
Alchemy: Transmuting Base Alloy Specifications into
Implementations

by

Danny Yoo

A Thesis

Submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

In partial fulfillment of the requirements for the

Degree of Master of Science

in

Computer Science

by

December 2008

APPROVED:

Professor Kathi Fisler, Major Thesis Advisor

Professor George Heineman, Reader

Professor Michael A. Gennert, Head of Department

Abstract

Alloy specifications are used to define lightweight models of systems. We present

Alchemy, which compiles Alloy specifications into implementations that execute

against persistent databases. Alchemy translates a subset of Alloy predicates into

imperative update operations, and it converts facts into database integrity con-

straints that it maintains automatically in the face of these imperative actions.

In addition to presenting the semantics and an algorithm for this compilation,

we present the tool and outline its application to a non-trivial specification. We

also discuss lessons learned about the relationship between Alloy specifications and

imperative implementations.

Acknowledgements

I’m grateful to Yu Feng, Paul Freitas, Theo Giannakopolos, Chris King, and

Tim Nelson for their good advice, fresh baked goods, and warm company. I’m

especially thankful to all my advisors: Dan Dougherty, Kathi Fisler, and Shriram

Krishnamurthi. Their patience, humor, and constructive criticism mean the world

to me. This work is partially supported by the NSF and a GAANN Fellowship.

i

Contents

1 Introduction 1

2 Alloy 4

2.1 Alloy as a Modeling Language . 4

2.2 The Gradebook Example . 8

2.3 Alchemy’s Supported Alloy Subset 11

2.4 An Imperative Semantics . 13

2.4.1 Database Schemas . 14

2.4.2 Transition Systems over Instances 16

3 Alchemy: Interpreting Alloy Imperatively 20

3.1 Desired Alchemy Behavior . 20

3.2 The Algorithm . 23

3.2.1 Generating Commands . 23

3.2.2 Compiling Predicates . 31

3.2.3 Compiling Facts into Database Repairs 33

3.3 Discussion: Relating the Alloy and Imperative Semantics 38

4 Implementation 42

4.1 Modules . 43

ii

4.1.1 Basic Expressions and Environment Support 43

4.1.2 Core Algorithm . 44

4.1.3 Compiler and Runtime . 45

4.1.4 Host Language Support . 47

4.1.5 Miscellaneous: amb Backtracking 49

4.2 Database Mapping . 49

4.2.1 Atoms . 50

4.2.2 Signatures and Fields . 50

4.2.3 Signature Hierarchies . 51

5 Related Work 53

5.1 Synthesis . 53

5.2 Databases . 55

6 Evaluation 58

7 Conclusion and Future Work 61

iii

List of Figures

2.1 Address book class definitions. 5

2.2 Address book signature definitions. 6

2.3 A model of the address book. 6

2.4 An example of a constraint. 7

2.5 A example of a stateful predicate. 7

2.6 A model of the address book satisfying add(b1,b2,p3,a2). 8

2.7 Alloy specification of a gradebook. 9

2.8 A valid model of a specification. 10

2.9 A schema instance I of the gradebook specification. 15

2.10 Another schema instance I ′. 16

3.1 Command generation. 27

3.2 Inserting a tuple into an expression. 28

3.3 Deleting a tuple from an expression. 29

3.4 Pseudocode for a compiled predicate. ϕ[Z] denotes ϕ substituted

with all bindings in Z. 30

3.5 Algorithm to repair the database. 35

3.6 An unsatisfiable Alloy specification. 40

4.1 An example run of the compiler. 45

iv

4.2 An example run of an Alchemy-compiled function. 46

4.3 Use of an Alchemy-compiled library. 48

6.1 Performance times for the simulated workflow. DrScheme is a graph-

ical environment that introduces some runtime overhead for pro-

filing and debugging support. We re-ran our measurements using

MzScheme to remove this overhead: this allowed us to exercise Alchemy

for the larger workflows. 60

v

Chapter 1

Introduction

Software engineering wisdom encourages developers to explore models of their sys-

tems before they commit to implementation details.1 An especially powerful idea,

lightweight formal methods [JW96] to prototype ideas and identify errors before re-

alization, has gained substantial traction with the growth of corresponding tools. A

leading modeling tool that supports this philosophy is Alloy [Jac00], which enables

designers to author and explore petite descriptions of systems using a first-order re-

lational specification language. Indeed, Alloy has become sufficiently popular that

its specification language is becoming the focus of an ecosystem of tools, such as the-

orem provers to analyze specifications and test generators to construct test suites.

We provide a brief tutorial on the use of Alloy as a data modeling language in Chap-

ter 2, and cover the semantics of implementations and what such implementations

may guarantee.

Having written an Alloy specification, however, its author is no closer to a work-

ing implementation. Our work is an attempt to bridge this gulf. Concretely, the

elements of an Alloy specification suggest natural implementation counterparts. The

1A conference paper version of this work appears in FSE 2008. [KFDY08]

1

signatures lay out relations that translate directly into persistent database schemas.

The facts—those properties that are meant to hold of all models constructed by

Alloy—correspond to the database’s integrity constraints; maintaining these auto-

matically is one of our contributions. Finally, a subset of the predicates in an Alloy

specification connote state changes; these (and related helper utilities) become the

functions exported by an api. The heart of our synthesis work (Chapter 3) trans-

lates these predicates into a library of imperative functions. This work is presented

not only formally but also through a working tool, Alchemy, whose implementation

we discuss in Chapter 4.

In harmony with the lightweight formal methods philosophy of partiality, we

focus on the generation of apis rather than whole programs. Automatic invariant

maintenance further supports this philosophy. This scope is of tremendous value

because it enables us to generate, for instance, back-ends for Web applications.

Chapter 5 relates our work to other program synthesis efforts. To evaluate the

feasibility of Alchemy, we apply it on a non-trivial specification and discuss our

results (Chapter 6).

From another viewpoint, this work enables the prototyping of application-specific

database interfaces. Whereas most database engines exports a “one-size-fits-all”

interface, we enable authors to define their desired interface in Alloy. Alchemy

translates their specification into an api, hiding the database scaffolding and auto-

matically maintaining integrity. This frees developers to focus on more challenging

matters, and reduces vulnerability to some security attacks.

Besides concrete deliverables, we believe the value of this work resides as much

in what we have learned from the process of designing Alchemy. In particular, we

find a potential mismatch between a stateless, relational semantics and the expected

behavior of an imperative implementation; this relationship needs further investi-

2

gation. We discuss our design decisions, constraints, and lessons at various points,

and elaborate on the mismatch in Section 3.3, and conclude by looking into future

avenues for improvement in Chapter 7.

3

Chapter 2

Alloy

The Alloy project [Jac00] consists of an analysis tool, called the Alloy Analyzer, and

a specification language called Alloy. The Alloy Analyzer provides tools to visualize

models and perform bounded model checking, working on specifications written in

the Alloy language. In this section, we concentrate on the language and use two

examples to give an overview of Alloy syntax and semantics. Readers familiar with

Alloy should anyway peruse the examples, especially the second in Section 2.2, as

we refer to it extensively in the rest of the thesis. Our work supports a subset of

Alloy that includes this example; details on the subset are given in Section 2.3.

2.1 Alloy as a Modeling Language

Alloy as a specification language lets us describe a data model. A data model

essentially describes three things:

• A description of the structure of the data

• Invariants and constraints on the structure

• Operations that act on that structure

4

class Book {

Map<Person, Addr> addrs;

}

class Person {

String firstName;

String lastName;

}

class Addr {

String street;

String zip;

}

Figure 2.1: Address book class definitions.

As an example, we can consider a simple address book that maps names to

addresses. In a typical object-oriented programming language, we might model an

address book’s structure as a class with attributes, as shown in Figure 2.1.

In the Java class definition, the Book is defined to contain an addrs attribute

to hold a mapping between Person and Addr. In Alloy, the signature language

construct describes structure in a way reminiscent of the class definitions; Figure 2.2

shows how the classes in Figure 2.1 might be modeled as signatures.

Alloy uses signatures to capture the sets and relations that comprise a data

model. When we use a specification for design, we suppress details that may not be

important to the model. In the Alloy signatures above, note that Person and Addr

signatures aren’t fully described: we may not necessarily care that a Person has

a first and last name, as long as we can distinguish between two different people.

Furthermore, we don’t describe the mechanism of how addrs relates a Person and

an Addr , as that too is an algorithmic detail that’s unimportant for our modeling

purposes.

5

sig Book {
addrs: Person → one Addr

}

sig Person {}
sig Addr {}

Figure 2.2: Address book signature definitions.

Book
b1

Person
p1
p2

Addr
a1
a2

addrs
b1 p1 a1
b1 p2 a2

Figure 2.3: A model of the address book.

Although the Alloy signatures look like class definitions, their semantics are not

as classes, but as relations. The elements of these relations are called atoms ; the

type of each atom is its containing relation. Book , Person and Addr map to unary

relations of their respective atoms. Fields of signatures define additional relations.

addrs is a 3-arity relation of (Book × Person × Addr) tuples. A model of a book

containing two people with addresses has the relations shown in Figure 2.3.

The use of one Addr in the definition of the addrs relation expresses a multiplic-

ity constraint: for any particular Book and Person, there’s exactly one Addr for that

Person. This multiplicity constraint is an example of an invariant on this structure,

which can be expressed with the signature definition. Alternatively, these invariants

can be expressed explicitly as facts about the system, as shown in Figure 2.4. As

these facts are written in first-order relational logic, they can have striking expressive

power, which we’ll explore in the gradebook example of Section 2.2.

One of the operations in Alloy’s supported language is the operator [], which is a

pun: although the square brackets look like associative array access, in reality it is

a relational join operation. In the expression in Figure 2.4, b.addrs [p] is desugared

6

fact {
all b: Book , p: Person | one b.addrs [p]

}

Figure 2.4: An example of a constraint.

pred add(b, b ′: Book , p: Person, a: Addr) {
b ′.addrs = b.addrs + (p → a)

}

Figure 2.5: A example of a stateful predicate.

to the equivalent expression (p.(b.addrs)), where the dot notation is the natural

relational join.

We finally turn to how to model the effect a stateful operation has on a system.

One way to do this is with predicates that relate a pre-state to a post-state. For

example, the add predicate in Figure 2.5 defines how to add a new entry. b and b ′

represent pre- and post-states, and the body of add captures the effect of the add

operation.

A model that represents adding Person p3 to Book b1 , with Addr a2 is shown

in Figure 2.6. Note that b1.addrs and b2.addrs both evaluate to a 2-arity relations

that can be viewed as pre-state and post-state, respectively. By setting aside one of

the signatures, such as Book , as a state signature, we can project another relation

R with the stateful one to get stateful views of R. The post-state variable has a

prime in its name by convention. This stateful-primed idiom allows us to express

stateful operations in Alloy. Each stateful predicate has parameters for the pre- and

post-states of the operation (such as b and b ′) and constrains the latter to reflect

the change applied to the former.1

1Alloy models of stateful systems often employ the ordering module to sequence states; we
currently do not exploit this.

