
 

  

MQP-CEW-1301 

 

 

 

Monitoring Web Ads 
 

a Major Qualifying Project Report 

submitted to the Faculty of the 

 

 

WORCESTER POLYTECHNIC INSTITUTE 

 

 

in partial fulfillment of the requirements for the 

 

Degree of Bachelor of Science 

 

by 

 

_____________________________ 

Andrew Feeney 

 

_____________________________ 

Matthew Mancuso 

 

 

April 22, 2013 

 

 

 

________________________________ 

Professor Craig E. Wills 

 



1 | P a g e  
 

Contents 
 

Abstract....................................................................................................................................................... 4 

1 Introduction ........................................................................................................................................ 5 

2 Background ......................................................................................................................................... 7 

2.1 Web Advertising .......................................................................................................................... 7 

2.2 Behavioral Targeting .................................................................................................................... 7 

2.3 The Technology ........................................................................................................................... 9 

2.3.1 Hypertext Transfer Protocol (HTTP) ..................................................................................... 9 

2.3.2 Data Anonymization .......................................................................................................... 11 

2.4 Implications ............................................................................................................................... 12 

2.5 Summary ................................................................................................................................... 12 

3 Design ............................................................................................................................................... 13 

3.1 Previous Data Collection Methods ............................................................................................ 13 

3.2  Requirements ............................................................................................................................ 14 

3.3  Why a Virtual Machine? ............................................................................................................ 14 

3.4 Summary ................................................................................................................................... 15 

4 Research & Tools ............................................................................................................................... 16 

4.1 Browser Automation ................................................................................................................. 17 

4.1.1 Selenium WebDriver ......................................................................................................... 18 

4.2 Proxies ....................................................................................................................................... 19 

4.2.1 Fiddler ............................................................................................................................... 21 

4.2.2 BrowserMob-Proxy ............................................................................................................ 21 

4.2.3 OWASP Zed Attack Proxy (ZAP) .......................................................................................... 22 

4.3 Summary ................................................................................................................................... 23 

5 Implementation & System in Action.................................................................................................. 24 

5.1 File Formats ............................................................................................................................... 24 

5.1.1 URL-Scripts ........................................................................................................................ 24 

5.1.2 Header Output Files .......................................................................................................... 27 

5.1.3 Summary Output Files ....................................................................................................... 27 

5.2 Data Collection .......................................................................................................................... 29 

5.2.1 Input .................................................................................................................................. 30 

5.2.2 Processing ......................................................................................................................... 31 



2 | P a g e  
 

5.2.3 Output ............................................................................................................................... 32 

5.3 Data Parsing .............................................................................................................................. 32 

5.3.1 Input .................................................................................................................................. 33 

5.3.2 Processing ......................................................................................................................... 34 

5.3.3 Output ............................................................................................................................... 37 

5.4 Summary ................................................................................................................................... 37 

6 Results ............................................................................................................................................... 38 

6.1 Testing Environment .................................................................................................................. 38 

6.2 Initial Results ............................................................................................................................. 38 

6.3 Implications ............................................................................................................................... 39 

6.4 Summary ................................................................................................................................... 39 

7 Future Work ...................................................................................................................................... 40 

7.1 Maintenance and Improvements .............................................................................................. 40 

7.2 Known Issues ............................................................................................................................. 40 

7.2.1 ZAP .................................................................................................................................... 40 

7.3 Additional Features ................................................................................................................... 41 

7.3.1 Website Interaction ........................................................................................................... 41 

7.3.2 Optical Character Recognition (OCR) ................................................................................. 42 

7.4 Summary ................................................................................................................................... 42 

8 Conclusion......................................................................................................................................... 44 

References ................................................................................................................................................ 45 

Appendix ................................................................................................................................................... 46 

List of proxies researched ..................................................................................................................... 46 

 

  



3 | P a g e  
 

Figures 

 

Figure 1 - A comparison of two HTTP request headers from Facebook.com (top) and WPI.edu (bottom).

 .................................................................................................................................................................. 10 

Figure 2 - A comparison of two different yet equally valid HTTP response headers from Facebook.com 

(left) and WPI.edu (right). ......................................................................................................................... 11 

Figure 3 - A complete diagram of data interaction of the project. ............................................................ 17 

Figure 4 - Interaction process for Selenium. The program makes calls to the Selenium API, which uses a 

plugin to communicate with the Web Browser. ........................................................................................ 19 

Figure 5 - Interaction with the proxy server. HTTP requests are made through the web browser, 

redirected to the proxy, recorded, and forwarded to the Internet. Responses from the internet are 

directed to the proxy, recorded, and forwarded to the browser. .............................................................. 20 

Figure 6 - The basic representation of the flow of commands when using the data collection tool. ........ 23 

Figure 7 - A small subset of a sample URL input list. ................................................................................. 25 

Figure 8 - A simple of example of more complex interaction. This script will navigate to pages and then 

log in to each. ........................................................................................................................................... 26 

Figure 9 - An example entry in the header output file. ............................................................................. 27 

Figure 10 - A representative sample from the summary output file. ........................................................ 28 

Figure 11 – The data collection module, indicated by the red arrow. ....................................................... 30 

Figure 12 - Data collection loop. ............................................................................................................... 32 

Figure 13 – The data processing module, indicated by the red arrow. ...................................................... 33 

Figure 14 - Main data processing loop. ..................................................................................................... 35 

Figure 15 - The summary file generation loop. ......................................................................................... 36 

Figure 16 - The header file generation loop. ............................................................................................. 37 

 

  



4 | P a g e  
 

Abstract 

Many modern advertising techniques now implement tracking techniques to “watch” users in 

order to serve up relevant advertising. Although benign on the surface, this technique raises privacy 

concerns. This project is designed to allow automated data collection and processing from regular web 

browsing behavior in order to determine what data is being collected and derive what advertisers really 

know about their users. 

  



5 | P a g e  
 

1 Introduction 

This project is designed to automate manual procedures currently in use for collecting HTTP data 

from the Internet. Through analysis these data will be able to show trends in advertising presences on 

the Internet and how advertisements being served change depend on the presence of user behaviors 

and browsing histories. Particularly, we work to eliminate the necessity for direct human interaction in 

order to navigate through a set of Web pages, perform interactions as needed, and return usable data 

for further analysis. 

