiring (Buildings, 2009). To ensure the 

devices are receiving enough power from the FACP, voltage drop calculations are required. 

Voltage drop calculations take into account the length of wire from the FACP to the device, the 

gauge size of the wire, the amount of power the FACP can provide, and the amount of power the 
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detection device requires (NFPA, 2020). The power supply and demand for the FACP and 

detection devices, respectively, can be found in the cut sheets from the product manufacturer. 

While detection systems for large areas may require additional power supplies, the average home 

would likely be able to power its detection system solely through the FACP. Additional 

information regarding fire alarm systems can be found in NFPA 72.  

2.7.1 Initiating Devices 

Smoke and heat detectors are unacceptable for external systems because they are susceptible to 

the effects of climate conditions. For example, dust or dirt particles blowing through the wind 

could falsely set off or clog a smoke detector, causing it to be an unreliable source (Chase, 2018). 

Instead, common detectors used for outdoor systems include infrared (IR) detectors and visual 

flame detectors.  

An IR detector is a pyroelectric sensor that detects thermal radiation. The pyroelectric sensor 

consists of a lithium crystal that perceives flickering by a flame. This signal is then interpreted as 

a threat by computer algorithms (AZO Sensors, 2017). While IR detectors are efficient in smoky 

environments, it does pose several disadvantages. Water vapor, hot surfaces, and direct sunlight 

can cause inaccurate readings (Naranjo, 2019).  

A visual flame detector uses live video images to capture incoming flames (AZO Sensors, 2017). 

Therefore, the effects of weather will not impact the accuracy of a visual flame detector. Reading 

ranges of visual flame detectors vary based on the type of device selected and can be found on the 

cut sheet from the manufacturer (Micropack, 2019). Since visual flame detectors rely solely on 

video imaging, smoke or fog can interfere with accurate readings (Naranjo, 2019).  

2.7.2 Wiring 

Wiring from the control panel to the detection devices can be classified as Class A or Class B. 

Class A wiring consists of redundant and looping wiring, where two separate paths of power run 

to the device, and loop back to the control panel. This is advantageous in the case of a broken wire, 

as the second wiring serves as a backup power source. In Class B wiring, the two wires that run to 

the device do not loop back to the control panel separately. Instead, they connect and terminate at 

an end of line resistor. Due to this connection, a broken wire will cause each device after the break 

to stop working (Krantz, 2019). Class B wiring is more commonly used, as Class A wiring is more 

complicated and expensive in terms of installation and material. Figure 8 below depicts Class A 

and Class B wiring for fire alarm systems.   
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Figure 8. Class A and Class B wiring 

configurations for fire alarm circuits (Krantz, 

2019). 

2.8 Existing Systems 

There are currently several commercially available systems that have been designed for the 

purpose of preventing houses from burning in wildfires. These systems are sold, installed, and 

operated by different consulting companies. Table 1 summarizes the features of five current 

systems on the market. The capabilities and limitations of each system will be discussed further. 

 

Table 1 

Features of Existing External Home Suppression Systems 

System 
Automatic 

Detection 

Independent 

Power Supply 

Independent 

Water Supply 

Water 

Suppressant 

Non-water 

Suppressant 

Company 

Monitoring 

Remote 

Monitoring 

Roof Saver    X    

Flame Sniffer X X X X  X X 

FOAMSAFE X X X  X   

Colorado 

Firebreak 
X  X  X   

waveGUARD X X X  X X  
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2.8.1 Roof Saver 

The concept behind the Roof Saver Sprinkler kit is that the sprinklers will wet roofs, gutters, decks, 

and surrounding vegetation to make these fuels less susceptible to ignition. The effectiveness of 

this system depends on the number of sprinklers the owner chooses to install. The company claims 

that embers are the cause of “90% of homes ignitions” and the roof is the most vulnerable part of 

any home because “...shingles, leaves, [and] pine needles, on the roof or in gutters is usually the 

first thing to ignite” (Roof Saver Sprinklers, n.d.). According to the website, the system includes 

the components shown in Figure 9 below: 

 

 
Figure 9. Features of the Roof Saver System. 

 

While the Roof Saver System presents an affordable idea for homes in fire zones, it is far too 

simple. Not only are the sprinklers limited in their ability to reach the outskirts of the property, but 

they also fail to discharge water at a sufficient pressure to completely extinguish a wildfire attack 

on a home. The Roof Saver System is more of a preventative system than a suppression system. 

This is the most limited system and it lacks most of the features present in other systems. 

2.8.2 FlameSniffer 

The FlameSniffer claims to provide “peace of mind, whether you’re home or away” through 

automatic, manual, and remote operation and remote monitoring (FlameSniffer, n.d.). Sensors are 

used to detect the fire automatically. These communicate with a control panel that operates the 
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external spray system. The water spray extinguishes embers when they arrive on the property and 

maintains a barrier against the front of the fire. The FlameSniffer can also be activated manually 

by a remote and is connected to an app that sends the property owner regular updates and 

notifications of activation. The system is powered by an independent supply, as the external power 

will likely fail in a wildfire event. Unlike the Roof Saver system, FlameSniffer provides sprinklers 

that are located around the perimeter of the home. The FlameSniffer system also supplies an 

independent water source by collecting rainwater in a tank. 

 

While the FlameSniffer has many capabilities, there are limitations of the system. The sensors 

monitor embers, flame, temperature, and smoke. The website says that when a “serious threat” is 

detected the system will automatically activate, but they fail to provide criteria for what defines 

such a threat.  Another limitation is that the primary retardant in this system is water, which means 

that a lot of water will need to be supplied in order to suppress the fire if it ignites on the house.  

2.8.3 FOAMSAFE FireMaster  

The FOAMSAFE FireMaster™ system utilizes Class A foam as the primary fire retardant, as it 

can achieve better coverage and penetration on the structure’s facades than water. The company 

offers three models of the systems at different sophistication levels: the elite system, the basic 

system, and the manual system. The elite system has complete control and monitoring services 

that provide notification updates to the owner. The basic system provides the minimum features 

needed for a functioning automatic system. The manual system is made for owners who are looking 

to begin treating the property before evacuating. A photo of the system in action is shown below 

in Figure 10. 

 
Figure 10.  FOAMSAFE FireMaster™ System working to cover a house with foam. 

 

Figure 10 shows that sprayers are located on the ground surrounding the home, as well as pointing 

down from the roof. The roof is one of the most important places to reach because of the 

vulnerability to ignition by firebrands yet the walls are the targeted area of protection and there is 

limited spray that reaches the roof. This is a limitation of the system design. 
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According to the website, The FOAMSAFE FireMaster™ System is an automatic wildfire 

protection system that activates automatically when its fire sensors see a wildfire approaching from 

up to 1/2 mile away. This claim, made by the vendors, promotes the ability of the system to detect 

an approaching flame front. However, firebrand showers are the main threat to homes, not the 

flame front. This could be a severe limitation if the sensor is only capable of detecting the front of 

the flame. Another limitation is the lack of an independent water supply at homes. The company 

offers a portable storage tank that can be purchased with the system that provides 500-3000 gallons 

of water for an additional cost (Consumer Fire Products). 

2.8.4 Colorado FireBreak 

Colorado FireBreak offers a wildfire protection system, designed to protect the home and the 

surrounding 50 ft area. It includes wildfire detection sensors that communicate with a master 

control panel via wireless signaling. Once the signal is transmitted, water is pumped from an 

underground storage tank and combined with FireIce® powder, creating a retardant gel. The 

system features lines installed on the home that deliver good coverage of the FireIce gel so that it 

covers the home. The FireIce gel is distributed by lines mounted to trees around the perimeter of 

the property. The Colorado FireBreak system is fully self-contained, including an isolated water 

tank and power sources. The system can be activated manually or automatically and relies on either 

electrical or gas power generation (Colorado Firebreak).  

 

The main features that differentiate this system from other systems are the underground tank, the 

sprinkler heads on both the home and the surrounding trees, and the unique use of FireIce powder 

that create a gel.  

2.8.5 waveGUARD 

The last system under review is the waveGUARD system. Like some of the other systems, this 

one is automated, has an independent water source, autonomous power source, and is monitored 

by the installation company.  The sensors are infrared flame detectors, and the system has an 

independent power source that can remain operational for up to two weeks. The system also allows 

homeowners to monitor their home via smartphone monitoring. The system uses a fire-retardant 

additive called Micro Blaze Out™. It is a “green” product that utilizes a live microbe and stays 

active for up to 14 days after dispensing upon rewetting. Micro Blaze Out™ has been tested and 

approved by UL and NFPA 18 Standard on Wetting Agents for both Class A and B fires. The 

sprinkler nozzles provide coverage of the home and up to thirty feet of surrounding space. In 

addition, the suppressant is discharged in cycles rather than constant distribution (waveGUARD™ 

Corporation).  



33 
 

 
 

2.9 Codes and Standards  

There are currently a number of codes and standards that address various interior fire suppression 

systems. One common example is NFPA 13 Standard for the Installation of Sprinkler Systems, 

which provides requirements regarding system design, discharge criteria, and installation practices 

(NFPA, 2019). However, there is no equivalent code or standard that has been published for 

exterior suppression systems to protect against wildfires. Information regarding the design of such 

a system must be researched and connected from many other sources.  

The National Fire Protection Association (NFPA) has created a public education page called 

“Firewise USA” that highlights NFPA code books which focus on wildfires, external foam-water 

spray systems, and Class A Foam (NFPA, 2019). These codes, however, are brief and reference 

very specific aspects of fire suppression systems, requiring the use of multiple code books in 

evaluating an external system. The NFPA codes that may apply to the development of an external 

foam-water suppression system for wildfires are listed below.    

2.9.1 NFPA 

● NFPA 11 (2016), Standard for Low-, Medium-, and High- Expansion Foam 

○ Chapter 6 explains requirements for medium and high expansion systems that are 

applicable to both interior and exterior environments. 

● NFPA 15 (2017), Standard for Water Spray Fixed Systems for Fire Protection 

○ Chapter 6 contains information about fire detection devices. Chapter 10 indicates 

the flow and density of water discharge from the system, in regards to both interior 

and exterior applications. 

● NFPA 16 (2019), Standard for the Installation of Foam-Water Sprinkler and Foam-

Water Spray Systems 

○ This code book indicates the design, installation, and maintenance requirements 

for foam-water suppression systems.  

● NFPA 19 (2017), Standard on Wetting Agents 

○ Chapters 4 - 6 explains the use, test methods and requirements, and toxicity and 

environmental considerations of wetting additives. 

● NFPA 20 (2019), Standard for the Installation of Stationary Pumps for Fire Protection 

○ Chapter 4 specifies the component parts and operational requirements of a fire 

pump. The following chapters highlight the different types of pumps that exist. 

● NFPA 22 (2018), Standard for Water Tanks for Private Fire Protection 

○ This code book highlights the different types of water tanks that exist.  

● NFPA 70 (2020), National Electrical Code 

○ Chapter 9, Table 8 identifies resistance values, which are used in voltage drop 

calculations for the detection system. 

● NFPA 72 (2019), National Fire Alarm and Signaling Code 

○ Sections 17.8.3.2 and 17.8.5 indicate the requirements for visual flame detectors 
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in connection to fire alarm systems. 

● NFPA 101 (2018), Life Safety Code 

○ Chapter 5 highlights requirements for performance-based design. 

● NFPA 550 (2017), Fire Safety Concepts Tree 

○ Chapter 7 discusses the application of the fire safety concepts tree that helps 

define the objective of the suppression system. 

● NFPA 1143 (2018), Standard for Wildland Fire 

○ Chapters 4 - 8 highlight the logistics regarding a wildfire event. Topics include 

the preparedness of organizations associated with wildfire prevention, 

responsibilities of safety officers in response to a wildfire, and post-incident 

activities. This code book gives the Authority Having Jurisdiction the power to 

create the guidelines for structures exposed to wildfire. 

● NFPA 1145 (2017), Guide for the Use of Class A Foams in Fire Fighting 

○ Chapters 4 - 6 provide information regarding the properties of foam, the required 

hardware and proportioning devices, and the operation of foam systems.  

● NFPA 1150 (2017), Standard on Foam Chemicals for Fires in Class A Fuels 

○ This code book addresses the environmental concerns of Class A Foam and 

directs attention to the United States Environmental Protection Agency (EPA). 

Chapters 4 and 5 focus on the physical properties, the toxicity limits, and test 

methods for class A foam.  

These standards are relevant because there is not currently a standard for external suppression 

systems. Instead, the synthesis of information from many standards is required to piece together 

standards for a new application such as this one.  

2.9.2 International Code Council 

The International Wildland Urban Interface Code (IWUIC) is a publication from the International 

Code Council (ICC). This code book defines the wildland urban interface as homes “located in 

areas ‘where structures and other human development meet or intermingle with undeveloped 

wildland or vegetative fuels.’” The IWUIC highlights safeguards for people and properties from 

exposure to wildfires and from adjacent structures. It suggests ways to mitigate the spread of 

wildfires in the wildland urban interface by providing construction and fire protection 

requirements for homes. The IWUIC does not apply to existing buildings (IWUIC, 2018).  

2.9.3 Testing and Listing Agencies 

Testing agencies are independent, third party organizations that are hired by companies to evaluate 

the performance, environmental safety, and human/animal toxicity of their products. Upon testing 

of these products, these agencies will either approve and list the product as safe and reliable, or 

they will reject the product. The two leading testing and listing agencies are Underwriters 

Laboratories (UL) and Factory Mutual (FM). Products with the (UL) and/or (FM) approval 
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certification marks validate the product to consumers (Steve Brown & Associates, 2017). Figure 

11 below indicates the steps involved in a typical UL listing process. 

 

 

Figure 11. UL Testing and Listing Process 

In summary, UL must approve a request for testing from a company, send a testing quote, receive 

acceptance and payment of the quote, obtain product information and samples, perform testing 

procedures, and confirm the product is in compliance with UL standards (UL, 2019). Similarly, 

FM Global follows a five-step procedure to test products (FM Approvals, 2019). The steps are as 

follows: 

1. Manufacturer request 

2. Proposal issue and manufacturer authorization 

3. Review, testing, and first audit 

4. Report, FM approved mark, and listing 

5. Surveillance audits  



36 
 

 
 

In regards to fire protection systems UL and FM Global primarily assess materials and products 

used in the built environment and perform testing for indoor building fire scenarios. Other than the 

testing and approval of class A foam, and individual components of fire suppression systems, both 

companies contain limited information regarding external fire suppression systems as a whole and 

wildfire mitigation techniques. A resource that FM Global does provide is “Property Loss 

Prevention Data Sheets.” Chapter 2 of the Wildland Fire (DS 9-19) data sheet displays “Loss 

Prevention Recommendations,” which highlights specific recommendations for outside sprinkler 

protection. It provides charts that help to determine radiant heat exposure for buildings, efficient 

water flow rates for an outdoor sprinkler system, and recommendations for water supply (FM, 

2017). Although this document is helpful, it merely suggests recommendations rather than 

requirements, indicating that more testing on external suppression systems must be implemented 

by FM Global for approval and listing.  

FM, UL, and other organizations also produce fire test and listing standards that prescribe how a 

product should be evaluated. These tests can then be carried out by other qualified listing agencies. 

For example, a requirement of NFPA 1144 is that all roof coverings shall be tested and rated as 

Class A by ASTM E108 or UL790. These test methods assess the fire resistance of roof coverings 

exposed to fires outside of a building. A covering may be awarded a Class A, B, or C rating, with 

Class A being the most fire resistant. Any qualified listing agency may carry out the ASTM E108 

or UL790 procedure to determine the fire resistance rating of the roof.  

