
Report for Master’s Project 

A Goodness-of-fit Association Test for Whole 
Genome Sequencing Data 

 
 

Li Yang 

 

Advisor: Zheyang Wu 

 

Worcester Polytechnic Institute 

 

 

 

Department of Mathematical Sciences 

 



1 
 

Abstract  

Although many genetic factors have been successfully identified for human diseases in genome-wide 

association studies (GWAS), genes discovered to date only account for a small proportion of overall 

genetic contributions to many complex traits. Association studies have difficulty in detecting the remaining 

true genetic variants that are either common variants with weak allelic effects, or rare variants that have 

strong allelic effects but are weakly associated at the population level. In this work we applied a goodness-

of-fit test for detecting sets of common and rare variants associated with quantitative or binary traits by 

using whole genome sequencing (WGS) data. This test has been proved optimal for detecting weak and 

sparse signals in the literature, which fits the requirements for targeting the genetic components of missing 

heritability. Furthermore, this p-value-combining method allows one to incorporate different data and/or 

research results for meta-analysis. The method was used to simultaneously analyse the WGS and GWAS 

data of Genetic Analysis Workshop (GAW) 18 for detecting true genetic variants. The results show that 

goodness-of-fit test is comparable or better than the influential sequence kernel association test in many 

cases.  

Background  
According to the Catalog of Genome-Wide Association Studies updated by the National Human Genome 

Research Institute, about 7,260 SNPs have been identified for 770 traits in 1,360 publications till 

November 2012. However, researchers believe that a significant proportion of heritability of many 

complex traits is still missing [1, 2]. The remaining genetic variants to be detected are either common 

variants with small allelic effects, or rare variants with relatively strong allelic effects. In both cases, the 

genetic effects are weak at the population level. Furthermore, only a small proportion of the avalanche of 

candidate variants are likely associated with a trait, which is a problem closely related to sparse signal 

discovery in statistics. It is very challenging to detect weak and sparse genetic effects via association.  

To address this issue, we adopt a goodness-of-fit test (GOFT)  [3] that has been proved to be optimal under 

a Gaussian means model  [4]. That is, the boundary of the reliable detection of this method reaches the 

lowest possibility among all statistical tests when the signals are weak and sparse. Since the Gaussian 

means model is asymptotically equivalent to regression models  [5], the goodness-of-fit test is promising in 

detecting weak and sparse genetic effects through regression model fitting. In this work, we illustrate how 

to apply the test to WGS data by using the GAW18 data. The method is assessed under various rare variant 

collapsing strategies, and compared with the sequence kernel association test (SKAT) [6]. Moreover, 

because GOFT is a method combining p-values, it has the potential to be used as a meta-analysis for 

incorporating data from different sources. Since in this GOFT statistic we only predetermined one integer 

and it may difficult to make a sensible choice, we also develop adaptive goodness-of-fit test (AGOFT) 

which allows us to take multiple choices of truncated point. We apply both GOFT and AGOFT to 

simultaneously analyse WGS data and GWAS data for detecting genetic loci associated with systolic blood 

pressure (SBP). The results show that even without the sophisticated weighting scheme, GOFT is 

comparable to, and sometimes better than, SKAT under its best weighting scheme. In addition, at small p-

value cut-offs, the GOFT meta-analysis provides higher power than that when only WGS data was used. 

Methods 

Method 1: Sequence kernel association test (SKAT) 

Sequence kernel association test (SKAT) [6] is a supervised and flexible test for the associations between 

sets of genetic variants and a continuous or dichotomous trait. Through adjusting the variance of the 

random effect coefficients of the genetic variants, SKAT can consider different weights for different 

variants in contributing to the response trait. Typically, the rare variants are assigned with larger weights 

than the common variants based on the rare-variant-common-disease model [7]. We use the R package 

SKAT  [8] for the WGS data analysis.  

Method 2: Goodness-of-fit test (GOFT) 

The problem of determining the associations between a set of genetic variants and the trait can be viewed 

as a multiple hypotheses testing problem. Under the null hypothesis that there is no genetic association, the 

p-value from each genetic variant follows a uniform(0,1) distribution. So testing a group of variants can be 

considered as a goodness-of-fit test (GOFT) that measures the consistency between the empirical 
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distribution of the observed p-values and the uniform distribution. Here we adopt a GOFT from Berk and 

Jones  [3], which was proposed from large deviation theory, and then was proved optimal in detecting 
weak and sparse signals [4]. Let  ( )     ( )  be the sorted p-values from   individual variants and the 

trait. The GOFT statistic is  
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Comparing with many p-value based SNP-set testing methods that sum up all p-values together in certain 

formulas [9], GOFT looks for the most representative p-value to the SNP set. At the same time, unlike the 

minimal p-value method that fixes the smallest p-value to represent the set, GOFT adapts to the signal 

pattern through the maximization procedure. Such adaptation is critical because the p-value of a true 

association is not necessarily the minimal one, especially when true associations are sparse and weak [4]. 

