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Abstract

The demand for sophisticated wireless applications capable of conveying information

content represented in various forms such as voice, data, audio and video is ever increas-

ing. In order to support such applications, either additional wireless spectrum is needed or

advanced signal processing techniques must be employed by the next-generation wireless

communication systems. An immediate observation that can be made regarding the first

option is that radio frequency spectrum is a limited natural resource. Moreover, since exist-

ing spectrum allocation policies of several national regulatory agencies such as the Federal

Communications Commission (FCC) restrict spectrum access to licensed entities only, it

has been identified that most of the licensed spectrum across time and frequency is ineffi-

ciently utilized. To facilitate greater spectral efficiency, many national regulatory agencies

are considering a paradigm shift towards spectrum allocation by allowing unlicensed users

to temporarily borrow unused spectral resources. This concept is referred to a dynamic

spectrum access (DSA). Although, several spectrum measurement campaigns have been re-

ported in the published literature for quantitatively assessing the available vacant spectrum,

there are certain aspects of spectrum utilization that need a deeper understanding.

First, we examine two complementary approaches to the problem of characterizing the

usage of licensed bands. In the first approach, a linear mixed-effects based regression model

is proposed, where the variations in percentage spectrum occupancy and activity period

of the licensed user are described as a function of certain independent regressor variables.

The second approach is based on the creation of a geo-location database consisting of

the licensed transmitters in a specific geographical region and identifying the coverage

areas that affect the available secondary channels. Both of these approaches are based

on the energy spectral density data-samples collected across numerous frequency bands in

several locations in the United States. We then study the mutual interference effects in a

coexistence scenario consisting of licensed and unclicensed users. We numerically evaluate

the impact of interference as a function of certain receiver characteristics. Specifically, we

consider the unlicensed user to utilize OFDM or NOFDM symbols since the appropriate

subcarriers can be turned off to facilitate non-contiguous spectrum utilization. Finally, it

has been demonstrated that multiple-input and multiple-output (MIMO) antennas yield

significant throughput while requiring no increase in transmit power or required bandwidth.

However, the separation of spectrally overlapping signals is a challenging task that involves
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the estimation of the channel. We provide results concerning channel and symbol estimation

in the scenario described above. In particular, we focus on the MIMO-OFDM transmission

scheme and derive capacity lower bounds due to imperfect channel estimation.
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Chapter 1

Introduction

1.1 Context

Historically speaking, Guglielmo Marconi’s series of demonstrations on wireless teleg-

raphy towards the end of the Twentieth century in Europe and in the United States had

marked a turning point for the field of wireless communications. The subsequent decades

were marked with episodes of enthusiasm towards wireless systems such as the adoption

of wireless telegraphy by the shipping industry [6], the installation of wireless radios for

law-enforcement vehicles in the United States [7], followed by commercial audio [8] and

television broadcasting [9] using wireless radio transmitters. However, due to the techno-

logical constraints involved, the application of wireless systems had not gained widespread

utilization until the 1970s except for the specialized examples listed above and mainstream

communications’ operations such as telephony relied on classic wireline implementations.

Nevertheless, researchers as early as 19471 had envisioned dividing large geographical ar-

eas into cells in order to provide affordable mobile-radio service to the general public.

Throughout the 1950s and the 1960s, several researchers [11–17] have advanced the theory

of cellular communications, culminating in Bell Telephone Laboratories Inc. submitting

a proposal to the Federal Communications Commission (FCC) in December 1971 for of-

fering cellular mobile communications. Following extensive FCC-authorized field trials, a

Bell Telephone Laboratories Inc. subsidiary, Advanced Mobile Phone Service Inc. (AMPS)

was granted commercial licenses. The complete series of papers that describe the original

1D. H. Ring at the Bell Telephone Laboratories Inc. in an internal memo [10, Section 2.4]
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jpg

Fig. 1.1 Marconi in Newfoundland: The 1901 Transatlantic Radio Experi-
ment. [1]

AMPS architecture can be found at [18].

During the past four decades, the field of wireless communications has experienced a

sustained period of advancement both in terms of the research and development of innova-

tive techniques as well as the market penetration in the consumer sector. Beginning with

the introduction of the first generation wireless telephone system, Advanced Mobile Phone

Service (AMPS) [10] in 1983, there has been a tremendous improvement in the data-rates

offered by the wireless communications’ service providers to meet the unceasing demands

of the subscribers. During the subsequent decades, wireless communications’ technology

progressed from the analog 1G to the digital 2G and continued its expansion by incorpo-

rating many other advanced signal processing principles. More importantly, this evolution

was driven by the increasingly diverse nature of the information content that needed to be

transported between several users. As a result, a clear challenge emerged in the regulation

and the standardization of the “prime” wireless spectrum i.e., from DC to 3 GHz towards

different types of wireless services [19–22].

The Federal Communications Commission (FCC) was established by the Seventy-third

Congress of the United States in an act entitled, “Public, No. 416” and approved on June

19, 1934 [23] for the purpose of regulating communication by wire and radio with public
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interest as its primary focus. Thus, although the FCC has been in charge of developing

and enforcing the regulations that are necessary for the support of various laws enacted

by the U.S. Congress to govern the commercial use of the spectrum for several decades, it

was during the mid-1980s that an era of a rethinking of spectrum regulation had begun.

In contrast to the public interest focused approach that had existed until then, the FCC

and several other regulatory authorities around the world started spectrum assignment

based on a new market focused approach particularly for frequency bands such as those

corresponding to cellular communications via various forms of auction.

With increased licensing of prime radio frequency (RF) spectrum, the expansion of the

existing services or the allocation of spectrum for additional services was an important

technical challenge identified by the FCC. The traditional spectrum allocation techniques

relying on segmenting the available spectrum and assigning the fixed blocks to the licensed

users do not permit unlicensed users to access the already licensed bands. As a result

of this prohibition on the unlicensed access to licensed spectrum, heavily populated and

highly interference-prone frequency bands have to be accessed. Clearly, this results in

reduced system performance.

1.2 Background

Spectrum measurement studies have been carried out in the United States for the past

several years for the purpose of gaining insights into wireless spectrum occupancy charac-

teristics, and there by implement appropriate technical and legislative actions in order to

support continued growth in the wireless sector, see for example [24–26]. However, spec-

trum measurement studies conducted in the recent times [27, 28] have focused primarily

on characterizing the under-utilization with the purpose of their utility for the design of

dynamic spectrum access networks (DSA) which enable highly spectrally agile wireless plat-

forms called cognitive radios [29] to temporarily borrow licensed spectrum while ensuring

that the interference caused to primary license holders is almost negligible. Owing to the

increasing evidence of the under-utilization of wireless spectrum as demonstrated by [27, 28]

and several others, an important policy step taken by the FCC is the enabling of cognitive

access by secondary devices in TV broadcast spectrum [30]. Although the paradigm shift

in wireless spectrum regulatory approaches is based on the assumption that the majority of

wireless spectrum is extensively underutilized by the incumbent license holders, which re-
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lies on several independently conducted measurement campaigns, there still exists a definite

need to obtain a deeper understanding of this natural resource.

A diametrical approach to improving spectral efficiency was put forward around the

end of the last decase by Foschini et al in the seminal paper [31]. They showed that several

independent data streams transmitted over co-channels across multiple antennas can be

successfully recovered. This argument is based on the assumptions that each data stream

experiences a distinct spatial signature and there are sufficient receiving antennas for the

demodulation of the data streams. This revolutionary approach to data transmission has

been shown to yield high data-rates while conserving the spectral resources at the same

time, thus offering an impressive solution to providing high-speed wireless services. As part

of an ongoing research project, We are working on an approach for the estimation of the

wireless channels that impair the information data streams in the interference-corrupted,

multiple-input multiple-output (MIMO) setting described above.

The important idea that bridges these two seemingly diverse topics is orthogonal fre-

quency division multiplexing (OFDM). When OFDM signal is transmitted with a cyclic-

prefix, the Toeplitz channel matrix in time-domain is converted into a diagonal matrix

in the frequency domain. As a result, frequency-domain equalization is rendered simple.

OFDM is also attractive for DSA based systems since subcarriers can be turned off in the

frequency range that carries primary user’s information and a non-contiguous frequency

range can be utilized to provide fast data-rates to unlicensed users. On the other hand,

OFDM combined with multiple-input/multiple-output antennas has become the de facto

approach towards leveraging spatial and frequency diversity such that fast data-rates are

provided.

1.3 Problem Statement

Based on the brief discussion on the background provided in the previous section, our

aim in this dissertation is to answer the following questions:

• What is the wireless spectrum occupancy in average case urban environments as

opposed to the worst case scenarios that are considered in the published literature?

Can we demonstrate spatial, temporal and frequency-wise variations in spectrum

occupancy? Since these variations are expected, how can we model these variations
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parsimoniously such that meaningful conclusions regarding the influence of various

parameters on wireless spectrum occupancy?

• Can we also extend this wireless spectrum occupancy analysis to vehicular settings

which are increasingly reaching a point of “spectrum scarcity” due to the desire for

faster data-rates? How feasible is the freed-up UHF DTV band for vehicular DSA?

Given that the FCC has formulated certain restrictions on the use of UHF TV band,

how do we incorporate them and quantify the available channels as a function of

distance from TV transmitters?

• What are the co-existance issues that arise when licensed and unlicensed users trans-

mit in neighboring frequency bands? What characteristics of the transmitter and the

receiver influence these co-existance issues? How do orthogonal and non-orthogonal

FDM schemes compare in a non-contiguous opprotunistic spectrum access scenario?

• Focusing on OFDM alone, how do multiple-input/multiple-output antennas result in

faster data-rates? How is channel acquisition optimal in such a scenario and what

is the optimal training design? Specifically, in the presence of imperfect channel

estimates, how much does the channel capacity reduce compared to the upper bound?

Each chapter whose description is given briefly in the next section addresses the questions

indicated above by providing a theoretical framework followed by supporting simulation

examples.

1.4 Dissertation Organization

Following Chapter 2 which provides the background material on several topics relevant

to this dissertation, we present a statistical analysis in Chapter 3 for the wireless spectrum

occupancy across the spatial, temporal, and frequency dimensions using measurements

collected in four mid-size US cities, namely: Rochester, NY; Buffalo, NY; Pittsburgh,

PA; Worcester, MA. Although we have collected these measurements across several bands

within the 88 MHz-3 GHz frequency range, results pertaining to only certain bands are

presented for the purpose of brevity.

We then present quantitative and qualitative results obtained as a result of a TV spec-

trum measurement campaign in Chapter 4. We used these measurements to characterize
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vacant TV channels a along major interstate highway (I-90) in the state of Massachusetts,

USA. By characterizing the availability of vacant TV channels in the 470-806 MHz fre-

quency range, we show the trends in the availability of vacant channels from a vehicular

dynamic spectrum access perspective. We also describe the design constraints imposed on

a point-to-multipoint communications based architecture in such a setting. Specifically, we

described a general geo-location database approach to create a spectral map of available

channels in a given geographical area and presented the results obtained by applying such

a technique in the state of MA over several locations on I-90.

In Chapter 5, we investigated two approaches for enabling non-contiguous multicarrier

modulation that can be used to facilitate spectrally opportunistic cognitive radio systems.

One of the approaches is a variant of orthogonal frequency division multiplexing (OFDM),

called non-contiguous OFDM (NC-OFDM), while the other approach is based the noncon-

tiguous version of the filter bank approach, non-orthogonal frequency division multiplexing

(NOFDM), referred to as noncontiguous NOFDM (NC-NOFDM). The performance of these

two approaches is assessed in terms of interference mitigation, which involves the use of

actual spectrum measurement data, as well as computational complexity.

Finally, in Chapter 6, we analyze the channel tracking characteristics of a MIMO-

OFDM setup. We derive this setup as a solution that meets an orthogonality criterion that

is required in order to decouple channel estimation from data detection. We then derive a

training design that is optimal in MMSE sense. By utilizing certain diagoanlity properties,

we simplify the structure of the sequential channel estimator. We analyze upper and lower

bounds on the channel capacity for this setup and understand the impact of channel state

predictions on the data-rate.

The dissertation is wrapped up in Chapter 7 by drawing several conclusions and pro-

viding directions for future research.
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Chapter 2

The Wireless Spectrum

2.1 Introduction

In contrast to analog communications where a continuum of values are employed to

transfer information over space or time, digital communications which is ubiquitous in

today’s world uses binary digits, or bits. At the transmitter end, these information bits

are represented as a discrete sequence of voltage levels. However, the physical medium

over which the information is transmitted is analog in nature. As a result, the discrete

voltage levels are mapped to voltage waveforms such that analog electromagnetic waves

containing the original information bits are transmitted over the physical channel. The

physical channel distorts the transmitted waveform depending on the particular context

under consideration. For the case of a wireline channel, the system impairments can be

modeled as linear and time-invariant whereas for the case of a wireless mobile channel, the

system may be linear but possibly time-varying. At the receiver end, the channel-impaired

analog waveform is sampled to produce a discrete sequence of voltage levels followed by a

mapping operation to produce the original information bits. A block representation of the

above order of operations is provided in Fig. 2.1. Although, the concise description provided

above clearly skips several points pertaining to a digital communication link operating over

a wireless fading channel, in this chapter, we provide a general overview regarding some

of the details relevant to this dissertation. We then discuss a special property concerning

OFDM symbols that is of interest in the final chapter. Additionally, the use of a wireless

channel is regulated by national regulatory authorities such as the Federal Communications

Commission (FCC) in the United States or the Office of Communications (Ofcom) in the
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passband

waveform
baseband

waveform

sequence

of symbols

Fig. 2.1 Block diagram of a digital communications system. In this chap-
ter, we will not review Source Encoding/ Decoding and Channel Encoding/
Decoding.

United Kingdom. The traditional approach is to auction portions of wireless spectrum to

licensed entities and guarantee assured access to spectrum. We provide some details on

these general spectrum regulatory policies adopted so far and the need for the regulatory

bodies to let unlicensed users access spectrum dynamically when certain conditions are

met.

2.2 The Complex Baseband Wireless Channel

As mentioned previously, we employ real-valued passband signals from transmission and

reception in the physical world. However, a complex baseband representation of a digital

communications system which contains all of the relevant information without resorting to

using a large sampling rate for the corresponding passband signal is preferred for the sake of

ease of analysis. This representation also helps in moving all of the analog processing closer

to the antennas such that modern digital signal processors (DSPs) can digitally perform the

necessary analysis independent of the actual passband channel employed. We first obtain

a continuous-time complex baseband model followed by a discrete-time complex baseband

model. Along the way, as the necessity arises, we also discuss certain parameters which

characterize the frequency and time coherence of a wireless channel.

2.2.1 Continuous-time Model

The electromagnetic field impinging on a receive antenna due to the presence of a far

field transmitting antenna radiating into free space canbe determined by applying Maxwell’s



Chapter 2 9

partial differential equations []. In practical settings, the presence of arbitrarily moving

reflectors and absorbers, the impact of mobility and other imperfections can also be taken

into account and solved by Maxwell’s equations. However, a simpler method which is often

applied is a procedure termed ray tracing. In applying this procedure, we assume that

the received electromagnetic waveform, yp(t) is a superposition of multiple copies of the

transmitted passband waveform, xp(t) with each copy attenuated by a factor, γp
i (t) and

delayed by τi(t). In other words,

yp(t) =
∑

i

γp
i (t) xp(t− τi(t)) + zp(t) (2.1)

where zp(t) is zero-mean additive white Gaussian noise (AWGN) with power spectral den-

sity N0/2. By writing (2.1) using a continuous-time convolution operation as, yp(t) =

hp(τ, t) ⋆ xp(t) + z(t), it can be observed that the response of the channel at time t to an

impulse transmitted at time t− τ is given by the expression,

hp(τ, t) =
∑

i

γp
i (t) δ(t− τi(t)) (2.2)

The propagaton delay associated with each path, τi(t) is directly related to the distance

travelled by the path, di as shown below:

τi(t) =
di
c
± vi t

c
− ∠φi

2πf
(2.3)

where vi is the velocity with which the ith path length is changing and ∠φi indicates that

the phase changes at the transmitter, receiver or due to the reflectors.

We now recognize that a passband signal is represented as a function of the continuous-

time complex baseband signal as shown below:

xp(t) =
√
2x(c)(t) cos(2πfct)−

√
2x(s)(t) sin(2πfct) =

√
2ℜ(x(t)ej2πfct) (2.4)

where x(t) = x(c)(t)+jx(s)(t) is the continuous-time complex-baseband signal with x(c)(t) =

ℜ(x(t)) and x(s)(t) = ℑ(x(t)) being the in-phase component and the quadrature-phase

components of x(t) respectively. By writing yp(t) and xp(t) in (2.1) as a function of the
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corresponding complex baseband signals, we now have

√
2ℜ(y(t)ej2πfct) =

∑

i

√
2ℜ
(
x(t− τi(t))e

j2πfc(t−τi(t))
)
+ zp(t)

=
√
2ℜ
({

∑

i

γp
i (t) x(t− τi(t))e

−j2πfcτi(t))

}
ej2πfct

)
+ zp(t) (2.5)

Hence, the equivalent continuous-time complex baseband received signal is,

Time-Varying case: y(t) =
∑

i

γi(t) x(t− τi(t)) + z(t) (2.6a)

Time-Invariant case: y(t) =
∑

i

γi x(t− τi) + z(t) (2.6b)

where the complex baseband channel impulse response is,

h(τ, t) =
∑

i

γp
i (t)e

−j2πfcτi(t) δ(t− τi(t))

=
∑

i

γi(t) δ(t− τi(t)) (2.7)

From (2.6a) and (2.6b), we can see that the passband physical channel with real-valued at-

tenuation factors has been transformed into an equivalent baseband channel with complex-

valued attenuations which depend on the carrier frequency used for transmission. The

discussion in the next subsection involves obtaining the discrete-time complex baseband

channel impulse response based on (2.7). Before moving on, we now briefly discuss two

relevant parameters that will be needed for this purpose.

Delay Spread and Coherence Bandwidth An important parameter that determines

the finite support over which the total energy of the impulse response, h(τ, t) is contained

is the delay spread. It is defined based on the criterion,
∫∞
0

|h(τ, t)|2 dτ ≈
∫ Td

0
|h(τ, t)|2 dτ

as follows:

Td = max
i,j

|τj(t)− τi(t)| (2.8)

In other words, taking into account all the paths that contribute significantly to the total

energy of the channel impulse response, Td is the maximum difference between the longest
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and the shortest paths. Furthermore, it is clear that delay spread is defined in an order of

magnitude sense since the approximation can be made arbitrarily accurate by taking more

paths into account. We now look at the frequency response of (2.7),

H(f, t) =
∑

i

γi(t)e
−j2πfτi(t) (2.9)

and notice that the differential phase caused by multiple paths undergoes changes when f

changes by an order of magnitude comparable to the inverse of Td. This quantity termed

the coherence bandwidth is defined as shown below:

Wc =
1

2Td

(2.10)

When the coherence bandwidth of a channel is much greater than the bandwidth of a signal

being transmitted, appreciable variations in frequency response as a function of frequency

are not noticed. In this case, the fading wireless channel is considered flat or frequency non-

selective and a single filter-tap (cf., Subsection 2.2.2) is sufficient to describe the channel.

Conversely, when the coherence bandwidth of a channel is lesser than the bandwidth of

a signal being transmitted, it is considered frequency selective and multiple filter-taps are

necessary to describe the channel. Thus, the coherence bandwidth or the delay spread

characterizes the frequency-selectivity of a wireless channel.

2.2.2 Discrete-time Model

From the previous subsection, we see that the information to be transmitted over a real

passband waveform can be encoded onto a continuous-time complex baseband waveform.

From Nyquist’s sampling theorem [32] we see that if this complex baseband waveform is

bandlimited to
[−1
2T
, 1
2T

]
, then it can be completely described by its samples {x[nT ]} at rate

1/T . Moreover, x(t) can be recovered from its samples using the interpolation formula:

x(t) =
∑

n

x[n] g(t− nT ) (2.11)

where g(t) = sinc(t/T ). Based on (2.11), we can construct the complex baseband waveform

from a sequence of symbols, {x[n]} which are drawn from a general complex-valued con-

stellation with 1/T termed as symbol rate. In the absence of noise, the received waveform
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is given as,

ȳ(t) =
∑

n

x[n]h(t− nT ) (2.12)

where the time-invariant channel impulse response is h(t) = g(t) ⋆ gc(t) = gTx(t) ⋆ gc(t) ⋆

gRx(t). The filter, h(t) is required to meet Nyquist’s criterion for inter-symbol interference

(ISI) avoidance so that ȳ(nT ) = x[n]. Since the channel filter, gc(t) is not within the

control of the designer, the usual practice is to design g(t) to be Nyquist and handle the

ISI introduced by gc(t) by a different mechanism. Although the sinc pulse is the minimum

bandwidth Nyquist pulse, other pulses which have a faster time-decay than the sinc pulse

and more robust against timing errors are used in practice at the expense of fractional

excess bandwidth than what is dictated by the Nyquist criterion. One example of a pulse

that is widely used is the raised cosine:

gRC(t) = sinc

[
t

T

]
cos

[
πβ t

T

1− 4β2 t2

T 2

]
(2.13)

where the roll-off factor, β with 0 ≤ β < 1 indicates the use of a fractional excess bandwidth

of β
2T
. Moreover, gRC(t) has a finite spread, Tp i.e., gRC(t) ≈ 0 ∀t /∈ (−t0, Tp − t0). We

now substitute (2.11) in (2.6a) for the case of a raised-cosine pulse,

y(t) =
∑

i

∑

n

γi(t) x[n] gRC(t− nT − τi(t)) + z(t) (2.14)

Sampling the received waveform at multiples of T , we have

y(m̄T ) =
∑

i

∑

n

γi(m̄T ) x[n] gRC(m̄T − nT − τi(m̄T )) + z(m̄T )

=
∑

n

x[n]

(
∑

i

γi(m̄T ) gRC(m̄T − nT − τi(m̄T ))

)
+ z(m̄T ) (2.15)

By defining,

h[m̄− n; m̄] =
∑

i

γi(m̄T ) gRC(m̄T − nT − τi(m̄T )) (2.16)
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and taking the channel delay spread as well as the pulse spread into account, we observe

that

h[m̄− n; m̄] ≈ 0 ∀(m̄− n) /∈
{
−
⌈
t0
T

⌉
, . . . ,

⌊
Tp + Td − t0

T

⌋}
(2.17)

By letting l = m̄ − n in (2.15), we can write the discrete convolution operation of the

transmitted symbol sequence with a non-causal FIR channel filter as follows:

y[m̄] =

⌊
Tp+Td−t0

T

⌋

∑

l=−⌈ t0
T ⌉

h[l; m̄]x[m̄− l] + z[m̄] (2.18)

By replacing, m̄ with m −
⌈
t0
T

⌉
and defining L =

⌈
Tp+Td

T

⌉
, the received sequence is left-

shifted so that we can write the discrete convolution operation of the transmitted symbol

sequence with respect to a causal FIR channel filter as follows:

Time-Varying case: y[m] =
L∑

l=0

h[l;m]x[m− l] + z[m] (2.19a)

Time-Invariant case: y[m] =
L∑

l=0

h[l]x[m− l] + z[m] (2.19b)

where the FIR channel filter taps are as shown below:

h[l;m] =
∑

i

γi(mT ) gRC(lT − τi(mT ))

=
∑

i

γi(mT ) sinc

[
l − τi(mT )

T

]
cos




πβ
(
l − τi(mT )

T

)

1− 4β2
(
l − τi(mT )

T

)2




=
∑

i

γp
i (mT )e−j2πfcτi(mT ) sinc

[
l − τi(mT )

T

]
cos




πβ
(
l − τi(mT )

T

)

1− 4β2
(
l − τi(mT )

T

)2


(2.20)

Finally, the discrete-time complex Gaussian noise process, {z[m]} in (2.19a) and (2.19b)

is obtained by down-converting, low-pass filtering and sampling the continuous-time real-

valued Gaussian noise process, zp(t) at multiples of T . It can be shown that {z[m]} is a white
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noise process, i.e., independent over time. Moreover, the real and imaginary components

of {z[m]} are independent with equal variances, N0/2. Due to the independence of the real

and imaginary components of {z[m]}, it is also circularly-symmetric.