To meet these goals, we decided on an approach that allows a combination of tools to perform 

these actions and synchronize the activities. This approach necessitates writing a “command” module 

that organizes and coordinates these tools, as well as manages the data flow between processes. 

Automating this process leads to a level of consistency not inherent to a human-dependent 

process and allows for the re-use of input data to see how the output varies over time. Automated tools 

also allow for parallelization of the data collection process, leading to data sets many times the current 

size for little additional effort. Automation also allows the human researchers involved to dedicate their 

time toward more efforts involved in processing and analyzing the data, rather than simple manual 

collection behaviors. 

The remainder of this report is organized into several chapters. In Chapter 2, we describe some 

of the background involved in this project. This background includes basic explanations for technologies 

that we reference and analyze, along with a motivation for the research and a high-level description of 

modern advertising techniques. In Chapter 3 we discuss the design philosophy we adopted for the 

project, and talk about the procedures and tools we are working to replace with our project. In Chapter 4 

we discuss the research done for this project and the tools we decided to use and integrate into our 

project. In Chapter 5 we provide examples of the functional system and discuss implementation details, 



6 | P a g e  
 

as well as discuss the procedures we use to gather and process data. Chapter 6 shows early results of 

several tests to prove the validity of our approach and the functionality of our project. In Chapter 7 we 

discuss possible future work that can be done to further enhance functionality provided by our project. 

Our paper ends with Chapter 8, where we provide a short conclusion of our work. 

 

  



7 | P a g e  
 

2 Background 

In order to understand this project and the value of the software that was developed, a basic 

understanding of the Internet and how it works is required. However, in addition to technical knowledge 

it is important to understand how advertising works and what we mean to demonstrate and analyze with 

the software we created. With this in mind, we have included a simple background in advertising 

techniques and how they are implemented. 

2.1 Web Advertising 

The Internet is ubiquitous in our modern economy. There are thousands of online retailers and 

businesses that are visited every day that sell products that range from food and baking supplies to golf 

clubs. However, virtually every online business has something in common—advertising.  

Web advertisements come in many different sizes, shapes, and experiences. Many are less 

invasive than others. Ads can vary from a simple text-based ad encouraging a user to “Click here to 

download!” to the multi-colored, flash-based advertisements that demand a user’s attention.  

The project is designed to target all of these types of ads from different places. Whether ads are 

text-based, image-based, or flash-based is a question of implementation rather than content, and each 

of these types is critical to seeing the whole advertising picture. 

2.2 Behavioral Targeting 

Everyone has seen advertisements on the Web, and likewise, advertisements have seen 

everyone too. An advertising practice that has continually grown in popularity throughout the early 21st 

century is that of behavioral targeting.  

When using this practice advertisers try to individualize and make their ads relevant to the user 

that is currently viewing them. In concept there is nothing inherently wrong with this—it makes perfect 



8 | P a g e  
 

sense for an online retailer such as Amazon to serve up suggestions for items similar to what you have 

already purchased or viewed. This increases the likelihood that users will be interested in the 

suggestions made. 

However, as this technology and technique has grown in popularity, so too has the data that are 

used to profile users. There are several different popular approaches to targeting these advertisements, 

and we categorize them into three different types: product-based, demographic, and individual.  

Product-based advertisements are categorized and served up on sites that offer those specific 

types of products. The most well-known example of this type of service is Google’s AdSense platform, 

which scans the current page for keywords and content to search for similar or related ads to show on 

that page.  

The idea of demographic advertising is adapted from the television advertising market. 

Television has famously used the concept of demographics to target both programming and advertising, 

and independent companies, most notably the Nielsen Corporation, have been monitoring television 

demographics for decades. The basic idea is to create several templates into which the majority of the 

population can be sorted. Each of these broad categories is a “demographic.” For example, a middle-

aged white male who lives in a suburb is likely projected to have a spouse, children, several cars, a 

mortgage, and other common factors with many other suburban white males. By creating many of these 

archetypical profiles and polling a sample of television watchers who fit each of these profiles, 

advertisers are able to determine which “types” of people watch certain television shows or channels, 

and can cater their advertisements to those groups. This principle is largely the same when it is 

transferred to the Web advertising model. Demographic data is polled from users that go to certain sites 

in order to build profiles of what their typical user is interested in. 



9 | P a g e  
 

The particular portion of behavioral targeting that we will be focusing on primarily in this project 

is one of individual advertising. In this style of targeted advertisement data is collected on a per-user 

basis to build a profile detailing the interests for that user. Given the increased granularity of the 

technique it is the most accurate form of advertising, however the privacy concerns grow significantly 

with this method. In nearly every end-user license agreement (EULA) from an advertiser, a claim is made 

that data is anonymized1 and that “sensitive data,” such as a user’s sexual orientation, ethnicity, or other 

“personal” data will not be stored or used to build profiles.  

However, this approach to anonymity is at best a flawed concept. How is this data being 

collected and aggregated? Is it possible to separate the “sensitive” data from the standard profile? These 

are difficult questions to answer without access to a large amount of data. We provide the ability to 

gather and process this data in this project. 

2.3 The Technology 

In order to demonstrate what current advertising practices are being employed as well as the 

implementations involved, it is important to talk about the technology that is being utilized to generate 

these advertisements in the first place, as well as the techniques used to by advertisers to claim that the 

data collected from users is anonymous and non-identifying. 

2.3.1 Hypertext Transfer Protocol (HTTP) 
 

 The standard protocol for communications over the World Wide Web is the Hypertext Transfer 

Protocol, or HTTP. Messages are either requests—messages sent to servers to ask for content—or 

responses, which carry the content that was asked for by the client. Messages to and from web servers 

are encapsulated in a set of plaintext data known as headers. These HTTP headers contain information 

                                                             
1 http://arstechnica.com/tech-policy/2009/09/your-secrets-live-online-in-databases-of-ruin/ 

http://arstechnica.com/tech-policy/2009/09/your-secrets-live-online-in-databases-of-ruin/


10 | P a g e  
 

necessary for managing connections and describing the contents of the body of the HTTP message. HTTP 

has different types of headers for requests and responses over the protocol, as well as numerous 

possible fields for each, as HTTP headers are variable length, with few mandatory fields.  

