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Abstract

Solutions of differential equations with discontinuous boundary conditions fail to
belong in classical Sobolev spaces and hence presents a fundamental challenge in
determining their effective behavior. In this dissertation, we consider three differ-
ent boundary conditions for problems coming from the sciences and engineering,
and use different approaches to circumvent this issue.

We first study a system of parabolic PDEs in moving domains modeling mass
transfer in heterogeneous catalysis with a Robin boundary condition on the inter-
face. The behavior of such systems becomes increasingly complex as the number of
catalyst particles increases, which motivates the search for a homogenized model
that would describe the asymptotic behavior of the solution to the problem. We
transform the moving domain problem into a problem in a fixed domain by con-
structing a diffeomorphism out of the known solid particle velocities. We prove
that solutions exist in any finite time and show that these solutions two-scale con-
verge to solutions of a PDE/ODE system. We further prove corrector results for
the solution and show strong convergence. Finally, we provide examples of solid
velocities for which our result applies.

We then consider the elasticity problem for a homogeneous body with period-
ically distributed fractures. We first extend previous results on the dual formu-
lations for an elastic body without fractures to a model of a homogeneous elastic

body with fractures. In particular, in the framework of Legendre-Fenchel duality,
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we were able to provide three equivalent formulations for the problem where the
displacement, the stress, and the strain are the unknowns respectively. We also
provide a characterization of the image of the convex cone of admissible displace-
ments under the linearized strain tensor. Finally, we prove a homogenization result
using Mosco convergence.

Lastly, we study the solvability of the Stokes equations in a bounded domain,
describing the motion of a Newtonian fluid past moving rigid particles whose ve-
locities are assumed to be known. We prescribe a Navier slip boundary condition
on the fluid-solid interface. To solve the moving domain problem, we map the
equations to a fixed domain using a diffeomorphism constructed from the solid
particle velocities. The resulting equations can be thought of as a perturbation
of the Stokes equations in a fixed domain. This motivates the use of a contrac-
tion mapping argument to show existence of solutions. We first construct weak
solutions to the nonstationary Stokes equations in the fixed domain via Rothe’s
method. We then prove the higher regularity of the solution to the stationary
Stokes equations in a bounded domain with slip boundary conditions and use this
to show the existence of a strong solution for the nonstationary problem for any
finite time interval using fixed-point methods. We leave the homogenization of

this problem for future work.
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1 Introduction

The focus of this dissertation is the homogenization of partial differential equa-
tions whose solutions are discontinuous. The discontinuity comes from boundary
conditions that reflect different physical phenomena. This creates a fundamental
challenge when it comes to describing the macroscopic behavior of these hetero-
geneous systems, namely the lack of a sufficiently fine topology that contains all
solutions at every sufficiently small scale. In this work, we consider different strate-
gies to circumvent this obstacle, as well as analyses on the models we use and their

solutions.

1.0.1 Well-posedness and homogenization of a coupled parabolic sys-

tem modeling mass transfer in heterogeneous catalysis

Catalysts are substances that increase the rate of a chemical reaction. In indus-
try, heterogeneous catalysts, which are in a different phase than the reactants
and products, are widely used to enable faster large-scale production. These het-
erogeneous catalysts are small, ranging from micrometers to nanometers, and so
modeling mass transfer can be computationally expensive. Homogenization theory
gives us a way to approximate the model by looking at the limit behavior of such

suspensions.

Our model is a system of parabolic equations coupled with a Robin boundary

condition in a moving domain, which models the mass transport of a reactive



solute in a bounded reactor with suspended catalysts:

0. — DpAv. +u. - Vo, =0, in F.(1) (1.1)
Opv: =0, on 09 (1.2)

Dro,ve = DgO,w., on ['(t) (1.3)

Dro,ve + e (ve —w:) =0, on I'.(¢) (1.4)
Oyw. — DgAw, +rw. =0, in S.(t) (1.5)
v:(0) = v, in F(0) (1.6)

w:(0) = w.p, 1in S.(0). (1.7)

Here, v. is the concentration of a solute that undergoes diffusion and advec-
tion in a bounded fluid domain F_(¢). The solute is adsorbed on the surface of
suspended solid catalysts, described by the Robin boundary condition on T'.(¢).
It then diffuses into the solid catalysts S.(t), where it is now denoted as w,, and
reacts via linear kinetics. In our model, the catalysts are not necessarily fixed;
they can move together with the fluid. Hence, the fluid domain F.(¢) and solid
domain S.(t) change in time and are described by the fluid and solid velocities

that are known a priori.

Our approach was to map the moving domain to a periodic initial domain and
use two-scale convergence to obtain an effective model. We define v* := v. o X,
and w® := w. o X, where X, : Q — Q is a diffeomorphism constructed from the

known solid velocities. Thus, (v, w*®) is the solution in the fixed domain.

Our main results were on the asymptotic behavior of these solutions. In

particular, we determined their limits as ¢ — 0 and obtained the equations



that their limits satisfy. Physically, this corresponds to the suspension being ho-
mogenized, i.e., the size of the catalysts (which scale like ) goes to zero and
the number of catalyst particles (which scales like €71) goes to infinity. Since
fe(t,) == vo(t, ) Lp i) (-) + we(t, ) Ls.)(+) is not necessarily in H'(2) because of
the possible jump discontinuity on I'.(¢), the homogenization is not straightfor-

ward.

To describe the limiting process, we made use of two-scale convergence:

Definition 1. Let 2 and Y be bounded open sets in R™, and T > 0. A se-
quence {u.} in L*((0,T) x Q) is said to two-scale converge to a limit u €

L2((0,T) x QxY) if

lii%/oT/Que(t,x)gzﬁ (t,x,§> dx dt = %/OTL/Yu(t,x,y)qb(t,x,y) dy dx dt,
(1.8)

for all p € L? ((O,T) X ; Cher (}7))

Instead of using more sophisticated extensions of v. and w, to the whole domain
(), two-scale convergence allows us to use simpler ones, in particular extending

these functions by zero outside F. and S., respectively. Indeed, we proved:

Theorem 1. Let v¢ be the zero extension of v:. Then, there exist v° € V and



vh e L2((0,T) x Q; HY, (Y)/R) such that, up to a subsequence, the following hold

per

¢ =01y, in the two-scale sense  (1.9)
Ve = (V0! + V') 1y, in the two-scale sense  (1.10)
V¢ |pe — v° strongly in the two-scale sense on I'.  (1.11)
e — |Yp|op" weakly in L? ((0,T) x Q)  (1.12)

Theorem 2. Let we be the zero extension of w®. Then, there exists w® € V such

that, up to a subsequence, the following hold

wF — Yy w’ strongly in the two-scale sense (1.13)
Vu® — 0 in the two-scale sense (1.14)
we|pe — w® strongly in the two-scale sense on I'. (1.15)
Oywe — |Ys|opuw® weakly in L* ((0,T) x ) (1.16)

and that the limits v° and w® satisfy the following homogenized equations:

1

Theorem 3. v°, v!, and w° are the the unique weak solutions of

div, (A?;(t,x,y) (vao(t,:c) + Vo' (t,z,y) =0, n(0,T)xQxY
vif0? = dive ([ A3t (Var?(00) + ¥y 1)y
Yp
= [a (W°(t,z) —w'(t,z)) in (0,T)x Q

o + ru’(t, 1) = ’|}1;—||a (w'(t,z) —0°(t,x)) in (0,T) x Q
s

To demonstrate the utility of the limit equations as a useful proxy for the



original model, we further proved:

Theorem 4.

[v® — UOH%%(O,T}xFE) + [lw® — wOH%Q((O,T)xSE) (1.17)

+ /OT /FE ‘va(t,x) - Vo'(t,z) — V0! (t,x, g)

Lastly, we provide some examples of examples of solid velocities for which our

2
— 0, ase—0.

result applies.

1.0.2 Elastic solids with fractures

Elastic solids with fractures that are in equilibrium can be described by an elliptic
PDE with a nonlinear boundary condition on the fractures. The presence of these
fractures influences how the solid responds to forces acting on it. We are interested
in solids with periodically distributed fractures. The finer the heterogeneity of the
system, i.e., the smaller and more numerous the fractures, the closer the solid will
behave to a homogeneous solid with effective properties.

We make use of the model of the elasticity problem with fractures in [50]. Here,
we assume that the elastic body, €2 having a fixed boundary 0f2 is homogeneous
and contains a single fracture inside its interior. The fracture is thought to be a
smooth orientable surface which may or may not be connected, and is denoted by

Y.. The extension to the case of periodically distributed fractures is standard. We



write as Qp the set Q\X.. The model is as follows:

dive + f=0 in Qp (1.18)

o =AVgs(u) in Qp (1.19)

u =0 on 0N (1.20)

[u-N]>0 on X, (1.21)

on|y =oynN;only = —oyyN; oyy <0 on X, (1.22)
if [u- N| > 0on F,then oyy =0. (1.23)

Figure 1.1: Elastic solid with fracture

Here, N refers to the unit normal on ., n is the outward unit normal on the
boundary of Qr, [¢] = ¢1 — @] refers to the jump of the field ¢ across the fracture
Y., where the subscripts 1 and 2 denote the faces of X in the direction of IN and
the opposite direction, respectively. oy = 0N - N. A = [a;jx] is the elasticity

tensor, assumed to have symmetry and positivity properties, i.e.,

AB-B >0, for all B+#0, B € R¥*3, (1.24)

Aijkl = Qijlk = Qjikl = Ajilk, (125)



f represents the body forces acting on the body. Vg(-) is the linearized strain
tensor.

We first prove some duality results. It was shown in [13] that the problem of
finding a displacement vector that solves the elasticity problem is equivalent to
finding a stress or strain tensor that solves a minimization problem. We extended
their results, which dealt with the case of a homogeneous elastic solid without

fractures, to the case with fractures. The new formulations are:

Problem 1 (Displacement Formulation). Find uw € K such that

J(u) = inf J(v), (1.26)

veK

where J(v) := %/ AVg(v) : Vg(v)dx — f-vdx forallveV.
Qp

Qp

Problem 2 (Stress Formulation). Find o € S such that

g9(o) = inf g(p), (1.27)

HES

1
where g(p) = 5/ Bp : pdx for all p € L4(QF), and B = A%
Qp

Problem 3 (Strain Formulation). Find w € M such that

J(m) = inf J(p), (1.28)

peM+

DN —

where J(p) = / Ap: pdx — f - L(p)dz for all p € M.
Or Qp



Here, £(p) is the unique element in K such that Vg (L£(w)) = . The spaces
K,S, and M™ are the sets of admissible displacements, stresses, and strains. (See

[53] for a precise definition of these spaces.)

We proved, up to a change of sign, that the displacement, stress, and strain

formulations are dual problems:

Theorem 5.

inf g(o) = — inf J(v) = — inf J(p). (1.29)

oS veK peM+

Moreover, we proved the following relationship among the minimizers of each

problem:

Theorem 6. Let 0 €S, v € K, and 1 such that

9(0) = infg(o), J(v) = inf J(v), J(m)= inf J(h). (1.30)
Then
o =AVgs(v) = Ap. (1.31)

To describe the effective properties of the fractured material, we made use of

['-convergence:

Definition 2. We say that a sequence of functions F, : X — R, on a (first

countable) topological space X, I'-converges to a function F: X — R if

o for every sequence x, — x in X, we have that

F(z) < liminf F,(x,), (1.32)

n—oo



e for each x € X, there is a sequence x,, that converges to x in X such that

F(z) > limsup F,(zy,). (1.33)

n—oo

The starting point was to recast this problem as a minimization problem. We
denote by I'; the union of the fractures and 2. := Q\I'., where €2 is some bounded

subset of R?. We define the set of admissible displacements:
K. ={ve H(Q)|v=00ndQin dQ, [v- N] > 0in T.}. (1.34)

Here n is the chosen normal of the fracture surface and [-] denotes the jump across
the fractures. The set K. consists of displacement vector fields that are zero on

the outer boundary and has positive jump on the fractures.

Solving the elliptic PDE that describes our problem is equivalent to finding a

solution u. that solves the variational inequality:

AVs(u.) : Vg(v —u)dx > f-(v—wu.)dr Yv € K.. (1.35)
Qe

Qe

Here A is the elasticity tensor of the solid and f are the forces acting on the

solid. This can then be written equivalently as the following minimization problem:

52}?5 {%/ﬂ AV (v) : V(v) — /st-’v}. (1.36)

At this point, we run into a similar problem as before, in particular u,. is not

in H'(Q2). We used a family of restriction-extension operators introduced in [9] to
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circumvent this problem. Indeed, we proved:

Theorem 7. Define for v € L*(Q),

Ji(v) = %/Q AVs(v) : Vo(v) — /Q Feo+ v (v) (1.37)
Thom (V) == %/QO'O(VS('U))VS('U) — /Qf U+ X o) (V) (1.38)
(1.39)
Then
Jhom = T — lim J,, (1.40)
in the strong L*(Q2) topology,
where
o°(Vuy) = /YA(quo + V,uy) dy, (1.41)
and uy € H (Y \T) solves the unit cell problem:
A(V,ug+ Vyu)Vy(w —uq) dy > 0, (1.42)

Y\D
for allw € H} (Y \T) such that [w-N] >0 onT. Here, Y is the unit cell in R?,
(0,1)3.

This result states that the response of an elastic solid (with periodically dis-

tributed fractures) to a distribution of forces is close to that of a solid described
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by the PDE:

div (6°(Vug)) = f, in Q (1.43)

ug =0, on 0, (1.44)

1.0.3 Suspensions of rigid particles in a Newtonian fluid: well-posedness

and regularity

Suspensions of rigid particles dispersed in an incompressible fluids are commonly
found in industry. Initially, our goal in this project is to determine the effective
viscosity of such suspensions. However, we were unable to finish the homogeniza-
tion and have only proved well-posedness of the model and the regularity of its
solution. The study of the emergent behavior of suspensions has a long history,
dating back to Einstein’s work on dilute suspensions [25]. The focus of this section
is on the solvability of the Stokes equations with Navier-slip boundary conditions
in a moving domain. Indeed, we consider the motion of an incompressible Newto-
nian fluid in a bounded domain with submerged rigid particles whose velocities are

known. At the boundary of the fluid domain, we prescribe a Navier slip condition.
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The goal is to find a velocity v and pressure ¢ that satisfy

ow—Av+Vg=f, inQt),te(0,T) (1.45)

divv =0, inQ(t),t€(0,T) (1.46)

v-on=0, inT{),te(0,T) (1.47)

D)n], + a(v —V), =0, inT(t),te€(0,T) (1.48)
v(0) = vg, in Q, (1.49)

where the moving domain €2(¢) is defined by the velocities of the solid particles,
given by
Vi(t, ) == hi(t) + M;(t) (x — hi(t)), x € TTy(¢). (1.50)

Here, h; and M; are in C*(0,T'), M;(t) is skew-symmetric for all ¢, and I'(¢) is the
boundary of the solid particles at time t. Physically, the above equation says that

V; is a combination of a translation and a rotation.

Our approach is to use the diffeomorphism in [22] to write the problem in a
fixed domain. This method was pioneered by Inoue and Wakimoto in their seminal

paper for the Navier-Stokes equations in noncylindrical domains [37].

The problem can be solved using a fixed point argument. In [22], this was
obtained using classical work by [54] using semigroup theory. In our case, this
task is two-fold. We first show the H2-regularity of solutions to the steady-state

Stokes equations with slip boundary conditions. Indeed, we proved the following:

Theorem 8. Suppose f € L*(Q) and o > 0. Then, the weak solution (u,p)

to the stationary Stokes problem with Navier-slip boundary conditions belongs in
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H2(Q) x HY(Q).

We note that how we proved this, albeit similar to [1], differs in the way that the
map we use to transform the local problem with a curved boundary to a domain
with a straight boundary, preserves the normal boundary conditions, i.e., the jump
of the normal component of the velocity across the interface fluid-solid interface is

Z€ero.

Rothe’s method can then be used to show existence to the parabolic problem.

We proved:

Theorem 9. Suppose that the initial velocity ug belongs to HY(Q). Then the

solution to the non-steady state Stokes equations with slip boundary conditions u

is in W2 (0, T; L2(Q)) N L2 (0, T; HY(Q)) N L (0, T; LA()).

Finally, a fixed point argument gives us:

Theorem 10. Let F € L? ((0,T) x Q) and ug € H* (). Then, there exist (u,p) €
W2(0,T; L2(Q))NL2 (0, T; H*(Q))NL*>® (0,T; L*(Q))x L* (0, T; HY(Q)) that solves

the fized domain problem.
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2  Well-posedness and Homogenization of a system of parabolic
equations in moving domains modeling mass transfer in heterogeneous

catalysis

2.1 Introduction

We consider a system of parabolic equations coupled with a Robin boundary con-

dition in a moving domain:

0. — DpAv. +u. - Vo, =0, in F.(1) (2.1)
Opv: =0, on 09 (2.2)

Dro,ve = DgO,w., on ['(t) (2.3)

Dro,ve + e (ve —w:) =0, on I'.(¢) (2.4)
Ow. — DgAw, +rw. =0, in S.(t) (2.5)
v:(0) = v, in F(0) (2.6)

w:(0) = w.p, 1in S.(0). (2.7)

These equations form a simple model for the mass transport of a reactive solute
in a bounded reactor with suspended catalysts. Here, v. is the concentration of
a solute that undergoes diffusion and advection in a bounded fluid domain F_(t),
that is adsorbed on the surface of suspended solid catalysts, described by the Robin
boundary condition on I'.(¢). It diffuses into the solid catalysts S.(t), where it is

now denoted as w,, and reacts with linear kinetics. It is assumed that the fluid
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and solid velocities are known. Given these velocities, we detail in the next section
how the sets F.(t) and S.(t) are defined.

Heterogeneous catalysts are catalysts that are different in phase than reactants
or products of chemical reactions that they catalyze. These are widely used in
industry to make chemical processes cost effective by hastening the rate of chem-
ical reactions. We are particularly interested in heterogeneous catalysts that are
suspended in a liquid medium. These are often seen in water treatment appli-
cations, where a pollutant is degraded through photocatalytic reactions. See for
example [24], [55], [41], [59] and the references therein.

Catalyst particle sizes are typically measured in micrometers and nanometers
and are several orders of magnitude smaller than the scale of reactors. Numerical
simulations that account for the contributions of each particle can be complex.
This motivates the search for a simpler effective model that describes the mass
transfer processes.

Some of the early work in this regard is [42] and [36]. In [42], they consider the
mass transport of a reactive solute in a porous medium, where the catalysts are
supported on the surface of the porous medium. The homogenization is carried out
using formal asymptotic expansions. In [36], they consider a similar problem but
couple the mass transfer equations with the Stokes equations. They assume that
the fluid flow is independent of mass transfer and hence are able to use known
homogenization results for the Stokes equations in porous media to rigorously
obtain the homogenization result.

The kinetics and adsorption mechanics considered in [36] were linear and were
far simpler than what are observed in practice. The authors in [17] extend this

case to more realistic models. In particular, they both consider Langmuir and
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Freundlich kinetics, which are nonlinear adsorption mechanisms. We also cite [5],
where the authors consider a model where one has convection and diffusion in
both the bulk fluid and the pore surface. With the assumption of periodicity
of the velocity field that drives the advection, the authors were able to get a
homogenization result using formal asymptotic expansions, and show that this is
rigorous through two-scale convergence with drift.

In [29], they consider reaction-diffusion processes for multiple reacting species
in a two-component porous medium with nonlinear flux conditions at the inter-
face. In contrast with the earlier cited works, reactions occur throughout the
two-component medium instead of only happening on pore surfaces. The authors
use extension operators to extend solutions in the connected component of the
domain into the whole domain. This requires some degree of regularity of the
boundary of the connected component. We note that this was also used in [17].
The authors in [29] used the boundary unfolding operator and a compactness re-
sult for Banach-spaced valued functions to handle the convergence of the nonlinear
terms.

For problems in an evolving domain, one usually assumes that the evolution is
regular enough to map the moving domain into a fixed one. Homogenization prob-
lems in evolving domains commonly need a periodicity assumption on the fixed
domain in order to use tools from homogenization theory, e.g. two-scale conver-
gence, periodic unfolding methods. For example, in [47] the author considers the
homogenization of a diffusion-reaction-advection problem in domains with evolving
microstructure. The deformation of the domain is assumed to be regular enough
that it can be mapped into a fixed periodic one. The author also assumes the

strong two-scale convergence of the terms that arise from the change of variables.
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This imposes a restriction on how the domain evolves. If the deformation veers
away too much from a periodic structure, then classical homogenization methods
might fail. In [23], the author considers a similar problem whose homogenization
result is proved using the periodic unfolding method. A more recent work in this
vein is [30], where the authors obtain the homogenization of a reaction-diffusion-
advection problem in an evolving domain with nonlinear boundary conditions. The
authors use similar tools as in [29] to handle the nonlinear terms. They also as-
sume that the evolution guarantees the strong two-scale convergence of the terms
arising from mapping to a fixed domain.

In this paper, we are interested in obtaining an effective model that describes
the mass transport of a single chemical species in a reactor with suspended moving
catalyst particles. To clarify the presentation, we assume linear kinetics and a
constant diffusivity for the fluid and solid domains. Our approach is to map the
moving domain into the periodic initial domain and use two-scale convergence to
obtain an effective model. We define v* := v, o X, and w® := w, o X, where
X, : Q — Qis our constructed diffeomorphism. Thus, (v®,w®) is the solution in
the fixed domain. More details are provided in the latter sections. We show that

the following convergences hold:

Theorem 3. Let v¢ be the zero extension of v°. Then, there existv® € L* (0, T; H'(Q2))

and v' € L*((0,T) x Q; H,.(Y)/R) such that, up to a subsequence, the following
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hold
¢ =01y, in the two-scale sense  (2.8)
Ve = (V0! + V') 1y, in the two-scale sense  (2.9)
V¢ |pe — v° strongly in the two-scale sense on I'.  (2.10)
0y — |Yp|0p° weakly in L? ((0,T) x Q) (2.11)

Theorem 4. Let w® be the zero extension of w. Then, there exists w® € L* ((0,T) x )

such that, up to a subsequence, the following hold

wF — Yy w’ strongly in the two-scale sense (2.12)
Vu® — 0 in the two-scale sense (2.13)
we|pe = w’ strongly in the two-scale sense on T'. (2.14)
Oywe — |Ys|opuw® weakly in L* ((0,T) x ) (2.15)

and that the limits v° and w® satisfy the following homogenized equations:

1

Theorem 5. v°, v!, and w° are the the unique weak solutions of

divy (A% (¢, z,y) (Va2 (t,2) + Vo' (ta,y)) =0, in (0,T) x QxY  (2.16)

1Yr| 0p0° — div, (/Y A%t 2, y) (Vo 2) + Vo' (t, 2, y)) dy) (2.17)
= [a (V°(t,z) —w'(t,z)) in(0,T)x Q
o’ + ru’(t,r) = %a (w'(t,z) —0°(t,x)) in (0,T) x Q (2.18)

Because of the linearity of the reaction term, we did not need to use H' exten-
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sions of solutions onto the whole domains such as those used in [29]. We are still
able to show a strong convergence result by using the fact that we are working

with solutions to PDEs. Indeed, we have

Theorem 6.

[v° — 12200y + 1w = WOl 22 0.1y x50 (2.19)
T x

+/ / ‘Vve(t, z) — Vul(t,z) — Vo' <t, T, —>
0o JE €

The diffeomorphism we use to map the moving domain onto the initial domain

2
—0, ase—0. (2.20)

comes from a standard construction found in works on fluid-solid interactions and
the Navier-Stokes equations in moving domains originally introduced in [37]. We
follow the construction in [22], where they considered the flow of a Newtonian
fluid past moving rigid obstacles. The idea is to construct the diffeomorphism
in such a way so that it is a rigid deformation for points initially on the solid
domain, the identity map when sufficiently far away from the solid domain and a
smooth transition in between these regions that is volume preserving. The volume
preserving property simplifies the calculations in the homogenization but is not
a necessary requirement. As long as the diffeomorphism is well behaved, i.e., its
Jacobian is uniformly bounded away from zero, then the requirements we require
from the solid velocities would allow one to handle the extra terms that come from
the Jacobian.

The paper is organized as follows: in Section 2.2, we construct the diffeomor-
phism that allows us to map a moving domain problem into a fixed domain. We
show that these problems are equivalent. In Section 17, we prove the existence

of solutions via Rothe’s method. We also obtain estimates on the solutions. In
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Section 2.4, we prove our homogenization result via two-scale convergence and our
strong convergence result. Finally, in Section 2.5, we provide some examples of

solid motion for which our result applies.

2.2 Transformation to a fixed domain and weak solutions

Let Q be a bounded subset of R? with smooth boundary and Yy be an open subset
of Y := (0, 1)® with smooth boundary such that Y5 CC Y. We denote Yz := Y\ Ys.
Let ¢ be a sequence of positive numbers that goes to zero. We define the following

sets:

O.:={(e€Z’|c(¢+Y)CCQ}

SE = U €(§+Ys)

£€O,

F.:=Q\S..