2.9.4 Performance Based Design 

Performance based design is defined as “an engineering approach to fire protection design based 

on agreed upon fire safety goals and objectives, deterministic or probabilistic analysis of fire 

scenarios, and quantitative assessment of design alternatives against the fire safety goals and 

alternatives against the fire safety goals and objectives using accepted engineering tools, 

methodologies, and performance criteria” (Hurley, 2016). First introduced formally in the United 

States in the 1970’s when the U.S. General Services Administration began developing and 

practicing a goal-based approach to building fire safety, performance-based design has become 

more common over time as an alternative to traditional prescriptive codes. NFPA 101 Life Safety 

Code (2000 edition) was the first code from the NFPA to include a section on performance-based 

design, followed by the 2003 edition of NFPA 5000 Building Construction and Safety Code 

(Hurley, 2016). Even before performance-based design was formally referenced in codes, similar 

methods were used to meet building fire safety goals. Many NFPA codes have a provision in the 

first chapter regarding equivalent compliance. The applicable section from NFPA 101 Life Safety 

Code is as follows: 

Equivalent Compliance. Alternative systems, methods, or devices approved as equivalent 

by the authority having jurisdiction shall be recognized as being in compliance with this 

code. 
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While this code section allows for a departure from prescriptive code requirements, the authority 

having jurisdiction is left to determine whether an equivalent level of safety is provided. There are 

no details provided on how to achieve the equivalency. 

2.10 Stakeholders Analysis 

A stakeholder is defined as any entity that has an interest in or are affected by the outcome of a 

system. There are seven entities that have been identified as stakeholders in the creations of a 

wildfire suppression system. These stakeholders are summarized in the following table. 

 

Table 2 

Stakeholder Identification 

Title Description Role 
Relation 

to Project 
Priority 

Owners 

Residents/building owners in 

the WUI whose property is at 

risk for wildfire damage 

System users 

and operators 

Direct, 

positive 
1 

NFPA 
Agency that sets fire codes and 

standards 

Assessor/ 

Regulator 

 

Neutral 1 

EPA 

Agency that will regulate water 

and chemical use by the 

system. 

Assessor/ 

Regulator 

 

Neutral 1 

Insurance 

companies 

A means of protection from 

financial loss 

Assessor/ 

Regulator 

Indirect, 

positive 
2 

Manufacturing 

companies 

The specific companies that 

manufacture the nozzles, 

sprinkler heads, and other fire 

equipment that will be used on 

the system 

Suppliers 

 

 

Indirect, 

positive 

2 
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Companies 

with similar 

products 

Companies with products that 

have commercial products with 

the same objective of 

preventing structures from 

burning Examples: Frontline, 

Consumer Fire Products, INC. 

Competitors 

 

Indirect, 

negative 
2 

Firefighters 

Those fighting the fire at the 

fronts who sometimes put out 

house fires. 

Authority 
Indirect, 

positive 
3 

UL/FM 
Leading testing/listing agencies 

in the US. 

Assessor/ 3rd 

party testers 
Neutral 2  

  

The primary stakeholder in a wildfire suppression system is the owner. These are residents and 

building owners in the wildland urban interface whose property is at risk of destruction by 

wildfires. In a wildfire event, the safety of the residents is the utmost priority; fire officials call for 

evacuations to make sure all residents are cleared out of the path of the fire. The owners will 

ultimately pay for the installation of the system to protect their property. The needs of the owners 

must be at the forefront when considering how the system will be designed and operated. If the 

system does not meet the needs of the owners, they will not invest in it.  

 

The NFPA and the EPA are both regulatory stakeholders in the systems. The NFPA is the agency 

that creates and fire codes and standards and ensures that they are met (NFPA, n.d.). Section 2.9.1 

lists applicable NFPA codes and standards for a foam-water spray system. The Environmental 

Protection Agency (EPA) enforces regulations to maintain the health of the surrounding 

environment (U.S. Environmental Protection Agency, n.d.). There are two reasons why the EPA 

would be involved in the system: the regulation of water usage and the regulation of chemical 

usage. In areas of drought, water usage is regulated by the EPA to ensure that it is being used 

responsibly and conservatively. A fire suppression system that procured water would be an added 

use by residents. Therefore, the EPA would be concerned with how much water the system is 

using. Any chemical additive used will leach directly into the surrounding environment and could 

have a negative impact if the chemicals are not safe for the surrounding vegetation and wildlife. 

The chemical used by the system will require EPA approval. 

  

Manufacturers of water spray systems and pumps are indirect stakeholders that will be positively 

impacted by the development of a suppression system. If the system becomes mainstream for new 

and old homes in the WUI, there will be a greater demand for the products that these companies 

manufacture. Examples of manufacturers of components for suppression systems include Tyco, 
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Viking, Victaulic, and Pentair. Tyco, Viking, and Victaulic offer sprinkler heads, spray nozzles, 

and pipe parts or suppression systems while Pentair specializes in pumps (Johnson Controls, 2018; 

Viking, 2018; Victaulic, n.d.; Pentair, 2019).   

  

A negative stakeholder of this system are the consultors that currently install similar suppression 

systems around houses. They provide expensive systems that are exclusive to average 

homeowners. If the costs of one of these suppression systems can be reduced enough to become 

mainstream and affordable for the average consumer, the current consulting companies will lose 

customers. The specific systems that are currently available on the market were discussed in the 

previous section. 

 

In order for the system to be verified to function, it has to pass testing by third party assessors.  FM 

Global is a property insurance company operating from the philosophy that most losses can be 

prevented. They provide insurance products and property loss prevention engineering services to 

protect their clients' worldwide operations. FM Global executes a five-step approval process before 

issuing the approval (FM Approvals 2019). Underwriters Laboratories (UL) is a product safety 

testing and certification company having developed more than 1,600 standards. UL is certifying, 

validating, testing, verifying, inspecting, auditing, advising and educating customers in many 

countries. In order to become UL Listed, the system must be tested and meet the safety 

requirements set. Systems having the UL mark are covered by the Underwriters Laboratories 

follow-up program, which continuously tests the products to ensure that the UL standards and 

requirements are always met (UL FSRI, n.d.). 
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3.0 Methodology  

The scope and purpose of this project is to design a fixed external suppression system to protect 

one- & two-family homes from firebrand exposures during wildfires. The Society of Fire 

Protection Engineering’s performance-based design approach was used as a framework for the 

design process. Figure 12 shows a flow chart from the Society of Fire Protection Engineers (SFPE) 

Handbook of Fire Protection Engineering (2016) outlining each step of the performance based 

design process. Details on each step of the design process can be found in the  

sections that follow, and a project schedule can be viewed in Appendix A.  

 

 

Figure 12. Performance based design process (Hurley, 2016). 

3.1 Define Project Scope 

The first step of this process involved defining the project scope. The Society of Fire Protection 

Engineering Guide to Performance Based Design (2007) recommends that information be gathered 

to identify and define the following topics: desired features, stakeholders, building construction, 
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occupant characteristics, intended use and occupancy, applicable codes and regulations. Table 3 

shows the definition of our project scope based on information from the literature review.   

Table 3 

Project Scope 

Desired System Features 

Automatic fixed exterior suppression system to protect 

suppress fires resulting from fire brand exposures on one- & 

two-family homes 

Stakeholders 

● Homeowners 

● Local AHJ 

● EPA 

● Firefighters 

● NFPA 

● Testing/listing agencies 

● Manufacturers 

● Insurance agencies 

Building Construction 

Type V - Structural elements, walls, arches, floors, and roofs 

are made entirely or partially out of wood. Certain structural 

elements may have 1 hour of fire resistance (NFPA 5000, 

2018).  

Occupant Characteristics 
Occupants are assumed to have evacuated at the time of system 

activation.  

Intended Use and 

Occupancy 
Residential (NFPA 101, 2018), Group R-3 (IBC, 2018) 

Applicable Codes and 

Regulations 

Local and State Building/Fire Codes 

Environmental Regulations 

Assumptions 
The roof of the home meets the requirements of ASTM E108 

for a Class A roof. 

Threat to Protect Against 
Firebrand exposures 
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3.1.1 Location and Home Design 

The next step of the design phase involved selecting a location and defining the features of the 

home that the design would center around. This was necessary in order to define the home size, 

building materials, and environmental features based on local data. We focused on finding an area 

of the country that was regularly impacted by wildfires. From 2000 to 2014, 12 of the 20 most 

destructive fires in the United States occurred in California. 10,000 buildings were destroyed by 

wildfires in the state from 2000 to 2013; Texas was the next highest with 2,5000 buildings 

destroyed during this time period (Kramer et. al., 2018). For these reasons, California was chosen 

as the state to focus on.  

 

The area was then further refined by researching counties in California that have land in the WUI. 

The map of Communities at Risk from Wildfire produced by the U.S. Endowment for Forestry 

and Communities was utilized to assess the percentage of land that is classified as WUI in each 

county (Alvarez, n.d.). A snapshot of the interactive map with Santa Cruz data highlighted is 

presented below in Figure 13. Yellow represents a relatively low wildfire risk and dark red 

represents the highest wildfire risk.  

 

 
Figure 13. Communities at risk from wildfire statistics 

 

The map also provided other statistics such as residents in the WUI, homes in the WUI, and WUI 

population density. Santa Cruz was selected as the county for the purposes of this project since it 

has the largest percent of land in the WUI at 51.3%. There are about 72,000 homes established 

within this area. We researched the average square footage of homes in Santa Cruz County, 

focusing on one- & two- family homes since they are already grouped into the same occupancy in 

NFPA 101 and the International Building Code. The average home size was found to be 

approximately 1450 ft2; to model this, the house was assumed to be rectangular with dimensions 

of 33 ft. by 43 ft. (Dominion Enterprises, n.d.). Other details about the house were added to create 
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realistic fire scenarios. The front of the house has 3 feet of mulch extending away from the house 

along the entire length, except for where the concrete steps lead to the front door. On either side 

of the steps, there are three manzanita bushes; these are typical landscape plants used in this part 

of California. There is a concrete foundation that extends 1 foot up from grade, at which point the 

cedar siding extends to the eaves. The house also has a 10’ by 20’ deck located at the back of the 

house. The house was modeled in Revit and is shown in Figure 14 below.  

 

 

 

     
Figure 14. Revit model of the typical residence 

3.2 System Goals, Objectives and Performance Criteria 

This project scope served as a basis for the system design. Once the project scope was narrowed, 

the next step involved developing goals to express the desired fire safety outcomes in broad terms. 

The goals were written in such a way that people with no engineering background can understand 

how the building is intended to perform in a fire. The SFPE Handbook provides four fundamental 

goals for fire safety (Hurley, 2016): 

1.      Life Safety 

2.      Property Protection 

3.      Mission Continuity 

4.      Environmental Protection  

By considering information from the literature review and the definition of the project scope, we 

determined that the primary goal that our system aligns with is providing property protection. Life 

safety was not a primary goal because our project scope assumes that building occupants have 

evacuated by the time the system activates. Environmental protection was a consideration when 

we selected a suppression agent, since the toxicity of the agent was evaluated. Mission continuity 
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is not applicable to one- & two- family residences. With these fundamental goals in mind, specific 

goals for this project were then conceptualized. Four system goals were established and 

categorized into primary and secondary system goals. They are listed as follows: 

Primary Goals: 

1. Minimize fire related damage to the building and its contents.  

2. System can operate independently from local utilities.  

Secondary Goals: 

3. System can remain in service with minimal attention from the homeowner. 

4. Minimize the impact of system discharge on the environment and consider 

resource conservation 

The primary goals are those that affect the components of the system and the way in which it’s 

designed. The secondary goals are characteristics of the system that we have deemed important 

but are not controlling the design of the system.  

For each goal above, the next step was to develop objectives to further define how the system is 

intended to operate. Objectives can be broken into two different types: stakeholder objectives and 

design objectives (Hurley, 2016). An example of a stakeholder objective would be limiting fire 

damage beyond the room of origin. A corresponding design objective would be preventing 

flashover in the room of origin (Society of Fire Protection Engineers, 2007). Design objectives 

typically help to quantify the goal. Since this project is a conceptual design being completed by 

three individuals with an engineering background, we skipped the stakeholder objective portion of 

the performance-based design and moved straight to developing design objectives. NFPA 550 Fire 

Safety Concepts Tree was also used as a basis for developing goals and objectives. This document 

examines generic fire safety objectives and was a useful resource to determine what the 

suppression system’s intended purpose.  A green path was added to the chart NFPA 550 in Figure 

15 to highlight the fire safety objectives that apply to this project.  
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Figure 15. Fire Safety Concept Tree  

The two green boxes located at the bottom of the flowchart, Detect Fire and Apply Sufficient 

Suppressant, are examples of objectives that further define a larger goal. Our four system goals 

with the corresponding objectives are shown in Table 4. 
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Table 4 

Goals and Objective 

Primary Goals Objectives 

1. Minimize fire related damage to the 

building 

➢ Detect fire in a timely manner 

➢ Activate suppression system before the fire 

reaches the eaves 

➢ Discharge suppressant at a density 

sufficient to suppress fires resulting from 

firebrand accumulations 

➢ Damage should be limited to building 

facade and auxiliary components 

2. System can operate independently 

from local utilities 

➢ Provide independent power supply 

➢ Provide independent water supply 

Secondary Goals Objectives 

3. System can remain in service with 

minimal attention from the homeowner. 

➢ Use weather resistant components 

➢ Provide simple user interface monitoring: 

low-pressure alarm, water tank level, 

tamper switches 

➢ Inspection, testing, and maintenance 

protocols  

 

4.  Minimize the impact of system 

discharge on the environment and design 

the system in such a way to conserve 

resources. 

➢ Used a zoned distribution system 

➢ Suppression agent shall be biodegradable, 

non-toxic, and environmentally safe 

 

3.2.1 System Goals 

This section provides an explanation of each goal and details for the corresponding objectives.  

Goal 1: Minimize fire related damage to the building 

The first and paramount goal of the system is to minimize the fire related damage to the building. 

This is a broad goal that needs a more concise definition. By this we mean that fire related damage 

should not affect the structure of the building. There are four objectives that will help the system 

realize the first goal. First, the system should detect the fire and activate the suppression system in 
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a timely manner. Then, suppressant should be discharged at a density large enough to suppress 

sport fires that result from firebrand accumulations. Lastly, the damage caused by the fire should 

be limited to the facade of the structure and auxiliary components. By auxiliary components we 

mean a deck, fence, or outdoor furniture, or any other feature surrounding the house. Our main 

goal is to preserve the structural integrity of the house. 

Goal 2: System can operate independently from utilities 

The second goal is integral to the operability of the system. The system needs to be equipped with 

components that allow it to function independently from local utilities. Often times the power 

supply will be cut to an area within the path of an approaching wildfire. If the system is reliant on 

the grid, it's unlikely that it will activate when the threat of a wildfire impends. Therefore, the 

system requires an independent power supply that can store and supply enough power for the 

duration of the fire event. The system will also need to have an independent water supply that 

stores enough water to provide the minimum discharge density for the length of the fire exposure. 

Goal 3: System can remain in service with minimal attention from homeowner 

The third goal is that the system can remain in service with minimum attention from the 

homeowner. The importance of this goal was realized when considering who the intended 

customer and user of the system is: the average homeowner. This suppression system is intended 

to be a worthwhile investment to protect homes from complete destruction and to prevent 

homeowners from having to rebuild their homes. If it requires a lot of time and money for 

maintenance, the value of the product will decrease and might not be worth the cost of installation. 