In Figure 1, the request headers for two different sites (Facebook.com and WPI.edu) look similar 

with the exception of a small number differing fields. This is because request headers are fairly standard 

throughout the Internet, and when particular fields are needed the client is told which additional fields 

to include from the server being queried. Initial request headers (such as the ones from visiting a 

website for the first time) are generated by the Web browser, which sends these standard fields.  

 
Figure 1 - A comparison of two HTTP request headers from Facebook.com (top) and WPI.edu (bottom). 

 

In contrast, responses from Web servers tend to be much less uniform. This variety of fields is 

clearly shown in Figure 2; the HTTP response headers for the response from Facebook.com contain 

significantly more data and several fields that are not present in the response from WPI.edu, such as the 

“X-Webkit-CSP” and “Transfer-Encoding” fields. The absence of these fields do not invalidate the 

WPI.edu headers, however. It is simply a case of using different data for different transactions.  



11 | P a g e  
 

 

 

Figure 2 - A comparison of two different yet equally valid HTTP response headers from Facebook.com (left) and WPI.edu (right). 

 

2.3.2 Data Anonymization 

 An important point that many advertisers try to make clear is that the data the company collects 

about users is anonymous. When advertisers describe data as being anonymous, generally what is meant 

is that data is not stored with obvious identifying information, such as a name or social security number. 

This, however, is a misnomer, according to security researchers at Microsoft2. The researchers found that 

the content from just the user-agent field in the HTTP requests along with an IP address accurately 

identified a host over eighty percent of the time. This only increased as more data were given, and 

personal information, coupled with the header data, can easily be traced back to the end-user. 

                                                             
2 http://www.networkworld.com/news/2012/020212-microsoft-anonymous-255667.html 



12 | P a g e  
 

2.4 Implications 

 By capturing the whole HTTP transaction (request headers, request content, response headers, 

and response content) we are able mine relevant data and examine the relationship between visited 

sites and subsequent requests. For a typical commercial website there are many of these subsequent 

requests, ranging in variety from requests made to content distribution servers (what we refer to as 

“second-party” requests) and to outside entities, such as advertisers (what we refer to as “third-party” 

requests). We are able to examine which websites are directing requests to these third-parties and 

discover what kinds of data are being transferred back and forth. 

2.5 Summary 

Many web advertising corporations prefer to use targeted advertising in order to serve up 

relevant products and services to the user, increasing the likelihood that the user would be interested in 

purchasing the product or service. However, in doing so the privacy of the user may be compromised, 

even with good intentions on the part of the advertisers. We will be analyzing the data produced by our 

automated collection tool in order to trace the data that advertisers must have in order to serve the ads 

we collected. With this knowledge we can see if sensitive data are indeed being stored. 

Our analysis technique is reliant on the message metadata sent in HTTP headers, as well as the 

content of the ads themselves. These are the two main sources of usable information from the collection 

process. 

  



13 | P a g e  
 

3 Design 

Our project underwent several focal shifts during its inception. Initial work was focused on 

processing advertisements in both text and image form. However, as work began and research into the 

technologies available began to show that this was a more complex challenge than initially determined, 

focus shifted to building an automated system that would be capable of both mass data collection and 

complex interactions with web sites to mimic human behavior. It was decided that processing of the data 

could be revisited and revised, and having the ability to collect data in the first place in an automated 

form was more important. 

3.1 Previous Data Collection Methods 

 The motivation for the project came from two previous data collection methods Professor Craig 

Wills had used in previous studies on web advertising. One of these, a Firefox extension called PageStats, 

needed to be replaced due to age. The other was a lengthy manual collection of data that would save 

many man-hours with the automation of these tasks. 

 The PageStats extension was used to collect general data on the presence of web advertisers on 

popular sites. To this end, it provided a batch processing utility that would visit a list of sites and record 

information about the requests and responses made by each page. A summary of the data for each page 

was created when the processing was complete. This summary could then be processed to acquire 

information about web advertiser presence on the visited sites. Unfortunately, the extension is no longer 

compatible with more recent Firefox versions and is no longer under active development, so an upgrade 

or replacement was needed.  

 The second data collection method involved a human operator performing a series of steps to 

establish an identity with sensitive information (sexual orientation, health issues, etc.) and then visiting 

sites to record what ads were served. Data were recorded by directing the traffic through a local man-in-



14 | P a g e  
 

the-middle proxy that recorded the HTTP transactions. Because there needed to be interaction with the 

sites, the PageStats extension was insufficient for automating the behavior. However, automation of this 

process was desired to enable more frequent and replicable data collection. 

3.2  Requirements 

Our project needed to be able to replace both of these data collection methods. In order to 

replace PageStats batch processing capabilities were needed. Adding scripting capabilities instead of only 

using a list of sites to visit would allow our utility to also replace a human operator interacting with the 

site. In this way both data collection methods could be performed by one utility. 

3.3  Why a Virtual Machine? 

 We decided to develop the project in a virtual machine for four main reasons. First, it would 

enable easy transfer of the project. Users will not need to worry about setting up any dependencies; 

rather he or she will simply run the virtual machine from a copy of the image by using a virtualization 

program. Secondly, it will ensure consistency in the test environment. Results should be comparable 

across any machine running the tools we developed. Third, it gives the option to users to parallelize data 

collection easily. Duplication and distribution of the virtual machine is both simple and a process users 

are likely to be familiar with. Finally, by using a virtual machine as a test bed it meant that the project 

could be run from any platform that supported virtualization. This allowed us to avoid testing for 

platform-specific issues and instead focus on getting everything working with a single operating system.  

We choose to run Ubuntu, an open-source Linux distribution we were both familiar with, on the 

virtual machine. This choice allows us to avoid potential licensing issues with other commercial operating 

systems, as well as providing an extensible operating system platform with an active community that will 

continue to provide support for the future. 



15 | P a g e  
 

3.4 Summary 

Our project focus is to create a platform for mass data collection. These data are to include all 

HTTP traffic to and from Websites, particularly third-party traffic. We were designing a piece of software 

that would entirely replace manual human interaction with web sites, so we needed software capable of 

interacting with web pages in a non-trivial manner, while also supporting interaction with many web 

sites, producing a large set of data. We decided to create this tool in a virtual Linux environment in order 

to ensure consistency and compatibility with many different machines and users. 