At the end of the previous subsection, we discussed two parameters which characterize

the frequency-selectivity of the channel. We now provide a brief overview about two com-

plementary paramters by observing the expression for the discrete-time complex baseband

channel filter taps obtained in (2.20). These parameters explain the time-selectivity of the

channel. In the next section, we will utilize the review of these quantities in summarizing

the parsimonious models that are extensively used in the published literature for modeling

time-selective wireless fading channels.

Doppler Spread and Coherence Time From (2.20), we notice that the phase term

corresponding to the ith multipath that contributes to the lth channel filter tap undergoes

a change of π/2 when the delay on the path changes by 1
4fc

or when the path length changes

by a quarter wavelength, i.e., by c
4fc

. Since the ith path length is changing with a velocity

vi, the time required for this phase change is c
4fcvi

. By defining the Doppler shift of the ith

path as ηi =
fcvi
c
, we now recognize that the phase change of the channel filter tap which

depends on the phase changes occuring on several physical multipaths are determined by

the inverse of the largest difference between the Doppler shifts, termed the Doppler spread

as defined below:

Ds = max
i,j

|ηj − ηi| (2.21)

Consequently, h[l;m] experiences significant variations as a function of coherence time

defined as:

Tc =
1

4Ds

(2.22)

We observe from the above definitions that the time-selectivity is primarily dictated by

the phase variations. That is, in (2.20), the time-variations caused on each path due to

its corresponding attenuation factor and the raised cosine pulse are negligible compared to

those that occur due to the phase term since it is dependant on the carrier frequency.
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2.2.3 Statistical Characterization of Wireless Channels

An observation of (2.20) reveals that each FIR channel filter tap is obtained as a super-

position of several attenuated and delayed samples taken over the Nyquit pulse employed

for pulse-shaping. Clearly, while it is inconceivable to model the unpredictable nature of

the physical mechanisms that give rise to the attenuation factors and propagation delays,

statistical models which provide an insight into the aggregate properties of the channel

filter taps are necessary in order to test the functioning of different wireless systems. More-

over, the possible limited range of operating conditions under which such models are valid

provides further knowledge on the specific limitations of the wireless systems tested.

A simple probabilistic model that is based on the application of the Central Limit

Theorem is based on the assumption that the real and impaginary parts of the channel

filter taps are a sum of numerous independent random variables. Further, the phase of

each tap is assumed to be uniformly distributed. Such assumptions can be claimed to

be reasonable in the presence of several reflectors. As a result of the above assumptions,

each channel filter tap is a complex Gaussian random variable. Hence, its magnitude is

drawn from Rayleigh distribution and exhibits large variations due to the constructive and

destructive superposition of the underlying independent random variables. This model is

addressed in the literature as corresponding to a Rayleigh fading channel. A variation on

the above model involves taking a large line-of-sight path into account. In this case, the

magnitude of at least one path can be shown to be Rician distributed and is therefore,

addressed as a Rician fading channel.

Modeling Time-Variations Another aspect of the characterization of the channel filter

taps in addition to the complex random variable description provided above lies in taking

their time-variations into consideration. A common assumption on the random process that

drive the time-variations of the channel filter taps is its wide sense stationarity. In other

words, the mean and the auto-correlation functions of each filter tap are assumed to be

independent of time with latter being a function of the time-difference alone. Further, each

tap at a given time instant is assumed to be independent of every other tap at any time

instant. Together these two assumptions give rise the wide-sense stationary, uncorrelated

scattering (WSSUS) model.

Autoregressive Model : A widely applied approach to model time variations of a WSSUS
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channel is by a general P th order autoregressive (AR) random process. If we form a vector,

hm by the following stacking operation,

hm = [h[0;m] h[0; 1] ... h[L;m] ]T (2.23)

where L is the order of the discrete-time complex baseband wireless channel, the AR model

that helps us to specify the correlation between the current state of the system and the

past states of the system is as shon below:

hm =
P∑

p=1

Aphm−p +Bum (2.24)

In (2.24), each element in {Ap} is termed as an AR coefficient matrix or a state-transition

matrix and um as the excitation or driving noise vector. The eigen values of each element

in {Ap} are assumed to be less than 1 in magnitude and the driving noise are assumed

to be i.i.d and complex Gaussian distributed with zero mean. The AR model admits the

following Yule-Walker equations to describe the covariance function of the process [33].

Rh[m] =
P∑

p=1

ApRh[m− p] + σ2
uBBH (2.25)

Assuming that Rh[0] and {Ap} are known, we can apply the fact that Rh[m] = Rh[−m],

and recursively find {Rh[m]} for m = 1, 2, ..., P . We can also find a non-unique B by

computing the square-root of (2.25) for m = 0 [34, p. 358].

2.3 Channel Estimation for Cyclic-Prefixed Block Transmissions

The problem of channel estimation is one of fundamental importance for wireless com-

munication systems. Channel state information (CSI) at the receiver is critical for channel

equalization and coherent data detection. On the other hand, the availability of CSI at

the transmitter through a feedback channel helps in designing precoders and decoders that

meet various criteria [35]. Although, CSI at the transmitter can be leveraged to provide

fast data-rates, rapid variations in the wireless channel render the CSI that is fedback to

the transmitter outdated. As a result, a practical approach is to gather CSI at the receiver
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alone while the transmitter is designed to be independent of the channel characteristics.

In this section, we examine some of relevant work in the published literature for the latter

approach i.e., those dealing with channel independent transmitters and coherent receivers

that extract CSI using the transmitted signals.

One way of acquiring CSI is by employing blind techniques that are based solely on the

symbol properties of the original data such as finite alphabet, constant modulus etc. or

on the statistics of the received symbols [36]. These blind channel estimation techniques

which can be broadly categorized as statistical or deterministic methods depending on

whether the statistical knowledge about the source is exploited or not suffer from certain

inadequacies. While deterministic methods allow closed-form solutions, avoid local minima

and offer high speed of convergence, they also suffer from channel length indeterminancies

and require that the corresponding channel transfer function be irreducible [37, 38]. On

the other hand, statistical methods are robust to channel length overdeterminancies and

in the case of statistical maximum likelihood (ML)- based approaches, no assumption is

required on the knowledge of channel length. However, these techniques are optimal only

for large data sets and require proper initialization to avoid the possibility of attaining local

minima [36, 39].

Another approach for acquiring CSI which is more popular and adopted in all the

prevailing wireless communications standards is by transmitting pilot symbols that are

known a priori to the receiver. Although valuable system resources are sacrificed for

transmitting pilot symbols, investing a fraction of the total power and data-rate budget

for pilot symbols optimally makes the CSI acquisition problem solvable by well-known

estimation theoretic techniques [40].

2.4 Orthogonal Frequency Division Multiplexing

From (2.19a) and (2.19b), it is clear that due to the multipath fading channel acting

as an FIR filter, the transmitted symbol at a given time instant is corrupted by symbols

that were transmitted in the past. An optimal way of managing this ISI in sequential

communications is to employ a minimum mean square error (MMSE) equalizer, together

with the successive interference cancelation (SIC) technique. This MMSE equalizer de-

signed such that the SINR of the transmit symbol at the output of the filter is maximized

is a standard way of ameliorating the effects of ISI for time-invariant channels. On the
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other hand, Orthogonal Frequency Division Multiplexing (OFDM) has found widespread

usage for block communications due to an attractive feature that simplifies equalization.

In order to explore this idea further, we first write the IDFT-modulated informaton symbol

sequence followed by a matrix formulation of the convolution operation shown in (2.19b).

Assuming that each OFDM symbol block spans over P subcarriers, the complex-

baseband OFDM signal can be expressed as,

x[n] =
1√
P

P∑

p=0

x̃[p] exp

{
j2πnp

P

}
0 ≤ n ≤ P − 1 (2.26)

In the above equation, the information symbols, x̃[p] are drawn from a general M-PSK

or M-QAM constellation. Moreover, in order to facilitate block-wise processing of received

symbols a guard-interval is inserted by copying the last L inverse discrete Fourier transform

(IDFT) samples to the beginning of the OFDM block. That is, in order to generate one

OFDM transmit symbol vector, we form an information symbol vector consisting of P

symbols, x̃ , [x̃(0) . . . x̃(P − 1)]T and pre-multiply it with the IDFT matrix, WH, where

[W ]n,p = 1√
P

exp{− j2πnp/P} for 0 ≤ n ≤ P − 1 and 0 ≤ p ≤ P − 1. After adding

cyclic-prefix, the transmitted OFDM symbol block is given by the matrix product,

x = CT W
H x̃ (2.27)

where CT = [ [0L×(P−L) IL]
T IP ]T with P̄ = P + L. The received symbol vector is now,

y = HT x+HISI x(−1) + z (2.28)

where, HT is a column-wise Toeplitz matrix of dimensions, P̄ × P̄ whose first column is

[h[0] . . . h[L] 0 ]T. Moreover, in (2.28), the effect of the ISI from the previous symbol is

included by defining the row-wise Toeplitz matrix, HISI whose first row is [0h[L] . . . h[0] ].

After removing the cyclic prefix and performing the DFT operation, the received signal

that is unaffected by the ISI from the previous symbol is expressed by the matrix product,

ỹ = W CR HT CT W
H x̃+ v

= H̃ x̃+ v (2.29)
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where, CR = [0P×L IP ]T, H̃ , W HW
H and z̃ , W CR z. Furthermore, it is straight-

forward that H , CR HT CT is a circulant matrix whose first column is, [h[0] ... h[L] 0 ]T

and first row is, [h[0] 0 h[L] . . . h[1]].

We first denote the qth column of H as H(:,q) and qth row of W as W (q,:) to understand

the structure of H̃ as follows:

H̃[n, p] =
P−1∑

q=0

[
W H(:, q) W

∗
(q, :)

]
n,p

=
P−1∑

q=0

[[
W H(:, q)

]
(n,1)

W
∗
(q,p)

]
n,p

=
1

P

P−1∑

q=0

L∑

l=0

h[l] exp

{−j2πn(q + l)

P

}
exp

{
j2πqp

P

}

=
1

P

L∑

l=0

h[l] exp

{−j2πn l

P

} P−1∑

q=0

exp

{−j2πq(n− p)

P

}

=
L∑

l=0

h[l] exp

{−j2πn l

P

}
δ[n− p] (2.30)

where the final equality stems from the fact that the summation of rth roots of unity is

zero for r > 1. Due to (2.30), H̃ = diag [H̃[0, 0], . . . , H̃[P − 1, P − 1]]. That is, irrespective

of the channel filter coefficients, the IDFT and DFT operations at the transmitter and

the receiver respectively have transformed an ISI constrained channel (cf., (2.19b)) into a

collection of parallel flat-fading channels

ỹ[p] = H̃[p, p] x̃[p] + v[p] (2.31)

and a one-tap frequency-domain per-tone equalizer is sufficient to undo their effect resulting

in a collection of parallel AWGN channels.

2.5 Opportunistic Spectrum Access

Due to impact on commerce, and various organizations, governmental or private, spec-

trum regulation has historically been regarded as an area of policy that is more about

economics, politics, lobbying efforts and current perceived public opinion than it is about
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Fig. 2.2 An energy spectral density plot of TV Channels from 470 − 806
MHz observed on 06/12/2009 in West Stockbridge, MA (top) and in Newton,
MA (bottom)

the details of a specific promising new technology. As mentioned in the previous chapter,

due to the rapid pace of the development of the technologies involved in wireless com-

munications, a market-based approach was adopted by the FCC in the mid-1980s. The

four primary demands that dictate the regulation policies by the FCC are as follows [41]:

applications, coverage, duty cycle and performance.

Traditionally, regulatory authorities have followed a command-and-control policy for

spectrum allocation. However, several spectrum occupancy measurement studies show that

wireless spectrum is generally under-utilized in both the frequency and temporal domains.

Spectrum measurement campaigns have shown that such an allocation causes a waste of the

spectrum both in frequency and time. A brief survey of other related works in the published

literature is as follows. A comprehensive summary of spectrum occupancy for New York

City and several locations in the state of Virginia were reported in [27]. Reference [42]

presents similar results for locations in the state of Georgia. Spectrum occupancy variations

as a function of varying thresholds and across the different angles of arrival at the receiver

were presented. In [28], analytical and simulation based results are provided to support the

use of spectral signatures that help a cognitive radio in identifying the active transmitters

in a band of interest. More recently, closed-form probability distributions are presented

for several fixed bandwidth signalling channels, and for proportional bandwidths, such as

pre-selectors and low noise amplifiers [43] using the datasets presented in [44]. Spectrum
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Fig. 2.3 A schematic example of OFDM-based dynamic spectrum access
(DSA)

measurement-based studies similar to those described above have also been conducted

outside of the United States. In [45], spectrum occupancy for several bands in the frequency

range of 806 MHz to 2750 MHz in urban Auckland, New Zealand are provided. In [46],

four spectrum sensing methods have been proposed and their performance is compared for

UMTS uplink and GSM 1800 uplink bands. In [47], a methodology has been developed to

identify TVWS frequencies, using digital TV coverage maps in conjunction with a database

containing their locations.

As an example, Fig. 2.2 shows a measurement campaign conducted in Western MA

between West Becket and Lee on 06/27/2009. The spectral occupancy from 470−806 MHz

is shown. From this figure, it is observed that there are several spectral white spaces in

the licensed portions of the spectrum demonstrating that the allocated spectrum is under-

utilized. Thus, the result of this under-utilization caused by existing spectrum allocation

policies causes an apparent scarcity of spectrum [48]. Hence, there is a need for a novel

spectrum allocation policy.

2.5.1 The DSA Paradigm

The basic objective of the new spectrum allocation policy is the promotion of secondary

utilization of unused portions of the spectrum in the form of spectrum pooling, wherein,

unlicensed users rent licensed portions of the spectrum from a common pool of spectral
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resources from different owners [49]. An illustration of secondary utilization of wireless

spectrum in a spectrum pooling system is shown in Fig. 2.3. It should be remembered

that although, the utilization of the spectral resources potentially generates additional

revenue to the licensed users, the implementation of a spectrum pooling system raises

many technological, economic and political questions, that need to be answered for the

successful coexistence of the legacy1 and rental systems. Efficient pooling of the radio

spectrum is achieved by using a cognitive radio [50], which is a multi-band, spectrally agile

radio that employs flexible communication techniques and detects the presence of primary

user transmissions over different spectral ranges to avoid interference to the licensed users.

The concepts of spectrum pooling and cognitive radio were first introduced in [50].

This paper outlines the basic factors that need to be considered in determining the pooling

strategy and in designing the radio etiquette. Reference [51] provides an understanding and

mathematical analysis of the design principles behind the architecture of a software defined

radio. Other physical design issues such as the adaptive nature of the transmitter both

in selecting the frequency range over wideband frequencies, the different power levels, and

the signal processing involved at the receiver, which are important aspects in the design of

a cognitive radio, have been discussed at length in [52]. Further insight into the notion of

spectrum pooling is provided by [49]. Some of the issues pertaining to spectrum pooling

that are detailed in this paper include: detecting a spectrum, collecting and broadcasting

the spectrum access measurements, and mutual interference caused by a rental system to

a legacy system and vice-versa. Mutual interference in OFDM-based spectrum pooling

systems is discussed in greater detail in [53]. This paper also discusses simple techniques

to counter the effects of mutual interference caused by the sidelobes of an OFDM symbol

in a spectrum pooling scenario. Similar research efforts involving the many related areas

of cognitive radio such as efficient spectrum usage, supporting reliable communication and

standardization efforts to promote fair use of spectrum resources among cognitive radio

devices have been reported in [54] and [55] also.

1In this dissertation, the terms legacy systems and primary systems are used to refer to the licensed
owners of the RF spectrum whereas the terms rental systems and secondary systems are used to refer to
the users that utilize the idle licensed portions of the spectrum.
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Fig. 2.4 An illustration of VDSA on a major inter-state highway.

2.5.2 A Practical Application: Vehicular Dynamic Spectrum Access

Vehicular communication research is becoming a major research focus in wireless com-

munications research community to provide safety, comfort and information to the driver.

Significant activities like the United States Department of Transportation (DOT) Intel-

liDrive [56] program are underway to develop vehicular communication technologies. The

applications proposed by IntelliDrive aim to provide connectivity between vehicles, between

vehicles and roadway infrastructure and infrastructure/consumer devices inside vehicles.

Similarly, researchers have proposed methods like local peer group (LPG) [57] to organize

vehicles into manageable groups to efficiently share safety messages. Proliferation of ve-

hicular communication applications beyond safety in dense vehicular traffic environment

necessitates efficient usage of wireless channel and spectrum resources. Therefore, future

vehicular applications require dynamic spectrum access (DSA) methods to efficiently utilize

available spectrum while providing stringent QoS required by vehicular applications. We

envision that communication nodes enabled by cognitive radio capabilities like DSA will

support future vehicular communication needs in challenging environments.

Although the many related areas of cognitive radio have been studied for the past few

years, vehicular cognitive radio is a fairly recent research topic [58, 59] primarily focused on
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offering reliable communications for vehicles in challenging spectrum environments through

spectrum sensing, spectrum coordination and dynamic spectrum access. The application of

dynamic spectrum access (DSA) to vehicular communication networks enables secondary

utilization of licensed wireless channels for both vehicle-to-vehicle (V2V) and vehicle-to-

infrastructure (V2I) communications [60], which results in an increase of transmission ca-

pacity and efficient spectral utilization, while simultaneously guaranteeing the rights of

incumbent wireless transmissions. When applying the DSA concept to vehicular networks

in order to create a vehicular dynamic spectrum access (VDSA) framework, the slowly

time-varying spectral occupancy characteristics of TV spectrum is essential for realizing

unlicensed vehicular wireless communications within licensed frequency bands. This is due

to the high level of mobility of the wireless devices within a VDSA network, where the TV

spectral occupancy characteristics that once appeared to be static at a fixed geographical

location now appears to be changing based on the direction and speed of mobile wireless

device. As opposed to other frequency bands, where spectral occupancy changes may occur

relatively quickly over time and geography, TV spectrum possesses the advantage of having

relatively slow spectral occupancy variations over large distances and periods of time. An

illstration diagram depicting a vehicular DSA scenario is shown in Fig. 2.4.

2.6 Chapter Summary

This chapter has provided a brief overview of the discrete-time channel model followed

by a review of miscelleaneous topics related to OFDM signal transmission. Moreover,

the existing literature on spectrum measurement campaigns conducted in the U.S. and

elsewhere has been surveyed. While highlighting the contributions made by these studies in

showing that the spectrum utilization is low, we indicated the possible areas in which further

research can be conducted to better understand the characteristics in spectrum occupancy.

We then provided a description of the dynamic spectrum access and its emerging application

in vehicular environments. In the following chapters, this background material is referenced

without loss of continuity.
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Chapter 3

Characterization of Wireless

Spectrum in Urban Environments

3.1 Introduction

Although the modification of wireless spectrum regulations are based on the assumption

that the majority of wireless spectrum is extensively underutilized, which is based on

several independently conducted measurement campaigns, there still exists a need to obtain

a deeper understanding of this natural resource. By gaining this insight into wireless

spectrum, appropriate technical and legislative actions can be taken in order to support

continued growth in the wireless sector. In this chapter, we present statistical results

for wireless spectrum occupancy across the space, time and frequency dimensions using

measurements collected in four mid-size US cities, namely, Rochester (NY), Buffalo (NY),

Pittsburgh (PA) and Worcester (MA). Even though we have collected these measurements

across several bands, results pertaining to only a few bands are presented for the purpose

of brevity.
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3.2 Time, Frequency and Spatial Characterization of Urban

Environments1

The allocation of spectrum for a specific wireless application is uniform across the na-

tion. However, its usage varies from region to region causing the location and the size of

spectrum holes to vary randomly with respect to time and geography. The measurement

campaigns conducted so far have focused mostly on the worst cases in terms of spectrum

occupancy, such as very large cities and/or special events that result in increased commu-

nication traffic. Moreover, these measurement studies have mostly assessed the spectrum

occupancy across a small geographical region. As a result, we do not fully understand

the broader spectrum usage picture with respect to the temporal, spatial and band-wise

variations of a large geographical area. Therefore, we characterize the availability of prime

spectrum in mid-size American cities, i.e. the average case that most commonly occurs, for

secondary access via theoretical and experimental techniques. Using these measurements,

we will determine the long-term behavior and trends of spectrum occupancy and quanti-

tatively compute the rate at which spectrum scarcity is occurring. Finally, we assess the

temporal, spatial and band-wise characteristics over a large metropolitan area using the

spectrum measurements and develop a linear mixed-effects model, which will be validated

using these data points.

3.2.1 Measurement Campaign

In our measurement campaign, we used two antennas for scanning different frequency

ranges broadly classified to two groups, namely, low frequency and high frequency. For the

low frequency range i.e., from 88 MHz to 1240 MHz, we used a Diamond D-220 mini-discone

antenna with an operating frequency range of 100 − 1600 MHz. For the high frequency

range i.e., from 1850 MHz to 2686 MHz, we used an Advanced Technical Materials (ATM)

07-18-440-NF horn antenna with an operating frequency range of 0.7 − 18 GHz and an

aperture of 60o. This helped us in observing the variation in spectrum usage across differ-

ent angles of arrival. During our operation, one of these antennas is wired to an Agilent

CSA series N1996A spectrum analyzer with frequency range ranging from 100 kHz - 3

1The work included in this section has been funded by the National Science Foundation via grant CNS-
0754315 and published at the 4th International Conference on Cognitive Radio Oriented Wireless Networks

and Communications (CROWNCOM) 2009 [61]
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Table 3.1 List of locations where the measurements were taken.

City

Location ROCHESTER, NY BUFFALO, NY PITTSBURGH, PA WORCESTER, MA

19th & 20th June 2008 21st & 22nd June 2008 23rd & 24th June 2008 17th, 26th, & 27th July 2008

SITE 1 S. Plymouth & E. Huron St. & 16th St Bridge & SE of Boynton Hall

Exchange Blvd Washington St. N of 1711 Penn. Av. WPI

SITE 2 Jay St. & Swan St. & Sheraton St. & Vernon St. &

Verona St. E. Michigan Av. Fort Pitt Bridge Dorchester St.

SITE 3 Prince St. & Pearl St. & Riverfront Park next to Bell Hill Park

Univ. Av. Church St. Birmingham bridge (off Belmont St.)

SITE 4 Mortimer St. & W. Genesee St. & Craig St. & Major Taylor Blvd. &

N. Clinton St. Seventh St. N. 5th Av. Thomas St.

SITE 5 Pearl St. & Oak St. & Grandview St. & Gateway Park (Parking lot)

Averill Av. Clinton St. Ulysses St. WPI

GHz and consisting of a low noise amplifier (LNA). We use an in-house software tool called

SQUIRREL (Spectrum Query Utility Interface for Real-time Radio Electromagnetics) to

communicate remotely with the spectrum analyzer via commands issued through a simple

graphical user interface on a laptop. The GUI accepts details, such as the center frequency,

the span around the center frequency, and the resolution bandwidth. SQUIRREL commu-

nicates with the spectrum analyzer using TCL (Tool Command Language) over TCP/IP.