In order for it to be a worthwhile investment, the system will need to have minimum maintenance 

needs. The use of weather resistant components is one objective under this goal so that the 

components can withstand the external environment. Another objective is to provide a simple user 

interface that notifies the owners when something is down in the system so that the homeowner 

doesn’t need to be technically savvy to know when and where to carry out maintenance. Finally, 

there should be a written protocol that comes with the system that lays out when to complete 

maintenance, inspection, and testing. Because the system would still be operable if this goal were 

not realized, we denoted this as a secondary goal. 

Goal 4: Minimize the impact of system discharge on the environment and design the system 

in such a way to conserve resources. 

The fourth goal is to minimize the impact of the system discharge on the environment and design 

the system in such a way to conserve resources. Wildfires often occur in times of drought when 

the water supply is already running low, therefore there’s a scarce supply of water available for 

purposes of suppression. For this reason, the system would be broken up into a zoned distribution 

system that can detect and activate in four separate zones. If a spot fire ignites on one side of the 

house, the system only discharges suppressant in the localized zone of the spot fire rather than 

releasing suppressant over the entire house. 
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Unlike most suppression systems designed up until now that are located internally and designed 

for internal fires, this system is designed to suppress external fires and is located outside of the 

residence. Consequently, there are no boundaries preventing the discharged suppressant from 

running off into the surrounding environment. To prevent more environmental damage in the long 

run, the suppression agent used needs to be non-toxic and environmentally safe. 

With goals and objectives defined, we then began to focus on the performance criteria for the 

project. Performance criteria are “threshold values that, if exceeded, indicated unacceptable 

damage has occurred” (Hurley, 2016). The performance criteria provided a quantitative basis for 

our project design. For every system objective defined, there is a corresponding performance 

criterion. The final performance criteria can be found in Table 7.  

3.3 Define Fire Scenarios 

Fire scenarios describe the conditions of exposure for which a design is intended to provide 

protection. Typically, the process of defining design fire scenarios involves first defining all 

possible fires that could occur in a building, and then reducing this to a manageable set of scenarios 

(Hurley, 2016). NFPA 101 Life Safety Code and NFPA 5000 Building Construction and Safety 

Code each provide eight different design fires to be considered in the performance-based design 

process. These fires have varying fuel loads, rates of growth, and ignition locations. Unfortunately, 

these design fires cannot be applied directly to this project because both NFPA 101 and NFPA 

5000 apply to the interior of buildings. However, the varying characteristics of these design fires 

were helpful in determining the design fire scenarios on the exterior of a building exposed to 

firebrands. Three sets of characteristics need to be defined in order to characterize possible design 

fire scenarios (Society of Fire Protection Engineers, 2007): 

1.      Building Characteristics – Architectural and structural features, fire protection systems. 

2.      Occupant Characteristics – Occupants are assumed to have evacuated. 

3.      Fire Characteristics – Ignition sources, growth rate, location, duration. 

While developing the fire scenarios, we also assumed that firebrands were the only threat to the 

house and that homeowners did not follow defensible space recommendations. The design fires 

that were considered for this project took into account various growth rates, fuels, and locations 

around the exterior of the house to determine the worst-case scenario; this was the one we designed 

the system to protect against. Fire scenarios were developed based on heat release rates of various 

building materials from Chapter 26 of the SFPE Handbook, as well as data on firebrand ignition 

processes from NIST and other sources identified in the literature review.  

3.3.1 Length of Exposure 

The length of exposure was an important thing to quantify in the fire scenarios since it ties back 
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into the performance criteria of a few system objectives. The exposure time will have a major 

impact on how large the storage tanks for water and foam concentrate will need to be. Additionally, 

this will determine how long the system needs to be powered for. It was assumed that firebrands 

can only travel forwards, in the same direction that the flame front is spreading.  Therefore, the 

firebrands will only be a threat until the main flame front passes by the house. This is consistent 

with what can be expected in a real wildfire; the wind that is driving the fire spread will 

concurrently be transporting the firebrands through the air in the same direction.  

 

In order to estimate the length of exposure, two factors were considered: how fast wildfires spread 

and how far firebrands can travel in the air. As discussed in the literature review section, firebrands 

have been found as far as 6.2 miles away from the flame front in extreme wildfires (Koo et. al., 

2010). Wildfire spread is a difficult phenomenon to quantify since it depends on many different 

variables: wind speed, fuel size and moisture content, and topography can all influence the speed 

at which a wildfire will spread across the landscape. There have been numerous studies that have 

attempted to estimate a realistic upper limit of flame spread speed. One article states that wildfires 

can spread up to 6 miles per hour in dense fuels and 14 miles per hour in grasslands (Natural 

History Museum of Utah. (n.d.). A book produced by the Australian Government dedicated to 

studying wildfire spread estimates that the general maximum speed of wildfires is from 9 to 12.5 

miles per hour (Cheney & Sullivan, 2007). In this case, it is more conservative to consider a slow 

rate of flame spread combined with a large firebrand transport distance since this will yield the 

longest exposure time. Therefore, the length of exposure was estimated by using a transport 

distance of 6.2 miles and a fire spread rate of 6 miles per hour.  

 

𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒 𝑇𝑖𝑚𝑒 =
𝐹𝑖𝑟𝑒𝑏𝑟𝑎𝑛𝑑 𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝑊𝑖𝑙𝑑𝑓𝑖𝑟𝑒 𝑅𝑎𝑡𝑒 𝑜𝑓  𝑆𝑝𝑟𝑒𝑎𝑑
=

6.2 𝑚𝑖𝑙𝑒𝑠

6 𝑚𝑝ℎ
= 1.03 ℎ𝑜𝑢𝑟𝑠 

 

An experiment done by Manzello and NIST exposed mulch beds to firebrand showers. The mulch 

beds were exposed to a firebrand number flux of 7.4/m2*s under 6 m/s winds. Flaming ignition 

was observed in under 6 minutes after the first firebrand landed on the pine bark mulch in every 

test (Manzello, Nii, & Suzuki, 2017).  These tests indicate that it is realistic for a 1 hour exposure 

time to be long enough for firebrands to accumulate to initiate a spot fire. This means that the fire 

scenario that was developed for this project represents a real threat and a realistic pathway to 

ignition. 

3.3.2 Fire Scenario 1: Deck Fire 

The first fire scenario that we came up with and analyzed was the case of a deck fire. In this 

scenario, the firebrands will shower down on the 20’ x 10’ deck, shown in Figure 16. The wind 

will push the firebrands into the corner of the deck at the interface of two walls. The accumulation 

of firebrands will be enough to cause flaming ignition of the deck. This fire will then ignite the 

wall and spread vertically until it reaches the eaves. 
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Figure 16. Fire Scenario 1 

3.3.3 Fire Scenario 2: Mulch Fire 

The second fire scenario accounted for vegetation around the house. We modeled this design fire 

after watching an experiment done by the IBHS Insurance Institute for Business and Home Safety, 

pictures of both the model and the IBHS experiment are shown in Figure 17. The experiment 

simulated wildfire conditions by exposing a house to a firebrand shower. In the video, firebrands 

accumulate and ignite the mulch, which then ignites the bushes. The radiant heat flux from the 

bushes and the mulch ignite the wall, at which point the fire will spread vertically up the siding. 

     
Figure 17. Fire Scenario 2 

The front of the house has 3 feet of medium pine bark nugget mulch extending away from the 

house along the entire length, except for where the concrete steps lead to the front door. On either 

side of the steps, there are three Manzanita bushes. Figure 18 shows a screenshot of the 3D 

AutoCAD model representing the front of the house.  
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Figure 18. 3D AutoCAD Model of the Mulch Bed and Bushes. 

Data from an experiment conducted at the University of Nevada indicates that fire spreads in this 

mulch at a rate of 0.066 ft/s. The experiment ignited mulch with a torch and then measured the 

spread rate of the fire under 10 to 15 mph winds (Smith & Quarles, 2011) This is similar to the 

winds that can be experienced during a wildfire. In order to compare the mulch fire to the deck 

fire scenario, the rate of opposed flow spread for flames on the deck surface was calculated. An 

important variable when determining the lateral flame spread rate is the flame spread parameter, 

Φ. The flame spread parameter has been tabulated for common materials. The pine boards of the 

deck are expected to have a value of Φ = 3.2 kW2/m3 (Babrauskas & Wetterland, 1995). The 

physical properties of southern yellow pine are also known. The wood has a density of 420 kg/m3, 

a specific heat of 1632 J/kg*K, and a conductivity of 0.144 W/m*K (Engineering Toolbox, n.d.; 

Goss & Miller, n.d.). The ignition temperature of southern yellow pine is 320oC (Tran & White, 

1992). With this information known, the rate of opposed flow flame spread was calculated as 

follows (Quintiere, 2006): 

𝑣𝑝 =
𝜙

𝑘𝜌𝑐(𝑇𝑖𝑔 − 𝑇𝑠)2
=

3.2 𝑘𝑊2/𝑚3

0.0987 𝑘𝐽2𝐾−2𝑚−4𝑠−1(320𝑜𝐶 − 30𝑜𝐶)2
= 3.85 𝐸 − 4 𝑚/𝑠 

This translates to a lateral rate of flame spread of only 0.00126 ft/s.  This is an order of magnitude 

slower than the mulch rate of spread of 0.066 ft/s. This means that the mulch will be able to ignite 

more of the wall than the deck, which will lead to a larger fully developed fire. For this reason, a 

complete set of calculations were completed for the mulch fire scenario  
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3.3.4 Fire Scenario Calculations 

This section presents a summary of key equations and concepts that were used to quantify the fire 

scenario and determine the ignition timeline. The calculations can be viewed in their entirety in 

Appendix B. To begin, it was necessary to define certain events that to include in the ignition 

timeline. The following events were identified as being important to the fire scenario based on 

observations from the IBHS firebrand experiment, information from the literature review 

regarding wildfire pathways to ignition and fire development, and our system goals. 

➢ Mulch Ignition  ➢ Flames Reach the Eaves 

➢ Center Bush Ignition ➢ Detector Actuation 

➢ Left/Right Bush Ignition ➢ System Discharge 

➢ Wall Ignition  

The calculations were completed with the goal of estimating a time to correspond to each of these 

events. We are assuming that the fire will start at the edge of the mulch furthest from the wall and 

the wind will spread the mulch towards the wall. This represents the worst case scenario because 

the fire in the mulch will spread much faster with the help the wind. This means that more mulch 

will ignite over time. The ignition time for the bush was assumed to be 8 seconds after the mulch 

fire reached the edge of the bush. This will be variable and dependent on a number of conditions, 

but it is believed to represent the realistic worst case scenario for the ignition of the bush. By the 

time the left and right bushes ignite, the center bush is only releasing 14 kW total. Because of this, 

it is safe to assume that the time to ignition of the left and right bush is controlled by the mulch 

fire and that the relatively small radiative flux from the center bush does not influence the time to 

ignition.  

 

View Factors 

Once the mulch and the three bushes were burning, the wall ignition was considered. View factors 

were used to determine how much of the radiation leaving the burning bushes would hit the surface 

of the wall. The view factor F12 is the fraction of energy exiting Surface 1 that directly impinges 

on Surface 2 (Martinez, 2020). View factors have been tabulated for a number of common 

configurations. Since the bushes have been approximated as cylinders, it is possible to apply these 

view factors to this fire scenario. The two view factors used in the calculations are shown below 

in Figure 19. 
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Figure 19. View Factors to Estimate Radiation from the Manzanita Bushes to the 

Wall (Martinez, 2020) 

The first view factor shown in the figure was used to model the radiation from the center Manzanita 

bush to the wall. The second view factor was used to model the radiation from the left and right 

Manzanita bushes to the wall. The value of W needed to be defined in order to apply the view 

factor equations. W is the width of the wall area that is being considered. In this case, this was the 

area of the wall that is receiving the most radiation since this area will ignite first. To define a 

value for W to be used in the above view factor equations, it was assumed that the bushes are 

emitting significant radiation to the wall over the horizontal projection of a 90o arc. it was possible 

to find the area where the radiation arcs of the three bushes will intersect. This is shown below in 

Figure 20.  
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Figure 20. Determining Area of Wall Ignition Based on Bush Radiation.  

The wall will receive the most radiation on a 19 inch wide strip in front of the center bush, 

highlighted in the figure by the orange cross hatch. The two view factors were calculated using 19 

inches as the value for W, the view factor for the center bush radiating to the wall is 0.155 and the 

view factor for the side bushes radiating to the wall is 0.097.  

Mulch Heat Flux to Wall 

The SFPE Handbook (5th Edition - 2016) provides a series of graphs and equations in Chapter 25 

that can be used to estimate the heat flux to the wall from the mulch. Figure 21 provides the vertical 

heat flux distribution along the centerline of a square propane burner fire adjacent to a flat wall.  

 

Figure 21. Vertical Heat Flux Distribution Along the 

Centerline of a Square Propane Burner Fire Adjacent to a 

Flat Wall.  
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In order to estimate the heat flux from the graph, it is necessary to define the value of z/Lf. The 

flame height from the mulch fire, Lf , was assumed to be 1.8 feet based on data from mulch 

flammability experiments (Zipperer et. al., n.d.).  The value for z will be taken as 1 foot since the 

cedar siding of the house starts 1 foot above grade. Therefore:  

𝑧

𝐿𝑓
=

1𝑓𝑡

1.8𝑓𝑡 
= 0.55 

𝑓𝑡

𝑓𝑡
= 0.55 

Examining the graph, the heat flux along the centerline is approximately 50 kW/m2 when the value 

of z/Lf  = 0.55.  Figure 22 provides the lateral heat flux distribution with varying distance from the 

centerline of square propane burner fires against flat walls in the flaming region.  

 

Figure 22. Lateral head flux distribution based on distance 

from centerline 

The value of D is the length of the square area burning. The mulch fire can be approximated as a 

3 foot square at this point, meaning that D = 3 ft. The value of x is the distance from the wall to 

the centerline of the fire; x = 1.5 ft. in this case since the fire is burning across the entire 3 foot 

depth of the mulch belt and is centered at 1.5 feet from the wall. Therefore:  

𝑥

0.5𝐷
=

1.5𝑓𝑡

0.5(3𝑓𝑡)
= 1

𝑓𝑡

𝑓𝑡
= 1 

Examining the graph, the heat flux at the wall is approximately 40% of the heat flux at the 

centerline. Therefore, the target area of the wall is receiving 20 kW/m2 from the mulch.  
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Wall Ignition 

The wall is receiving a heat flux from a total of four sources: left bush, center bush, right bush, 

and the mulch. Each source has its own HRR curve, and its own view factor that determines how 

much of the radiation is reaching the wall. The total calculated heat flux from the four sources was 

used to calculate the time to ignition for the wall.  

The critical heat flux for most species of wood is in the range of 9.7 kW/m2 to 14 kW/m2. This is 

the lowest external heat flux at which ignition of the material can occur (Rantuch et. al., 2017). 

The critical heat flux of the cedar siding was assumed to be 12 kW/m2. The calculations below 

show that at ignition will take approximately 31 seconds with the critical heat flux impinging on 

the surface. Over this period, the wall would absorb 372 kJ/m^2. 

Cedar Siding Physical Properties (Kumaran et. al., 2002):  

𝑘 = 0.085
𝑊

𝑚
∙ 𝐾         𝑐𝑝 = 1880

𝑘𝐽

𝑘𝑔
         𝜌 = 336

𝑘𝑔

𝑚3
     𝑘𝜌𝑐𝑝 = 0.0537 

Assume an initial surface temperature of Ts = 30 oC 

Cedar ignites at approximately 354 oC (Drysdale & Yudong, n.d.) 

