
 

 
 

 

Knowledge Creation via Data Analytics in a High Pressure Die 
Casting Operation 

 

by 
 

Adam E. Kopper 
 

A Dissertation  
Submitted to the Faculty in partial fulfillment of the requirements for the Degree of   

 
Doctor of Philosophy 

 
in 
 

Materials Science and Engineering 
 

at the 
 

Worcester Polytechnic Institute 
 

 
 

August 2020 
 

APPROVED: 

 

______________________________ 
Diran Apelian 
Alcoa-Howmet Professor of Engineering 
Thesis Advisor 
 
 
______________________________ 
Brajendra Mishra 
Kenneth G. Merriam Distinguished Professor of Mechanical Engineering 
Director, Department of Materials and Manufacturing Engineering 



 

1 
 

Table of Contents 
 

Abstract ...……………………………………..…………………………………………..……... 3 
Acknowledgements …………………….………..………………………………….…………… 4 
Executive Summary ………………………….……..…………………..……………………….. 6 

I. Introduction  
REFER TO APPENDICES A and B  
Motivation .............................................................................................................. 6 
Current State of the Industry .................................................................................. 6 
Industry 4.0 …………………………………………………………………….… 8  
Problem Statement ……………………………………………….….…………… 8 
Machine Learning in HPDC ................................................................................... 9 
Introduction to Artificial Intelligence / Machine Learning / Neural Networks .… 10 

Publication Details …………………………….……………………...… 11 
II. Approach and Methodology…………………………………...……………...……. 12 

REFER TO APPENDIX C  
High Pressure Die Casting Data ............................................................................ 13 
Data Science Approach ......................................................................................... 13 

III. Results and Discussion .............................................................................................. 19 
A. Predicting Quality of Cylinder Block Castings via Supervised Learning 

Method …………………………………..….………………………………. 19 
REFER TO APPENDIX D 

Publication Details .................................................................................... 19 
Approach .................................................................................................. 20 
Results ...................................................................................................... 21 
Conclusions …………………………...………….…………….………. 26  

B.  Model Selection and Evaluation for Machine Learning: Deep Learning in 
Materials Processing .………………………………………………….......  26  

REFER TO APPENDIX E 
Publication Details .................................................................................... 27 
Approach .................................................................................................. 27 
Bias-Variance Trade-Off ……………...……...………………………… 28 
Results ...................................................................................................... 30 
Conclusions …………………………...………….…………….………. 36  

IV. Conclusions and Impact ............................................................................................. 37 
Data Collection and Fusion ................................................................................... 37 
Developing a Machine Learning Skillset ............................................................. 37 
HPDC Data Conclusions ....................................................................................... 38 
Impact ……………………………...…………………………………………… 39 

V. Recommendations for Future Work ........................................................................... 40 



 

2 
 

VI. References …………………………………………..……………………..………. 43 
 
 

Appendices 
A. Literature Review ……………………………………………..…………...……… A-1 
B. Machine Learning Pathway for Harnessing Knowledge and Data in Material 

Processing …..…………...……………………………….……….………….……  B-1 
C. Approach and Methodology …………………………………………….………… C-1 
D. Predicting Quality of Cylinder Block Castings via Supervised Learning Method... D-1 
E. Model Selection and Evaluation for Machine Learning: Deep Learning in Materials 

Processing ……...………….…………….…………………………………….…..  E-1 
 

  



 

3 
 

Abstract 
 
Big Data is a term typically associated with large internet entities such as Facebook, eBay, and Google 
where every click, search, and upload builds an actionable dataset used to target advertisements and enhance 
the user experience.  The Data Science realm classifies data as Big Data by the three V’s: volume, velocity 
and variety.  The high-pressure die-casting (HPDC) process is a commonly employed method of producing 
large volumes of cast components particularly in aluminum alloys.  The automated pieces of equipment are 
interfaced such that any signal passed from one machine to another, or sensor input, is data which may be 
relevant to the output of the process.  For each part cast, it is possible to record the input parameters: melt 
temperature, lock up tonnage, cycle time, plunger velocities, cavity fill time, intensification pressure, dwell 
time, and spray time to name a few.  Outputs parameters are generally lacking across all parts, rather they 
are measured on an audit basis.  Is die casting process data truly big data?  In the scale of the internet giants 
and major banking and credit firms, no.  However, in some respects to the three V’s, it is.  Certainly, in a 
die casting facility with multiple machines running production the velocity of data generation is high on the 
input side.  Die casting data resides in spreadsheets, databases, images, and shift notes.  Thus, variety of 
data is a consideration.  Generating great volume, unfortunately, is often a challenge.  It is posited that the 
same tools can be used to gain knowledge into the HPDC process as in other truly Big Data environments. 
 
Production HPDC process data, generously donated by FCA Kokomo Casting Plant, covering one year of 
production across 12 die casting machines and 20 die cavities was used to assess the applicability of 
machine learning algorithms such as Random Forest, Support Vector Machine, and XGBoost for the 
prediction of casting quality and performance metrics.  The challenges which arise from the characteristics 
of materials processing data, using HPDC as the exemplar, have been identified.  The proper data 
preparation methods for machine learning have been described.  Predictive modeling of part quality and 
mechanical properties of die-cast engine blocks has been performed with an emphasis on model evaluation 
and cross-validation. 
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Executive Summary 

 

I. INTRODUCTION 
 

Motivation 

Big Data and Artificial Intelligence (AI) are terms often associated with relatively new internet entities such 
as Facebook, eBay, and Google.  AI itself is not new, but its growth has been accelerated by this new 
business space.  Social media sites like Facebook have users who voluntarily provide mountains of personal 
data.  By collecting data from their users, Facebook gains knowledge on hobbies, dining preferences, travel 
preferences, posting trends, the popularity of any given topic across all users; the categories are literally 
endless.  The most useful data can drive targeted advertising, site content, upgrades to the user experience, 
etc.  Implementing these methodologies into their operations is not exactly a revolution to that industry 
because they had no prior way of doing business.  Data is their business. 

Established business sectors had to find ways to integrate this application of data into the existing systems 
in their organizations.  Service industries such as banking, hotels, and shipping use Big Data extensively to 
reach their customers in a more personalized experience, while increasing their adaptability to new ways 
of how their customers want to shop for a mortgage, book a room, or pay for and print shipping labels.   

Every interaction with a customer is a source of data.  Through AI and machine learning, knowledge is 
generated about an individual, a gender, an age group, a socioeconomic group, a regional population, or 
any other illuminating segmentation.  This knowledge is then utilized to make data-driven decisions that 
improve how a business operates to gain and keep delighted, loyal customers. 