Another advantage is that the GOFT statistic only requires information from a set of p-values to work, so it 

can be flexibly applied to different genetic studies based on the corresponding appropriate p-values, or to 

meta-analyses that incorporate various data sources.   

A permutation test can be applied to accommodate the various sizes of variant sets and the LD structures 

among the variants. Specifically, let    and    ,        ,        , denote the GOFT statistics of 

the     genome segment window from the original data and from the     permutation of the genotype 

data, respectively. The empirical p-value for the     window is     {               }  ⁄ . The 

number of permutations M =1000 was used in the following data analysis. 

Method 3:  Adaptive Goodness-of-fit test (AGOFT) 

Moreover, to use the GOFT statistic, we must get the truncated point L a priori. When the number of tests 

is large, it is hard to take a reasonable choice of L. Then we develop an adaptive goodness-of-fit test 

(AGOFT) which allows us to have multiple choices of points. Instead of one typical point L, we can obtain 

the association evidence on each of L candidate points,        . Specifically we define  ̂(  ) be the 

estimated p-value of  (  ),      , the statistic of minimum p-value can be defined  

              ̂(  ) 
The MinP algorithm can be shown as below: 

1. Calculate the GOFT statistics for each truncated point in each permutation as  
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     Where     is calculated from the l truncated point and the     permutation. 

 

2. Based on    from both the observed SNP data and the permuted data, we use all the    to form a 

common distribution for the significance level of each time of permutation. Specifically we 

estimate the p-value for    as 
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3. Use a calculation similar to step 2, the AGOFT statistic from the     permutation data by 
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Collapsing of rare variants 

For the association study of complex diseases based on WGS data, a major challenge is to address rare 

variants that have weak statistical association due to small allele frequency. The GOFT is asymptotically 

optimal for weak and sparse signals, and is a right fit in this scenario. At the same time, because the effects 

of missense rare alleles are mostly in the same deleterious direction [10], collapsing the rare variant before 

GOFT is likely more efficient [11]. Furthermore, because common and rare variants contribute to complex 

diseases, it is good to combine information from both to facilitate the detection of associated genome 
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segments. Following a literature work [12], we collapse rare single nucleotide variants (SNVs) that allocate 

between adjacent common SNVs by summation of their genotype. Then the p-values for associations of 

both collapsed rare variants and common variants are obtained and fed into GOFT test statistic in (1) to 

study the overall significance of variant-groups.  

Results  
For evaluating the above association tests, we used the WGS “dose” file of 1,215,399 SNVs and the 

GWAS file of 65,519 SNVs on chromosome 3 as the genotype data. The quantitative trait was the systolic 

blood pressure (SBP) for the 142 independent individuals who have no missing genotype. To assess how 

the SNV-group size may affect the performance of these tests, we split chr3 into segments of fixed 

windows with one of three widths: 10kbp, 100kbp and 500kbp. Respectively at those three levels, the 

grouping strategy resulted in 19,472, 1,950, and 391 windows, among which 87, 37, and 20 windows 

contain true SNVs that are either non-synonymous or regulatory to SBP according to the GAW18 

simulation [13]. The true windows and the 200 simulation replicates were used for evaluating power and 

type I error rate. We defined a SNV as a rare variant if it has minor allele frequency (MAF) less than 5%. 

The knowledge of the simulated true SNVs was only used for evaluating the power of the association tests, 

not for designing the tests and the data analysis strategies. 

For GOFT, we assessed its type I error rates estimated by the false positive rate of the 19,385 false 10kpbs-

windows on chr3 over a sequence of cut-offs. The type I error rate was well controlled (results are 

available upon request due to limited publication space). Figure 1 shows the assessment for the power of 

GOFT in detecting overall genetic associations, which was estimated by the true positive rate of true 

association windows based on GAW18 simulation replicate 1. We considered various window sizes with 

and without rare variant collapsing. Larger windows provided higher power at large cut-offs, but not at the 

small p-values that are often used in practice. This is because large windows likely had more noise variants, 

which diluted the signals from true variants, and thus were harder to get very small p-values. In the 

meanwhile, rare variant collapsing did help to increase the power in general.  

Under the window size of 10kbps, we assessed SKAT with different strategies of weighting variants: flat 

weight, Beta(1, 1), Beta(0.5, 0.5), Beta(1, 25),  and logistic(0.07, 150). Figure 2 shows the power of 

detecting the 87 true 10kbps-windows on chr3 over a variety of p-value cut-offs. The Beta(1, 25) and 

logistic weights performed better for small p-value cut-offs. Figure 2 also shows that GOFT was similar to 

the best SKAT setups for small p-values. In fact, GOFT had a larger area under curve (AUC) than SKATs 

when comparing their whole ROC curves (results are available upon request). 