7

Book
b1
b2

Person
p1
p2
p3

Addr
a1
a2

addrs
b1 p1 a1
b1 p2 a2
b2 p1 a1
b2 p2 a2
b2 p3 a2

Figure 2.6: A model of the address book satisfying add(b1,b2,p3,a2).

2.2 The Gradebook Example

This example is a homework submission and grading system, shown in Figure 2.7. In

this system, students submit work in pairs. The gradebook stores the grade for each

student on each submission. Students may be added to or deleted from the system

at any time, as they enroll in or drop the course. This example is adapted from a

deployed system that my advisor, Kathi Fisler, developed for our department. She

prototyped data models for the system in Alloy early in the design phase before

manually porting the models to a Web-based implementation.

The system’s data model centers around a course, which has three subfields: a

roster (set of students), submitted work (relation from enrolled students to submis-

sions), and a gradebook. As in the earlier example, each sig (Submission, etc.)

defines a unary relation, and each field defines an n-arity relation. The sig for

Course declares roster to be a relation on Course×Student . Similarly, the relation

work is of type Course×Student×Submission, but with the projection on Course

and Student restricted to pairs in the roster relation. The lone annotation on

gradebook allows at most one grade per submission.

The stateful predicates (Enroll , etc.) capture the actions supported in the sys-

tem, following the same standard Alloy idiom for stateful operations. Facts (such as

SameGradeForPair) capture invariants on the models. This particular fact states

that students who submit joint work get the same grade.

8

sig Submission {}
sig Grade {}
sig Student {}

sig Course {
roster : set Student ,
work : roster → Submission,
gradebook : work → lone Grade }

pred Enroll (c, c′ : Course, sNew : Student) {
c ′.roster = c.roster + sNew and
no c ′.work [sNew] }

pred Drop (c, c ′ : Course, s: Student) {
s not in c′.roster }

pred SubmitForPair (c, c ′ : Course, s1 , s2 : Student ,
bNew : Submission) {

// pre-condition
s1 in c.roster and s2 in c.roster and
// update
c′.work = c.work + (s1 → bNew) + (s2 → bNew) and
// frame condition
c′.gradebook = c.gradebook }

pred AssignGrade (c, c ′ : Course, s : Student ,
b : Submission, g : Grade) {

c′.gradebook in c.gradebook + (s → b → g) and
c′.roster = c.roster }

fact SameGradeForPair {
all c : Course, s1 , s2 : Student , b : Submission |

b in (c.work [s1] & c.work [s2]) implies
c.gradebook [s1][b] = c.gradebook [s2][b] }

Figure 2.7: Alloy specification of a gradebook.

9

Student = {Harry , Meg}
Submission = {hwk1}
Grade = {A, A−, B+, B}
Course = {c0 , c1}
roster = (〈c0 , Harry〉, 〈c1 , Harry〉, 〈c1 , Meg〉)
work = {〈c1 , Harry , hwk1 〉}
gradebook = {〈c1 , Harry , hwk1 , A-〉}

Figure 2.8: A valid model of a specification.

The Alloy semantics defines a set of models for the signatures and facts. Opera-

tors over sets and relations have their usual semantics: + (union), & (intersection),

in (subset), → (tupling), and . (join). The relations in Figure 2.8 constitute a valid

model under the Alloy semantics.2 All models of a specification are, by definition,

consistent with its signatures and facts. A model of a predicate also associates each

predicate parameter with an atom in the model such that the predicate body holds.

The above set of relations models the Enroll predicate under bindings

c = c0 , c ′ = c1 , and sNew = Meg.

A model may include tuples beyond those required to satisfy a predicate: the Enroll

predicate does not constrain the work relation for pre-existing students, so the ap-

pearance of tuple 〈c1 , Harry , hwk1 〉 in the work relation is semantically acceptable.

The relations shown do not model SubmitForPair . For example, under bindings

c = c0 and c′ = c1

the requirement

c′.gradebook = c.gradebook

fails because the gradebook starting from c ′ has one tuple while that starting from

c has none. The requirement on work also fails. Similar inconsistencies contradict

other possible bindings for c and c′.
2For readability, we use concrete atom names rather than Alloy’s abstract ones.

10

2.3 Alchemy’s Supported Alloy Subset

Alchemy supports most of the Alloy language, including all of our running example.

We omit integers and integer operations, as well as Alloy’s built-in support for

ordinals (via the ordering module).

The bodies of predicates and facts are terms in the Alloy Kernel logic (the

core forms of Alloy [Jac06, page 291]). We support the full Kernel restricted to

universally-quantified formulas in portions of the theory. The following grammar

reproduces the Kernel language from Jackson’s book [Jac06] sans the expr = expr

form in elemFormula:

expr ::= rel | var | none | expr binop expr | unop expr

binop ::= + | & | − | . | →
unop ::= ˜ | ˆ

formula ::= elemFormula | compFormula | quantFormula

elemFormula ::= expr in expr

compFormula ::= not formula | formula and formula

quantFormula ::= all var : expr | formula

We assume

expr1 = expr2

has been rewritten into

(expr1 in expr2) and (expr2 in expr1).

This is sound in Alloy (which exploits explicit = in its analysis framework [Jac06,

page 292]).

The rest of the thesis uses the term basic formula for elemFormulas or their

negations. A universal formula is one in which all quantifiers are universal once

11

the formula is converted to Prenex Normal Form (i.e., all quantifiers grouped at the

uppermost level of the formula).

The signatures, predicates, and facts in Alloy specifications are relevant to our

work; assertions (properties to verify) are not relevant as they have no semantic

content from the perspective of execution. Alchemy targets Alloy specifications

that model stateful software systems. We recognize such specifications through

Alloy’s standard idiom, which uses some signature to represent the “state” of the

system; predicates modeling stateful operations consume atoms representing the

current and next state. In our running example, Course is the state; each operation

takes Courses c and c ′ as inputs. We assume a designated state signature (herein

denoted state) from which all other signatures are reachable. We view facts as

integrity constraints on system states, requiring each to quantify over at most one

state variable.

Our formal model of an Alloy specification is as follows:

Definition 1 An Alloy specification is a tuple 〈S, P, F, state〉, where:

• S is a set of signatures. A signature specifies its type name TS, a set of fields,

and an optional cardinality constraint. Each field has a name, an optional

cardinality constraint, and a type specification T1 × . . . × Tk, where each Ti

is the type name associated with some signature. The valid cardinalities are

lone, some, and one. Our running example defines type names Submission,

Course, etc.; the fields are roster , etc.

• state is the type name of some signature in S.

• P is a set of predicates. A predicate has a header and a body. The header

declares a set of variable names, each with an associated signature type name.

The body is a quantFormula in which the only free variables are defined in the

12

header. Our model limits the types of variables in the headers to names of

signatures rather than arbitrary expressions on signatures (as in full Alloy).

We call a predicate stateful if its header has exactly two variables of type state

that share the same name with and without a prime (e.g., c and c′).

• F is a set of facts. A fact is a closed formula. We assume facts have at most

one quantified variable of type state and that this variable is unprimed; this

is consistent with our viewing them as state invariants.

There are other small restrictions (Section 3.2.1) in our supported syntax, but

these do not impact expressive power. Our signature definition diverges slightly

from Alloy’s in not including signature constraints in the model of the signatures,

but most signature constraints, such as one signature being a subset of another, can

be represented as universal facts. The exceptions are the some and one constraints,

which our model captures as explicit cardinality constraints. We can express subtyp-

ing relationships between signatures as facts. We also restrict the type specifications

in predicate headers to names of signatures, rather than permit arbitrary relational

expressions. Richer parameter types can, however, be expressed as pre-conditions

within the predicate body.

2.4 An Imperative Semantics

To see the main difference between Alloy’s semantics and an imperative one, con-

sider the roster relation in an Alloy model of a predicate. In the Alloy model from

Section 2, roster contains tuples for both c0 and c1 ; intuitively, these resemble

timestamps where c0 occurs before c1 . An imperative program implementing oper-

ations would instead maintain a single (current) Course as a set of database tables

13

and update the roster table over time. In other words, an imperative program for

this specification might have a Course named theory and include a table

roster = (〈theory , Harry〉)

which, after enrolling Meg , changes to:

roster = (〈theory , Harry〉,
〈theory , Meg〉)

Our semantics represents imperative programs as transition systems over database

instances. Instances of a given Alloy specification are over a database schema derived

from its signatures and relations. Our semantics differs from Alloy’s in modifying a

database over time, whereas Alloy co-mingles all these database instances in a single

relation. This has important consequences, as we discuss in Section 3.3. The rest of

this section derives a database schema from an Alloy specification, then shows how

to interpret predicates and facts relative to transitions over instances.

2.4.1 Database Schemas

Database schemas arise naturally from Alloy specifications. Each signature defines

a unary relation over atoms. Each signature field defines a relation from atoms in

that signature to the remaining elements in the field’s specification. Our schemas

use the same mapping from specifications to relations as in the Alloy semantics.

Definition 2 Let A = 〈S, P, F, state〉 be an Alloy specification. The database

schema for A contains the following relations for each signature s in S, where Ts is

the type name for s:

• a unary relation named Ts

• for every field 〈D, c, T1 × . . .× Tk〉 in s, a relation D ⊆ Ts×T1× . . .×Tk with

cardinality c.

14

Submission
hw1
hw2

Grade
A
B
C

Student
alice
bob

Course
cs1102

roster
cs1102 alice
cs1102 bob

work
cs1102 alice hw1
cs1102 bob hw2

gradebook
cs1102 alice hw1 A
cs1102 bob hw2 B

Figure 2.9: A schema instance I of the gradebook specification.

The distinguished state relation is restricted to only one atom (representing the

current database state). An instance of the schema is any set of actual relations

that conforms to the types in the schema. Instances must respect the cardinality

constraints on signatures and fields: one allows only one tuple in a relation, lone

allows at most one tuple in a relation, and some requires at least one tuple in a

relation.

These cardinality interpretations are consistent with Alloy semantics. This definition

differs from the Alloy semantics in only one detail: the restriction of the state

relation to a single atom. This restriction lets us maintain only one active database

instance while executing a specification, just as a programmer would expect.

Example 1 Given the gradebook specification in Figure 2.7, we can consider two

example instances of the corresponding schema, shown in Figures 2.9 and 2.10. In

both figures, Course is the distinguished state relation. In Figure 2.9, the two

students have been assigned separate work and have been graded. In Figure 2.10,

both students have been paired together to work on an assignment hw3 , but haven’t

yet been graded.