  



16 | P a g e  
 

4 Research & Tools 

The data collection portion of our project is based heavily on coordinating several software 

packages. It is necessary to understand what each of these programs do in order to realize how our 

software is interacting with them and the Internet at large. We coordinate mostly with three major 

outside pieces of software: a web browser, which is Mozilla’s Firefox browser; a browser automation 

package; and a man-in-the-middle interceptor proxy to record traffic. 

A complete diagram of the software used in this project is shown in Figure 3. The blue fields 

(“Data Collection Program” and “Data Summarizing Program”) are components that are written by the 

authors as a way to coordinate the rest of the tools. The data flow is visible as well. The basic flow of our 

data collection program involves routing commands through Selenium, our automated browser API, to 

the browser, through the interceptor proxy, and data are saved in HSQL databases. Our data 

summarizing program takes these databases as input and creates plaintext, standard format outputs 

which can be read by existing tools. 



17 | P a g e  
 

 

Figure 3 - A complete diagram of data interaction of the project. 

 

4.1 Browser Automation 

 Few viable open-source options existed for the browser automation needs of this project. 

Research time and testing was put into several different options, including “Fourth-Party,” “Geb,” and 

“Fake.” All of these tools offered command APIs for interacting with browsers programmatically; 

however the only tool that offered the stability and command options we were looking for was 

“Selenium WebDriver,” which we quickly adopted early on in the process. 



18 | P a g e  
 

4.1.1 Selenium WebDriver 
 

 We needed to be able to access and interact with the web browser programmatically in order to 

automate data collection. We chose to do this with an open-source Java tool called Selenium. It is 

integrated into Firefox, among other browsers, through a plugin used to hook into the program. Since 

Selenium does not abstract away the browser to deal directly with traffic like other tools, we are able to 

be sure that that sites will behave exactly as they would for a normal end user and deliver the same 

content; it is now simply automated. This eliminated several concerns we had.  

The first is how the tool handled cookies. If the way the tool handled cookies differed from how 

a standard browser would for an end-user then the tracking used by web advertisers may not work 

properly, leading to misleading and unreliable results from data collections.  

Secondly, since many modern websites rely heavily on JavaScript in order to load content after 

the initial page load event, and JavaScript implementations can differ in how scripts are executed and 

managed; having the ability to ensure that we were using the same JavaScript engine that is used by a 

significant portion of end users meant we could be certain behavior would be consistent. This 

implementation of JavaScript support mitigates the potential for content to load out of order, or even 

not at all.  

Additionally, by working through an actual browser we would have the same user-agent string 

that an actual end-user would have. Websites can issue different content based on the user-agent string, 

for example many websites have a mobile version of the site with modified content automatically loaded 

if a particular browser or environment is detected through the user-agent field. By using a standard 

desktop version of Firefox, we are able to ensure that the experience should be standard for each 

website as users would see it. 



19 | P a g e  
 

 A final advantage lent by Selenium is that it allowed us to interact with pages by manipulating 

the document object model (DOM) of a webpage, enabling us to search for specific page elements and 

invoking events with them, rather than interacting directly with a human user. This ensures consistency 

and saves an enormous amount of time, as well as making the program more tolerant to changes in site 

layouts and running environments. 

The way that Selenium is integrated into our project is shown in Figure 4. The two components 

of Selenium, the API and the browser plugin, are used to transfer commands from our data collection 

program to the Web browser. The plugin is installed and integrated into the browser, and the API is 

included in the data collection tool. This allows commands to be sent from the program to the plugin via 

the API, which then converts these general API calls to browser-specific commands in order to navigate 

with that particular browser. 

 

Figure 4 - Interaction process for Selenium. The program makes calls to the Selenium API, which uses a plugin to communicate 
with the Web Browser. 

 

4.2 Proxies 

 It was clear from the start that we needed a reliable way to monitor and record HTTP 

transactions. Selenium offers simple manipulation of HTTP transactions, with abilities to create and filter 

HTTP requests and responses, however it does not offer the ability to save these transaction data. With 

this limitation in mind we agreed that the ideal way to save HTTP content is to set up an interceptor 

(man-in-the-middle) proxy server to route traffic from the browser to the Internet, a process that can be 

seen in Figure 5.  

Program
Selenium 

API
Selenium 

Plugin
Web 

Browser



20 | P a g e  
 

 

Figure 5 - Interaction with the proxy server. HTTP requests are made through the web browser, redirected to the proxy, recorded, 
and forwarded to the Internet. Responses from the internet are directed to the proxy, recorded, and forwarded to the browser. 

 

We had decided that we wanted to use a proxy server that fulfilled the following requirements: 

1. It must have an API available to control the proxy. This was essential, as our goal was to 

automate the whole process. Being able to control the proxy and save sessions and content 

programmatically is key to that goal. 

2. The proxy would have to have a stable release or be under active development. In our research 

we found that there were many “dead” proxy projects. Although these packages may have 

suited our needs, it was decided that a project that was under development was better suited 

for long-term support in the case of compatibility issues in the future. 

3. Traffic must not only be able to be viewed, but saved for future analysis. Many proxies allow 

users to view certain “sessions” when in use, but do not offer a standardized format to save the 

data. We decided it was necessary to have this feature 

We spent a considerable amount of time researching, experimenting, and testing a wide variety 

of proxy servers, of which a complete list is available in the Appendix of this report. A smaller subset of 

proxies that we spent a great deal of time with (our final candidates) is what follows. 

Web Browser
Interceptor 

Proxy
Internet



21 | P a g e  
 

4.2.1 Fiddler 

Fiddler3 is a Windows-based web debugging proxy that we strongly considered. The proxy was 

already a known commodity, as it was in use by Professor Wills for data collection before the project 

even began. It offered an easy-to-use interface and had been reliable in previous data collections. 

 Fiddler would have been more complicated to extend as it required writing .NET 4 code, which 

neither of the authors is familiar with. An API was available, however it was packaged in a separate 

open-source project called FiddlerCore4. Also, Fiddler would require us to use a Windows system to run 

our tests. This requirement was the major factor in deciding not to use Fiddler; it would complicate our 

platform, as we had wanted to be able to create a virtual machine for testing. Using Windows could 

create licensing issues with distribution or copying of the machine, so after careful consideration Fiddler 

was rejected. 