𝑡𝑖𝑔 =
𝜋

4
𝑘𝜌𝑐𝑝 (

𝑇𝑖𝑔 − 𝑇𝑠

𝑞̇𝑓
"

)

2

 

𝑡𝑖𝑔 =
𝜋

4
(0.0537) (

354℃ − 30℃

12𝑘𝑊/𝑚^2 
)

2

= 31 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 

𝑞" = 𝑡𝑖𝑔𝑞̇𝑓
" = 31𝑠 (12 𝑘𝑊/𝑚^2 ) = 372 𝑘𝐽/𝑚2 

Since the heat flux to the wall is not constant, it is not accurate to calculate the time to ignition 

using a time constant heat flux. DiDomizio, Mulherin, and Weckman (2016) outline a process to 

calculate the time to ignition under a time varying radiant exposure. The first step was to graph the 

total heat flux to the wall over time from the four sources. The graph shows two separate curves 

because there is a discontinuity in the function at the time where we begin to account for the mulch 

heat flux to the wall.  A best fit curve was identified for each part of the graph using Microsoft 

Excel. Figure 23 shows the graph of the heat flux to the wall (blue), the fit curves (red), and the fit 

curve equations.  
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Figure 23. Graph of heat flux to wall from all sources 

Integrating the best fit curves yielded the total heat impinging on a unit area of wall over a certain 

period of time. It will take approximately 32 seconds for the wall to receive the amount of heat 

that is required for ignition under the critical heat flux. Since this is around the same time required 

for ignition with the critical heat flux, it is reasonable to assume that the wall will ignite within 32 

seconds.  

Vertical Flame Spread on the Wall 

As soon as the wall ignites, the flames will begin to spread upwards. James Quintiere outlines a 

process for estimating the rate of vertical flame spread in Chapter 8 of his book Fundamentals of 

Fire Phenomena (2006). The example in the book uses a constant heat release rate from the wall 

throughout the problem, which led us to believe this is a reasonable assumption. We assumed that 

the cedar siding material is burning at its peak heat release rate of 182 kW/m2 (Dietenberger, Stark, 

& White, 2007).  Quintiere (2006) gives typical values for peak incident flame heat flux to the 

upper wall from the burning portion below in the range of 20 kW/m2 to 30 kW/m2 for a wide variety 

of wall flames. Examining Figure 24 below, the results among all materials tested are remarkably 

similar.  
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Figure 24. Incident heat flux to wall 

distribution based on normalized 

position 

The trend indicates that the maximum value incident flame heat flux to the wall above is in the 

realm of 30 kW/m2. This occurs when the normalized length is equal to 0.3 (i.e. flame length is far 

greater than the position. For this scenario, the heat flux to the wall was assumed to be 25 kW/m2. 

The process described by Quintiere for calculating vertical flame spread is summarized as follows:  

Flame length on a vertical wall can be approximated by this relation: 

 𝑦𝑓 = 0.01
𝑚2

𝑘𝑊
(𝑄̇"𝑦𝑝) 

The equation for vertical flame spread across a thermally thick surface is given.  

𝑣𝑝 =
(𝑞̇𝑓

" )2 (𝛿𝑓)

(
𝜋

4𝑘𝜌𝑐𝑝
) (𝑇𝑖𝑔 − 𝑇𝑠)

2
 

Adopting y as the vertical coordinate, the equation becomes:  

𝑑𝑦𝑝

𝑑𝑡
=

(𝑞̇𝑓
" )2 (𝑦𝑓 − 𝑦𝑝)

(
𝜋

4𝑘𝜌𝑐𝑝
) (𝑇𝑖𝑔 − 𝑇𝑠)

2
=

 (𝑦𝑓 − 𝑦𝑝)

𝑡𝑖𝑔
 

Once the flame spread velocity was calculated, it was possible to determine the amount of time 

that it would take for the flames to reach the eaves of the home. The information from this section 

was used to construct a fire scenario timeline that is presented in the results section.  
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3.3.5 Firebrand Heat Contribution  

Because the firebrands are a continuous threat even after ignition has occurred, it was necessary 

to determine the amount of heat that is contributed by the firebrand shower. If a spot fire ignites 

via firebrands a few minutes into the one hour exposure, the firebrands can continue to shower the 

house until the flame front passes. Therefore, the heat contribution should not be neglected.  

Experiments indicate that the realistic worst case for the number flux of firebrands landing on a 

surface is about 1.4/m2*s (Thomas et. al., 2017). The design area in this case is the area of the 

mulch bed, which is 21 m2. By carrying out a simple multiplication of the firebrand flux by the 

design area, we estimated that about 1750 firebrands can land in the design area in 1 minute. Using 

the literature we found that one firebrand releases an average of about 0.12 kJ/m2, so over the 

design area an additional 3.5 kW is contributed by the firebrand shower. We will take this into 

account when deciding on the discharge density needed for the size of the design fire.  

3.4 Develop Trial Design 

With goals, objectives, performance criteria, and fire scenarios in mind, we began developing trial 

designs of the automatic external foam-water suppression system. The SFPE Handbook has 

identified six subsystems that can make up a trial design. These subsystems are divided in Table 5 

below based on their relevance to this project. 

Table 5 

SFPE Subsystems 

Priority 1                      

(Directly Applicable) 

Priority 2                     

(Indirectly Applicable) 
Not Applicable 

● Fire Detection and 

Notification 

● Fire Suppression 

● Reduce Fire Initiation and 

Development 

● Passive Fire Protection 

● Spread, control, and 

management of smoke 

● Occupant behavior and 

egress 

3.4.1 Determine Suppression System Type 

Based on the information presented in section 2.8 of the background, a full analytical criteria 

method was used to determine the system best suited for this application. The prioritization matrix 

and criteria that we used to identify the most favorable system for suppressing firebrand ignitions 

on homes is located in Appendix C.   

In summary, after researching the different suppression systems we decided that water would not 

be an ideal suppressant to fight wildfires; water’s high surface tension causes it to roll off fuel 

rather than penetrate it and does not allow it to stick around and cling to vertical surfaces. Therefore 

we ruled out water mist and water spray systems. As we looked into foam as a suppressant, we 
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found that it will remain in place after discharge which would help when there is a continuous fire 

brand exposure. It also has a lower surface tension allowing it to adhere to vertical and horizontal 

surfaces and create an oxygen barrier over fuel. Additionally, using a foam based system reduces 

the amount of water required for suppression. After choosing foam, we then researched foam water 

sprinkler systems and low med and high expansion foam systems. When we looked into low 

medium and high expansion foam systems, we came across compressed air foam systems, which 

we found has several advantages over foam water sprinkler systems. Foam water sprinkler systems 

and low medium high expansion foam systems make the foam at the end with foam makers that 

draw in air, which make the bubble sizes more variable, causing it to be less reliable and efficient. 

Compressed air foam systems make the foam early on, allowing for a uniform network of bubbles. 

This causes the foam to break down slower, have full coverage, and stick to vertical surfaces well. 

It also uses a lot less foam solution and water.  

 

Looking into different types of foams, we found that although AFFF and protein/fluoroprotein 

foams have been effective, they contain a lot of toxins and are not environmentally friendly. 

Therefore, they are not suitable for outdoor uses. These two foams are also used for Class B fires, 

such as flammable liquid fires, whereas a wildfire ignition on a home would be a Class A fire, 

because homes are made of ordinary combustibles. Synthetic/detergent foams we found would be 

too light and therefore not suitable for outdoor use. Therefore, we landed on Class A foam, which 

accounts for all the characteristics of a foam solution, while being tested and listed for 

biodegradability and environmentally friendly.  

In further research of compressed air foam systems, we analyzed several studies. In a study by the 

Los Angeles Fire Department (2001), water, Class A foam solution, and compressed air foam were 

evaluated. Each suppressant was tested through a handline hose, using a flow of 90 gpm. But as 

represented in Figure 25, the time that it took compressed air foam to knockdown the fire and drop 

the temperature, as well as the amount of water needed for knockdown was significantly less than 

both water and the Class A foam solution.  
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Figure 25. Suppression performance of CAF compared to water and class A foam 

solution. 

A study by Kim and Dlugogorski (1997) also displays the advantage of compressed air foam 

systems over water mist and sprinkler systems. This study was based on a wood crib fire, and as 

you can see from the graphs in Figure 26, the compressed air foam system suppressed the fire 

much faster than the other systems. It took only about 60 seconds for the compressed air foam 

system to bring the fire from 500 kW to less than 50 kW, whereas it took the sprinkler system 

twice as long and the mist system 6 times as long.  

 
Figure 26. Suppression performance of CAFS compared to sprinkler system and water mist 

system 
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Another way that we assessed the different types of systems was by looking at the minimum 

discharge density requirements established by the NFPA. Specifically, we used NFPA 11 Standard 

for Low-, Medium-, and High-Expansion Foam which specifies discharge densities for indoor 

foam systems. The standard says that a minimum of 0.16 gpm/ft2 is needed for Foam Water 

Sprinkler and Foam Water Spray Systems. For non-CAF low expansion foam systems, the 

minimum discharge density ranges from 0.1 to 0.5 gpm/ft2 depending on the application. For CAF 

systems, the minimum discharge density requirement is 0.04 gpm/ft2 on hydrocarbon fuels and 

0.06 gpm/ft2 for alcohol and ketone fires. Discharge density is the amount of suppressant that is 

released over an area, therefore the system that uses the lowest discharge density is the most 

efficient at suppressing the fire because it needs less suppressant to do the same job. Although 

these discharge densities are not directly applicable to our system because we are using a CAF 

system on Class A fuels, we can see from the standards that a CAF system is the most effective 

because it has the lowest minimum discharge density requirement.  

3.4.3 Initiating Devices 

Since occupants are assumed to have evacuated before the system discharges, the system needs to 

be provided with means of automatic detection. Several different types of automatic fire detectors 

were considered for this application. Smoke detectors are commonly specified for indoor use and 

can provide early fire detection in enclosed spaces. Unfortunately, the ambient conditions on the 

exterior of the home would likely lead to a significant number of nuisance alarms. Additionally, 

the detectors will not reliably activate without a ceiling to collect the hot gases and smoke (BRK 

Electronics, 2020). UV/IR flame detectors were also considered. These detectors monitor different 

bands of the light spectrum to detect a fire within a given zone. We found that these detectors were 

reliable for outdoor use and included two confirmation conditions before system activation. Even 

with the multi-criteria configurations, the best flame detectors can still be susceptible to nuisance 

alarms. (General Monitors, n.d.). To provide full coverage of the house at least eight detectors 

would be needed (two at each corner of the house). Each detector can cost in the range of $3,000 

to $4,000, meaning that full coverage of the house may be prohibitively expensive (Petersen, 

2016). With smoke detection and flame detection ruled out, linear heat detection was identified as 

the best option to automatically detect fires on the exterior of the home. This type of detector 

consists of a heat sensitive sheathing surrounding two metallic conductors, all within an outer 

covering. Once the detector is heated to a certain temperature, the heat sensitive insulation melts 

and allows the wires to come into contact; this sends the system into alarm (SAFE Fire Detection). 

Protectowire was identified as a major manufacturer of linear heat detectors with a range of options 

available to meet the design goals. In order to provide protection against nuisance alarms, the 

Confirmed Temperature Initiation Linear Heat Detector has been selected. This detector can 

discriminate against short circuits by using the conductors as a thermocouple to verify the 

temperature before sending the system into alarm. The CTI-X model has a weather resistant jacket 

that makes it suitable for outdoor use.  (Protectowire, 2014). Data sheets for the Protectowire 

products can be viewed in Appendix D.  
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3.4.4 System Layout Design 

Once the necessary system components had been identified and selected, several system layouts 

were drawn and compared in AutoCAD computer aided-design software (Autodesk Inc., 2019a). 

The system layouts were drawn in elevation and plan views to fully illustrate the proposed system 

design. The system was designed to have four separate deluge zones all piped from a common 

location. Each zone is able to operate independently in order to conserve resources. Nozzles were 

placed around the home under the eaves based on spray patterns found in the manufacturer cut 

sheets. The spray pattern for the Fire Flex-TAR 225L Nozzle can be seen in Figure 27.  

 
Figure 27. Vertical and Horizontal Spray Patterns of the Fire flex TAR-225L Nozzle 

(FireFlex, 2016).  

Since the nozzles are installed in the pendant orientation at the eaves of the home, the vertical 

discharge pattern was used. Spray patterns were overlapped to provide as much coverage of the 

walls and the ground extending 3 feet away from the home as possible. Based on the timeline of 

the fire scenario discussed in the previous section, we are confident that the system will begin 

discharge before the flames reach the eaves of the home. For this reason, it was determined that 

gaps in coverage within 1 foot of the eaves would be acceptable.  

The detection system layout was also drawn in AutoCAD to provide a basic visualization of the 

system wiring and the location of devices. Similar to the suppression system, the automatic 

detection system is designed in four different zones. If an initiating device actuates on one side of 

the house, the fire alarm control panel will release foam to the corresponding zone. The 

Protectowire will be installed in a Class B wiring configuration with an end of line resistor, which 

means that it can terminate at any point without needing to loop back to the interface module 

(SAFE Fire Detection, n.d.). Each side of the house will have Protectowire installed at two levels: 

1.5 feet off the ground and 9 feet off the ground. The lower layer is expected to actuate first if the 

fire grows consistently with the fire scenarios that have been defined, since this area receives the 
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most radiation from the burning bushes and mulch. The upper layer will be installed slightly below 

the eaves in case the wall ignites above the lower layer of Protectowire.  

3.4.5 Detection Time 

The time to ignition of the wall was estimated in the fire scenario calculations that are outlined in 

Section 3.3.4 using the following equation:  

𝑡𝑖𝑔 =
𝜋

4
𝑘𝜌𝑐𝑝 (

𝑇𝑖𝑔 − 𝑇𝑠

𝑞̇𝑓
"

)

2

 

We estimated the time to detector actuation by replacing the ignition temperature of the wall 

with the rated temperature of the Protectowire linear heat detector. Once the wall that the 

Protectowire is installed on reaches the rated temperature, we are assuming that the detector will 

actuate.  

3.4.6 Discharge Delay 

An important aspect in our timeline of fire ignition and system operation was the discharge delay, 

meaning the time between detection and system discharge. To determine this time, we researched 

literature regarding times to system discharge for fire protection systems. This research indicated 

that suppression systems operate anywhere from 9 seconds to 1 minute. We decided on 30 seconds 

as an initial estimate of the system activation time based on these numbers. A representative from 

FireFlex confirmed that although the times can vary depending on system size, this would be a 

conservative estimate for a small system (Mike Nagy, personal communications, 2020). 

3.4.7 Discharge Criteria 

One of the driving factors of the system design was the system discharge criteria. Typically, this 

is defined by a minimum discharge density in terms of gpm/ft2. The system was designed so that 

every nozzle in the design area was capable of delivering the required density of suppressant agent 

over its entire coverage area. Current standards do not provide minimum discharge densities for 

compressed air foam systems utilizing Class A Foam to suppress Class A fires. The lack of a 

prescriptive requirement for this value led us to develop the discharge density for this system by 

compiling information from literature. NFPA 11 Standard for Low, Medium, and High Expansion 

Foam (2016) contains minimum discharge density requirements for compressed air foam systems 

using Class B Foam to suppress Class B fires. Systems designed to protect fires involving 

hydrocarbon fuels shall discharge at least 0.04 gpm/ft2 over the design area and systems involving 

alcohol/ketone based fuels shall discharge at least 0.06 gpm/ft2 over the design area. Although the 

characteristics of a Class B liquid pool fire are significantly different from what can be expected 

from a fire involving ordinary combustibles, these numbers served as a useful point of reference. 