Materials processing operations generate extensive amounts of data.  Perhaps not to the level of the internet 
giants, but enough high-dimensional samples to make analysis a challenge by traditional methods.  In the 
same way these internet and service providers gather data about their customers, materials processors gather 
data about their product.  What is not common is the application of data science to create knowledge.  For 
the materials industry, new knowledge from the product data would be in the form of insight into the effects 
of process parameters, component designs, environment, materials composition, or any other area of interest.  
A higher level of monitor and control becomes justifiable when the data is being leveraged to improve the 
business.  Imagine the benefit if these operations could predict part, or lot, quality by monitoring critical 
process inputs and running the data through a machine learning algorithm in near real time.  Such a future 
would result in increased uptime, reduced operational costs, rapid response to production issues, and data 
driven confidence that the product made between quality checks is acceptable. 

 

Current State of the Industry 

An important materials processing method for casting near net-shape components today is high pressure 
die casting (HPDC). HPDC is the most utilized casting method for aluminum components by tonnage in 
the United States and widely used throughout world [1], [2].  Aluminum die-cast components are primarily 
employed where weight reduction and high annual production volumes are required, especially automotive 
applications.  In terms of dollars, the North American Die Casting Association reported aluminum die 
castings to be over $8 billion in sales for 2019, while the American Foundry Society reports the entire 
aluminum foundry industry to be $9.67 billion [3].  In HPDC, we have a robust industry using state of the 
science technology making components critical to the daily lives of people all around the globe.  As the 
manufacturing sector marches toward an Industry 4.0 future, HPDC and, indeed the entire foundry industry, 
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must be a part of it.  A key piece in making this happen is the implementation of AI and creating knowledge 
from casting process data. 

Modern foundries have the capability to capture a vast amount of process data on a daily basis [4]. These 
include molten metal preparation details, casting process parameters, simulation results, part geometry, 
Non-Destructive Evaluation (NDE) data, etc.  The first obstacle to using this data is cultural and centers on 
organization for analysis.  Data fusion for machine learning is more difficult when the data is stored within 
operational silos (Figure 1).  The type of data and collection methods used by isolated departments within 
the same facility have evolved over years.  Methods range from high-tech automatic uploading to a cloud 
database to handwritten records in a logbook.  This creates challenges for combining the various sources 
into a cohesive dataset as the collection frequency and identifiers often differ.  Communication among 
stakeholders through the entire process is critical to identify which, how, and how often data should be 
collected to give the best description of the system to be modeled.  Integrated data is the prerequisite for 
performing machine learning, and it is a lost opportunity for the foundry industry if no effort is made to 
compile, fuse, and analyze these data to better understand the process factors influencing the quality of the 
castings. 

 

Figure 1.  Departmental data silos are a challenge to implementing machine 
learning in many materials manufacturing operations. 

 

Resources are tight in casting plants.  Between the development of new products and the attention demanded 
by the most difficult castings, there is little time left to dedicate to the analysis of the parts that are running 
very well day in and day out.  However, it is a missed opportunity to merely count the easy parts as blessings.  
The data from these castings hold the key to solving the issues with trouble castings.  It is the data from the 
good parts that will right the ship when a normally well-behaved process beings making scrap parts.  By 
collecting data, creating knowledge, and applying that knowledge, operations can put up data-determined 
guardrails to keep the process in control.  When resources are tight, we need new tools to watch over that 
for which there is no person available to do.  Machine learning can be that set of tools for the foundry and 
for the metal processing industry in general. 
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Industry 4.0 

The fourth industrial revolution that ushered the Internet of Things (IoT) and the Internet of Services (IoS) 
has come to be known as Industry 4.0.  At the Hannover Messe in 2011, Germany launched a project called 
“Industrie 4.0” designed to fully digitize manufacturing. The larger vision of Industry 4.0 is the digital 
transformation of manufacturing to integrate connected factories within industry, decentralized and self-
optimizing systems and the digital supply chain in the information-driven cyber-physical environment of 
the fourth industrial revolution [5], [6], Figure 2.  

 
Figure 2. Chronology and characterization of the four Industrial Revolutions [5]. 

The initial goals of Industry 4.0 have been automation, manufacturing process improvement and 
productivity optimization. The more advanced goals are innovation and the transition to new business 
models and revenue sources using information technologies and services as cornerstones. These 
developments will transform manufacturing plants into smart factories.  Three keystone digital technologies 
will enable the transformation to smart factories: (i) connectivity, which implies executing industrial IoT to 
collect data from various segments of the plant; (ii) intelligent automation which includes advanced robotics, 
machine vision, digital twins, distributed control; and (iii) cloud-scale data management and analytics (AI 
and Machine Learning) [7].   

 

Problem Statement 

Traditional research into the effects of process parameters on the quality of cast products are structured to 
investigate a wide range of input settings.  To investigate the effect of a parameter, e.g. intensification 
pressure, a traditional study evaluates a limited number of samples cast at three levels:  no intensification 
pressure, an intermediate amount of pressure, and the maximum safely attainable with the machine and set-
up used.  The purpose is to observe a difference in the output, e.g. a casting, which can be measured and 
analyzed from one set of parameters to the next.  From a study such as this, we, as an industry, learn that 
porosity is reduced as intensification pressure is increased.  These studies serve as a compass to direct which 
parameters should be controlled and where one should begin developing their process.  On the other hand, 
in production environments, only one optimized set of parameters is used which has some natural variation 
associated with it.  The objective in production is to observe no difference from one casting to the next; to 
make the same quality part cycle after cycle.  However, it is true that a small percentage of parts are not of 
acceptable quality and are salvaged or scrapped.  The root cause for some process scrap is not easily 
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determined from our current understanding of process parameter effects.  Further complicating root cause 
detection is the relatively few examples of non-conforming product from which to gather data.   

Few samples may be required to discern the porosity or mechanical property impact of a given input 
variable over a wide range in values.  Finding a similar relationship over a much narrower range, due to 
natural variation of the equipment and process, requires many more samples.  Machine learning accuracy 
thrives on large datasets.  Additionally, it may be that previously dismissed input parameters become highly 
important in tightly controlled processes, their effect being overshadowed by large experimental changes 
in pressure or velocity.  Machine learning algorithms have the capacity to look at high dimension datasets 
with many features so that all collected input data can be examined.  The question we are asking is:  Given 
enough data, can machine learning algorithms uncover new insight into process parameters or interactions 
of process parameters which are important in predicting casting quality or performance metrics from 
production process data? 

The industry needs tools which can recognize patterns that are too nuanced for humans to see.  The 
foundations of machine learning lie in statistical pattern recognition [8], [9].  A key capability of machine 
learning algorithms is their ability to uncover patterns and relationships between inputs and outputs for 
high-dimensional datasets [10].  Casting process data is high-dimensional, having many inputs: 
temperatures, velocities, pressures, timers, and chemical composition.  There are opportunities to add more 
dimensions [4], however, having too many adds confusing noise to the data.  There is a need to begin 
exploring data the industry is currently collecting and determining which parameters matter and which are 
missing.  This research is aims to do that working with HPDC process data and to inspire casting operations 
to begin creating knowledge from their own process data.  