Observe that since €2 is bounded and has a smooth boundary, we have that
F, = <U €<£+YF)> U Asa
§€6,
for some A. C  such that [A.| — 0 as e — 0. As O, is finite, we can write
N(e)
S.=Jo.

i=1

The sets O; represent the solid rigid particles at time zero, hence, S, are the solid

catalysts and F. is the fluid domain at time zero. Below is an example of what
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the domain looks like at t = 0. Here, S. is the union of the purple circles and F.

is the interior of the space in between these circles.

Figure 2.1: Domain at ¢t = 0

From here onwards, we denote by y, the spatial variable in the domain at time
zero and x := xz(t,y) to be spatial variable in the moving domain. To describe the
moving domain, we obtain a transformation that maps O; to T(t), i.e., a mapping
between points from the solid at ¢ = 0 to points in the solid at any time ¢ € (0,7).
This would come from the velocities of the solid particles that are assumed to be
known a priori.

Let y € O;, and consider the following ODE describing the trajectories of the

solid catalysts:

G;(t,y) = h (1) + Mei(t) (Gi(t,y) — hei(t)), >0

G;(0,y) =y.

Assumption 7. We assume that M., : [0,00) — R**3 is a skew-symmetric



22

matriz and that both h.; : [0,00) = R3 and M., satisfy

sup |||l Le0,00) < Ce7, (2.21)
1<i<N(e)
sup || Ml (0,00) < C, (2.22)
1<i<N(e)

for some v > 1 and C > 0 that is independent of .

This, then, defines an isomorphism Gj(t,-) : O; — O;(t). In addition to (2.21),

we further assume:

Assumption 8. The solid velocities are slow enough such that

sup d (O4(t), 05(t)) = o,
i#£j

for some 0 < 6 < 1 that is independent of €. We assume that § is small enough to

guarantee that the solids do not intersect each other.

We now define the fluid and solid domains, and the interface, respectively as:

F.(t):

o\ (Joiw
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We now write our system as:

0. — DpAv. +u. - Vo, =0, in F.(1) (2.23)
Opv: =0, on 09 (2.24)

Dro,ve = DgO,w., on ['(t) (2.25)

Dro,ve + e (ve —w:) =0, on I'.(¢) (2.26)
Oyw. — DgAw, +rw. =0, in S.(t) (2.27)
v:(0) = v, in F(0) (2.28)

w:(0) = w.p, 1in S.(0) (2.29)

(2.30)

Assumption 9. We assume that o, = ae, where o > 0. Moreover, we assume

that v.o € H* (F.(0)), weo € H' (S:(0)) and that

Ve 5 vy, in L2 (), (2.31)
weo 2% wy, in L2 (), (2.32)

for some vy, wy € L*(Q).

A practical choice for the limit functions in the assumption above is vy = C
and wy = 0, which corresponds to starting with a uniform concentration of solute

in the solution and using fresh catalysts.

Assumption 10. We suppose that the map t — wu.(t,-) is smooth and that for
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each t > 0, u.(t,-) : F.(t) — R® is smooth as well. Moreover, we assume that
u. =50, inL*(Q).
Definition 11. We define the spaces

T
Vo= {v :[0,T) x F.(t) > R | / / |Oww(t,z)|” + |v(t, 2)|* + |[Vou(t,z)|* dzdt < +oo}
0 =(t)

T
woim w0t o R[] it + ool + [Vult o) dede <40}
0 JS:(t)

Definition 12. We say that (v.,w.) € Vo x W_ is a weak solution to the moving

domain problem if for every (v, v) € V. x We, we have

T
/ / (Opve + u - va)<p+/ @wstb—l—/ DpVu. -V
=( 0 JSe(t) 0 JF(t)
—l—/ ngwg Vw+/ / rwe1
0 Sg s(t
/(/ w. = v.)(¢ — )

The task now is to find a diffeomorphism between F.(0) and F.(t). We follow a
classical construction used in fluid-solid interaction problems (see for instance [29]).
We do this by defining a suitable domain velocity for €2 that will give the necessary
diffeomorphism upon integration. Heuristically, we want this velocity to be the
solid velocity inside the solid particles, zero when one is sufficiently far away from
the solids, and to glue together these two velocites in between. For simplicity, we
require it to be volume preserving.

To start, let By,, By, be open balls such that O, C By, C Eh C Bs,,. We define
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for k=1,2:

By, (t) == {z = Gi(t,y)|y € By, }
Let n € C* (R3 x [0,T]) be a cut-off function such that
e 0<n<1,
o fort € [0,7T],n=1o0n UBy,(t), n=0 on R*\ UBy,(¢).

We let K;(t) := support of Vn(t,-) N By, (t).

In order to get a volume preserving diffeomorphism, we need this domain veloc-
ity to have zero divergence everywhere. To do that, we subtract out the divergence
of the terms where we expect the velocity to be nonzero. Indeed, we make the

following calculations:

div, (77(157 x)hlm(t)) = Vn(t,r) - h/s,i(t)u
div, (n(t, )M () hey(t)) = Vn(t, ) - M ()he,(t),
din (n(tv I)Me,i<t)x) = Vﬁ(ta Z)S) ’ Ms,i(t)x + 77(75: 1:) div:c (Ms,i(t)x)

= Vn(t,z) M. ,(t)z,

since M. ; is skew-symmetric. These motivate us to define for ¢ € [0,7] and

X € Oz(t)

N(e)

b(t,x) =n(t,x) Y (RL;(t) + Mei(t) (z — hey(t))) L)

=1

N(e)
- Z BKz(t) (vn(tv ) : (hls,z(t) + Ma,i(t)')) (ZE)HW(JZ),
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where By, : L*(K;(t)) — Hj(K;(t)), is an operator such that,

div (BKi(t)(H)) = H,

and || B, oy (H) | g (x,0) < C (Ki(#)) | HI| L2 (k) see [58] for details. Based on our

previous calculations, we have that

o b.(t,v) =h_,(t) + M.;(t) (x — h.;(t)) for z € Oi(t),
e divb. =0in €,
e b. € CF, (R” x [0, T];R?).

b. is the domain velocity that we need to define the necessary diffeomorphism.

Indeed, we consider the following problem: for y € R3,

X (t,y) =b.(t,X.(t,y)), t>0,

X.(0,y) =y.

As b, is smooth, by Picard-Lindelof, there exists a smooth function X, that solves
the above ODE. Thus, restricting it to F., we have that X (¢,-) : F. — F.(t) is the
desired diffeomorphism. Similarly, restricting to S., we have that X.(¢,-) : S; —
Se(t) is a diffeomorphism.

If the fluid and solid velocities are known and smooth enough, say ur and ug,
respectively, and that across the fluid-solid interface urp = ug at all times, then

one can create a map from the initial domain to the domain at any time ¢t > 0 by
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solving the problem:

3t¢(t, y) =u <t7 ¢(t7 y)) ; te (Ov T),

?(0,y) =,

where u is equal to ug in the fluid domain and ug in the solid domain. We chose
not to construct the diffeomorphism this way so that we do not have to deal with

terms arising from the Jacobian of the diffeomorphism.

Definition 13. We define the spaces

T
Vig:m {U 0.7] x F.(0) 5 R | / / 00t )2 + [v(t, 2) 2 + [Vo(t, 2) dedt < —i—oo}
0 =(0)

T
W = {w 10,7] x S.(0) > R| / / B (t, 2) 2+ [w(t, 2) 2 + [Vt o) dedt < —i—oo}
o Js.(0)

For a function v € V. and w € W,, we let v := vo X, and w := w o X..
Because X, is a diffeomorphism, we have that (v, w) € V.o x W, if and only if
(0,w) € Vo x We.

We have the following proposition:

Proposition 14. (v.,w.) is a weak solution to the moving domain problem if and

only if v. € V., Wep € Weo and v, W, and that for every (cﬁ,?ﬁ) € Voo x Wep we
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have:

/T/(O &wa + (w0 X, — 9,X.) - (VX. )‘Tvg)ga (2.33)

0

/0 ' / @wa—@t (VX)) vwE)@zJ

/OT /E(O)A Vi - V90+/ /5(0 ATV, - Vw-l-/ /5 ri) (2.34)
r ~

= [ ot (5 ),

where

_I_

A(t,x) = Lr)(t) (VXL ()" (VXe(t2)) "

A5(t, ) = Lo o)(t) (VX (t,2) " (VX (t,2) "
Proof. Let t € (0,T). Let (p,9) € Vo x W.. We begin with

DpVv. - Vo = DpVv.0o X, - Voo X,
F.(t) F.(0)

- Dp(VX.) "'V (v.0 X.(1) - (VX)) "V (g0 X(1))

F:(0)

= / AV, - V.
=(0)

Similarly,

DsVuw, - Vi) = / ALV, - V.
Se(t) Se(0)
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As for the time derivative terms, we have

/ (Opve + ue - Vo) o = 8,52)5 o X, + (uo X, —0X,)- (VXg)_T V17€> po X,
=(1) Fa(O)

- / atvg (u.o0 X, — 8,X.) - (VX.) " vm) %,
F:(0)

and

/ Ow) = (atuvg —9,X.- (VX" vwg) P
=(t) Se(0)

Since X, is a rigid displacement on I'.(¢), we have

f e =v= [ a5 (5-9)

Lastly, as
V= (VX.) " Voo X,
and
Vo= (VX)) Vo X,
the proposition follows. n

Assumption 15. We assume that there exist A%, A% € L*((0,T) x Q; Cper(Y))

such that

/OT/Q ‘A‘; (t,2) — A% (t,x, g) ‘2 —0 (2.35)
/OT/Q ‘Ag (t,z) — A% (t,a;, g) ’2 —0, (2.36)

i.e. we assume that A% and A% are strongly two-scale convergent. This allows us
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later on to deal with their limits in the homogenization process. Similar assump-

tions have been made in [30] to deal with homogenization in evolving domains.

2.3 Estimates and existence of solutions

From here onwards, we define v® := 0. and w® := ., i.e., (v°,w®) is fixed domain
solution. Moreover, we have that F. = F.(0), and S. = S.(0). Observe that

(v, w*) are the weak solutions to the following problem:

O —div (A5Vv°) + UL - Vof =0, (0,T) x F.  (2.37)
A5V -m =0, (0,7) x 09 (2.38)

ALV = ASVe n,  (0,T)xT.  (2.39)

ALV - n 4+ o (V¥ —w®) =0, (0, 7)x T, (2.40)

ot — div (A5Vw®) —U?Z - Vuf + ru® = 0, (0,7) x S.  (241)
v¥(0) = ve, in F.(0) (2.42)

w®(0) = we p, in S.(0), (2.43)

(2.44)

where U! :== (VX.) ™" (u. 0 X. — 9,X.) and U? := (VX.) ' 0, X..
Because of the slowness Assumption 2.21 on the solid velocities, we have that
the matrices A% and A% are coercive with a coercivity constant that is independent

of €. Indeed, we have
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Lemma 16. There exists 8 > 0 such that for all v € R3, we have

sup (v A°(t, 2)v) > Bo’v, (2.45)

where A%(t,z) == (VX.(t,2)) " (VX.(t,z))".

Proof. Since AFf is positive semidefinite, it is unitarily diagonalizable and all of its
eigenvalues are nonnegative. Let A; < Ay < A3 be the eigenvalues of A(t,z) and

D := diag {\1, X2, A3}. Let v € R3. Then, for some unitary matrix P, we have

3
v A*(t,z)v = v" P*DPv = wDw = Y Nw} > Mlw|3 = \||v]3,

=1

where the last equality follows from P being a unitary matrix. We now show that

A1 = A\i(t,x,€) can be uniformly estimated. First, we have

det (Ae(t7x)) — det (VXE<t, x)—1)2 _ 6—2tr(f0t ng(z,Xg(s,x)ds)) > e—C(||Vb5||oo) > (.

for some C} > 0. The last inequality follows from Assumption 2.21 and
VX.(t,y) = elo Vbe(s:Xe(s3)) ds
See the last section on Fxamples for details. Next, we have that
A3 <At 2)| 20,y x0) < ClA% (L, @) || L (0.1)x0) < C||Vbe|| 1o ((0,m)x0) < Co < 00.

Thus,
A\ = det (A%(t,x)) > det (AQ(t,x)) > &
A3Ag A3 Cy

=:5>0.
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We have the following existence theorem:

Theorem 17. There exists a unique weak solution (v.,w.) to the fixred domain

problem.

We first construct approximate solutions by successively solving a sequence of
steady-state problems. We proceed as follows. Let N € N and define £k := % We

set v 1= Ve,p and wl = weo. Form =1,..., N, we have

Lo vt e HY (FL) and wlw?, ...,w™ € HY (S.),

Proposition 18. Given v;,vZ, ..., ]

there exists a unique solution (v, w™) € H' (F.) x H'(S.) to the problem:

M — Umfl
i—?i——mwﬁﬁWﬁﬂlEWV¢%m, in F.
A"V -m =0, on 09
APV = A"V -n,  on T,
ATV n 4 o (08— w) =0, on T'.
m o __ m—1
Ei—%ﬁ———dW(ng?)—L@m-vwg+rw?:o, in S.,
where
A" (x) == Aw(mk,x), AJ"(z) := AG(mk, x),
and

. 1 [mk .
WM:—[ Uldt, i=1,2

m—1)k
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Proof. We define a™ : [H' (F.) x H'(S.)]* = R as

a” ((v,w), (p, 1)) = / (%v + Ut Vv) ©+ / (%w + U™ . Vw + rw) WP
F. g

+/ A}?va-ch—l—/ Ag’me-Vw—l—/ a:(v—w)(p — V).
€ € FE

We also define F™ : H' (F.) x H'(S.) — R as

1 1 .-
F™ (¢,v) 22/ Evm 1<p+/s e L.

€

Then, we can write our problem as: find (v, w™) € H' (F.) x H'(S.) such that

a™ (v, wl), (p,¥)) = F™ (@,9),

for all (p,v) € H' (F.) x H' (S.).
We proceed to show that this is uniquely solvable by the Lax-Milgram lemma.
Clearly, F™ is linear. Moreover, by induction, F'™ is bounded on H' (F.)x H' (S.).
Now, a™ is clearly bilinear on [H! (F.) x H' (S.)]?. Tt remains to show that it

is coercive. Indeed, let (v,w) € H' (F.) x H' (S.). By Lemma 16, we have that

[ avo-os [ 4579w G0z 5 (ol + luls,) . (240

Also,
/ ae(v —w)* > 0. (2.47)
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Now, by (2.21), we have that
U2 | (01)x ) + IUZ™ |2 (07 x52) < €, (2.48)
for some C' that is independent of €. Moreover,
1UZ™ | o 0,1y x5.) < Ce”.

Suppose for now that v is H*(F.). Then, we have that

2 2 2
[t vo= [ow () = [ (So) - Sav o
€ € 2 Fe 2 2

2
v

_ [ gy
N2

= 07
since u, = 0, X, on I'. U Jf) and

1 mk
div UM = div (- / (VX)) " (ue0 X, — 8tX€))
(m—1)k

mk
— —/ div ((V‘X\g)f1 (u. o XE)) —0div X, =0,
(

m—1)k

since X, has divergence zero everywhere. Thus, by a density argument, it follows
that if v € H'(F.), we have

div UM = 0.
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Combining these estimates, we obtain that for small enough ¢,

1
™ ((00), (00)) = Lol + BIV0 iy
1
F 7= 0 ) ol + 8 = C) [Vl

>C (uvuip@ + Nl

/\

Thus, a™ is coercive on [H' (F.) x H'(S.)]?>. Hence, the proposition follows by

the Lax-Milgram lemma. O

We now define the following approximate solutions:

N
Vet 2) 3= V(@) L1y (£)

we(t ) =Y W (%) L 1ymi) (1)
@a,k(t, fL‘) = Z (Ugl_l(w) + U;n(l’) —kU?_ (33) (t - mk‘)) ]]-[(mfl)k,mk) (t)
Bop(ta) = (w;n—l(x) AC) —kw;n —@ mk)) Lty (£)

Observe that . and w. are continuous in time. Their time derivatives are
well-defined in a weak sense and approximate to the time derivatives of the fixed

domain solutions. We now prove estimates for these functions.
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Lemma 19. Given g > 0, forp=1,..., N, and € < &g, the following holds:

p
||U§”2L2(FE) + ||w§||%2(55) + Z (||U? - U;R_IH%?(FE) + |lwl* - w?_IHQLQ(SE))

m=1

p p
+ kf Z HVU?H%Q(FE) + k(8- C¢) Z va?H%%SE)

m=1 m=1

< llveollZzgr) + lweoll 2

Proof. By taking v" and w!" to be test functions in the weak formulation of the

steady-state problem for v* and w", we obtain

Uén_vgnilm + w;n_,wgnfl m
) k UE ) k wE
+ / (U™ vol) ot — / (2™ - Vo) w
+ [ ATV -V [ ATV Vel + / r(w)? + / ae (V" — w)?

Fe Se

=0.

Since,

/ (U™ - vo) ot =0,
F.

€

- (ngm : ngn) w > _C‘EgHwH?{l(Fe)v
Se

and
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we obtain

HU?H%Q(FE) - ||U;n_1||2L2(FE) + [lo" — U?_IH%Q(FE)
+ ||w§n||%2(ss) - ||w;”—1||12(55) + Jwl" — wgn_1||%2(s€)
+ kBIVOI 12 (p) + K (8 — Ced) [Vl 72 (s

<0.

Summing fromm = 1, ..., p, for 1 < p < N, and noting that ||v* —v* |72 fy, (WD~

w225,y = 0, the lemma follows. O

Lemma 20.

||Ue,k||%oo(o,T;L2(FE)) + ||w6,k||2L°°(O,T;L2(SE)) < ||Us,0||i2(Fa) + ||wa,0||%2(s€)'

Proof. Let t € (0,T). Then,

for some m € {1,..., N}. But by the Lemma 19, we have that

HUs,kH%?(FE) + Hwa,k||%2(sg) < ||U€70”%2(F€) + [lwe ol %2(55)-

Taking the essential supremum over ¢ in (0,7") gives the lemma. O]

Lemma 21.

HUE,kH%Q(O,T;Hl(FE)) + ”wE,kH%Q(QT;Hl(Ss)) <C (”%,0”%2(1:6) + ”wE,OH%Q(SE)) .
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Proof. From Lemma 19, we have

p p
HUE,OH%Q(FE) + ||wa,0||%2(ss) > kp Z ”VU;HH%Q(FE) + k(B —Ce) Z ||Vw;”||%2(55)
m=1 m=1
p mk
= / Vo122
mzzl (m—1)k

p mk
+ k(8 — Cep) Z/( . Vw72,
m=1" (m—1

= ﬁ’|vve,kui2((o,7’)ng) + (8 — Cep) vas,kH%Q((O,T)XSE)

> C(8,6") (IVverlEaqoimyny + V0 xorynss))

Now, from Lemma 20, we have

HUs,kH%%(o,T)xFe) + ||w€,kH%2((O,T)><Se) <T <||Us,kH%oo(o,T;L2(Fs)) + ||w€,kH%°°(O,T;L2(SE))>

< T (oeolifaqe + lweolags, ) -

Combining these estimates proves the lemma. O]

Lemma 22.

1000 l32q0.2.10 1y + 1000kl E0 2,1 sy S € (looliageny + Iweolags, ) -

Proof. Let (p,v) € L*(0,T; H' (F.)) x L*(0,T; H' (S.)). Using these as test
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functions in the weak formulation of the PDE that v* and w* solve, we obtain

m __ ,ym—1 m __ m—1
/(va kva )s0+/ (wg kwa )w
—/ Ailva;”-Vgp—/ A"V -V
—/ (ot vor )go—l—/ (2™ - vuw) ¢

—/Serwmw /as ) (=)

Summing from m = 1, ..., N and integrating in time, we obtain

/ ) / (@il + / ' / E(@wg,k)w
S (LR e 0 ()
:_mz::l/(ml)k (/ Ailva;”-Vgo—i—/Si Agmvw;".v@zpr/i (U™ o) o
- [ wrmvury o [ - Fsae(vé"—w?)(w—@b))
-/ ) / AT Ve / ' / AV Vi / ' / (U Vi)
/OT/E (Ug’k-Vwa,k)w_/OT/ETwa,k@b—/OT/EaE(U&k—w&k) (¢ — ),

where

N

i=1
N

U™k (t, x) == Z US™(2) U1k (1), 1= 1,2.

m=1
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We estimate the surface term as follows:

T

T
/ e (ves — wer) (9 — )| < C / lves — werll sz e — Pl
0 I 0

< C (el zomm ) + lwerllrzomms.yy) (lelzorm @y + 10lzorm @) »

where the last inequality follows from Lemma 30. Thus, we have

/ ) / @)+ / ) / | (atwe,kw‘

< C (Jvekllzzomsm iy + wekll 2o s.y) (el 2omm my) + 19120080 E))

< C (lv=oll 2 + Nlweoll2csy) (1l 2o,msm () + 101 20w (1)) -

Taking the supremum over all ¢ and v proves the lemma. O

Lemma 23. The following convergences hold:

Vep — Ve — 0, in L*((0,T) x F.)

ws,k - U_}s,k — 07 in L2 ((OaT) X S&)

Proof. Observe that

Ve p(t, ) — Vi (t, )

e (x) (t—(m — 1)k:)) Li(m—1)k,mk) (1)

_ Z (’U;n(l') _kvz;n (IL’) (mk _ t)) ﬂ[(m—l)k,mk’)<t>‘
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Thus,

mk

N
_ 1 m e
Ve & = Denll 22 0.0y x ) = T Z [0 — o M| T2 /( 1)k(t — mk)® dt
m=1 m-—

K e K . )
3 Z |2 — o™ HL?(FE) < 3 <||U€,0||L2(FE) + ||we,0||L2(ss)>
m=1

— 0, ask—0.

where the last inequality follows from Lemma 19. Similarly, we have

2
s = BerliEaqoryry < 5 (IveollEary + lwcollfas,) ) 0, as k=0,

We are now ready to prove our existence theorem.

Proof of Theorem 17. From the estimates, we have that, up to a subsequence, the

following convergences hold:

Ve — 0%, wk* — L™ (0,T; L* (F.)
We fp — WT, wk* — L™ (0, T; L*(S.)

Ve — U, wk — L* (0,T; H' (F.)

)
)
)
Wep — W°, wk — L (0,T; H" (S.))
Oyl p, — v, wk — L* (0,T; H' (F.)")

)

Oy, — W™, wk — L* (0,T; H" (S.)"
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We also have

Teg = T, whk — L* (0,T; H' (F.))

W,y — 0, wk — L* (0,T; H' (S.)) .

Thus, we have that 0,0, = v** and J;w, = w®*. Moreover, by Lemma 23, we have
that v, = v, and w, = w,. Therefore, 0;v. = 0,0, and Jyw, = ..

Now, let (p,v) € L?(0,T; H' (F.)) x L*(0,T; H* (S.)). Then, we have

T T T T
/ / (Brton) o + / / (Ouiter ) + / / AV, Vot / / AV, - Vi
0 = 0 e 0 = 0 5
T T
[ [ ] @ v
0 = 0 Se
T T
- / rw:—:,kw - / / Qe (Us,k - ws,k) (90 - 1/1)
0 - 0 e
0.

Since A%, Ag, U}

1 and U? are smooth, by the dominated convergence theorem,

we have

T
[
0 €

Also, by weak convergence in L? (0,T; H*(F.)) and L? (0,T; H'(S.)), we have that

2 2 (T k| 2
R A e Ly
0 Se

Ve, —wep — v¥ —w® weakly in L? ((0,T) x T.). Finally, taking the limit as & — 0,
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we obtain
T T
/ / (0%, @) 1 By HY(F) +/ / (Ow®, ) g (s.y+ 11 (8.)
o Jr 0o Js.
T T
+/ / ALV -V + / / ATVw® - Vi)
o JR 0o Js.
T T
+/'/‘a@-Vf>¢- /"/“aﬁ.Vwa¢
o Jr 0o Js.
T T
[ o= [ ] et w e
0o Js. 0o Jr.
— 0,
for all (¢,+) € L*(0,T; H' (F.)) x L?(0,T; H' (S.)). O

We now show that if the initial data has higher regularity, then we have that

the time derivatives of the weak solutions are in 2.

Theorem 24. Suppose that (ve o, w.o € H (F.)x H*(S.). Then d,° € L?(0,T; H'(F.))
and dywe € L*(0,T; H'(S.)).