After the sweep action is performed by the spectrum analyzer, the data points are returned

to the GUI in a comma spaced value format. In its current format, the GUI and the server

are written in JAVA and can be deployed on a variety of operating systems and computers.

A photograph of the mobile wireless spectrum measurement testbed is shown in Fig. 3.1.

The details about the locations and the dates of our spectrum measurement campaign is

given in Table I.

Fig. 3.2 shows the trend in the occupancy irrespective of the cities, sites, time and

frequency. In the following subsections, we provide finer details of occupancy values by

grouping the collected data points appropriately. Moreover, in order to show a comparison

of spectrum usage as a function of the variables mentioned above, an optimum threshold

is computed using Otsu’s gray-level thresholding algorithm [62] for each of the datasets.
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Laptop with 

SQUIRREL

Agilent CSA N1996A 

Spectrum Analyzer

ATM 07-18-440-NF 

Ridged Horn Antenna

Fig. 3.1 A photograph of the mobile wireless spectrum measurement testbed
employed in this research. Components of the testbed include a mini-
discone/ridged-horn antenna, a spectrum analyzer and a laptop with SQUIR-
REL installed.

Otsu’s optimum threshold2 provides a maximum separation between the two classes of

data, namely the signal and the noise.

3.2.2 Spatial, Temporal and Band-wise Variations of Spectrum Usage

As mentioned earlier, we chose five locations which were at least a mile apart from each

other, so that we would be able to capture the spatial variation as we go higher in the

radio frequency (RF) spectrum. We measured usage activity across approximately 70% of

the wireless spectrum from 88 MHz to 2686 MHz. We omitted those bands in which the

average usage has been previously reported to be extremely low. Thus, we focused on the

remaining bands of interest. Also, in our measurement procedure, we sweep a particular

frequency band, for example, Personal Communications Service (PCS) from 1850 MHz to

1990 MHz, completely for a specific number of times and then proceed to the next band

instead of scanning a wide frequency range. By performing the sweeps in this manner, our

goal was to capture temporal variations over small periods of time. We chose a constant

resolution bandwidth of 20 kHz and the number of sweeps recorded per band per site is

2There are alternative approaches for computing the threshold, some of which are explained in [63, 64].
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Fig. 3.2 Cumulative distribution functions showing spectrum occupancy for
the four cities surveyed.

25. Fig. 3.2 provides a first step summary of all the data points collected across all the

frequencies in bins of 20 kHz. This plot which is a complementary cumulative distribution

function shows the spectrum occupancy in each of the four cities as a function of energy.

Our measured data is in fact samples of energy spectral density (ESD) across a band of

concentration and not time-samples. We cannot apply traditional signal-detection based

techniques due to total absence of phase information. Therefore, we detect the presence

of the signal in the data purely from the point of view of separating data into two distinct

distributions. The optimal threshold calculated using Otsu’s algorithm is known to maxi-

mize the variance between the two classes of data, namely the signal and the noise classes.

Therefore, we employ this algorithm in our analysis.

To apply Otsu’s algorithm, a matrix, M (tj,fi) is formed from the collected data points

where the row, tj contains data points over all the frequency locations in the band of

interest during one particular time instant and the column, fi represents the data points
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observed in that frequency bin over all time sweeps during the measurement process. The

next step is to transform the contents of this matrix into gray scale values by applying the

procedure given by:

I (tj, fi) =
1.0− 0.0

max{M} −min{M} × (M(tj, fi)−min{M}) (3.1)

Applying Otsu’s algorithm to the matrix, I (tj,fi) gives the required optimum threshold

using which, all the values that are below are classified as noise and the rest as signal.

Since the number spectrum licenses issued in a geographical area, say a city, are de-

pendent on several factors like the population density, it is obvious that, the usage varies

significantly among different cities. Moreover, the channels that are allocated to a partic-

ular wireless service differ greatly between cities and therefore the usage pattern over any

specific frequency is not expected to be similar. In contrast, in a mid-size city, the wireless

channels that are allocated are more-or-less similar within a certain area and hence the

same specific channels are expected to be used across different sites.

However, due to the random nature of the wireless channel, as well as the reduced

received power due to the distance from the transmitter, the actual usage would differ

widely across different locations within the same city. Furthermore, in the case of a band

where the licensed user signals appear on a bursty basis, several allocated bands would

only be used intermittently. This is illustrated in Fig. 3.3(a) which shows the percentage

occupancy for the city of Rochester in the PCS band. From the figure, it is clear that at

Site 4, the occupancy is considerably higher compared to the other sites in the frequency

ranging from approximately 1940 MHz to 1990 MHz. Other sites also show a variation in

the percentage occupancy.

Another form of spatial variation that depends on the direction in which the receiver

antenna is “listening” is shown in Fig. 3.3(b) across the Wireless Communications Ser-

vice/Digital Audio Radio Satellite Service (WCS/DARS) ranging from 2300 MHz to 2360 MHz.

As shown in this figure, there is a considerable amount of variation in the percentage usage

across different sectors of our horn antenna. The difference in the usage is as high as 40%

between Sector 2 and Sector 4 in a frequency bin near 2340 MHz. Fig. 3.3 has been gen-

erated using frequency bins of 40 kHz. Note that in generating this plot, we simply count

the number of time sweeps when the signal is observed at a particular channel and divide

it with the total number of time sweeps.
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(a) Percentage usage of 40 kHz channels across five different locations in the
PCS band (1850 MHz to 1990 MHz) in Rochester, NY on 06/19/2008 [61].
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(b) Percentage usage of 40 kHz channels across six different sectors in the
WCS band (2300 MHz to 2360 MHz) in Rochester, NY on 06/19/2008 [61].

Fig. 3.3 An example showing the spatial variation of spectrum usage.

3.3 Spectrum Measurement Model Employing Linear Mixed

Effects3

Although Figs. 3.2, 3.3(a) and 3.3(b) serve the purpose of summarizing the measured

results, a great deal of detail remains hidden in the data both with respect to the occu-

pancy characteristics over time, frequency and space as well as their dependance on other

influencing factors. One way of analyzing the occupancy results is presented in [61] where,

we have provided occupancy values in percentages across different channels, along different

angles of arrival and over several time sweeps as observed during the measurement dura-

tion. Another way of performing the analysis is from the point of associating the measured

data with certain predictor variables in a linear mixed effects model as we explain below.

3The work included in this section has been funded by the National Science Foundation via grant
CNS-0754315 and published in the EURASIP Journal on Wireless Communications and Networking [2]
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3.3.1 Mathematical Formulation

Due to the differences in the signal modulation involved as well as the differences in

the bandwidths utilized by each channel, energy spectral densities corresponding to signals

transmitted for different wireless services can be expected to be different. Thus, the four

different wireless services analyzed namely paging, TV, WCS and PCS correspond to four

different predictor variables. Similarly, the four US cities are also predictor variables.

Assuming that the spectrum usage is dependant on two other factors namely, the time

of the day and day of the week, those are incorporated as well. Due to the fact that

our data corresponds to only four mid-size US cities, we do not claim that our model is a

representative of all the mid-size US cities. This is the reason why although our model is not

as general as we would like it to be, due to practical constraints involved, we nevertheless

believe that it is indicative of the general trends in spectrum occupancy characteristics that

can be expected in any typical US city. Moreover, we considered the population densities

associated with the measurement sites as our random effects term to reflect this fact. In

the following sections, we provide more details regarding the occupancy values by grouping

the appropriate collected data points as functions of several predictor variables.

3.3.2 Regression Fit for Percentage Spectrum Occupancy

The model for the performed analysis on the spectrum occupancy percentage using a

linear mixed model is as follows:

Occ.Percij =β0 + β1TVij + β2PCSij + β3WCSij

+β4rochij + β5buffij + β6pittij + β7ANij

+β8weekendij + bi0 + bi1PDij + εij.

(3.2)

As seen from the above model, we have selected three indicator variables (i.e., either 1 or

0) for the types of the wireless service (TV, PCS, WCS), three indicator variables for the

cities (Rochester, Buffalo, Pittsburgh), one indicator variable for afternoon/before noon,

and one indicator variable for weekend/weekday. The intercept represents the spectrum

occupancy in the paging band for Worcester, Massachusetts. As mentioned previously, the

response variable in the regression analysis that we considered is the percentage spectrum

occupancy which is calculated after applying Otsu’s thresholding algorithm. Also, notice
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that the population density of the sites is chosen as the random effects term which is specific

to each one out of 20 groups (4 cities × 5 sites). Since, we collected 25 wireless spectrum

sweeps in each of the 5 sites from each city, the population density is chosen as the random

effect that is different among the sites. Moreover, the population density is rounded off to

the next highest multiple of 100. Thus, discrete values are considered which helps in the

interpretation of the obtained results. Fitting the linear mixed model gives the following

results in Table 3.2. The parameters associated with the random effects are as follows:

standard deviation of the intercept = 2.14, standard deviation of the population density =

0.12 and the correlation coefficient of the population density = 0.007.

From the above random effects, the covariance matrix of the random effects [65] can be

calculated as follows:

σ2D =

[
2.142 2.14× 0.12× 0.007

2.14× 0.12× 0.007 0.122

]

=

[
4.58 1.8e− 3

1.8e− 3 0.0144

]
.

(3.3)

Interpretation of the Obtained Regression Fit From Table 3.2 4, we see that the

percentage spectrum occupancy for Worcester in the paging band is 13.28% with a p-

value of < 0.0001. With all other regressors remaining constant, the percentage spectrum

occupancy for the city of Rochester in the paging band increases to 14.65% i.e., it is

1.37% higher than that of the city of Worcester with the associated p-value being 7× 10−4.

Similarly, with the city under consideration, the type of the wireless service and the time of

the day remaining constant, the spectrum occupancy decreases by 1.12% on the weekends

for a p-value of < 0.0001. Notice that, we have obtained all of the above coefficients at

very low p-values indicating the statistical significance of each of the regressors. Also, the

structure of the D matrix which is almost diagonal suggests that the assumed normality

assumption on the random-effects is valid. The plot of the standardized residuals shown in

Fig. 3.4(a) also supports this assumption on the residuals since approximately 95% of the

residuals lie in the range [-1.96 1.96], i.e., they follow a standard normal distribution very

closely.

4In Tables 3.2 and 3.3, DF is short for degrees of freedom
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Table 3.2 Fixed Effects for eq. (3.2) [2].

Coefficient Std. Error DF t-value p-value

(Intercept) 13.28 0.244 473 54.354 < 0.0001
TV 5.82 0.317 473 18.36 < 0.0001
PCS 4.33 0.225 473 19.23 < 0.0001
WCS 4.08 0.202 473 20.11 < 0.0001
Roch 1.37 0.423 473 3.23 7e-4
Buff 4.98 0.273 473 18.21 < 0.0001
Pitt 3.67 0.356 473 10.29 < 0.0001
AN 0.5 0.159 473 3.15 9e-4

weekend -1.12 0.116 473 -9.68 < 0.0001

3.3.3 Regression Fit for Activity Period

The model for the performed analysis on the ON time duration of the licensed signal

transmissions in the four bands considered is similar to that of the spectrum occupancy

percentage. Thus, it follows that:

ON.timeij =β0 + β1TVij + β2PCSij + β3WCSij

+β4rochij + β5buffij + β6pittij + β7ANij

+β8weekendij + bi0 + bi1PDij + εij.

(3.4)

In this case, the response variable in the regression analysis performed is the ON time

duration which is calculated after applying Otsu’s thresholding algorithm. We calculated

the amount of time during which the licensed signal transmission was consistently above

the calculated threshold. The regressor variables are the same. Fitting the linear mixed

model gives the following results presented in Table 3.3. The parameters associated with

the random effects are as follows: standard deviation of the intercept = 1.58, standard

deviation of the population density = 0.34 and the correlation coefficient of the population

density = 0.005.

From the above random effects, the covariance matrix of the random effects can be
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Table 3.3 Fixed Effects for eq. (3.4) [2].

Coefficient Std. Error DF t-value p-value

(Intercept) 2.33 0.12 473 19.44 < 0.0001
TV 2.21 0.132 473 16.73 < 0.0001
PCS 1.02 0.056 473 18.23 < 0.0001
WCS 1.24 0.24 473 5.16 < 0.0001
Roch 2.12 0.474 473 4.47 < 0.0001
Buff 3.26 0.778 473 4.19 < 0.0001
Pitt 2.74 0.769 473 3.56 2e-4
AN 2.03 0.76 473 2.67 < 0.0001

weekend -1.87 0.227 473 -8.23 < 0.0001

calculated as follows:

σ2D =

[
1.582 1.58× 0.34× 0.005

1.58× 0.34× 0.005 0.342

]

=

[
2.49 2.7e− 3

2.7e− 3 0.1156

]
.

(3.5)

Interpretation of the Obtained Regression Fit From Table 3.3, we see that the ON

time duration for the city of Worcester in the PCS band is 3.35s with a p-value of < 0.0001.

It is 1.02 higher than that of the paging band. With all other regressors remaining constant,

the ON time duration of the licensed signal transmissions for the city of Pittsburgh in the

PCS band increases to 6.09s i.e., it is 3.76s higher than that of the city of Worcester with

the associated p-value being 2×10−4. Similarly, with the city under consideration, the type

of the wireless service and the time of the day remaining constant, the ON time duration

decreases by 1.87s on the weekends for a p-value of < 0.0001. Again, we have obtained all

of the above coefficients at very low p-values indicating the statistical significance of each

of the regressors. Again, the normality assumption on the random-effects is validated by

the structure of the D matrix which is almost diagonal. We also show the quantile-quantile

plot of the standardized residuals in Fig. 3.4(b). Even though, towards the lower tail of

the distribution, there is a slight deviation from the normal scores, we believe that it is not

significant enough to seriously violate the normal distribution assumption.
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3.4 Chapter Summary

In this chapter, we utilized the spectrum measurement samples collected in several

mid-size U.S. cities and obtained a regression fit for the percentage occupancy and the

activity period response variables. Even though practical constraints forced us to describe

the collected data samples in a model that is only indicative of the cities that we studied,

general observations can be made regarding the spectrum occupancy trends in cities with

similar characteristics. The results that we obtained indeed confirm our original hypothesis

that considerable spatial, temporal and frequency-wide variations exist in the occupancy

characteristics.
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(a) Quantile-quantile plot for the fit shown in Eq. (3.2)
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(b) Quantile-quantile plot for the fit shown in Eq. (3.4)

Fig. 3.4 Quantile-quantile plots for the proposed linear mixed-effects mod-
els [2].
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Chapter 4

Characterization of Wireless

Spectrum in Vehicular Environments

4.1 Introduction1

Although opening up of the TV spectrum for secondary access presents an exciting

opportunity for efficiently utilizing a valuable national resource, several key technological

and legislative considerations need to be addressed to make DSA a success. The most

critical of these is the potential interference analysis as experienced by the primary license

holders i.e., broadcast television viewers from unlicensed users. A straight-forward strategy

for the white space devices (WSDs) is to employ a “listen before talk” approach wherein

each secondary device would utilize spectrum sensing techniques [60, 66] for detection of

signals from the nearby TV stations, or auxiliary broadcasting services such as wireless

microphones and other authorized transmitters followed by a detection methodology to

determine which TV channels are occupied and which are vacant. Then, via a combination

of distributed coordination [58], and transmission channel selection [59], certain channels

are deemed to be vacant and are utilized by the WSD in compliance with the regulatory

requirements on transmissions in those channels.

The sensing-only techniques available in the existing literature can be classified into

four categories namely, energy detection, matched filtering, cyclostationary detection and

wavelet detection [67]. By applying these techniques, the WSDs must determine if a licensed

1The work included in this chapter has been funded by the Toyota InfoTechnology Center, USA and
published at the IEEE Vehicular Networking Conference [3]
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user’s signal is over a certain threshold, for example, −116 dBm for DTV signal detection

as proposed by IEEE 802.22 [68]. However, there are certain advantages of using geo-

location based techniques over sensing-only approaches which are listed in the following

paragraphs. Reference [69] provides additional details on the implementation of spectrum-

sensing techniques based on utilizing the geo-location databases. Specifically, considerations

about geo-location database resolution, implementation costs involved in building geo-

location databases, location uncertainty issues for highly mobile WSDs (which is critical for

vehicular DSA), periodical updates of the database after the secondary device is deployed

etc. Reference [70] provides an overview of the spectrum sensing techniques at MAC

and PHY layers that are part of the IEEE 802.22 draft standard as of Aug. 2007. Of

particular relevance to our study are the standard PHY layer sensing techniques such as

the comparison of the measured squared FFT values with a threshold for pilot-energy

sensing and the comparison of the number of times a particular location is chosen as the

maximum against a threshold for the pilot-location sensing. For instance, in order to

determine the presence of the licensed user, either the number of times during which the

squared FFT value goes above threshold is counted and compared with a certain number

or the average of all the sensing windows is compared against a threshold. Reference [71]

provides information on the deployment of fixed solutions for rural broadband connectivity

in the United States. The approach proposed is the now standard combination of geo-

location information pertaining to the location of TV stations and spectrum sensing of the

environment to identify white spaces combined with Motorola’s Adaptive Radio Technology.

In this chapter, we apply the constraints imposed by the FCC on the protection of TV

broadcast services from secondary transmissions and present the obtained allowed transmit

power values on the secondary devices operating along several locations on 1-90 in the

state of Massachusetts. Specifically, we apply a geo-Iocation database approach to show

the variations as a vehicle moves along 1-90 and provide a discussion from the point of view

of the total number of channels available , the number of non-contiguous blocks and the

implications on the design of the transceiver that utilizes channels in such a non-contiguous

scenario.
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Fig. 4.1 A map of the forty eight locations close to I-90 between Boston, MA
and West Stockbridge, MA over which spectrum measurements were collected
on 06/07/2009, 06/11/2009 and 06/12/2009.

4.2 Measurement Campaign

We conducted the first phase of the spectrum measurement campaign on 06/07/2009

and 06/11/2009 across 48 locations between Boston, MA and West Stockbridge, MA. The

second phase which consisted of collecting spectrum measurements in a vehicle traveling

at approximately 60 miles/hr. between the same locations was done on 06/30/2009. We

selected a frequency resolution of 20 kHz and collected 10 sweeps per site. Since the goal of

the project is to characterize DTV spectrum over several locations on I-90 in the state of

Massachusetts, most sites were chosen to be within half mile from I-90 for the purpose of

avoiding interference to the ongoing traffic. The locations were also selected such that they

were spaced approximately 2 miles apart. The map of the measurement sites is shown in

Fig. 4.1. The measurement setup used to collect spectrum measurements in the TV band

is shown in Fig. 4.2. The mini-discone antenna is fixed to a bike-rack mounted on the trunk

of a car in order to make the entire setup portable.

In Fig. 4.3, we show the data points collected on 07/30/2009 where the measurement

setup was mounted on a moving vehicle travelling on I-90 at an average velocity of 60

miles/ hr. Essentially, Fig. 4.3 shows the energy spectral density plot for the TV bands

in the higher frequency range which is the region primarily identified as the suitable for

dynamic spectrum access. In this figure the x-axis represents the frequencies swept during

our study and the y-axis represents the sweep index. We reduced the frequency range swept

in order to obtain finer time resolution. That is instead of the entire UHF TV range, we
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Fig. 4.2 A photograph of the mobile wireless spectrum measurement testbed
employed in this research. Components of the testbed include a mini-
discone/ridged-horn antenna, a spectrum analyzer and a laptop with SQUIR-
REL installed.

selected 600 - 750 MHz and captured 4 sweeps per minute on average along the length of

I-90. The sweep index increases from 1 on the top left corner of each figure and indicates

our drive as we travel along I-90 in the state of MA from west to east. The western most

point in our study was West Stockbridge, MA and the eastern most point was Boston,

MA. The intensity of each pixel indicates the energy level observed during the study. From

this figure, a clear indication of the variation in the energy levels across any particular

channel is evident. The total absence of any signal towards the end of our drive (around

sweep index 520-530) was during the time when moving vehicle was in the Big Dig of

Boston metropolitan area. An interesting thing to note is that, as we go farther away from

Boston towards Palmer (which corresponds to a sweep index of around 220), the energy

values decrease in general. However, going from Palmer towards West Stockbridge (which

corresponds to a sweep index of around 120), the energy values show an increasing trend

indicating that we were approaching a nearby TV transmitter. Another observation from

this figure is that there are several locations close to Boston, MA where we observed strong

signals of the order of -60 dBm indicating that our measurement sites were close to TV
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Fig. 4.3 Spectrogram plot for the TV frequencies in the frequency range,
600 - 750 MHz over 550 time sweeps on I-90 between Boston, MA and West
Stockbridge, MA. The measurement setup was located in a vehicle moving at
an average velocity of 60 miles/hr.

transmitters.

As an illustration of the wireless spectrum environment encountered by a WSD in

motion, consider Fig. 4.4. Referring to this figure, we observe that at various locations

along a highway the spectral occupancy behavior changes. Nevertheless, this change in

spectral occupancy is gradual enough to allow for the vehicular wireless devices to spectrally

sense the frequency locations of the TV broadcasts and take the appropriate actions, such

as dynamically change the transmission band in order to avoid interference with the TV

signals. Furthermore, given the predictable, well-defined transmission characteristics of

TV broadcasts, by studying TV spectral occupancy measurements across several locations

along a transportation route, it is possible characterize the behavior of this frequency band,
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Fig. 4.4 A map of the forty eight locations close to I-90 between Boston, MA
and West Stockbridge, MA over which spectrum measurements were collected
on 06/07/2009, 06/11/2009 and 06/12/2009.

thus allowing for VDSA communications that do not interfere with the incumbent TV

broadcasts. An important point to note here is that the availability of vacant channels will

most likely be non-contiguous with widely differing allowed transmit power constraints on

the WSD across different channels. The implications of this observation will be highlighted

in the following section.

4.3 Geo-Location Database Approach for Determining Vacant

Channels

In a “Notice of Proposed Rule Making” [72], the FCC has also suggested that the

WSD’s sensing approach could potentially be improved with geo-location information of

the incumbents in addition to their own, which is determined by a variety of means such

as GPS, distributed sensing and/or beacon identification techniques. Several factors have

been identified in [72] that must be taken into consideration in establishing an optimum

detection threshold. The considerations are as follows:

1. protecting the rights of the TV receiver which is attempting to receive a weak signal in

the presence of a strong signal from a WSD, both of which are geographically close but

relatively far from the TV transmitter is addressed through the first consideration.

2. the appropriate spectrum utilization in the spatial dimension, in the presence of false-

positives and false-negatives.
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Table 4.1 Protected Service Contour Levels for TV Channels

Type of Protected
Station Contour

Channel Contour (dBu) Propagation
Curve

Analog TV Low VHF (2-6) 47 F(50,50)
High VHF (7-13) 56 F(50,50)
UHF (14-69) 64 F(50,50)

Analog Class A, Low VHF (2-6) 62 F(50,50)
LPTV, translator High VHF (7-13) 68 F(50,50)

and booster UHF (14-69) 74 F(50,50)
Digital TV Low VHF (2-6) 28 F(50,90)

High VHF (7-13) 36 F(50,90)
UHF (14-51) 41 F(50,90)

Digital Class A Low VHF (2-6) 43 F(50,90)
High VHF (7-13) 48 F(50,90)
UHF (14-51) 51 F(50,90)

3. the question of failure to detect an occupied channel due to the presence of an ob-

struction between the WSD and the incumbent receiver. Most importantly, the impact

of collaborative spectrum sensing in preventing false-negatives, thereby protecting the

rights of the incumbent user.