4.2.2 BrowserMob-Proxy 

BrowserMob-Proxy5 was the second proxy we spent major time researching and testing. It is an 

extension of the Selenium project and includes native support for many Selenium functions, which 

would make it ideal for us to use in conjunction with the Selenium WebDriver.  

We had begun writing code to use and test this proxy, and it initial results were promising, so we 

had begun development on automation with the tool. However, as we wrote further, we began 

discovering serious bugs and missing features from the tool that were not immediately obvious. For 

example, at the time of testing there was no native support for saving sessions, though the function 

existed as a function stub in the source code. 

                                                             
3 http://www.fiddler2.com/ 
4 http://fiddler.wikidot.com/fiddlercore 
5 http://opensource.webmetrics.com/browsermob-proxy/ 



22 | P a g e  
 

Given the infancy of the project and further anticipated issues with the proxy, we decided it was 

better to abandon the project and start fresh with a new proxy, rather than try to sort out the issues with 

BrowserMob. 

4.2.3 OWASP Zed Attack Proxy (ZAP) 

The third major proxy that we devoted significant development time to is the open-source Zed 

Attack Proxy6 from The Open Web Application Security Project (OWASP)7. ZAP is designed with website 

security in mind, and is actually a proxy designed to act as a developer tool to test a website for potential 

vulnerabilities. This includes modifying packets, crawling through websites, and other security-related 

testing tasks. The functionality that we are interested in is simply the ability to record HTTP traffic, so we 

had disabled the ancillary functions for our testing purposes. 

ZAP, although certainly not without its faults, admirably performed the tasks we laid out in our 

criteria. It is an open-source project implemented in pure Java, so modifications and examinations of the 

source proved simple if needed, and the API provided allowed us to programmatically save HTTP content 

in a Hyper SQL8 database. 

ZAP has been consistently updated during the development of this project, and has already had 

several major issues solved in recent releases. In the minds of the author ZAP is likely to continue 

improving and seems to be on track to have consistent, stable releases that will be easy to update the 

project to utilize. 

For these reasons, we decided to use ZAP as our man-in-the-middle proxy, and it is the platform 

upon which our project is built. 

                                                             
6 https://www.owasp.org/index.php/ZAP 
7 http://OWASP.org/ 
8 Information on HyperSQL Database is available at http://hsqldb.org/ 



23 | P a g e  
 

4.3 Summary 

Figure 6 shows the entire data collection process. Commands are processed by the program, 

send to Firefox via the Selenium API, and traffic is routed through ZAP to get to reach the Internet. This 

process allows both programmatic interaction with the Web browser via the Selenium plugin and API 

and saving of HTTP transaction data with the Zed Attack Proxy (ZAP). 

 

Figure 6 - The basic representation of the flow of commands when using the data collection tool. 

  

Program
Selenium 

API
Firefox ZAP Internet



24 | P a g e  
 

5 Implementation & System in Action 

Designing this project was an iterative process. As we went, we decided to focus on several 

features each week and thoroughly implement and test each feature. There were early iterations of the 

code that are completely excluded from the current release. File processing was initially done with 

Python scripting, and was switched to a much more robust and stable Java project several weeks into 

development. Here we will go into more detail on specific implementation details for the current release. 

5.1 File Formats 

 It was necessary to define several different types of files in order to process data and produce 

output that was usable by Professor Wills. This includes created an input file format and simple scripting 

commands, as well as using formats for output that are consistent with previous data collection methods 

that were employed during manual data collection. 

5.1.1 URL-Scripts 

There are two main input formats that we support: a simple list of URLs, each of which will be 

visited by the Web browser; and a modified list of URLs, with support for adding additional navigation 

options and commands. 

To allow for batch processing, the data collection program takes an input file of sites to visit. The 

file consist of the URLs to visit, separated by newline characters. This is the simplest form of input, and is 

generally used for large data sets (lists of several hundred URLs). A portion of one of these files can be 

seen in Figure 7. 



25 | P a g e  
 

 

Figure 7 - A small subset of a sample URL input list. 

 

In order to support advertising-inducing actions, such as logging onto websites, we designed a 

simple scripting language to use in conjunction with the input file. A short example of what this script 

format looks like is visible in Figure 8. Actions to be taken on a site are specified by indenting with a tab 

on the lines following a URL. The data collector currently supports two commands, TYPE and BUTTON, 

though it should be trivial to add additional support as needed, as these commands are primarily 

wrappers around existing Selenium API options. As seen in Figure 8 these commands are located on tab 

indented lines after the URL for the site the actions should be taken on. 

 



26 | P a g e  
 

 

Figure 8 - A simple of example of more complex interaction. This script will navigate to pages and then log in to each. 

 

TYPE allows interaction with text fields on a page. The command is followed by an identifier for 

the field to be typed in. This identifier is searched for by Selenium on the webpage, first by looking for an 

element ID of the same name, and then by element name. If neither exists, it will repeat the check once 

a second for up to thirty seconds to accommodate for AJAX page loading techniques; if both still do not 

exist than an exception is thrown to be caught by the code and move on to the next command. The final 

segment of a TYPE command is the input text to be entered into the field. 

BUTTON allows issuing a JavaScript click event on a button element on the page. It is followed by 

the identifier the button to click. Again, this identifier is searched for on the page for a button element 

with that element ID or name. If it is found, a click event is generated for the button element, and if it 

does not exist an exception is thrown. 



27 | P a g e  
 

Together, these commands enable simple text field interaction with the login forms for websites. 

TYPE can be used to type in the username and password to the text fields, and BUTTON for submitting 

the form. 

 

5.1.2 Header Output Files 

The header output file is formatted in a straightforward manner that can be seen in Figure 9. The 

HTTP request header is inserted directly into the file, a line break is added, and the response header is 

inserted immediately after. The third item in the screenshot, the HTML response data, is only present in 

the data-processing mode (level-of-detail of 3) and if the data are not null.  

 

Figure 9 - An example entry in the header output file.   