—1

m__,,m m_, m—1 . . .
Proof. We choose *—*— and “=—*— be test functions in the weak formulations

for the PDE that v[" and w" satisfy. Thus, we obtain,

/ @—@12+//w—w“2+/(wmvm)wuw“
1> k SE k 1> : : k
m __ ,,,m—1 m __ m—1
— / (Ug,m . ngn) <w5 We ) +/ A?mVU? . (V’Ua V’Ua )
s. k F. k

Vu™ —V m—1 m _ ,,,m—1

m _ ,,m—1 m _ ,,,m—1
+/a4@—wﬁ(% e ):Q




Firstly, by Holder’s inequality and ((2.21), we have that

o — ot N
[(EE)  fomon (F5

1 m _ ,ym—1 2
z—/ TN Lo [ werp
2 Jk, k F.

Similarly,

w™m — wm—l 2 w™m — wm—l w™m — wm—l
€ € _ U2,m X m € € m € €
[ ) - [ wen (S5 ) ¢ et

1 w™ — w1\ ?
2

As for the diffusion terms, observe that we have

APV (Vo =) =

£

(AZ™ (Vo — ol h) - (Vo — o)

3

N |

+ AF"VO VOt — ARV Vol

> = (AF"VO VOt — AV V)

N | —

by Lemma 16. Thus, we have

mo__ m—1
/A?mwén_(wg kVUE )

1
> % /. AN Vot — ATV

1
=— / AVl — [ ARV v
2k Fs Fe

1 A?‘m — A?m_l m m
+§/€ (T)VUE 'V’Ua.
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Similarly,

m o__ m—1
/ ATV (Vw(E Vuw! )
S k

1
> — / A"V - V'l — / Y S VAT VAT
2k \ Js. 3

(AT = AT G o
+§/E<#)Vw£'vws

As for the surface term, we have

m m—1 m m—1
(m_ m) Ve — U W —w,
o (U, w, I i
Ie

= o [ oe [0 —wr) — (e ) - ) - )
2k Jr.
1 m . om\2 _,m)2

> % y Qe ((Ua w") (v —w) )

We now integrate in time and sum over m = 1,..., N and use the above estimates



to obtain

1 T

_/ / atvek / / atwek

2 0 Fe €
1

+§/ ANV vl 2/ A V.o - Ve
1

1
/AENVw -V /AEOVwao Vuw.
5.

2 2

1 [T )
+§/ / aa(”ek wek __/ / UsO weO)
0 . Teae
1 _ _

N g,m e,m—1
A A m—1 m—1
§§mE: / < )VU Vv
N e,m e,m—1
1 A A m—1 m—1
P /( ) vurt v

—1
+C < |V, kHLQ(OTHl(FE + [|we, kHLQ(OTHl(FE)))
Aam Aam 1 2

+ = CZk
1 N Vm_IQ ]—O km vm—12
5;/&!@5 |+§mz:1/56\w5 |

+C (el geny + lwcollfey ) -

Now,

N

112
Z’f/ Vo SC(HV%,OH%WE)+||Vvs,kHL2(<o,T)sz))
m=1 Fe

< C (=0l ey + lwsoliZrey ) -

Aam Aam 1

2

46
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Similarly,

N

112
Sk [ [9ur < (lewalfne, + lusolipe,)-
m=1 €

Also, for x € F., we have

/OT |0, A% (t,2)* dt = /T (@AE (t,x)|* — i

e

Remember that k = At, so that

[x

2

e,m e;m—1
AF — AF
k

L{(m—1)k,mk) (t)> dt

2

As m As,mfl
e Wy (1) dt.

2 2

Az—: m Ae,m—l Az—: m As m—1
F T F

T
/ L (m—1)1,mi) (1) dt
0

0 3N

Li(m—1)k,mk) (t

m=1
N g,m e,m—1 (2
A" — AL
= Z % At.
m=1
Thus, we have
N e,m e;m—12 T
A" — AG
) T Vi / 0,45 (1, 2) 2 dt
m=1 k 0
T N e,m e,;m—112
A% A
/ |(9tAE t :L’ Z ]1[(m—1)k,mk) (t) dt
0 m=
— 0, as N — oo,
uniformly in z since A% is smooth. Thus, we have that
N em  pe,m—1 2
Z k:/ % <C,

m=1 €
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for some constant C' independent of € and N. Similarly,

2

<C.

e,m e,m—1
AS _ AS
k

>,

We also have

/ A?OV’UE,Q . Vvao + / A‘ES’OV’LU&O : Vwao < C <H’U€,0H%{1(F€) + |]w€,0| %{1(1:6)) X

and

/ AN vl +/ AFVWY - vl > 0.
1> SE

Finally, the surface term can be estimated as

[ actvan =00 < € (Icallagey + Nonolliasy + & (19vallze + 1Vusollisn)

£

for some constant C' that is independent of €. Combining these estimates, we

obtain

T T
| [ @+ [ [ @ <0 (Iocalfny + luzoling,) < C.

where the rightmost upper bound is independent of ¢ and k. O]

Note that the same estimates hold for the solutions themselves. Indeed, we

have
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Corollary 25. The following estimates hold:

HUEH%OO(O,T;L?(FE)) + HwEH%OO(O,T;L?(SE)) + HUEH%Q(O,T;Hl(FE)) + HWEHQLQ(O,T;Hl(SE))

< C (10 oy + 0= [ags,))

||8t@e||%2((o,T)xFE) + ||atw€||%2((0,T)><Ss) <C <||Ua,0||%11(ps) + ||wa70||%11(sg)> )

for some constant C' that is independent of €.

2.4 Homogenization

For a function f : U — R% d > 1, where U is a subdomain of §, we denote by f
its zero extension, i.e., f = f in U and f = 0in Q\ U. Using the estimates from

the previous section, we prove the following convergences:

Theorem 26. Let vF be the zero extension of v°. Then, there existv® € L* (0,T; H'(Q))

and v* € L*((0,T) x Q; H, (Y)/R) such that, up to a subsequence, the following

per
holds

v — 'y, in the two-scale sense  (2.49)

Ve = (Voo + Vo) 1y, in the two-scale sense  (2.50)

V¢ |pe — 0" strongly in the two-scale sense on I (2.51)

0vf — |Yr|0° weakly in L* ((0,T) x Q) (2.52)

Theorem 27. Let w® be the zero extension of w®. Then, there exists w® €



L?((0,T) x Q) such that, up to a subsequence, the following holds

0

WE — Xy W strongly in the two-scale sense

Vw® =0 in the two-scale sense
w®|pe — w’ strongly in the two-scale sense on I'.
Owe — |Ys|Ouw® weakly in L? ((0,T) x )

20

(2.53)
(2.54)
(2.55)

(2.56)

Proof. The proofs of the convergences (2.49) and (2.50) follow exactly as in [3].

Note that it is necessary that Ys be compactly contained in Y for the argument

in [3] to work.

To prove the (2.53), we proceed similarly as in [3]. By estimates on w®, we

have that w® and Vwe are bounded in L?(Q2) and L?(2)", respectively. Then, up

to a subsequence, we have that

wf — w” strongly in the two-scale sense

Vu® — &% in the two-scale sense

for some w® € L?((0,T) x 2 x Y) and £€° € L*((0,T) x @ x Y)V. As w® and Vuw®

are zero in Q \ S¢, we have that w°(¢, z,y) and £°(¢, z,y) are zero if y € Y\ Y.

We show that w" is independent of y € Ys. Let ¢ € L*(0,T; C5°(£2; Cper (Y)Y
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such that it is equal to zero if y € Y\ Ys. Then,

/OT Vuw(t,z) - (t,x, g) dx dt

e
- /OT /E div (wa(t, x)Y (t, x, g)) — w(t, x)div, (1/) (t,x, g)) dx dt

S /OT /E we(t, x) [divx'gb (t,x, g) + édivy'd) <t, x, g)} dx dt.

Thus, multiplying both sided by € and letting ¢ — 0, we obtain that

T
/ / / w’(t,z,y)div,y (t,z,y) dydrdt =0,
0o JaJvg

i.e., w® is independent of y € Yg. Hence,

w(t, 2, y) = w'(t, 2)xvs (y). (2.57)

We now show that €2 = 0. We proceed as in [29]. Indeed, let ¢ € C§° ((0,T) x Q).
Let ¥ € C5(Ys)™ such that divep = 0. We extend 1 by zero to Y and

Y —periodically to RY. Then,

/OT vt <w(t,w)¢ (g)) dz dt
_ _/OT/E W (t, 2) V() - (g) dz dt

T
e—0 B 0 .
=0, / / /sta,x)w(m) () dy de dt

_ _/OT/QwO(t,x)w(t,x)-( [ 4w dy> dr di
)

)
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since @ has compact support in Ys and is divergence-free. As,

/OT Vuws(t,x) - (¢(t,m)1,b (g)) dx dt

o
_ /OT/QW(t,x) (vt (2)) dwar

T
e—0 0 .
_>/0 /Q | € (tay) -l )ly) dy dud,

we find that

/OT /ﬂ’“v”?) ( | &) ) dy) da di
- /OT/Q Ve §(t,x,y) - P(t, 2)(y) dy du dt

for all ¢ € C5° ((0,T") x Q). Thus, for a.e. (t,z) in (0,7") x ,

£t x,y) - P(y) dy =0,

Ys

for all ¢ € C§°(Ys)Y such that div @ = 0. Thus, there is aunique p € L? ((0,T) x Q; H*(Ys))
such that

0t x,y) = Vyp(t,z,y), (t,z,y) € (0,T) x Q x Y.

Now, let ¢ € C§°(0,T) such that ¢ > 0. Let ¢! € C5° (€;C>(Ys)) and extend

1 by zero to Y and Y —periodically to RY. Testing the weak form of the solid
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problem with ) (t)! <x, f>’ we have
£

/OT / A5 (t, 2) Vs (L, z) - (1) V0" (:c g) dz dt

- —a[/OT / A5 (t, 2) Vs (£, ) - (£) Vet (::: g) dz dt
0 2 i @
v [ @6t vurean vont (n2) e
+5/0T / (v — But) (1) (x§> ds, dt

) /OT / rws(t, x)w(t)wl <:c, g) dx dtl.

Since the terms inside the brackets are bounded uniformly in e, the right hand
side of the above equation goes to zero as € goes to zero.
As for the left-hand side, due to Assumption 15, we have

Iy

2
A5t x) — AY <t,x, f)‘ drdt —0, ase—0,
£

we have

/OT/E AS(t, ) Vs (t, ) - () V1! (xg) dn dt

T
=0, / / / A%t 2, y)V it 2, ) - V0 (¢ @, y) () dy de dt.
0o Jaltvg

Thus,

T
/0 /Q/Y A (t,x,y)Vyp(t, 2, y) - Vo (2, )¢ () dy de dt = 0.
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Since Ys is compactly contained in Y, we can take 1! = p. Thus, by ellipticity
of A%,

T
0= / / / As(t, 2, y)Vyp(t,z,y) - Vyp(t, v, y)i(t) dy du dt
o JalJvy
g 2
ol [ [ [ w0Vt oo dydeat
o JaJvs

where o > 0. Then, if we take a sequence {1, }, in C§°(0,T) that converges to 1
in L%(0,7), we find that £€° = V,p = 0.

We prove the weak convergence of {0;v¢}.~¢. Indeed, let ¢ € C5°(Q2) and ¢ be

in C§°(0,T). Since dyv° isin L? ((0,T) x F<(0)), by the the two-scale convergence

of v¢ we have,

//atvsm () da dt
_ /O / 2 R@ICD) drt = / / 5 o(2)C (t) da dt
_/OT/QF(t,x)cp(x) (0)(2) da dtﬂ—w/ / (t, 2)p(2)C () do dt

T
- / Y100, @) syt e C (8)

0

Since {0;v°}.50 is bounded in L?((0,T) x ), we have that, up to a subse-

quence, it weakly converges to some g in L? ((0,T) x €). Thus,

T
/ /W(t,x)@( t) dx dtﬂ/ / (t,x)p t) dz dt
o Jo



25

Combining these convergences we have

T T
/ / ot 2)p(@)C(t) de dt = / (Yirl0°, 9 s ey s (2)
0 Q 0

Since C§°(2) x C§°(0,T) is dense in L?((0,T) x ), we have that |[Yr|9;0° is in
L?((0,T) x Q) and (2.52) holds. Using similar arguments, we also have that (2.56)
holds.

Finally, from the estimates on the traces of v. and w. on T, (2.51) and (2.55)

follow from Proposition 38.

2.4.1 Limit problem

We now show that the two-scale limits of the solutions of the microscopic problems

solve the following two-scale homogenized problems.

Theorem 28. The limits v°, v*, and w°® in Theorems 26 and 27 are the the unique

weak solutions of

div, (A%(t, 2, y) (V.00 (t, 2) + Vo' (t,2,9))) =0, in (0,T) x A x Y (2.58)
Vel 90° — div, ( /Y A1) (T (43) + Vi (1,0) dy) (2.59)
T a (0t 2) — w’(t,2) in (0,T) x Q
D + ru(t, z) = %a (Wt 2) — o°(t,2)) i (0,T) x Q
(2.60)
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Proof. Let ¢ € Cg°(0,T), ¢ € C=(Q), and o' € C*(;C2.(Y)). Then, using

per

() (o) + 29t (2,2))
as a test function for the fluid problem, we have
[ e (o (a2)) ar
+ /OT / (us(t,z) — 0, X.(t,z)) - Vo) C(t) (@(x) et <x 9) L

+ /OT/ (A‘}(t,a:)va(t, Y (go(:v) +ep! (xf))) C(t) da dt
_ /O ! / (avf(t,2) = Bu(t,2)) (1) (go(x)+8<p1 (x f)) ds, dt

From the estimates on 0,v° and the fact that ¢! is smooth, we have

/oT/Q&gvs(t,a:)C(t)SOl <t,x> §> dxdt‘ < Clicllz=om) ngl <.’ A ;>

£

L2((0,T)x)

< Cli¢lzeon et 2 omxacvy)

where the last inequality follows from Proposition 32 with the macroscopic domain

being (0,7) x € instead just . Thus, we have

/OT [ O° (¢, )C (1) <¢(x) 4 eyl <x g)) o
- [ [@Fancmew

—i—é?/OT/Q@tUE(t,:U)C(t)gol (t,:c, g) dx dt

T
=0, /O /Q Vi 00 (1, 2)C (1) (2) da .
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Using the estimates on the traces of v and ¢, by Proposition 36, we have that

T x
5/0 / a(vi(t,z) —w(t,z)) C(t) ((pl (w, g)) ds, dt‘ < CHCHLOO(O,T)||<,01||L°<>(0,T)xQxY

Hence,

e/OT /Ea(va(t,x)—wa(t,x))g“(t) (W) +ep! <x§>> ds, dt
. /O ' / (0 (1) — w6, 2)) (1) (p(0)) dS, e
+&° /OT /E a (v(t,z) — w(t,z)) ((t) (gpl (x, g)) ds, dt

=20, |r|/O /Qa(vo(t,:@—wo(t,x)) p(x)((t) dx dt.

We now turn to the diffusion term. From the estimates on Vv®, we have

/OT/QW- (A%(t,x) — A% (t,x, g)) \% ((p(x) + et (m, g)) C(t)xvy (g) dx dt‘
< C/OT/Q (A;(t,x) ) <t,:v, g)
=0,

)

2
dx dt
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where the last line is due to Assumption 15. Therefore we have,

/OT/E <A§:(t,x)vv€(t,g;) .V (cp(x) + et (x, g))) C(t) du dt
[T (12 (Tt + 90 (25) 9 (2. 2)) vy (2) o
+ /OT/QW. (A?T(t,x) - A%T <t,x, g)) \Y (go(x) + et (x, g)) C(t) Xy, (g) dr dt

ﬂ/ﬂ /Q/Y (vao(t,x)JrVyvl(t,x,y)) ~A%T(t,x,y) (vgp(x)+vy¢1(x’y)) v () dy da dt

- /0 /Q v A%T@? €, y) (vao(tv IIJ) + va1 (t, z, y)) . (V(p(a:) + Vy(pl (I, y)) C(t) dy dx dt.

Lastly,

/OT /E (uf(t,x) — 0, X (t, z)) - Vu©) ((t) (‘P(x) 4 g('01 (x, g)) du di

< Cllus(t,z) — 0, X< || Lo 0,m)x0)

e—0

— 0.

Combining these calculations, we find that as ¢ — 0,

T
| [ velow . acopta) deas
0o Jo
T
+ / / / A%’T(t, z,y) (vao(t, z) + V't y)) . (Vgo(x) + V' (z, y)) C(t)dydxdt
o JoJve
T
=0 [ [ o (@0t) = wt0) oo do,
0o Ja
i.e., v* and v! are weak solutions to the two-scale homogenized problem (2.58) and

(2.59).
Similarly, we let ¢ € C5°(0,T) and ¢ € C>(). Then, using 1 (¢)((z) as a test
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function for the solid problem, we obtain:

/T Bt (t, 2)C () dxdt+/ / A (t, 1) Vb (L, 2) - C(t) Vi () d dt

// (0 Xc(t, ) - Vs (t,x)) ()Y d:cdt+/ /Erwtx U(z) dx dt

_ 5/0 /Ea(we(t,x) —of(t, 7)) C(£)b(x) dS, dt.

Using the convergences in Theorem 27 and the Assumption 15, we find that in the

limit as e — 0, w® satisfies

/OT/Q|Y3]8twO(t,x) (t)(x dmdt+’Ys|/ /rw (t, 2)C () (z) dy dx dt
= |T\/O /Qa(wo(t,a:)—vo(t,x)) C()(x) dx dt,

i.e., w° solves the ordinary differential equation (2.60). O

The well-posedness of the limit problem can be proven using standard methods.

Thus, the convergences proven in this section hold for the whole sequences.

2.4.2 Corrector results and strong convergence

Observe that since v°(¢t) and w*(t) are not in H'(Q) for almost all ¢ in (0,7, we
cannot conclude that they are strongly convergent in L?(Q) readily from Sobolev
embedding theorems. In [29], the authors used instead an H'- extension of v, that
can be uniformly controlled in H'(Q2). This is possible because of the regularity
0S.. Since we are not using any H'-extension, we will use the fact that v. and

w, are solutions to PDEs to obtain strong convergence. In fact, we say something
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more

Theorem 29.

05 — 120y + 10" — w1122 0.1y (2.61)

T
)
o Jr

Proof. We have that

2
Voi(t,x) — Vo' (t,z) — V! (t, z, g)

e—0 '

5 (1070 = Oy + 0™ (6) = w(O)l s,

o Feta- w2t -5 o2

< [ 1@t - @)t 0)) [1(t.2) — o1, )
# [ @)t 0) = @) t.0)]) [0t 2) = w0,
+/ A (t, )[W( z) — Vot z) — V0! (mg)]
[Pt 9 -5 )
= [ o) t.ape(e.) + / (@)t (,) + [ At 009 (0,2) - o1
(") - / (0") (t.2)" ) = [ (@) (12000
v [ (oar) / (@) (t.a)u(t.0) = [ (@) ()00

AF <t,:13, g)} . [Vvo(t,x) -V, (t,x, g)]

o [ ALt 2)VeE(t )[vv( )—vyvl(t,x,g)]

Fe

+

+
dj\..to "11\4
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Now, since v* and w*® are solutions to PDEs, we get that

/E(atvew,)( 2+ /(@w)( 2y (t, 7) + / “ (t,2) Vo (t,7) - Vo (1,)
= /SEAS(twi (t,x) /Sr

‘/Ff( “(t,2) — O Xa(t, 2) - Voult, 7)) v°(t, 2)) — / D (0 = we)?

< —/FE« “(t,2) — D X.(t,2) - Vo< (t,2)) o7 (1,2) — AE@5<<vs<t,w>_wa<t,x>>2,

we have that upon integrating, for almost all £ € (0,7"), we get

N —

(170 = POl + 170 = P Ols) +5 [ [ w900 - 9t (12 )]
(// (Opve) (t, x)v // (Opw®) (t, z)w ta:

// ) Ven) - [0 (tn) = V0! (10.2)] )

(// O?) (v° —v° // (O (w° — w®)

//A (t,z) W (t,z) — Vo '(t,z) — Vv ( )) (Vu (t, x)+Vyv1<t,x,§))
_/0 /F u® — 8, X. - Vu)v +/FS( 00,2) — v E’O(x))2+/gs (wO(U,ﬂf)—ws,o(iﬁ))2>

=: I1(e) + Ly(e) + I3(¢).
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Now,

lim ]1(5)

e—0

- ([ [ emearen [ ou e
+ /Ot /E A%(t, z)Vos(t, x) - [Vvo(t,ac) — Vyvl <t,:c, g)} )

t
_ / / Vil O (¢, 2)0° (5, 7) + [Vl O (£, 2)ud (£, )
0 Q

_ /0 t /Q /Y At 9) (T ) + 0 (0,.9) - (T8 ) + T2 .)
01 [ [ a0 - wten)

_/Ot/g/ra(vo(t,x)—wo(t,x))z.

Also, by the two-scale convergence of v°, w®, Vo® and the strong convergence of

A%, uf, 0, X° v 9, we 0, We have

lim 12(5)

e—0

: (Vvo(t, z) + V0! (t,a:, g))
(u® — 9, X. - Vo) v + / (UO(O, x) — ?JE,O(CE))Q —l—/ (wo((),:):) — wa,o(x))Q)
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Lastly,

t ¢
limsup I3(¢) = lim sup (—/ / a(v® — w€)2) = —lim inf/ / a(v® — w)?
e—0 e—0 0 e e=0 0 €

Combining these limits, we have

. 1
timsup 5 (11°(8) = Ol Fagem) + (1) = w°(0) 325, )
e—0 2

o[ e v 3

:/Ot/ﬂ/ra(vﬂ(t,x)—wﬂ(t,x))Q—mgglf/ot / ae (v — w)’?
<0,

since v, — w. converges in the two-scale sense on the surface I'. to v° — w". Since

T < 00, by the dominated convergence theorem, the theorem follows. O

2.5 Examples

We provide two examples of solid velocities for which our result applies. We find

it interesting that these examples give different limit problems.

We consider the case when the solid velocities are slow in the sense that ||b.|| ~

where o« > 1. We assume that

ha,i (t) = Eahi (t)

M. (t) = e“ ' M;(1),

and that ||h;||e, || M;||cc ~ C. This gives that ||b.|| ~ *. We now calculate the
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gradient of b..

Vb.(1,) = D09 (1:(0.9) (L, (0) + MLof0) (= hea)

- Zg V (Be iy (hLi(t) + M. i(t) (y — hey(t)))) -

We have that

V(ne(tv y)h/s,z (t)) = hlg,z(t> ® V’?e (tv y) + 77€<t7 y)Vhls,z (t)
= h_,(t) ® Vi.(t,y)

~ Ejafl’

since V. (t,y) ~ e~*. Similarly,

V (1e(t, y) Mei(t) (y — hei(t)))
= M_;(t) (y — hei(t)) @ Vne(t, y) + (8, y)V (M (t) (y — hei(t)))
- Me,i<t> (y - h’e,i (t)) ® vnzs(t’ y) + Ne (ta y>Ma,i (t)

~ ga—l‘

For brevity, we let B, () := Bi, ) (Vn(t,) - et (L, () + M;i(t) (e - —h.;(t)))) (2)

and B. k) () := r-By, ;) (£). We now estimate ||VB. g,

- Indeed,
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[ IBeso@P + 9Bl do

:/e, ‘B“”(x) +‘(VB§<i<t>> <£>

€
<1 +€p)/ ()ep !BK (t |p + ’(VB?Q(U) (y)’p dy
€ (t

p p

dx

< O (Bas(t) (1 +7) &8 /B )= (L) + M) oy = hes) ]

= C(Bi())" (1 4€) / “ |V (ne) (8, @) - (RL;(t) + Mei(t) (v — hea(1)))[" do

< C (Boy(t))P (1 + eP) e¥tpleh),
Thus,
||B€,Ki(t)||Lp(B§7i(t)) + ||VBE,KZ‘(t)||Lp<BS’Z_(t)) <C (Bz,i(t)) (1+ €p)% €%+(a71).
As p — o0,
| Be, k(¢ ||Loo<Bs_ ) + IVB. ||LOO<BS’Z_(t)) < Ce

Therefore, we obtain

Vb, |l < Ce™7,

where C' is independent of €.
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We now make estimates on the gradient of the diffeomorphism X..

atxa(ta y) = ba (t, Xe(t7 y)) , te (07 T)

X.(0,y) =y, yeQ0).

So that,

VX, (t,y) = Vb (t, X (t,y)) VX (t,y), te€(0,T)

VX.(0,y) =1, yeQ0).

Consider the following: fix F : [0,7] x R* — R? and let X.(F') be the solution of
the problem,

O,V X.(F)(t,y) = Vb. (t, F(t,y)) VX.(F)(t,y), tec (0,T)

VX.(0,y) =1, yeQ0).

Then,

VX.(F)(t,y) = oo Vb (5,F(s,)) ds.

Thus, for F = X., by uniqueness, we have

VXe(t7 y) — ef(f Vbe(s,Xc(5,y)) ds.
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Because Vb, ~ %71, we have that Vb, — 0 in L*°, so that,
VX, —1I, inL>((0,T)xQ).
We now estimate VY,. First, note that it is difficult to estimate VY, from

aY.(t,x) = —VY.(t, )b, (t,x), te(0,T)

Y(0,2) =2, xeQ0),

since

oVY. = -VVY.b. - VY.Vb,,

and hence, estimating VY. depends on estimating second-order derivatives of Y.