There are primarily, four types of licensed incumbents present in the TV bands in the

U.S. today. Currently, both full power analog and digital stations, as well as low power

analog and digital stations operate in the TV bands. The full power analog broadcast

stations are off the air since the total digital switchover that was performed on June 12,

2009 by FCC order, though numerous low power analog TV (LPTV) stations are expected

to remain in service after that date, and will be entitled to protection. Detailed information

about U.S. TV band allocations can be found in the FCC’s Consolidated DataBase System

(CDBS), which can be accessed via the FCC TV Query website [73]. Each type of licensed

incumbent system listed above has a service contour determined by the electric-field levels

summarized in Table I. Reference [72] also describes common interference protection ratios

that are typically specified in terms of desired-to-undesired (D/U) signal levels. These



Chapter 4 45

Table 4.2 Required Interference Protection Ratios for TV Channels

Type of Protected
Station Contour

Channel D/U ratio Propagation
Separation (dB) Curve

Analog TV, Class A, Co-channel 34 F(50,10)
LPTV, translator Upper adjacent -17 F(50,50)

and booster Lower adjacent -14 F(50,50)
Digital TV and Co-channel 23 F(50,10)

class A Upper adjacent -26 F(50,50)
Lower adjacent -28 F(50,50)

ratios take into account the effects of full power TV transmitter splatter (or Out of Band

Emissions, OOBE). Table II summarizes these specifications.

Utilizing geo-location based information i.e., the directives issued by the FCC as sum-

marized above and combining it with spectrum measurement data in order to sense the

presence of incumbents has several advantages over a sensing-only approach. Some of them

are as follows:

• In a sensing-only approach, since no information is made available about the pro-

tected service contours of the nearby TV transmitters, WSDs must sense incumbent

signals down to very low levels (e.g., −116 dBm for DTV signal detection as proposed

by IEEE 802.22 [68]) in order to combat hidden-node effects and other localized sens-

ing phenomena. Due to such a low threshold which is uniformly applied across all

geographic locations irrespective of the protected service contour considerations, large

areas are potentially unused leading to inefficient spectrum utilization.

• Moreover, even though certain types of TV transmissions employ the same modu-

lation, the constraints based on which the protected contours are determined differ

greatly. In such a a scenario, sensing-only WSDs cannot differentiate between low-

power DTV signals and full-power DTV signals, as they both employ ATSC modula-

tion. Therefore, a WSD will be forced to protect low-power DTV stations assuming

the same constraints as that of its full-power variant.
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In the following paragraphs, the algorithm for calculating the transmit power constraints

on a WSD based on the keep-out region around a DTV transmitter for a given effective

radiated power (ERP) and a fixed height above average terrain (HAAT) is explained. Each

TV transmitter has a protected contour region around it over which the FCC stipulates that

the required performance criteria on the signal strength are met. For instance, the FCC

specifies the use of F(50,90) curves in order to identify the protected contour region where

F(50,90) indicates that the field strength will exceed the value specified by the curves at 50%

of the locations for 90% of the time. The desired field strength on the edge of the protected

contour for different transmitter types is given in Table I. Similarly, the keep-out region

is the area around the protected contour wherein the presence of a secondary transmitter

with a given ERP would interfere with the DTV receivers on the edge of the protected

contour. That is, a secondary transmitter with a given ERP has to be located outside of

the keep-out region. With this knowledge combined with the desired-to-undesired signal

levels given in Table II, the steps involved in calculating the transmit power constraints on

a WSD based on the keep-out region around a TV transmitter are as follows:

Step 1 Create a look-up table of the TV transmitters in the area of interest and identify the

protected contours based on [74]. Notice that the the minimum required parameters

are the ERP of the TV transmitter, its HAAT, its location in GPS coordinates

and the type of transmission i.e., analog/digital and full-power/low-power. In our

analysis, we created a look-up table consisting of 47 TV transmitters in the state of

Massachusetts (MA) plus 5 from the state of Connecticut (CT), 2 from the state of

New York (NY), and 1 from the state of Rhode Island (RI) which were considered

to have a significant impact on the coverage of I-90 in the state of MA2.

Step 2 For i = 1 through Number of Transmitters, repeat steps 3 to 6.

Step 3 For j = 1 through Number of Measurement Sites, repeat steps 4 and 6.

Step 4 Geo-locate the desired point of interest and calculate its distance from the TV

transmitter under study. This can be done by using the polar-coordinate flat-earth

formula

D(i, j) = R
√
θ2i + θ2j − 2θ1θ2 cos(∆λ) (4.1)

2Due to space constraints, the list consisting of these 55 TV transmitters has not been included in this
dissertation.
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where, D(i, j) is the distance between ith TV transmitter and jth measurement site,

R, Radius of the earth = 6371 km, θi =
π
180

(90− latitudei),θj =
π
180

(90− latitudej)

and ∆λ = π
180

(longitudei − longitudej).

Step 5 If D(i, j) is less than Protected Contour of Transmitter, i, then the channel number

corresponding to Transmitter, i is unavailable at Measurement Site. j and the al-

lowed WSD transmit power corresponding to Measurement Site, j and Transmitter,

i is zero.

Step 6 Else, the channel number corresponding to Transmitter, i is available at Measure-

ment Site. j. That is, if the distance is lesser than the protected contour radius,

the channel is unavailable at this geographical location, so, continue to the next

transmitter geo-location. If the above check succeeds, the channel over which the

TV transmitter under study operates is available in that particular location and

proceed further. Fig. 4.5 shows the results at the end of this step for all of our

measurement sites. However, this result does not yet provide any information on

the power constraints imposed on a WSD when using a particular channel

Step 7 For j = 1 through Number of Measurement Sites, repeat steps 8 and 11.

Step 8 Delete duplicate entries of available channel information for each of the TV trans-

mitters which use the same channel (but, are geographically separated by sufficient

distance). Make sure that the transmitter which is closest (and hence requires

smaller ERP values in order to conform to the FCC guidelines) is noted and create

a reduced set of available channels.

Step 9 For k = 1 through the Number of Available Channels from the reduced set at Mea-

surement Site, j, repeat steps 10 and 11.

Step 10 If the current channel is a co-channel to the nearest incumbent transmitter, calculate

the allowed WSD transmit power corresponding to Measurement Site, j and Trans-

mitter, k from [74]. That is, for a fixed value of HAAT, use F(50,10) curves [74] to

identify the ERP on the secondary transmitter that interferes with the incumbent

receivers on the edge of the protected contour at 50% of the locations for 10% of the

time. This value is the allowed ERP on a secondary transmitter without violating

the FCC’s directives on using DTV spectrum on a secondary basis. Notice that,
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Fig. 4.5 TV Channel availability at different locations along I-90 in the state
of Massachusetts, USA [3].

the D(k, j), i.e., the distance between kth TV transmitter and jth measurement site

is used in doing this calculation.

Step 11 If the current channel is an adjacent channel to the nearest incumbent transmitter,

calculate the allowed WSD transmit power corresponding to Measurement Site, j

and Transmitter, k from [74] using the above procedure but use the DU ratios from

Table II.

The above algorithm has been implemented for all the locations at which we visited near

I-90 in the state of MA. A snapshot of the available channels across all the measurement

locations is shown in Fig. 4.53 as previously mentioned. The white spaces in this figure

indicates the vacant portions of the TV spectrum. As evident from this figure and as

3In fig.s 4.5 and 4.6, the abbreviations on the y-axis are as follows: WStoc. - West Stockbridge, Lee -
Lee, WBec. - West Becket, Blan. - Blandford, Chic. - Chicopee, Pal. - Palmer, Stur. - Sturbridge, Aub. -
Auburn, WBoro. - Westborough, Fram. - Framingham, New. - Newton, Bos. - Boston.
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Fig. 4.6 WSD power constraints on the available TV channels at different
locations along I-90 in the state of Massachusetts, USA [3].

previously noted from Fig. 4.3, the number of vacant channels in the western part of MA

are more in number compared to the eastern part. Fig. 4.6 shows a map of the allowed power

levels on the WSD transmitter for the state of MA. As seen from this figure, the channels

that are vacant as shown in Fig. 4.5 are assigned power values based on the proximity to

the neighboring licensed TV channels. The maximum allowed power of 4 W [68] is assigned

only when there are a sufficiently wide range of vacant channels. For example, around the

cities of West Stockbridge, MA to Chicopee, MA, the frequency range of (720-770) MHz is

completely free of licensed user transmissions and hence the WSDs are allowed to use the

maximum allowed transmit power. Fig.s 4.7 and 4.8 which are derived from Fig. 4.5 further

highlight the non-contiguous nature of the channel avilability in the UHF TV band. For

example, in Framingham, MA, even though the total bandwidth available for secondary

usage is around 100 MHz, there are 11 non-contiguous blocks of vacant spectrum of which

a maximum of 24 MHz is available as one contiguous block.
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Fig. 4.7 The total available bandwidth for secondary usage at different lo-
cations along I-90 in the state of Massachusetts, USA [3].

4.4 Implications for Transceiver Design

Based on the results obtained from Fig.s 4.5, 4.6 4.7 and 4.8, we see that, as a WSD

moves along I-90 in MA, non-contiguous channel bonding needs to be performed by the

cognitive transceivers. This necessitates several important design requirements on the WSD

to efficiently utilize the available vacant wireless spectrum. Some of them are as follows.

• An important requirement on theWSD transmitter, particularly for the non-contiguous

case, is the means of communicating the channels used for data transmission. Since,

potentially several non-contiguous channels could be used, the WSD-based MAC has

to be tailored to accommodate the varying number and location of available TV

channels.

• With this knowledge assumed to be available, the next challenge is for the WSD

receiver to tune into these channels and perform frequency/timing synchronization.

Hardware reconfigurability is crucial to enable this feature.
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Fig. 4.8 Maximum contiguous bandwidth and the number of non-contiguous
channel blocks at different locations along I-90 in the state of Massachusetts,
USA [3].

• Also note that the number of FFT operations in case of an OFDM-based transceiver

is a varying quantity with several frequencies pruned in order to meet the interference-

avoidance criteria set to protect the incumbent transmissions.

• Another important constraint imposed due to the varying nature of allowed power

levels in different bands is the need to identify which channels meet the QoS re-

quirements. This requires elaborate channel sensing across several non-contiguous

channels.

4.5 Chapter Summary

In this chapter, we studied an alternative approach to spectrum characterization which

is based on the examination of the coverage areas around a DTV transmitter that affect

a particular geographic region. This approach directly follows the directives of the FCC
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that a sensing-only approach may not benefit from known information on the presence of

licensed transmitters. As a result of the geo-location database approach, we have seen that

as a function of distance on I-90, the available bandwidth for secondary usage increases as

a mobile unit travels from Eastern MA to Western MA.
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Chapter 5

Non-contiguous Multicarrier

Communications in DSA Systems

5.1 Introduction1

Dynamic spectrum access (DSA) is a wireless access approach designed to enhance

spectrum utilization efficiency, where unlicensed (i.e., secondary) wireless users are permit-

ted to temporarily “borrow” unoccupied spectral bandwidth from licensed (i.e., primary)

frequency bands [72]. At the same time, the secondary wireless users must ensure that

the rights of the incumbent primary wireless transmissions are respected, especially with

respect to mitigating any potential interference effects towards the primary users [75]. As

a result, there has been extensive research into devising communication systems and net-

works that can facilitate this form of wireless access, especially with respect to the concept

of cognitive radio [76].

Although the process of accessing unoccupied frequency spectrum by secondary wire-

less devices is a viable concept, one of the primary challenges with this wireless access

approach is finding a contiguous unoccupied frequency band that is capable of accommo-

dating a secondary wireless transmission. Despite the fact that the aggregate bandwidth

of the unoccupied spectrum might be sufficient for accommodating many of the secondary

wireless transmissions, it is possible that this unoccupied spectrum can be fragmented, with

1The work included in this chapter has been funded by the National Science Foundation via grant CNS-
0754315 and published in the IET Radar, Sonar and Navigation Journal [5] and the IEEE Communications
Magazine [4]
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the individual frequency bands not being large enough to support most of the secondary

users. Consequently, it is necessary for secondary wireless transceivers to require a degree

of spectral agility in order to operate in the presence of primary signals, especially across

several unoccupied but fragmented frequency bands whose aggregate bandwidth satisfies

the secondary transmission requirements. Moreover, the characteristics of the energy spec-

tral densities (ESD) corresponding to signals transmitted over different licensed frequency

bands are different, which in turn are dependent on the particular signal processing oper-

ations performed before transmitting the signal. As a result, different licensed frequency

bands have different requirements related to secondary signal transmissions such as the

allowed spectral masks, the stipulated receiver operating characteristics (ROC) of the sec-

ondary user, the required time duration ( and hence the number of samples that need to

be processed ) before making a decision on the availability of a specific channel etc. In this

paper, we focus only on a subset of channels that correspond to the paging band in the

United States.

Several researchers have proposed a spectrally agile data transmission technique based

on multicarrier modulation capable of deactivating subcarriers located within the frequency

vicinity of primary wireless transmissions [66, 77]. This technique, referred to as non-

contiguous multicarrier modulation, possesses the ability to efficiently use fragmented spec-

trum opportunities in conjunction with spectrum shaping in order to suppress interference

that may affect nearby primary wireless transmissions. In this paper, we present a perfor-

mance analysis of two approaches for enabling non-contiguous multicarrier modulation with

respect to interference mitigation and computational complexity. One of the approaches

is a variant of orthogonal frequency division multiplexing (OFDM), called non-contiguous

OFDM (NC-OFDM), while the other approach is based the non-contiguous version of the

filter bank approach non-orthogonal frequency division multiplexing (NOFDM), referred to

as non-contiguous NOFDM (NC-NOFDM).

The rest of this paper is organized as follows: An overview of spectrally opportunistic

transmission employing multicarrier modulation is presented in Section 5.2. In Section 5.3,

details on how non-contiguous data transmission is performance are provided. A perfor-

mance evaluation of spectrally agile wireless data transmission under real-world conditions

is then provided in Section 5.4, including a comparison of the two approaches in terms of

interference and computational complexity. Finally, several concluding remarks are made

in Section 5.5.
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(a) (b)

Fig. 5.1 Signal processing and representation in GMC transmission link (a)
and the time-frequency (T-F) representation of the transmit signal s(t) (b);
∆f - subcarriers distance, ∆t - sampling period. L,N,M,Nt denote: the
duration of the pulse-shaping filter impulse response γ[k] in samples (equal
to the duration of the dual-filter impulse response g[k] at the receiver), the
oversampling rate, the number of subcarriers, and the number of pulses in
time, respectively [4]

5.2 Multicarrier Transmission Techniques for Opportunistic

Communications

Multicarrier modulation is a form of frequency division multiplexing (FDM), where data

is transmitted using several simultaneous narrowband signals located at different carrier

frequencies (i.e., subcarriers). However, unlike conventional FDM systems, where the nar-

rowband subcarriers are separated by guard bands, multicarrier modulation allows for the

overlapping adjacent subcarriers when a certain set of conditions are satisfied. As shown in

Fig. 5.1(a), both the GMC transmitter and receiver can be readily implemented by means

of an FFT and an inverse FFT (IFFT) pair combined with polyphase filter banks2 (or al-

ternatively, via short-time Fourier transforms or Gabor transforms), which implement the

2A polyphase filter bank splits an input signal into a given number M of equidistant sub-band signals
and implements filtering of these subband signals.
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subcarrier filtering (employing specific digital prototype filters at the transmitter and at

the receiver, denoted as γm [k] and gm [k] in Fig. 5.1(a)) and multicarrier modulation. In

the time-frequency (T-F) representation of a GMC signal presented in Fig. 5.1(b), we can

observe T-F blocks of size Nt×M , where Nt andM denote the number of pulses in time and

frequency domain, respectively. In this figure, it can be readily observed that depending

on the relation between the number of subcarriers M , the pulse-shape duration in samples

L and upsampling factor N the information-bearing subcarrier pulses are overlapping in

the T-F plane to a smaller or larger extend.

Within the context of spectrally opportunistic wireless access, a secondary wireless

transceiver employing multicarrier modulation is well-suited for this situation since it does

not require a contiguous frequency band in order to transmit information. This is due

to the fact that each subcarrier operates independently of each other, which means deac-

tivating those subcarriers located in the vicinity of primary user signals will not impact

the remaining active subcarriers. Moreover, the aggregate data rates available from the

remaining active subcarriers may still be significant if there is a substantial amount of

unoccupied (potentially fragmented) wireless spectrum. Two approaches for implementing

non-contiguous multicarrier modulation will now be presented in the following subsections.

5.2.1 Non-Orthogonal Frequency Division Multiplexing

The mathematical representation of a discrete NOFDM signal s[k] can be expressed as

follows [77]:

s[k] =
∑

n∈Z

M−1∑

m=0

cn,m · γn,m[k], (5.1)

where s[k], k ∈ Z is the discrete-time signal belonging to the complex Hilbert space of

square-summable sequences l2 , {cn,m} are the so-called frame coefficients, M is the number

of subcarriers, Z is the set of integers, and {γn,m[k]} is a sequence of basis functions, defined

as [77]:

γn,m[k] = γ[k − nN ] · exp {2πjm(k − nN)/M} . (5.2)

For these expressions, N denotes the time spacing between M parallel symbols (in

samples) modulating M subcarriers while γ[k] is the pulse shape, i.e., synthesis window,

used for the synthesis of signal s[k] as described by Eq. (5.1). In fact, Eq. (5.1) is the Gabor

discrete signal expansion (synthesis) of s[k]. Consequently, the Gabor-frames theory can
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be employed as a useful tool in analyzing NOFDM signals as we are defining them. The

basis functions {γn,m[k]} are referred to as the Gabor atoms, and they constitute the frame

if the so-called frame condition holds, i.e.:

A‖s[k]‖2 ≤ |〈s[k], γn,m[k]〉| ≤ B‖s[k]‖2, ∀s[k] ∈ l2(Z), (5.3)

where A and B are real values called the frame bounds. The necessary (but not suffi-

cient) condition for {γn,m[k]} to be a Gabor frame is that N/M ≤ 1, which corresponds

to the overcritical sampling scenario. In this case, {γn,m[k]} are sufficiently densely placed

in the time-frequency (TF) plane, and that the dual Gabor frame {gn,m[k]} exists [77],

which means that we can obtain the inverse formula to Eq. (5.1) and calculate the frame

coefficients {cn,m} for a given s[k]. The frame coefficients {cn,m} constitute the TF rep-

resentation of the signal s[k], with this inverse operation called the Gabor-analysis of the

s[k] signal. We define this process as:

cn,m =
∑

k∈Z
s[k] · g∗n,m, (5.4)

where:

gn,m[k] = g[k − nN ] · exp {2πjm(k − nN)/M} (5.5)

is referred to as the analysis window, and ∗ denotes the complex conjugate. The existence

of the dual frame allows for the restoration of the data symbols at the NOFDM receiver.

Based on the Balian-Low theorem, adequate TF localization of the atoms (concentrated

around the (n,m) coordinates on the discrete TF plane) will yield a reduction in the inter-

symbol interference (ISI) and inter-carrier interference (ICI), and allow for the omission of

the guard periods necessary in the case of OFDM [75, 77].

It has been shown that Eq. (5.1) describes the operation of the discrete Fourier transform

(DFT) synthesis-filter bank, which can be efficiently implemented by the means of an inverse

fast Fourier transform (IFFT) and a polyphase filter bank as long as M is a power of 2,

which is the case we are considering in this paper. The polyphase filtering is implemented

after the IFFT stage, which possesses a lower complexity relative to when pulse-shaping is

performed in every subcarrier at the input of the IFFT.

When considering the ideal channel scenario, Eq. (5.4) describes the projection of the

received signal onto the set of functions defined by Eq. (5.5). Under these conditions, the
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so-called perfect (i.e., complete) reconstruction of the user data symbols is possible only if

the biorthogonality condition is held, namely:

〈γn,m[k], gn′,m′ [k]〉 = δ (n− n′,m−m′) , (5.6)

where 〈·〉 denotes the inner product, and δ (·) refers to the two-dimensional Kroneker delta

function. As a result, Eq. (5.6) reduces into the well-known orthogonality constraint when

N = M and g[k] = γ[k], which corresponds to OFDM transmission. However, if N ≤ M

the dual functions for a given synthesis function γ[k] are not unique. This implies that it

is impossible to recover the user data from the received signal in a reliable manner. The

interested reader on this topic is encouraged to research the literature on Weyl-Heisenberg

frame-based transmissions, as well as some of the recent achievements in this area [77].

Furthermore, several efficient procedures for performing the dual window calculation are

also available in the open literature [78, 79].

5.2.2 Orthogonal Frequency Division Multiplexing

Orthogonal frequency division multiplexing (OFDM) is a widely used data transmis-

sion approach, employed in numerous modern wireless communication systems. Together

with orthogonal frequency division multiple access (OFDMA), it is considered to be both

flexible and scalable, and it can be easily optimized, thus making it well suited for future

high data-rate wireless communication systems and standards. Moreover, when implement-

ing an OFDM transceiver in hardware, the IFFT/FFT algorithm can be employed to make

modulation and demodulation highly efficient in terms of hardware and computational com-

plexity. In fact, it has been shown that a radix-2 FFT/IFFT pair possesses O(M log(M))

complexity for M subcarriers, thus making it an attractive option for multicarrier-based

communication systems. Finally, the hardware implementation of a non-contiguous ver-

sion of OFDM (i.e., NC-OFDM) can be further streamlined by performing FFT pruning

on the FFT/IFFT pair, especially if the baseband transceiver modules are constructed on

a programmable or software-defined communication system or a cognitive radio.

With respect to the mathematical formulation of OFDM, the same framework described

in the previous subsection involving NOFDM can be employed here, except that the pulse

shape for OFDM is chosen to be rectangular in Eq. (5.1), where N = M , {cn,m} are Fourier
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coefficients. That is, in Eq. (5.2), γ[k] = rect[0,N−1][k] with:

rect[0,N−1][k] =

{
1 n = 0,1,...,N − 1

0 else
. (5.7)

5.3 Non-contiguous Data Transmission

Given the locations in frequency of the wireless spectrum occupied by incumbent pri-

mary signals, the goal of a secondary wireless access device such as a cognitive radio em-

ploying a non-contiguous version of multicarrier modulation, e.g., the two approaches de-

scribed above, is to deactivate subcarriers that could potentially interfere with the primary

users and transmit over the remaining active subcarriers. Consequently, subcarriers lo-

cated within the same frequency vicinity as the incumbent primary signals are deactivated,

i.e., “turned off”, resulting in the non-contiguous spectral characteristic of the secondary

multicarrier signal. In the following section, we examine an important challenge posed

by employing non-contiguous orthogonal multicarrier-modulation-based data transmission

systems, namely, the mitigation of high out-of-band interference. This issue is not as signif-

icant for the case of NOFDM signals due to the fact that the pulses employed are expected

to have smoother transitions. On the other hand, the discussion on the resulting imple-

mentation complexity for NOFDM will be conducted in Section 5.4. This is illustrated

in Fig. 5.2, where the NC-NOFDM waveform employs a larger number of subcarriers and

possesses higher spectral selectivity relative to the NC-OFDM waveform. Overall, both

of these challenges become especially apparent when dealing with fragmented bands of

unoccupied wireless spectrum. Although there does not exist a single non-contiguous mul-

ticarrier solution that possesses both low out-of-band interference and low implementation

complexity, we will study these non-contiguous variants of multicarrier modulation in or-

der to provide the reader with some insights into the design trade-offs associated with the

implementation of these spectrally agile transmission systems.
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Fig. 5.2 An illustration of the non-contiguous OFDM (shown in green) and
non-contiguous NOFDM (shown in red) transmissions in the paging band (928
MHz - 948 MHz). Paging transmission is shown in blue [4].