 

Machine Learning in HPDC - Literature Review 

A comprehensive literature review can be found in Appendix A of this volume.  There, one will find an 
overview of AI, a detailed description of the HPDC process, and a review of the effects various process 
parameters have on casting quality, porosity, and tensile properties.  A summary highlighting the main 
concepts introduced follows. 

HPDC is rich for data mining.  Potentially useful data can be pulled from the controllers of each piece of 
equipment in the modern integrated work cell.  Blondheim estimates that there are over 300,000 data which 
can be captured for each cycle [4].  If one includes thermal imaging data of the die cavity and the individual 
data points which make up the shot trace, this number explodes to over 2M input variable data per cycle.  
A reasonable estimate for an annual volume on one die casting machine is 100,000 cycles.  That would 
equate to two-hundred billion data points per machine per year.  Clearly, amassing features is not the 
challenge.  Learning which features are most important and collecting enough observations to be sure of it 
is where the difficulty resides.  Researchers in this space are turning to AI seeking insight into this problem.   

Early applications of machine learning to HPDC center on the application of Neural Networks to predict 
virtual process outputs.  Rai et al. used supervised learning by creating datasets with process simulation 
software and then teaching a Neural Network to predict cavity fill time, solidification time, and porosity 
based on the process inputs of melt and die temperature and slow and fast shot velocities [26].  They found 
that the results of the Neural Network model compared well to those generated by commercially available 
finite element mesh-based simulation software but did so in near real time.  Similarly, Yarlagadda et al. 
predicted fill time from the melt temperature, die temperature, injection pressure, and casting weight with 
a Neural Network trained via process simulation software and went a step further by including domain 
expertise from casting specialists [27].  Their predictions matched very closely to actual production die 
castings. 
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Simulation software packages are built utilizing assumptions which generate useful direction in building 
die casting tooling and choosing initial process settings.  During process development, parameters are tuned 
more finely to optimize part quality.  This tuning is done based on domain expertise and the results of actual 
castings.  It is reasonable to expect a Neural Network to find the rules the simulation software is using and 
make very similar predictions.  The next step is to apply the algorithms to serial production castings and 
determine which input variables are driving quality or mechanical performance metrics and direct the 
process engineer how to tune the process for best results. 

The leap between the computationally trained algorithms and algorithms trained on observational data from 
casting operations may seem daunting.  There are many variables which are not monitored or controlled on 
the factory floor (ambient environment, die temperature, cooling water flow rate).  These features may not 
be included in the simulation, are held constant, or provided as an output.  In a controlled experiment where 
413-alloy aluminum was cast into simple cylindrical geometry under three levels of squeeze (intensification) 
pressure, die preheat temperature, and molten metal temperature, Soundararajan et al. were able to train and 
test a Neural Network predicting the ultimate tensile strength (UTS) and yield strength (YS) of extracted 
tensile bars with a correlation coefficient of 0.95 and 0.96 respectively [28].  In their work, the selected 
settings represent a wider range of process inputs than one might encounter on a fully developed production 
process.  Predicting the UTS variation of each sample accounting for small variations as seen in production 
processes is a more difficult problem.  This type of research lays the foundation from which the industry 
can build and develop algorithms which predict the UTS of serial production castings with low variation in 
input parameters.   

In the literature, it is generally assumed that the process operates as consistently as possible.  Several cycles, 
perhaps 5 to 10, are run to achieve a thermal steady state before collecting samples for investigation.  The 
number of samples collected for analysis tends to be small, less than 50.  The industry has gained much 
from these studies, but there are some potentially significant parameters which cannot be accounted for in 
lab-scale or development-cell scale operations.  In the late 1990’s Balasubramaniam applied statistical 
analysis to 27 casting variables from manufacturing production and found that higher intensification 
pressure rise time and lower cycle time were key inputs which improved the part density [29].  Interestingly, 
this study was unique in identifying these inputs as important.  Die casting is a thermal process and time is 
an important factor that is often overlooked or simply held as constant as possible, but rarely measured and 
reported.  The impact of variation in overall cycle time or timers for specific segments of the cycle are not 
published.  Time impacts the die temperature.  Running shorter cycle times will put more heat into the die 
raising the die temperature.  But overall cycle time is not the whole picture.  Increasing cycle time by 
increasing the dwell time (the time between casting and part ejection) will also put more heat into the die.  
Thus, it depends not only on if time is changing but when time is changing.  This highlights the need for 
more high-dimensional parametric research.  Our research sought to uncover potentially important features 
which have not been the subject of prior process parameter studies. 

 

Introduction to Artificial Intelligence (AI), Machine Learning (ML) and Neural Networks 
(NN) 

The following section contains material from the first journal article submitted for publication from this 
research.  It can be read in its entirely in Appendix B – Machine Learning Pathway for Harnessing 
Knowledge and Data in Material Processing.  The paper serves as a primer for the metalcasting industry 
to start thinking about the future and the smart foundries of Industry 4.0.  Explanation is given as to how 
artificial intelligence, machine learning, and deep learning are integral to realizing this future.  A case study 
illustrates the challenges of foundry data and the methodology of a machine learning application.  Finally, 
perspective is provided on value of AI with a caution to the danger of incorrect application.  
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Publication Details: 

Ning Sun, Adam Kopper, Rasika Karkare, Randy C. Paffenroth, and Diran Apelian, 
“Machine Learning Pathway for Harnessing Knowledge and Data in Material 
Processing”, International Journal of Metalcasting, Accepted for publication, July 2020. 

A summary highlighting the key points are given below. 

Artificial Intelligence 

Artificial Intelligence is the use of computer algorithms intended to mimic tasks commonly performed by 
humans. Algorithms for image recognition, health analytics, natural language processing, and self-driving 
vehicles are all examples of AI that have transformed industries that affect our daily lives [11].  AI clearly 
has a role to play in advanced manufacturing where there are myriad tasks that could be automated by 
algorithms such as defect detection, process optimization, and new materials development, to name but a 
few [6]. 

 

Machine Learning 

It is generally agreed that both machine learning and deep learning are forms of artificial intelligence rather 
than something entirely unique.   The term machine learning, in this text, represents the family of methods 
which use statistical and probability models trained on historical data to make predictions about new 
observations.  Common methods which fall under this umbrella include linear regression, decision trees, k-
means clustering, Apriori algorithm, and Support Vector Machines (SVM) [12]–[19].  While packages and 
commands readily exist to facilitate using such algorithms, these methods are not black box functions 
shrouded in mystery.  Many of them rely on using mathematical distances to determine how various 
observations are alike and what outcome should be expected if trained on relevant samples where that 
information is known.   