We estimate it from X, instead. Indeed, by the chain rule, we have
VY. = (VX.) o Y..
Recall that VX.(t,y) = elo Voe(s:Xe(sa)ds  Thyg,
(VX (1) = e fiToeeebn e,
since fot Vb. (s, X.(s,x)) ds and — f(f Vb, (s, X (s,x)) ds commute. Therefore,
VY. = (VX.) ' (t,Y.(t,z)) = e Jo Voels)ds.

Thus,
VY. -1 inL>*((0,T)x9Q).
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Thus, we can take

Ap(t,2,y) = DrIly,(y)

Ag(t,,y) == DsTly(y),

so that the limit problem reads as

div, ((V,0"(t,z) + Vo' (t,2,9))) =0, in (0,7) x Q x Yp
Y| 00° — div, (/ Dp (vao(t, x) + Vyful(t, z, y)) dy>
Yp

= [['] (a’(t, ) — Buw(t,z)) in (0,7T) x Q

o’ + ru’(t,z) = % (Bwo(t,x) - avo(t,x)) in (0,7) xQ
s

We consider the case a similar case as previously but now with a = 1 and the solid

velocities are assumed to be periodic in space, i.e., the motion is the same for each

cell but are not necessarily periodic in time.

In this example, we want to show that the resulting coefficient matrix A% and A%
are periodic in space as well. Indeed, we first look at the extension of the solid

velocity in the unit cell. We let

b(t,z) =n(t,x) Y _ (hi(t) + Mi(t)(z — hy(1)))

%

- Z By, (V(t, ) - (Ri(t) + Mi(t) (- — hi(t)))) (2).

Now, the diffeomorphism that maps the unit cell at time zero to any positive time
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is obtained by solving

9,X(t,x)=b(t,X(t,x)), t>0

X(0,z) = x.

We want to show that X (¢,z) =X (t, E), where X is extended into the whole
€

domain periodically. Indeed, note that

b(t,x) =n.(t.2) > (AL,(t) + M.(t)(x — hey(t))

7

- Z B ko) (Vne(t,) - e (hLi(t) + Mei(t) (e - —hei(1)))) ()

— (t, f) Za (h;os) + Mi(t) (g _ hi(t)>>

7

B ZgBKi(t) (Vn(t,-) - (h;(t) + M;(t) (- — hi(t)))) (g)
()

Thus, X, satisfies

0.X.(t,x) = b. (t, X.(t, ) = cb (t, éxe(t,x)> |

o (1x.) = b (6. x.02)),
() =00 2xen)

for t > 0 and x € F.. Since x € F; if and only if x = ey for some y € Yr, we have

So that,
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that for y € Yp, X, satifies

O GXa) (t,ey) =b (t, éXs(t,sy)) , t>0

1
-X.(0,ey) = v.
€
. 1
Thus, by uniqueness, we have — X (t,ey) = X (t,y), or that
£
X.(t,1) =X (t, f) . (t,2) € (0,00) x FL.
€
We thus have

0 (1) = it (2) 9207 (12) 920 (1)

3

AS(t,x) = AY (t, f) = Dgly, <f> (VX)) " (t, f) (vx)™! (t, f) :
€ € € €
In this case, the limit problem reads as

div, (A%(t,y) (Vo0 (t,2) + Vo' (tz,y))) =0, in (0,T) x Q x Yr
Y| 00° — div, (/ A%(t,y) (vao(t, z) + V'l (t, y)) dy)
Yr
=[] (a’(t, ) — Bu’(t,z)) in (0,T) x Q

r
o’ + ruw(t, z) = u

= vy (Bu’(t,z) — an®(t,z)) in (0,T) x €.

Note that A% is not the identity matrix since VX is not an orthogonal matrix nor

the identity matrix.
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2.6 Conclusions and future directions

We have shown that the solutions to (2.1)-(2.7) converge to the solutions of the
effective model in Theorem 28. This allows us to study a more tractable model
which is desirable since accounting for each catalyst particle in real-world set-ups
is infeasible. However, our work only applies to cases where both the fluid and
solid particles move slowly. For other cases, such as when there is vigorous mixing,
more work is to be done to obtain a homogenization result similar to Theorem 28.

In theory, one can use the same diffeomorphism to map the problem onto a
fixed domain, provided that the solid velocities are known beforehand. It is the
homogenization that becomes difficult. Classical techniques in homogenization
theory work well in regimes where the solid velocities are close to periodic mo-
tion. Outside these regimes, one needs different tools to describe the asymptotic

behavior of the terms arising from the fluid and solid motion.

2.7 Appendix

The following lemma gives a weighted estimated on the L?— norm of the traces of

Sobolev functions [29].

Lemma 30.

1. Let O be an arbitrary Lipschitz domain. Then, for any é > 0, there is some

constant Cs > 0 such that for every v € H(O), we have

||UH%2(3(9) < Cd”“”%%O) + 5€2HVUH%2(O)'
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2. For every 6 > 0, there is some constant Cs > 0 such that for every u® €

HY(F.), we have

ellwlliar.) < CollullZeqm,) + 0% VU |12z )-

We recall the notion of two-scale convergence [3]. There is a notion for this con-
vergence in the time-dependent case. We present two notions of this convergence

as presented in [29].

Definition 31. Let Q2 and Y be bounded open sets in R™, and T > 0. A sequence
{uc} in L2 ((0,T) x Q) is said to two-scale converge to a limitu € L* ((0,T) x 2 xY)
of

T . 1 [T
lim/ /ug t,x)op(t,x, — d:):dt:—/ //ut,x,yqf)t,x,y dy dx dt,
iy, Jyueomo (2] dodt= gz [ J uter ot

for all g € L2 ([0, T] x Q; Cper (V).
We present a useful property of these special test functions [15].

Proposition 32. Let ¢ be in L* (2;C(Y)). Then ¢ (-, g> is in L*(Q)) with

o (-2)]

Definition 33. We say that u. converges strongly in the two-scale sense to u if it

< . . .
@) (- )HL?(Q;CPET(Y))

two-scale converges to u and

I = -
EE%HUEIIL%(o,T)xQ) lull 201y xxv)
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The following compactness result taken from [29] also holds for the above notion
of two-scale convergence. The proof is essentially the same for the stationary

case [3].

Proposition 34.

1. Every bounded sequence {u.} in L*((0,T) x Q) has a two-scale convergent

subsequence.

2. Let {u.} be a bounded sequence in L? ((0,T); H' (). Then there exists ug €

L2((0,7); HY(2)) and uy € L*((0,T) x Q; H,,(Y)/R) and a subsequence,

per
still denoted by u., such that
Ue — Up in the two-scale sense,
Vu, — Vaug + Vyuy in the two-scale sense.

The notion of two-scale convergence can be extended to surfaces in RY for the
stationary case [4]. For the time-dependent case, we cite here a similar notion
taken from [29]. We let Q and Y bounded open sets of RY and I" an (N — 1)-
dimensional Lipschitz manifold compactly contained in Y. For € > 0, we define

', to be the union of all € (I' 4+ k) for k € Z that are contained in €.

Definition 35. Let {u.} be a sequence such that u. € L*((0,T) x T'.) for each

e > 0. We say that u. converges in the two-scale sense on the surface I'; to a limit
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up € L2((0,T) x QxT) if

T . T
lims/ / ue(t, x)p (t,x, —> ds, dt:/ //uo(t,x,y)gb(t,x,y) ds, dz dt,
=0 Jo Jr. € o JaJr

(2.62)

for all ¢ € C ([0,T] x Q; Cpe,(I)).
We present a useful property of these test functions [4].

Proposition 36. Let ¢ be in C (; Cpe, (Y)). Then, ¢ (-, ;> is in L*(T.) and
5

“lle (2 = ety

for some constant C' > 0 that is independent of €.

Definition 37. We say that the sequence {u.}, where u. € L*((0,T) x T'.) for
each € > 0 converges strongly in the two-scale sense on I if it converges in the

two-scale sense on T to ug € L* ((0,T) x Q x T') and

lim /e [ue| 2 (0,7 xr2) = Iluoll2(o.ryxexr). (2.63)

We also have a similar compactness result for this notion of two-scale conver-

gence on surfaces [4].

Proposition 38. Let {u.} be a sequence of functions such thatu. € L? ((0,T) x ')
for each ¢ > 0. Suppose \/c||lu:||r2(0,1)xr.) < C for some constant C' > 0, inde-

pendent of €. Then a subsequence exists that converges in the two-scale sense on

r..
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3  Dual formulations of the elasticity problem for a homogeneous

elastic body with fractures

3.1 Introduction

The duality of displacement, stress, and strain formulations in elasticity without
fractures was studied by Ciarlet et al., in [13]. In particular, they considered an
homogeneous elastic body Q in R?® with a body force f acting on it and sur-
face traction F' on a part of the boundary I';. The three-dimensional linearized

elasticity problem is then written as the following minimization problem:

Problem 4 (Displacement formulation). Find w € V' such that

J(w) = inf J (),

1

where, J(v) ::§/Avg(v):vg(v) dx—/f-vdx— F-vdl.
Q Q N1

Here, J(-) may be interpreted as the potential energy of the body and the above
minimization problem can be thought of as a modern analog of the classical prin-
ciple of minimum potential energy. V is the set of admissible displacements. Its
definition is similar to the one presented in Section 3.2, but without any fractures.

The problem can also be formulated as a another minimization problem, for

which the stress is the unknown:
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Problem 5 (Stress formulation). Find o € S such that

g(o) = ngg(u),

1
where g(p) = 5 / B : p dz.
Q

Here B is the compliance tensor, i.e., AB = I. The function g(-) is the com-
plimentary energy, and the above problem can be thought of as a modern version
of the classical principle of minimum complimentary energy. Here S is the set of
admissible stresses. We present a similar definition in Section 3.2.

Lastly, the authors present a different approach to the problem where the strain
tensor field is the unknown. This is known as the intrinsic approach in some sources

(see [13] and [14] and the references within):

Problem 6 (Strain formulation). Find pu € Mt such that

J(w) = inf J(p),

pneM*

~ 1
where J(p) := 5/

AV () Vs(u) do— [ £ L(u)ds [ F-L(u).
Q Q

N1

Here, M is a set of tensors that has divergence 0 in H () such that the linear
functionals acting on the trace space H 2 (T") defined by these tensors is zero. Here
M+ refers to the orthogonal complement of M in L%(Qr). L%(QF) is defined in
Section 3.2. See [13] for more details.

Ciarlet et al. were able to show using Legendre-Fenchel duality that the dis-
placement and stress formulations and the strain and stress formulations are dual

formulations. The arguments for strong duality, i.e., the primal and dual problems
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attains the same objective value, relies on known results on elasticity. While it
is already known that these are dual problems, the novelty lies in obtaining dual
formulations through Legendre-Fenchel duality theory.

In this paper, we extend the results in [13] to the case of a fractured elastic
body. It is a nonlinear extension of the results of that paper, since the space of
admissible displacements for this case is not a linear space. A similar nonlinear
extension can also be found in [32].

A model of the elasticity problem with fractures can be found in [50]. Here,
the author assumed that the elastic body, €2 having a fixed boundary 0f2 is homo-
geneous and contains a fracture inside its interior. The fracture is thought to be a
smooth orientable surface which may or may not be connected, and is denoted by
Y. We write as Qp the set Q\X.. The formulation of the problem is written as,

Find w such that:

dive+f=0in Qp (3.1)

o =AVgs(u) in Qp (3.2)

u =0 on 0 (3.3)

[u-N]>0 on X, (3.4)

only =oynN; on|ly = —onyN; oyn <0 on X, (3.5)
if [u- N] > 0on F,then oyy = 0. (3.6)

Here, IN refers to the unit normal on Y., n is the outward unit normal on the
boundary of Qg, [¢] = ¢1 — @] refers to the jump of the field ¢ across the fracture

Y., where the subscripts 1 and 2 denote the faces of . in the direction of N and
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Figure 3.1: Elastic solid with fracture

the opposite direction, respectively. ony = oIN - N. A = [a;ji] is the elasticity

tensor, assumed to have symmetry and positivity properties, i.e.,

AB-B >0, for all B#0, B € R®3, (3.7)

ikl = Qijik = Qjikl = Ajilk, (3.8)

f represents the body forces acting on the body. Vg(-) is the linearized strain
tensor.

Equation (4.2) gives the constitutive relation for the elastic body, (4.3) says
that on the outer boundary, the displacement is fixed, (4.4) implies that the body
cannot penetrate itself on the crack, (4.5) shows that there is no friction on the
crack and there is compression on it. Finally, (4.6) says that if the crack if open,
there are no stresses on ..

Introducing the following spaces:

Ve ={vc H(Qp) | v=00n 00},

Kr={veV|[v,]>0o0n %}
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the problem is shown to be equivalent to the following variational formulation

Find uw € Ky such that
/ AVs(u): Vs(v —u)dx > | £-(v—u)ds Yo e K. (3.9)
QF QF

Using classical results on variational inequalities, the author shows that the
above problem has a unique solution. Kovtunenko in [39] studied the problem
with the assumption that there is Coulomb friction on the fracture. The author
introduced appropriate trace spaces for functions defined on the fracture as well as
Green formulas. Using fixed point methods, the author was able to show existence
of a solution to the variational formulation of the problem. We also mention
[52] where the authors prove a homogenization result for an elastic solid with
periodically distributed fractures using I'—convergence and Mosco convergence.

We need a suitable characterization of symmetric tensors as strain of admissible
displacements. The difficulty lies in the fact that the set of admissible displace-
ments is a convex cone rather than a linear space as in [13]. Ciarlet et al. used the
classical Banach closed range theorem to obtain this characterization. However,
these are not directly applicable to our case.

Craven and Koliha in [19] obtained a generalization of Farkas’ theorem. They
provide necessary and sufficient conditions on the solvability of a linear problem
posed in locally convex spaces. We use this characterization to write a suitable
strain formulation to the elasticity problem with fractures.

In [13], Ciarlet et al. worked with a minimzation of the form

inf (f(v) + (g0 h)(x)).

zeX
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They were able to apply results from classical convex analysis. In particular, they
considered the case where f: X - RU{+00}, g: Y - RU{+o00}, h: X - Y is
a continuous linear map, and X and Y are Banach spaces.

Under certain conditions, we have strong duality, i.e.,

inf (f(z)+ (g0 h)(z)) = sup (=f*(A"(y")) —g"(=y")).

zeX yreEY'*

Here f* and ¢g* are the Fenchel conjugates of f and g, respectively, and Y* is the
dual space of Y.

However, in this paper, h is not linear. Moreover, the supremum problem is
posed in a dual cone of a convex set. In order to obtain strong duality, we make use
of [11], where the author considered dual formulations to minimzation problems of
the same form but with A not necessarily linear, and X and Y are locally separated
convex spaces. More details are provided in the following discussions.

In Section 3.2 we introduce some functional analytic preliminaries and the
notation used in the paper. Section 3.3 gives the displacement, stress, and the
strain formulations of the elasticity problem with fractures. These form analog
formulations to those in [13]. Section 3.4 provides some preliminary results needed
to obtain dual formulations of the stress problem in away similar to [13]. Section
3.5 talks about the characterization of the image of the strain operator under the
set of admissible displacements. In Section 3.6, we obtain dual formulations to
the stress formulation of the problem. We show that these dual problems are
equivalent to the displacement and strain formulations. Furthermore, we prove
strong duality. Lastly, we prove a relationship between the solutions of these

problems.
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3.2 Notation and Preliminaries

Let Q be a bounded domain in R?® with boundary denoted by I'. Let X, the
fracture, be an open oriented surface contained inside €2, without self-intersection,
and may not necessarily be connected, i.e., there may be several fractures. We
denote Qp = Q\X,, X, = L. U0X,, where 0%, is the boundary of the fracture. We
assume that there is an extension > of >, such that it divides the domain €2 into
two subdomains Q; and €, such that 9Q; = X~ and 9Qy, = ' U X", where 0,
and 02, are the boundaries of {2, and €, respectively. We denote by N the unit
normal vector on ¥ and define by X% the opposite faces of ¥, with N pointing
outwards of ¥*. We let ©F be the corresponding sections of ¥*. We say that
the boundary 99 belongs to C*! if 9Q; and 9, belong to C*!. Hereafter, we
assume that 9Qr belongs to C*!, so that the Green’s formulas and trace theorems

from [39] hold.

Figure 3.2: Extension of the fracture to ¥

We denote by A = [a;;kn]1<ijkn<3 the fourth-order elasticity tensor. We assume
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that

aijkn € L(Qp) (3.10)

Qijkh = Qjikh = Qkhij, V4,5, k,h=1,2,3 (3.11)

Ja > 0 such that a|o|* < Ao : 0 Vo € R¥? (3.12)
3B > 0 such that |Ao| < Blo| Vo € R**3 (3.13)

These imply the existence of the tensor B = [b;jkn|1<ijkn<3 such that AB = I and
having similar boundedness, coercivity, and symmetry properties.

Vector fields are denoted by bold lowercase Roman letters. Matrix fields are
written using bold Greek letters. Sets and subsets of vector fields in R? are de-
noted using capital, boldface Roman letters. Sets and subsets of matrix fields are
written using special Roman capitals. We append a subscript S to denote spaces
of symmetric matrix fields. We use the Einstein convention on repeated indices.

We use the conventional notations for the Sobolev spaces such as H'(),
H2(%), and H™2(X). The set of infinitely differential functions with compact
support defined on a set €2 is denoted by D(2). We apply the notation conven-
tion on sets of vector and tensor fields described above to these spaces whenever
appropriate. We write the H'-norm on a set Q as [|-||, ,, where we omit Q in the
subscript when the context is clear. For the L?-norm on a set ), we write the
norm as [+, o, where similarly, we omit € in the subscript when the context is
clear.

We will make use of the following space to describe functions defined on the

fracture:

HZ (S ={ve H:(S,) |d v e L)),
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where d € CYY(X,), d > 0, d = 0 on 9%, and lim,_,,, % = «a # 0 for every

xg € 0%,. dist(x,0%,) refers to the distance from x € 3, to 9%.. This space is a
Hilbert space with the norm

2
2 2 -
][5, = ”v“%& T Hd 2v”o,zc'

We write the duality pairing on H %(E) and its dual by (-,-)1 . Similarly, the

N

1
duality pairing between H 3 (3.) and its dual is denoted by (-, -)go,x,. We denote
the jump across X. by [v] = vT — v~, where v* refers to the trace of v on
corresponding faces of ¥.Z.

We recall some trace theorems on these spaces. For details, see [39].

Proposition 1 (Trace Theorem 1). Let the boundary T' belong to the class C™!,
and let a function w belong to the space H'(S)). Then there exists a linear contin-
wous operator  : H'(Q) — Hz(T), which uniquely defines the trace yu € Hz(T)
of w at T'. Conversely, there exists a linear continuous operator Hz — H'(Q)
such that for any given ¢ € H%(F), a function w € H'(Q) can be found such that

Yu=¢ on .

Proposition 2 (Trace Theorem 2). Let the boundary OQr belong to the class C%1,
and let a function w belong to HY(Qp). Then there exists a linear continuous

operator which uniquely defines at OQr the values

ulp € H2(T), u* € H2(S,), [u] € HE(Z.).
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Conversely, there exists a linear continuous operator such that for any given
we HAT), o € H(S,), [g] € Hap(S0),
a function w € H'(Qr) can be found such that
u=vonl, ut=ep onX,.

We can now define the following sets which will be important in the following
discussions.

V ={ve H(Qp)|v=00on H2(T)},
K={veV|[m]>00n H(S))

For a subset U of a Banach space V', we define the polar cone of A as the following
set

U ={v" eV (v, uvy <0 VueU}

Similarly, the dual cone of A is defined to be the following set
Ut :={* eV*| v u)yy >0 YueU}

We denote the duality pairing between V' and its dual by (-, -)y.v+.
Let X, Z be linear spaces, and C' a nonempty convex subset of Z. Then C' induces
a partial order <s on Z. Indeed, we say x <c yify —x € C for z,y € Z.

We say that a function g : X — Z U oo¢ is C-convex if for all z,y € X and
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A€ [0,1],

gAz + (1= N)y) <c¢ Ag(x) + (1 = N)g(y).

The linearized strain tensor Vg : D(Qp) — Dg(2p) is defined as
1 T
Vs(v) = 3 (Vo + (Vo)").
We also define the divergence operator div : D(Qr) — D(Qp):

(div o), := a@?j

We now define the following space:
Hg(div, Qr) := {o € L%(Qr) | div o € L*(Qr)}.
We equip this space with the norm:
||U||§H5(div,ﬂp) = ||U||ig(QF) + |[div UHig(QF) Vo € Hg(div, {2p).

We recall some Green’s formulas relevant to our discussions, for details see [39].

Proposition 3 (Green Formula 1). Let the boundary T belong to the class C*' and
let a function o belong to H(div, Q). There exists a linear continuous operator

H(div, Qp) — H~2(T") which uniquely defines at the boundary T the values

on, € H:(), 0, € H2(I'), 0. -n=0,
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and for all v € H'(Q) the generalized Green formula holds:

/O'ZVS(’U) dx:—/ div o -vdr+ (0, Un)1p + (07,0 )1 (3.14)
Q Q ¥

1
3

Proposition 4 (Green Formula 2). Let the boundary 02 belong to the class
C™, let o belong to H(div, Qr) such that [on] = 0 on 3. Then there is a linear
continuous operator H(div, Qp) — (HOEO(EC)> which uniquely defines at the crack

Y. the values

*

on e (Hy(%) » o€ (Hp(S)) . orn=0,

and for all v € V', the generalized Green formula holds:

/ o :Vg(v)de= —/ div o - v dr— (o, [Up])oos. — (O, [Ur])oox,  (3.15)
Qp Qp

We now define the set of admissible stresses as:

1
dive + f=0in D'(QF), 0, <0 on HZ (3,
S = { o € Hy(div, Qp) f (§2r) on(e)

o, =0on H(X.), [0,] =0 on H%(Z)

In the coming discussion, it will be important to obtain a characterization of
symmetric tensor fields as the strain of vectors coming from the set of admissible

displacements. The following set plays an important role in this.

M := {o € L;(Qr) | (Vi(o),v)y-y > 0Vv € K}.



87

3.3 Formulations of the problem with fractures

We present three formulations of the elasticity problem with fractures. Analogs
of these for the case without fractures present are in [13]. We begin with the

displacement formulation which can be posed as a minimization problem.

Problem 7 (Displacement Formulation). Find u € K such that

J(u) = inf J(v),

veK

where J(v) := % AVg(v) : Vg(v) dx—/ f-vdz forallveV.

QF QF

There is an alternate formulation to this problem in which the stress is the

unknown:

Problem 8 (Stress Formulation). Find o € S such that

g(o) = Ii}égg(u),

1
where g(p) = 5/ Bp : pdz for all p € LE(QF).
Qp

Finally, we can recast the problem in which the strain is the unknown. This
formulation is known in literature as the intrinsic formulation [14]. The use of the

set M will be apparent in the coming sections.

Problem 9 (Strain Formulation). Find w € M such that

J(mw) = inf J(p),

peM+

where J(p) = / Ap: pode — f-L(w)dz for all p € M.
QF QF‘

N —
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Here £(p) is the unique element in K such that Vg (£(p)) = p. The existence

of such an element in K will be discussed in Section 3.5.

It will be shown that indeed, up to a change of sign, the displacement and stress

formulations are dual problems, and similarly the strain and stress formulations.

3.4 Auxilliary Results

We first show that the stress formulation of the problem can be written as a

minimization over the entire space L%(2r). To do this, we introduce the following

functions. Let h: V* — R such that

We also define A : L%(QF) :— V* by

mmmwy:/

f-'vdx—/ o:Vs(v)dx .
QF QF

Proposition 5.

inf g() = inf (g9(o)+1s(o))= inf (g(o)+ h(Ao)).

oes o€l (QF) ol (Qr)

Proof. Clearly,

inf g(o) = . (9(a) + 1s(e)).

Thus, it suffices to show that

h(Ao) = lIs(o) Vo € Li(Qr).

(3.16)

(3.17)
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Indeed, let & € S. Then 1s(e) = 0. Now, for v € K, using Proposition 4

(Ao, v)ysy = frvdx —/ o : Vg(v)dx
QF QF

= frvdx +/ div o - vdx + (o, [Un])oon. < 0.
QF QF

So that, Ao € K~ and hence, h(Aog) = 0.
Now, let o € L%(Qr) such that h(Ae) = 0, then Ao € K~ and thus

/azvs(v)dXZ/ frvdx YveK. (3.18)
Qp

QF

Now, we let ¢ € D(2p). Then v := £ € K. Substituting in (3.18), we obtain

/Q o :Vs(p)dx = f-edx

Qp

Thus,
dive+ f=0 in D'(Qp). (3.19)

As f € L*(Q), we have that o € Hg(div, Qp).
We now show that

on <0 in (HO%O(EC)>*. (3.20)

Let v € K such that [v;] =0 in H(X.). Then by (3.18) and the second Green’s

formula (4.9), we obtain

/f-’udxﬁ/ o : Vgvdx
QF QF

= —/ div o - vdx — {0, [va))005,
Qp
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So that by (3.19),

(Ony [Vn))oos. <0 Yv e K.