5.3.1 Frequency-Domain Cancellation Carrier Technique for OFDM

Transmissions

Let us consider the DFT operation of the symbols shown in Eq. (5.1) for the case of

one OFDM symbol3 transmission. As mentioned earlier in this paper, the temporal pulse

shape for each symbol is defined to be rectangular. As a result, the frequency response for

each subcarrier will be a sinc-type pulse with large sidelobe levels. Therefore, the frequency

response of each subcarrier is given by:

sm(y) = cm
sin(π(y − ym))

π(y − ym)
, m = 0, 1 ... ,M − 1, (5.8)

where y = (f − f0)T0 and ym = (fm− f0)T0. Since each OFDM symbol vector in frequency

consists of the superposition of individual subcarrier spectra, this yields the OFDM pulse

shape:

Sn(y) =
M−1∑

m=0

sm(y) n ∈ Z. (5.9)

Depending on the symbols transmitted across each of the subcarriers, it can be observed

that the resulting sidelobes from each of the sinc pulses may add either constructively or

destructively, leading to different power values over the sidelobes near the edges of the

composite signal. By reserving several subcarrier locations on either side of a contiguous

3We refer to each IDFT block for a certain value of n as an OFDM “symbol”.
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group of active subcarriers, non data-bearing cancellation subcarriers (CCs) can be inserted,

whose amplitude and phase values are computed such that the out-of-band (OOB) spectral

spillage is reduced.

Suppose we define the total number of subcarriers that can be transmitted by a sec-

ondary user in a spectral white space as M = MA + MCC , where MA is the number of

active subcarriers used for signal transmission, and MCC is the total number of subcarriers

reserved for inserting cancellation subcarriers. As a result, Eqs. (5.8) and (5.9) can be

expressed as:

sma
(y) = cma

sin(π(y − yma
))

π(y − yma
)

,

ma = MCC/2 + 1, MA/2 + 1... ,M −MCC/2, (5.10)

and:

Ŝn(y) =

M−MCC/2∑

ma=MCC/2+1

sma
(y) n ∈ Z. (5.11)

Since the frequency response of an OFDM subcarrier can be represented by the sinc func-

tion, the sidelobe power levels of the composite signal, at any frequency location can be

algebraically computed as the sum of the sidelobe powers of each of sinc function at that

location given the input sequence. Therefore, if I(p) represents the sidelobe amplitude level

at the pth frequency index in the OOB region normalized to the subcarrier bandwidth, we

then have the following expression:

I(p) =

M−MCC/2∑

ma=MCC/2+1

sma
(p)

=

M−MCC/2∑

ma=MCC/2+1

cma

sin(π(y − yma
))

π(y − yma
)

. (5.12)

The idea here is to scale cCC(j), the amplitude of the cancellation subcarrier at jth frequency

location, in such a way that at the frequency location of the intended sidelobe cancellation,

p, has the same amplitude but opposite phase to the existing sidelobe. i.e.:

C(j) =
I(p)

CCC(p)
.
sin(π(j − yma

))

π(j − yma
)

. (5.13)
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The time-domain version of the cancellation carrier from the above expressions is ob-

tained by taking the IDFT of ccc(j). Notice that the frequency location j is a frequency

originally intended for the transmission of data carriers by the secondary user, but used for

inserting cancellation carriers whereas the frequency location p is in the out-of-band region.

Also, both j and p appear on the same side of the frequency axis. Thus, for the case of

the first cancellation carrier on the right side of the OFDM spectrum, j = M −MA/2 and

p = M +1. Similarly, for the case of the second cancellation carrier on the same side of the

OFDM spectrum, j = M−MA/2+1 and p = M+2. The procedure can be continued for a

given number of cancellation subcarriers until the desired sidelobe power levels is achieved4.

Significant sidelobe power suppression can be achieved with a small number of CCs, such

as one or two subcarriers on each side of a contiguous group of subcarriers, resulting in a

reasonable trade-off between bandwidth reduction and achievable interference suppression.

Also, since the proposed algorithm attempts to minimize the amplitude values of the real

and imaginary components of the OOB sidelobes, it can be used with any modulation

scheme. Several variants of the basic principle described in the above paragraphs can be

found in [80, 81].

5.4 Spectral Agility in Real-world Transmission Scenarios

In this section, the interference mitigation and implementation complexity performance

for non-contiguous versions of OFDM and NOFDM is presented. Note that for the interfer-

ence performance analysis conducted in this paper, actual wireless spectrum measurements

of several primary user signals have been employed in a computer simulation environment

to provide a more realistic transmission environment when evaluating both non-contiguous

multicarrier modulation approaches.

The process of quantifying the amount of interference experienced by both primary

and secondary transmissions located within the same frequency vicinity was based on 125

spectrum measurement sweeps of the paging band (928 MHz - 948 MHz) taken in Worcester,

MA, USA on July 27, 2008 at location N42o17.829′, W071o50.3607′ [82]. The frequency

resolution for these time sweeps is 20 kHz. These real-world spectrum measurements were

then employed in an emulation environment, where 25, 000 BPSK symbols where simulated,

4Both MA and MCC are assumed to be even
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and the number of subcarriers transmitting these symbols were based on the primary user

spectrum occupancy characteristics observed. For the non-contiguous NOFDM case, a

Gaussian window was applied for shaping the subband pulses. The duration of the pulse-

shaping filter impulse-response in samples L was equal to the oversampling rate N in the

time domain (L = N = 1024). Otsu’s algorithm [62] was employed to classify the channels

as either “occupied” or “available” 5.

In order to apply Otsu’s algorithm, a matrix M (tj,fi) is formed from the collected data

points where the row tj contains data points over all the frequency locations in the band

of interest during one particular time instant and the column fi represents the data points

observed in that frequency bin over all time sweeps during the measurement process. The

next step is to transform the contents of this matrix into gray scale values by applying the

procedure given by:

I (tj, fi) =
1.0− 0.0

max{M(tj, fi)} −min{M(tj, fi)}
× (M(tj, fi)−min{M(tj, fi)}) (5.14)

Applying Otsu’s algorithm to the matrix, I (tj,fi) gives the required optimum threshold

that can be used to classify all values above this threshold as signal while the rest is classified

as noise. The information symbols are now transmitted across the available channels such

that the interference levels affecting the neighboring licensed transmissions are below a set

power-level.

5.4.1 Interference Analysis

The Parks-McClellan optimal equiripple FIR filter, hPM [k], was employed at the receiver

front-end to eliminate the interference from the neighboring licensed or unlicensed signals.

In our analysis of the impact of secondary user on the paging band primary user, we study

the ESD characteristics of the signal:

y[k] = hPM [k] ∗ h[k] ∗ s[k] + v[k], (5.15)

5Otsu’s method is used to calculate the optimum threshold, which is the maximum inter-class variance
separating two classes of data, e.g., the foreground pixels and background pixels in image processing
research. In this work, we employed Otsu’s method in order to separate the occupied portions of the
paging bands from the spectrum holes.
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where h[k] is the unknown multipath channel affecting the transmitted signal, s[k] and

v[k] is the additive noise. Note that in Eq. (5.1), although the summation is over all M ,

several zeros have been inserted in the modulated data in order to reflect the fact that

the paging band spectrum usage is known to the secondary receiver, and hence it is being

used in a non-contiguous fashion. The interference suppressing filters were also designed

such that there are multiple filters, with each possessing a different pass-band tailored to

the bandwidth of each non-contiguous block. Note that the filtering operation performed

in Eq. (5.15) will result in the noise affecting the received signal to be colored. However,

without loss of generality, we assume that the noise power is known and hence a whitening

filter can be applied to obtain the above equation with uncorrelated noise.

The following assumptions were made in performing our simulation-based analysis in

order to understand the interference characteristics under certain basic conditions:

• The primary user spectrum occupancy profile observed by the secondary user trans-

mitter and the intended secondary user receiver is the same. That is, the secondary

transmitter and the receiver are closely located.

• The primary user spectrum occupancy profile does not change between the scanning

time and the transmission time of the secondary user transmitter.

Interference as a Function of Filter Order

Referring to Fig. 5.3, the interference experienced by the primary and secondary users as

a function of the filter order used at the receiver end is presented, where the y-axis displays

the “normalized interference power”. In other words, the y-axis represents the ratio of

the total undesired signal power observed at the receiver to the sum of the undesired and

desired signal powers. In Fig. 5.3, the red dotted line indicates the application of Kaiser

window, the red dashed indicates the application of Hanning window and the red solid

indicates the application of Gaussian window to the secondary transmissions that employ

NOFDM.

On the other hand, no windowing is applied to NC-OFDM transmissions and the only

interference minimization is due to cancellation carriers as described in the previous section.

This figure highlights the constraints on the receive filter in order to minimize the amount

of interference in an NC-OFDM scenario. In contrast, since the non-contiguous NOFDM



Chapter 5 65

10 20 30 40 50 60 70 80 90 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Filter Order

N
or

m
al

iz
ed

 In
te

rf
er

en
ce

 P
ow

er

 

 
Interference to PU due to an OFDM transmission
Interference to an OFDM−based SU transmission
Interference to PU due to an NOFDM transmission
Interference to an NOFDM−based SU transmission

Fig. 5.3 Normalized interference as a function of the filter order [5].

pulse contains smoother edges when compared to an OFDM-based signal with a rectangu-

lar pulse, the non-contiguous NOFDM performs better relative to non-contiguous OFDM

and causes less interference to the neighboring band primary user when an interference-

suppressing filter of the same order is applied. Also note how in Fig. 5.3 that by employing

a Gaussian filter function in Eq. (5.1), the interference caused to the primary transmission

is the lowest of all the filter functions studied in this simulation.

Interference as a Function of Signal Threshold

A Parks-McClellan FIR receive filter of order 25 is used in Fig. 5.4, where the threshold

used in Otsu’s algorithm is varied such that the interference caused by the OFDM sidelobes

at the primary users’ frequency location is above the optimum threshold. The same color

conventions as in Fig. 5.3 are employed for this figure. Using this convention, the blue lines
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Fig. 5.4 Normalized interference as a function of the threshold difference [5].

are for the case of SUs that employ OFDM transmissions. The x-axis in Fig. 5.4 represents

the difference between the optimum value of the threshold, assuming the secondary user

transmitter and receiver pair observe the same spectral occupancy profile, and the actual

threshold used in inserting the subcarriers is within a few decibels of this value. When the

threshold difference is well below the optimum value (i.e., 0 dBm), the resulting interference

will be minimal since only a few subcarriers will be inserted due to an overly conservative

interpretation of the primary user profile. As the threshold increases beyond the optimum

value, the interference power quickly rises to very high values. In this scenario, NOFDM

will achieve better performance relative to non-contiguous OFDM in terms of interference

mitigation, with the Gaussian pulse shape achieving the best results.
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Interference as a Function of Filter Order in the event of false detection of PU

Although the adverse effects of false detection of primary transmissions on the interfer-

ence performance of these non-contiguous multicarrier approaches can be displayed either

as a function of filter order or as a function of the signal threshold, we chose the former

option for the purposes of brevity. The primary intention of the analysis in this subsection

is to understand the effect of false alarms on the channels occupied by the primary user.

During an incorrect decision on the presence of a primary transmission, certain channels

that are purely noise and hence vacant are classified as occupied and hence no information-

bearing signals are transmitted. As a result, several potentially usable channels are not

utilized and hence the secondary users might be forced to transmit across several fragmented

blocks of spectrum even though it is not necessary. Consequently, this is an undesirable

scenario for a secondary transmission approach. However, it is observed that due to the

false alarm probability being high, the amount of interference resulting channels located

in close proximity to the primary transmissions are no longer used by the SU, thus yield-

ing low interference levels. This hypothesis corresponds to the simulated results shown in

Fig. 5.5. Using the same color conventions employed previously in Figs. 5.3 and 5.4, it

is observed that as the filter order increases, the amount of interference affecting the pri-

mary transmissions as well as suffered by the secondary transmissions is relatively small.

However, as mentioned before, this occurrence is a result of false alarms alone leading to

reduced efficiency of the secondary wireless access receiver.

5.4.2 Complexity Evaluation

When assessing the performance of either non-continuous OFDM or NOFDM approaches,

it is very important to understand the impact of computational complexity associated

with each approach since it can significantly affect the construction of a practical wire-

less transceiver implementation. For instance, when the number of deactivated subcarriers

used in NC-OFDM is very large, pruning mechanisms can be applied to the IFFT/FFT

modules employed in the transceiver in order to minimize hardware usage, reduce power

consumption, and increase the overall execution time. On the other hand, this enhance-

ment in hardware utilization and associated benefits comes at the cost of lower spectral

efficiency and interference mitigation capabilities. Thus, there is a non-contiguous multicar-

rier transceiver design trade-off between interference mitigation performance and reduced
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Fig. 5.5 Normalized interference as a function of the filter order in the event
of false detection of PU [5].

computational complexity. In the NOFDM case, the additional filtering operations result

in a better interference mitigation performance outcome but at the expense of additional

computation complexity relative to the OFDM case. Moreover, in both NC-OFDM and

NC-NOFDM systems, the subcarriers located in the frequency vicinity of the primary user

signal coupled with several guard subcarriers should be excluded from the modulation

process, where pruning can be applied to the IFFT/FFT operations in order to reduce

complexity.

Derivations conducted in [5] have resulted in a closed form expression for the number

of required complex multiplications computed at the transmitter per sampling period, i.e.,

at the input to the analysis filter bank. First, the IFFT operation, which is performed

at a rate that is N times lower relative to the sampling rate, requires (M ·log2 M)
(2N)

complex

multiplication per unit time, where ⌈x⌉ denotes the lowest integer that is not lower than
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x. Furthermore, each polyphase filter with the corresponding decimator requires ⌈ L
M
⌉/N

complex multiplications, where L is the length of the synthesis pulse γn,m[k] expressed in

samples. For the sake of simplicity, the length of the analysis pulse g[k] is assumed to be

equal to L. In such a case, the number of required operation at the transmitter and at the

receiver side will be identical. Thus, the final number of required complex multiplications,

denoted as NCM , in the whole transceiver in one sampling period at the transmitter input

can be expressed as:

NCM =
M

N
·
(
2 ·
⌈
L

M

⌉
+ log2 M

)
. (5.16)

In Fig. 5.6, the number of required operations employed at the transmitter (resp. mod-

ulator) and at the receiver (resp. demodulator) per sampling period versus the number

of subcarriers is presented for the worst-case scenario, i.e., when no simplifications in the

IFFT/FFT implementation is possible. It can be observed that the NC-OFDM transceiver

consistently achieves the best performance relative to the NOFDM-system transceiver in

terms of computational complexity. This is due to the application of filterbanks with re-

spect to NOFDM transmission. Note that in practice, various techniques can be used to

reduce the number of operations needed for modulation and demodulation of NC-OFDM

and NC-NOFDM signals, with one example being the pruning of the IFFF/FFT operations.

Moreover, several of the algorithms employed at the receiver working in conjunction with

the demodulator can be simplified due to some of the features associated with NOFDM

waveforms, e.g., frequency-offset correction.

5.5 Chapter Summary

Wireless communication systems such as cognitive radio require a high level of spectral

agility when performing opportunistic wireless access. As a result, multicarrier modulation

has been identified as a possible candidate for spectrally agile data transmission, especially

when the wireless communication system is operating across several non-contiguous unoc-

cupied frequency bands. The challenges posed by employing non-contiguous multicarrier-

modulation-based data transmission systems include high out-of-band interference and

implementation complexity, which become especially apparent when dealing with frag-

mented bands of unoccupied wireless spectrum. Although there does not exist a single

non-contiguous multicarrier solution that possesses both low out-of-band interference and
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low implementation complexity, it is possible to assess the performance trade-offs for sev-

eral possible multicarrier solutions in order to select the solution that is most suitable for

the application.
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Chapter 6

Time-Selective MIMO-OFDM

Channel Tracking in Low-Mobility

Scenarios1

6.1 Introduction

In the presence of a rich scattering environment, multiple-input, multiple-output (MIMO)

systems enable a linear increase in capacity with no increase in bandwidth or transmit

power compared to single-input, single-output (SISO) systems. However, the seminal work

of [84] is based on the assumption that the channel is perfectly known to the receiver. In

practical systems, the estimated channel using training sequences can be imperfect. As a

result, there is potentially a mutual information loss between the input and the output of

the channel. Given a power budget and a desired data-rate, the time and power spent on

training versus information symbols has to be judiciously selected since there is an interest-

ing interplay involving information throughput and the quality of the channel estimates. If

a large fraction of the time and/or power is spent on training, excellent channel estimates

can be obtained at the expense of poor information throughput. Conversely, expending

too little time and/or power on training results in poor channel estimates that lead to

error-prone information symbol transmission. Receivers that rely on channel estimates to

1The work included in this chapter has been funded by the Office of Naval Research via grant N00014-
10-1-0065. It ha been partly published in the 2011 IEEE Pacific Rim Conference on Communications,
Computers and Signal Processing [83]
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perform information symbol decoding are termed as “mismatched” receivers [85–88].

The problem of channel estimation has been studied in numerous contexts. Here, we

list a few relevant studies. For an exhaustive survey of the area of channel estimation using

known pilot sequences, see [40]. One of the earliest works in formulating training designs to

obtain channel estimates for OFDM systems was [89]. In [90], optimal training designs have

been designed for single-carrier and orthogonal frequency division multiplexing (OFDM)

systems by maximizing a tight lower bound on the ergodic training-based independent and

identically distributed (i.i.d.) capacity. Optimal pilot symbol design and their placement

in a packet were addressed for both SISO and MIMO systems in [91] by minimizing the

Bayesian Cramer-Rao Bound (CRB) of a semi-blind channel estimator. In [92], a general

affine-precoding framework [93] is considered and it was shown that decoupling channel es-

timation from symbol detection and optimizing a least-squares channel estimator naturally

leads to an OFDM system with information and training symbols on disjoint subcarriers.

Considering the same framework, [94] provides a link between optimal training designs and

maximizing the channel capacity lower bound similar to [90]. This work was extended in [95]

to include a MIMO communications setup. Furthermore, by considering block-processing

of transmitted symbols with a cyclic-prefix or zero-padding, optimal training designs are

provided that maximize the channel capacity lower bound when a linear minimum mean

square error (LMMSE) estimator is employed.

The impact of receiver estimation error from an information theoretic viewpoint has

also been extensively studied. The first study was conducted in [87] where the relationship

between lower and upper bounds on the mutual information between transmitted and esti-

mated Gaussian symbols is derived by modeling a time-varying frequency-selective channel

as a random component with a known mean and a covariance that accounts for the chan-

nel estimation error. Specifically, it was shown that signal-to-noise ratio in the mutual

information lower bound is lowered as a result of imperfect channel knowledge. In [96],

the achievable data-rate of a flat-fading interleaved MIMO channel is related to the linear

minimum mean squared error (LMMSE) covariance matrix. In [88], the transmission of

Gaussian symbols through a flat-fading channel is considered and it was demonstrated that

when the Gaussianity assumption on the additive noise is rendered invalid due to channel

estimation errors, scaled nearest neighbor detection is suboptimal. In [97], a lower bound

on the capacity of a time-multiplexed training scheme in the presence of a flat-fading chan-

nel is studied and related to the variance of a LMMSE channel estimator. In [98], two
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pilot arrangement schemes are considered and the impact of the receiver estimation error is

analyzed when channel state information (CSI) is available only at the receiver and when

it is also fedback to the transmitter. In both cases, maximum-likelihood channel estima-

tion is considered. The relationship between the symbol Bayesian CRB and the mutual

information between estimated and transmitted symbols was shown in [99]. In this work,

two strategies are considered. One, when the receiver obtains joint Bayesian channel and

symbol estimates and two, when the receiver computes channel estimates followed by their

utilization in obtaining symbol estimates. The model presented in [97] was generalized

in [100] by considering a superimposed training scheme of which time multiplexed train-

ing can be termed as a special case. Based on the mutual information bounds derived,

a comparison between the superimposed training and the conventional time multiplexed

training is performed by optimizing over training design, number of transmit antennas and

a training/information symbol power budget. While [97] provides the optimal noise covari-

ance matrix that maximizes a tight lower bound on the mutual information between the

input and the output when both the transmitter and the receiver have imperfect CSI, [101]

provides the optimal signal covariance matrix and shows that the uniform power allocation

scheme is suboptimal.

In this chapter, we extend the discussion in [97] and [100] by considering a “slowly”

time-varying frequency-selective channel. We start from first principles and derive the

Bayesian CRB of a general MIMO communications system that employs affine precoding

at the transmitter. We then show that in order to decouple channel estimation from data

detection, an orthogonality constraint has to be met between the training and linear pre-

coder matrices. A solution to the orthogonalty constraint is the MIMO-OFDM system

with FDM training symbols. Consequently, we formulate a scheme where during the train-

ing phase, the OFDM symbol contains training and information symbols, whereas in the

data transmission phase, only information symbols are transmitted. We consider a MIMO

channel that undergoes block-wise variations according to a first-order autoregressive (AR)

model. Therefore, we consider a scheme wherein during the training phase, channel tracking

is performed by a Kalman filter followed by the estimation of information symbols during

the data phase based on channel state prediction. In this setup, we derive the capacity

upper and lower bounds based on a training scheme that has been derived in an MMSE

minimizing sense. We then provide simulation examples to support the theoretical results.
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.
Transmitter

.

.

.
Receiver

.

.

Channel

Fig. 6.1 Block diagram of a digital MIMO communications system

6.2 System Model

In our analysis, we consider a MIMO communications system consisting of K transmit

antennas that transmit N training and information symbols over a time-varying frequency-

selective block fading channel. We design super-imposed training symbols optimally such

that the channel estimates from Nt consecutive blocks of training symbols are utilized in

the data detection of the following Nd information symbol blocks. We assume that the

receiver also has K receive antennas without loss of generality. The maximum order of

the discrete-time complex baseband wireless channels, L is assumed to be known. An

illsutration diagram depicting a MIMO communication system is shown in Fig. 6.1.

Training Phase In the training phase, training symbols and information symbols are

affinely-precoded [93] and transmitted over K antennas. A matrix formulation of this

system for an arbitrary time index, n is as follows. Assuming that the information symbol

vector at each antenna is of size M , we stack the symbols transmitted across K transmit

antennas as shown below:

x̃n , vec ([x̃n,1 x̃n,2 ... x̃n,K ]) (6.1)

where the nth block of M symbols from kth transmit antenna is represented as:

x̃n,k , [x̃n,k(n) x̃n,k(1) ... x̃n,k(M − 1)]T (6.2)
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The affine-precoder output vector is similarly arranged as,

xn , vec ([xn,1 xn,2 ... xn,K ]) (6.3a)

xn,k , [xn,k(0) xn,k(1) ... xn,k(P − 1)]T (6.4)

Denoting the precoder matrix of size KP ×KM as Q and the additive pilot-symbol vector

of size KP × 1 as t, we can now write the equation for the transmitted symbol vector

during the training mode as follows:

xn = t+Qx̃n (6.5)

where t , vec ([t1 t2 ... tK ]). Furthermore, the matrix Q is such that the data

stream transmitted from an antenna is precoded independently of the data-streams from

the other antennas. In other words, Q has a block diagonal structure and hence Q ,

diag ([Q1 Q2 ... QK ]). Despite this restriction on the structure of Q, it is still general

enough to encapsulate not only a MIMO system employing K antennas but also a multi-

user system e.g., KU users utilizing K antennas in total and communicating with a base-

station equipped with K antennas. Also, restricting the structure of Q to be block diagonal

simplifies an orthogonality condition (cf., Theorem 6.2) that helps in the design of the linear

precoder and the training vector.