 

Deep Learning 

Deep learning utilizes the same data preparation strategies and similar functions with which to make 
predictions as machine learning [20].  Mostly, what makes two different is how feature engineering is 
performed (Figure 3) [21].  Feature engineering is where the data scientist relies on domain expertise to 
engineer the model inputs to make a higher performing model.  In machine learning, this is performed 
manually.  Deep learning utilizes hidden layers comprised of nodes which automatically assign weights to 
variables as the algorithm learns more about the data [22]–[24].  In this way, the deep learning algorithms 
are more of a black box than their machine learning kin.  By using the training data to generate the weights 
automatically, deep learning algorithms can be more accurate than a human would otherwise be.  As deep 
learning algorithms add additional complexity (i.e. increase the number of hidden layers or nodes per layer), 
it is critical that large datasets be used to train them.  If not, the resulting model will not generalize well 
and, thereby, perform poorly on new data.   
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Figure 3.  The difference between machine learning and deep learning is how the feature 
engineering is performed [21].  Traditional machine learning utilizes subject matter expert 
input to the model while deep learning employs automatic processes. 

 

Challenges of Foundry Datasets 

It turns out that analyzing materials processing data is not straightforward [25].  As materials 
processing companies bring their data to the data science community to find answers, new insight 
into how the data is traditionally collected and the challenges which are created thereby are brought 
to light.  Let us look at three of them:  most metalcasting data are not Big Data, heterogenous data 
sources resulting in missing inputs and outputs, and an imbalance in output data class where high 
quality samples far outweigh unacceptable samples.  In this research, we work to navigate these 
challenges in the application of pre-preprocessing techniques and selecting appropriate algorithms 
that suit this type of data.  No small part of the value of this thesis is to provide metal casters a 
foundation to build from, identifying pitfalls, and demonstrating the correct methodology with 
which they can begin examining their own data. 

 

II. APPROACH and METHODOLOGY 

This section summarizes Appendix C – Approach and Methodology of this thesis.  There, a description of 
the HPDC data used for this project including a table of the features evaluated can be examined.  The bulk 
of Appendix C provides detailed explanations and illustrations of the tasks performed in the machine 
learning research conducted and submitted for publication during this thesis project.  After each example, 
the key components of the Python code are listed with helpful references for the reader. 

The published literature contains many papers which report observations of various process inputs on 
mechanical properties and porosity.  Forward focused HPDC facilities do a good job of capturing many of 
these data for each casting they produce.  As an industry, we believe that we are collecting the correct data.  
The literature confirms the importance and die casters document and demonstrate process control to their 
customers by this data.  The hypothesis that this work aims to test is that die casters collect the correct input 
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information and, given a large enough dataset, quality and performance properties can be predicted from 
that data. 

 

High Pressure Die Casting Data 

Universally, die casters are not to the level where every potential important variable is captured, and has 
been for years, such that large datasets are commonplace.  There is also the challenge of accessibility to the 
data for analysis.  Leaders in the industry recognize the importance of taking the first steps in bringing 
machine learning into die casting.  The Aluminum Casting Research Center (ACRC) at WPI is an industry-
university consortium where a cross-section of the aluminum casting industry including alloy producers, 
casters, industry suppliers, and end users meet and sponsor pre-competitive fundamental research [30].  
FCA, a major automobile manufacturer with a large die casting operation and longtime member of the 
ACRC, partnered with this research team to provide a calendar year worth of HPDC process data, alloy 
chemistry checks, and mechanical property testing data.  The size of each dataset is given in Table I.  The 
details of the datasets with respect to which inputs and outputs are available and descriptions of each are 
given in Tables C-I and C-II at the end of Appendix C. 

Table I.  Size details of the FCA datasets. 

Dataset Name Raw Dataset 
(Rows x Columns) 

HPDC Process 956,986 x 109 
Alloy Composition 980 x 17 
Tensile Testing 1,634 x 14 

 

The cycle summary data is historically the best, and often the only, information available to troubleshoot 
the process and make intuitive, experience-based predictions regarding quality of castings.  For this reason, 
it is also the most easily and widely stored data.  Additional data from the cycle are collected and appended 
to this information prior to uploading into long-term storage.  The HPDC process data can be thought of as 
a spreadsheet with each row representing an individual casting and each column containing a piece of 
information about that casting.  Similarly, in the mechanical property dataset, each row represents a tensile 
bar and the columns contain the input and output variables associated with each bar.  The chemistry dataset 
has rows which represent each check and columns containing the amount of each elemental constituent in 
the melt at that time.  This description is rather straightforward; however, visualization is difficult.  The 
raw HPDC dataset has 109 columns.  Humans are finite beings and, as such, have no ability to visualize 
what is happening in 109 dimensions.  Fortunately, machines can perform these tasks on our behalf via 
machine learning algorithms that analyze high-dimensional data.   

Modern HPDC equipment is more interconnected than ever to facilitate data organization and collection in 
the die casting cell.  Platforms now exists for storing and accessing large amounts of data with which to 
train machine learning models.   The need largely remains within the die casting industry to begin taking 
advantage of this reality and start investigating how to process data and train algorithms to create knowledge 
for data-driven decision making. 

 

Data Science Approach 

Data science projects are more intricate than collecting data and plugging it into an algorithm.  The answers 
one gets from the algorithm will be misleading without following the required steps and understanding how 
each impacts the results.  There are steps one must take in an iterative process to generate reliable 
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predictions and actionable results.  An overview is given below with more detail on the methods used and 
references in the subsections that follow.  The main building blocks of a data science project are initial data 
exploration, pre-processing to prepare the data for use in algorithms, running the algorithms, evaluating the 
results, iterating as necessary, and communicating the results. 

Data exploration is quite simply looking at the data.  The strategies of how to pre-process the data for 
machine learning are developed by first examining the data.  Production data is messy.  Missing values, 
erroneous sensor readings, duplicated entries, typos, format changes in the source files, etc. must be sorted 
out before one can engage in meaningful analysis.  Considering the FCA HPDC process data set with over 
950,000 observations and 109 variables, one cannot simply scroll through and hope to catch these issues 
by eye.  Running summaries of the data, examining the data class, and locating NaN values are a few of the 
tasks to accomplish in this step.  Fortunately, there are simple commands to execute which reveal issues in 
the data.  These are standard procedure cleaning methods. 