Experiments by Kim and Dlugogorski (1997) discussed previously in Section 3.4.1 involving a 

fixed pipe compressed air foam system installed at the ceiling level served as one of the main 

determining factors for this design. The system used a 0.3% Class A Foam solution at a 1:4 
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expansion ratio. Examining the data from the experiments showed that a fixed pipe compressed 

air foam system delivering an average density of 0.087gpm/ft2 was able to suppress a 500 kW 

wood crib fire down to a size of approximately 50 kW in 60 seconds. In order to apply this 

information to the design fire for this project, the heat release rate per unit area of the wood crib 

fire was calculated by dividing the heat release rate by the projected floor area of the crib. This 

was then compared to the heat release rate per unit area of the design fire on the exterior of the 

home. The wood crib fire from the experiment is releasing about four times more heat than the 

design fire for this project. The discharge density for this design was reduced proportionally to 

account for this.  

Due to the extreme wind conditions present during a wildfire, it is likely that the spray patterns of 

the nozzles will be impacted and that all of the discharged foam will not land uniformly within the 

design area. There is currently a proposed change to NFPA 11 Standard for Low, Medium, and 

High Expansion Foam to include a 1.5 times safety factor on the discharge density figure when 

windy conditions are anticipated (S. Scandaliato, personal communication, 2019).  

The data sheet for the FireFlex TAR-225L Nozzle states that the nominal flow of the nozzle is 

5.94 gallons per minute. Based on the system layout that was developed in AutoCAD, each nozzle 

is covering approximately 69 ft2. A nozzle flowing at this nominal flow over this area indicated a 

discharge density very similar to the one found in the first method, which indicates that the 

proposed system would be able to supply the required discharge density. 

3.4.8 Power Supply 

As discussed in the literature review, one wildfire management strategy is to cut power to areas of 

impending threat. The system will be connected to the grid for the primary power supply but will 

switch to battery power if the primary power source is lost. In order to estimate the power supply 

needed, we first had to estimate the amount of time the power could be cut for. To accomplish this 

we looked for information from Pacific Gas and Electric, one of the main power suppliers that was 

responsible for a series of planned power shut offs in the fall of 2019. According to their customer 

information pamphlet, the power is not restored until 24 to 48 hours after the weather has passed 

and weather conditions can last anywhere from several hours to several days (Pacific Gas & 

Electric, 2019). Using this information, we used the high end of each range to build in a safety 

factor estimated that the power could be shut off for about 96 hours (4 days).  

The next step was to calculate the battery size needed to power the system for this amount of time. 

The total standby current required was calculated by obtaining the standby current draw of each 

system component from the manufacturer cutsheets. An alarm current draw was not accounted for 

since the system does not have any notification appliance circuits. Once the suppression system is 

actuated via the linear heat detectors, the system does not need power to operate.  
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3.4.9 Water Supply 

Once both the length of exposure and the discharge density were determined, it was possible to 

estimate the size of the water supply for the system. We are assumed that the system will discharge 

simultaneously on two sides of the house at most: one short side and one long side. In addition to 

covering the walls, we are designing the system to cover the ground extending 3 feet away from 

the house. The discharge density discussed in Section 3.4.7 is the density of expanded foam coming 

out of the nozzles. Since a 1 to 4 expansion ratio foam is about 25% water and 75% air, the amount 

of water being discharged is one-fourth the amount of the calculated discharge density. The 

minimum water supply requirement was estimated by considering the total design area on two 

sides of the home, the discharge density, and the required discharge duration 

3.4.10 Foam Concentrate Supply 

The data sheet for the Class A foam concentrate that we are recommending for use with this system 

(Appendix D.6) provides the values for the ideal foam concentrate to water ratio for each type of 

foam system. This foam concentrate will perform best in a compressed air foam system when 

proportioned between 0.1% and 0.5%. The previously discussed study by Kim and Dlugogorski 

(1997) supports this concentration value. The experiments used Class A foam concentrate 

proportioned at 0.3% in a fixed pipe CAFS to effectively suppress the wood crib fires. Based on 

the information from these two sources, we recommend that the Class A foam concentrate in this 

system is proportioned at 0.3%. This value, combined with the discharge duration and system flow 

rate, was used to calculate the total amount of foam concentrate required for the system. 

3.4.11 System Size 

The physical footprint of the system was an important factor to quantify; a system that occupies 

too much space may be difficult to install in areas like Santa Cruz, CA that have a small average 

home size and property size. Previous case studies from FireFlex were studied to estimate the 

amount of space that a typical CAFS may occupy (FireFlex, 2020). Some components such as the 

number of air cylinders and the size of the foam concentrate tank will be dependent on the size of 

the system. The ICAF System Control Cabinet always occupies the same amount of space, 

independent of system size. We assumed that the system size would be proportional to the total 

amount of water discharged over the entire discharge period. This allowed us to compare our 

system to the systems in the various case studies. For a CAFS protecting a transformer, a total 

water discharge of 475 gallons required three high pressure air cylinders; this translates to 158 

gallons of water per cylinder. For a larger CAFS protecting an underground flammable liquid 

storage facility, a total water discharge of 1,920 gallons of water required 10 high pressure air 

cylinders. Likewise, this means that each cylinder was responsible for forcing about 192 gallons 

of water through the system. These numbers allowed us to estimate the number of high pressure 

air cylinders needed for this system. The amount of foam concentrate required for the system was 

determined in the previous section. FireFlex provides the dimensions of foam concentrate storage 
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tanks ranging from 15 to 500 gallons on the ICAF Foam Supply Tank Datasheet which can be 

viewed in Appendix D.5.  

3.4.12 Weatherproof Components 

This system requires special components compared to typical interior suppression systems. The 

components will be exposed to the elements and more vulnerable to weathering because of its 

placement outside of the house. One goal of the system is to minimize the maintenance needed for 

the components of the system by finding weatherproof and corrosion resistant materials. When 

researching specific components, the team specifically looked for those that were built for outdoor 

use as indicated by the manufacturer data sheets. 

3.4.13 System Monitoring 

In order for the system to reliably operate in the event of a fire, certain system components must 

be monitored. Since the system depends on many different components operating concurrently, an 

issue in one part of the system could render the entire system inoperable. There are different 

electronic components available to supervise the various components of the CAFS. If one of these 

devices detects a problem, it will send a supervisory signal to the fire alarm control panel but will 

not send an alarm signal to trigger system discharge. Table 6 below summarizes the different 

system functions and components that we believe should be electronically supervised (Potter 

Signal, 2020).  

 

Table 6 

Electronic supervision components  

Component Function 

Water Temperature Switch 

A water temperature switch will send a supervisory signal to the 

panel if the water in the tank drops below 40 oF. This is 

important to protect against freezing. 

Water Level Switch 

A water level switch will send a supervisory signal to the panel if 

the water level in the tank is outside of a predetermined range. 

Supervising the water level can detect problems such as leaks or 

tank overfilling.  

Pressure Switch 

A pressure switch is used to constantly monitor the system air 

supply and ensure that it is within a predetermined range. This 

ensures that there is a signal at the panel if the high pressure air 

cylinders are leaking. 

Tamper Switch 

Tamper switches are used to supervise control valves. If the 

valve is accidentally left in the closed position after maintenance, 

the tamper switch will send a supervisory signal to the panel.   
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3.4.14 Inspection, Testing, and Maintenance  

Proper inspection, testing, and maintenance of the system was also considered. Once the system is 

installed on a home, homeowners will need to know exactly what needs to be done to keep the 

system functioning as intended. FireFlex states that inspection, testing, and maintenance of the 

Integrated Compressed Air Foam System should be completed in accordance with the 

requirements of Chapter 7 of NFPA 11 Low, Medium, and High Expansion Foam. The relevant 

requirements of this chapter are summarized in the results section.  

3.4.15 Environmental Safety 

Since the system will be used externally, all of the discharged suppressant will runoff directly to 

the surrounding environment. The suppressant used should be safe for the environment to prevent 

more environmental problems down the line. Manufacturer data sheets for Class A foams were 

utilized to ensure that the foam concentrate is not an environmental hazard. 

NFPA 1150 Standard on Foam Chemicals for Fires in Class A Fuels was utilized to determine 

whether the chosen suppressant was suitable for this application. According to Section 4.21, the 

foam concentrate shall have the following health, safety, and environmental considerations: 

➢ The foam concentrate shall not exceed the mammalian toxicity limits of LD50 > 500 

mg/kg for acute oral toxicity and LD50 > 2000 mg/kg for acute dermal toxicity 

➢ The LC50 should not exceed 10 mg/L for aquatic toxicity limits 

➢ The foam concentrate shall have a minimum of 60% biodegradation within 42 days 

➢ The foam concentration shall not exhibit a flash point below 60 ℃.  

When researching Class A foam concentrates to use, material safety and data sheets were used to 

ensure compliance with NFPA 1150. 

3.5 Evaluate Trial Design 

The trial design was evaluated to determine whether or not they meet the performance criteria. 

Often times, an evaluation involves comparing the performance of each component or subsystem 

to the performance of a component or subsystem that has already been listed, approved, or 

prescribed by code (Hurley, 2016). This was not possible in this case because there are no existing 

codes to compare the exterior compressed air foam system to.  

Hydraulic calculations are typically a key method used to evaluate a fixed pipe suppression system. 

The calculations involve calculating the friction losses of fluid flowing through the pipes and to 

ensure that the pressure at the most remote nozzle is sufficient to discharge the required amount of 

suppressant. Traditionally, hydraulic calculations were completed by hand using either the Darcy-

Weisbach Equation or the Hazen Williams Equation (NFPA 12, 2019). The Hazen-Williams 

Equation, shown below, is sufficient for most situations involving water flow in pipes. 
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When completing hydraulic calculation by hand, a spreadsheet is typically used to organize data 

and evaluate equations. The K factor of each nozzle is an important parameter that is required to 

calculate the flow at different points in the system. The K factor is the nozzle discharge coefficient 

used to calculate the flow from a nozzle. A larger K factor means that it is easier for water to flow 

through the nozzle (NFPA 13, 2019). Some other important information that is needed to complete 

hydraulic calculations includes the pipe diameters, pipe schedules, length of pipe between fittings 

and nozzles, elevation changes in pipes, and friction losses due to fittings. By assigning nodes to 

each nozzle and fitting, the change in pressure and flow can be determined for small segments and 

then summed for the whole system.  

With advances in technology over the past few decades, there are now a number of softwares 

available to assist with completing hydraulic calculations. One example is HydraCALC, a software 

that automatically calculates hydraulic calculations for the system based on the layout and specific 

inputs, such as the fire pump capacity, required discharge pressure, and pipe sizes (Hydratec Inc, 

2019).  

Regardless of whether the calculations are done by hand or with the assistance of a computer 

program, hydraulic calculations are an iterative process. Different pipe sizes are usually tested to 

determine how the sizes affect the pressure and flow. Once the initial set of calculations are 

completed for layouts, pipe diameters would be increased or decreased to optimize the system 

performance. The final design would be selected by choosing the system layout that provided the 

required flow at the lowest pressure.  

Since a compressed air foam system carries both fluid and pressurized air through the piping 

network, the characteristics of the flow are much harder to quantify and traditional calculation 

methods cannot be applied. FireFlex has developed a hydro-pneumatic calculation software to run 

calculations for their Integrated Compressed Air Foam System (FireFlex, n.d.). We reached out to 

a FireFlex sales representative to request use of the software for research purposes, but 

unfortunately the company was not able to share the software with us. This meant that we were 

not able to complete hydraulic calculations for the proposed system design. The FireFlex 

representative was able to provide us with useful information regarding pipe sizes (Mike Nagy, 

personal communications, 2020). This information, combined with our calculated flow rate and 

information from the manufacturer data sheets allowed us to provide a range of likely values for 

system pressure, system flow, and required pipe sizes. 
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4.0 Results 

This section presents the results gathered from the processes described in the Methodology. We 

defined performance criteria for each objective to quantify the system goals. In addition, a full 

timeline has been developed to show the results of the fire scenario analysis. We identified and 

specified all of the required system components, and finally prepared drawings to illustrate the 

proposed design.  

4.1 Goals, Objectives, and Performance Criteria 

Table 7 displays the performance based design goals, objectives, and performance criteria for our 

project. The performance criteria were determined from calculations as shown in Appendix B, 

product data sheets from the manufacturer as shown in Appendix C, and further research from 

literature.  

 

Table 7 

Performance Based Design Goals, Objectives, and Criteria 

Primary Goal 1: Minimize fire related damage to the building and its contents 

Objectives Performance Criteria 

Detect fire in a timely manner Detect fire before wall ignites 

Activate suppression system before flames reach 

the eaves 

Begin discharge 30 seconds after fire detection 

Discharge suppressant at a density sufficient to 

suppress fires resulting from firebrand 

accumulations against/on the home 

Discharge foam solution at 0.087 gpm/ft2 

Provide coverage for vulnerable components 

around home. 

Complete coverage of walls and perimeter of house 

within 3 ft 

Damage should be limited to building facade and 

auxiliary components. 

Structural components shall not ignite during the fire. 

No loss of integrity of structural components.  
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Primary Goal 2: System can operate independently from local utilities 

Objectives Performance Criteria 

Provide independent power supply Power supply will power the system for 96 hours under 

quiescent conditions (non-alarm) and an additional 60 

minutes under operational conditions.  

Provide independent water supply Water tank will supply water for each zone to discharge 

for 1 hour 

 

 

Secondary Goal 1: System can remain in service with minimum attention from homeowner 

Objectives Performance Criteria 

Weather resistant components Product data sheet indicates that the component is 

suitable for outdoor use 

Provide simple user interface monitoring: low-

pressure alarm, water tank level, tamper switches 

System will send signal to homeowner in the event of 

trouble or supervisory signal 

Protect against nuisance alarms Detection system assesses for two separate conditions 

before initiating system discharge.  

 

 

Secondary Goal 2: Minimize the impact of system discharge on the environment and design the 

system in such a way to conserve resources 

Objectives Performance Criteria 

Suppression agent shall be biodegradable, non-

toxic, and environmentally safe 

Product data sheet indicates the suppressant complies 

with NFPA 1150 Standard on Foam Chemicals for 

Fires in Class A Fuels  

Use a zoned distribution system Zones can operate completely independently from each 

other 
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4.2 Fire Scenario Timeline 

The process discussed in section 3.3 of the methodology chapter was carried out to model the 

ignition of the home via firebrand accumulation in the mulch bed. The major milestones that lead 

up to the ignition of the home include: 

➢ Ignition of the mulch 

➢ Spread of the flames along the mulch to the center bush 

➢ Ignition of the center bush and then adjoining bushes 

➢ Ignition of the wall due to radiation from the mulch and bush fires 

➢ Vertical spread of the flames up to the eaves 

The arrival of the flames at the eaves of the house is the last milestone on the timeline because that 

is the critical point at which we are assuming the house would be a total loss. If the flames make 

it to the eaves, they will have an access point to enter the house and the system will not fulfill the 

design objective to limit the damage to the building facade and auxiliary components. The timeline 

of each event is shown in Figure 28 below, as well as the estimated fire size at key points. The 

calculations used to obtain the values shown in the timeline are explained in Appendix B. 
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Figure 28. Timeline of design fire scenario 



74 
 

 
 

Using this completed model of the ignition scenario, we were able to estimate the total size of the 

fully developed fire. We assumed that all of the mulch, all six bushes (three on each side of the 

stairs) and the entire wall from the base to the eaves across from the bushes is burning in order to 

estimate the worst-case scenario. Table 8 breaks down the heat contribution of each individual 

element: 

Table 8 

Heat Contributions of Each Element to the Total Fire 

Element Size Heat Contribution 

Mulch 3.9 m2 area 312 kW 

6 Manzanita bushes 0.46 m diameter, 0.61 m tall  762 kW (127 each) 

Wall  6.4 m2 (horizontal length of 3 bushes, 

vertical length of base to eaves) 

1978 kW 

Firebrands 1.4/m2*s over 21 m2 design area 3.5 kW 

 

 

Total 3055.5 kW 

The size of our design fire is about 3,060 kW, which was important to know when determining the 

discharge density of the system, as explained in 4.4.1. The expected size of the fire allowed us to 

determine how much compressed air foam is needed for suppression. This is discussed in more 

detail in Section 4.4.3. 