After pre-multiplying the above vector by IK ⊗ CT (cf. Section 2.4), the KP̄ × 1

vector (P̄ = P + L) undergoes a digital-to-analog conversion followed by pulse-shaping

to yield a continuous-time signal. Assuming perfect timing and carrier synchronization at

the receiver, the signal is sampled to obtain the received symbol vector. Subsequently, the

cyclic-prefix is removed by a pre-multiplication operation with IK ⊗ CR and an ISI-free

received vector of size KP × 1 is available for processing:

yn = Hn t+Hn xn + zn (6.6)
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where the channel matrix Hn is:

Hn ,




H
(n)
1,1 H

(n)
1,2 . . . H

(n)
1,K

H
(n)
2,1 H

(n)
2,2 . . . H

(n)
2,K

...
...

. . .
...

H
(n)
K,1 H

(n)
K,2 . . . H

(n)
K,K




(6.7)

Each matrix in the set, {H(n)
i,j } for 1 ≤ i ≤ K, 1 ≤ j ≤ K is circulant with the first column,

[h
(n)
i,k [0] ... h

(n)
i,k [L] 0 ]

T and first row, [h
(n)
i,k [0] 0 h

(n)
i,k [L] . . . h

(n)
i,k [1]]. We now define a channel

vector hn such that,

hn , vec ([hn,1 hn,2 ... hn,K ]) (6.8a)

hn,i , vec ([h
(n)
i,1 h

(n)
i,2 ... h

(n)
i,K ]) (6.8b)

h
(n)
i,k , [h

(n)
i,k [0] ... h

(n)
i,k [L]]

T (6.8c)

By exploiting the commutativity property of discrete convolution, (6.6) can now be written

in a different form in terms of the MIMO channel vector, hn and the pilot symbol matrix,

T , [T1 T2 ... TK ] as,

yn = (IK ⊗T)hn +Hn xn + zn (6.9)

where the circulant matrices, {Tk} are constructed such that [tk[0] ... tk[P − 1]]T is the first

column and [tk[0] tk[P − L] ... tk[P − 1]] is the first row. In (6.6) and (6.9), we use the

subscript n in Hn and hn to indicate the time-dependance of the random channel. The

system model described above needs to satisfy the following conditions.

(C1) The KP × KM dimensional linear-precoder matrix, Q is of full column-rank and

strictly-tall, i.e., P > M . Also, V , P −M .

(C2) The P ×K(L+1) dimensional training matrix, T is a tall matrix, i.e., P ≥ K(L+1).

(C3) The matrix, T is of full column-rank, i.e., rank(T) = K(L+ 1).

Remark : Condition (C1) is enforced as a simple way of introducing redundancy in the

precoding process [35, 102]. Condition (C2) ensures that enough dimensions are available

for the identification of the unknown channel coefficients in a linear least-squares sense.

As we shall show in Theorem 6.2, the extra dimensions that are available as a result of
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employing a full-column rank, strictly-tall precoding matrix are useful in designing the

training vector. Condition (C2) also suggests that given the knowledge of the channel

order and for a fixed number of transmit antennas, the data-block size has to be at least

equal to the product of the number of channel taps and the number of transmit antennas.

Condition (C3) which complements (C2) implies that each element of the set, {Tk} is also

of full column-rank.

Data Transmission Phase Due to the fact that no training symbols are available in

the data transmission phase, we can write the system model as follows:

rn = Hn sn + zn (6.10)

where sn = Q̄ s̃n and s̃n is obtained in a manner similar to (6.1).

A few assumptions on the system model shown in (6.9) and (6.10) are now in order.

(A1) The channel vector, hn is zero-mean, independent and identically distributed (i.i.d)

complex Gaussian with variance σ2
h, i.e., hn ∼ CN (0, σ2

h IK2(L+1)). Moreover, each

channel tap gain is assumed to be an independent AR process (cf. Section 2.2.3). We

only consider a first-order AR model for each tap gain so that

hn = ahn−1 + un (6.11)

where a ∈ [0, 1] is the AR coefficient for the lth channel tap gain and the excitation

noise, un ∼ CN (0, σ2
u IK2(L+1)). In order to match the correlation functions at lags 0

and 1 and thus make the random process WSS for n ≥ 0, we select σ2
u = (1− a2) σ2

h.

(A2) The transmitted symbol vectors, x̃n and s̃n are independent and identically dis-

tributed (i.i.d) complex Gaussian with variance σ2
x and σ2

s , i.e., x̃n ∼ CN (0, σ2
x IKP )

and s̃n ∼ CN (0, σ2
s IKP ) respectively.

(A3) The additive noise vector, zn is zero-mean, circularly-symmetric i.i.d complex Gaus-

sian noise with variance σ2
z , i.e., zn ∼ CN (0, σ2

z IKP ).

Remark : Assumption (A1) indicates that the channel is modeled as Rayleigh-fading

random vector. This assumption represents a standard model for a rich scattering environ-

ment in the absence of line-of-sight. An expression for a in terms of the channel Doppler
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spread and the transmission bandwidth was shown in [87]. However, the first-order AR

model possibly incurs considerable estimation error and results in numerous erroneous sym-

bol decisions [103, 104]. One reason for making assumption (A2) is to satisfy the regularity

conditions related to the evaluation of the Bayesian FIM described below. They require

that the joint distribution of p(yn, x̃n, hn) be absolutely continuous with respect to xn,k(p).

A data vector modeled as Gaussian meets this criterion. For those transmit symbol vectors

modeled on other distributions, the Theorem 6.1 gives an approximation. Another reason

for making this assumption lies in the fact that a signal that is a zero-mean uncorrelated

complex Gaussian distributed maximizes the lower bound (which is given with respect to a

zero-mean uncorrelated complex Gaussain noise vector) on the mutual information between

the input and the output for of MIMO channels [97, 105]. Moreover, for a block transmission

scheme such as an OFDM system with large number of subcarriers, the transmit symbol

vector obtained by linear-precoding the information-symbol vector with an IDFT matrix

can be claimed to be Gaussian by an appeal to the central limit theorem [106, Figure 4.21].

Hence, (A2) is not a particularly restrictive assumption.

6.3 Decoupled Channel and Symbol Estimation

An observation of (6.9) reveals that the knowledge of the MIMO channel vector is

contained not only in the known training symbols, but also in the unknown information

symbols. However, the joint estimation of the channel vector and the detection of the

information symbol vector is a non-linear problem, and it’s solution may not exist in certain

cases [92]. On the other hand, a sub-optimal approach is to decouple the channel estimation

problem from the data detection process. In order to do so, we may consider the channel

vector to be a deterministic unknown within the classical approach to statistical estimation

or as a random vector by adapting the Bayesian viewpoint. In this work, we consider the

latter approach and derive the FIM of the channel vector based on the (6.9). That is, we

derive the Bayesian FIM concerning the estimation of the channel vector using KP × 1

observations gathered from all the receive antennas at an arbitrary time instant, n.We then

maximize the Bayesian FIM, which is equivalent to minimizing the Bayesian Cramer-Rao

Lower Bound (CRLB) and obtain an orthogonality criterion. Finally, we formulate an

affine precoder scheme that meets this condition.
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6.3.1 Strategy: Bayesian FIM Maximization

Theorem 6.1. Assuming that the likelihood funtion of p (yn;hn) for the system model

given in (6.9) satisfies the regularity condition, the complex FIM for estimating the MIMO

channel is,

I(hn) = σ−2
z (IK ⊗THT)− σ−4

z σ2
x Ξ(t, Q) + σ4

x Ξ(Q) + σ−2
h IK2(L+1) (6.12)

where,

Ξ(t, Q) , Eh

{
(IK ⊗T)H HnQGQHH

H

n(IK ⊗T)
}

(6.13a)

Ξ(Q) , Eh

{
KM−1∑

n=0

(QH

n ⊗ hT

nQ
T

n)(Ry
−1
n ⊗Ry

−T

n )
KM−1∑

n=0

(Q∗
n ⊗Qnhn)

}
(6.13b)

G ,
(
IKM + σ−2

z σ2
xQ

HH
H

n Hn Q
)−1

(6.13c)

Qn , IK ⊗ [Qn,1 Qn,2 . . . Qn,K ] (6.13d)

Proof. See Appendix C.

Remark : The term, Ξ(Q) represents the loss that is incurred due to the non-utilization

of the information carried by the information symbols regarding the channel coefficients in

a non decision-aided setup. Consequently, as it is independent of t, the maximization of

I(hn) in such a scenario is possible by working with Ξ(t, Q) alone. The maximizaton of

I(hn) leads us to the the orthogonality condition shown in Theorem (6.2).

Theorem 6.2. If the affine precoder scheme, (t, Q) satisfies conditions, (C1) and (C2),

then the following orthogonality condition is necessary and sufficient for a non decision-

aided training-only estimator to maximize the Bayesian FIM, I(hn) obtained in (6.12):

TH

i Qj,m = 0 1 ≤ i, j ≤ K 0 ≤ m ≤ M − 1 (6.14)

Proof. See Appendix D.
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The expression for the Bayesian FIM that we have obtained in Theorem 6.1 is analogous

to the result provided in [107, Lemma 1]. However, unlike in [107], the expression shown

in (6.12) is in closed form. Moreover, as shown in Appendix C, we have not based this

result on the block-diagonal structure of Q. Hence the result in Theorem 6.1 is a general

one. Also, the result that we dervied in Theorem 6.2 was showed previously in [92] for SISO

systems and in [108] for MIMO OFDM systems using minimum least-squares estimation

error variance arguments. In [95] and [107], the orthogonality condition was derived within

a Bayesian framework with the former relying on a LMMSE channel estimator while the

latter uses a Bayesian FIM expression similar to our work. However, while we focus on a

block diagonal structure of the linear precoder, [107] focuses on a general linear precoder

matrix.

6.3.2 OFDM with FDM Training: An Orthogonal Affine Precoder Scheme

We see from [92, Theorem 1] for the case of a SISO system that the affine precoder

scheme which uses linearly precoded OFDM along with an FDM training sequence that

modulates a disjoint set of tones not used for data transmission, meets the orthogonality

criterion. In other words, Theorem (6.3) establishes that although the the training sym-

bols and information-bearing symbols overlap in time domain, orthogonality between the

subcarriers in frequency domain satisfies (6.14).

Theorem 6.3. The affine precoder scheme, (t, Q) that satisfies the orthogonality condition

given in (6.14) irrespective of the FIR channel provides a non data-aided channel estimator

if it is selected from the class

Qk = W
HP(Q)

[
ΘM×M

0V×M

]
(6.15a)

tk = W
HP(t)

[
t̃k

0

]
(6.15b)

In the above equations, ΘM×M is any full-rank matrix and P(t) is a permutation matrix

that places the L+ 1 possible non-zero entries of t̃k on non data-bearing subcarriers.

Proof. The proof is a straight-forward generalization of [92, Appendix I].
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In the subsequent sections, we focus our analysis on a MIMO-OFDM communication

system. That is, we assume x̃n,k̄ to be the result of a linear-precoding operation involving

a general full-rank matrix, ΘM×M before it is IDFT-modulated. Moreover, the same set of

subcarriers are used for transmitting training symbols across all the antennas.

Training Phase By substituting the result of Theorem 6.3 in (6.6), and considering the

signal at an arbitrary receive antenna, k, we write the following equation:

yn,k =
K∑

k̄=1

H
(n)

k,k̄
tk̄ +

K∑

k̄=1

H
(n)

k,k̄
Qk̄ x̃n,k̄ + zn,k

=
K∑

k̄=1

H
(n)

k,k̄
W

HP(t)

[
t̃k̄

0

]
+

K∑

k̄=1

H
(n)

k,k̄
W

HP(Q)

[
IM×M

0V×M

]
x̃n,k̄ + zn,k

(6.16)

By multiplying the above equation with P
(t)T
0:V−1 W , we notice that the channel estimation

is decoupled from data detection so that the following expression is obtained

P
(t)T
0:V−1 W yn,k =

K∑

k̄=1

P
(t)T
0:V−1 H̃

(n)

k,k̄
P

(t)
0:V−1 t̃k̄ +P

(t)T
0:V−1 W zn,k (6.17)

where H̄
(n)

k,k̄
, W H

(n)

k,k̄
W

H is a diagonal matrix (cf., Section 2.4) and P
(t)
0:V−1 is the result

of disregarding the zero entries in [̃tH
k̄

0H]H. Moreover, we have utilized the fact that

P
(t)T
0:V−1 P

(Q)
0:M = 0 i.e., the submatrices, P

(t)T
0:V−1 and P

(Q)
0:M are orthogonal to each other. We

also recognize that the following relationship holds due to the diagonal nature of H̄
(n)

k,k̄
:

P
(t)T
0:V−1 H̄

(n)

k,k̄
P

(t)
0:V−1 t̃k̄ =

√
P T̃k̄ P

(t)T
0:V−1 W0:L h

(n)

k,k̄
= T̃k̄ Ŵ0:L h

(n)

k,k̄
(6.18)

where T̃k̄ , diag (̃tk̄) and Ŵ0:L ,
√
P P

(t)T
0:V−1 W0:L. As a result, (6.17) can be written as:

ỹ
(t)
n,k = T̃ hn,k + z̃n,k (6.19)

where ỹ
(t)
n,k , Ŵ0:L yn,k and

T̃ , [T̃1 Ŵ0:L T̃2 Ŵ0:L ... T̃K Ŵ0:L] (6.20)
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Also, it can be showed that TH

kTk = Ŵ
H

0:L T̃
∗
k T̃k Ŵ0:L. By defining the vector, ỹ

(t)
n ,

vec ([ỹ
(t)
n,1 ỹ

(t)
n,2 ... ỹ

(t)
n,K ]), we can write the MIMO system model for the measured signal

across all receive antennas due to the pilot tones as follows:

ỹ(t)
n = (IK ⊗ T̃)hn + z̃n (6.21)

We can now enforce two more standard conditions regarding the structure of T̃ to satisfy

the dimensionality of (6.21).

(C4) The V ×K(L+1) dimensional training matrix, T̃ is a tall matrix, i.e., V ≥ K(L+1).

(C5) The matrix, T̃ is of full column-rank, i.e., rank(T̃) = K(L+ 1).

By employing operations similar to those that helped in obtaining (6.21), the equation

for the observation vector affected by the information symbols alone is as follows:

ỹ(dt)
n = H̃n x̃n + z̃n (6.22)

where the KM ×KM channel matrix, H̃n is as follows:

H̃n ,




H̃
(n)
1,1 H̃

(n)
1,2 . . . H̃

(n)
1,K

H̃
(n)
2,1 H̃

(n)
2,2 . . . H̃

(n)
2,K

...
...

. . .
...

H̃
(n)
K,1 H̃

(n)
K,2 . . . H̃

(n)
K,K




(6.23)

Each matrix in the set, {H̃(n)
i,j } for 1 ≤ i ≤ K, 1 ≤ j ≤ K is a diagonal matrix and is

obtained by performing the operation,

H̃
(n)
i,k = P

(Q)T
0:M−1 H̄

(n)
i,k P

(Q)
0:M−1 (6.24)

Data Transmission Phase Although the linear precoder matrix, Q̄ can be any full-

column rank matrix in general, we focus on a block diagonal structure. We consider each

element in the set, {Q̄k} to be a P×P IDFT matrix that modulates an information symbol

vector which has been linearly precoded by a general full-rank matrix, Θ̄P×P .

r̃n = Hn s̃n + z̃n (6.25)
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where r̃n , W rn and the KP ×KP channel matrix, Hn is defined as follows:

Hn ,




H̄
(n)
1,1 H̄

(n)
1,2 . . . H̄

(n)
1,K

H̄
(n)
2,1 H̄

(n)
2,2 . . . H̄

(n)
2,K

...
...

. . .
...

H̄
(n)
K,1 H̄

(n)
K,2 . . . H̄

(n)
K,K




(6.26)

Remark : By enforcing the orthogonality condition and by choosing MIMO-OFDM with

FDM training symbols as the affine precoder scheme, we have broken down (6.9) into (6.21)

and (6.22). As a result, the impact of overlapping data-bearing symbols on the channel

estimator has been circumvented. Moreover, we carryover the linear precoder from the

training phase to the data transmission phase by introducing a simple modification on the

structure of the IDFT matrix. A different problem which deals with transmit and receiver

precoder design under the assumption that CSI is available at the transmitter has been

studied extensively in the published literature e.g., see [35, 109, 110].

Before we study the MMSE characteristics during training and data transmission phases

when a Kalman filter is employed to track the time-varying channel vector, hn we note that

the following time and power budget constraints are enforced over (6.21), (6.22) and (6.25),

N = Nt +Nd (6.27a)

P N = (Pt + Pdt)Nt + Pd Nd (6.27b)

where P is the total average transmit power that is split into Pt, the average power allocated

for training, Pdt, the average power allocated for information symbols in the training phase,

and Pd, the average power allocated for information symbols in the data transmission phase.

Additionally, Pt is distributed equally among the transmit antennas i.e.,

Pt = ‖t‖2 =
K∑

k=1

‖tk‖2 (6.28)

where ‖tk‖2 =
∑V−1

v=0 |T̃k[v]|2 = Pt/K, ∀ 1 ≤ k ≤ K.
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6.4 Blockwise Kalman Tracking

Due to the AR(1) random process model for time-variations on the channel vector, in

order to compute the channel estimator in the MMSE sense, we have to utilize the past

and the current observations, {ỹ(t)
nN+k : k ∈ [0, Nt − 1], n = 1, 2, ...}. An MMSE channel

estimator can then be given as,

ĥnN+k = E {hnN+k | { ỹ(t)
nN+j : j ≤ k, j ∈ [0, Nt − 1]},

{ỹ(t)
(n−m)N+j : j ∈ [0, Nt − 1], m = 1, 2...} } (6.29)

However, a batch processing approach would necessitate the use of large datasets. A natural

choice is the sequential MMSE approach and is implemented by a Kalman filter. A Kalman

filter is well-known for its computationally efficiency which results from the fact that only

the most recent estimate need to be stored in order to refine the MMSE estimate of the

unknown parameter of interest based on the new observations. For the current problem at

hand, we compute the channel estimate during the training phase based on (6.21) and utilize

the predicted channel vector in the data transmission phase. The Kalman filter recursion

algorithm for estimating a vector parameter based on vector observations is summarized in

(6.30a)−(6.30e) [111].

6.4.1 Kalman Filter Recursion

It can be noticed that when the system converges to a steady state, the MMSE of the

channel estimator is not stationary during each cycle of N blocks. In the data transmis-

sion phase, the MMSE associated with the channel estimator’s predicted state increases

monotonically from the Ntth block to the (N − 1)th block. Thus, the maximum steady

state MMSE in the data transmission phase occurs at the last information symbol block

of each cycle. On the other hand, since the channel estimator computed based on the

observations of the 0th block in nth cycle refines the predicted channel state at the end

of the last information symbol block of (n− 1)th cycle, the steady state MMSE decreases

monotonically from the 0th training block to the (Nt − 1)th training block. Before we

derive the steady state MMSE expressions for the two cases described above, we derive

the steady state MMSE when all the blocks are training symbols and make an interesting

observation. The steady state MMSE when all blocks are training symbols is given by the
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Prediction:

ĥn|n−1 = aĥn−1|n−1 (6.30a)

Minimum Prediction MSE Matrix:

Mn|n−1 = a2Mn−1|n−1 + (1− a2) σ2
h IK2(L+1) (6.30b)

Kalman Gain Matrix:

Kn = Mn|n−1 (IK ⊗ T̃H) ( σ2
zIKP + (IK ⊗ T̃)Mn|n−1 (IK ⊗ T̃H) )−1 (6.30c)

Correction:

ĥn|n = ĥn|n−1 +Kn (ỹ
(t)
n − (IK ⊗ T̃) ĥn|n−1) (6.30d)

Minimum MSE Matrix:

Mn|n = ( I−Kn (IK ⊗ T̃) )Mn|n−1 (6.30e)

solution to the Ricatti equation,

M(∞) = ( I−K(∞) ( IK ⊗ T̃) )M
(∞)
1 (6.31)

where M(∞) , limn→∞Mn|n, M
(∞)
1 , limn→∞Mn|n−1, and K(∞) , limn→∞ Kn. Al-

though several techniques have been proposed in the published literature to solve the

system of equations obtained in (6.31) such as eigenvector solutions [112], Schur vector

approaches [113], iterative solving for scalar polynomials [114] etc., we will show that by

utilizing the following lemma describing the optimal design of the training symbols in the

MMSE sense, the above system of equations is greatly simplified.

Lemma 6.1. For the system model shown in (6.21), the minimum error variance of the

MMSE channel estimator is,

σ2
∆hn

=
K3(L+ 1) σ2

z σ
2
h

Kσ2
z + σ2

h Pt

(6.32)
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The optimal T̃, T̃(opt) that attains this error variance is,

T̃(opt) = [ (E1φ(V ))T ... (EKφ(V ))T ]T (6.33)

where,

[Ek ]v, v = exp

[
j2πvfk

V

]
(6.34a)

∀ 0 ≤ v ≤ V − 1, 1 ≤ k ≤ K

φ(V ) =

√
Pt

KV
[ exp(jφ0) exp(jφ1) ... exp(jφV−1)]

T (6.34b)

fk = k(V − L− 1) (6.34c)

{φv} ∈ [−π, π] (6.35)

Proof. See Appendix E.

Remark : By employing the training design described in (6.33), T̃H T̃ in (E.7) is diagonal

and the MMSE of (6.32) is attained. The time-domain training sequences can be obtained

from (6.15b) in a straight-forward manner by using the relation, t = (IK ⊗W
HP

(t)
0:V−1) T̃.

It can be noticed that a simple way of making the term, T̃∗
k1
[v, v] T̃k2 [v, v] in (E.13) equal

to zero is to allow only (L + 1) out of V subcarriers dedicated for training symbols to be

used at any given antenna. These equispaced and equipowered training symbols occupy

disjoint sets of subcarriers at each transmit antenna. Clearly, such a scheme utilizes only

(L+ 1) out of V subcarriers dedicated for training symbols at any given antenna. On the

other hand, a general training scheme design described in (6.33) uses all non data-bearing

subcarriers, i.e., V for channel estimation purposes.