However, some advanced techniques were implemented.  In the data cleaning step, we encounter two of 
the key challenges with foundry data: heterogeneous data and class imbalance.  Both are popular domains 
for data science research today.  In this work, heterogeneous input data was handled with naïve mean or 
median imputation, or sample removal, due to relatively few instances in the large HPDC process dataset.  
For classification modeling, imbalance between good parts and process scrap leads to predictive results 
which err toward classifying the minority class, process scrap, as good parts.  To address class imbalance, 
we implemented the oversampling methods Synthetic Minority Oversampling TEchnique (SMOTE) and 
Boderline SMOTE [31]–[33].  These are data augmentation tools which increase the population of the 
minority class to train better models.  New, synthetic samples are generated by selecting an example of the 
minority class, finding its nearest neighbors (k-neighbors = 5 is the default), and drawing a line between 
the example and one of its neighbors at random (Figure 4).  The new sample is created along the connection 
line.  Some of the disadvantages of SMOTE are lessened in Borderline SMOTE.  While SMOTE generates 
new samples from all the minority class samples, Borderline SMOTE is a selective technique which models 
those along the boundaries which separate one class from another.  By focusing along the border, we are 
creating more training data where the samples from one class resemble those of another class.  The objective 
is to reduce the probability of classifying process scrap as a good part. 
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Figure 4.  An illustration of SMOTE application showing a) the unbalanced data prior to 
synthetic data generation and b) the balanced dataset after SMOTE. In this classification 
example, many synthetic data are generated far from the border of the two class clusters 
which is less useful for making predictions between classes. 

Other methods performed in the pre-processing step are covered further in Appendix C.  These include the 
discretization of categorical variables, checking for correlation between variables, and data standardization.  
Data standardization is a crucial step which is, perhaps, easy to overlook if one does not know how to 
properly execute machine learning.  The data collected in HPDC contains a wide range in scale.  Also, 
different equipment manufacturers may capture data in only English or metric units.  In round figures, 
intensification pressure of 10,000 psi, melt temperature of 1300 F/ 704 C, cycle time of 150 seconds, biscuit 
size of 2 inches, and an iron content of 0.60% are a few examples which show the range of scale is in orders 
of magnitude.  If left in this format, the intensification pressure would register as highly significant and 
outweigh any influence the iron content would show simply because the numbers are larger.  This is because 
many machine learning algorithms rely on a mathematical distance calculation to determine the similarity 
between two samples.  Bringing the columns of data into the same scale makes these comparisons uniform 
and meaningful.  While standardization is not necessary for every algorithm, it is typically a case of either 
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being essential to the algorithm (i.e. K-Nearest Neighbors [12]) or the algorithm is not hurt by it (i.e. 
Random Forest [34], [35]) .  The method employed throughout this work is the Z-transformation [36], [37] 
(Equation 1).  K-Nearest Neighbors (KNN) is a supervised learning method highly sensitive to distances 
[12].  Thus, benefits from standardizing data are readily shown in Figure 5 where KNN was applied to the 
toydata dataset (see Appendix C) with and without Z-transformation. 

𝑍 , =  
,   

          Eq. 1 

Where: 

 𝑍 ,  is the Z-transform value in the ith row of the jth column 
 𝑋 ,  is the original value in the ith row of the jth column 
  𝜇  is the mean of the original values in the jth column 
 𝜎   is the standard deviation of the original values in the jth column 

 

 

Figure 5. K-Nearest Neighbor classification of machine identifier a) without Z-transform 
and b) with Z-transform.  Each point represents the true and predicted machine class. 
Misclassified samples display as bi-colored points.  The axes were chosen to show 
separation between three different machines.  With the Z-transform, the model performed 
much better, classifying at a 90% accuracy. 

The final pre-processing task to cover in this summary is dimension reduction.  Machine learning 
algorithms are adept at working in high dimensions, but there are negatives associated with too many 
features.  The curse of dimensionality refers to how a given dataset becomes sparser as it is projected into 
higher and higher dimensions [38], [39].  Thus, more samples are required as dimensionality increases.  
Increasing dimension also increases the amount of noise in the dataset.  An important method for dimension 
reduction implemented in this work is the Principal Component Analysis (PCA).  PCA is an unsupervised 
dimension reduction technique [40]–[42].  The goal of PCA is to determine linear combinations of the input 
variables, called principal components (PCs), which capture the most variation in the dataset while 
minimizing the error when the dataset is reconstructed from the PCs.  In doing so, a high-dimensional 
dataset can be condensed into a smaller number of PCs.  PCA enables visualization of high-dimensional 
datasets in two or three dimensions.  Figure 6 shows a two-dimensional scatter plot of PCs 1 and 2 which 
were derived form a sample dataset of ten dimensions (see toydata, Appendix C).  As one reads this figure, 
it is important to recognize that this is a simple scatter plot.  PC1 and PC2 are not functions of one another.  
The main disadvantage of PCA is that it is limited to linear principal components. 



 

17 
 

 

Figure 6. Two-component PCA.  On the toydata dataset, we see a separation of the 
castings into clusters by machine number. 

Moving on to the algorithms themselves, it is important to consider the amount of data one has available 
and complexity of the algorithms selected with respect to the bias-variance trade-off [43], [44].  Bias is 
error in the model driven by the underlying assumptions in the algorithm. Variance refers to the error in the 
model due to its sensitivity to noise in the training dataset.  Understanding these two phenomena is essential 
to remedy underfitting and overfitting conditions in the model performance.  Figure 7 shows how models 
can be too complex (high variance) or too simple (high bias) and thus overfit or underfit the training data 
respectively.  Either will result in poor performance on the testing data or new production data fed into the 
model.  There is a desirable sweet spot where the model is general enough to make reliable predictions on 
the training data which translate to the performance on new data such as the middle plot of Figure 7.  
Choosing the correct algorithm and properly tuning it to work with the type of data being collected is how 
one arrives at the best performing model.  Minimizing the predictive error between the training and testing 
datasets is the target for determining the best model. 

           

Figure 7. The phenomenon of underfitting and overfitting is seen in this figure [45].  We 
want a model that is optimal for the kind of data and application that we are exploring.  
For example, a good fit is illustrated in the center plot.  The plots on the right and left show 
underfitting and overfitting respectively and should be avoided.  
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The primary machine learning algorithm used in this work is Random Forest [34], [35].  This method was 
used extensively in Appendix D - Predicting Quality of Cylinder Block Castings via Supervised Learning 
Method and proved to be the best traditional machine learning algorithm investigated when paired with 
PCA in Appendix E - Model Selection and Evaluation for Machine Learning: Deep Learning in 
Materials Processing.  In Appendix E, Random Forest was examined alongside SVM and XGBoost [46], 
[47] in the machine learning category.  It was outperformed by a shallow Neural Network which was 
reported by my research colleague Rasika Karkare in the same article.  Appendix D focuses on Random 
Forest to classify part quality and ultimate tensile strength, while Appendix E applies it to a regression 
problem to predict ultimate tensile strength values. 