15

Submission
hw1
hw2
hw3

Grade
A
B
C

Student
alice
bob

Course
cs1102

roster
cs1102 alice
cs1102 bob

work
cs1102 alice hw1
cs1102 bob hw2
cs1102 alice hw3
cs1102 bob hw3

gradebook
cs1102 alice hw1 A
cs1102 bob hw2 B

Figure 2.10: Another schema instance I ′.

2.4.2 Transition Systems over Instances

Each transition between instances in our imperative model arises from the execution

of one stateful function corresponding to an Alloy predicate. Our semantics must

therefore define when a predicate induces a transition from database instance I (the

pre-state) to database instance I ′ (the post-state).

The key to this is deciding in which state to interpret a subexpression. Limiting

individual identifiers to just the pre- or post-state is overly restrictive. For instance,

Enroll contains

c ′.roster = c.roster + sNew

A literal reading of primes would interpret c′ in the post-state and both uses of

roster in the pre-state. The roster relation in the pre-state, however, wouldn’t

include tuples that get introduced only in the post-state. It seems clear that the

entire expression c ′.roster must be interpreted in the post-state. The right side of

the equation, however, has one expr that appears to be from the pre-state (c.roster)

and another from the post-state (sNew , the new student who should not be in

the pre-state). This example shows that we must lift “priming” beyond individual

variables, but without pulling expressions that are clearly in the pre-state into the

16

post-state.

Our semantics allocates expressions to the pre-state or post-state using a simple

criterion: an expr is interpreted in the post-state iff it contains a primed variable.

We call these primed expressions. In the body of Enroll , only c′.roster is a (maxi-

mal) primed expression (and hence interpreted in the post-state). For each variable

denoting a new atom (such as sNew), we augment the pre-state with a new atom;

this lets us interpret c.roster + sNew in the (extended) pre-state. We will use a

naming convention (suffix New) to distinguish new variables (akin to using primes

as a naming convention on next states). Treating new variables specially, rather

than as post-state variables, yields a clean metric for determining whether a for-

mula reflects an update versus a post-condition. We discuss this issue in more detail

in Section 3.2.1.

Thus, our semantics distinguishes between three classes of identifiers: primed

(such as c ′), new (such as sNew), and unprimed (such as s1 in SubmitForPair).

Since both primed and unprimed expressions may include the New variables, we

include these variables in each of the pre- and post-states when interpreting predicate

bodies. We do not, however, include them in the pre-state when interpreting facts.

The rest of this section simply formalizes the prose above. Our definition covers

the introduction of new variables, the allocation of exprs to the pre- and post-states,

and the handling of facts. As the latter are intended to capture state invariants, we

expect them to hold in every state. We assume that the database is initialized with

atoms and relations that satisfy the facts.

Definition 3 Let A = 〈S, P, F, state〉 be an Alloy specification and let I and I ′ be

instances of the database schema for A. Let p = 〈H, B〉 be a stateful predicate in A

(where H is the header and B the body). Let H− be the subset of H that excludes

the variables of type state. Let E (the parameter environment) bind every non-

17

new variable in H− to some atom in I of the corresponding type for that variable.

E also binds all variables of type state to the unique atom in the state relation.

(I, I ′) |=E 〈p, F 〉 iff the following conditions hold:

1. There exists a mapping Enew from every new variable newv of type Tv in H− to

an atom newvm in the relation for Tv in I ′ but not in relation Tv in I. With the

exception of the atoms in the co-domain of Enew, all relations corresponding

to signatures have the same atoms in I and I ′.

2. Let I+ and I ′+ extend I and I ′, respectively, with the new atoms in Enew. B

evaluates to true (under the standard semantics for boolean, relational, and

set-theoretic operators) when every maximal non-primed expr is interpreted in

I+, every maximal primed expr is interpreted in I ′+, and every identifier takes

its value from E ∪ Enew.

3. The facts F are true in both I and I ′.

The definition of E ensures that there is only one state atom, no matter how many

state variables alias it. Condition 3 uses our assumption that facts are invariants on

individual states. If facts were allowed to have more than one state variable, they

would end up bound to the same atom as there is only one atom for the state in

the imperative model.

Example 2 We briefly consider a transition motivated by:

SubmitForPair(c, c′, alice, bob, hw3).

We refer back to the instances I and I ′ from Figures 2.9 and 2.10. We formally

define the header H for our SubmitForPair predicate to be:

H = {c : Course, c ′ : Course, s1 : Student , s2 : Student , bNew : Submission}

18

and, after stripping out the state variables, we define H−:

H− = {s1 : Student , s2 : Student , bNew : Submission}

Then the parameter environments E and Enew:

E = { s1 : Alice, s2 : Bob }

Enew = { bNew : hw3 }

give us enough to satisfy the definition. One thing to note is that E doesn’t need

to explicitly bind for the stateful variables c or c′, since E will, by definition, map

those identifiers to the unique atom cs1102 .

Given those mappings, the necessary conditions hold and (I, I ′) |=E 〈p, F 〉.

19

Chapter 3

Alchemy: Interpreting Alloy

Imperatively

Alchemy is designed to reduce the effort in automatically creating the database

back-end from an Alloy specification. Alchemy compiles stateful predicates into

functions that implement those predicates according to our imperative semantics.

These functions insert and delete tuples into tables corresponding to the relations in

the specification’s database schema. We first illustrate Alchemy’s desired behavior,

then present the algorithm underlying Alchemy.

3.1 Desired Alchemy Behavior

Given the gradebook specification from Figure 2.7, Alchemy should create a database

table for each relation (e.g., Submission, roster), a function for each predicate (e.g.,

Enroll), and a function for creating new elements of each atomic signature (e.g.,

CreateSubmission).

We illustrate our expectations of Alchemy’s features through a sample interaction

20

using these generated functions. We should be able to create a course with two

students using the following command sequence:

cs311 = CreateCourse("cs311");

pete = CreateStudent("Pete");

caitlin = CreateStudent("Caitlin");

Enroll(cs311 , pete);

Enroll(cs311 , caitlin)

Note that the Enroll function takes only one course, not two (unlike the original

Alloy predicate), since the implementation must maintain only a single set of tables

over time. The second course parameter in the predicate corresponds to the resulting

updated table. Executing the Enroll function must add the pairs 〈"cs311", "Pete"〉
and 〈"cs311", "Caitlin"〉 to the roster table. The second clause of the Enroll specifi-

cation should guarantee that the work table will not have entries for either student.

This clause is necessary in Alloy, which is free to add arbitrary tuples that don’t

violate stated constraints. Because we want Alchemy not to add such tuples, the

clause is unnecessary; instead, Alchemy should enforce the constraint by removing

any tuples that fail this condition.

Next, we’d like to be able to submit a new homework for "Pete" and "Caitlin":

hwk1 = CreateSubmission("hwk1");

SubmitForPair(cs311 , pete, caitlin, hwk1)

The implementation of SubmitForPair should be straightforward relative to the

specification. We expect it to treat the first clause in the specification as a pre-

condition by terminating the computation with an error if the clause is false in the

database at the start of the function execution. Next, it should add the work tuples

required in the second (update) clause. Finally, it must check that the gradebook

table is unchanged, as required by the third clause.

21

Assigning a grade illustrates our expectations of Alchemy repair feature:

gradeA = CreateGrade("A");

AssignGrade(cs311 , pete, hwk1 , gradeA)

AssignGrade should insert a tuple into the gradebook relation according to the first

clause, and must check that the roster is unchanged according to the second. If

execution were to stop here, however, the resulting tables would contradict the

SameGradeForPair invariant (which requires "Caitlin" to receive the same grade

on the joint assignment). Alchemy thus must attempt to repair the database to

satisfy both the predicate body and the fact. It should determine that adding the

tuple 〈"cs311", "Caitlin", "hwk1", "A"〉 to gradebook achieves this, and execute this

command automatically. The fact therefore should hold of the database when the

SubmitForPair function returns. If there is no way to repair the database to respect

both the predicate and the fact, Alchemy should raise an exception. This could

happen, for example, if the first clause in AssignGrade used = instead of in (in this

case, adding the repairing tuple would violate the =).

Automatic repair supports the lightweight formal methods philosophy. One

could require that all predicate specifications were written to preserve all facts (in

this case, by augmenting AssignGrade to add database tuples for all students on

the same assignment). Such fully-specified predicates can get rather complicated,

however, sometimes to the point of obscuring the essence of a predicate. Alloy’s use

of facts to constrain possibly-underspecified predicates offer a powerful lightweight

modelling tool. Database repair is fundamental for carrying that power into syn-

thesized implementations. Alchemy must preserve all facts as database invariants

when its functions terminate without exceptions.

22

3.2 The Algorithm

The semantics admits many possible functions for each predicate. For example,

the Drop predicate from Figure 2.7 has a natural implementation: delete student

s as well as all associated information about that student. However, there’s an

alternative implementation, one that’s allowed by the specification but is probably

not what was intended: wipe out the entire gradebook altogether.

Our compilation algorithm must choose a function that implements a predi-

cate body. Furthermore, the back-end should automatically maintain integrity con-

straints that are encoded as system invariants in the Alloy model, so as to not violate

the facts.

Rather than attempt to both implement predicates and preserve facts simultane-

ously, we employ a two-phase algorithm. The first phase generates insert and delete

commands to implement the body of the predicate. The second phase generates

additional commands that repair the database to restore facts violated during the

first phase. The algorithm backtracks to find repairs or, in the worst case, even

fresh implementations that satisfy both the predicate and the facts. This separa-

tion into phases has proven extremely valuable. It supports a method for ensuring

non-interference between repair and implementation (which in turn guarantees ter-

mination). In addition, each phase can exploit a different normal form for formulas.

We explain these details after presenting the algorithm.

3.2.1 Generating Commands

Generating commands to implement predicate bodies requires several key design

decisions, such as which formulas should yield commands at all, whether to imple-

ment a formula using insertion or deletion, and which database tables to edit. The

23

decisions affect not only Alchemy’s theoretical foundations, but also its usability.

Alloy users employ certain idioms and make certain assumptions about what speci-

fications entail. The models that Alloy generates for specifications can surprise even

seasoned Alloy users. While this is acceptable from a model-exploration tool, such

surprises are generally undesirable in imperative code. Our design decisions try to

strike a balance between making sense to Alloy users and resting on sound design

principles.

Which Formulas Yield Commands

Alloy captures different sorts of requirements on the pre- and post-states using the

same set of operators. In the AssignGrade predicate in Figure 2.7, for example, the

first expression specifies an update to the gradebook relation, whereas the second is

a constraint to not change the roster relation. The latter is a framing condition,

which limits the scope of changes. Other expressions capture pre-conditions (the

first clause of SubmitForPair) or post-conditions (the second clause of Enroll). We

distinguish among updates, framing conditions, pre-conditions, and post-conditions

using syntactic criteria.1 Only updates are compiled into commands. The rest be-

come guards that abort predicate execution and roll back to the pre-state if violated.