In [95], disjoint sets of subcarriers were considered to reduce the MMSE channel es-

timation error. Training designs similar to ours were shown in [108] by minimizing the

least-squares channel estimation error and in [99] by minimizing the MSE of the LMMSE

channel estimate. In [115], several classes of training schemes are derived by minimizing the

least-squares channel estimation error. In this work, the disjoint allocation of subcarriers

for training symbols from different antennas is referred to as a frequency domain multiplex-

ing (FDM) scheme and the phase-shift orthogonal design as a code-division multiplexing in

the frequency domain (CDM(F)) scheme.
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Remark : If we were to initialize the Kalman recursion by substituting the scaled identity

covariance matrix of hn for M−1|−1, the one-step prediction error matrix, Mn|n−1 is always

a scaled identity matrix. Consequently, the matrix K̃n , Kn ( IK ⊗ T̃) is also a scaled

identity matrix since ( IK ⊗ T̃HT̃) is designed to be a scaled identity matrix. This is better

understood by writing the alternative version of the Kalman gain matrix using the matrix

inversion lemma2:

Kn = σ−2
z Mn|n−1( IK ⊗ T̃H)

− σ−4
z Mn|n−1 ( IK ⊗ T̃HT̃) (M−1

n|n−1 + ( IK ⊗ T̃HT̃) )−1( IK ⊗ T̃H ) (6.36)

As an extension of the above remark, due to assumption, (A1) and the optimal training

design described by Lemma 6.1, M(∞) is also a scaled identity matrix. It can be showed

that an arbitrary diagonal element, m(∞) , M(∞)[l, l], 0 ≤ l ≤ K2(L + 1) − 1 is given as

follows:

m(∞) =
σ2
z(a

2 m(∞) + σ2
u)

σ2
z +

Pt

K
( a2 m(∞) + σ2

u)

=
σ2
h

1
2

(
1 +

σ2
h
Pt

σ2
z K

)
+

√
1
4

(
1 +

σ2
h
Pt

σ2
z K

)2
+ a2

1−a2
σ2
h
Pt

σ2
z K

(6.37)

This steady-state Ricatti solution is the lower bound on the MMSE for estimating any of

the K2(L+1) channel filter taps, irrespective of the particular phase being considered. To

compute the steady state MMSE characteristics, we let n → ∞, and define,

M
(∞)
j , lim

n→∞
MnN+j|nN+j (6.38)

for j ∈ [0, N − 1]. We can now review the closed-form expressions for steady state channel

MMSEs in training and data transmission phases based on [116].

Lemma 6.2. When the training vectors are designed according to (6.33) and a Kalman

filter is employed to perform channel tracking, the steady state channel MMSEs for the

2(A+BCD)−1 = A−1 −A−1B(C−1 +DA−1 B )−1DA−1
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system model corresponding to (6.21), (6.22) and (6.25) are given as follows:

m
(∞)
N−1 = δ

(∞)
N−1[l, l] +m(∞) (6.39a)

Training Phase ( j ∈ [0, Nt − 1] ) :

m
(∞)
j = m(∞) +

(1− α) δ
(∞)
N−1[l, l]

β (1− αj) δ
(∞)
N−1[l, l] + αj (1− α)

(6.39b)

Data Transmission Phase ( j ∈ [Nt, N − 1] ) :

m
(∞)
j =

m
(∞)
N−1 − σ2

h (1− a2(N−j))

a2(N−j)
(6.39c)

where m
(∞)
j , M

(∞)
j [l, l] and δ

(∞)
N−1[l, l] is computed as follows:

δ
(∞)
N−1[l, l] = −b∞ +

√
b2∞ + c∞ (6.40a)

b∞ ,

(
αNt − a2(N−Nt)

αN−t − 1

)(
α− 1

2β

)
−
(
1− a2(N−Nt)

2

)
(σ2

h −m(∞)) (6.40b)

c∞ , αNt

(
1− a2(N−Nt)

αNt − 1

)(
α− 1

β

)
(σ2

h −m(∞)) (6.40c)

α ,
1

a2

(
1 + ( σ2

h − a2(σ2
h −m(∞)))

Pt

K

)2

(6.40d)

β ,
Pt

K

(
1 + ( σ2

h − a2(σ2
h −m(∞)))

Pt

K

)
(6.40e)

Proof. See proof of Lemma 1 in [116].

6.5 Capacity Bounds with Sequential MMSE Channel

Estimation

Similar to [97], we consider the capacity in bits per channel use to be the maximum

over the distribution of the transmit signal of the mutual information between the known

training symbols and the observations and the unknown transmitted signal. In other words,

for the system model shown in (6.21), (6.22) and (6.25), the channel capacity averaged over
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the random channel is defined as follows:

C =
1

N
× M

P

Nt−1∑

n=0

E

[
max

px(.),E[||x̃n||2]=Pdt

I ( ỹ(dt)
n ; x̃n | ̂̃Hn )

]

+
1

N

N−1∑

n=Nt

E

[
max

ps(.),E[||̃sn||2]=Pd

I ( r̃n; s̃n |Ĥn )

]
bits/channel use (6.41)

6.5.1 Upper Bound on the Channel Capacity

To benchmark the maximum achievable capacity, we consider the ideal scenario where

the channel estimation is perfect. We also utilize the Gaussianity assumption on the dis-

tribution of the information symbol vectors, x̃n and s̃n due to (A2) in the channel capacity

expression. We now have the following result:

Theorem 6.4. The upper bound on the channel capacity for the system model shown

in (6.21), (6.22) and (6.25) is obtained when the information symbol vectors, x̃n and s̃n

are Gaussian distributed and is given by the expression:

Cu =
Nt

N
× M

P
E

[
max

px(.),E[||x̃n||2]=Pdt

I ( ỹ
(dt)
0 ; x̃0 |H̃0 )

]

+
Nd

N
E

[
max

ps(.),E[||̃sn||2]=Pd

I ( r̃Nt
; s̃Nt

|HNt
)

]
bits/channel use

=
Nt

N
× M

P
E

[
log det

(
IKM +

Pdt

σ2
z

H̃0 H̃
H

0

)]

+
Nd

N
E

[
log det

(
IKP +

Pd

σ2
z

HNt
H

H

Nt

)]
bits/channel use (6.42)

Proof. See Appendix F.

6.5.2 Lower Bound on the Channel Capacity

From [87] and [97, Theorem 1], we know that the lower bound on the mutual information

between the channel input and its output is obtained when the additive noise is Gaussian

distributed. In other words, when imperfect channel estimates are employed for estimating

information symbols, a zero-mean uncorrelated complex Gaussian noise vector minimizes

the upper bound over the distribution of the information symbol vector of the mutual
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information between the transmitted and observed information symbols. For the problem

under consideration, the following signal model can be written by expressing the estimated

channel matrix, as a sum of the conditional mean, and the random error component,

ỹ(d)
n =

̂̃
Hn x̃n +

ˇ̃
Hn x̃n + z̃n =

̂̃
Hn x̃n + (IK ⊗ X̃n) ȟn + z̃n (6.43a)

r̃n = Ĥn s̃n + Ȟn s̃n + z̃n = Ĥn s̃n + (IK ⊗ S̃n) ȟn + z̃n (6.43b)

In (6.43a), we made use of the following relationship,

P
(Q)T
0:M−1 H̄

(n)

k,k̄
P

(Q)
0:M−1 x̃n,k̄ =

√
P X̃n,k̄ P

(Q)T
0:M−1 W0:L h

(n)

k,k̄
= X̃n,k̄ W̌0:L h

(n)

k,k̄
(6.44)

where X̃n,k̄ , diag (x̃n,k̄), W̌0:L ,
√
P P

(Q)T
0:M−1 W0:L and

X̃n , [X̃n,1 W̌0:L X̃n,2 W̌0:L ... X̃n,K W̌0:L] (6.45)

Similarly, in (6.43b), we made use of the following relationship,

H̄
(n)

k,k̄
s̃n,k̄ =

√
P S̃n,k̄ W0:L h

(n)

k,k̄
(6.46)

where S̃n,k̄ , diag (̃sn,k̄) and

S̃n , [
√
P S̃n,1 W0:L

√
P S̃n,2 W0:L ...

√
P S̃n,K W0:L] (6.47)

It should be observed that in (6.22) and (6.25), the channel is unknown whereas in (6.43a)

and (6.43b), the channel is known. Furthermore, the additive noise in the former two

equations is Gaussian and independent of the information symbols whereas in the latter

two, it is possibly neither. This is due to the fact that each of the effective additive

noise vectors, z̃
(dt)
n , (IK ⊗ X̃n) ȟn + z̃n and z̃

(d)
n , (IK ⊗ S̃n) ȟn + z̃n appear to be a

sum of a Gaussian vector and a vector whose elements are obtained by summing products

of Gaussian random variables. As a result, we will merely derive the lower bound by

replacing the effective noise vectors, with Gaussian noise vectors that possess the same

average powers. The expressions for the average noise powers in each phase are as shown

below.
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Training Phase

σ2
z(dt)(n) =

1

KM
E{ trace{ z̃(dt)n z̃(dt)Hn } }

=
1

M
m

(∞)
k E{ trace{X̃n X̃

H

n} }+ σ2
z

=
1

M
m(∞)

n

K∑

k=1

E{ trace{X̃n,k W̌0:L W̌
H

0:L X̃
H

n,k } }+ σ2
z

=
L+ 1

M
m(∞)

n

K∑

k=1

M−1∑

m=0

E{ |X̃n,k[m,m]|2 }+ σ2
z

=
L+ 1

M
m(∞)

n Mσ2
x + σ2

z

= (L+ 1)Pdt m
(∞)
n + σ2

z n ∈ [0, Nt − 1] (6.48)

where we substituted, σ2
x = Pdt to account for the power budget on the transmit symbols

in the training phase.

Data Transmission Phase

σ2
z(d)(n) =

1

KP
E{ trace{ z̃(d)n z̃(d)Hn } }

=
1

P
m(∞)

n E{ trace{S̃n S̃
H

n} }+ σ2
z

=
1

P
m(∞)

n

K∑

k=1

E{ trace{P S̃n,k W̌0:L W̌
H

0:L S̃
H

n,k } }+ σ2
z

=
L+ 1

P
m(∞)

n

K∑

k=1

P−1∑

p=0

E{ |S̃n,k[p, p]|2 }+ σ2
z

=
L+ 1

P
m(∞)

n Kσ2
s + σ2

z

= (L+ 1)Pd m
(∞)
n + σ2

z n ∈ [Nt, N − 1] (6.49)

where we substituted, σ2
s = Pd to account for the power budget on the transmit symbols

in the data transmission phase.

The lower bound on the channel capacity when the estimated MIMO channels are taken

to be the true channels is now given by the following result.

Theorem 6.5. The worst-case lower bound on the channel capacity for the system model
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shown in (6.21), (6.22) and (6.25) is obtained when the additive noise is Gaussian dis-

tributed and is maximized when the information symbol vectors, x̃n and s̃n are Gaussian

distributed. It is given by the expression:

C =
1

N
× M

P

Nt−1∑

n=0

E

[
max

px(.),E[||x̃n||2]=Pdt

I ( ỹ(dt)
n ; x̃n | ̂̃Hn )

]

+
1

N

N−1∑

n=Nt

E

[
max

ps(.),E[||̃sn||2]=Pd

I ( r̃n; s̃n |Ĥn )

]
bits/channel use

≥ 1

N
× M

P

Nt−1∑

n=0

log det (IKM + Pdt σ
2
z(dt)(n)

̂̃
H

H

n
̂̃
Hn)

+
1

N

N−1∑

n=Nt

log det (IKP + Pd σ
2
z(d)(n) Ĥ

H

n Ĥn). (6.50)

Proof. See Appendix G.

6.6 Simulation Results

In our simulation, we set K = 2, P = 32 and L = 3. We also selected P = 1, so that

the SNR is defined as: SNR , −10 log10σ2
z . We selected the Rayleigh channel variance to

be σ2
h = 1/(L + 1). Moreover, we normalized the Bayesian CRB and the channel variance

values by the number of MIMO channel coefficients, i.e., K2(L+1). Moreover, we averaged

the results over 500 randomly generated MIMO channel vectors.

6.6.1 MMSE of the Channel Estimator

In this subsection, we have not generated the Rayleigh channels such that there is a

correlation between successive block indices. In other words, each MIMO channel vector of

any index is assumed to be independent of the MIMO channel vector of any other index.

Moreover, we consider each block to contain training and information symbols such that

channel tracking is not performed. That is each block is represented by (6.21) and (6.22)

alone. This also imples that Pdt+⌈ = 1 and Pd = 0 is assumed. Furthermore, we distribute

the power equally among the training symbols and the information symbols. We generate
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Fig. 6.2 MMSE of channel coefficients

the training vectors according to 6.33. We simulate the input vector such that the elements

are drawn from a Gaussian distribution. The result of MMSE channel estimation and the

MMSE estimation of information symbols is shown in Fig.s 6.2 and 6.3. The primary goal

of this exercise is only to test the MMSE nature of the training sequences.

6.6.2 Capacity Bounds

In this subsection, we selected the MIMO channel vectors such that they are correlated

with a = 0.95. We also selected the excitation noise with the appropriate variance so that

the channel vectors are WSS. Given the fact that the channel capacity lower bound given

by 6.50 is quite involved, we do not attempt to provide an analytical result for the optimal

power allocation. Consequently, we resort to numerical optimization to optimally allocate

power between the training and data transmission phases. For comparison purposes, we

provide the upper and lower bounds when power is equally distributed between training

and information symbols. The plot is shown in Fig. 6.4. It can be noticed that at a high

SNR of 30 dB, the capacity lower bound is approximately 5 dB higher when optimal power
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Fig. 6.3 MMSE of information symbols

allocation is performed compared to the equi-powered case.

Additionally, we provide the variance of the MMSE estimates of the information symbols

in Fig. 6.5. As expected based on the results of Fig. 6.4, we see that the optimal allocation

of power results in a characteristics that is closer to the case where the channel is perfectly

known compared to an equi-powered scheme.

6.7 Chapter Summary

In this chapter, we have shown that similar to a SISO case, an OFDM linear precoder

with an FDM training sequence satisfies the orthogonality condition and results in de-

coupled channel estimation and symbol detection. Furthermore, we have derived optimal

training sequences such that the FDM training sequences between different antennas are

phase-shift orthogonal to each other. Based on the structure of the training matrices,

the Kalman filter recursion was simplified to a scalar recursion. Eventually, the upper and

lower bounds on the channel capacity were obtained by utilizing the Kalman filter’s MMSE

expressions to account for imperfect channel estimates. Also, the simulation results shown
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have confirmed the theoretical results.
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Chapter 7

Conclusions and Future Work

In this dissertation, we have shown that:

• Wireless spectrum occupancy in average case urban environments, which is the more

interesting one compared to the worst case urban scenarios exhibit spatial, temporal

and frequency-wise variations in spectrum occupancy. Furthermore, we have mod-

eled the variations corresponding to a few bands using a linear mixed effects model

and have drawn quantifiable results on the percentage spectrum occupancy and the

activity period of the licensed transmissions.

• We then extended this analysis to vehicular settings. Due to an increased demand

for high-speed vehicle-to-vehicle and/or vehicle-to-infrastructure communications, the

vacant UHF DTV band which became available following to analog-to-digital switchover

is seen as a means for secondary access. We conducted a feasibility analysis based on

the directives of the FCC and the IEEE 802.22 draft standard to create a geo-location

database that identifies vacant channels in a given area.

• Although the identification of vacant channels is an important component of achiev-

ing secondary access, interference-free coexistance with a neighboring band licensed

user dictates the amount of bandwidth that can be utilized. We looked into these

mutual interference issues under two schemes, namely, non-contiguous OFDM and

non-contiguous NOFDM.

• Finally, due to the capacity gains offered by MIMO-OFDM systems, we studied

the impact of receiver estimation error on the lower bound of channel capacity. We
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derived MMSE optimal training sequences and simplified Kalman recursion in matrix

variables to a Kalman recursion in scalar variables. Based on the MMSE expressions

obtained, we formulated the lower bound on the channel capacity.
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7.1 Future Work

Based on the work presented in this dissertation, there are several directions in which

the results can be extended. The following is a short list.

• We have used linear mixed-effects model to characterize the influence of several regres-

sor variables on a variable of interest. However, we have not conducted a comparative

analysis on other statistical models that perhaps provide a better fit to the observa-

tions with respect to the same regressor variables. Another possible study involves the

correlation that would exists between the data points collected in the same city and

between sites that are not separated by a great distance. It is possible that exploiting

this correlation gives further insight into the occupancy of the licensed channels.

• As mentioned previously, in vehicular DSA, the availability of vacant channels is

a funtion of distance with respect to the nearby DTV transmitters as well as the

velocity at which the mobile unit is traveling. As a result, switching over from an

occupied channel to a vacant one when it becomes unavailable requires a sensing

mechanism that is accurate and fast. In other words, standard approaches such as

energy detection which are not particularly known to yield a high probability of

detection with reasonably low probability of false alarm may not work. Similarly,

cyclostationary approaches that require large datasets also fail to meet the above

condition. Identifying the appropriate sensing technique in vehicular environments

where the channel vacancy characteristics change rapidly is of great significance.

• The mutual inteference analysis that we have conducted can be extended to analyze

the bit error rates of primary and secondary users as a function of the signal-to-

interference-plus-noise ratio. Such an analysis would provide further insight into

quantifying the data-rate that is possible in such an impaired channel environment.

Furthermore, capacity considerations in cognitive radio networks has attracted a good

deal of attention from the wireless research community.
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• While the problem of optimal training design for a MIMO-OFDM communiction sys-

tem is comparatively easy to solve, a harder problem is training design when there

are within-block variations of the channel where orthogonality between subcarriers is

destroyed. In other words, by considering blockwise time-variations of the channel

vector, the problem is more manageable compared to the case where the channel vec-

tor’s time-variations occur shorter than the duration of the block. Although training

designs have been provided when all the symbols in the block are known [117], it is not

known what the optimal training and placement is. However, it has been suggested

that grouping pilot symbols in clusters across subcarriers leads to lower channel MSE

for fast time-varying channels than equispaced placed which is known to be optimal

for time-invariant channels [118].



102

Appendix A

Linear Mixed Effects Model

In this chapter, we provide details on the linear mixed-effects that we employ to describe

spectrum occupancy characteristics. The normal linear model given by the equation:

yi = β1x1i + β2x2i + ...+ βpxpi + εi, (A.1)

explains the relationship between one or more independent variables, called regressor vari-

ables, and a dependent variable, called the response variable. The parameters of the model

are called the regression coefficients, specified as β1, β2,...,βp, and the error variance, de-

fined as σ2. The above model has one random effect term, the error term εi given by:

εi ∼ N(0, σ2), (A.2)

which is assumed to be independent and identically distributed (i.i.d.). Another important

assumption is that the sample is drawn randomly from the population of interest. Usually,

we set x1i = 1 while β1 is either a constant or an intercept. Therefore, rewriting the model

in matrix form yields:

y = Xβ + ε, (A.3)

ε ∼ Nn(0, σ
2In), (A.4)

where we define the following variables:

• y=[y1, y2, ..., yn]
T, is the response vector,

• X is the model matrix
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• β=[β1, β2, ..., βn]
T, is the vector of regression coefficients,

• ε=[ε1, ε2, ..., εn]
T, is the vector of errors, and

• Nn represents the n-variable multivariate-normal distribution.

Estimating the parameters of the above model is a well known linear least squares

problem. The estimate of the regression coefficient vector is given by the expression:

β̂ = (XTX)−1XTy. (A.5)

Several variants of the basic linear regression model of Eq. (A.1) are widely used in

various areas of science. One such variant is the mixed effect model. These models include

additional random effect terms and are appropriate in representing clustered, and therefore,

dependent data arising when data are collected over time on the same entities. That is,

these repeated measures data are generated by observing a number of entities repeatedly

under differing experimental conditions, where the entities are assumed to constitute a

random sample from a population of interest. Longitudinal data constitute a common

type of repeated measures data, where the observations are ordered by time or position

in space. In general, longitudinal data can be defined as repeated measures data where

the observations within entities could not have been randomly assigned to the levels of a

“treatment” of interest (usually time or position in space). Hence, serial correlation results.

Writing the linear mixed effect model of the form shown in Eq. (A.1) yields:

yi = β1x1i + β2x2i + ...+ βpxpi

+b1z1i + b2z2i + ...+ bqzqi + εi
(A.6)

where

bi ∼ N(0, σ2D)

and

εij ∼ N(0, σ2Λ)

Alternately, but equivalently, the above model can be written in matrix form as:

yi = Xiβ + Zib+ εi (A.7)
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b ∼ Nq(0, σ
2D)

εi ∼ Nni(0, σ
2Λ)

where we define the following variables:

• yi is the ni × 1 response variable for observations in the ith group,

• Xi is the ni × p model vector for the fixed effects for observations in the ith group,

• β is the p× 1 vector of fixed-effects coefficients for the ith group,

• Zi is the ni× q model matrix for the random effects for observations in the ith group,

• bi is the q × 1 vector of random-effects coefficients for the ith group,

• εi is the ni × 1 variable of error for the ith group,

• σ2D is the q × q covariance matrix for the random-effects, and

• σ2Λ is the ni × ni covariance matrix for the errors in the ith group.

From the above representation, defineX=[X1
T, X2

T,..., XM
T]T, D̃ = diag(D1,D2, ...,DM)

and Z=diag(Z1,Z2,...ZM). When the variance components Λ and D are known, the stan-

dard estimators for β and b are the generalized linear estimator β̂lin=(XTV−1X)−1XTV−1y

where V = Λ+ ZDZT and the posterior mean, b̂lin=DZTV−1(y −Xβ̂). The estimates

β̂lin and b̂lin jointly maximize the function [119]:

glin(β, b|y) =− 1

2
σ−2(y−Xβ − Zb)TΛ−1(y−Xβ − Zb)

− 1

2
σ−2bTD̃b.

(A.8)

The above function is the logarithm of the posterior density of b (up to a constant) for fixed

β and for fixed b is the log-likelihood for β (up to a constant). Eq. (A.8) has two terms,

a sum of squares term and a quadratic term in b. By transforming the quadratic term in

b to an equivalent sum of squares term, the optimization can be treated purely as a least

squares problem. Then it is straightforward to translate it into the nonlinear setting.
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Appendix B

An Overview of Complex-Valued

Matrix Differentiation

In order to evaluate the partial derivatives involved in identifying the FIMs of the

likelihood functions shown in eq.s () w.r.t the unknown parameters, we apply the chain

rule for finding partial derivatives of a complex-valued vector as outlined in [120, Theorem

1]. The statement of the theorem and a brief discussion is provided here for reference.

For a detailed introduction to the framework on determining the derivatives of a general

complex-valued matrix function using complex differentials, see [120].

Theorem (Chain Rule [120]). Let (S0, S1, S2) ⊆ R
K×L × C

N×Q × C
N×Q, and let F :

S0 × S1 × S2 → C
M×P be differentiable w.r.t its first, second and third argument at an

interior point (X, Z, Z∗ ) in the set S0 × S1 × S2. Let T0 × T1 ⊆ C
M×P × C

M×P be such

that (F (X, Z, Z∗ , F ∗ (X, Z, Z∗ ) ) ∈ T0 × T1 for all (X, Z, Z∗ ) ∈ S0 × S1 × S2.

Assume that G : T0×T1 → C
R×S is differentiable at an interior point (F (X, Z, Z∗ ),

F ∗ (X, Z, Z∗ ) ) ∈ T0 × T1. Define the composite function H : S0 × S1 × S2 → C
R×S by

H (X, Z, Z∗) ) , G (F (X, Z, Z∗ , F ∗ (X, Z, Z∗ ) ). The derivatives DX H, DZ H

and DZ∗ H are:

DX H = (DF G )DX F + (DF ∗ G )DX F ∗ (B.1a)

DZ H = (DF G )DZ F + (DF ∗ G )DZ F ∗ (B.1b)

DZ∗ H = (DF G )DZ∗ F + (DF ∗ G )DZ∗ F ∗ (B.1c)
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Following the notational convention of [120], the set of patterned matrices is denoted

as, W ⊆ C
M×P and a particular patterned matrix as, W ∈ W , W is parameterized by the

matrizes, X and Z through the relation, W = F (X, Z, Z∗), where F is referred to as

pattern producing function. In order to apply the chain rule, the matrix functions F and

G must be differentiable which is possible when these functions do not contain patterns.