4.3 System Components 

Table 9 specifies the system components and manufacturers that we are recommending for our 

suppression system. The table also specifies whether the components are FM and/or UL listed, or 

if they comply with the requirements of the applicable NFPA Standard. Manufacturer data sheets 

for each of the components can be located in Appendix D.  

 

  



75 
 

 
 

Table 9 

System Components 

Suppression System Components 

Component Manufacturer Product Name 
Reference in 

Report 

FM/UL/NFPA 

Listed? 

Nozzle FireFlex 

TAR-225L 

Compressed Air 

Foam Local 

Application 

Nozzles 

Appendix D.1 FM 

Piping Wheatland 
Schedule 40 Fire 

Sprinkler Pipe 
Appendix D.2 FM & UL 

Air Cylinders FireFlex 
ICAF Air 

Cylinder Bank 
Appendix D.3 FM 

Water Tank 
Highland 

Tank 

ASME Pressure 

Vessel (3000 

gallon) 

Appendix D.4 
Complies with 

NFPA 22 

Foam Concentrate 

Tank 
FireFlex 

ICAF Foam 

Supply Tank (15 

gallons) 

Appendix D.5 FM 

Foam Concentrate Fomtec Enviro Class A Appendix D.6 
Complies with 

NFPA 1150 

System Control 

Cabinet 
FireFlex 

ICAF Cabinet 

Assembly 
Appendix D.16 FM 

Detection System Components 

Linear Heat 

detection 
Protectowire CTI-155-X Appendix D.7 FM & UL 

Interface Module Protectowire CTM-530 Appendix D.8 FM & UL 

Conduit National Pipe NFP-U-PVC Appendix D.15 UL 
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Other Components 

Control panel Notifier NFS-320 Appendix D.9 UL & FM 

Secondary Power 

Supply 
Notifier 

Sealed Lead Acid 

BAT Series 

Batteries (55 Ah) 

Appendix D.10 
 

UL 

Tamper Switch Potter Signal PCVS2-CRH Appendix D.11 UL & FM 

Water Level 

Switch 
Potter Signal WLS Appendix D.12 UL 

Water 

Temperature 

Switch 

Potter Signal TTS-S Appendix D.13 UL & FM 

Pressure Switch Potter Signal PS120 Appendix D.14 UL & FM 

4.4 Suppression System Design Overview 

The suppression system we are recommending consists of an automatic fixed pipe compressed air 

foam system. Open type nozzles are installed at the eaves of the home to provide coverage of the 

wall and the ground directly surrounding the home. The suppression system is split into four deluge 

type zones; each zone is able to operate independently from the other zones in order to conserve 

resources and provide efficient fire suppression. The piping network for each zone will run back 

to a common point at the corner of the house in the backyard. At this point, the piping will run 

underground to the enclosure in the backyard that houses the air cylinders, foam supply tank, and 

the control panel cabinet.  

4.4.1 Discharge Density 

Discharge density is the amount of suppressant discharged over a unit area. The discharge density 

of the system is 0.087 gpm/ft2. The analysis of a study on the suppression of a wood crib fire via 

CAFS was used to arrive at this value, and information from the FireFlex CAFS datasheet was 

used to confirm that the system could supply the required flow rate to meet the discharge density 

requirement. 

 

An experiment by Kim and Dlugogorski tested the suppression performance of a fixed CAF system 

on a wood crib fire. Upon analysis of their results, the team found that they used a discharge density 

of 0.087 gpm/ft2 to effectively suppress a 500 kW fire. To see if this would be an appropriate 

discharge density for our design fire, we compared the heat release rate per unit area of the wood 

crib fire in the experiment and of our design fire. The wood crib had a projected floor area of 0.36 
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m2 and the size of the fire was 500 kW. This translates to a heat release rate per unit area of 1388 

kW/m2. The design fire involving the mulch, the manzanita bushes, and the cedar siding was 

estimated to have a heat release rate of 3050 kW once it is fully developed. This is spread over an 

area of 8.9 m2 which translates to a heat release rate per unit area of 343 kW/m2. The wood crib 

fire from the experiment is releasing about four times more heat than the design fire for this project. 

The discharge density for our design was reduced proportionally to account for this.  

1388 𝑘𝑊/𝑚2

343 𝑘𝑊/𝑚2
= 4.05 

 

0.087 𝑔𝑝𝑚/𝑓𝑡2

4.05
= 0.021 𝑔𝑝𝑚/𝑓𝑡2 

By incorporating the wind safety factor of 1.5 per the proposed change to NFPA 11 Standard for 

Low, Medium, and High Expansion Foam, the discharge density is brought to 0.032 gpm/ft2 (S. 

Scandaliato, personal communication, 2019). This discharge density is significantly less than 

0.087 gpm/ft2. Therefore, choosing a discharge density of 0.087 gpm/ft2 for our system is very 

conservative.  

Once we determined this vale, we checked to make sure that a nozzle discharging this amount of 

foam would be able function as intended. The nominal flow rate specified by the manufacturer cut 

sheet for the FireFlex CAF nozzles is 5.94 gpm. This flow rate is not linked to the NFPA 11 

requirements for minimum discharge density. Rather, this the likely the lowest flow rate that was 

resulted in sufficient pressure to produce the desired spray patterns The area of coverage of each 

nozzle is 69 ft2; this includes the siding of the structure as well as the mulch bed that runs along 

the length of the structure and extends 3 ft beyond the base of the wall. By dividing the nominal 

flow rate by the area of coverage, we arrived at a discharge density of 0.086 gpm/ft2. This means 

that if the nozzles are flowing at 0.087 gpm/ft2 as previously determined, the flow rate will be 

sufficient to produce the desired spray patterns.  For this reason, we are recommending 0.087 

gpm/ft2 as the discharge density for the system.  

4.4.2 Water Supply Requirements 

The design area for the system accounts for two adjacent zones discharging simultaneously. 

Because we are not specifying a fire pump for the system, a water pressure vessel has been 

specified to meet the system goals. The high pressure compressed air cylinders will pressurize this 

vessel in order to meet the minimum pressure requirements for system discharge (FireFlex, n.d.). 

In order to provide enough water to discharge the system for 1 hour, a water tank with a minimum 

size of 1,308 gallons is required. In reality, more water will be required since nozzles that are 

closer to the supply will be discharging at a higher flow rate. To account for this, a larger 3000 

gallon water pressure vessel with a 2000 gallon water capacity is recommended for the system. 

This accounts for a 1.5 times safety factor on the water supply requirement. The specified tank 
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required to contain this volume is 20 feet long and 5 feet in diameter. We are recommending that 

this is installed underground below the enclosure.  

Ground Area - (3 ft. * 33 ft.) + (3 ft. * 43 ft.) = 228 ft2  

Wall Area - (10 ft.*33ft.) + (10’*43’) = 760 ft2 

Total Design Area - 990 ft2 

Discharge Density - 0.087 gpm/ft2 (foam)/4 = 0.022 gpm/ft2 (water) 

Discharge Duration - 60 minutes 

Water Supply Requirement - 60 minutes * (0.022 gpm/ft2) * (990 ft2) = 1,307.8 gallons 

4.4.3 Foam Concentrate Supply Requirement 

We have determined that the Fomtec Enviro Class A Foam Concentrate should be proportioned 

at a 0.3% concentration based on the manufacturer literature and experiments conducted with 

fixed pipe compressed air foam systems. The minimum amount of foam concentrate required 

was calculated as follows: 

2000 𝑔𝑎𝑙𝑙𝑜𝑛𝑠 𝑜𝑓 𝑤𝑎𝑡𝑒𝑟 ∗  
0.003 𝑔𝑎𝑙𝑙𝑜𝑛𝑠 𝑜𝑓 𝑓𝑜𝑎𝑚 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑒

1 𝑔𝑎𝑙𝑙𝑜𝑛 𝑜𝑓 𝑤𝑎𝑡𝑒𝑟
= 6 𝑔𝑎𝑙𝑙𝑜𝑛𝑠 𝑜𝑓 𝑓𝑜𝑎𝑚 

 

4.4.4 Piping and Fittings 
FireFlex recommends installing piping and fittings in accordance with NFPA 11 Chapter 4. 

Section 4.7.4 “Joining of Pipes and Fittings” indicates that piping and fittings can be achieved 

through threaded pipe, grooved pipe, or welded pipe. The contractor can choose between these 

three options. We are recommending Schedule 40 black steel pipe as referenced in Table 9 of 

this report. 

4.4.5 Hydraulic Information 

FireFlex sales representative Michael Nagy informed us that typical pipe sizes for the FireFlex 

ICAF System range from 1 inch to 3 inches in diameter. Two nozzles typically are able to be fed 

from a 1 inch pipe. As the system progresses back towards the source the pipe diameter is increased 

to minimize friction losses. A case study by FireFlex involving the protection of a flammable liquid 

storage facility using the ICAF System shows that smaller pipe sizes over long lengths will not 

result in excessive friction losses as is the case with foam-water systems (FireFlex, 2006).  The 

system can operate with a water pressure in the range of 50 to 175 psi (FireFlex, n.d.). Our 

calculations show that the minimum flow rate with two zones discharging simultaneously will be 

88 gpm.  



79 
 

 
 

4.5 Detection System Design Overview 

Automatic fire detection will be accomplished via Protectowire Linear Heat Detectors installed on 

the exterior walls. The Protectowire CTI-155-X has a rated alarm temperature of 155 oF and offers 

excellent weather resistance. When combined with the CTM-530 Interface Module, these detectors 

are capable of discriminating against short circuits by utilizing the metal conductors in the 

detectors as thermocouples to verify the alarm temperature (Protectowire, 2014). Each side of the 

house will have Protectowire installed at two levels: 1.5 feet off the ground and 9 feet off the 

ground. The lower layer is expected to actuate first if the fire develops consistently with the fire 

scenario that has been defined since this area receives the most radiation from the burning bushes 

and mulch. The upper layer will be installed slightly below the eaves in case the wall ignites above 

the lower layer of Protectowire.  The home will be split into four different detection zones; each 

zone will be provided with one interface module and enough Protectowire to provide full coverage. 

When the detector on one side of the house actuates, the fire alarm control panel will release 

suppressant to the pipes that serve that zone. The Protectowire for each zone will be routed 

underground through PVC conduit back to the fire alarm control panel. The detection system 

layout is illustrated in detail in Section 4.6.  

4.5.1 Power Supply Requirements 

Battery calculations were completed using the information from the manufacturer data sheets. 

Table 10 shows the results of the battery calculations. To power the system on standby for 96 

hours, a 60 Amp-Hour battery is needed. In order to meet this requirement and also provide a 

safety factor, two 12-Volt, 55 Amp-Hour Notifier Sealed Lead Acid BAT Series Batteries are 

recommended to be wired in series to power the system.  

Table 10 

Power Supply Calculations 

Component 
Standby Current per 

Unit 
 Quantity  

Standby 

Time 
 

Total Standby 

Current 

Fire Alarm 

Control 

Panel 

0.35 A  * 1 * 96 hours = 33.6 Amp-hours 

Protectowire 

Interface 

Module 

0.067 A * 4 * 96 hours = 25.8 Amp-hours 

Sum: 59.4 Amp-Hours 
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4.6 Sequence of Operation 

The suppression system components and detection system components come together to create the 

complete system. The complete sequence of operation from actuation until resource exhaustion is 

summarized in Figure 29 (FireFlex, n.d.):  

 
Figure 29. Sequence of operation. 

4.7 Inspection, Testing, and Maintenance  

FireFlex recommends that the Integrated Compressed Air System is tested and maintained in 

accordance with NFPA 11 Standard for Low, Medium, and High Expansion Foam.  The relevant 

provisions of this standard are summarized in the next two sections.  

4.7.1 Testing and Acceptance 

Chapter 11 of NFPA 11 provides the testing and acceptance requirements for compressed air 

foam systems. The requirements are summarized as follows: 

● Upon installation, complete a visual inspection to ensure the system has been installed in 

accordance with approved plans and specifications.  

○ Check for continuity of piping as well as accessibility of controls, valves, and 

gauges. 

● After system installation, flush the system piping using the system’s air supply.  

● The system shall be tested by qualified personnel in order to meet the AHJ’s approval.  

● All piping shall be subjected to a 2 hour hydrostatic pressure test at either 200 psi or 50 

psi above the highest expected pressure, whichever is greater.  
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● All control valves shall be fully closed and opened under system pressure to ensure 

proper operation.  

4.7.2 Maintenance 

Chapter 12 of NFPA 11 provides the maintenance requirements for compressed air foam 

systems. The requirements are summarized as follows: 

 

As Needed 

● Pressure tests of normally dry piping shall be made when visual inspection indicates 

questionable strength due to corrosion or mechanical damage 

Annually 

● Thoroughly inspect and check the system for correct operation.  

● Test the foam concentrate to ensure that its properties have not deviated more than 10% 

from those recorded during the initial inspection and acceptance testing. The test shall be 

accomplished by sending a sample of concentrate to the manufacturer or another 

qualified laboratory.  

● Inspect the foam concentrate storage tank for signs of excessive sludging or deterioration.  

● Compressed air foam generating equipment and accessories shall be inspected annually.  

● Discharge devices shall be visually inspected annually for evidence of mechanical 

damage.  

● Aboveground piping shall be examined to determine its condition and verify the proper 

pitch for drainage has been maintained.  

● Control valves and all actuation devices shall be tested.  

Every 5 years 

● Underground piping shall be spot checked for deterioration. 

● High pressure air cylinders shall not be recharged without having undergone a hydrostatic 

test within the last 5 years.  

Every 12 years 

● High pressure air cylinders may remain in service for a maximum period of 12 years if 

they do not discharge. After 12 years, a hydrostatic test is required.  

 

4.8 System Layout Drawings 

Taking into account all of the results presented in this chapter, we drew the proposed system 

layout in AutoCAD. Both elevation and plan views of the suppression and detection systems are 

shown. Parts of the system enclosure detail drawing were imported from a FireFlex case study 

(FireFlex, 2006). The full drawing set is shown on the following five pages.
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5.0 Conclusions 

The proposed system design is a feasible option to protect homes against firebrand 

exposures. The fire scenario calculations indicate that the system will be able to detect a fire, 

activate, and discharge foam within enough time to stop the flames from reaching the eaves of the 

home. We recommend a discharge density of 0.087 gpm/ft2 based on the manufacturer literature 

and experimental data. The system will be able to suppress typical fires that may result from 

firebrand exposures on the exterior of a home with combustible walls and a moderate amount of 

combustible landscaping in the immediate vicinity of the walls. All of the components required to 

assemble and install the system are commercially available and listed for fire protection. 

Additionally, the system components do not occupy excessive space and can be contained within 

an enclosure in the backyard measuring about 6’ by 6’.  