By the second trace theorem,

<0-n777Z)>00,Ec S 0 Vw € HOEO(EC>7 77Z) 2 Oa

which proves (3.20).
Next, we prove that

[0,] =0 in H2(%). (3.21)

Let @ € D(Q) such that ¢, = 0 in H2(X). Since [¢] = 0 on ., we have that
@ € K. Thus, by (3.18) and the first Green’s formula (3.14),

) f-sadXS/Q o :Vs(p)
= — /QF div o - pdx — [(Um §0n>%72] - [<0Ta 90T>%,2}

J

:_/ diveo - pdx — [<0n7§0n>
Qp

(SIS

By (3.19),

[(Unu(:pn> E} <0.

1
29

Using +¢ as test function, we have that

[<O-n790n> ,E] = 0.

1
2
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As [¢] = 0 on X, we obtain

([0n],0n)15 =0 Ve e D(Q), g, =0in H?(X),

2

which proves the claim. Lastly, we show that
o, =0 in (Hgo(zc)) . (3.22)

Indeed, let v € V such that [v,] = 0 in HZ(X.). Then, v € K. By (3.18) and

Green’s formula (4.9),

/ f-vdxg/ o : Vs(v)dx
QF QF
= —/ div e -vdx — (o, [v:])o0.5.-
Qp

Using (3.19), we have that (o, [v;])oox, < 0. So, using +v as a test function, we
obtain that

<0'7'7 [,U’T]>00,Ec =0 VYve ‘/7 [Un] = 0.

Using the Trace Theorem as in (3.20), the claim follows. Hence, from (3.19),
(3.20), (3.21), and (3.22), we have that o € S, i.e., Is(o) = 0. O

Next, we calculate h* and h**.
Proposition 6. h* = 1 and h*™* = h

Proof. Firstly, since K is a convex set, h is convex on the reflexive space V. Thus,

by the Fenchel-Moreau theorem, h = h**. We now show that (K~) = K. As V
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is reflexive, we have that
(K7) ={veV|{@, vy <0 Y eK }.

If u e K, clearly (v*,v)y«y <0 for all v* € K~. Thus, K C (K~) .
Suppose that u ¢ K. Since K is a closed and convex subset of V| by the Hahn-
Banach theorem, there exists a hyperplane which strictly separates {u} and K,

i.e., there is some f € V* and a € R such that

(f,v)vev <a<(f,u)yy-v YveK.
Fix v € K and let A > 0. Since K is a convex cone, \v € K. Then,

1
<f,’U>V*7V < XO[ VA > 0.

Letting A — +o0,
<f,’l)>v*,v <0 WYweK.

Thus, f € K.
Similarly,
>\<f,’l)>v*7v <a YA>D0.

As X\ — 0T, we obtain that

0 S a < <f7u>V*,V7

i.e., there is some f € K~ such that (f,u)y+v > 0. Hence, u ¢ (K~) and the
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claim follows.

Next, we show that (1x)* = 1x-. As V is reflexive, we have that for v* € V*,

(1x)" = sup (v, v)vev — 1k (v)) = SBE«U*’U)V*’V)'

Suppose that v* € K~. Then (v*,v)y+y < 0forallv € K. Thus, (1g)*(v*) <0.

Since 0 € K, we have that
(1x)*(v") = (v",0)y-v = 0.

Hence, (1x)*(v*) = 1g-(v*) = 0.
Now, assume that v* ¢ K. Then, there exists some v € K such that (v*, v)y+y >
0. Hence,

(L)' (") = sup (" M)y ) = +0c.

Thus, 1g-(v*) = (1g)*(v*) = +o0 and the claim is proved.
Since 0 € K—, K~ is a convex cone, and V* is reflexive, arguing as previously,

we obtain that " = (1x-)" = 1 g~ = 1k O

3.5 Characterization of the Range of the Strain Operator

The adjoint of the strain operator is the linear map V% : L%(Qp) — V* such that
for o € L%(Qr), Vi(0o) is defined by,

(Vi(o),v)y+y = / o:Vg(v)dx YveV.
Qp
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It is important to obtain a suitable characterization of the image of the convex cone
K under the strain operator. This will allow us to obtain a relationship between
the stress and the strain formulations of the elasticity problem with fractures. We
mention that the first result on the characterization of the space of admissible
displacements can be found in [33]. For a characterization of matrix fields as
linearized strain tensor fields, we refer to [7]. In their paper, since their space
of admissible displacements is a linear space, the classical Banach Closed Range
Theorem allows them this suitable characterization. In our case, we use results
from [19], in particular Theorem 5, which is a generalization of Farkas’ theorem

that we tailor to our case in the following proposition.

Proposition 7. If Vg : V. — L%(Qr) is strongly continuous and Vs(K) is

strongly closed, then the following are equivalent for p € L%(Qr):
e Vs(v) = p has a solution v in K
o If o € LE(Qr) such that V(o) € K7, then [, p:odr>0
Remark 1. The previous lemma implies that V(K ) = MT.

In order to utilize the previous remark, we have to show that the hypotheses

of Proposition 7 hold true. Indeed we have the following result:

Proposition 8. Vg : V — L%(Qp) is strongly continuous and Vg(K) is strongly

closed.

Proof. There exists some C' > 0 such that

IVs(o)llp < Cllvlll, Yo eV,
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Thus, as Vg is a linear map, it is strongly continuous.
To show that Vg(K) is strongly closed, let {Vg(v,)}>2, be a sequence of
tensors in L%(Qr) such that v, € K for each n and Vg(v,) — D for some

D € L%(QF). By Korn’s inequality, we have that
[vn — V|1 < C||Vs(vn —vy)]lo = 0,

as n,m — oo. Thus the sequence {v,}>?, is Cauchy in V. As K is closed in
V, v, - vin V for some v € K. By strong continuity of Vg, we have that

D = Vg(v). Hence, Vg(K) is strongly closed.

3.6 Duality

We present a treatment of primal-dual problems taken from [11]. Let X, Z be
separated locally convex spaces and F : X — R be a proper function. To the

primal problem

inf F(z),

zeX

we can assign a dual problem through the use of perturbation functions. Indeed,
let ® : X xY — R such that ®(z,0) = F(x) for all z € X. Then the primal
problem may be written as

;g‘(@(m,O).

The dual problem is
sup (—®*(0,z")).

Z*ez*
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By specific choices of the perturbation function ®(-,-), we arrive at different

dual formulations of a given primal problem.

3.6.1 Stress-Displacement Duality

Let X, Z be separable locally convex spaces. Let C' C Z be a nonempty convex
cone that partially orders Z, i.e., for x,y € Z such that + < y, we have that
y—x € C. We attach to Z a greatest element with respect to <g, co¢, which is
not in Z. We have that 2 <¢ oo¢ for all z € ZU {ooc}. Let f: X — R be a
proper function, g : Z — R be a proper, C-increasing function, i.e., dom g := {z €
Zlg(x) € R} # 0, g(x) > —oo for all x € Z, and for x <¢ y, g(x) < g(y). Let
h: X — ZU{ococ} be a proper function such that h(dom f Ndom h) Ndom g # (.
We define the primal problem as

inf {f(z) + (goh)(x)}. (3.23)

zeX

We define ® : X x Z — R such that ®(z,2) := f(x) + g(h(z) + 2) as the
perturbation function. It can be shown (see [11]) that ®* : X* x Z* — R has for

(%, 2%) € X* x 2,

O(z%,27)" = g"(z7) + (f + (z7h))"(z7) + Le=(27).

Hence, the corresponding dual problem is given by

sup {—g"(z") — (f + (z"h))" (0)}, (3.24)

zeCt+
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Sufficient conditions that guarantee strong duality, i.e., the optimal values of
the primal and dual problems coincide, are given in the following proposition taken

from Chapter 1, Theorem 4.1 of [11].

Proposition 9. Let X, Z be Fréchet spaces, C' a nonempty convex cone contained
inZ,g: X — R be proper and convex, h : Z — R be a C—increasing function such
that if z* ¢ C*, then h*(z*) = +o0, A : X — ZU{ooc} be proper, C—convex such
that A(dom g N"dom A) N domh # (). Suppose the following regularity conditions

are satisfied:
e g and h are lower semicontinuous
o A is star-C' lower semicontinuous
e 0 € core(domh — A(dom g N dom N)).

Then,

inf (g(x) + (hoA)) (@) = sup (=h*(=") — (g + ="A)*(0)). (3.25)

zeX Z*EC+

We go back to the stress formulation of the elasticity problem. Here, we set
X :=L%Qr), Z:=V* C:= K", and g,h, and A to be the functions defined
in the preliminaries. From Proposition 5, the stress formulation gives rise to the

following primal problem

(P) inf {g(o)+ (1x- o A)(o)}. (3.26)

GEL%(QF)
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From Proposition 6 and (3.24), we have that the dual problem is:

(D1)  sup{—1g(v)— (g +vA)*(0)}. (3.27)

veK

We show that the dual problem is equivalent to the displacement formulation

of the elasticity problem.

Proposition 10. For v € K, we have that

Ig(v)+ (g +vA) (0) = J(v). (3.28)
Moreover,
Sg}g{—ﬂx(v) = (9 +o0)(0)} = — inf J(v). (3.29)

Proof. Let v € K. Then

Lx(v)+ (g +vA)"(0)= sup {—g(o)— (vA)(o)}

= sup {—g(a') — <A0', U>V*,V}

JEL%(QF)
= sup {—g(o)-— f- vdx—i—/ o : Vg(v)dx}
o€LZ(2F) Qp Qp
=g (Vs(v)) —/ fvdx
Qp
= J(v),

where the last equality due to A~! = B. Lastly,

sup{—1g(v) — (¢ +vAN)*(0)} = — inf {1 g(v) + (¢ + vA)*(0)} = — inf J(v).

veK veK veK
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Remark 2. The previous proposition shows that, up to a change in sign, the (D1)
and the displacement formulation are equivalent. In addition, the solution to (D1)

18 also a solution to the displacement problem.

We now prove strong duality. We show that the hypotheses of Proposition 9
are satisfied.

I k- is K*-increasing.

Proof. Let v}, vy € V* such that v] <g+ v5. To prove that 1x-(v) < 1g-(v3),
it suffices to show that if v; € K~ then vi € K~. Indeed, suppose that v € K.
Then,

0> (v3,v)v v > (v],v)y v, YveK.
where the last inequality is because v; —vf € K. Thus, v € K. ]
Proposition 11. 0 € core(dom 1~ — A(dom g N A)).

Proof. Since domg N dom A = L%(Qr), we have that W := {v* — Ao | v* €
K-, 0 e€l%(Qp)} =dom1g- — A(dom g dom A). We show that 0 € core(W).

Recall that for a given a linear space X and a nonempty subset A,

core(A) :={xg € A|Vx € X, 3t, > 0 such that for allt € [0,¢,], xo + tx € A}.

Let u* € V*. Set t,« = 1. We claim that for each ¢ € [0, 1], we can find some

v; € K~ and o, € LE(Qr) such that

(tu* — (v — Aoy),V)y«y =0Yv € V. (3.30)
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We choose v; = 0 € K~. Consider the following problem:

Find u; € V such that

/ AVg(u) : Vg(v)dx = (tu™,v)y+ v —|—/ f-vdx YveV. (3.31)
QF

QF

To show that this has a unique solution, first observe that the bilinear form defined
by a(u,v) = fQF AVg(u) : Vg(v) dx for all u,v € V is coercive and bounded.
Now, F(v) := (tu*,v)y+v + fQF f-vdx Vv € V defines a linear function on V.

Moreover, it is bounded. Indeed,
(o)l < @Ellully + 11l ol < Uy + 1 £1llo) lvll, Vo eV,

so that

E - < e[y + [ £l < 400,

ie, FeV*
Thus, by the Lax-Milgram theorem, a unique solution exists to (3.31). We now

let oy :== AVg(u;). Then we have that,

(tu™, v)y+y = / o, Vg(v)dx — f-vdx=(0—- Ao, v)yy Yo EV,
QF QF

i.e., tu* € W. Thus, 0 € core(W). O
Proposition 12. A is K* -conver and star-K* lower semicontinuous.

Proof. Let a1, 09 € L%(Qr) and t € [0,1]. To show that A is K -convex, we must
have that

A(t0'1 + (1 — t)O'Q) SK‘*’ tAO'l + (1 — t)AG'Q,
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iLe,thoy + (1 —t)Aoy — A(toy + (1 —t)oy) € KT.

But this follows immediately, as it is easy to verify that tAo; + (1 — t)Aoy —
A(to, + (1 —t)ay) =0 € K+,

Now, since (K*)" = K, to show that A is star-K* lower semicontinuous, it
suffices to show that for all v € K, vA is lower semicontinuous.

Indeed, let {o,}5°, be a sequence in L%(Qf) such that o, — o in L%(QFp) for

some o € L%(QF). Then,

((wA)(on) = (vA)(0)] = [(Aaw, v)v- v — (Ao, v)v- v

/ (o) Vsfo) dx

< Clolyflon —ally = 0.

Thus, vA is continuous for each v € K. Hence, A is star- Kt lower semicontinuous.

]

We now have the duality between the stress and the displacement formulations.

Theorem 11.

inf g(o) = — inf J(v). (3.32)

ocesS veK

Proof. Propositions 3.6.1, 11, and 12 guarantee that the conditions of Proposition

9 are satisifed. Hence, we have that

inf  {g(0) + (L 0A)(0)} = sup{—~1xc(v) — (9 + vA)(0)}.  (3.33)

oel(Qp) veK

The result now follows from Propositions 5 and 10. O]
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Remark 3. The above result shows that, up to a change in sign, the stress and

displacement formulations are equivalent.

3.6.2 Stress-Strain Duality

We follow a treatment on dual problems with cone constraints as presented in [11].
We adopt the definitions for the sets X, Z, C' from the previous section. The primal

problem we look at is

inf (f(x) + 1a(z)), (3.34)

zeX

where A = {z € S|G(x) € —C}. Here S C X is a given nonempty set, f : X — R
and G : X — ZU{ooc} are proper functions such that dom fNSNG~'(—=C) # 0.

We define the perturbation function ® : X x X — R as

O(z,y) == f(r+y) + La().

It can be shown that its Fenchel conjugate, ®* : X* x X* — R, is

(2", y") = [T (y") + S“B<33* — Y 2)xxe
zE

The Fenchel dual problem can then be written as

sup {—f*(y") —sup(y*, z)} (3.35)

yreX* r€A

To obtain strong duality, we make use of the following result taken from Chap-

ter 1, Theorem 3.5 of [11].



103

Proposition 13. Let S C X be a nonempty convez set. f: X — R be a proper
and convex function and g : X — ZU{ococ} a proper and C-convex function such
that dom f NS NG H(=C) # (0. If there exists some ¥’ € dom f N A such that
[ is continuous at x’, then (3.34) and (3.35) agree and the dual has an optimal

solution.

We look at the stress formulation. Here, we take X = Z := L%(Qp), and

g :L%(Qr) — R as defined in the preliminaries. We define the sets

S :={o € Hg(div,Qp)|div e+ f = 0in D'(Qp)},
C = {o € LA(Q0)0n > 0 on HE (5.), or = 0 on HE(5,), [on] = 0 on H3 (X))},

A:={o € S|lo e —-CY,

where I : L%(Qp) — L%(Qp) is the identity map.
It is easy to see that C' is a convex cone in Z and that A = S. The primal

problem can be written as

(P2) inf  (g(o)+ La(o)). (3.36)

O'E]LQS(QF)

Following (3.35), the dual problem is

(D2)  sup (—g*(u) — sup /Q o udX) (3.37)

ueL%(Qp) oS
We show that (D2) is equivalent to the strain formulation of the elasticity

problem.



104

Proposition 14. For p € M~, we have that

g (p) + sup/ o pdr=J(—p). (3.38)
ocS Qp
Moreover,
sup (—g*(/,l,) - Sup/ o: p,dx) = — inf J(p). (3.39)
HELZ(QF) oeS JQp peMt

1
Proof. Fix some 7 € S such that 7, = 01in Hg)(X.). We claim that for each o € S,
there exists some 7 € M such that ¢ = 7 + 7. Indeed, it suffices to show that
o—meM.

Let v € K. Then,

(Vilo —m),v)vev = (o — 7, Vs(v))v-v

= — / div (o0 — ) - vdx — (0, — T, [Un])o0 5,
QF
= _<Jn> [’Un]>00,26 > 0.
Hence, 0 — 7 € M. Now, let p € M. Thus, —p € M*. As Vg(K) = M, there

is some v € K such that —p = Vg(v).

Observe that since 0 € M, we have that

Ogsup/ p:Tdx <O0.
Qp

TeM
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Hence,

g*(p,)—i—sup/ a:p,dx:g*(y,)—i—sup/ T:[_LdX—I—/ 7 pdx
Qp Qp Qp

oceS TeM

= g"(—Vs(v)) —/ 7 Vg(v)dx

Qp

=g (Vs(v)) + / div 7 - vdx — (7, [Un])oo.s.

Qp
1
== AVg(v) : Vg(v)dx — f-vdx
2 QF QF
= J(-p).

For the second assertion, we first claim that if ¢ M, then sup,.g / o
Qp
pdx = +o0o. Indeed, suppose p ¢ M~. Then there is some w € M such that

/ p:wdx > 0. As M is a convex cone, we have that
Qp

sup/ O'Z,udX:SUp(/ T:udx)—l—/ 7 pdx
o€sS QF TeM QF QF
Zsup(t/w:p,dx)—l—/ o pdx
t>0 Qp Qp

= +00.



106

From (3.38) and the above claim, we have that

sup (—g*(u) - sup/ o udx) =— inf (g*(y,) +sup/ o udx)
HELE () ocS JQp HELE(Qr) oeS Jap

= — inf <g*(u) +sup/ o: udx)
peM~— oS Qp

== inf J(-p)
= - nf J(p).
[
We now have the strong duality result.
Theorem 12.
inf g(o) = — inf J(n). (3.40)

Proof. Clearly, the identity operator, I : L%(Qp) — L%(QF) is C-convex. Also, we
have that dom gNSNIHC)=L%4(Qr)NSN(=C) =S #0.
We now show that g : L%(Q2) — R is continuous. Indeed, if o, — o in L%(Qr),

then

/Ba’nzandx—/ Bo : odx
QF QF

/QFB(O'H—O') (o + o) dx

2

< Bllon — oz, — 0
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Thus, from Proposition 13, we have that

inf g(0) = inf g(o) = sup (—g*uo ~sup [ o MdX) |

ocS ocA IJ'E]L'?Q(QF) ocS

Finally, from (3.38), the result follows. O

3.6.3 Solutions of the primal and dual problems

In this subsection, we look at how the minimizers of the displacement, stress, and

strain formulations are related to each other.

Theorem 13. Let o € S, v € K, and ju such that

g(&) = inf g(o), J(®)= inf J(v), J(@)= inf J(u).

ocs veK peM+

Then
o = AVgs(v) = Ap. (3.41)

Proof. The perturbation function used to obtain (D1) is ® : L2(Q2r) x V* = R,
P(o,2") :=g(o)+ 1k (Ao + 27).

From classical results in convex analysis (see for instance, [26] and [60]), we

have that (0,v) € 09(7,0), i.e., for all p € L%(QFr) and u* € V*,

((p,u") = (6,0),(0,0) 20 x Vo) L2 (20 x v+ < P(p,u") — ©(T,0).
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[ =)0+ (' o)y < glan) + L (Mg +u) = 9(0) — L (A0).

As 1g-(Ag) = 1s(a) = 0, we have that
(W', v)v-v < g(p) + 1 (Ap +u’) — g(a).
If we set pu := & and u* := —A&, and noting that 0 € K, then
(AG, D)y > 0.
As v € K and A € K~, we have that
0= (A, V)y+v = /

f-f)dx—/Q o : Vg(v)dx.

Hence,

0=g(o)+J(v)
1 o 1 _ _ _
—/ Bo :adx+ —/ AVg(v) : Vg(v)dx — fodx
2Ja, 2 Ja, Qr
1 1
—/ Bo &dx+—/ AVg(v) Vs(ﬁ)dx—/ o : Vg(v)dx,
2Ja, 2 Ja, Qp

(3.42)



where the last equality came from (3.42). Hence, we have that

9(6) + 9" (Vs(®)) = / 5 : Vs(B)dx.
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Looking at g as a convex, proper function on L%(€r), this means that V4 (v) €

dg(a), i.e., for all p € LZ(Qp),

Sl

If we set p := AVg(v), then

4(AV (D)) — (&) > / (AVs(5) — &) : V() dx

where the last equality is due to B being symmetric.

Since

J(AV () — g(6) = % / B(AV(8) — &) : (AVs(3) + &) dx,

Qp

the above inequality becomes

/Q B(AV4() — &) : AV(®) dx < / B(AV(8) — &) : & dx.

QF

(3.43)
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The positive-definiteness of B and (3.43) imply

al|AVs(D) - 5% g, < / B(AV(®) — &) : (AVs(®) — &) dx < 0.

F

Hence, & = AVg(0).
Now, as g € M, there exists some u € K such that g = Vg(u). Moreover
as Vg(K) = M*, we have that 4 minimizes J on K. Thus, from the previous

arguments, we have that

AVS(U,) =0.

Since ker Vg = {0} in V', we have that v = u, so that

Ap = AVg(v) = 0.
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4 Homogenization of the Elasticity problem for a material with

fractures

4.1 Introduction

We consider a linear elasticity problem for a homogeneous solid with periodically
distributed fractures. This problem was considered by Sanchez-Palencia in [50].
He proved that the problem, which we describe later, has a unique solution. As-
suming that the solution has an asymptotic expansion, by formally taking limits,
he obtained in the limit the homogenized problem (without fractures). Properties
of the homogenized stress is given in [50].

A few authors have considered proving rigorously this homogenization result.
Attouch and Murat in [9] have considered a more general form of the problem
but in the scalar case. Their stresses are assumed to be subgradients of a convex
energy functional with other suitable properties, e.g., ellipticity, boundedness, etc.
They proved that the energy functionals I'-converge to the energy functional for
the homogenized problem, in the strong L?(€2) topology. A major hurdle in this
problem is to find a suitable space that will contain H'(£2,) for all € > 0. L?*()
does this but to accomplish I'-convergence in this topology, one needs to prove
that (under certain conditions) limit points of {u,}., where u. € H'(Q.), must be
in H'(Q). To do this, the authors in [9] constructed suitable restriction-extension
operator that allowed them to prove this under the condition that sup, [|uc|| g1 (q,) <
+00. The construction of the restriction-extension operator required that the

fracture in the unit cell, Y, has a neighborhood with smooth boundary that is
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compactly contained in the cell. An issue with their proof is justifying the limits

of certain functionals. In particular, they were working with functions of the form,

/Q 32+ Vs (2))dr,

where wy is a periodic solution to a unit cell problem, given a constant tensor Z.
One, however, cannot simply use weak convergence in L*(Q) to the average in the
unit cell since the integrand is not necessarily in L*(Q), (wz is only in H' (Y \T)).
We prove this assertion by partitioning the domain into cells compactly contained
in 2 and those touching the boundary. We adapt standard arguments to proving
the limsup inequality from [8].

Pastukhova in [46], with the assumption that lim sup, ||| g1 (q.) < +00, where
uc is the solution for the periodic problem in ., argued that u, — u in L*(Q)
and that the energies also converge. They assumed that the limit point of the any
convergent subsequence must be in H'(Q). We argue that this is true using results
from [9]. We also adjusted some of her arguments so that her arguments still hold
without assuming weak convergence of certain functions in H'(Q). She also used
periodicity of certain functionals to argue convergence. We justified such limits
similarly as discussed before. Our proof of the liminf inequality is based on her
arguments in [46].

We prove the homogenization result using I'-convergence in the strong L*(2)
topology (for the vector-valued case). We also prove that a Mosco-convergence

result in the L?(2) topology also holds.
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4.2 Problem Formulation

Let Q be an open bounded domain in R? with smooth boundary 9€2. The fracture
is assumed to be a smooth surface which may or may not be connected, and is
denoted by I'. We define Qr := Q\ I'. The classical formulation of the problem in

terms of displacements is

divo+ f=0 inQp (4.1)
o= AVg(u) in Qr (4.2)
u =20 on 0N (4.3)
[u-n] >0 onl (4.4)
onli = oppn; onle = —0ppn; Opy <0 on I (4.5)
if [u-n| > 0on I, then o,, = 0. (4.6)
3

Figure 4.1: Elastic solid with fracture

Here, n refers to the unit normal on I', n is the outward unit normal on the
boundary of Qr, [¢] = ¢|; — ¢|2 refers to the jump of the field ¢ across the fracture

I', where the subscripts 1 and 2 denote the faces of I, in the direction of N and the
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opposite direction, respectively. 0,, = on-n. A = [a;;u] is the elasticity tensor,

assumed to have symmetry and positivity properties, i.e.,

AB-B>0, B+#0, BeR>, (4.7)

Aijkl = Qijlke = Ajikl = Qjilk, (4-8)

and f represents the body forces acting on the body. We denote by Vg(:) the
linearized strain tensor.