Therefore, we let the domain of the matrix function G, to be the elements that belong to

the larger set of unpatterned matrices, W̃ such that when G ( W̃ , W̃ ∗ ) is restricted to the

patterned matrices W and W ∗, we obtain the function whose derivative we want to find.

In other words,

G (W , W ∗ ) = G ( W̃ , W̃ ∗ )|
W̃=W=F (X,Z,Z∗)

= G (F (X, Z, Z∗ , F ∗ (X, Z, Z∗ ) )

, H (X, Z, Z∗) ) (B.2)

Hence, the derivative of H (X, Z, Z∗) ) w.r.t X, Z and Z∗ can be written using the

chain rule shown in eq.s (B.1a), (B.1b) and (B.1c) in the form of eq.s (B.3a), (B.3b) and

(B.3c).

DX H (X, Z , Z∗) ) = (DF G ( W̃ , W̃ ∗ )|
W̃=W=F (X,Z,Z∗) )DX F (X, Z, Z∗)

+ (DF ∗ G ( W̃ , W̃ ∗ )|
W̃=W=F (X,Z,Z∗) )DX F ∗ (X, Z, Z∗) (B.3a)

DZ H (X, Z , Z∗) ) = (DF G ( W̃ , W̃ ∗ )|
W̃=W=F (X,Z,Z∗) )DZ F (X, Z, Z∗)

+ (DF ∗ G ( W̃ , W̃ ∗ )|
W̃=W=F (X,Z,Z∗) )DZ F ∗ (X, Z, Z∗) (B.3b)

DZ∗ H (X, Z , Z∗) ) = (DF G ( W̃ , W̃ ∗ )|
W̃=W=F (X,Z,Z∗) )DZ∗ F (X, Z, Z∗)

+ (DF ∗ G ( W̃ , W̃ ∗ )|
W̃=W=F (X,Z,Z∗) )DZ∗ F ∗ (X, Z, Z∗) (B.3c)
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Appendix C

Proof of Theorem 6.1

From [121], we know that the complex FIM is given by the equation,

E

{(
∂ ln p(yn;hn)

∂ h∗
n

)(
∂ ln p(yn;hn)

∂ h∗
n

)H
}

= E

{
E

[(
∂ ln p(yn|hn)

∂ h∗
n

)(
∂ ln p(yn|hn)

∂ h∗
n

)H

|hn

]}

+ E

{(
∂ ln p(hn)

∂h∗
n

) (
∂ ln p(hn)

∂h∗
n

)H
}

(C.1)

In the second equality of the above equation, the inner expectation in the first term is w.r.t

yn, whereas the outer expectaton is w.r.t hn. The log-likelihood function of the probability

density function, p(yn|hn) in (C.1) and its derivative are as follows:

ln p(yn|hn) = constant− ln (|Ryn
|)− uH R−1

yn
u (C.2a)

∂ ln p(yn|hn)

∂ h∗
n

= −∂ ln |Ryn|
∂ h∗

n

− ∂ uHRy
−1
n u

∂ h∗
n

(C.2b)
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where, u , (yn − (IK ⊗T)hn) and

Ryn = σ2
x Hn QQHH

H

n + σ2
zIKP

= σ2
x

KM−1∑

n=0

Qnhnh
H

nQ
H

n + σ2
zIKP (C.3a)

Ry
−1
n = σ−2

z IKP − σ−4
z σ2

xHnQ
(
IKM + σ−2

z σ2
xQ

HH
H

n Hn Q
)−1

QHH
H

n

= σ−2
z IKP − σ−4

z σ2
xHnQGQHH

H

n (C.3b)

and Qn , IK ⊗ [Qn,1 Qn,2 . . . Qn,K ] are obtained from each of the KM columns of Q.

The matrices {Qn,k} are a result of applying the commutativity property of convolution. It

should be noted we have not utilized the block-diagonal structure of Q in obtaining {Qn,k}.
In other words, the matrices {Qn,k} are constructed without explicit consideration of the

fact that (K − 1)P out of KP elements in each column of Q are zeros. We have utilized

the matrix inversion lemma in obtaining (C.3b) where G ,
(
IKM + σ−2

z σ2
xQ

HH
H

n Hn Q
)−1

.

We now evaluate the two partial derivatives in (C.2b) separately.

(i)
∂ ln |Ryn|

∂ h∗
n

: Using (B.1c), we note that

∂ ln |Ryn|
∂ h∗

n

= Dh∗

n
ln |Ryn|

= (DRyn
ln |Ryn| )Dh∗

n
Ryn + (DRy

∗

n
ln |Ryn| )Dh∗

n
Ry

∗
n (C.4)

Here, DRyn
ln |Ryn| = Ry

−T

n and DRy
∗

n
ln |Ryn| = 0 [122, Table II]. Moreover, from (C.3a),

we see that,

dRyn = σ2
x

KM−1∑

n=0

Qnhn dh
H

nQ
H

n + σ2
x

KM−1∑

n=0

Qn dhnh
H

nQ
H

n (C.5a)

dvecRyn = σ2
x

KM−1∑

n=0

(Q∗
n ⊗Qnhn)d vec(h

∗
n)

+ σ2
x

KM−1∑

n=0

(Q∗
nh

∗
n ⊗Qn)d vec(hn) (C.5b)
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From the above equations and [120, Table III], we notice that, Dh∗

n
Ryn = σ2

x

∑KM−1
n=0 (Q∗

n⊗
Qnhn). It should be noted that the definition of the partial derivative for the case of a scalar

function w.r.t a column vector adopted by Hjørungnes et al, results in a row vector [120,

Table III]. For the problem under consideration, we consider this definition to lead to

transposed derivative. Therefore, we perform a transpose operation of the results obtained

based on (B.3a), (B.3b) and (B.3c) in order to obtain the FIM with appropriate dimensions.

As a result,

∂ ln |Ryn|
∂ h∗

n

= (DRyn
ln |Ryn| )Dh∗

n
Ryn

=

(
vecT

[
∂ ln |Ryn|
∂Ryn

] [
∂vecRyn

∂Th∗
n

])T

= σ2
x

KM−1∑

n=0

(QH

n ⊗ hT

nQ
T

n) vec(Ry
−T

n ) (C.6)

(ii)
∂ uHRy

−1
n u

∂ h∗
n

: Using (B.1c), we can similarly show that

∂ uHRy
−1
n u

∂ h∗
n

=− σ2
x

KM−1∑

n=0

(QH

n ⊗ hT

nQ
T

n)(Ry
−1
n ⊗Ry

−T

n )(u⊗ u∗)

− (IK ⊗T)HRy
−1
n u (C.7)

Hence, from (C.2b),

∂ ln p(y|hn)

∂ h∗
n

= σ2
x

KM−1∑

n=0

(QH

n ⊗ hT

nQ
T

n)[(Ry
−1
n ⊗Ry

−T

n )(u⊗ u∗)− vec(Ry
−T

n )]

+ (IK ⊗T)HRy
−1
n u (C.8)

Before we evaluate the inner expectation in the first term of the second equality of (C.1),

we notice that,

E [u⊗ u∗] = E
[
vec(u∗uT)

]
= vec(E

[
u∗uT

]
) = vec(Ry

T

n) (C.9)
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Incidentally, by utilizing the above result, we can see that E

[
∂ ln p(yn|hn)

∂ h∗

n

]
= 0 indicating

that the regularity condition is satisfied. Employing (C.8) and (C.9), we can show that

E

[(
∂ ln p(y|hn)

∂ h∗
n

)(
∂ ln p(y|hn)

∂ h∗
n

)H

|hn

]

= (IK ⊗T)HRy
−1
n (IK ⊗T) + σ4

x

KM−1∑

n=0

(QH

n ⊗ hT

nQ
T

n)(Ry
−1
n ⊗Ry

−T

n )

×
KM−1∑

n=0

(Q∗
n ⊗Qnhn) (C.10)

Moreover, we observe that E

{(
∂ ln p(hn)

∂h∗

n

) (
∂ ln p(hn)

∂h∗

n

)H}
= σ−2

h IK2(L+1). Substituting this

result along with (C.10) and (C.3b) in (C.1) gives:

I(hn) = Eh

{
(IK ⊗T)HRy

−1
n (IK ⊗T)

}
+ σ4

x Ξ(Q) + σ−2
h IK2(L+1)

= σ−2
z (IK ⊗T)H (IK ⊗T)− σ−4

z σ2
x Eh

{
(IK ⊗T)H Hn QGQHH

H

n(IK ⊗T)
}

+ σ4
x Ξ(Q) + σ−2

h IK2(L+1)

= σ−2
z (IK ⊗T)H (IK ⊗T)− σ−4

z σ2
x Ξ(t, Q) + σ4

x Ξ(Q) + σ−2
h IK2(L+1) (C.11)
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Appendix D

Proof of Theorem 6.2

From (6.13c), we see that G is the inverse of sum of two full-rank positive-definite

matrices. This is because, Hn is a Rayleigh-fading channel matrix of full rank (with

probability 1) due to (A1) and (C1) stipulates that Q be a full column-rank matrix. Hence,

QHH
H

n Hn Q is a matrix with strictly-positive eigenvalues. Together with the fact that

IKM is also a matrix with strictly-positive eigen-values, we arrive at the result that G ≻ 0.

By making a similar argument, we can show that Ry
−1
n ≻ 0. As a result of the above

statements, we can claim that Ξ(t, Q) � 0 and Ξ(t) � 0. Combining the above results

with (C1) leads us to conclude that I(hn) ≻ 0. Now, based on a previous observation

that only Ξ(t, Q) is the term under the designer’s control, we see that I(opt)(hn) � I(hn)

where the optimal Bayesian FIM for a training-based channel estimator is as follows:

I
(opt)(hn) = σ−2

z (IK ⊗T)H (IK ⊗T) + σ4
x Ξ(Q) + σ−2

h IK2(L+1) (D.1)

It should be noticed that for any A, B ≻ 0 such that A � B, we have B−1 � A−1 and

therefore, tr (B−1) � tr (A−1). Hence, finding the conditions under which I
(opt)(hn) �

I(hn) is equivalent to finding the conditions under which tr (I(opt)(hn)
−1) � tr (I(hn)

−1).

where tr (I(opt)(hn)
−1) is the Bayesian CRB of a non decision-aided channel estimator for

the system model described in (6.9). We can now see that I(opt)(hn) is obtained by making
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Ξ(t, Q) = 0 which in turn is possible by enforcing the condition:

(IK ⊗T)H Hn Q =




TH H
(n)
1,1 Q1 TH H

(n)
1,2 Q2 . . . TH H

(n)
1,K QK

TH H
(n)
2,1 Q1 TH H

(n)
2,2 Q2 . . . TH H

(n)
2,K QK

...
...

. . .
...

TH H
(n)
K,1 Q1 TH H

(n)
K,2 Q2 . . . TH H

(n)
K,K QK



= 0 (D.2)

In other words,

TH H
(n)
i,j Qj = 0 1 ≤ i, j ≤ K (D.3)

We now utilize the commutativity property of convolution and in a manner similar in the

construction of the matrices, {Tk}, we see that H(n)
i,j Qj = [Qj, 1h

(n)
i,j Qj, 2h

(n)
i,j ...Qj,M−1h

(n)
i,j ]

where the circulant matrices, {Qj,m} are constructed such that [qj,m[0] ... qj,m[P − 1]]T is

the first column and [qj,m[0] tk[P − L] ... qj,m[P − 1]] is the first row. The column vector

qj,m is the mth column of the jth linear precoder, Qj. Hence,

TH

i Qj,m = 0 1 ≤ i, j ≤ K 0 ≤ m ≤ M − 1 (D.4)



113

Appendix E

Proof of Lemma 6.1

Firstly, it is easy to see that the optimal MMSE estimator coincides with the linear

MMSE estimator for the system under consideration i.e., (6.21), due to the joint Gaussian

nature of the unknown parameter and the observation vectors. The optimal minimum

mean squared-error (MMSE) channel estimator, ĥn is now [111, (11.33) and (11.35)]:

ĥn = σ−2
z [ σ−2

h IK2(L+1) + σ−2
z (IK ⊗ T̃H T̃) ]−1 (IK ⊗ T̃H) ỹn (E.1a)

C∆hn
= [ σ−2

h IK2(L+1) + σ−2
z (IK ⊗ T̃H T̃) ]−1 (E.1b)

where, ∆hn = hn − ĥn. The resulting channel estimator error variance is,

σ2
∆hn

= trace {C∆hn
}

= trace {[σ−2
h IK2(L+1) + σ−2

z (IK ⊗ T̃H T̃) ]−1} (E.2)

The optimal T̃, T̃(opt) needs to minimize σ2
∆hn

subject to (6.28). An equivalent repre-

sentaion of this pilot power constraint that will be useful for finding T̃(opt) is as follows:

trace (T̃H

k T̃k) = Pt/K (E.3a)

trace (T̃H T̃) = (L+ 1)Pt (E.3b)

As a result of (E.3b), we have

T̃(opt) = argT̃ min
trace (T̃H T̃)=(L+1)Pt

σ2
∆hn

(E.4)
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From [94, Appendix I], we see that for any M ×M dimensional positive-definite matrix A,

trace(A−1) ≥
M−1∑

m=0

1

am,m

(E.5)

where the equality is attained if and only if A is diagonal. Therefore, if T̃(opt) is employed

to perform the MIMO-OFDM channel estimation, the resulting variance of the MMSE

channel estimator is as follows:

σ2
∆hn

= trace {[σ−2
h IK2(L+1) + σ−2

z (IK ⊗ T̃H T̃) ]−1}

≥
K2(L+1)−1∑

l=0

1

[σ−2
h IK2(L+1) + σ−2

z (IK ⊗ T̃H T̃) ]l,l

=
K3(L+ 1) σ2

z σ
2
h

Kσ2
z + σ2

h Pt

(E.6)

and equality in the above equation is attained when T̃H T̃ is diagonal.

E.0.1 Optimal Training Design

We now design the optimal training design that achieves the minimum MSE variance

shown in (E.6). We will see that in order to attain this bound, the pilot sequences of each

transmit antenna as well as their relationship with the training sequences emitted from

every other transmit antenna need to satisfy certain specific properties. These properties

are a direct consequence of (E.3b) and (E.5).

A closer observation of T̃H T̃ reveals the following:

T̃H T̃ =




R1,1 . . . R1,K

R2,1 . . . R2,K

...
. . .

...

RK,1 . . . RK,K




(E.7)

where, the (L+ 1)× (L+ 1) dimensional submatrix Rk1,k2 is defined based on (6.20) as:

Rk1,k2 , Ŵ
H

0:L T̃
H

k1
T̃k2 Ŵ0:L (E.8)
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The minimum variance as shown in (E.6) is therefore attained when

Rk1,k2 = Ŵ
H

0:L T̃
H

k1
T̃k2 Ŵ0:L =

P̄
K

IL+1δ(k1 − k2) (E.9)

Case - k1 = k2: In order to understand the conditions that need to be imposed on the

structure of T̃k, we examine an arbitrary element of Rk,k. From (E.9), we notice that

[Rk,k]l1,l2 =
V−1∑

v=0

|T̃k[v, v]|2 exp{−j2π lv(l2 − l1)/P}

=
Pt

K
δ(l1 − l2) (E.10)

It can be verified that the above expression is true under three conditions:

(C6) P = V S where S ∈ Z
+.

(C7) {lv}, the index set of subcarriers that carry pilot symbols are chosen such that lv =

ls + vS for ls ∈ [0, S − 1] and 0 ≤ v ≤ V − 1.

(C8) The pilot tones are all equally powered so that |T̃k[v, v]|2 = Pt

KV
.

The above conditions indicate that the pilot symbols used for channel estimation must be

equispaced in the subcarrier domain and equipowered. Due to (C8), we see that T̃∗
k T̃k =

Pt

KV
IV . Combined with the fact that Ŵ

H

0:L Ŵ0:L = V IL+1, we see that Rk,k = Pt

K
IL+1. We

now see that when K = 1, the following pilot sequence design:

T̃k = φ(V ) =

√
Pt

KV
[ exp(jφ0) exp(jφ1) ... exp(jφV−1)]

T (E.11)

meets conditions (C6), (C7), and (C8) that mandate the usage of equipowered, equispaced

pilots at each transmit antenna. In (E.11), {φv} are any arbitrary values in [−π, π].

Case - k1 6= k2: We now incorporate the consequences of imposing the condition, Rk1,k2 =

0 when k1 6= k2, in (E.11). We again utilize (E.9) and apply (C7). We see that

[Rk1,k2 ]l1,l2 = exp{−j2π ls(l1 − l2)/P}×
V−1∑

v=0

T̃∗
k1
[v, v] T̃k2 [v, v] exp{−j2π vS(l1 − l2)/P} (E.12)
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which equals zero when

V−1∑

v=0

T̃∗
k1
[v, v] T̃k2 [v, v] exp{−j2π vS(l1 − l2)/P} = 0

⇔
V−1∑

v=0

T̃∗
k1
[v, v] T̃k2 [v, v] exp{−j2π v(l1 − l2)/V } = 0 (E.13)

∀ 1 ≤ k1, k2 ≤ K and ∀ (l1 − l2) ∈ [0, ±1 ... ± L]. This condition clearly suggests that in

the frequency-domain, phase-shift orthogonality is required between the pilot sequences of

different transmit antennas over the range, (l1 − l2) ∈ [0, ±1 ... ± L]. Equivalently, this

translates to circular shift orthogonality in the time-domain. We now define a diagonal

V × V dimensional phase-shifting matrix, Ek as shown below:

[Ek ]v, v = exp

[
j2πvfk

V

]
(E.14)

∀ 0 ≤ v ≤ V − 1, 1 ≤ k ≤ K and design the pilot sequence such that

T̃k = Ekφ(V ) (E.15)

As a result of substituting (E.14) in (E.13), we see that

V−1∑

v=0

exp{−j2π v(fk1 − fk2 + l1 − l2)/V } = 0 (E.16)

We selected Ek as shown in (E.14) so that we can exploit the property of summation of the

roots of unity. In order to do so, we require that the term, (fk1 − fk2 + l1 − l2) be a non

integer-multiple of V . So, we choose fk = k(V −L− 1). In conclusion, the training design

shown in (6.33) meets not only conditions (C6), (C7), and (C8) but also (E.13) so that

phase-shift orthogonality is maintained between the pilot sequences of any pair of transmit

antennas.
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Appendix F

Proof of Theorem 6.4

By denoting the entropy using H(.) and applying the definition of mutual information,

we can write the following expression,

I ( ỹ(dt)
n ; x̃n |H̃n ) = H ( x̃n|H̃n )− H ( x̃n|H̃n, ỹ

(dt)
n ), (F.1)

for the system model in the training phase. In the above equation, H ( x̃n|H̃n ) is maximized

when x̃n is Gaussian. Hence, with Rx̃n
= Pdt IKM ,

H ( x̃n|H̃n) = log det ( π ePdt IKM ). (F.2)

On the other hand,

H ( x̃n|H̃n, ỹ
(dt)
n ) = log det ( π eR

x̃n|ỹ(dt)
n ,H̃n

), (F.3)

where R
x̃n|ỹ(dt)

n ,H̃n

= ( (1/Pdt) IKM + (1/σ2
z) H̃

H

n H̃n )
−1. In writing the covariance matrix

of the random vector, x̃n conditioned on ỹ
(dt)
n and H̃n, we utilize the fact that z̃n is Gaussian

distributed. Consequently,

I ( ỹ(dt)
n ; x̃n |H̃n ) = log det

(
IKM +

Pdt

σ2
z

H̃n H̃
H

n

)
. (F.4)
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By a similar approach, we can show that

I ( r̃n; s̃n |Hn ) = log det

(
IKP +

Pd

σ2
z

Hn H
H

n

)
, (F.5)

in the data transmission phase. Due to the fact that the mutual information between the

transmitted and estimated data vectors is independent of the block index, we represent

the channel capacity upper bound by choosing the mutual information with respect to an

arbitrary block indices as shown in (6.42). It can also be observed that we have included

the appropriate normalization factor since only M out of P subcarriers in each OFDM

symbol in the training phase, carry information symbols.
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Appendix G

Proof of Theorem 6.5

We again apply the definition of mutual information and write the expression,

I ( ỹ(dt)
n ; x̃n | ̂̃Hn ) = H ( x̃n| ̂̃Hn )− H ( x̃n| ̂̃Hn, ỹ

(dt)
n ), (G.1)

for the system model in the training phase. Similar to (F.2), we see that

H ( x̃n| ̂̃Hn) = log det ( π ePdt IKM ), (G.2)

whereas,

H ( x̃n| ̂̃Hn, ỹ
(dt)
n ) ≤ log det ( π eR

x̃n|ỹ(dt)
n ,

̂̃
Hn

), (G.3)

with equality if and only if x̃n given ỹ
(dt)
n and

̂̃
Hn is drawn from a Gaussian distribution with

the covariance matrix, R
x̃n|ỹ(dt)

n ,
̂̃
Hn

. We can now formulate an expression for R
x̃n|ỹ(dt)

n ,
̂̃
Hn

by assuming that LMMSE estimator1 has been used to estimate x̃n:

R
x̃n|ỹ(dt)

n ,
̂̃
Hn

= Rx̃n
−R

x̃n, ỹ
(dt)
n

R
ỹ
(dt)
n

R
ỹ
(dt)
n , x̃n

, (G.4)

1Notice that when z̃
(dt)
n is Gaussian, the LMMSE estimator coincides with an MMSE estimator.
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where

R
x̃n, ỹ

(dt)
n

, E {x̃n ỹ
(dt)H
n | ̂̃Hn} = Pdt

̂̃
H

H

n , (G.5a)

R
ỹ
(dt)
n

, E {ỹ(dt)
n ỹ(dt)H

n | ̂̃Hn} = Pdt
̂̃
Hn

̂̃
H

H

n + σ2
z(dt)(n) IKM . (G.5b)

In (G.5a) and (G.5b), we have utilized the orthogonality property of LMMSE estimation

and eliminated the covariance terms between the information symbol vector, x̃n and the

effective noise vector, z̃
(dt)
n . By substituting (G.5a) and (G.5b) in (G.4), we see that:

R
x̃n|ỹ(dt)

n ,
̂̃
Hn

= Pdt IKM − P2
dt
̂̃
H

H

n (Pdt
̂̃
Hn

̂̃
H

H

n + σ2
z(dt)(n) IKM)−1 ̂̃Hn

= ((1/Pdt) IKM + σ2
z(dt)(n)

̂̃
H

H

n
̂̃
Hn)

−1. (G.6)

Finally, from (G.2), (G.3) and (G.6), we have,

I ( ỹ(dt)
n ; x̃n | ̂̃Hn ) ≥ log det (IKM + Pdt σ

2
z(dt)(n)

̂̃
H

H

n
̂̃
Hn). (G.7)

By a similar approach, we can show that

I ( r̃n; s̃n |Ĥn ) ≥ log det (IKP + Pd σ
2
z(d)(n) Ĥ

H

n Ĥn), (G.8)

in the data transmission phase. Therefore, the channel capacity lower bound is obtained

by combining (G.7) and (G.8) as shown in (6.50).
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