 

Compressed air foam is more effective than water at suppressing Class A fires. Experimental 

data from several sources consistently indicates that CAF can perform better than water alone to 

extinguish Class A fires.  A series of tests by the Los Angeles Fire Department in 2001 compared 

compressed air foam and water discharged through a handline. The CAF was able to knockdown 

the fire in 10 seconds using 15 gallons of water. The handline discharging water took 50 seconds 

to knockdown the fire and used 75 gallons of water. CAF also performs better than water when 

discharged through a fixed pipe overhead system. A CAFS was able to suppress a wood crib fire 

from a size of 500 kW down to 50 kW in ½ the time of a sprinkler system and ⅙ the time of a 

water mist system (Kim and Dlugogorski, 1997). 

 

The proposed system design will use less water than a water spray system. At a 1 to 4 

expansion ratio, CAF is approximately 25% foam solution and 75% air. This translates to a water 

discharge from the system of 0.022 gpm/ft2. With two zones discharging simultaneously, the total 

water flow rate is approximately 22 gpm. This is less than if water alone was being used to protect 

the house. FM Data Sheet 9-19 (2020) provides minimum discharge density values for exterior 

sprinkler protection of homes exposed to radiant heat during wildfires. For combustible 

construction under the lowest heat flux range, FM recommends at least 60 gpm to protect a short 

wall of the home. NFPA 15 Water Spray Systems for Fixed Protection states that a general water 

spray application rate for most ordinary combustible solids shall be from 0.15 gpm/ft2 to 0.5 

gpm/ft2. This is significantly more water than what is required for the CAFS to protect the house.  

 

Class A foam concentrate is environmentally safe and non-toxic. Class A foams are used by 

firefighters on wildlands, therefore outdoor usage of class A foams is already practiced for wildfire 

maintenance. Enviro Class A foam from Fomtec is a concentrate that can be used to fight fires on 

class A fuels in CAF systems. It is compliant with NFPA 1150 which is the standard on chemicals 
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for fires in class A fuels. Specifically, it is compliant with flash point, biodegradability, and oral 

and dermal toxicity limits put in place by NFPA 1150. 

 

The proposed system would relieve pressure from first responders. This firefighting system 

would operate automatically and independently from municipal resources. After detection, 

compressed air foam would be discharged onto the structure and suppress the fire. First responders 

would not need to focus their attention on the home with this external system installed, allowing 

them to save other houses in the area in a timelier manner. 

5.1 Limitations  

We were able to identify several limitations that may restrict the implementation of this design.  

This section presents each limitation and the effect that each one may have on the application of 

the system to a real world scenario.  

The house design used for this project was simple and may not accurately reflect the features 

of an actual house. Because this project was conducted as initial feasibility study, our team 

decided to use a home with a basic architectural plan for the design. The design house was a one-

story 33’ x 43’ rectangle with a small corner indent on the back of the house where the deck meets 

the house. Realistically, it is rare that a house that is designed as a simple rectangle without any 

other features. If the system were to be used for a different house than the design house, the layout 

would need to be changed to fit the dimensions of the new house. A home with a garage, two 

stories, and complex architectural features would require a much more complex design than what 

has been presented in the results section. There is no “one size fits all'' approach and it is important 

to use an engineering approach to consider the characteristics of each situation. Additionally, we 

assumed that the home would have a Class A non-combustible roof that meets requirements of 

ASTM E108, however older homes that were built before non-combustible roofs were 

recommended probably don’t have Class A roofs. In such cases where combustible roofs are 

present, this system would be ineffective against structure ignition via firebrand accumulation on 

the roof due to lack of roof protection.  

 

The system was only designed to protect against firebrand exposures. The system is 

specifically designed to protect against a realistic “worst case scenario” design fire based on 

firebrand exposures for this particular house. The team did not consider protecting the house in the 

case of the main flame front passing through the property. We assumed that the house would be a 

complete loss in such a case because the extreme radiative heat flux and direct flame contact from 

the approaching flame front would be much present a much larger hazard than the fire scenario 

that was considered.  A more robust system with different functionalities would be needed to 

defend against the scenario of an approaching flame front. One might consider studying the act of 

prewetting the house as a preaction measure to prevent ignition from the flame front, however that 

was outside of the scope of this project. A property maintained in accordance with the defensible 
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space recommendations is unlikely to be subjected to radiation and direct flame contact form the 

main flame front, but it is not realistic to expect 100% of homes to maintain a complete defensible 

space.  

 

The FireFlex Integrated Compressed Air Foam System has not been tested and listed for use 

with Class A foam concentrates. We identified FireFlex as the sole manufacturer of 

commercially available fixed pipe compressed air foam systems. Unfortunately, the FireFlex ICAF 

system has only been tested and listed use for Class B foam concentrates to suppress flammable 

liquid fires. We are recommending a Class A foam concentrate for use in the CAFS to suppress 

the fires resulting from firebrand exposures. Class A foams are designed specifically to suppress 

fires involving ordinary combustibles, such as the wood siding and vegetation around the home. 

Additionally, Class A foam concentrates are environmentally safe and comply with NFPA 1150 

Standard on Foam Chemicals for Fires in Class A Fuels and compatibility with outdoor usage. In 

recent years, Class B foam concentrates such as AFFF have been identified as being dangerous to 

both the environment and human health due to the chemicals’ persistence in drinking water 

supplies. For these reasons, we decided to specify a Class A foam concentrate even though it has 

not been tested with this specific system. In the Kim and Dlugogorski study, Class A foam was 

successfully used in a fixed pipe compressed air foam system. Therefore, we know that this 

application is not novel. Another limitation of the FireFlex ICAF system is that the hydro-

pneumatic calculation software that the manufacturer has developed to size pipes and ensure that 

the flow and pressure requirements are met is not publicly available. The pipe sizes and air supply 

were estimated based on information from the manufacturer, but a comprehensive set of 

calculations would need to be completed for each installation to verify that the system would 

perform as intended.  

 

The aesthetics of the system could be improved. Once the system is installed as specified in the 

layout drawings, it will be visible from all points on the exterior of the home. Nozzles are to be 

spaced every 4.5 to 6 feet apart along the eaves and pipe up to 3 inches in diameter will need to be 

installed along the sides of the house and the eaves. The 3,000 gallon water pressure vessel can be 

installed underground, but the rest of the FireFlex system components will require a 6’ by 6’ 

enclosure. This could either be accomplished by building a small enclosure off of the home or 

installing a stand-alone enclosure in the backyard. and the FireFlex CAFS tank will require 

installation in the backyard. Particularly small properties or homes without yards may not have 

space for such an enclosure. 

5.2 Future Work 

There are several topics related to the suppression system that our team was not able to address 

extensively in the duration of our project. Ultimately, we hope that further research can be done 

so that this system can be refined and installed to protect homes from wildfire exposures. An 

integral step towards this outcome would be to test and list the FireFlex ICAF system for use with 
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Class A foam concentrates to suppress fires resulting from firebrand exposures on homes. This 

would likely involve two main sets of experiments. First, it would need to be verified that the 

system functions as intended with a Class A foam concentrate instead of the Class B foam 

concentrate that is typically used. Because the foam concentrates have different chemical 

properties, it is possible that the spray patterns or another aspect of the system operation may be 

impacted. Following the validation of the Class A foam concentrate performance in the ICAF 

system, a prototype installation should be tested on a full scale home constructed for this purpose. 

By simulating different fire scenarios consistent with those described in this project, the system 

performance can be validated. Since current codes do not address minimum discharge density 

requirements for Class A compressed air foam, these experiments will allow for the determination 

of an optimum expansion ratio and discharge density. We determined the discharge density using 

a very conservative approach that worked in multiple safety factors. This conservative density 

necessitates a large water storage tank. If the discharge density is optimized, the water storage 

requirement can be decreased and the feasibility of installing of a water tank in a homeowners’ 

yard will increase.  

 

We did not consider the cost of the system installation during the design process. Further efforts 

are required to make an estimate of the proposed system cost and understand how the cost would 

change as the home size varies. Once an initial cost estimate is made, a study could also be done 

to determine if modifying certain aspects of the design would result in a cost reduction without 

sacrificing performance.  

 

Another potential area of work regarding the suppression system would be to design and test 

special application nozzles to cover the walls. These nozzles may have a spray pattern that is 

elongated in one direction to provide more efficient coverage. This would advance spray coverage 

and suppression efficiency by potentially allowing for fewer nozzles to be installed. Regardless of 

which nozzles are used, it is also important to be able to quantify the effect of wind on the nozzle 

spray patterns and the actual delivery of suppressant to the burning surfaces.  

 

Another area to investigate for future work is looking into the cleanup of the compressed air foam 

once the homeowner returns to their property. Currently, there is no information that indicates the 

effect of the compressed air foam on different construction materials. It’s important to determine 

if there be residual damage to the walls due to the system discharge and if the siding of the structure 

would need to be replaced. These are questions that will need to be answered through further 

testing before the system can be marketed to potential customers. 

 

The details of the enclosure design need to be fully developed and specified. The enclosure will 

house components required for both the suppression and detection systems such as the air 

cylinders, foam concentrate tank, and system control cabinet. One potential area to investigate will 

be how to maintain the temperature within the enclosure so that it is not too hot or too cold. The 
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requirements for this will change based on the location and the local climate conditions.  Another 

important factor is the fire resistance of the enclosure. Since it houses critical components, it must 

be able to withstand firebrands and other wildfire exposures. 

 

Future work addressing detection and notification would also be important. It will be advantageous 

to test the linear heat detector activation time during these specific fire scenarios, as well as to 

determine the ideal placement along the house. Our fire scenario calculations assume that the that 

wall will ignite at 1 foot above grade and the lower level of Protectowire that is installed 2 feet 

above grade will actuate first. It is possible that the flames from the bushes may ignite the wall 

above this point which would render the design ineffective. Testing of the linear detection will 

indicate whether this is an accurate assumption or whether the wire will need to be placed higher 

or lower than the areas that we display.  

 

Lastly, another interesting project for future teams would be to create a mobile app that 

homeowners can use to access various system functions from their smartphone. If interfaced with 

the fire alarm control panel, the app would be able to notify homeowners in the event of an alarm 

or supervisory signal. The app, if combined with a series of video cameras around the home, could 

also serve as an effective means of manual actuation. Since homeowners will likely be evacuated 

from their home during a wildfire event, they could use the app to remotely activate the system at 

the right time as an alternative to the automatic detection.  
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Appendix B – Fire Scenario Calculations 

 

Fire Scenario 1: Firebrands accumulate at an inside corner where the deck intersects with the 

exterior walls of the home. The firebrand pile heats the deck and brings it to the point of smoldering 

ignition which eventually transitions to flaming combustion. The flames ignite the wall (exterior 

finish is cedar shake siding), and the flames will spread vertically up the wall to reach the eaves. 

This will provide a pathway for the fire to reach the interior of the home 

Fire Scenario 2: Firebrands land in the mulch on the front of the home. The firebrands ignite the 

mulch which leads to ignition of a single manzanita bush (assume the center bush). The radiant 

heat from this bush as well as the heat from the spreading mulch fire will ignite the other two 

manzanita bushes. The radiant and convective heat from the mulch and the bushes will ignite the 

cedar shake siding on the wall. The flames will then spread vertically up the wall. The mulch fire 

scenario has been chosen as the basis for our design criteria since it represents the worst case 

scenario out of the two scenarios considered. Use Fire Scenario 2 as a basis for the design since 

this represents the worst case scenario.   

 

House Layout 

The front of the house has 3 feet of mulch extending away from the house along the entire length, 

except for where the concrete steps lead to the front door. On either side of the steps, there are 

three Manzanita bushes. The Manzanita bushes are approximated as cylinders that are two feet tall 

with a diameter of 1.25 feet. The bushes are only 1 inch away from each other and are 10.5 inches 

away from the wall.  The  screenshot below from the  3D AutoCAD model provides a visualization 

of the front of the house. 

 

 
 



110 
 

 
 

The SFPE Handbook (5th Edition - 2016) provides the heat release rates of various objects and 

materials in Chapter 26.  The Manzanita Bush that is discussed in Chapter 26 is approximately 

1.11 kg in mass and 0.5 m tall. The width of a Manzanita Bush is typically 25-50% less than the 

height; this 0.5 m tall bush can be assumed to have a diameter of approximately 0.3 m (Blooms 

and Branches, n.d.). Because the bush in the experiment is rather small, we decided to double the 

mass of the bush. As a result of this, we also assumed that the volume of the bush doubles. The 

initial volume of the bush, approximated as a cylinder, was 0.035 m3. The new volume of the bush 

is assumed to be 0.07 m3. This translates to a height of 0.61 m (2 ft) and a diameter of 0.38 m (1.25 

ft).  

 

The SFPE Handbook (5th Edition - 2016) provides an equation to estimate the peak heat release 

rate of a bush based on the moisture content and the mass of the bush.  

𝑞̇ = 𝑚 (
700

1 + 0.1295𝑀𝐶
) = 2.22 𝑘𝑔 (

700

1 + 0.1295(87)
) = 127 𝑘𝑊 

The peak heat release rate will be higher for the larger bush but it is assumed that the bush will 

have the same fuel fire intensity (𝛼) independent of the mass.  

 
The 1.11 kg bush will reach a peak heat release rate of 90 kW at 20 seconds after the onset of 

established flaming ignition. The fuel fire intensity coefficient can be calculated by approximating 

the fire as a power law fire that grows as a function of the time squared. 

𝑄̇ = 𝛼𝑡2    90𝑘𝑊 = 𝛼(20𝑠)2  𝛼 = 0.225 𝑘𝑊/𝑠2 

A fire growth coefficient value of 0.225 kW/s2 means that this fire most closely resembles an 

ultrafast fire which is typically taken to have a fuel fire intensity coefficient of 0.1876 kW/s2. The 

2.22 kg bush fire that we are modeling will grow at the same rate as the 1.11 kg bush but will take 

slightly longer to reach the peak heat release rate.  

127𝑘𝑊 = (0.225)𝑡2   𝑡 = 24 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 
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Once the fire reaches the peak heat release rate, it will burn steadily at 127 kW for approximately 

20 seconds. After this point, it will begin a decay period. This can be modeled as an exponential 

decay function.  

𝑄̇ = 𝑄̇0 ∗ 𝑒𝑥𝑝 (−𝑘𝑡) 

The graph above shows that the fire decays from the peak value down to a value of approximately 

10 kW over a period of 140 seconds. The value of k can be determined with this information in 

mind by using Excel’s GOALSEEK function. The cell for the heat release value at t=164 used as 

the set cell at a value of 10 kW, and the value of k is varied until the heat release rate at t=164 is 

equal to 10kW. This yielded a value of k = 0.0211. The decay period of the fire is modeled as 

follows.  

𝑄̇ = (127𝑘𝑊) 𝑒𝑥𝑝 (−0.0211𝑡) 

 

With the growth, fully developed, and decay period of the fire now modeled, we were able to 

graph the heat release rate of the bush fire over time.  

 
 

Mulch Fire 

To begin, it was assumed that the fire will start at the outside edge of the mulch (the interface of 

the mulch and grass) and that the wind will cause it to spread towards the house. This represents a 

worse case scenario because wind driven fire spread will be faster than opposed flow spread 

(Quintiere, 2006).  If the fire was to start in the mulch against the wall, it may never ignite the 

bushes since it would need to spread against the wind. The mulch ignition will correspond to the 

start of the fire timeline. Once the front edge of the mulch ignites, it is assumed to be spreading 

both forwards towards the house and laterally through the mulch at 0.066 ft/s as discussed above. 

The flames in the mulch will reach the front edge of the center Manzanita bush first.  It is difficult 

to quantify the exact convective and radiative exposures that the bush is subjected to from the 

mulch. For this reason, experimental data was used to estimate an ignition time. Manzanita bushes 

have been the subject of numerous ignition studies and experiments. An experiment by McAllister 
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& Finney (2014) subjected a Manzanita bush with a fuel moisture content of 97% to 600 oC 

convective heating. The time to ignition was 10.8 seconds.  Another experiment subjected a 

Manzanita bush with a fuel moisture content of 73% to a radiative heat flux of 100 kW/m2 (Fletcher 

et.al., 2007). The average time to ignition was 6.5 seconds.  