The constitutive relation for the elastic body is given by (4.2), (4.3) says that on
the outer boundary, the displacement is fixed, (4.4) implies that the body cannot
penetrate itself on the crack, (4.5) shows that there is no friction on the crack and
there is compression on it. Finally, (4.6) says that if the crack is open, there are
no stresses on I'.

To define traces on the fracture, we follow the development in [39]. We assume
that I' can be extended into a smooth closed surface ¥ that divides 2 into two
disjoint sets and that I' does not intersect itself. Observe that for a function
uw e HY(Q\T), we have that the jump of u, denoted by [u], is zero in X\ T.

We introduce the following trace space:

HE(T) = {v € H3(D) | d~bv € LA(D)},

where d € C*(3,), d > 0, d = 0 on I, and lim,_,,, % = «a # 0 for every

xo € OI'. dist(x,0I") refers to the distance from = € I' to I'. This space is a
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Hilbert space with the norm

2 2 _1
lolldor = ol g+ [+

2
0"
In [39], the author proves that u € Hg)(T') if and only if the extension function

u onl,

0 onX\T,

belongs to Hz (). This characterization motivates the use of HO%O(F) to describe
the jump [u] on T for u in H*(Qr).
We write the duality pairing on H2 (%) and its dual by (-, ) 1 - Similarly, the
duality pairing between HO%O(F) and its dual is denoted by (-, -)oor-
We define
H(div, Qr) := {0 € L*(Qr)|div o € L*(Q)} .

We will use the following trace theorem and Green’s theorem [39] to describe
functions and functionals on the fracture.
Let the boundary I" belong to the class C%!, and let a function u belong to

H'(Qr). Then there exists a linear continuous operator which uniquely defines at

J(Qr) the values

ulon € H2(99), uly,uly € H3(T), [u] € HE(T).
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Conversely, there exists a linear continuous operator such that for any given
v e HYOR), ¢hph e HAD), 4] € Hip(T),
a function u € H'(Qr) can be found such that
u=1on dY, ul;=¢lonl, i=1,2.

Let the boundary 9(2r) belong to the class C1, let o belong to H(div, Qr).
1 *
Then there is a linear continuous operator H(div, Q) — (H@O(F)> which uniquely

defines on the crack I' the values

*

1 * 1
On € (HO20<F)> y 07 € (HOZO(F)> y Or N = 07

and for all v € V', the generalized Green formula holds:

/Q o1 V() dx = — / div o - vdx — (o, [onloor — (om [o:Door  (4.9)

Q

We can now define the following spaces:
Vi={ve H'(Qr) |v=0in H2(0Q)},

K :={veV|[u]>00n H:(I)).

The problem is then shown to be equivalent to the following variational formula-

tion:
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Find v € K such that
/ AVg(u) : Vg(v —u)dx > f-(v—u)dr YveK. (4.10)
QF QF

Sanchez-Palencia in [50] showed that a unique solution to problem (4.10) exists.
It is standard to show that the above variational inequality is equivalent to the

following minimization problem:

Problem 10 (Displacement formulation). Find v € K such that

j() = inf (o),

1

where j(v) 1= 3 Jo. AVs(v) : Vs(v) = [o [ .

4.3 Periodic Problem

In this section we describe the periodic problem. Let Y := (0,1)? be the unit cell
in R®. Let I' C Y be a smooth surface such that there exists an open neighborhood
n CC Y with smooth boundary containing I'. We denote by T, := {z € Z?|e(Y +
z) CC Q}. Let T'e := U.er.e(I" + z) denote the periodically distributed fractures
in Q, and Q. := Q\ I'.. The trace theorem can be extended naturally to this case,

hence we can define similar function spaces:

V.={ve H(Q) |v=0in H2(0Q)},

K. = {veV,|[v] > 0in Hg(T)).
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Using similar methods as those in the case for a single fracture, one can prove that
a unique solution exists to the problem:

Find u. € K, such that

/ AVis(ue) : Vg(v —u)de > f-(v—u)dx Yv € K.. (4.11)
Qe

€

This can be written equivalently as the following minimization problem:

irelgt{%/eAV(v):V(v)—/efm}. (4.12)

We are now interested in the limit as ¢ — 0. Sanchez-Palencia [50] used an

asympotic expansion for u, of the form
x €T xT
ue(x) = U()(l" E) + eul(x, E) + €2u2(x’ z) + ..

and calculated formally the limit problem. The condition that u. € K. implies
that uo(z,y) = uo(z) and that [u; -n] > 0 on I'. Moreover, formally letting ¢ — 0,

he obtains that ug € H} () is a solution to the homogenized problem:
div a®(Vug) + f =0, inQ,

where

7°(Vug) = / A(Vug + Vyuy) dy,
Y

and u; € H}(Y \ T') solves the unit cell problem:
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/ A(Vup + Vyur)Vy(w —uy) dy > 0, (4.13)
YAD

for all w € HY(Y \ T') such that [w-n] >0 on .
The homogenized problem is then equivalent to the following minimization

problem:

min {% /Q 5(Vs(v)) vs(v)} (4.14)

UEH&(Q)
Our goal now is to obtain a homogenization result by proving Mosco conver-

gence [43] of the energy functionals found in (4.12) and (4.14).

4.4 Auxiliary lemmas

We list some lemmas which will be used to prove our main result.

Lemma 39. [9] For any sequence {uc}eso satisfying sup g ||tel| a1,y < 00, there

exists a bounded sequence {Q(u¢)}eso in HY(QY) such that

lim [[ue — Qe(ue) | 22(0) = 0.
e—0

Remark 4. The assumption that the I' has a neighborhood n with smooth bound-
ary that is compactly contained in'Y allowed the authors in [9] to construct Q..
Their approach is to construct a restriction-extension operator that first restricts a
function defined on Y \T on Y \ n and extend it to the whole of Y. Doing the ap-

propriate scaling and translations, one obtains the operator Q. : H(Q.) — H().

Following [46], we define C22.(Yr) to be the set of smooth 1-periodic functions

per

defined on RY \ T'.. We set L2 (Yr) to be the closure of this set in L2(Y). We

per
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then define H,,,(Yr) to be the closure of the set of functions in Cyo.(Yp) that has
support outside a neighborhood of T with respect to the H'(Y) norm. We then
have the following lemmas from [46]:

Suppose that a(y) € L?

per

(Y\I') and @ = [, pady = 0. Then there exists
w € H! (V,T) such that div w(y) = a(y) and

per
Jwllgryy < CT)llallz2y)-

If ug(y) is a solution of the variational inequality (4.13) for a given tensor
E with constant components, then the tensor function Z such that Z = A(E +

Vs(ug)) has the following properties:
divZ=0 nY\T,

and the orthogonal decomposition of the vector Z, = Zn = Z,,,n + Z, satisfies

the following conditions on I':

Zn’l = Znn‘1n7 Zn‘2 = - nnllna Znn|1 < 07

/ A+ ) (B + Vstue)) dy = 0°(E)E = 28,
where 6°(E) = Z = [, Z dy.

4.5 Homogenization result

We extended the proof of the limsup inequality found in [9] to the vector-valued

case, specialized to our particular case of linear elasticity. We provided necessary
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justifications for some of the convergences of the energy functionals. The proof of
the liminf inequality is adapted from [46]. We adjusted her proof to our case and
used Lemma 39 in some of the arguments. More details can be found below.

Define for v € L?(Q),

Je(v) == %/Q AVg(v) : Vg(v) —/Q f-v+xk. (v)
T 1= 5 | 3*(Tso)Vs(0) = [ £+ xuor(0)

Then
Jhom =T — lim J,, (4.15)

in the strong L?(Q2) topology.

Proof. Observe that the map v = [, f-v = [, f-v is continuous on L*(Q2). Hence

if we show that Fj,, = I' — lim F, in the strong L*(2) topology, where

F.(v) := %/ AVs(v) : Vg(v) + xk.(v)
Fhom(v) = %A&O(Vs(v))vs(v) + Xaa @) (V)

then the assertion of the theorem follows. We first prove the limsup inequality,

i.e., for every v € L?(12), there is a sequence {v.}c~o in L*(2) such that

limsup Fi.(ve) < From(v), (4.16)

e—0
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AS Fhom(v) = +oo for v ¢ H(Q), it suffices to prove the inequality for v € H}(Q).

We proceed in several steps.

Step 1. Suppose v is affine, i.e., for some Z € RV*Y and a € RY,
v(x) =Zx + .
For Z € RV*N 'let wy € HY(Y \ T') be the unique solution of
/ A(Z 4+ Vwy) : V(w —wyz)dy > 0,
Y\D

for all w € H}(Y \ T') such that [w-n] >0 on .

We define ve(z) := v(x) + ewz(£). As [wz-n] > 0on I and v € H(2), we
have that v. € K.. Also, observe that wz(¥) — fy\r wz(y) dy weakly in L?(£2)
and hence is bounded in L?(Q2). Thus, v, — v in L*(Q).

Observe that we can find a finite number of translates of €Y with disjoint interiors,

{Yi}ij\i(f) and {Y;’}fvz}g) (see Figure 2) such that

Qc (ujﬁ?}g)u(uf:’f))ﬁ') L Y, cCQ i=1,.,N(e), Y/NoQ#£0 i=1,..N().

(2
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Figure 4.2: Domain with periodically distributed fractures

Denoting by Y;, and Y;, the €Y translates without the fractures, we now calculate,

1

F.(v)) = 5/9 AVs(ve) : Vg(ve) = %/Q AV (ve) : V(ve)

3 [ a(z v () (2 vus (2))
<2 (/

i ie

+ % Z (/Y/ A(Z + sz(%)) (Z + sz(%)))

A(Z + sz(g)) (Z+ sz(%)))

<5 (VN + N©) [ 42+ Vur(2): (2+ TuaD),

Y\ €

N —

where we have used a change of variables to obtain the last inequality. Similar to

arguments found in (Theorem 2.6, [15]), we have that

Q
N(e)eV — H = |Q]
N'(e)eV 1 < NM = N|Q|.

Y
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Thus, it follows that

1
limsup F.(v.) < =0 [ A(Z+ Vuwz(D) : (Z + Vws(2)
e—0 2 Y\l € €

1 x -
— 5/{2/}/\1“ A(Z + sz(z)) (2 + sz(z))

= Fhom(v)-

Step 2. Suppose v is a continuous piecewise affine function, i.e.,

v(e) =Y (Zix + ;) L (x),

=1

where Q! forms a partition of ..

We set v 1= v(x) + ewy, (%) in QL. As Vwy, () is not necessarily equal to
Vwy, (+) on the interface between Q! and 7, we introduce smooth cut-off functions
to obtain an appropriate sequence in H'(€).). We do this in the case [ = 2. The
general case follows similarly. Let X = 0y N 0€2,. For § > 0 small enough, we

define Y5 := {z € Q|d(z,X) < 0}. Let s € C5°(£2) such that 0 < ¢5 <1 and

1 in 25,
Ps =
0 in 9\225.

Set v := (1—;)vi+@sv. Observe that v = v in X5 and [v°-n] = (1—g;)[wz, -n] >
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0. Hence, v’ € K,. Note that,

Vol =0, ® V(1 = 95) + (1 = 95) Vv + 0 ® Vg5 + g5V

Using the convexity of the map Z — AZ : Z for Z € RV*V | we have that for

0<t<l,

t .
Z/ < 1 — s5) V0! +tg05Vv+(l—t)1 t(v—vé)@V%):

A t .
(t(l — @s)VU! + tpsVo + (1 — 75)1 t(v —0) ® Vg@g) dx,

1 . .
< 3 Z /2 t(1 — p5)AVV. : V! + tpsAVv : Vo

t ; t .
+(1—t)A(1_t(U—v§)®V¢5) : (1_t(v—vi)®V¢5) dx,
1 i i :
§§ EZ /EAVUEZVUE-}-/W;AVU.VU

+(1—t)/2A(1it(v—vi)®V905) : (1it(v—vi)®V¢5>.

As vl — v in L*(Q), we get

lim sup F(tv° Z/ /Y\r (Zi +Vwz (y)) : (Z; + Vwg,(y)) dy

e—0

1
+—/ AVv : Vo,
2 Yos

where we used Step 1 to get the first term of the right-hand side of the inequality.
As v € H(Q), we have that

/ AVv: Vv —0, asd— 0.
Yos
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Thus,

1
lim sup lim sup F,(t°) < = Z/ / A(Zi +Vwz,(y)) : (Zi + Vwgz(y)) dy
=0 0 2 Ja )

By a standard diagonalization argument, we find a sequence 6(¢) — 0 and t(e) — 1

as € — 0 such that

lim sup F(t()v>©) < lim sup lim sup F,(tv?).
e—0 %S::g) e—0

Hence, taking v, := t(e)vf(e), we obtain

lim sup F.(ve) < From(v).

e—0

Step 3. We argue using density that (4.16) holds for v € H(Q). Indeed, let
v € H}(Q). Then there exists a sequence of continuous piecewise affine functions,
{vr}52,, that converges to v in H(Q). From Step 2, for each k there is a sequence
{Vk.c }eso such that vy . — vy, in L2(Q2) as € — 0 and lim sup,_,o F.(vr.c) < Fhom (k).
Arguing similarly as in (Theorem 1.20, [8]), it can be shown that F},,,, is convex

and finitely valued on Hg(€2) and hence is continuous. Thus, we obtain

Fhom(v) = lim Fpom(vg) > limsup limsup Fi(vg,) > limsup F(vg(e).e),

k—o0 k—o0 e—0 e—0

where the last inequality follows from a diagonalization argument. Taking v, :=

Uk(e),e, We get the desired result.
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We now prove the liminf inequality, i.e., if v € L?(Q) and {v.}>0 is a sequence

in L?(2) such that v, — v in L*(2), then

From(v) < liminf F,(v). (4.17)

e—0

If liminf. o F,(v.) = +00, we are done. Suppose now that liminf. o F.(v.) < M
for some M > 0. We first need to show that Fj,,(v) < oo, i.e., v € H}(2). By the
assumption, there is a subsequence such that F.(v.) < M for all €. Necessarily,

ve belongs to K. for each €/. By coercivity of F./, we obtain
sgp |ver || 1120y < 00
Using Lemma 39, we obtain a bounded sequence {Q(ve)}e in H*(2) such that
|ver — Qe (ver)||2() = 0, as € — 0.

As HY(Q)) cC L*(Q), up to a subsequence, for some u € HY(Q), Qu(ve) — u in

L*(2). Then,
[v = ull2() < v = vellr2@) + lve = Qer(ver )| L2() + Qe (ver) — ul|L2(2) = 0,

Hence, v € H*(€2). As v, has trace zero on 9% for every €, we have that v € Hj ().
This guarantees that Fj,,(v) < co. We now show that Fj,,, (v) < liminf. o F,(v,).

Indeed, let E be an arbitrary symmetric tensor in RV*Y. Let Z be as in Lemma



128

4.4. We define Z(z) := Z(%). By Young’s inequality, we obtain
1 1
§AV1}€ V> Z.: Vo, — §BZ6 2 .
Let w CC Q be a subdomain and ¢ € C§°(w), 0 < ¢ < 1. Set w :=w \ I'.. Then,

1 1
5/ pAVv, : V. > / wZ. V. — 5/ BZ, : Z.. (4.18)

Now, using Lemma 4.4 and Lemma 4.2 (Green’s formula), we obtain

/ SOZE : VUE = / Ze : (V(SOUE) — Ve & VSO)
_ / div Z, - (0.) = {(Z)as [ovda) s 1,
S CANCASIEY (P ATOER S

/ VopZou,dr

/Vgp Z Z /Vgove

Using Lemma 4.4, we obtain W € H) (Y,T') such that |W| g1y < C(T') and

per

div,W(y) = Z(y) — 2.

Thus,
Z(x) = 7 = divyW (y) =z = divzW(f).
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Since,

[ (@) =

We

T |2
v et [[vwaldy<c [ oW an
Y Y

it follows that

/ Vo (Ze—Z)ve = / Vo (edivzW(g)) ve — 0.

As ve = v in L*(Q),

Z/ VgovE:Z/Vgpve—)Z/Vgov:—Z/gOVv. (4.19)

We thus obtain,

limiglf/ ©Ze : Vo, > Z/gon. (4.20)
€E— We w

Using the definition of Z and the technique of partitioning the cells into those

inside the domain and those intersecting the boundary, we get

/OJEBZE:ZE:/WEA(E—FVUE(%)) (B + Vs (%))
[ a(esn () (e )
DY RICAAGIHCRAAE)

< eV (N(e) + N'(e)) /Y\FA(E+ Vug (v)) : (E+ Vug (y)) dy,

where N(e) and N'(¢) counts the cells inside w and those intersecting dw, respec-
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tively. Thus, we have

limsup/ BZ.: Z. < |w| A(E+Vug () : (E+ Vug (y)) dy

e—0 Y\I

://Y\FA(E—i—VuE (y)) : (F+ Vug (y)) dydx

:/ZEd:v.

Combining this with (4.18) and (4.20), we obtain

1 _ 1
liminf—/ pAVv,. : Vo, > /ngVv—liminf—/ BZ. : Z.
e—0 2 we w e—0 2 we
_ 1 [ _
Z/QOZVU—é/ZE.

As ¢ is arbitrary, it holds that for any subdomain w,

1 - 1 - 1
liminf—/ AVUE:VUEZ/ZVU——/ZEz/&O(E)Vv——/c?O(E)E.
=0 2 We w 2 w w 2 w

If g is a continuous piecewise affine function, we can extend the above estimate to

liminf% /w AV Vi /w UO(vs(g))vv—% / (Vs(g)Vslg).  (4.21)

e—0 w

Since v € H}(Q), we can choose a sequence of continuous piecewise affine functions
{g°}s>0 such that ¢° — v in H*(Q)). The map E + 5°(E) is Lipschitz continuous
on RV*N (Theorem 7.2, [50]). Thus, we have that 5°(Vg(g°)) — 5°(Vs(v)) in
L?(2). This, together with (4.21) gives,

e—0

1 1
lim infi/ AV, : Vo, > 5 / 7°(Vs(v))Vs(v),
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i.e., From(v) <liminf. 4 F.(v.). Hence,

Foom =T —lim F..
in the strong L?(Q2) topology, and thus

Jhom =1 — lim J,

in the strong L?(Q) topology. O

Remark 5. In [46], to show (4.20), the author used weak convergence of ue in
HY(Q) which does hold since u. is not in H(Q). We used a slightly different

argument to show that (4.20) holds.

Moreover, we have the following result .J. Mosco converges to Jp., in the LQ(Q)

topology.

Proof. As Mosco convergence is stable under continuous perturbations, it suffices
to prove the following:
limsup inequality: For each v in L?*(Q2), there exists a sequence {v,}o belong-

ing to L?(Q) such that v, — v in the strong topology of L?(Q2) and

lim sSup FE(U6) < Fhom(v)7 (422)

e—0

liminf inequality: For each v in L?(Q) and sequence {v,}.~o in L?(2) such that

ve — v in the weak topology of L?(£2), it holds that

From(v) < lim ionf F.(ve). (4.23)
€E—>
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The proof of the limsup inequality was discussed in Theorem 4.5. The proof
of the liminf inequality also holds even if we only assume that v. — v weakly in
L?(2). Indeed, (4.19) still holds. Moreover, we can still show that v = u a.e., so

that v € H'(Q). To see this, observe that
Ve — Qu(ve) = v —u, weaklyin L*(Q).
By the uniform boundedness principle,
[v = ullz2(9) < liminf [jve — Qo (ve)l[12(@) = 0.

The rest of the proof then follows similarly to that of Theorem 4.5. O]
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5 Stokes flow past moving rigid obstacles with slip boundary

conditions

5.1 Introduction

We consider the motion of an incompressible Newtonian fluid in a bounded domain
with submerged rigid particles whose velocities are known. At the boundary of the
fluid domain, we prescribe a Navier slip condition. The goal is to find a velocity v

and pressure ¢ that satisfies

ow—Av+Vqg=f, inQt),te(0,T)
divo=0, inQ),te0,T)

von=0, inD{),te(0,T)

D(v)n], + a(v —V), =0, inT(t),te0,T)

v(0) = vp, in €,

where the moving domain €(¢) is defined through the motion of the solid particles

given by
V(t,x) == hi(t) + Mi(t) (x — hi(t)), @ € Li(t),

h; and M; are in C*°(0,T) and M;(t) is skew-symmetric for all . Here I'(¢) is
the boundary of the solid particles at time ¢. More details are given in the next

section.

Such a system of equations can be used as a simple model of suspensions of
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rigid solids in a Newtonian fluid undergoing Brownian motion. Although Brownian
motion is known to have rough trajectories, in this model we are making the greatly
simplifying assumption that the solid velocity is smooth.

There have been plenty of work done on both the Navier-Stokes and Stokes
equations with slip boundary conditions. The slip condition used in this paper
dates back to Navier [45]. It is more recently used in modeling fluid-solid interac-
tions, most especially to resolve the no-collision paradoxes that have been known
to exist for both the Stokes [18] and Navier-Stokes [35] equations under the usual
no-slip boundary conditions.

Plenty of work has been done on both the well-posedness and regularity of
solutions to both the Navier-Stokes and Stokes equations. A recent comprehensive
paper that goes through the theory is [1] (See also the references therein). In this
paper, the authors look into the LP-theory of the stationary Stokes and Navier-
Stokes equations. For a recent treatment of the non stationary theory, we refer
to [7] and their references. In this paper, they used the semigroup theory for the
Stokes operator with slip conditions having a non constant friction coefficient to
obtain strong solutions to the Navier-Stokes equations.

With regards to work on the Stokes and Navier-Stokes equations in moving
domains, a lot has been done in the past several decades. One of the earliest
mathematical treatments on this is in [28] where the domain is prescribed for every
time. We mention first some of the work done in the case where the solid motion
is coupled with the fluid velocity. In the case of no-slip boundary conditions, early
works such as [21] and [27] prove the existence of weak solutions. In [56], the
author proves the existence of strong solutions whereas in two dimensions they

prove global solvability, and in three dimensions a local in-time existence and
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global solvability for small data. For the case of slip boundary conditions, we
have [31] and [12] that prove the existence of weak solutions up to collisions.

In the case where the solid moves with some known velocity or when the evolu-
tion of the domain is known a priori, the general treatment is to map the problem
in a cylindrical domain. There are numerous works in this regard and we men-
tion [51], [20], and the references therein as some examples.

One of the transformations used comes from [37], where under some smooth-
ness assumptions on the evolution of the domain, one has a divergence preserving
transformation that maps the problem into a fixed domain. In our work, we do
the same and map the moving domain problem into a fixed one. To transform
the problem, we proceeded similarly as in [48]. The equations are the same ex-
cept for the boundary conditions. We then provide an elementary proof of the
H?—regularity of solutions to the Stationary Stokes problem with slip boundary
conditions and use Rothe’s method to obtain a strong non stationary solution. To
solve the full problem, we proceeded similarly as in [22] by solving the problem

using a fixed-point argument.

5.2 Transformation to a fixed domain problem

Let U be a bounded subset of R* and {O;}™, be bounded, pairwise disjoint subsets
of U such that OU, 00; € C? for all i. The sets O; represent the solid rigid particles
at time zero. We let Q := U \ U2, O; be the initial fluid domain.

From here onwards, we denote by ¥, the spatial variable in the domain at time
zero and = := x(t,y) to be spatial variable in the moving domain.

In order to describe the moving domain, we first need to obtain a transformation
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that maps O; to O;(t), i.e., a mapping between points from the solid at ¢ = 0 to
points in the solid at any time ¢ € (0,7"). This would come from the known velocity

of the solid particles. Indeed, let y € O;, and consider the following ODE:

Gi(t,y) = hi(t) + Mi(t) (Gi(t,y) — hi(t)),  t€(0,T)

Gi(0,y) =y.

This, then, defines an isomorphism G;(t,-) : O; — O(t),. With this, we can now
define the domain at time ¢ € [0,7] as Q(t) := U \ U, 0;(t). We make the
important assumption that h; and M, guarantee that the solids remain at least a
positive distance d > 0 away from each other at all times.

The task now is to find a diffecomorphism between Q and 2(¢). We do this
by defining a suitable domain velocity for U that will give the necessary diffeo-
morphism upon integrating. Heuristically, we want this velocity to be the solid
velocity inside the solid particles, zero when one is sufficiently far away from the
solids, and glues together these two velocites in between. We also need it to be
volume preserving.