Our criteria classify basic formulas (outermost terms that encompass the set-

theoretic and relational operators). Given a formula (e1 in e2) or (e1 not in e2), we

classify based on patterns of primes and similarity between e1 and e2:

1We could distinguish these by other means, such as adding explicit annotations to Alloy.
Different techniques would change some of the details of how we generate commands. The high-
level algorithms for predicate execution and repair, however, would not be adversely affected.

24

neither e1 nor e2 primed pre-condition

e1 and e2 both primed post-condition

e1 identical to e2 sans priming framing condition

else update

The first two align Alloy idioms with the theory: if primes denote the post-state,

then prime-free formulas should not explore the post-state (an analogous argument

covers the pre-state). The characterization of framing conditions prevents these

formulas from becoming no-ops (as they otherwise suggest an update involving no

change). The remaining formulas become updates that must be decomposed into

specific insertions and deletions.

Consequently, only formulas that use the primed variable for the next state are

recognized as updates. Imagine that we extended our example system to store the

date of enrollment in each student object. The Enroll predicate might require a

statement like sNew.date = today . Our criteria would mark this as a pre-condition

rather than an update. The equivalent statement (c′.roster & sNew).date = today

captures the intent within our criteria.

The chart also justifies our New naming idiom. If we had reused the priming

idiom for new atoms (calling the new student s ′), then the expression c.roster +

s ′ would become a primed expression. This in turn would obscure that c′.roster

= c.roster + s ′ is an update rather than a post-condition. Altering the scope of

prime lifting is an option, but finding a coherent definition that also supports set

operations nested within tupling and joins has proven difficult.

Whether to Insert or Delete

Updates have one of four forms: (e in f ′), (e ′ in f), (e not in f ′), and (e ′ not in f),

where e and f are each exprs. Following the convention that primes denote the post-

25

state, our algorithm chooses to insert or delete as needed to have the change affect

the primed side. Consider (e in f ′): we could make this true by deleting from e or

inserting into f . We choose the latter since f bears the prime. By similar reasoning,

(e ′ not in f) also yields insertions, while the other two forms yield deletions.

What and Where to Insert or Delete

The most subtle decisions lie in determining which relations to edit when executing

a command. Given the expression c ′.roster = c.roster + sNew , we chose (in Sec-

tion 2.4.2) to insert into c ′.roster . The inserted tuples therefore should be in the

set computed by expression c ′.roster in the post-state. We could do this by editing

c ′, roster , or both.

A näıve reading of the primed-variable idiom suggests editing only c′. The im-

perative semantics, however, cannot realistically implement this strict reading. The

Alloy semantics maps c and c ′ to atoms; the portion of the model reachable from

each atom captures the overall pre- and post-states. Relations (such as roster) ap-

pear to change because different portions of them are reachable from the two atoms.

The imperative version, however, doesn’t define atoms for each possible state. Even

if it did (which would require an a priori finite bound on the number of invocations

of api functions or a garbage collection mechanism), storing each possible state in

the database would be grossly inefficient. A more practical imperative approach

would have a single Course object and modify the roster table to implement the

predicate (as described at the start of Section 2.4). This approach is consistent with

interpreting join like object navigation: the relation modified is a component of the

primed state object. This pun between relational- and object-notation is a design

feature of Alloy, yet one that has interesting consequences in the context of this

project (see Section 3.3).

26

void GenCommands(fmla, unprimed-db, primed-db)
E = if e primed then primed-db(e) else unprimed-db(e)
F = if f primed then primed-db(f) else unprimed-db(f)

fmla Commands
e in f ′ insert all tuples in E − F into F
e ′ in f delete all tuples in E − F from E
e not in f ′ if E ⊆ F delete some tuple in E from F
e ′ not in f if E ⊆ F insert some tuple not in F into E

Figure 3.1: Command generation.

In general, our algorithm may modify any relation mentioned in a primed expr

when performing an update. It first computes the tuples that achieve an update,

then decomposes commands on those tuples into commands on specific relations.

The tuples and high-level commands are computed according to the chart in Fig-

ure 3.1. Because multiple parts of our algorithm use this table, we parameterize

it over the formula and databases in which to compute the unprimed and primed

expressions.

Command generation fails if there is no tuple to insert or delete in the third

and fourth rows of Figure 3.1. Many commands could implement each formula.

Removing all tuples from f ′ satisfies (e not in f ′), for example, but is almost

certainly not what the api user intended. The Drop predicate in Figure 2.7 would

ideally remove only the indicated student. The chart attempts to minimize the

changes made during an update. Repair may, however, add or remove other tuples;

Section 3.2.3 discusses this in detail.

The third and fourth rows introduce non-determinism in the choice of tuples. In

practice, framing conditions, post-conditions, and facts may constrain these cases to

deterministic choices. Our current algorithm accounts for these constraints in the

second (repair) phase. In the fourth row, when choosing tuples to insert, we use only

atoms that already exist in the database. Our algorithm only creates new atoms

27

void insertTuple(t : T1 × · · · × Tn, e: expr) {
match e

[atom a: if a 6= t then fail]
[relation r : poststater := poststater + t]
[none: fail]
[e1 + e2: choose some ei ; insertTuple(t , ei)]
[e1 & e2: insertTuple(t , e1) ; insertTuple(t , e2)]
[˜e: insertTuple(˜t , e)]
[e1 → e2:

let t = t1 → t2 where ti matches type of ei

insertTuple(t1, e1) ; insertTuple(t2, e2)]
[e1 − e2: if t is not in e2

then insertTuple(t , e1) else fail]
[e1 . e2:

let T be the common sig-type that joins e1 and e2

if T is the type of e1 then
for some a in e1, insertTuple(a → t , e2)

elseif T is the type of e2 then
for some a in e2, insertTuple(t → a, e1)

else let a be any element of T
t1 = s1 → a
t2 = a → s2 such that t1 . t2 = t

insertTuple(t1, e1) ; insertTuple(t2, e2)]
[(e1)

∧: insertTuple(t , e1)]

Figure 3.2: Inserting a tuple into an expression.

when executing predicates with parameters that follow the New naming convention.

Figures 3.2 and 3.3 decompose insertions and deletions on relational expressions

into similar commands on individual relations. Some operations have multiple valid

implementations, owing to a choice of relations to manipulate. We choose between

these non-deterministically, backtracking as needed if a choice does not lead to a

valid implementation that can be repaired to satisfy the facts. The algorithms use

the notation poststater to denote relation r in the post-state.

The decision to fail in the e1 − e2 case of Figures 3.2 and 3.3 reflects a design

decision on our part. We could handle the case where t is in e2 by adding t to e1

28

void deleteTuple(t : T1 × · · · × Tn, e: expr) {
match e

[atom a: if a = t then fail]
[relation r: poststater := poststater − t]
[none: fail]
[e1 + e2: deleteTuple(t , e1) ; deleteTuple(t , e2)]
[e1 & e2: choose some ei ; deleteTuple(t , ei)]
[˜e: deleteTuple(˜t , e)]
[e1 → e2:

let t = t1 → t2 where ti matches type of ei

choose some ei ; deleteTuple (ti, ei)
[e1 − e2: if t is not in e2

then deleteTuple(t ,e1) else fail]
[e1 . e2:

let T be the common sig-type that joins e1 and e2

if T is the type of e1 then
foreach a in e1, deleteTuple(a → t , e2)

elseif T is the type of e2 then
foreach a in e2, deleteTuple(t → a, e1)

else foreach a in T such that for some s1, s2

t1 = s1 → a in e1 and
t2 = a → s2 in e2 and t = t1 . t2

choose some ei ; deleteTuple(ti, ei)]
[(e1)

∧: foreach (x , y1), (y1, y2), . . ., (yn, y) such that
t = (x , y) and each pair is in e1

choose some pair (yi, y i+1)
deleteTuple(yi → y i+1, e1)]

Figure 3.3: Deleting a tuple from an expression.

and removing t from e2. Implementing abstract insertion operations with concrete

deletions, however, has implications for termination, as we discuss in Section 3.2.3.

As a general rule, we prefer to use only insertion operations to implement insertions,

and analogously for deletions.

29

Given:

pred p(s, s′ : state, v1 : T1, . . . , vj : Tj,
new-vk : Tk, . . . , new-vn : Tn)

{ ∀X . (ϕ1 ∨ . . . ∨ ϕm) }
Generate:

list(atom) p(v1 : T1 ,. . ., vj : Tj)
let newv i = new atom (pre-state, Ti) for i ∈ k, . . . , n
post-state = pre-state
let V map params to args and new -vars to new -atoms

iterate until fixpoint on post-state
foreach binding B to identifiers in X

choose a disjunct ϕi

if some pre-condition in ϕi[V ∪B] false then fail
else foreach update in ϕi[V ∪B]

GenCommands(update, pre-state, post-state)
// Figure 3.1

if some post-condition in ϕi[V ∪B] false then fail
add framing conditions in ϕi[V ∪B] to Guards

repair-facts() // Figure 3.5
if some formula in Guards false then fail
if some cardinality constraint false then fail
pre-state = post-state; return newvk, . . . , newvn

Figure 3.4: Pseudocode for a compiled predicate. ϕ[Z] denotes ϕ substituted with
all bindings in Z.

30

3.2.2 Compiling Predicates

Figure 3.4 shows the pseudocode that implements a predicate. We treat predicates

as transactions that rollback if they cannot be executed without violating their

bodies or a fact. If a cardinality constraint fails, or if backtracking fails to produce

a set of commands that satisfy both the predicate and the facts, then predicate

execution fails. This induces rollback of the database state to the pre-state. The

pseudocode assumes two variables: pre-state (for the database contents at the start

of the transaction) and Guards (for the set of formulas to check before committing

the transaction).

Our model of Alloy specifications assumed that the body of every predicate is

a universal formula. In generating code, we convert each of these formulas into

disjunctive normal form. Each predicate body therefore has the form

∀(x1 : r1) . . . ∀(xn : rn) . (ϕ1 ∨ ... ∨ ϕk)

where each ϕi is a conjunction of formulas of the form (e in f) or (e not in f).

Each ϕi may reference variables declared in the header of the predicate.

The api function produced for a predicate takes arguments for the predicate

parameters other than the state variables (implicit in the implementation) and the

New variables. The function creates atoms for the New variables before attempt-

ing any updates. The bindings of new atoms to New variables are added to the

parameter bindings.