 

The ignition time for the bush was assumed to be 8 seconds after the mulch fire reached the edge 

of the bush. This will be variable and dependent on a number of conditions, but it is believed to 

represent the realistic worst case scenario for the ignition of the bush. By the time the left and right 

bushes ignite, the center bush is only releasing 14 kW total. Because of this, it is safe to assume 

that the time to ignition of the left and right bush is controlled by the mulch fire and that the 

relatively small radiative flux from the center bush does not influence the time to ignition. 

 

The pine bark nugget mulch has a heat of combustion of 20,700 kJ/kg. An experiment by Zipper 

et. al. (n.d.) showed that a bed of pine bark nugget mulch can release 80 kW when burning at the 

peak rate. The area of the plot of mulch in the experiment is not specified. The following equation 

relates the heat of combustion of a material to the heat release rate by using the mass loss rate.  

𝑄̇ = 𝑚̇∆𝐻𝑐 

If the fire is burning at a rate of 80 kW (80 kJ/s), the mass loss rate at this point can be calculated 

since the heat of combustion is also known.  

 𝑚̇ =
𝑄̇

∆𝐻𝑐
=

80
𝑘𝐽
𝑠

(20,700
𝑘𝐽
𝑘𝑔

)
∗ (

1000𝑔

1𝑘𝑔
) = 3.86

𝑔

𝑠
 

This is consistent with the range of mass loss rates for one square meter of various solid wood 

samples in experiments by Tran & White (1992).  Due to this, we can assume that this mass loss 

rate represents the mass loss rate from a unit area of burning mulch (𝑚̇ = 𝑚̇"). Therefore, the 80 

kW value can be used as the value of 𝑞̇". In reality, the mulch fire heat release rate evolves very 

slowly over time; the fire takes 45 minutes to reach the peak heat release rate of 80 kW. Assume 

that once a given area of mulch is burning, it is burning at 80 kW/m2.  

 

View Factors – Bush to Wall 

 

𝑊 = 1.583 𝑓𝑡      𝑅 = 0.625 𝑓𝑡     𝐻 = 1.5 𝑓𝑡        

 

𝑣 =
𝑊

2𝑅
=

1.583𝑓𝑡

(2)(0.625𝑓𝑡)
= 1.27

 𝑓𝑡

𝑓𝑡
= 1.27 

 

ℎ =
𝐻

𝑅
=

1.5𝑓𝑡

0.625𝑓𝑡
= 2.4

𝑓𝑡

𝑓𝑡
= 2.4 
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𝐹21 =
𝑎𝑟𝑐𝑡𝑎𝑛 (

𝑣
ℎ

)

𝜋
=

𝑎𝑟𝑐𝑡𝑎𝑛 (
1.27
2.4 )

𝜋
= 0.155 

 

 
 

The other view factor we used was to calculate the fraction radiation that the left and right bushes 

would be emitting to the 19 inch target strip of wall. This view factor is used for an off center strip 

of wall, while the previous view factor was used for a strip of wall that is centered on the cylinder.  

 

𝑊 = 1.583 𝑓𝑡   𝑊1 = 0.542 𝑓𝑡      𝑊2 = 2.125 𝑓𝑡            

 

    𝑅 = 0.625 𝑓𝑡     𝐻 = 1.5 𝑓𝑡        

 

𝑣1 =
𝑊1

𝑅
=

0.542𝑓𝑡

0.625𝑓𝑡
= 0.87

 𝑓𝑡

𝑓𝑡
= 0.87 

 

𝑣2 =
𝑊2

𝑅
=

2.125𝑓𝑡

0.625𝑓𝑡
= 3.4

 𝑓𝑡

𝑓𝑡
= 3.4 

 

ℎ =
𝐻

𝑅
=

1.5𝑓𝑡

0.625𝑓𝑡
= 2.4

𝑓𝑡

𝑓𝑡
= 2.4 

 

𝑥1 =
𝑊1

𝐻
=

1.583𝑓𝑡

1.5𝑓𝑡
= 0.36

 𝑓𝑡

𝑓𝑡
= 0.36 

 

𝑥2 =
𝑊2

𝐻
=

2.125𝑓𝑡

1.5𝑓𝑡
= 1.42

 𝑓𝑡

𝑓𝑡
= 1.42 

 

𝐹21 =
𝑎𝑟𝑐𝑡𝑎𝑛 𝑎𝑟𝑐𝑡𝑎𝑛 (𝑥2)  − 𝑎𝑟𝑐𝑡𝑎𝑛 (𝑥1)

2𝜋
=

𝑎𝑟𝑐𝑡𝑎𝑛 𝑎𝑟𝑐𝑡𝑎𝑛 (1.42)  − 𝑎𝑟𝑐𝑡𝑎𝑛 (0.36)

2𝜋
= 0.097 
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As expected, the view factor for the bush to the off-center strip of wall is less than the view 

factor for the bush to the centered strip of wall. 

 

Mulch Heat Flux to Wall 

The SFPE Handbook (5th Edition - 2016) provides a series of graphs and equations in Chapter 25 

that can be used to estimate the mulch heat flux to the wall. Assume flame height from the mulch 

fire of is 1.8 feet based on experimental data from Zipperer et. al. (n.d.). The graph below  provides 

the vertical heat flux distribution along the centerline of a square propane burner fire adjacent to a 

flat wall.  

 
In order to estimate the heat flux from the graph, it is necessary to define the value of z/Lf. The 

flame height, Lf, will be taken as the maximum measured value for the mulch flames at 1.8 feet. 
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The value for z will be taken as 1 foot since the cedar siding of the house starts 1 foot above 

grade. Therefore:  

𝑧

𝐿𝑓
=

1𝑓𝑡

1.8𝑓𝑡 
= 0.55

𝑓𝑡

𝑓𝑡
= 0.55 

Examining the graph, the heat flux along the centerline when the value of z/Lf  = 0.55 is 

approximately 50 kW/m2. The graph below provides the lateral heat flux distribution with distance 

from the centerline of square propane burner fires against flat walls in the flaming region.  

 
The value of D is the length of the square area burning. The mulch fire can be approximated as a 

3 foot square at this point, meaning that D = 3 ft. The value of x is the distance from the wall to 

the centerline of the fire. x=1.5 feet in this case since the fire is burning the entire 3 foot depth of 

the mulch belt and is centered at 1.5 feet from the wall. Therefore:  

𝑥

0.5𝐷
=

1.5𝑓𝑡

0.5(3𝑓𝑡)
= 1

𝑓𝑡

𝑓𝑡
= 1 

Examining the graph, the heat flux at the wall is approximately 40% of the heat flux at the 

centerline. Therefore, the target area of the wall is receiving 20 kW/m2 from the mulch.  

 

Wall Ignition 

The wall is receiving a heat flux from a total of 4 sources: left bush, center bush, right bush, and 

the mulch. Each source has its own HRR curve, and its own view factor that determines how much 

of the radiation is reaching the wall. The graph below shows the radiative heat flux to the wall 

from the bushes. Time (t = 0) on this graph aligns with the ignition of the center bush.  



116 
 

 
 

 
 

Approximately 50% of the radiation from each burning bush that is calculated to be reaching the 

wall through view factors will actually just be hitting the concrete foundation that extends to 1 foot 

above grade. This leaves 50% to go into the wall. Assume the 1.58 foot area from before with a 

1.5 foot height. This is the target area, 0.22 m2. The total heat flux into the wall from the bushes is 

transformed into a heat flux per unit area by dividing by 0.22 m2 and then dividing by 2 to account 

for the 50% loss into the foundation. 

 

The critical heat flux for most species of wood is in the range of 9.7 kW/m2 to 14 kW/m2. This is 

the lowest external heat flux at which ignition of the material can occur (Rantuch et. al., 2017). 

The critical heat flux of the cedar siding was assumed to be 12 kW/m2. The calculations below 

show that at ignition will take approximately 31 seconds with the critical heat flux impinging on 

the surface. Over this period, the wall would absorb 372 kJ/m^2. 

 

Cedar Siding Physical Properties (Kumaran et. al., 2002):  

𝑘 = 0.085
𝑊

𝑚
∙ 𝐾         𝑐𝑝 = 1880

𝑘𝐽

𝑘𝑔
         𝜌 = 336

𝑘𝑔

𝑚3
     𝑘𝜌𝑐𝑝 = 0.0537 

Assume an initial surface temperature of Ts = 30 oC  

Cedar ignites at approximately 354 oC (Drysdale & Yudong, n.d.) 

 

𝑡𝑖𝑔 =
𝜋

4
𝑘𝜌𝑐𝑝 (

𝑇𝑖𝑔 − 𝑇𝑠

𝑞̇𝑓
"

)

2

 

 

𝑡𝑖𝑔 =
𝜋

4
(0.0537) (

354℃ − 30℃

12𝑘𝑊/𝑚^2 
)

2

= 31 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 

 

𝑞" = 𝑡𝑖𝑔𝑞̇𝑓
" = 31𝑠 (12𝑘𝑊/𝑚^2 ) = 372 𝑘𝐽/𝑚2 
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Since the heat flux to the wall is not constant, it is not accurate to calculate the time to ignition 

using a time constant heat flux. DiDomizio, Mulherin, and Weckman (2016) outline a process to 

calculate the time to ignition under a time varying radiant exposure. The first step was to graph the 

total heat flux to the wall over time from the four sources. The graph shows two separate curves 

because there is a discontinuity in the function at the time where we begin to account for the mulch 

heat flux to the wall.  A best fit curve was identified for each part of the graph using Microsoft 

Excel. The graph is shown below with the heat flux to the wall (blue), the fit curves (red), and the 

fit curve equations.    

 

 
 

Integrating the equation for each best fit trendline allowed for the calculation of the total incident 

heat to the wall over a certain time period.  

 

∫ (0.0458𝑡2 − 0.1676𝑡 + 0.3237)𝑑𝑡 = 0.0153𝑡3 − 0.0838𝑡2 + 0.03237𝑡 

 

Evaluate the integrated equation from t = 0 to t = 24 

 

(0.0153𝑡3 − 0.0838𝑡2 + 0.03237𝑡) 𝐼0
24 = 171 𝑘𝐽 

 

The wall has not received enough heat to ignite at t = 24. Evaluate the second integral to continue.  

 

∫ (−9(𝐸 − 7)𝑡4 + 0.0003𝑡3 − 0.0471𝑡2 − 0.2658𝑡 + 14.134)𝑑𝑡 

= −1.8(𝐸 − 7)𝑡5 + 7.5(𝐸 − 5)𝑡4 − 0.0157𝑡3 + 1.13𝑡2 + 14.134𝑡 
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Evaluate the integrated equation at each time step until the wall has received an additional 200 kJ 

of heat. This will occur at t = 32.  

Vertical Flame Spread 

As soon as the wall ignites, the flames will begin to spread upwards. James Quintiere outlines a 

process for estimating the rate of vertical flame spread in Chapter 8 of his book Fundamentals of 

Fire Phenomena (2006). The example in the book uses a constant heat release rate from the wall 

throughout the problem, which led us to believe this is a reasonable assumption. We assumed that 

the cedar siding material is burning at its peak heat release rate of 182 kW/m2 (Dietenberger, Stark, 

& White, 2007).  Quintiere (2006) gives typical values for peak incident flame heat flux to the 

upper wall from the burning portion below in the range of 20 kW/m2  to 30 kW/m2 for a wide 

variety of wall flames. Examining the graph below, the results among all materials tested are 

remarkably similar.  

 
The trend indicates that the maximum value incident flame heat flux to the wall above is in the 

realm of 30 kW/m2. This occurs when the normalized length is equal to 0.3 (i.e. flame length is far 

greater than the position. For this scenario, the heat flux to the wall was assumed to be 25 kW/m2. 

The process described by Quintiere for calculating vertical flame spread is summarized as follows:  

 

Flame length on a vertical wall can be approximated by this relation: 

 𝑦𝑓 = 0.01
𝑚2

𝑘𝑊
(𝑄̇"𝑦𝑝) 

𝑦𝑓 = 0.01
𝑚2

𝑘𝑊
(𝑄̇"𝑦𝑝) = 0.01 (182

𝑘𝑊

𝑚2
) (𝑦𝑝) 

𝑦𝑓 = 1.82𝑦𝑝 

The equation for vertical flame spread across a thermally thick surface is given.  
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𝑣𝑝 =
(𝑞̇𝑓

" )2 (𝛿𝑓)

(
𝜋

4𝑘𝜌𝑐𝑝
) (𝑇𝑖𝑔 − 𝑇𝑠)

2
 

Adopting y as the vertical coordinate, the equation becomes:  

𝑑𝑦𝑝

𝑑𝑡
=

(𝑞̇𝑓
" )2 (𝑦𝑓 − 𝑦𝑝)

(
𝜋

4𝑘𝜌𝑐𝑝
) (𝑇𝑖𝑔 − 𝑇𝑠)

2
=

 (𝑦𝑓 − 𝑦𝑝)

𝑡𝑖𝑔
 

Solve for the time to ignition: 

𝑡𝑖𝑔 =
𝜋

4
𝑘𝜌𝑐𝑝 (

𝑇𝑖𝑔 − 𝑇𝑠

𝑞̇𝑓
"

)

2

 

𝑡𝑖𝑔 =
𝜋

4
(0.0537) (

354℃ − 30℃

25
𝑘𝑊
𝑚2

)

2

= 7 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 

Substitute derived values into the differential equation.  

 

 (𝑦𝑓 − 𝑦𝑝)

𝑡𝑖𝑔
=

1.82𝑦𝑝 − 𝑦𝑝

7 𝑠
= 0.117𝑦𝑝 

𝑦𝑝(𝑚) = 0.1𝑒0.117𝑡 

 

The value of yp at each time step can be graphed to obtain the position of the pyrolysis zone as 

time progresses. The given relationship of the flame zone to the pyrolysis zone can be used to 

estimate the flame height on the wall over time. The graph below shows these two curves.  
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Appendix C -Prioritization Matrix 
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Criteria Weighting 
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Ranking Systems by Water Use 

 
 
Ranking Systems by Exposure Protection 

 
 
Ranking Systems by Ability to Penetrate Fuel Bed 

 
 

Ranking Systems by Environmental Damage Risk 
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Ranking Systems by Suppression Capability for Given Conditions 

 
 
Overall Scores 
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Appendix D - Manufacturer Data Sheets  

Appendix D.1- Nozzles                                                                       
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Appendix D.2 - Schedule 40 Steel Pipe 
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Appendix D.3 – Compressed Air Cylinder 

 

 



132 
 

 
 

 



133 
 

 
 

Appendix D.4 - Water Storage Tank 
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Appendix D.5 - Foam Concentrate Tank 
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Appendix D.6 - Foam Concentrate 
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Appendix D.7 - Linear Heat Detector 
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Appendix D.8 - Linear Heat Detector Interface Module
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Appendix D.9 - Fire Alarm Control Panel 
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Appendix D.10 - Batteries 
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Appendix D.11 - Tamper Switch 

 
 



152 
 

 
 



153 
 

 
 



154 
 

 
 



155 
 

 
 



156 
 

 
 



157 
 

 
 

 



158 
 

 
 

Appendix D.12 - Water Level Switch 
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Appendix D.13 - Water Temperature Switch 
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Appendix D.14 - Pressure Switch 
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Appendix D.15 - Conduit 
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Appendix D.16 - ICAF Cabinet Assembly 
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