To start, let By,, B, be open balls such that [N By, C Eli C B,,. We define
for k=1,2:

By, (1) = {z = Gi(t,y)|y € By}
Let n € C* (R? x [0,T]) be a cut-off function such that
e 0<n<1,
o fort € [0,7],n=1o0n UBy,(t), n=0 on R*\ UBy,(t).

We let K;(t) := support of Vn(t,-) N By, (t). We introduce this cut-off function to
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achieve our goal of having a domain velocity that matches the solid velocities in
the solids, zero far away from them, and glues them together in between.

In order to get a volume preserving diffeomorphism, we need this domain ve-
locity to be divergence free. To do that, we subtract out the divergence of the

terms where we expect the velocity to be nonzero. Indeed, we make the following

calculations:
divy (n(t, 2)hi(t)) = Vn(t, z) - hi(t) + n(t, z)div, (hi(t))
— (t, @) - B (D).
Also,
div, (n(t, z)M;(t)hi(t)) = Vn(t,x) - M;(t)hi(t).
Lastly,

dive (n(t, 2) Mi(t)z) = Vi(t, z) - Mi(t)z + (L, z) dive (M;(t)z)

= Vn(t,x) - M;(t)x,

since
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These motivate us to define for ¢ € [0, T] and = € O;(t):
) = 00,) S 0+ M) (2= D)= B (Tt ) 040+ M) )
where By, : L*(K;(t)) — H}(K;(t)), is the operator such that,

div (B, (H)) = H,

and || B, o) (H) | g (x,) < C (Ki()) | H || L2xc,ry- See [58] for details. Based on

our previous calculations, we have that
o b(t,x) = h(t) + M;(t) (x — hy(t)) for x € Oy(t),
o divb =0,
e be Cg, (R x [0,T];R?).

b is the domain velocity that we need to define the necessary diffeomorphism.

Indeed, we consider the following problem: for y € R3,

do(t,y) =b(t, o(t,y), te(0,T),
¢(0,y) = y.

As b is smooth, by Picard-Lindelof, there exists a smooth function ¢ that solves
the above ODE. Thus, restricting it to €2, we have that ¢(¢,-) : Q — €(¢) is the
desired diffeomorphism.

Roughly what ¢ is, is that outside By, (t), it is the identity map; inside O;(t),

¢ is the rigid displacement G;(t); and in between 0B, (t) and O;(t), ¢ can be
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thought of as a glue between these two maps.

Now that we have the transformation that maps points in the fixed domain
to points in the moving domain, we move on to defining the transformation that
maps functions defined on the moving domain to ones defined on the fixed domain.

We introduce the following transformations: for ¢ € [0,7] and y € €,

Ult,y) := (®v) (t,y) = (Vo) " (t,y) v (£, 6(t,y))

p(t,y) == q(t, o(t,y))

These were first introduced in [37]. The reason that the velocity is mapped
differently than the pressure is because we want the transformed velocity to also
be solenoidal. This map guarantees that div U = 0 in §2. See [37] for details.

The resulting PDE that these transformed functions solve have been calculated
in [37]. Our task now is to look into how the slip boundary condition is changed
under this transformation. This is given by the following lemma:

The velocity v satisfies
D()n], + a(v —V), =0, inT(t),te(0,T)
if and only if U satisfies
D), +a(U—=2(V))=0 on(0,T)xT,

where p is the outer normal to I" and [w],, := w — (w - p)p for any vector field w

T

defined on T'.
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Proof. First, we have that v = ®1U. We then apply @ to the slip condition on
I'(t). Indeed, for t € (0,7) and y € I:

O (V. (7'0)) (ty) = (Vyo) " (ty) (Ve (7)) (1 (¢t 9))
= (Vy0) ™ (Ly)Vy [(27'0) (t, 6(t,))] (Vy0) " (t,y)
= (V)™ (L,9)Vy [(Vy0) (.9) (V,U) (6,9)] (V,8) " (1)
= (Vy0) " (t,9) (V40) (t,9) (V,U) (1,9) (Vy0) " (1)

= (va) (t,y) (vy¢>T (t, ).

Similarly,

@ ([Ve (2710)]7) (1,9) = (V,0) 7" (19) [(V,6) (4, ) (VU) (1,9) (V40) ™" (1,3)]”
= (7,0) " (6.) (V40) " (1.0) (V,0) (,9) (V) (t.0)

= (va)T (t,y) (vy¢)T (t,y),

since V¢ is an orthogonal matrix on I'. Setting,

ult,y) = (Vo) (ty)n (t ot y)).,
we have that p is the unit outward normal on I'. We now calculate:

[D(®7'U) n] (t,y)
= (VU) (t,y) (Vo) (t,y)n (t, o(t,y)) + (VU)" (t,y) (Vo) (t,y)n (t,6(t,y))

= DO)p) (t,y).
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Also,

[]D (¢_1U) n- n} (t,o(t,y))
= (Vo) (t,y) (Vo)™ (t,y) (D (7'V)) (t, 6(t,y)) - n (L, &(t,y))
= (Vo) (ty) (D (27'D)) (£, 6(t,y)) - (V)" (t,y)n (L, é(t,y))

= DO)p- 1) (t,y).
Thus, we have,

) [(]D) (<I>_1U) n- n) n} (t,y)
(Vo)™ (t,y) [(D(P7'U) n-n) (t,6(t, )] n (¢, é(t,y))
(D (@'U) n-n) (t,0(t,))] (VO)" (t,y)n (L, 6(t,y))

(DU ) - 1) p] (L, ).

Combining these calculations, we obtain:

S ([D(@'U)n] ) (ty) =2 (D (@ 'U)n— (D(®'U)n-n)n)(ty)
= DU)p) (8 y) = (DO - ) ) (8, y)

= [DU)ul,, (t,y).

T
The slip boundary condition on I'(¢) then becomes:
D), +a(U—=2(V))=0 on(0,T)xTI.

As @ is an isomorphism, one can do similar calculations for the reverse implication.
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Thus, as was proven in [37], together with the calculations above, we have that
(v,q) is a strong solution to the Stokes problem in the moving domain if and only

if (U, p) is a strong solution to the following:

OU + (M —L)U = f—Gp, in (0,T) x Q
divU =0, in(0,T)xQ
U-p=0, on(0,T)xT
D), +a(U—-3(V)=0 on(0,T)xT

U(0) = Up, in €,

where Uy := ®(vg). Here, L corresponds to the transformed Stokes operator, M
came from transforming the time derivative, and G is due to transforming the

pressure term. These operators are defined as follows (see [37] for details):

3
— Z a ¢*8,U; _|_2 Z gle;kalU

jk=1 3.k 1=1

+ Z [( (4"'T%) +Zg’“lr’”rz )

7,k 1=1

Uk =Y 0(Ve™),00; + Z 50 (Vo) + (0:(Ve™) ) (0,0:(V9),)) Uj]

7,k=1

3
Gpli = 9954,
j=1

where

gij — ngfl (V(b*l)T
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is the metric contravariant tensor,

gi = (Vo) Vo,

is the metric covariant tensor, and Christoffel’s symbol
13
I = 2 > g™ Oigu + Oigji — Dugiy) -
=1

Finally, we wish to quotient out the solid velocity in the boundary condition on

I'. To do this, note first that for ¢t € (0,7) and y € I, we have

D(eV) (L, y)
=V (Vo) (t,9)V (t,0(t:9) + [V (V) (£, 9)V (¢, 6(t,v)))]
= (Vo) (L)Y (V (£ 6(t) + [(Vo) ' (L)Y (V (£, é(t.y))]
= (Vo) (t,y)VV (t,6(t,y)) Vo(t,y)

+ (Vo) (t,y) (VV) (t,6(t,9)) (Vo) (t,9)
= (V)" (t,9) (VV) (1, 6(t,)) (Vo) (,9) — (Vo) (,9) (VV) (t,6(t,9)) (V9) (¢,v)

=0.

T

Thus, setting u(t,y) := U(t,y) — (Pb) (t,y) and noting that b = V on I'(t), we

obtain that (v, q) is a strong solution to the moving domain problem if and only
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if (U, p) is a strong solution to:

ou—Au+Vp=F+ (L-A)u—Mu+(V—-G)p, in (0,7)xQ
divu=0, in (0,7)xQ
u-pu=0, on(0,7)xT

[D(w)p)r, +0ou=0, on (0,7)xT

where F':= f — 0,(Pb) — (M — L)(Pb), ug := Uy — (®b)(0). Note that since P is

divergence preserving, we recover that u is solenoidal if and only if v is solenoidal.
5.3 Stationary problem
We aim to prove the well-posedness of the following problem:
—Au+Vp=f 1inQ
divu =0, in

u-p=0, onl

[D(u)p]r +au=0, onT.

We first look into the existence of a weak solution, i.e., there exist u € H ()

and p € L? () such that

loc

2/QD(U)iD(s@)+2/Fozu7~<pT—/deivs0=/Qf-% Vi € Ho ().
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Equivalently, we can look for u € H} (2) such that

Q/QID)(U) :D(cp)+2/rau7-<,07:/9f-<p, Vo € H, ().

Korn’s inequality applied to €2 guarantees the well-posedness of the above problem

in H} (Q) x L,.(Q), for instance see [1].

loc

5.3.1 Regularity

The goal of this section is to prove that for sufficiently regular data to the stationary
problem, we have that both the velocity and pressure have higher regularity. In

particular, we have

Theorem 14. Suppose f € L*(Q)) and a > 0. Then, the weak solution (u,p) to

the stationary Stokes problem belongs in H*(Q2) x H'(Q).

Proof. We break down the proof in several stages. First, note that the interior
regularity is standard. We focus on the regularity up to the boundary. In this line,
we introduce a change of coordinates that transforms portion of the domains into a
domain with a flat boundary. Indeed, let g € I" and without loss of generality, we
assume that zo = 0. By regularity of I', upon relabeling of axes, we may assume
that

QN B(zo,r) ={x = (x1,29,73) |23 < H(2'), 2" := (21, 22)},

for some H € C? (R*R). We let

U(z) == (1, 22,23 — H(2")).
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Thus,

U y) = (1,92, 93 + H(Y)).

We let s > 0 be small enough such that B(0,s) NR3 C ' :=¢ (2N B(0,r)). We
let V':= B (0,%) NR3. We define:

1

a(y) == (Yu)(y) == (Vo '(y) uw(@ '(y), ye.

Note that:
(U'a) (z) = (Vo) ((2) @ (v(x)) .

With these, we have that -y = 0 on I' if and only if @-n = 0 on I" := ¢(I),
where n is the outward unit normal on IV. Moreover, since detViy~! = 1in 0/, we
have that div,a = (div,u) (¢! (y)) =0 in Q.

Now, let (u,p) € H} (Q) x L}

loc

() be the weak solution to the stationary

Stokes problem, i.e., for all ¢ € H(Q):

[ Do)+ [au o~ [pave= [Fe

where F':= %f

5.3.1.1 Tangential regularity of the velocity

We apply a change of variables:

[ @@= [ BB = [ Byt iBe)ew
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Let ¢' € H, (€') and define ¢ := ¥/, Then, ¢ € L*(Q2). Indeed,
o=yl = (Vo ow) (¢ o) = (VO) ' (¢ ov) € L2(9),
since ¢’ € L*(Q) and (Vo))" € L=(Q). Moreover Vo € L?() since,

Vo=V (Vi) ™") - (¢ o) + (Vi) (V) o) Vb € L*(Q),

since Vo' € L*(Q) and ¢,y € C3. Thus, ¢ € H'(Q).
Now, as W = ¢/, ¢'-n=0o0n I, and div ¢’ = 0 in €', we have that p-n =0
on I' and div ¢ = 0 in §2. Hence, ¢ € H;T(Q) and we use this as a test function.

We now calculate:

Voo™ =[(V (V) oy [¢o(Woy™)]
+[(Vy) oy ] [V o (Yo ™) [Veoy™]
= [(V(VY) ) ou™ ] ¢ + [(V¥) oy ] [V¢] [Veory™].

Now,
[(V(Ve) ™) - (¢ ou)], = [((VeT) o v) - (w’owﬂij
—gaj )i © Y] ) 0¥
- (B0 0 ¥) (O50) (20 ¥)
and,

(Vo) Loy ] VY] [Veor™] = Vo' V' vy,
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3
Vo Z 0 (O 0 ¥7Y) (k) + VU V'V

We simplify this term by considering 1y ~'. Recall that v~ (y) = (y1, y2, y3 + H(v')).
Thus,

1 0 0
VeTl=10 1 o0
OH 9H 1

| 0 0

(Ve ) '=1 o 10

“OH —8H 1

We then have that a,akwgl = 0,0xH for k,l = 1,2, i = 3, and is zero otherwise.
Thus, for ¢,7 =1,2,3:

E

3
Z A0k (Do ™) (k) = Y dis(1 = 0;3)(9;0,.H ) o,

=
Il

1

where we have also used that 9;1; = ¢;; for [ # 3.

For the other term, observe that

1 0 0 0 0 0
Vo t=1 o 1 ol=I+1] o 0 0| =1+H.

OH 0,H 1 oOH 0,H 1
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Similarly,

-1

(V™) =I-H.

Therefore,

Vi 'Ve'Vy™! =Ve ' VoH+ HVY — HV¢'H.

Hence, we have shown that for ¢ € H, (€), ¢ := ¥~ '¢/, we have:

[Voory™! i Sis(1 = 63)(0;0:H) ), + V' — Vo'H + HVy' — HV'H
k=1
=: E[¢] + V¢ + HVy¢' —' V' H — HV ¢'H.
We now obtain:
| D) Do) = [ D+ Fu(@) + Ful@)] : D) + File) + Foli)].
where:

Fi(¢') = Agym (HVy =" V' H — HV'H)

Fo(¢') := Asym (E[£]) .
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We tranform the boudnary term:

/uT-ng:/u-go
r r

For the pressure term, we let p := po~t. Then, p € L2 (). Also, since

loc

det Vip=! =1, we have that div,p o ¢yt = div,¢’. Thus,

/deivg0:/9/ (poy™) (div ¢ op™) ://jo“div Q.

Finally, we transform the force terms:

/Qp.gp:/ﬂl (w—l)T(Fw—l).gpf:;/F'.gp'.

Q

Therefore, (4, p) satisfies:

| Da+ Fu(@) + Fo(@)] : D) + Fi(¢) + o)

s [ @ et - [ pdive = [Py
I Q Q

for all ¢’ € HX(Y).
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We now make our estimates. Let V' := B (0,%) NR* C . Let ¢ € C5°(R?)

such that ( =1in V/, ( =0in R*\ B(0,s), and 0 < ¢ < 1. Thus ¢ =0 on I".

Let h > 0 and define ¢’ := —D," ((2D}a), for k = 1,2. Then ¢’ € HX(Y).

Here, we have

f(z + hex) — f(x)
. )

Dy f(x) =

We now use ¢’ as a test function. We first consider the diffusion term:
/ / [Da + Fy (@) + Fo(a)] : [D(—Dy" (¢*Dypa)) +Fi (=D " (¢PDra)) + Fo(—D;" (¢ Dra))] -

We are going to delve into the details of the estimates for the following term. For
the other terms, they follow similarly. We sketch the proof in the appendix. Now,

we have

| bt (@nt) - - [ s o' (o)
= [ DDa:D((*Dpa)
Q/
= | DiDi: [(*DiDi + 2¢A gy (Dyi @ V()]
Q/
> [ ol =5 [ ¢ |opaf
o 2 Jor
- C(@,v¢) [ |vaf
Q/
1

_ <2|D’gm\2—0(9’,v<)/ Vil .
2 Q/ Q/

Next we look at the term:

| Fi(@): D(-Dy" (*Dja)).
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Recall that Fy (@) = Ay, (HVE — Vall — HVaH). Moreover, as D(—D; " (¢?Dpai))
is symmetric, we have that

[HVa — VaH — HVaH] : D(—D," (¢*Dpa)).

’

| E@ - (¢pfa)) - |
We work out the calculations for each term. First,

HVa : D(—Di" (¢°Dpa))
o

= [ Dy (HVa): D (¢*Dra)
Q/

= / [H"DpVia + (DyH) Va) : [(CDrDa + 2¢A gy, (Dra ® V()] .

Since,

/ CH'"D!'Va - ¢DiDa > —g/ CQ‘DZDmQ—gHHH%k/ ¢|prval®,
/ Q/ Ql

H"DiVi : 2¢A gy (Dra® VE) > —5’/ CQ\DZVQ}Q—C(s’,Q’,H)/ Vi),
Q/ Q/ Q/

- - £ - -
| coimyviicoiaz -2 [ ¢loipaf - colmi. [ v,

| 2 (D) V- (DLt Ay (D@ V) = ~C/(@. VO B | [V,
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we have that

Hva D(—D;" (¢*Dpa))

>~ [ ¢|DiDif’ ~ B ©) - <) | ¢ Dty

— C(Q/ V(¢ H) |va\2.
For the next term, we have

VaH : D(-D;" (¢*Dri))
o

Dy (ViH) : D (¢°Dya)
o

= / [(Va)"DiH + (DpVa) H : [(PDpDi + 2¢Agyn (Dpa @ V()] .
Now,

/(va)hD,’;H;g?D’,;va > —5/ @\D’,;MF—O(E,H)/ V|
4 94 Q'
/ (DpVa) | : 2DV > —g/ 42\D2Da\2—0(5)y|H||ck/ ¢|prval’
94 Q/ QY
(DpVE) H :: 20Agym (Dla @ VE) > —¢' [ ¢ |Dival|* — (e, 9, H) | Vil
94 94

Q/

/ @)"DIH : 2¢Agym (Dl @ V() > —C(H, Q) [ |Val*.
/ Q/
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Thus,

VaH : D(—D;" (¢*Dri))
Q/
>~ [ ¢ |Dipaf’ - (& + ) | ¢*|Dival
Q, Q/

—C(e, e, QH) | |Val*.
Q/
As for the last term, we have

HVaH : D(—Dy " (¢*Dya) / (HVaH) : D (¢*Dra)

Q/

|(BV@)" DI + (" D}Va + (D{H) Vi) H|
Q/

L [P DD+ 2¢Aym (DRa @ V)] .
We make estimates for each term. Indeed,

/ [(HVﬁ)hDZH+ (DIH) va] L C2DI'Di > —¢ / ¢ |Dpil* - C(e, 1) / Vil

/ Q/ Q/
H"D}VaH : (2D'Di > —g/ ¢ | Dimal” — C(a)||H|yék/ ¢|Dival’

Ql Q/ Q/

/ H"D}VaH : 2¢Agy, (Dra® V¢) > —<' [ ¢? \D’,;vaf —-CE, 9 H) | |Val)
/ Q/ Q/

/ [(HVﬁ)hDZH + (DH) va] : 20A gy (DR ® VC) > —C(H, Q) [ |Val*.
/ Q/
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Thus,

HVaH : D(—D;" (¢*Dpi))
Q/

>~ [ ¢ |Dipaf’ - (& + ) | ¢*|Dival
Q, Q/

—C(e,a',Q,H)/ \Val?
Q/

Combining these estimates, we obtain

/ Fi(@) : D(-D;" (D))

> —g/ gﬂp,’;mf—||H||Ck0(9’,s,e’)/ ¢ |prval’
94 Q

—C(Q/VCH) [ |Val.
Q/

Note that we can choose r > 0 to be small enough so that |[H||c+ < 1. The sketch
of the details for the estimates on the remaining diffusion terms are given in the

appendix. Combining all these, we finally obtain the following estimate for the

diffusion term

// D + Fy (@) + Fo(a@)] : [D(—Dy" (¢2Dra)) + Fi(—Di" (¢2Dka)) + Fo(—Di" (¢2Dka))]

1 ~12 / / ~ |2 / N~
> (3-¢) [ ¢ 1otpaf - @+ c@m A [ ¢ DIVl - e B9l g,



We now estimate the boundary term. We let T := (V@/ﬁl)T (Vep~1). Then,

[ ma - o (@nka)] = [ phmal- (Dl
= / [T" Dy, + DyTa,] - [¢* Dyl
/FI(T I)D}ii, - Dty + g D}, |

+ [ DI'Ta, - 2Dl
1“/
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1 - -
> (5~ ClEler) [ ¢ Dt~ ot [ 1at.
I/ I/

Thus, as [, i, |* < C(Y)[a]| g1 ey, we have:

[ ey (00 i [0 (@0ka)]) = (5 - Ol ) [ ¢ |t

— C(H, )|l 2 (g
We move on to the pressure term:

/ pdiv (=D;" (¢*Dra)) = — /Q / pD;" (2¢V¢ - Dra+ ¢Cdiv (Dpa))
~— | it (v D).

since div (D'a) = D div @ = 0 in €. Now, since

Dy ((2¢V¢)"h- ) = 2¢V(-Dra+Dy ((2¢V¢) ™)@ = 2¢V¢-Dia+D; " (2¢V¢) -4,
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we then have

— /Q / pD;" (2¢V( - D) = — /Q / pD;" [Dy ((2¢V¢)"h-a) — D" (2¢VC) - @ -

We now make some estimates. First,

/

—/Q,ﬁDk‘hD,’j ((2¢VO)"h-a) > —& 5 |D;" D} ((2gvg)—h-a)\2—0(5')/ P2
Also,

; DD} ((2¢V¢)h-0)|* < () 5 VDl ((2¢v¢) " @)

= O(2) /Q D (V ((2¢v0)™) "+ (@) (V) ™)

< o(Q) (/Q IVal? + /Q (2 \D,’;vaf) .

2

Combining these, we obtain

/ pdiv (=D, " (QQD,’;a))‘ <e | ¢ ]D,f;vaf + C(Q’)/ P+ C) a3 -
/ Q/ Q/
Now, for the force term, we have

//F’ D" (¢*Dra) < C(&) /Q F'|* + ¢ /Q \D,;h (g2D,’;a)\2.
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We estimate the second term as

[ I @enta) <o) [ |9 (@t

< C() / (¢'vDpal* + (20Dl e v¢) .
Since, 0 < ¢ < 1, we have that ¢* < ¢2, and so
/, F'-D." (¢Dra) <& /Q ¢ \D’,;vaf +C() /Q |F'|> + () /Q \Val?
We now combine these estimates:

(5-¢) [ elotpaf - @ + ez [ ¢ |pivaf - co e il
1 - .
+ (5 Cltler) [ |l - @ Bl < [ DbV~ [ 7
< [ i+ @)+ Fl@)] : [P (DLa)) + Fi(-D (Dka) + Fo(— Dy (*DLa))]
[ () () - [0 (@Dka)] + | v (<D (D)

- [ P (0t

<& [ ¢ }D,’;Vﬂ|2+0(5’)/ adk +O(Q/)/ Vil .
94 Q/ Q
Thus, we have, up to multiples of ¢ and &’:

1 12 12 -
(5—5) Q/CQ‘DZDuI —(€’+C(Q’,5)HHH%1€)/Q/(2|D2Vu| — C(, H,e,&)all g

<C ( Fads +/ P+ Ha\ﬁpm,)) .
Q Q
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Now, note that

¢ DDyl :/ D
Q B(0,s)+

and
¢ vyl :/ ¢ |vDka|”.
o B(0,s)*
Also,
¢V DR 120,54y = [IV(CDRE) — Dt @ V|| 12(0.5)+)
< IV (¢Dra) | 2so.5)+) + 1DRE® V|| 12(B0,5)4):
and

ICD D 250,54 = IP(CDRE) — Agym (Drtt @ V) || 12(B0.5)+)

< |ID(CDR) || r2(Bo.5)+) — Asym (DR ® VE) l12(B0.5)+)-

Combining these with our estimate, we obtain

(5 - ) IPCDED a0, = (& + OO DN NITCDLD) e
1 N

(5 - OBl ) 16D e

< C (1P 12aqar) + W3y + I DL 2oy + Nl

< C (1P 12aqar) + 13y + Il )

In order to compare the gradient terms with the strain terms, we need Korn’s
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inequality in the following form:

‘ 2

L [ ot @

< Crey ™| [ DD () ) dy
D) (s 2 d
o[ ot el

< Crest [ /B - D (¢D}a) (x)]” do
1

+ J—
s B(0,s)*

‘(CDZ&) (av)‘2 dm},

where C’K( B is the Korn’s constant in the upper unit half ball. Thus,

1 _ -
(3-2) Gty ~ € + CCNNEo) | I9CDEDIE )
1 -
+ (3 - OB ) 16Dk e
< C (1P sy + W03y + Nl )

Hence, by choosing € > 0 small enough and then choosing r > 0 small enough, we

obtain

IDpVallizon < IV (¢DR) llary < C (IF gy + 113

01,

€ LA(V') fori,5 =1,2,3 and k = 1, 2.
;0%

ie.,




161

5.3.1.2 H' regularity of the pressure in the tangential directions

Let ¢ € C5°(V'). Thus, 0x¢ € HX(Y) for k = 1,2. Note that 9, = 0 on I". We

then use 0 as a test function to get

- [ pav(ag
V/

= / F' - 0p¢ — / [Da + Fy (@) + Fo(a)] : [DOkC + F1(0kC) + Fo(0k()]
v o

= <_8I€F/7<>H—1(Q/),H(}(Q)

- /V Ay (VO Vi (97 T+ Fo (@)] A [(T97) VORC (VUT) T 4 Fo (90C)) -

Observe that:

(Vo) Vo (Vo) =0, [(Ve) Ve (T ) 7] = (@0 (Vo)) V¢ (V7))
= (Vo) V(0 (Vo))
— O [(w*) V¢ (w*)‘l] —G1(0),

where G1(() is first-order in terms of derivatives of . Thus,

- [ [(vu ) va(ve) "+ Ru@] -« [(907) vauc (Vo) )
—— [ [vuyva (e )+ Ra@] : [o (V) v (957) ) = Ga(0)
= [ a[(ve ) va(ve) T+ Ro@] s (90 Ve (v

+ /V (Vo) Va (Vo) T 4 Fo (8)] £ Gi(©).
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Now O [(Vw_l) Vi (Vw_l)fl +Fo (a)| € L*(V’) by the tangential regularity of
@. Also, (VY)Y Va (V)" +Fo (@) € LA(V') as well since & € H*('). Thus
the functional, Fi (@), defined by

(Fi(a), @)H—l(Q/),Hg(Q/)

= [ A [0 Vi (V) 4 B )] 2 A [(9077) T (907)

for p € HY(Y), is in H71(Q). Similarly,

(Fa(T), ‘P)H*l(Q'),Hé(Q') = // sym [(Vl/’ ) Vu (V@Z)_l)_l + Fo (ﬁ)] : Asym [Fo(Orp)]

is well-defined for ¢ € H}(Q'). Lastly,

—//ﬁ div(9kC) = (VD, ) -1 (), m3() = —(Ok(VD), O r-1(@). 11 (2)-

Thus, we have that

2
(Ok(VD), Q) 100y, mp(v) = <8kF' — Z]:z‘(ﬂ)7C> ,
H-1(Q),HY(Q')

=1

and so O (Vp) € H YY) for k = 1,2. As Vp € H (), by Necas’ lemma, we
have that 9yp € L*(V') for k=1, 2.