 

5.1.3 Summary Output Files 

 The summary output file is formatted differently from the header output file. This file format 

mimics the output format of a previous tool used by Professor Wills during manual data collection in 

order to ensure compatibility with already existing processing scripts. An example of what this file can 

look like is shown in Figure 10. The line format is as follows: 



28 | P a g e  
 

Req. No   Start   Finish   Code   Content-Length   Content-Type   URL 

 

 

Figure 10 - A representative sample from the summary output file. 

 

Req. No is the request index number for the given URL. What this means is that if a user navigates to a 

URL such as http://google.com/, it will be request number 1 for that given URL. Subsequent requests 

until the next input URL is reached are numbered sequentially, with the numbering resetting at 1 for the 

next URL in the input file. 

Start and Finish are relevant timing metrics, however they are currently unused, so a placeholder value 

of 0 is entered in this field. 

Code (HTTP response code), Content-Length, Content-Type, and URL are all fields of the same name 

from the request header. 

Prior to the beginning of the next segment of input URLs and subsequent requests, a summary 

line is added to the file with relevant statistics for all the requests made due to navigating to a single 



29 | P a g e  
 

URL. A sample summary for all the request sent on behalf of http://1up.com/ is also visible in Figure 10. 

These summary lines are in the format: 

summary:   URL   total-size   total-time   total-requests   dead-requests 

 

Here, the summary item is simply a keyword to denote that this is a summary line. URL is the URL that 

began the traffic, i.e. the entry in the input list. Total-size is the sum of all content-lengths for the URL 

entry, and represents the amount of data being sent to a client as a result of a single initial request. 

Total-time is unused, but would represent timing information regarding how long all the content took to 

load. Total-requests is the sum total of all requests made as a result of navigating to the URL. Dead-

requests is the count of requests that were made but received no response. This could be due to several 

factors, including an error with saving the data, or a server that did not respond. 

 

5.2 Data Collection 

The data collection module (“WebCrawler”) acts as the initial point-of-entry for the system. 

Figure 11 shows can see where this data collection module fits in with the rest of the project. This is the 

first program run during the data collection process, which transfers all commands to the Web browser 

and saves the HTTP transaction data with our interceptor proxy, ZAP. 



30 | P a g e  
 

 

Figure 11 – The data collection module, indicated by the red arrow. 

 

5.2.1 Input 

 The data collection module is invoked with the following shell command: 

webcrawler.jar   input-script 

Here, the webcrawler.jar argument is simply the name of the compiled data collection Java module 

packaged into an executable JAR file. The input-script argument is a valid set of instructions in a URL-

Script format, discussed in detail in Chapter 5.1.1.  



31 | P a g e  
 

5.2.2 Processing 

 Once invoked, the data collection module goes through a series of initialization steps. Due to a 

memory issue with ZAP (detailed in Chapter 7.2.1) the input URL-Script is segmented in order to process 

data in several passes. This data processing loop is shown graphically in Figure 12. Beginning at the top-

most node on Figure 12, and working clockwise, the process begins with commands being split into 

segments of 15 URLs (with accompanying interaction details). This is an arbitrary division, however in 

practice 15 appears to be the average maximum number of sites to guarantee performance and stability 

from ZAP. In the next step, the module starts ZAP and opens a Firefox session configured to interact 

through ZAP on port 8080. After a few seconds to allow programs to start up completely, the loop 

continues and the program passes the list of URLs and commands to a script handler, which interprets 

the script file and generates Selenium calls to control Firefox. When the script handler has finished will 

visiting all web sites and performing interactions with each site, ZAP is instructed via an API call to save 

the current session as a HyperSQL database. Due to an issue with the API (detailed in Chapter 7.2.1) ZAP 

is then closed via a process kill command, and Firefox is also shut down via a Selenium API call. The 

processing then begins again from the top, and the next 15 URLs are loaded into the script processor 

with a new instance of ZAP and Firefox and continues until there are no more instructions. 



32 | P a g e  
 

 

Figure 12 - Data collection loop. 

 

5.2.3 Output 

 The output for the data collection process is a series of HyperSQL databases, one per every 50 

URLs processed, which contain all HTTP transactions in their entirety from the session. These databases 

are stored on a separate data partition within the virtual machine, in a directory created for the input 

script given to the program. 

5.3 Data Parsing 

The data processing module (“HeaderParser”) is used to build several text files from a collection 

of HyperSQL databases. This module is run after the WebCrawler to produce usable output files to 

process with Perl scripts written and maintained by Professor Wills. Figure 13 shows where this module 

interacts with the rest of the project. This is the second step, after the creation of the HSQL databases of 

HTTP transaction data. This program converts these data into a standardized plaintext format to be read 

by existing Perl scripts.  

Generate 
segmented 
script file

Start ZAP & 
Firefox

Send to 
script 
parser

Execute 
script 

actions

Save ZAP 
session

Quit ZAP & 
Firefox



33 | P a g e  
 

 

Figure 13 – The data processing module, indicated by the red arrow. 

 

5.3.1 Input 

 The data processing module is invoked with the following shell command: 

HeaderParser.jar   input-url-list   database-directory   summary-output   level-of-detail   header-output 

 

Here, the HeaderParser.jar input is the name of the compiled data processing module. The first 

argument, input-url-list, is a list of the URL’s visited during the web crawl. These URLs are used to 

determine how to segment traffic viewed in the databases. The next argument, database-directory, is 

the location of the HyperSQL databases, as well as the name of the session (by default the title of the 



34 | P a g e  
 

URL-Script file used as input for the web crawl). The next argument, summary-output, is the desired 

output destination of the summary file (detailed in Chapter 5.1.3). This argument is followed by a level-

of-detail argument. This is an integer between 1 and 3, inclusive. The levels are as follows: 

1. Only the summary output file is produced. No HTTP body is processed, only the headers. 

header-output is not required as an argument. 

2. The summary output file and a header output file (detailed in Chapter 5.1.2) is also 

generated at the location specified by header-output. HTTP data is not processed for the 

header file, but headers in their entirety are saved. 

3. The summary file and a full header output file, including all data in HTTP bodies, is 

generated at the location specified by header-output.  

The final argument, header-output, is optional if the level-of-detail field is equal to 1. Otherwise, it 

specifies the output destination for the header text file. 