Random Forest is selected because it works well with high-dimensional data, is robust to non-linear data, 
has low bias, and variance is reduced through bagging [34].  To combat misclassification, Random Forest 
uses the results from hundreds, or thousands, of tree estimators to make predictions.  Random Forest is an 
ensemble learning, or prediction by committee, approach where the observations are randomly broken into 
subsets and built into trees split on a random subset of the features.  The predictions of many trees built 
from the training data are compiled to make a final prediction for each observation.  In a classification 
model, group voting among the trees is conducted to determine the predicted class.  For regression models, 
the final reported value is calculated the by average of the predictions for each observation from all the 
trees.  The result of the ensemble can be better than what any one of the trees would determine on its own.  
A detailed explanation of how the tree estimators are built is given in Appendix C. 

In Appendix E, XGBoost was chosen to evaluate a more recent adaptation of Random Forest which, in 
addition to bagging, uses boosting to reduce bias by training the subsequent model on the errors of its 
predecessor.  Bagging reduces overfitting while boosting improves accuracy at the cost of possible 
overfitting [48], [49].  SVM was chosen for its ability to determine non-linear decision functions via the 
kernel trick.  The kernel trick maps the input data into a higher dimensional feature space where the data is 
linearly separable resulting in non-linear boundaries between the input data [50], [51].  These methods are 
compared to a Neural Network which is effective for handling nonlinearity, tolerant of noise, utilizes 
advanced learning methods, and generalizes well. 

Finally, this summary would be remiss without mentioning training, testing, and cross-validation.  This 
description is placed at the end of the approach because it is vital for evaluation of model performance, but 
it arches over the process more broadly.  Holding out a testing dataset prior to performing the machine 
learning step is how the trained model is evaluated.  This is data that is new to the trained model, so the 
predictive error on the testing data is what one could expect on newly generated data from the process.  
Recognize that the train/test split can influence the model.  For that reason, cross-validation is conducted 
to determine how different splits of the data affect the model performance metrics.  K-folds is a common 
method of cross-validation [52].  In K-folds, the user sets the number of folds and the model is run that 
many times on the training data.  Each time, a different segment of the training population is set aside as 
the test data and run through a model created on the balance of the training data for that fold. 

The performance of the algorithm can be measured in many ways.  Mean absolute error (MAE, Equation 
2) and mean squared error (Equation 3) values can be used to score regression algorithms [53], [54].  
Accuracy, precision, recall, and f1-scores (Equations 4-7) are often chosen to evaluate classifiers [55].  
Regardless of the algorithm, it is common for the error on the training data to be less than the test data.  
When the difference between the two is large, the model is said to be overfit to the training data.  Data 
scientists are keenly aware of over-fitting because such a model does not generalize.  The model shows 
amazing accuracy on the training data, however, when fed new data, the predictions of the algorithm are 
unreliable.   

𝑀𝐴𝐸 =  ∑ 𝑌 − 𝑌                          Eq. 2 
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Where 

 MAE is the mean absolute error 
 𝑛 is the number of samples in the dataset 
 𝑌  is the actual value of the output 
 𝑌  is the predicted value of the output 

 

𝑀𝑆𝐸 =  ∑ 𝑌 − 𝑌                          Eq. 3 

Where 

 MSE is the mean squared error 
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  (𝑇𝑃 +  𝑇𝑁) / (𝑇𝑃 +  𝑇𝑁 +  𝐹𝑃 +  𝐹𝑁)    Eq. 4 
(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛) = 𝑇𝑃  /  (𝑇𝑃 +  𝐹𝑃 )      Eq. 5 
(𝑅𝑒𝑐𝑎𝑙𝑙) = 𝑇𝑃  /  (𝑇𝑃 +  𝐹𝑃 )        Eq. 6 
(𝑓1_𝑠𝑐𝑜𝑟𝑒) =  2 ∗ ((𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗  𝑅𝑒𝑐𝑎𝑙𝑙 )/(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑅𝑒𝑐𝑎𝑙𝑙 ))  Eq. 7 

Where 

 TP is the number of true positives 
 TN is the number of true negatives 
 FP is the number of false positives 
 FN is the number of false negatives 

 

III. RESULTS and DISCUSSION 
 

A.  Predicting Quality of Cylinder Block Castings via Supervised Learning Method 

The following section contains material from the second journal article to be submitted for publication from 
this research.  It can be read in its entirely in Appendix D - Predicting Quality of Cylinder Block Castings 
via Supervised Learning Method.  The paper is directed toward the HPDC industry and a scaled down 
version is submitted for the 2020 NADCA Congress and Tabletop which will be held virtually due to the 
COVID-19 pandemic.  An introduction section is given to highlight the need for this research and the 
challenges associated with HPDC data.  HPDC process data is analyzed via supervised machine learning 
methods to successfully model the prediction of good parts and process scrap as determined by the die 
casting machine (DCM).  Additionally, the prediction of ultimate tensile strength via a classification method 
of extracted tensile bars is performed and the important features identified are discussed.  Supervised 
learning is found to be a useful tool for materials processing applications. 

Publication Details: 

Adam Kopper and Diran Apelian, “Predicting Quality of Cylinder Block Castings via 
Supervised Learning”, submitted to Intl. J. of Metal Casting. 

The work is summarized, and highlights are given below. 
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Approach 

At the center of the HPDC work cell is the die casting machine (DCM).  Ancillary equipment fills out the 
cell to execute tasks of metal delivery, die preparation, casting removal and trimming the part of excess 
material like runners and overflows.  The DCM can be programmed to identify a casting as being good, 
scrap, or a warm-up shot based on the parameters which created the casting.  This is accomplished by setting 
upper and lower control limits (UCL and LCL) for key variables as determined by the manufacturing 
engineer.  The DCM is using a series of Boolean checks (Is parameter n between LCLn and UCLn?), all of 
which must be TRUE for a part to be good [56].  If a part is cast with too low of intensification pressure, 
for example, the machine will identify the casting as scrap and send a signal to the operator or a robot to 
place the part into the scrap hopper or set it aside for inspection.  Parts cast within the prescribed limits are 
labeled good parts and further processed as normal. 

The FCA HPDC process dataset was used for this study.  Removing highly correlated columns, noisy 
features, and those with no variation brought the number of columns down from 109 to 83 columns of 
input/output variable data.  The data is collected from 12 HPDC work cells and 20 die casting tools.  
Periodically, the production castings are destructively evaluated for mechanical property testing via a 
tensile test.  In this dataset, there are 1494 observations for which both the HPDC process variables and the 
mechanical property data are collected into 159 columns.  The blocks are cast in E380 aluminum alloy [57] 
and subjected to T5 heat treatment post castings.  For a specific application, a subset of the blocks receives 
an additional 24-hour natural age prior to T5. 