5.3.1.3 Normal regularity of the velocity

Since u is solenoidal, we have
3

> oy =0,

i=1
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so that
2
83’113 - — Z 8171@
1=1

Differentiating, we get

82,&3 - ~ 21,7
5 = 28381’&@ €L (V),

03 —

by the results of the previous section. To obtain the full H?—regularity of @, we

need to find out what equation does it solve. First, for ¢ € C§°(€') we have that
/, D+ Fy (@) + Fo(@)] : D + Fi() + Folp)] — /lﬁdiv o= / Fo.
We look into each of the terms. The pressure term can be written as
- /,ﬁdiVSO = (VD, o) i1, )11 ()

As for the diffusion term, we begin with

[ D)+ Fu(@ + Fo(@) Do) = | (D@ +Fi(@) + Fo(@)] : T

= (=div (D(a) + F1(@) + Fo(@)) ; ) 10y iy o)
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where the last line is because ¢ has compact support in €’ so the boundary terms

vanish. The last expression is then equal to:

(=div (D(a) + F1 (@) + Fo(@)) , ) 1), 13 ()

1
_ <__Aa — div (Ayym (HVi — Vil — HVGH)) — div (A (E(@))) ,90>
2 H1 (), H (@)

(@), H(@)

1
= <—§Aﬂ — div (Asym (HVE — VaH — HVaH)) — div (E(a)) ,90>
where the last line is because for a matrix T, we have
. 1
div Ay (T) = 3 Z 0; (T + Tji) e + Z 9; (Ti;) ei-
irj irj
Next, we let Dy(a) := D(a) + Fy (@) + Fo(@). Then,

| ID(@)+ Fi(@) + Fo(@) s Fu(o)
= / Dy () : [HVa — VaH — HVaH]
- / / [H'D(a) — D(a)H" — H'D(a)H"] : Vo

= — (div (H"D(a) — D(a)H" — H'D(a)H") >90>H—1(Q'),H01(9/) :
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Lastly,

| D@ + Fu(@ + Fo(@) : Fo(e) = | Da(@) :E(9)
=3 [ ata, a1 - 5) @0

= Z/Q, (Z (D (@)];; 0ia(1 — 53'3)(3]'311{)) @

=: [ I(a) - .
Q/
Thus,

< - %Aa — div(HVa — VaH — HVaH)

— div (H"D(2) — D(a)H" — H'D(a)H") + V§, 90>
H-1(Q),H Q)

_ / (F' + divE(d) — J(2)) - ¢
Hence, we can write out the system:

1-C(r) C(r) 030311y F1(0k0;u;, Okp, F')
C(?") 1-— O(’I") 838312 Fg(akajfti, akﬁ, F/)

)

For some Fy and Fy, k = 1,2, 4,5 = 1,2,3, and constant C'(r) > 0 that is small

for small 7 > 0. Note that the right-hand side of the equation is in L?(V”). Thus,
Dy 0%y

T T 217y and
836%’8:{;%6 (V') an

choosing small enough r > 0, we finally obtain that

hence, u € H*(V").



166

Finally, we go back to the original coordinates. We have

u= (V¢ oy) (o),

and

Vo= (Vo) (Vrou).

As ¢ and ¢! are smooth, we have that v € H*(V) and p € H'(V), with V =
(V') C Q. O

The constants appearing in our estimates depend on r» > 0. To get global
constants, we cover the compact domain with finitely many balls of radius s :=
min{r, %l} > 0. We see that, upon relabeling of axes, we get the same subdomains
even after translations or rotations of the solid particles. Hence, these global
constants remain the same up to rigid motion of the solids.

An important step in the proof is the use of Korn’s inequality to compare the
strain of some vector fields with their gradients. At first glance, one would think
that by choosing r» > 0, this would change the Korn’s constant and hence would
affect how r > 0 should be chosen and so on, ad infinitum.

In the proof, we see that the particular step where we do this is when we derived

the inequality:

/B(O,s)+ |V (¢Dka) ()] dr < Crey [ / D (¢D}a) («)]” do

B(0,s)t

+ i ‘({DZ&) (x)‘Q dx|.

2
57 JB(0,s)t
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Notice that the terms we needed to compare, namely, the gradient and strain
terms, do not have s% multiplied to them. Hence, the result is that, the choice of
r > 0 does not affect how the strain scales with the gradient; it does increase the
contribution of the L?—norm of the difference quotients by a factor of Sig, but that

is something that we can control and does not affect the choice of r > 0.

5.4 Nonstationary Stokes problem
5.4.1 Existence of weak solution

We first prove the existence of a weak solution to the nonstationary Stokes problem.

Theorem 15. Let f € L?((0,T) x Q) and ug € L*(2). Then, there exists u €

V:={vel*0,T; H(Q))| 0w € L*(0,T; (H(}T(Q))*)} and p € L2.((0,T) x Q)

loc

that solves the following problem in a weak sense:

Ou—Au+Vp=f, in(0,T)xQ
divu =0, in (0,T) x 2
u-n=0, on(0,7)xT

[D(u)n); +au, =0, on (0,T)xT

u(0) = ug, in .

Proof. We solve this by Rothe’s method. Indeed, let N € N and k := % The

plan is to solve the problem iteratively in subintervals of [0, T] of length k. First,
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we let u° := vy and

Note that f™ is the time average of f in [(m—1)k, mk|. We then solve the following

stationary problem for (u™, p™):

—Aum+Vp" = f" in )
divu™ =0, in
u"-n=0, onl

[D(u™)n|; + au™ =0, onl.

By our results in the previous section, (u™,p™) exist and that u™ € H?*(Q) and

p™ € HY(Q). We now define our approximate solutions:

3

N
Z " L (m—1)k,mi) ()
N

un(t)
wn(t) =Y [um + (W_T“ml) (t— mk:)] Loty ().

m=1

Note that uy : [0,7] — H*(Q) and wy : [0, 7] — L*(€), is continuous, and linear.
We now make our estimates. First, the weak form of the problem in [(m —

)k, mk) is:

um_um—l
/—-¢+2/Dum:D¢+2/MT'%=/fm-%
Q k Q I Q



for all ¢ € H, (). We set ¢ := u™. Then we have

l/(um—um_l)-u"‘—}—Z/|ID(um)|2+204/|uT|2:/fm.um.
kE Jo Q r Q

Observe first that:

so that

By Korn’s inequality, we have

m 2 m2 m
2 [ D)+ 20 [ a2 Coealla™ oy
r

Lastly, we have

/Qfm ™ < el e + CEI e,

169

m m— m 1 m m— m m—
£ fam =y = o (= gy + ey — 07 )
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for € > 0. Thus, choosing € to be small enough, we get for m =1, ..., N:

Ju™ — Um_l”%?(sz) + ”Um||2L2(Q) - ||Um_1||%2(9) + C(an‘)k||um||l2ﬁll(9) < Ck”me%?(Q)

™" = W e+ U™ ) — [0 20 + C(Q )kl o) < CRII™ 72

' =l + ey = el + O )l s oy < ORI

Summing, we get for m =1,..., N:

D I = ooyt 2y +C(Q )k Y 1w ) < Ck Y L 11Z2(0) ol Z2 ey
j=1 j=1 j=1
Note that:

o [[u™]|721q) will give L°L? control

o k30 w3 q) will give L7 H, control

The control on the sizes of the approximate solutions would come from the data.

In this end, we have

ik

2
f dt> dx
)k

eI =Y [ (]
j=1 j=179 (

j—1
m 1 gk
ensen’s inequality) < — t) dx
(by J : lity) kZ/( / de)d
—1 Y9 k J G-k

= Hf”%Q((O,T)XQ)a

for m = 1,..., N. Thus we have the following estimates on the approximate solu-
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tions:
N mk
2 m||2
“uNHL?(O,T;Hl(Q)) = Z/ |u ||H1(Q) dt
N
=k Z ||Um||§{1(9)
m=1
< C (I Boyeay + lollEzey )
and

lunleorazy < sup ™ ey < O (I Iaomeny + lolliam)-

We now look at the time derivatives of the approximate solutions. Given a test

function ¢ € H, (€2), we have

m __ ,,m—1
/&-(p': /fm-gp—Z/]D)um:]D)ga—Q/OzuT'sOr
Q k Q Q r

< C(Q, ) ([[u™ |y + 1™ e2@)) el me)-

Thus, we have

(1. @) < C(Q ) (lu™ @ + 1" lr2@) -
H ()

g,

Multiplying this by k£ and summing from 5 = 1,...,m, we get

m

kD

J=1

Wwo— w2

k

< C(0.0) Y (Il + 1 F 1l z2@) el )
(HL . (9)) j=1

< C(2,0) (1 320y + luolizey) -
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In particular,

2 iv: mhko Wy — g ||
Joron oy oy = 3 | “

£2(0,15(H5 - (9))") = Jm-1)k k (H: ()"

Ny 2

u] — u]fl
=k
2
m=1 (HU,T(Q))

< C(2 ) (I I32orywey + Iuolizey) -

Next, we calculate:

2

dz dt

m—1

u™ — (um + %(t — mk’))

2 dx) (/(:kl)k(t — mk:)zdt>

- um_IH%?(Q)

—
33
L >
=

S~

Jun — wNH%Q((O,T)XQ) (

mo__ um—l

k

[]=101=

I
-~

m

wl| x> 3

Djz

lu

=53

1
(1712 0y + o3y

IN
Q

— 0, as N — oo.

Thus, uy —wy — 0in L2 ((0,T) x Q) as N — oo.
Note that as {uy} is bounded in L? ((0,T) x ), the previous result implies
that {wy} is bounded in L? ((0,T) x Q) as well. Therefore, combining this with

the previous estimates, we have, up to subsequences, the following convergences:

uy —u, wk—L? (O,T; Hl(Q)) , wk™ — L™ (O,T; L2(Q))
wy — w, wk— L*((0,T) x Q)

dwy —=v, wk—L*(0,T;(H,.(Q)")) .
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Since uy — wy — 0 in L?((0,7) x Q), we have that u = w. Our goal now is
to show that dyu = v. Indeed, since H} (Q) C L2(Q) C (H..(€))" and these

inclusions are dense, we have that for ¢ € H} _(Q) and ¢ € C§°(0,7):

T T
/0 C(t)(Opw, @)(H(}’T(Q))*,H;YT(Q) dt := /0 ¢'(t)(w, ¢>(H;,T(Q))*,Hé,f(9) dt
T

- _/O (1) (/dex) dt

— | ' [ ¢wunte.a)ete) s

N—oo

N—00 »Yho,T

T
= lim /0 C(t)(athagp)(H;,T(Q))* HL (D) dt

T
:/0 C(?f)@aSO)(H;,T(Q))*,H;,T(Q) dt.

Thus, Oyu = dw = v.

For the force term, one can show (see [57]) that
N
fN = Z fml[(m—l)k,mk) — f, n L2 ((O,T) X Q) .
m=1
We also have that
lullzzqomyay < O uvllzomm@y < C (1 3xorxa + Iuolfs)
Thus, up to a subsequence, we have

u, —u, wk—L*((0,T)xT).
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Now, for ¢ € H, (), we have that the approximate solutions satisfy

T T T T
/ /8th-<p+2/ /ID)uN:]Dgp—I—Q/ /oz(uN)T-(pT:/ /fN-go.
0 Ja 0 Ja o Jr 0o Ja

Using the convergences we have obtained, we get that as N — oo:

T T T T
/ <atu’w>(HéT<Q))*vH;Tm)*2/ /DU:D@+2/ /OMT'%Z/ /f-so.,
0 ’ ’ 0 Q 0 r 0 Q

i.e., u is a weak solution to the nonstationary Stokes problem. O

The dependence of the labeled constant C'(€2, «) in the domain is due to the
trace constant of €2. Similar to Remark 1, one can argue that this constant remains
unchanged when the solids undergo rigid motion.

There are previous work on the solvability of the nonstationary Stokes problem
with slip boundary conditions. For example, [49] talks about Stokes with friction
type slip conditions and [2] talks about maximal regularity of the Stokes operator
with Navier slip conditions. In a lot of these treatments, to prove the solvability of
the non stationary problem, they appeal to semigroup methods. In our work, we
want to keep track of the constants which might otherwise be opaque to semigroup

techniques; hence we opted for a simpler Rothe’s method approach.

5.4.2 Higher regularity of weak solution

In this section, we show that if the initial data has better regularity, then so does

u.

Theorem 16. Suppose further that ug € H'(Q). Then u € W2 (0,T; L*(2)) N
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L2(0,T; H(Q)) N L= (0, T; L*(9)).

be a test function for m =1, ..., N. Then,

u'm_umfl
Proof. Indeed, let ¢ := .
um — um—l 2

/Q - +2[)DUW;D(W_TW)+2/FQ(W)T-<“m_T“m_l)T
:/Qfm(“m—T“m_l)

We make our estimates. First,

um — um—l u™ — um—l
2/@)1/":]])(—) +2/auT- (—)
Q k T k r
2
> — (/ |Dum|2—/Dum:]D>um1+/a|u§”|2—/auf"uf‘1)
k Q Q T r

1

Z—(/ |ID)um|2—/|Dum_1‘2+/0z|uf|2—/ |u™ 1‘)
k\Ja Q r r

As for the force term, we have

[ (e )—2</'fm'+ 2)'

Thus, multiplying by k, writing things out as time integrals and summing from

m=1,...,N, we obtain

-1

m—1)k
1
k:

/ (/mum\—/mmm/ wrf = [alur)
- émi /(:) L
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Since,

um— 1

: Aaé@W*
/ » /If’” —/OT/QUNF,

and
1 o mh 2 1|2 2 1
— |Du™| —/ Du™" +/a |l —/ (i )
k mZ:/ —1)k (/Q Q | | r r | |
= [Du™ L0 + Nl |7y — IDuollZ ) — ler(uo)-ll7ary,

we obtain

1
§’|8th||%2((o,T)xQ) + HDUN“%(Q) + ||04U]TV||%2(P)

1
< SN0y <o + Dol + llex(uo)r 7y

= _||f||L2 01)xe) + [IDuol[Z ) + lo(uo)- 72

Thus, for each N, we have

00n 132 0irrxy < € (I1F 2oy + IDuolidiey + o) 3aqr) ) -

Finally,

||8tu||%2((O,T)><Q) = ||atw||2L2((0,T)><Q)

< C (I I ozyemy + IDuol iy + llaCuo)s ey )



177

ie., dwu € L*((0,T) x Q). Therefore,
—~Au+Vp=f—0dwueLl*Q), aetec(0,T),

so that by the H2—regularity result we have obtained in an earlier section, we have

u(t) € H*(Q) for a.e. t € (0,7). And then we have,

T
/0 [w(t)] 72 dt < C(2, ) <||f||%2((o,T)xQ) + ||at“||%2((o,T)xQ)>

< C(20) (I 1oy + IDuolE @) + o) IEaqr)) -

Thus, v € WH2(0,T; L*(Q)) N L? (0, T; H'(Q)) N L> (0, T; L*(Q)). O

5.5 Solvability of the fixed domain problem

We finally prove:

Theorem 17. Let F' € L? ((0,T) x Q) and ug € H*(Q). Then, there exist (u,p) €
Wh2(0,T; L*(Q))NL? (0, T; H(Q))NL>® (0,T; L*(Q))x L* (0, T; H*(Y)) that solves

ou—Au+Vp=F+ (L—-ANu—Mu+ (V-=G)p, in(0,T)xQ
divu=0, n(0,T)x8
u-p=0, on(0,7)xT

D(u)p] +au=0, on (0,7)xT

Proof. We solve this using the Banach contraction principle. Indeed, given some
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ve L*(0,T; H*(Q)) and 7 € L*(0,T; H'(2)), by the results of the previous sec-
tion, there exits a unique u, € W2 (0, T; L*(Q2))NL? (0, T; H (2))NL> (0, T; L*(Q2))
and p, € L*(0,T; H'(2)) such that

Oty — Aty + Vpr = F + (L — Ao —Mv+ (V—-G)rr, in (0,7) xQ
divu, =0, in (0,7) x Q
Uy -p=0, on(0,7)xT
D(uy)p]r + au=0, on (0,7)xT

U, (0) = wo.

This now defines a map (v, 7) — (uy, pr) =: T(v, 7). We show that T': L* (0, T; H*(Q)) x
L?(0,T; HY(Q)) — L*(0,T; H*(Q)) x L*(0,T; H*()) is a contraction.
Let vy, vy € L*(0,T; H*(Q)) and 7y, m € L*(0,T; H'(Q)). By linearity, (w,p) :=

T(vy,m) — T(vy, o) solves

Ow —Aw+Vp=F+ (L—A)(vy —vq)
—M(vy — )+ (V—=G)(m —mg), in(0,7)xQ
divw=0, in(0,T)x Q
w-p=0, on(0,7)xT

[D(w)u); + au =0, on (0,7) x I

By the smoothness of the motions of the solid particles, we have that the terms

g, gij, TF, 8;b%,b%,Y;, 8,Y; are Lipschitz continuous on [0,T]. So that on Qp :=

1% R A A i B
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(0,7) x £, we have

lwl| L20,m;m200)) + 12| L2 (0,751 (02))
< O, )([[(£ = A) (v — va)ll2(@r) + [1B(v1 — v2)[|2(@r) + [[M(v1 — v2) ||l L2(0r)
+ (G = V)(m1 — m2) | 22(01))

<T-CQ,a)(||lvy — U2||L2(0,T;H2(Q)) + [l — 7T2||L2(07T;H1(Q))>'

Thus, by choosing T' > 0 to be small enough, we get that T is a contraction, and
hence a fixed point exists. Moreover, the velocity from the fixed point, u, is in

W2 (0,T; L(Q)) N L2 (0, T; H'(Q) N L™ (0, T; L*(2)) O

5.6 Appendix

We provide a sketch of the details of the estimates for the remaining diffusion

terms. We first consider:

/ Da: Fy (—D;" (¢*Dpa)) .
For this term, we only calculate

// Da : HV (—-D;" (¢*Dpa))

= [ D} (H"Da) : V (¢*Dpa)

Q/

_ / (B D+ (") D« [(2D}va + 2 (D @ VC)]
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Now,

~ - £ ~12 ~12
(DIDa : CH'D!Va > —5/ ¢’ | DpDa) —C(s)||H\|QCk/ ¢’ |Dpva
Q/ Qf Q/

/ ¢ (DpH)" Da: ¢V > —5’/ Glopval’ - 0 H) [ |V,

/ Q/ Q/

/ DyDa : [2¢H" (Dpa @ V()] > —%/ ¢ |Dia|* - C(e, H, Q’)/ V|,
! Q/ Ql

/ (DpH) " Da : [2¢Dra @ V(] > —C(H, Q’)/ Vil .
! Q/
Combining these, we obtain

//]D)a:HV (=D (¢*Dpa)) —5/g |DiDal” - C (|H|2.C(e) /g |Dpval’
- C(Q/V¢H) [ |Val].
@/veH) | vl

Thus,

/ Da : F, (—D;" (D)) > —5/ ¢ Dial” - C (|[H|2.C () —5’)/ ¢|ppval’
/ (94 Q)

—C(Q/V¢H) | |Va)®.
Ql
Next, we consider the term:

/ (@) Fy (~D;" (¢*D)
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For this, we calculate

HVa : HV (-D" (¢*Dpa))
Q/

= | Dp(H'HVa) : V (¢°Dyra)

o
_ / [(EH)" D}V + ((ATH)) Vil - [CD}Vi+2¢ (D e V¢)]
>l [ ¢ il —e [ ¢|pivaf

—C (Y, V¢,H) [ |Val.

Q/

Thus,

//Fl(a) CFy (D" (¢2DPa)) > —|[H][. /Q CQ\D,’;W\Z—e’/W ¢|pival’

—C(,V¢H) | |Val].
Q/

As for the term,

/ Di : Fo (—D;" (¢°Dpa)),
Q/



we have

/Q / Di : Fo (—Di" (¢°Dpa))
/ID)u E [-D;" (¢*Dpa)]

2
Z 8i3(1 — 0j3)0;0,H D" (2Dl

_ —ZZ/ is(1 — &;3) Dy (D@);;0,0,H) (¢*Dyn)

1,7 I=1

:_ZZ/ i3(1— 0;3)[(0x0, H) "D} (D)

1,7 1=1

+ (Dl (9;00h)) (Dai)y;) (¢2Dkawy)

> _5/ g2}ng\2—C(Q’,g,H)/ \Val® .
194 194

We now consider the term:

/Q/ Fi (@) : Fo (—Dy" (¢*Dpa)) .

182
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Indeed, we have

HVa: E [-D;" (¢*Dya) ]
o

= _ZZ/ HVU ” 13 5j3)8j8lHD,;h (QQDZQO

1,7 [=1
o ZZ 6Z3 J3 Dh ((Hvu)z]a al ) (C Dkul)
1,5 1=1
- ZZ/ i3(1—dj3)] HimajalH)h DZ(V@)W
1,7 =1

+ (Vi) Dy (Hin0;0,H)] (¢ Dyt

> ¢ | ¢G|ppval’ - c @, H) | [val.
Q' Q/
Making similar calculations for the pther terms, we obtain
/ Fi(a) : Fo (—Di" (¢°Dpa)) > g’/ ¢ \D,’;V@f —C (Y, H) | |Val].
/ Q/ Q/

Next, we consider

| Foli) s D (- (¢*D}a)) = | E(@) D (D" (D))

/ Dy (E(w)) : [(PDiDi 4 2¢A gy (Dra® V()] .
o

As,

(Di (E(@))),, = Di <Z 5 —i3(1 — 5j3)ajalHal)

= 6is(1—633) [(9;00H)" Dyiy + @ D} (0;0,H)]

=1
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it follows that,

//IE‘O(@) :D (—=D;" (¢*Drar)) > —e /Q ¢ |DiDal” - (e, H, D) a7 ey
Next, we consider
[ Fol@) :Fu (-0 (D))

Indeed, we only look at

// E(a) : HV (—D;" ((*Dpa)) = / H'E(a): V (-Dy" (*Dya))
5 Dy (H'E()) : [(*DpVi+2¢ (Dpa @ V()]

>~ [ ¢C|Dpval’ - Ce, ], ) ll .
Q/
Thus,
~ _ ~ ~ 12 ~
/IFO(U) :Fy (D" (¢°Dpa)) > —¢' 5 ¢ |Dpva|” — C(e, H, ) |al| 31 -

The last term we look into is:

/ To(@) : Fo (=D;" (¢*Dra)) = / Fo(@) : (=D;" (¢*Dra))
-y Z / )i8i(1 — 8,3)0,00H D" (C2Dhiy)

zyll

=S5 [ ault — 8D (o)) (D)

i, =1

> —C(H, ) [[a]l 7 o)
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