The algorithm chooses a disjunct to implement to satisfy the predicate. If any

pre-condition in the disjunct is false, the choice fails and the algorithm backtracks

to select another disjunct. The function then generates commands for each update

(using Section 3.2.1) and applies them to the post-state. A failed post-condition

31

causes the algorithm to backtrack to other command choices or to another disjunct

selection (if necessary). Framing conditions are accumulated as guards to check after

the database has been repaired to account for the facts. This ordering allows framing

conditions to cover the entire predicate implementation, as expected. A failure when

checking a framing condition would backtrack into the repair algorithm. Cardinality

constraints (arising from one, lone and some constraints) are also checked at the

end by comparing the size of the relation in the post-state to the size required by

the constraint.

Disjunctive-normal form is natural for implementing predicates because it keeps

all the related pre-conditions, post-conditions, and updates together. This can be

useful in terminating a search path early, as any conjunct with a failed pre-condition

can be rejected in its entirety.

The algorithm reveals a subtlety regarding New variables. Intuitively, these

variables should appear only in the post-state. The algorithm, however, uses the

pre-state as the unprimed-db argument to GenCommands . There must be an atom

for sNew in the unprimed-db in order to add the new student to the roster in the

Enroll predicate. We therefore add the new atoms to both pre- and post-state.

Two questions arise about the algorithm’s correctness relative to our imperative

semantics. First, we have sequentialized the processing of updates. This suggests

that the edits from implementing one command might affect the edits required for

another. Our algorithm applies edits to the post-state but computes tuples in the

pre-state, so such leakage does not occur. Iterating the computation until a fixpoint

on the post-state ensures that the chosen edits are valid regardless of ordering.

Second, our algorithm seems to assume that repair cannot violate the body of the

predicate (since repair is not within the code to iterate until fixpoint). While this

could be a problem in general, our repair algorithm operates under a restriction that

32

eliminates this issue; the next section addresses this in more detail.

Example 3 Let’s apply the algorithm from Figure 3.4 on the Enroll predicate of

the gradebook example. The use of equality in the first subformula is first desugared

into two in forms, producing the body

c′.roster in c.roster + sNew and

c.roster + sNew in c ′.roster and

no c ′.work [sNew]

The first two subformulas are basic formulas that will be analyzed by the trans-

lation. However, the third primed subformula isn’t basic, so is treated as a postcon-

dition: at the end of the predicate’s evaluation, all postconditions are checked, and

if any are violated in the poststate, a fail occurs.

The first subformula is in the form e ′ in f , and so we delete all tuples in c.roster

− (c.roster + sNew) from c ′.roster . Deleting a tuple t from c.roster will recursively

delete the tuple c → t from roster. However, since there are no tuples in c.roster −
(c.roster + sNew), the evaluation of this implementation is a no-op and will produce

no changes to the poststate.

In contrast, the second subformula is in the form e in f ′; we insert all tuples

in (c.roster + sNew) − c.roster into c.roster , and inserting a tuple t into c.roster

recursively reduces to an insertion of the tuple c → t into the roster relation. The

imperative semantics of the predicate, then, is to insert the tuple c → sNew into

roster .

3.2.3 Compiling Facts into Database Repairs

The repair phase takes a set of facts and a database instance and edits the database

(if necessary and possible) so that it satisfies the facts. Figure 3.5 presents the

33

pseudocode. The algorithm only repairs universal formulas. Other facts are treated

as guards that get checked after repair as shown in the predicate pseudocode in

Figure 3.4.

The repair algorithm assumes that all universal facts are in conjunctive normal

form. Distributing the quantifiers over the conjuncts yields a set of facts, each of

the form

∀X.(α1 ∧ · · · ∧ αk) ⇒ (β1 ∨ · · · ∨ βh)

where each αi and each βj is an elemFormula (e1 in e2). This form simply groups

the positive and negative elemFormulas on either side of the implication operator.

Either side of the implication could have no subterms, in which case the normal

logical rules apply: if there are no αi, the body is equivalent to (β1 ∨ · · · ∨ βh); if

there are no βj, it is equivalent to ¬(α1 ∧ · · · ∧ αk).

The algorithm repeatedly selects a fact and checks whether it is true in the post-

state. If not, the algorithm must modify the database to nullify each witness to

the failure. Falsifying any αi or ¬βj nullifies a witness. Each αi or βj is of the

same core form (e in f) used to generate commands for implementing predicates

(Section 3.2.1). Once we decide whether to nullify using insertion or deletion (a

decision discussed momentarily), we reuse the table in GenCommands (Figure 3.1)

to generate the appropriate commands. Nullifying αi via insertion uses row 1;

nullifying αi by deletion uses row 3. Nullifying βj follows row 2 (insertion) or 4

(deletion). As when generating commands to execute predicates, command choices

may induce backtracking should a choice lead to an inconsistent database.

This algorithm raises several potential concerns:

• Termination: Repairing one fact might break another. In theory, two facts

could iteratively undo each others’ repairs ad-infinitum.

34

void repair-facts ()
iterate until fixpoint on post-state

foreach fact Fi = ∀X . (a1 ∧ . . . ∧ ak) ⇒ (b1 ∨ . . . ∨ bh)
foreach solution S to ∃X . a1 ∧ . . . ∧ ak∧

¬b1 ∧ . . . ∧ ¬bh

instantiate fact body with bindings from S
choose some ai or bj

GenCommands(¬choice, post-state, post-state)
// Figure 3.1

insert all non-universal facts into Guards

Figure 3.5: Algorithm to repair the database.

• Correctness: Repairing a fact might undo the effect of the predicate we were

attempting to execute.

• Efficiency: In the worst case, we could iterate over every possible combination

of insertions and deletions over every combination of atoms in the database.

• Predictability: The repair algorithm might modify some relation that was

not in a primed maximal expr within the predicate body, thus affecting the

database in unexpected ways from the api user’s perspective.

Predictability isn’t a problem if the user considers the facts as well as the predicate

body. Our algorithm modifies only those relations that are mentioned in the facts

or predicate being executed. The absence of sufficient post-conditions and fram-

ing conditions could result in undesirable implementations, but this is inherent to

underspecification, not an artifact of Alchemy. Our implementation ameliorates un-

derspecification to a small extent, and intelligent heuristics for this are an interesting

topic for future work.

Following a simple principle mitigates the first three problems: repair insertions

with other insertions and deletions with other deletions. Consider the AssignGrade

predicate from Figure 2.7. Executing this predicate assigns a grade to the given

35

student, but not to her partner. The SameGradeForPair fact is intended to assign

the same grade to her partner as well. From a semantic perspective, however,

we could restore the fact by removing the partner from the course (prevented by

the framing condition) or by removing the submission from each students’ work.

Repairing insertions by insertions blocks the latter option and results in the desired

repair that adds the grade to the other student.

This principle guarantees that repair will terminate, since there are at most

a finite number of insertions involving existing database atoms. It improves the

efficiency of repair by restricting the search space of commands to consider. This is

an extremely useful consequence of our two-phase algorithm. It also identifies cases

in which repair will not undo the effect of a predicate: commands can never undo

the effect of commands of the same type (insertion or deletion).

Applying the principle at the level of an entire predicate, however, is often too

restrictive. For termination, never inserting to and deleting from any individual

relation suffices. We call a predicate execution homogeneous if it doesn’t insert

and delete from the same relation. In practice, predicates often have homogeneous

executions even though syntactically they appear to always mix insertions and dele-

tions. When we expand = into two in expressions, any expression using = yields

one form that creates insertions and another that creates deletions (by the table

in GenCommands). At run-time, however, one of these two forms often reduces

to a no-op because one side is a subset of the other (as in the body of the Enroll

predicate). A general syntactic characterization of homogeneity is left for future

work.

Example 4 We consider the SameGradeForPair fact as used in the repair algo-

rithm. The body is first translated into conjunctive normal form containing two

conjuncts:

36

b in (c.work [s1] & c.work [s2]) →
c.gradebook [s1][b] in c.gradebook [s2][b]

and

b in (c.work [s1] & c.work [s2]) →
c.gradebook [s2][b] in c.gradebook [s1][b]

We consider the situation where assignment b has been graded for a pair of students

s1 and s2 , but where an entry in the gradebook for s1 has been inserted, but not

a corresponding one for s2 .

Each conjunct is checked, and although the second conjunct is vacuously true,

the first is not, and remedial action needs to be taken. We have two options:

• Nullify the fact α1 ≡ b in (c.work [s1] & c.work [s2])

• Nullify the fact ¬β1 ≡ c.gradebook [s1][b] not in c.gradebook [s2][b]

By the homogeneity assumption, we only consider repairs that act through in-

sertion. We tentatively commit to the first option. If we try to nullify α1, then some

tuple outside of c.work [s1] & c.work [s2] is inserted into b. However, because b is

an atomic variable, this option will fail and trigger a backtracking.

We then consider the second alternative to nullify ¬β1. We do so by inserting all

the tuples in c.gradebook [s1][b] into c.gradebook [s2][b]. This effectively forces the

second student to have the new gradebook entry of the first. The repair procedure

then iterates, finds that all facts are satisfied, and finally terminates.

37

3.3 Discussion: Relating the Alloy and Impera-

tive Semantics

The astute reader will have noticed that we do not formally link the meaning of

predicates in Alloy to their implementation in Alchemy. One possibility is to link

statements about the implementation with assertions validated by the Alloy Ana-

lyzer. The Analyzer, however, validates these only over domains with bounds, which

in turn are usually chosen for computational tractability. Thus, we must instead

focus on meaning according to the Alloy semantics. There are two difficulties with

establishing this link.

Mixing Models One basic property one might hope to preserve is satisfiability.

Therefore, consider the following claim: every satisfiable predicate is implementable

imperatively, and vice versa. If we could establish this property, we might be able

to proceed to stronger statements that link the proof of satisfaction of a predicate

to the behavior of the implementation.

Unfortunately, we cannot establish even this claim due to subtle yet significant

differences between the relational and imperative semantics. The following fragment

shows a satisfiable stateful predicate over state signature A that has no implemen-

tation in our semantics:
sig A { r : B }
sig B {}
fact { one r }
// this is satisfiable

pred change r(a, a ′ : A, bNew: B) {a ′.r = a.r + bNew}

The fact on r cascades to allow only one element of signature A. Because of the

fact, a.r and a ′.r can’t refer to different elements. Thus, bNew must be in a.r ,

38

but our semantics introduces a new atom for bNew . This model therefore cannot

be implemented under our semantics. (With larger examples we can remove this

dependence on new variables, so that is not at the heart of the problem.)

How about in the other direction: if a specification is implementable, is it satis-

fiable in Alloy? Sadly, no, as another simple example demonstrates (relative to the

same signatures and fact):

// this is not satisfiable

pred change r(a, a ′ : A) {a ′.r != a.r}

Since a.r and a ′.r can’t refer to different elements, the predicate is not satisfiable.

The implementation, however, is straightforward: the table for r has one row with

different values in the pre- and post-states.