5.3.2 Processing 

 

There are three major loops that make up the file processing program. The first loop is the 

control loop, shown in Figure 14, which iterates through the databases to process each one. The loop 

maintains an index of which database it is on, and begins by connecting to the database corresponding 

to the current index (topmost node in Figure 14). It then triggers the summary file generation loop, 

which is discussed in the next paragraph. If the level-of-detail argument was set to either 2 or 3, it then 

enters the header output file generation loop. When both the loops terminate, the connection to the 

database is closed, the index incremented, and processing continues on the next database. 



35 | P a g e  
 

 

Figure 14 - Main data processing loop. 

 

 The summary file is a non-optional output; it will be generated each time the processing 

program is called. The process for creating this file is shown in Figure 15. At this point, a connection to 

the current database is already established in the control loop. At the start of the summary generation 

loop (topmost node in Figure 15) SQL queries are made to the database for the next HTTP transaction. 

The results are stored temporarily in corresponding variables, and fields with multiple kinds of data, 

namely the HTTP request and response fields, are matched against regular expressions in order to 

extract pertinent fields. Checking is done to determine whether the request/response pair is from a new 

URL in the input list, as we want to separate these data to be able to see which third party requests are 

made as a result of navigating to each input URL. If it is not a new entry, it is included in the current 

group and is included in the group statistics. If it is a new entry, then the group statistics are saved to the 

file and the entry written as a new group. This process repeats for each subsequent request/response 

pair. 

Connect to 
HSQL 

database

Summary file 
generation 

loop

Header 
output file 
generation 

loop

Close HSQL 
database, 
increment 
database 

index



36 | P a g e  
 

 

Figure 15 - The summary file generation loop. 

 

 The header file is only generated if the level-of-detail argument is either 2 or 3. The header file 

contains all the HTTP transaction data, and optionally the body of the request or response as well. The 

process is similar to the summary file generation, and is detailed in Figure 16. A database connection is 

already established in the control loop, and the header output file generation process begins by issuing 

SQL queries to access the data for the request/response pairs. The relevant fields and values are 

extracted from the results of these queries and are structured and formatted, and then written to the 

header data file. If the level-of-detail flag is set to 3, data handling is also done at this point. Simple text 

data is recorded directly into the file, and image data can be processed by OCR technologies or 

optionally saved. This same process is repeated for each entry. 

SQL query 
for header 

data

Regular 
expression 
& pattern 
matching

Validate 
header & 
check URL

Append 
URL 

statistics if 
last entry

Append 
data to 

summary 
output file



37 | P a g e  
 

 

Figure 16 - The header file generation loop. 

 

5.3.3 Output 

 This program generates a summary file (detailed in Chapter 5.1.3) and optionally a header 

output file (detailed in Chapter 5.1.2). 

5.4 Summary 

 This project is segmented into two separate, yet related modules: a program designed to gather 

data from the Web, and a program to process that data. The data collection portion is made up of 

several pieces of unaffiliated software being coordinated by a Java module we wrote. Custom input is 

required for this module, and resulting HTTP traffic is saved to a series of HSQL databases. The 

processing module has several different output modes, all of which are designed to mimic the output of 

previous software that was used to manually collect data. By ensuring consistency in this output, tools 

did not have to be updated, and can simply seamlessly replace the human data-gathering. 

SQL query for 
header data

Field 
extraction & 
formatting

Append to 
header output 

file

Optional data 
processing & 

concatenation



38 | P a g e  
 

6 Results 

The results of the experiments conducted with our system are in three parts: the collection of 

raw site data from the web crawl resulting from the list of input URL’s and site navigation commands; 

the results of processing these data with the parsing segment of the tool to produce one or more types 

of output described in Chapter 5.1.2 and Chapter 5.1.3; and the results of processing those results with 

the tools controlled by Professor Wills. 

6.1 Testing Environment 

 The results discussed in this section have been produced in a controlled testing environment. A 

Windows-based research computer specifically designated for this project hosted an Ubuntu v12.04 

virtual machine with VirtualBox, onto which our tools were loaded.  

The input data used for stress-testing the system were two separate lists each containing 

approximately one thousand of the most popular websites from 2005 and 2012, respectively, compiled 

from information available at Alexa.com. No additional site commands were added to this list, and the 

tool was only directed to load each URL before moving onto the next one. 

6.2 Initial Results 

 Initial tests conducted with this input and setup were consistent with previous results seen by 

Professor Wills during manual data collection. By consistent, we mean that the data were reasonable as 

compared to previous collections. Ad providers showed up in approximately the same percentage of 

sites and examination of a small subset did not demonstrate any worrying inconsistencies, thus 

indicating that the results of the data collection were valid. 



39 | P a g e  
 

6.3 Implications 

 With the positive indications from several trials of data collection it is reasonable to assume that 

the tool we created is viable for collecting large amounts of data to determine trends in advertisements 

on the Web. This will enable both Professor Wills and future users of the tool to design further 

experiments and more complicated data processing schemes, as much less manpower is required to 

collect the information, which would have otherwise been prohibitively time-consuming.  

6.4 Summary 

Initial testing has shown that our tool provides comparable results to manual data collection. 

This is important, as this implies that reliable data can be collected and processed with our tools, which 

will lead to tremendous amounts of time savings for humans involved in the process. The technique will 

be consistent, controlled, and has the potential to be parallelized to provide data in quantities that 

previously would not have been possible due to time constraints. 

 

  



40 | P a g e  
 

7 Future Work 

 This project is designed to be on-going. We are providing a platform on which functionality can 

be enhanced or modified as needed. We tried to organize the source in such a way that it should be clear 

where new functions can be introduced and existing functionality can be modified or removed. With this 

in mind, there are several tasks that the authors feel could be performed in the future to further develop 

this tool. 

7.1 Maintenance and Improvements 

 Though the tools we have developed for this project will work as-is, it should be noted that the 

project is composed of several “moving parts” which may be necessary to update periodically. During 

our personal development, ZAP underwent a major update (to version 2.0.0) that corrected many issues 

and fixed several performance issues. Updates such as this should be monitored and installed for use on 

the virtual machine hosting the project. This creates opportunities to increase stability, reliability, and 

functionality.  