In order to study the performance in detection various patterns of genetic effects, we compared the power 

of GOFT and logistic-weight-SKAT in detecting each of all 87 true 10kbps windows on chr3. The power 

was estimated by the true positive rate of a true window among 200 replicates. There are three patterns of 

comparisons: GOFT was better in 42 windows (Figure 3 left panel), SKAT was better in 27 windows 

(Figure 3 middle panel), and both were similar. Figure 3 illustrates examples of these comparisons based 

on ROC curve (complete results are available upon request). GOFT seems better overall, but the 

comparison is not very significant (42 vs. 27, with p-value 0.10). The type I error rate was well controlled 

here (results available upon request).  

Because GOFT only requires p-values as the input, it has a potential to be used in a meta-analysis for 

incorporating data from different studies. Here we evaluated how much the GWAS data could contribute 

useful information to the WGS study. By mapping the “rs” IDs to the Chromosome Report from dbSNP, 

we calculated the p-values of 65,519 GWAS SNVs on chr3. On average 3.4 GWAS SNVs were added into 

each window (about 5% increase). Figure 4 shows that the type I error rate control after adding the GWAS 

SNVs was still good (left panel) and that adding GWAS data helped to improve the power of GOFT in 

detecting true 10kbps windows on chr3 in general. 

As we have said before, when the number of individual tests is large, it is difficult to make a sensible 

choice of the truncated point. Figure 5 states that in those three windows which contain the most 

significant variance among all the true SNPs, GOFT has a better power than AGOFT. 
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Discussion  
We attempt to address the low power issue of association tests for WGS data from two aspects.  First, we 

prefer to utilize tests specially designed for detecting weak and spares genetic effects. For this purpose, the 

GOFT and AGOFT are asymptotically optimal in the sense that their asymptotic detection boundary is one 

of the lowest boundaries among all statistical methods. If signals are weaker or sparser than this boundary, 

no statistical methods would work well anyway. Second, we try to borrow information from other data sets 

through meta-analysis. Although there has been some debate on how much of total heritability could be 

explained by GWAS data  [7], the common agreement is that both common and rare variants contribute to 

complex diseases. It is potentially helpful to add GWAS data into WGS in order to increase the power. Our 

results show that both attempts are promising.  

At the same time, several future works could be considered based on the limitations of the current study. 

First, the sample size is likely still small for either verifying asymptotical results or larger power of 

detecting weak genetic effects simulated in the data. It would be nice to further confirm the patterns of 

comparisons among these association methods by simulated and real data with much larger sample size. 

Second, gene-based collapsing can be applied as an alternative to the window scheme used here. Third, we 

have applied a simple rare variant collapsing process by direct summing the genotypes. This collapsing 

strategy is less sophisticated than the weighting strategy of SKAT. In fact, GOFT can further incorporate 

more successful collapsing strategies to improve its power, for example, by weighting the SNPs, like what 

SKAT and other methods have adopted  [14-17]. Fourth, GOFT represents a first stage analysis, which 

only seeks to answer where the associations are located at; additional analyses could be required to 

determine the number and exact location of causal signals. Lastly, the adaptive idea may cause puzzle 

when we use multiple truncated point. This method may miss some key point for truncation. 

Conclusions  
We adopt goodness-of-fit test (GOFT) and adaptive goodness-of-fit test (AGOFT) to WGS data analysis 

for detecting disease-associated genomic segments. It is compared with the sequence kernel association 

test (SKAT) by using the GAW18 simulation data with SBP_1 as response. Even without a sophisticated 

weighting scheme, GOFT is comparable to or better than SKAT with the best weighting scheme in many 

cases. GOFT can be applied to a combination of GWAS and WGS data. Our results show that such meta-

analysis has potential to provide higher power over WGS data analysis only. In all cases, the power is still 

low for detecting overall heritability under the sample size of 142 independent individuals for genetic 

association study.   
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Figure 1  - Power of GOFT for different window sizes with or without collapsing variants 

Power is estimated by the true positive rate of true association windows on chr3 based on GAW18 

simulation replicate 1. 

 

Figure 2  - Power of GOFT and SKAT under different weighting schemes 

Power is estimated by the true positive rate of 87 true 10kbps windows on chr3.  

 

Figure 3  - Comparison patterns between GOFT and SKAT for detecting true windows 

Left: window 4799 illustrates a case where GOFT is better; middle: window 5701 is an example where 

SKAT with logistic-weight is better; right: window 13613 is an example that both methods are similar.  
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Figure 4  - Type I error rate and power for GWAS-WGS meta-analysis 

Left: Empirical type I error rate (i.e., false positive rate) in the meta-analysis; right: power of detecting the 

87 true 10kpbs windows on chr3 when GWAS data were added or not.  

 

Figure 5  - Comparison patterns between GOFT and SKAT for detecting true windows 

Left: window 4790 illustrates a case where GOFT is the best; middle: window 4799 is an example where 

SKAT with logistic-weight is better than AGOFT; right: window 5805 is an example that all methods are 

similar.  

 

 