These tiny examples point to a general problem. As we have discussed in Sec-

tion 2, an Alloy model includes all the “states” at once, whereas the imperative

implementation examines only one state at a time. A predicate that fails to account

for this difference—and, in particular, for the conflation of all states into a single

model in Alloy—runs the risk of being satisfied by Alloy but not by the imperative

semantics, or vice versa.

This does, however, raise a conjecture. It may be possible to impose a discipline

on the use of predicates in assertions that demands they always account for the rela-

tionship between the Alloy states and what is reachable from them. It may even be

possible to automatically augment predicates to impose this expectation. We believe

that such augmented predicates are essential to the design of a lightweight Alloy-

esque modeling language that is faithful to cross-state assertions with an imperative

meaning, not just to invariants.

39

sig Person {
friends : set Person

}

sig SocNetwork {
members : set Person

}

pred befriend(s , s ′ : SocNetwork ,
p1 , p2 : Person) {

p1 != p2
p2 not in s.members [p1 → p1].friends
s ′.members [p1 → p1].friends = s.members [p1 → p1].friends + p2

}

Figure 3.6: An unsatisfiable Alloy specification.

The Prime Suspect A related problem is the meaning of primes in conjunction

with joins. As the multiple discussions about the roster relation in Section 2.4

illustrate, the . operator—a relational join that evokes object dereference—may be

confusing in the presence of state. In Section 2.4, for instance, the Alloy user writes

c ′.roster = c.roster + sNew to update the roster relation. Technically, however,

roster is the same relation on both sides of the equation; it is c ′ that projects a

different portion of roster than c. To an object-oriented programmer, however, c

remains the same (due to object identity); it is the roster field that changes. A

“stateful Alloy” must reconcile these readings.

The root of the issue, the mismatch between primed-state specification and deep

internal structure, can be deceptively difficult to see. As an example, we can consider

a small system that maintains a social network of friends as shown in Figure 3.6.

This social network consists of a set of people, and each person holds a set of friends.

A befriend predicate takes an old social network and produces a new social network

where one person has befriended the other.

40

Although this specification may look like a natural way to express the update,

it’s incorrect: it can’t be satisfied by any Alloy model, even though there is a natural

implementation defined by our imperative semantics. The simple stateful-primed

idiom is insufficient when state is distributed among several signatures. When we

use that idiom, although we can express a pre and post state of the social network,

we can’t express the statefulness of a Person in that system.

Such statefulness, however, is prevalent in any nontrivial object-oriented system.

This reveals a fundamental mismatch that can occur between a specification writer’s

intent and the semantics provided by Alloy. It highlights a need for a “stateful alloy”

to support the expression of state changes on all the relations of a specification, and

not just the relations that fall beneath the stateful signature.

41

Chapter 4

Implementation

The implementation of Alchemy is written in PLT Scheme, a dialect of Scheme

that supports pattern matching, higher-order programming, and linguistic abstrac-

tion. Alchemy consists of a compiler and a runtime; the compiler consumes Alloy

specifications and produces code objects that represent implementations, while the

runtime primarily consumes code objects and applies their operations on a database

instance. Our implementation uses the Alloy parser as a front-end and a Postgres

database back-end. With a little additional work, Alchemy could automatically

generate a Web Service interface as well.

The implementation and algorithms differ in a few places:

• Alchemy does not generate command options to insert or delete into an atom.

For example, inserting into c.gradebook [s1][b] (from Figure 2.7) generates op-

tions to modify each of c, gradebook , s1 , and b. All but the option for gradebook

will fail immediately in Figure 3.2. This optimization significantly reduced

case-explosion on some of our examples.

• Because some cardinality constraints require existential quantification, they do

not fall under the aegis of our current repair algorithm. As a result, Alchemy

42

can only check cardinality; it does not repair it. Therefore, failure of a cardi-

nality constraint leads to transaction failure, rather than backtracking.

We have not yet implemented two features. First, predicate implementations don’t

generate atoms for New parameters automatically; the api user must do this man-

ually before invoking the function (as in Section 3.1). Second, all references to

predicates must be inlined. Since predicates are first-order formulas, this does not

limit expressiveness.

4.1 Modules

Alchemy is designed in several modules:

• basic expressions and environment support

• the core algorithm

• compiler

• runtime

• host language support

4.1.1 Basic Expressions and Environment Support

The expression and formula forms in Alloy are represented as AST trees in Alchemy;

to get the appropriate ASTs, we reuse the Alloy 4 parser from the Alloy project,

which allows us to take advantage of its internal typechecking and well-formedness

checks. A tree walker processes the Alloy data structures and dumps out an abstract

syntax tree, which we then process. The signatures in the AST are serialized out

43

to the compiler’s output, which leaves the predicates and facts to be analyzed by

Alchemy’s other modules.

Other helper functions include predicates for checking a formula for basic form

and transformations to normalize formulas into CNF/DNF. The environment sup-

port allows us to reflect changes to relations back onto the corresponding database

tables.

4.1.2 Core Algorithm

The core algorithm layer implements the algorithms described in Chapter 3, and is

implemented as a standard pattern matching against a formula’s structure. Given a

stateful predicate, the predicate’s body is normalized into disjunctive normal form;

each disjunct is then processed to produce an implementation of that disjunct.

The implementations of all the disjuncts are collected into a single structure

to be interpreted at runtime. During runtime, one of the implementations is cho-

sen nondeterministically to implement the predicate, using a backtracking package

(described in Subsection 4.1.5) to support the nondeterminism.

We perform a similar analysis on the global facts of the model; its implementa-

tion drives the repair process, reusing the basic infrastructure used by the predicate

code. Additional support code drives the iterative fixed-point computation of re-

pairs, which runs the predicate and repair code until the relations stabilize.

Not all predicates in an Alloy specification are stateful. We check a predicate for

statefulness by a simple syntactic heuristic: if the first two variables of a predicate

use the same type, and the second variable’s name is a primed version of the first,

we treat the predicate as stateful. Otherwise, Alchemy ignores the predicate, which

is safe under our assumption about inlining.

44

Figure 4.1: An example run of the compiler.

4.1.3 Compiler and Runtime

Alchemy consists of a compiler and runtime; the compiler preprocesses a specifi-

cation, produces an implementation for each stateful predicate, and exposes that

implementation for clients to use. These implementations depend on some addi-

tional library support that’s provided by the Alchemy runtime; the runtime provides

things like a simple database-access layer and a backtracking facility to handle the

nondeterminism in a specification.

The sequence diagram in Figure 4.1 shows an example run of the Alchemy com-

piler. The user invokes the compiler by using the require-alchemy form. From there,

an AST is extracted from the spec, and that AST is analyzed by the code generator.

The code generator invokes all of the core algorithms mentioned in Section 4.1.2.

Once the compiler processes the AST, it emits a specification code function, which

45

Figure 4.2: An example run of an Alchemy-compiled function.

is serialized into a user’s source code to be later used during run-time.

The runtime libraries provide support to evaluate the implementations of the

compiled stateful predicates. As shown in Figure 4.2, an implementation’s evalua-

tion will generate sequences of primitive operations, where a primitive operation is

either an insertion or deletion of a table tuple. This operation sequence (opseq) is

accumulated during a code evaluation but not immediately applied to the database:

in the case of conflicts, such as when the homogeneity assumption is violated, we

must backtrack. Once a fixed-point is reached without violating any of the predi-

cate or repair facts, then the code object is fully evaluated, and the operations are

then applied and committed to the database. Other helper functions in the runtime

provide support for creating new atoms for the relations, automatically constructing

46

the tables that reflect the relations used in a specification, and providing functions

that can attach additional data to an atom.

4.1.4 Host Language Support

The host language support provides syntactic sugar that exposes each Alchemy-

compiled predicate as a function that can be called by the end user. We provide

this kind of support within PLT Scheme by using a macro called require-alchemy ,

which invokes the Alchemy compiler as a pre-processor.

Since each implementation of a stateful predicate is represented as a data struc-

ture, that structure can be marshalled into source code: at compile time, the macro

injects the Alchemy compiler’s result into a client’s source code, so that much of

the analysis is done at pre-processor time. The macro automatically generates a

function wrapper for each predicate; each wrapper’s body calls out to the Alchemy

runtime, setting up a nondeterministic context for evaluating the implementation.

Let’s consider the gradebook specification in Figure 2.7 and see how we can write

a PLT Scheme program that uses the specification as a library. Figure 4.3 shows an

example program. The line

(require-alchemy "alchemy.ss")

is pre-processed at compile-time to invoke the Alchemy compiler, do the analysis of

the given specification, and to include the compiler’s output into the client program.

It introduces wrapper functions for Enroll, SubmitForPair, and AssignGrade, each

of which are exercised later in the program.

We then use the Alchemy-provided helper functions for creating atoms; the cur-

rent version of Alchemy does not automatically create new atoms on its own. Finally,

we use the API to assign grades, and look at the results of AssignGrade. The repair

47

#lang scheme
(require "alchemy.ss")

;; Compile the Alloy specification, get function
;; and relation bindings.
(require-alchemy "gradebook.als")

;; Create a new database connection.
(define db (new-dbcontext #:database "gradebook" #:user "dyoo"))

;; Create a few atoms.
(define student-1 (make-Student-Atom db "Andrew"))
(define student-2 (make-Student-Atom db "Bean"))
(define course (make-Course-Atom db "Classroom 1"))
(define hw (make-Asgmt-Atom db "HW"))
(define A-grade (make-Grade-Atom db "A"))
(define B-grade (make-Grade-Atom db "B"))

;; Enroll both students, make them partners, and give a grade to one of them.
(Enroll db course student-1)
(Enroll db course student-2)
(SubmitForPair db course student-1 student-2 hw)
(AssignGrade db course student-1 hw A-grade)

;; Finally, inspect the student roster.
(printf "Current course roster: ˜s˜n" (Course-roster db c))
;; Print out the grades
(for ([row (Course-gradebook db course)])

(let-values ([(a-student a-work a-grade) (apply values row)])
(printf "˜s ˜s ˜s˜n" a-student a-work a-grade)))

Figure 4.3: Use of an Alchemy-compiled library.

48

that’s performed after each run of a stateful predicate will ensure that student-2

gets the same grade as student-1 .

4.1.5 Miscellaneous: amb Backtracking

Alchemy uses nondeterminism widely, both at compile and run-time, to explore the

search space for an implementation. We use the amb library module [Far] to give us

simple, depth-first backtracking through this search space.

One example of a use of compile-time nondeterminism is the treatment of an

insertion into a union, e1 +e2 , where either e1 or e2 may be the target for insertion.

An example of nondeterminism at runtime is the command generation for the core

formula e not in f ′, where we choose a tuple from the database instance.