7.2 Known Issues 

As with any substantial project, there are several issues that had to be worked around. The 

majority of these issues are with interaction with the third-party software we are utilizing, and we will 

detail ongoing problems in this section. 

7.2.1 ZAP 

ZAP has presented several major challenges. Many of these have been fixed in recent releases, 

which we have updated the virtual machine to use, though several key issues remain. 

The first major issue is that the ZAP API in practice has been somewhat unreliable. API 

commands seem to “hang,” or fail unexpectedly at times and will not recover gracefully. An example of 



41 | P a g e  
 

this is when sessions are being saved; at times ZAP will save all the content successfully, but not 

terminate its connection to the database, causing an infinite loop.  

A related issue with the API is that the shutdown() function does not work as intended. It 

inconsistently gives the program the command to terminate, and became such a problem that we 

implemented a workaround by using Java process handles so that we could manually terminate the ZAP 

process and restart it. 

A third, major issue is that ZAP is simply not designed to handle as much data as we are giving it 

to process. ZAP is designed to operate on a single site for security testing, however we are passing a 

substantial amount of data through this during web crawls. As ZAP holds all these items in memory 

before being told to save them to a database, the ZAP process will run out of memory very quickly. This 

is the issue that has caused us to segment data collection in order to prevent ZAP from becoming 

unreachable. 

It should be noted, however, that these issues are known to the ZAP development team and are 

currently in the bug-fix queue, so care should be taken to monitor the progress of development on ZAP 

and update the software as needed to possibly remedy these issues. 

7.3 Additional Features 

 As the direction of the project shifted throughout the duration of the project, focus was shifted 

away from several key features that we believe could be useful.  

7.3.1 Website Interaction 

 A more robust way to interact with websites may be beneficial to have, particularly given the 

wide variety functional designs on many Web pages on the Internet. Having the ability to search for 

particular types of elements or identify ad frames to further interact with them could be an important 



42 | P a g e  
 

asset for future research. This level of interaction was not required during our initial testing, though the 

authors believe it should be pursued.  

 One of the tools that we had previously looked into for the browser automation portion of this 

project, Geb9, has been heavily updated since development began on this project. The authors suggest 

looking into replacing the Selenium WebDriver portion of this project with Geb, as it will likely make 

future development much simpler, as Geb currently supports complex operations that are difficult to do 

with Selenium, such as waiting correctly for asynchronous loading of page content. 

7.3.2 Optical Character Recognition (OCR) 

 A significant amount of time was spent looking into OCR options to use in conjunction with 

advertising images. Support was added into the data processing code that would take image content, 

convert it to a .TIFF file (which is standard for most OCR engines available at the time of writing) and 

running it through Google’s open-source Tesseract10 OCR engine. However, it quickly became apparent 

that without significant amounts of training data the OCR would not be reliable. Due to the variety and 

inconsistencies among advertisements, ranging from background images to subtle color changes, it was 

difficult to get usable character recognition from this process. Thus, the functionality was removed. The 

authors believe that this functionality would be a tremendous asset to the project, and would like to 

encourage further research into the technology, though that research is now out of the scope of this 

project. 

7.4 Summary 

 What we have created is not intended to be a finalized product; there is still work that can, and 

should, be done to enhance the functionality we have already provided. As better tools and new 

                                                             
9 http://www.gebish.org/ 
10 https://code.google.com/p/tesseract-ocr/ 

http://www.gebish.org/
https://code.google.com/p/tesseract-ocr/


43 | P a g e  
 

techniques are developed and released to the community, changes should be mirrored and added to the 

project in order to improve the quality of data we are collecting and processing.  

 In particular, the authors would like to encourage others to research, or create, an OCR solution 

that will allow the processing of images, as that would grant the most useful data. 

  



44 | P a g e  
 

8 Conclusion 

Our project will save time for researchers and allow their research to stay current. Researchers 

who used PageStats can switch to using our programs instead of having to continue using an obsolete 

browser, switch to manual collection, or find and adjust to another tool. Additionally, because our 

program can provide outputs in the same format as existing tools there is no need to spend time 

modifying existing input files or output parsing scripts to work with a new tool. This will enable more 

time to be spent actually collecting and analyzing data. 

Overall our project was successful at realizing its goals. It is capable of large scale data collection 

and has sufficient site interaction capabilities to log in to most sites on the internet. While the script 

processer’s capabilities could be expanded, they are sufficient for current needs. 

We took a couple of major lessons away from our work on this project. One is that even well 

supported third-party tools can have serious issues, particularly when using a portion of the code base 

that is less frequently utilized. Zap had errors with both its keeping all the data it had collected in 

memory and with its API for saving and starting new data collection sessions that required us to kill and 

restart it on a regular basis during large data collections. Selenium also had an error that would cause 

erroneous exceptions to be thrown and necessitate switching to a new Selenium WebDriver for future 

commands. Also, we discovered that the use of JavaScript on webpages has made the problem of 

determining when a webpage has loaded fairly complex. The JavaScript onPageLoad() event often fires 

before most of the data on the page has loaded, and some pages never stop making requests. 

  



45 | P a g e  
 

References 
 

Craig E. Wills and Can Tatar.  Understanding what they do with what they know.  In Proceedings of the 

Workshop on Privacy in the Electronic Society, Raleigh, NC USA, October 2012. 

Dedeo, Scot. "PageStats Extension." . Worcester Polytechnic Institute, n.d. Web. 15 Apr 2013. 

<http://web.cs.wpi.edu/~cew/pagestats/>. 

Greene, Tim. "Microsoft researchers say anonymized data isn't so anonymous." Network World. 02 Feb 

2012: 1-2. Web. 20 Apr. 2013. <http://www.networkworld.com/news/2012/020212-microsoft-

anonymous-255667.html>. 

  



46 | P a g e  
 

Appendix 

List of proxies researched 
 

 Fiddler 

 Paros 

 BrowserMob 

 WebScarab 

 MembraneMontitor 

 jProxy 

 LittleProxy 

 Andiparos 

 HTTP Debugging Proxy 

 Pymi Proxy 

 Yacy 

 Sahi 

 HTTPRipper 

 htfilter2 

 MaxQ 

 mitm-proxy 

 Surfboard 

 Zee Proxy 

 Muffin 

 ZAP 

 