Two classification models are used in this study, Decision Tree and Random Forest.  The Decision Tree 
classifier is a supervised machine learning method used to build a predictive model for a given process 
output by sorting the castings into classes at various nodes using an input variable as the sorting criteria 
[13].  This input variable is chosen by the algorithm because sorting by it provides the greatest information 
gain to the model.  Random Forest classifiers use many Decision Trees together to train the model [34].  
Both methods are examined in this study.  The splits in the trees are determined by Gini index (Equation 
8), which is a measure of the purity of the resulting nodes by making a split [58].  The Gini index varies 
between zero and one.  A Gini of zero represents a pure node where all the observations are of the same 
class.  A high Gini value means that the various classes are mixed and there is a high probability that a new 
observation would be misclassified.  

𝐺𝑖𝑛𝑖 = 1 − ∑ 𝑃          Eq. 8 

Where: 

 𝐺𝑖𝑛𝑖 is the Gini index 
 𝑛 is the number of classes 
 𝑃  is the probability of finding each class in the node 

When developing the models, the datasets are split into training and test subsets.  Model performance 
metrics include accuracy, precision, recall, f1-score (Equations 4-7) [55].  Accuracy is percentage of 
correctly classified observations.  Precision is the proportion of predicted positives which are correct.  
Recall is the proportion of actual positives correctly classified as positive.  f1-score is the harmonic mean 
of the precision and recall and is useful for unbalanced datasets, such as the one in this study, where there 
are many more good parts than process scrap. 

There are two objectives of this research:  The first is to use machine learning via a classification model to 
predict the quality label assigned by the DCM: good part, process scrap, and warm-up.  The second is to 
determine which other classifications can be determined by this method; specifically, the presence of 
discontinuities (i.e. porosity) in a tensile bar machined from the casting was examined.  The first objective 
evaluates machine learning on a large dataset where it is known that the correct information has been 
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captured to classify the observations.  The second uses a small dataset where there may be parameters which 
influence the classification that are not captured in the dataset. 

 
Results 

DCM Quality Label Classification 

A successful classification model evaluates the die casting process data and the known class assigned to the 
part in the training dataset and determines what the rules are such that the model will accurately assign 
testing samples to the correct class.  The three labels are: good part, process scrap, and warm-up.  Initial 
Decision Tree models run on the FCA HPDC process dataset had little difficulty identifying warm-up shots.  
This is because warm-up shots typically have different process settings from production shots utilizing low 
shot velocity and minimal intensification pressure.  The challenge is separating the good parts from the 
process scrap.  For the remainder of this exercise the warm-up shots have been utilized in a calculation as 
a process input which designates the number of shots performed since the last warm-up shot was made.  
This value is included to serve as a directional proxy for die temperature.  Since this column equals zero 
for all warm-up shots, the prediction of warm-up shots by the model becomes automatic.  Thus, the warm-
up shots are removed from the dataset.   

Summaries of the model performance will be shown via confusion matrix (Table II).  The matrix rows track 
the actual known classifications of the test population and the columns correspond to the classifications of 
the test population as predicted by the model.  A perfect model would have zero FN and FP predictions.   

Table II.  Interpretation of the confusion matrix.  A perfect model would have zero FN 
and FP predictions.  For this study, positives are good parts and negatives are process scrap.  

  Predicted Value 
  Positive Negative 

Actual Value 
Positive TP FN 
Negative FP TN 

 

Both Decision Tree and Random Forest performed reasonably well on the testing data which is made up of 
174,869 rows of data which the models had not seen before, especially predicting good parts.  Although, 
manufacturing operations make many good parts, it is predicting the process scrap which is of the greatest 
value.  The results showed too many FP results: 1,577 for the Decision Tree and 1,613 for the Random 
Forest.  False Positives must be minimized, as these would have a negative impact on downstream 
operations.  Unbalanced data is a challenge for modeling production manufacturing data.  Since each split 
in each tree is done without the consideration of any other splits, the best Gini split may sweep many process 
scrap samples into a node which overwhelmingly consists of good parts.  This results in misclassification 
when the node is a leaf.  Fortunately, there are methods to working with unbalanced data.   

To reduce the amount of FP, the issue of data imbalance is addressed by generating more process scrap data 
by which to train the model.  The simplest way to do this is to reproduce samples from the process scrap 
class, but this provides no new information to the algorithm.  A better method, which does provide new 
information to the model via the creation of new minority class samples, is called Synthetic Minority 
Oversampling TEchnique (SMOTE) [31], [32].  SMOTE creates each new minority class sample by 
selecting an example of the minority class, finding its nearest neighbors, and drawing a line between the 
example and one of its neighbors at random.  The new sample is created along the connection line.  This is 
done repeatedly until the minority class balances out the majority class. 

To investigate, the training data was oversampled using SMOTE and new Decision Tree and Random 
Forest models were trained.  Predictions were made on the same testing data using the new models.  It is 
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important that SMOTE be applied to the training data only, and not the testing data.  This way the testing 
data is faithful to the process.  The results are shown in Table III and Table IV for the Decision Tree and 
Random Forest respectively.  By balancing out the process scrap with the good parts, the new models are 
more adept at recognizing process scrap and FP are reduced.   

 

Table III.  Confusion matrix showing the performance of the Decision Tree with SMOTE 
classifier model for part quality.   

Decision Tree w/ SMOTE –  
Part Quality 

Predicted Value 
Good Part Process Scrap 

Actual Value 
Good Part 164,716 3,282 

Process Scrap 924 5,947 
 

 

Table IV.  Confusion matrix showing the performance of the Random Forest w/ SMOTE 
classifier model for part quality. 

Random Forest w/ SMOTE –  
Part Quality 

Predicted Value 
Good Part Process Scrap 

Actual Value 
Good Part 165,443 2,555 

Process Scrap 1038 5,833 
 
Comparing Tables III and IV, it is difficult to see which model is best suited for our data.  Both exhibit 
false positives and false negatives.  To determine the better performing model, it is useful to use scoring 
metrics.  These measures are tabulated for both models below (Table V).  The metrics associated with the 
minority class (process scrap) are more telling for model performance.  The models perform quite similarly, 
however, the Random Forest is the better model due to the higher f1-score for the process scrap class.  The 
results between the testing and training datasets are nearly the same, therefore, neither model is overfitting 
to the training data. 

 
Table V.  Key scoring metrics for the part quality Decision Tree and Random Forest classifiers with 
SMOTE training data.  Mean values are reported from 5-fold cross validation. 