In both cases, we cannot commit to a choice until run-time. Code generation

choices are represented explicitly as a tree within a code object. During runtime, at

any point of nondeterminism, amb records a choice among the possibilities, and in the

event that we have to backtrack, amb reconsiders the most recent nondeterministic

choice.

amb is particularly simple to write with, but provides no control to steer the

search toward promising avenues; it is future work to consider a nondeterminism

mechanism that navigates the search space more intelligently.

4.2 Database Mapping

Alchemy, for the most part, uses a fairly straightfoward mapping between relations

and database tables. However, although atoms are relational values, we have chosen

not to create a named unary table for each individual atom, given that the Alloy

language provides no way to access an individual atom without going through a

49

signature. For that reason, atoms are handled as a special case in our mapping.

Many of our design decisions, such as the representation of atomic values and the

signature hierarchy, leaned toward ease of implementation rather than performance;

future work may involve revisiting these database mapping decisions.

4.2.1 Atoms

There are two strategies to representing uninterpreted atom values:

1. Atoms can be represented as primary key values in the table that represents

the base signature type of that atom.

2. Atoms can reside in a separate systemwide table, and signatures hold refer-

ences to the atoms in that system table.

Although the first option is likely to perform better because it avoids the table

joins that the second option may require, we’ve chosen the second option in our

initial implementation because it was easier to implement. A system table called

alchemy:atom holds all the atoms used in an Alchemy system, and an additional

column allows auxiliary information to be attached to an atom.

One case that complicates the use of the first option is the presence of subset sig-

natures. Subset signatures may include the atoms of other base signatures, in which

case the atom may be redundantly duplicated in several places. Using references in

the signature tables allows the proper sharing of atoms.

4.2.2 Signatures and Fields

Given an Alloy specification containing signature and field structure, the signatures

are reflected as single-arity database tables. Fields are represented as multi-arity

tables whose columns, too, are references to atoms.

50

In the following example,

sig A {}
sig B {

c : set A

}

we generate the schema:

create table A (id integer not null primary key);

create table B (id integer not null primary key);

create table c (id0 integer not null , id1 integer not null);

where the id columns are references to the atoms in the alchemy:atom system table.

Multiplicity constraints are currently treated outside of the database schema by

becoming facts that are maintained as part of the repair algorithm. It is future work

to incorporate those constraints directly into the database schema.

4.2.3 Signature Hierarchies

Alloy signatures can be arranged in an inheritance hierarchy. There are three map-

ping strategies listed in Ullman [GMUW01] from hierarchies to database tables:

1. Use a single table to hold all the instances of the subclasses.

2. Use multiple tables, one table per subclass, with information spread across

several tables.

3. Use multiple tables, one table per subclass, with an entity’s information con-

solidated in a single table, where duplicate attributes may be present across

all subclasses.

We choose the second option, mapping a table to every relation in an Alloy

specification. This fits closely with Alloy’s model of the signature hierarchy. The

51

second and third options are equivalent in our context, because there is no auxiliary

information associated with the fields of an Alloy signature. The first option could

have also been used. Alchemy extracts the hierarchical constraints as facts, and

the repair algorithm maintains the subset/superset relationship between parent and

child signatures.

52

Chapter 5

Related Work

5.1 Synthesis

Software synthesis is an elusive goal, as Rich and Waters summarize [RW88]. Both

Green [Gre69] and Waldinger and Lee [WL69] are generally credited with initiating

this effort. Bates and Constable [BC85] discuss the relationship between construc-

tive proofs and programs; this connection continues to be exploited in modern the-

orem provers that extract programs from proofs. Burstall and Darlington [BD77]

instead define rules to transform specifications into programs, which Manna and

Waldinger [MW80] combine with theorem-proving and induction. Some authors

such as Smith [Smi85] have instead focused on the synthesis of particular types of

algorithms rather than programs. Unlike our work, most of these approaches usu-

ally involve considerable human interaction, and have tended to be applied to pure

functions that generally avoid any reference to state and mutation.

Executable UML [MB02] and other model-driven approaches attempt to proceed

from specifications to programs, but with a significant difference in philosophy from

ours: they tend to start with large, multi-modal specifications, which are rather

53

unlike lightweight specifications in the style of Alloy. This philosophical difference

has practical consequences: Executable UML tends to be used to produce entire

working systems, while Alchemy focuses on translating partial specifications into

partial programs (specifically, libraries). In addition, Executable UML is based on

an object rather than relational language of specification.

SPECWARE [MA01], the current incarnation of a series of innovative tools, is a

synthesis engine that has been successfully applied to build several systems. It uses

a refinement-based approach to obtain programs from specifications. In general, this

involves the creation of proof-obligations that the user must eventually discharge.

In contrast, our work attempts to simply find an interpretation for operations, using

various heuristics to narrow the search space.

The B-method [Abr96] has been used to develop several significant systems. The

B approach is to convert specifications into programs through a process of applying

refinements. In particular, a specification is refined until it is deterministic, at which

point it can be translated directly into code. Alchemy sits at a very different point in

the design space of synthesizers, trying to relieve developers the burden of proceeding

from a partial, non-deterministic specification to a rapid (and hopefully usable)

prototype; to instead build large, industrial systems, Alchemy would probably have

to adopt techniques such as refinement.

Numerous tools “animate” specifications in Z and similar languages (e.g., [HST97,

MFMU05]), B [WB98], and the Java Modeling Language [BDLU05]. These tools

typically refine a given specification gradually into first-order logic or a language

such as Prolog. The goal of animation is to detect errors and improve comprehen-

sion. Unlike Alchemy, these tools use animation as one more tool in the design and

specification process (e.g., in this methodology one is typically not targeting Prolog

code as a final product) rather than produce code suitable for deployment on real

54

databases.

DynAlloy [FLB+05] is an extension to Alloy to express state change in specifi-

cations. The authors make the same observations as we do about the intentional

reading of predicates, but choose to alter the language to reflect this explicitly.

DynAlloy supports only analysis, not code-generation.

Gheyi, Massoni, and Borba [GMB07] recognize the difficulty in correctly express-

ing framing conditions for state transitions. They present a set of refactoring rules

to translate between the global state idiom used in our work into a local state idiom.

These rules may be of use in refining Alchemy.

5.2 Databases

We can view Alchemy as realizing a form of the Semantic Data Model (SDM) [HM78],

which is an early and important framework for describing hierarchical data models.

Like Alloy, the SDM supports features such as object hierarchies, data constraints,

aggregation of entities, and definitions for derived data, but it does so through sep-

arate semantic concepts, which can result in more unwieldy descriptions than those

obtained thanks to Alloy’s uniformity.

Hammer and Berkowitz’s DIAL system [HB80] describes a database program-

ming language based on the SDM. The dynamics of a system are described by pro-

cedure definitions analogous to the Alloy predicates relating pre- and post-states.

Unlike Alchemy, however, DIAL does not automatically guarantee that the actions

of these procedures will agree with the static constraints of an SDM model; instead,

it triggers “entry procedures” that must the programmer must manually implement

to perform repair.

The Galileo [ACO85] programming language features a rich type system and

55

supports certain integrity constraints. While Alchemy’s types are weaker, Galileo

does not address our main goal of bridging the gap between declarative specification

and implementation, and Alchemy enforces a richer class of semantic invariants.

Stemple, Mazumdar, and Sheard [SMS87] choose first-order logic as their con-

straint language, as in Alchemy. Their strategy, however, is very different: they use

a theorem prover to search for a proof of satisfiability; unsafe operations leave a

residue of unsatisfiable subgoals that are rewritten as operations to repair a trans-

action.

McCune and Henschen [MH89] perform queries that check the complete condi-

tions for preserving database constraints across transactions to avoid rollback. They

apply a theorem-proving search to establish that a transaction preserves a constraint

and, if the search fails, use the counterexamples to generate runtime checks. In con-

trast to Stemple, et al., they concentrate on determining how to optimize away

particular checks of constraints. They raise the possibility of computing transaction

repair with their work, but instead focus on runtime checks for violation detection.

Ceri and Widom [CW94] describe a system for automatically maintaining the

consistency of a data model. Their maintenance procedures change a set of derived

tables based on Datalog-defined rules. Like Alchemy, these repair rules are auto-

matically generated by the system. However, their system has access only to a set

of base tables in computing repair, so they cannot handle recursive rules. Later

work by Ceri, et al. [CFPT94] lifts these restrictions and allows fine-tuning by the

designer.

Orman [Orm01] defines transaction repair for database updates, handling con-

straints written in non-recursive Datalog. The system treats a single constraint after

a homogeneous update and does not attempt to manage the difficulties arising from

the presence of multiple constraints and mixed insert/delete transactions. The Alloy

56

language presents additional challenges not faced there due to the rich structure of

expressions in relational algebra.

Nentwich, Emmerich, and Finkelstein’s document consistency manager [NEF03]

defines a notion of repair specialized for XML data structures. While we treat

atom creation separately from repair, their repair semantics allows the creation or

destruction of domain elements. Their work permits user interaction with the repair

algorithm.

Demsky and Rinard [DR03] describe a system for automatically repairing errors

in program data structures from constraints. While their work interprets atomic

data, such as numbers, it is limited to removing or deleting single tuples. Their

work presents a cost function for directing repair search, which we lack.

Melnik, Adya, and Bernstein’s work enables efficient representation and access

to relations in a relational schema [MAB07]. Given a constraint mapping between

a conceptual schema and a store relational schema, the thesis defines an algorithm

for computing views that express one schema in terms of the other. Its result

addresses the problem of how one can retrofit an Alloy data model on top of a

pre-existing legacy database, or between the idealized Alloy data model and an

optimized implementation.

Ruby on Rails [Rub] includes an implementation of the ActiveRecord data-

mapping protocol [Fow02], where database access is exposed through classes. Like

Alchemy, ActiveRecord supports the development of data models with hierarchies

and object associations, supporting a limited set of multiplicity constraints. How-

ever, constraint maintenance is done through validation rather than automatic re-

pair.

57

Chapter 6

Evaluation

We have run Alchemy on several examples, including the running example from this

thesis and simple examples from the Alloy book [Jac06]. More usefully, we have

applied Alchemy to a model reflecting the features of Continue1, a working system

that manages papers for academic conferences.

One of the dangers of our approach is that it might perform in an unreasonable

amount of time. The Alloy Analyzer tool uses the notion of the small scope hypoth-

esis to justify the use of very small models, using a handful of atoms to exercise a

specification’s assertions. But a more realistic instance of a system may have many

more atoms, and under that situation, the Alloy Analyzer can take minutes for its

analysis. In our system, we use nondeterminism and backtracking to search for a

satisfying operation sequence; because we are doing an exhaustive search, there is a

risk that Alchemy may get lost within the search space and perform in time expo-

nential in the size of the input. To our relief, this hasn’t happened for the common

cases we’ve tried.

The Continue specification, a specification of nontrivial complexity, defines the

1http://continue2.cs.brown.edu/

58

behavior of a conference manager. Continue maintains authors, publications, and

reviewers. Publications may be in a particular stage of processing and approval,

and reviewers can bid for papers and be assigned to a set for review. Actions are

managed by an access-control policy that considers the actors, the objects, and the

overall system context. We observed Alchemy’s behavior on working on substantial

inputs, and measuring how long it takes a predicate to terminate.

The Continue specification’s state object has 15 fields, several of which have

sub-structure. There are 25 other signatures, of which 15 represent enumerated

types. Most of these have signature constraints that turns into facts. The model

has 22 stateful predicates, most of which have either an update or framing condition

for each of the 15 state fields.

We tested typical workflows (submission, bidding, assignment, reviewing, etc.)

representing small conferences (up to 40 papers and 24 reviewers). These workflows

thoroughly exercised repairs. Even though our prototype implementation lacks nu-

merous optimizations (Chapter 7), each procedure execution, including repair, took

under a second (executed locally, to avoid network overhead) on a laptop (MacBook

Pro, 2.33GHz Intel Core 2 Duo with 2Gb RAM).

The workflow we simulated performed the following:

• created a program committee (PC)

• submitted papers

• added bids for those papers by the PC

• assigned papers to the PC

with the measured times shown in Figure 6.1.

59

of papers size of PC seconds number of operations
In DrScheme

5 8 14.13 43
5 12 16.04 47
5 16 22.13 51
5 20 28.17 55
5 24 34.32 59
10 8 34.74 78
10 12 37.93 82
10 16 49.08 86
10 20 64.18 90
10 24 76.33 94
15 8 68.11 113
15 12 80.22 117
15 16 100.78 121
15 20 132.05 125
15 24 136.67 129

In MzScheme
5 8 10.83 43
10 8 28.61 78
15 8 61.62 113
25 8 178.62 183
30 8 286.20 218
40 8 575.00 288

Figure 6.1: Performance times for the simulated workflow. DrScheme is a graphical
environment that introduces some runtime overhead for profiling and debugging
support. We re-ran our measurements using MzScheme to remove this overhead:
this allowed us to exercise Alchemy for the larger workflows.

60

Chapter 7

Conclusion and Future Work

The use of software tools like Alloy allows designers to explore designs of systems in-

teractively without having to prematurely commit to implementation details. We’ve

shown how Alloy can be used as a data modeling language by using the primed-

state idiom to express state change. We want to squeeze more value out of such

an appropriate specification and extract a working implementation. We presented a

semantics of what such an implementation would guarantee, an algorithm for achiev-

ing those semantics, and the Alchemy compiler that provides this functionality for

the implementer.

Because the Alchemy compiler itself executes in mere seconds, users can quickly

obtain at least a prototype, and perhaps even a small deployment, of a persistent

store. This frees them to focus on the rest of their system. Hopefully, the existence of

Alchemy thus creates additional incentive to write lightweight formal specifications.

Naturally, a system of this scope offers numerous opportunities for future work.

• Our algorithms have much room for optimization. For instance, the truth

of all facts in the pre-state may help identify what relations need and need

not be searched for repairs. Syntactic characterizations of conditions such

61

as homogeneity (Section 3.2.3) would help Alchemy identify both errors and

optimizations statically. In general, moving work from run-time to compile-

time is an important area of future work.

• As noted in Section 3.3, the mismatch between primed-state notation for ex-

pressing state change vs. the stateless Alloy semantics poses a modeling chal-

lenge. One avenue for future work is to develop an Alloy semantics that treats

state change formally, so that all signature and field relations may be viewed

under a pre-and-post state. Such a semantics would be more compatible with

Alchemy’s imperative semantics and encourage the use of Alloy as an object-

modeling language.

• We can lift our restriction on universal formulas (Section 2) by Skolemization,

which has the cost of introducing additional one constraints.

• One part of the beast not used in this sausage is the set of assertions in an

Alloy specification. It would be worthwhile to turn them into assertions about

the program that are enforced via contracts and monitoring.

• Sophisticated software synthesis tools make considerable use of human guid-

ance. Alchemy was an experiment in how far we can go with almost total

automation, and the results have been positive. In a working system, how-

ever, users are likely to want much greater control over both the meaning and

performance of generated code. The rich literature on synthesis and refinement

(Chapter 5) will be inspirational in this regard.

• Finally, many synthesis tools employ proofs about the specification to guide

program generation. Because the proofs from the Alloy Analyzer are both

over bounded domains and usually have little constructive content, we have

62

not pursued this path. In future, however, it would be interesting to enrich

our synthesizer to utilize proof information. The semantic mismatch described

in Section 3.3 raises interesting challenges here.

63

Bibliography

[Abr96] Jean-Raymond Abrial. The B-Book: Assigning Programs to Meanings.
Cambridge University Press, 1996.

[ACO85] Antonio Albano, Luca Cardelli, and Renzo Orsini. Galileo: a strongly-
typed, interactive conceptual language. ACM Transactions on Database
Systems, 10(2):230–260, 1985.

[BC85] Joseph L. Bates and Robert L. Constable. Proofs as programs. ACM
Transactions on Programming Languages and Systems, 7(1):113–136,
1985.

[BD77] R. Burstall and J. Darlington. A transformation system for developing
recursive programs. Journal of the ACM, 24(1), January 1977.

[BDLU05] Fabrice Bouquet, Frédéric Dadeau, Bruno Legeard, and Mark Utting.
Symbolic animation of JML specifications. In International Symposium
of Formal Methods Europe, 2005.

[CFPT94] Stefano Ceri, Piero Fraternali, Stefano Paraboschi, and Letizia Tanca.
Automatic generation of production rules for integrity maintenance.
ACM Transactions on Database Systems, 19(3):367–422, 1994.

[CW94] Stefano Ceri and Jennifer Widom. Deriving incremental production
rules for deductive data information systems. Information Systems,
19(6):467–490, 1994.

[DR03] Brian Demsky and Martin C. Rinard. Automatic detection and repair
of errors in data structures. In ACM SIGPLAN Conference on Object-
Oriented Programming Systems, Languages & Applications, 2003.

[Far] Will M. Farr. The classic ambiguous operator.
http://planet.plt-scheme.org/display.ss?package=amb.plt&owner=wmfarr.

[FLB+05] Marcelo F. Frias, Carlos G. López Pombo, Gabriel A. Baum,
Nazareno M. Aguirre, and Thomas S. E. Maibaum. Reasoning about

64

static and dynamic properties in Alloy: A purely relational ap-
proach. ACM Transactions on Programming Languages and Systems,
14(4):478–526, 2005.

[Fow02] Martin Fowler. Patterns of Enterprise Application Architecture.
Addison-Wesley Longman Publishing Co., Inc., 2002.

[GMB07] Rohit Gheyi, Tiago Massoni, and Paulo Borba. Formally introducing
Alloy idioms. In Brazilian Symposium on Formal Methods, 2007.

[GMUW01] Hector Garcia-Molina, Jeffrey D. Ullman, and Jennifer Widom.
Database Systems: The Complete Book. Prentice Hall, 2001.

[Gre69] Cordell C. Green. Application of theorem proving to problem solving.
In International Joint Conference on Artificial Intelligence, 1969.

[HB80] Michael Hammer and Brian Berkowitz. DIAL: A programming lan-
guage for data intensive applications. In ACM SIGMOD International
Conference on Management of Data, 1980.

[HM78] Michael Hammer and Dennis McLeod. The semantic data model: a
modelling mechanism for data base applications. In ACM SIGMOD
International Conference on Management of Data, 1978.

[HST97] Daniel Hazel, Paul Strooper, and Owen Traynor. Possum: An ani-
mator for the SUM specification language. In Asia-Pacific Software
Engineering and International Computer Science Conference, 1997.

[Jac00] Daniel Jackson. Automating first-order relational logic. In ACM SIG-
SOFT International Symposium on the Foundations of Software Engi-
neering, 2000.

[Jac06] Daniel Jackson. Software Abstractions. MIT Press, 2006.

[JW96] Daniel Jackson and Jeanette Wing. Lightweight formal methods. IEEE
Computer, April 1996.

[KFDY08] Shriram Krishnamurthi, Kathi Fisler, Daniel J. Dougherty, and Daniel
Yoo. Alchemy: transmuting base alloy specifications into implementa-
tions. In SIGSOFT ’08/FSE-16: Proceedings of the 16th ACM SIG-
SOFT International Symposium on Foundations of software engineer-
ing, pages 158–169, New York, NY, USA, 2008. ACM.

[MA01] James McDonald and John Anton. SPECWARE - producing software
correct by construction. Technical Report KES.U.01.3, Kestrel Insti-
tute, March 2001.

65

[MAB07] Sergey Melnik, Atul Adya, and Philip A. Bernstein. Compiling map-
pings to bridge applications and databases. In ACM SIGMOD Inter-
national Conference on Management of Data, 2007.

[MB02] Stephen J. Mellor and Marc J. Balcer. Executable UML: A Foundation
for Model-Driven Architecture. Addison-Wesley, 2002.

[MFMU05] Tim Miller, Leo Freitas, Petra Malik, and Mark Utting. CZT support
for Z extensions. In International Conference on Integrated Formal
Methods, 2005.

[MH89] William W. McCune and Lawrence J. Henschen. Maintaining state
constraints in relational databases: a proof theoretic basis. Journal of
the ACM, 36(1):46–68, January 1989.

[MW80] Zohar Manna and Richard Waldinger. A deductive approach to pro-
gram synthesis. ACM Transactions on Programming Languages and
Systems, 2(1):90–121, January 1980.

[NEF03] Christian Nentwich, Wolfgang Emmerich, and Anthony Finkelstein.
Consistency management with repair actions. In International Con-
ference on Software Engineering, 2003.

[Orm01] L. V. Orman. Transaction repair for integrity enforcement. IEEE
Transactions on Knowledge and Data Engineering, 13(6):996–1009,
November 2001.

[Rub] Ruby On Rails. Ruby on Rails.
http://rubyonrails.org/.

[RW88] Charles Rich and Richard C. Waters. Automatic programming: Myths
and prospects. IEEE Computer, 21(8):40–51, 1988.

[Smi85] Douglas R. Smith. Top-down synthesis of divide-and-conquer algo-
rithms. Artificial Intelligence, 27(1):43–96, 1985.

[SMS87] David Stemple, Subhasish Mazumdar, and Tim Sheard. On the modes
and meaning of feedback to transaction designers. SIGMOD Record,
16(3):374–386, December 1987.

[WB98] Helene Waeselynck and Salimeh Behnia. B model animation for ex-
ternal verification. International Conference on Formal Engineering
Methods, 1998.

[WL69] R. J. Waldinger and R. C. T. Lee. PROW: A step toward automatic
program writing. In International Joint Conference on Artificial Intel-
ligence, 1969.

66