 Decision Tree w/ SMOTE Random Forest w/ SMOTE 
 Training Data Test Data Training Data Test Data 
Model Accuracy 98.81 % 98.70 % 98.40 % 98.66 % 
Precision 98.76 % 98.64 % 98.41 % 98.63 % 
Recall  98.81 % 98.70 % 98.40 % 98.66 % 
f1-Score  98.76 % 98.64 % 98.40 % 98.55 % 
f1-Score  
(Process Scrap) 

97 % 74 % 99 % 76 % 

 
A useful summary for the process engineer can be pulled from the model called feature importance [59].  
Understanding the influence of each variable on the model helps the engineer determine which variables to 
monitor more accurately, perform designs of experiment around, and where to invest in process control 
measures for best results.  Feature importance of the Random Forest with SMOTE model are given in Table 
VI below.  The list of 83 variables was truncated at values greater than 0.02. 
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Table VI.  Feature importance for the part quality Random Forest 
classifier with SMOTE generated training data. 

Part Quality Random Forest w/ SMOTE 
Feature Name Importance 
Time Between Cycles 0.2830 
Biscuit Length 0.0868 
Final Intensifier Pressure 0.0641 
Plunger position at the end of shot 0.0505 
Cycle Time 0.0480 
Average Intermediate Shot 
Velocity 

0.0426 

Cavity Fill Time 0.0392 
Average Fast Shot Velocity 0.0381 
Shots Since Last Warm-up Shot 0.0314 
Intensification Velocity Rise Time 0.0239 
Dwell Time 0.0239 
Intensification Stroke 0.0215 

 

Feature importance can also be used to assist in feature selection for creating more efficient models which 
take less time to run and perform better when noisy features are removed.  Ultimately, the final set of 
features is based on trial and error and the preferred performance metric.  The same Random Forest model 
set-up was run using only the top 12 features shown in Table VI.  Dropping the low importance input 
variables minimally reduces predictive power, and overfitting to the training data is still avoided (Table 
VII). 

Table VII.  Scoring metrics for the part quality Random Forest with SMOTE classifier 
models using the top 12 features.  Mean values are reported from 5-fold cross validation. 

 Random Forest Classifier 
 Training Data Test Data 
Model Accuracy 98.81 % 98.55 % 
Precision 98.82 % 98.48 % 
Recall 98.81 % 98.55 % 
f1-Score  98.81 % 98.45 % 
f1-Score  
(Process Scrap) 

99 % 79 % 

 

Breaking the data down into unique combinations of DCM number and die cavity number yielded 
interesting results.  It was observed that, when subsets representing each combination of DCM number and 
die cavity number were run across the general part quality Random Forest classifier, the metrics of the 
predictions varied.  This suggests that each DCM and cavity combination is to some degree a unique process.  
The details of this result are shown in Appendix D.   

The example of predicting part quality assigned by the DCM is a straightforward example where the dataset 
is very large and contains all the information available to the DCM for labeling parts good or process scrap.  
Many materials processing problems are more difficult due to the challenges of small datasets.  Next, we 
turn our attention to how well Random Forest classification modeling can be applied to predicting porosity 
in castings using the process data by which they were made.     
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Porosity Classification 
 
HPDC process input data is used by manufacturing operations as a real-time quality check.  Thus, it is of 
interest to test if these data can be analyzed further to predict levels of porosity in good parts.  For the cast 
component of this study, production castings are selected for destructive mechanical property testing via 
testing tensile bars extracted from the casting itself.  Ultimate tensile strength, yield strength, tensile strain 
(elongation), and hardness data are collected for the purpose of quality assessment [60].  In most HPDC 
products, the location of the tensile bars is limited to the few heavy areas of the casting which can 
accommodate their geometry.  Intensification pressure is applied during solidification to compress gas 
porosity and feed shrinkage; however, once the gates freeze, pressure is no longer transmitted to the last 
areas to solidify (i.e. heavy walled sections).  In the long freezing range aluminum alloys commonly utilized 
in HPDC, like 380-alloy, the resulting shrinkage is often microshrinkage which is difficult to detect via 
NDE methods such as digital X-ray.  Thus, the presence of porosity is a characteristic of HPDC which must 
be controlled and not necessarily an indication of a poor casting.  Discontinuities do impact the measured 
mechanical properties resulting in additional work and cost to reproduce the test.  It has been shown that 
mechanical properties are dependent on the amount of porosity in the area of fracture [61]–[64].  Making a 
connection between mechanical properties and porosity is of interest to die casters because, in many 
applications, the presence of porosity can result in scrap due to uncovered porosity after machining or loss 
of pressure tightness or leaking.  Finding which process inputs contribute to porosity in a mature process is 
challenging for humans to solve.  It is also a difficult problem to model because all the castings in the new 
dataset are classified as good parts, so the difference between any given input variable from one observation 
to the next is likely small. 

Binary classification by the noted presence of a discontinuity on the tensile bar fracture surface proved to 
be a poor target for prediction.  Cáceres’ research shows that a binary classification for porosity is not 
adequate since the amount of porosity affects the mechanical properties [61].  Whether or not the porosity 
was observed by the tester in the tensile bar has no bearing on how the bar performed.  Figure 8 shows an 
empirical cumulative distribution function for the bars with and without observed discontinuities.  The 
curve for the data with observed discontinuity is shifted to lower UTS values.  There is considerable overlap 
which supports the assertion that microshrinkage porosity is often undetectable via visual inspection. 
 

 

Figure 8.  Empirical cumulative distribution functions for the UTS of tensile bars with and 
without observed discontinuities on the facture surface by visual inspection. 
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A classification model based on a UTS value has two benefits:  undetected porosity gets captured in the 
lower performing bars and the two classes can be set up to be more balanced.  Two classes were selected: 
UTS < 205 MPa and UTS ≥ 205 MPa.  There is no assignment of “good” versus “bad” implied in selecting 
the ranges.  The value of 205 MPa is chosen as it is the median value of the tensile bar dataset.  Importantly, 
80% of the bars with observed discontinuities exhibited less than 205 MPa of UTS as well.  A Random 
Forest classifier was used to predict which UTS class each bar in the test dataset would fall into using the 
HPDC process input data.  Table VIII shows the Random Forest classifier results cross validated over 10 
iterations.  This model is slightly overfitting to the training data as there is more of a difference between 
the training and testing metrics than we saw in the DCM quality label example.  One of the better performing 
models is shown in Table IX. 

 

Table VIII.  Key scoring metrics for the Random Forest classifier model predicting UTS 
over or under 205 MPa.  The support of the test dataset is: 138 UTS < 205 MPa samples 
and 161 UTS ≥ 205 MPa samples. 

 Random Forest Classifier: 
UTS over/under 205 MPa 

 Training Data Test Data 
Model Accuracy 60.62 % 56.87 % 
Precision (weighted) 60.76 % 57.13 % 
Recall (weighted) 60.62 % 56.87 % 
f1-Score (weighted) 60.57 % 56.37 % 

 
 

Table IX.  Confusion matrix of the Random Forest classifier for UTS tensile bars above 
and below 205 MPa using HPDC process inputs only. 
 

Random Forest Model – UTS 
Predicted Value 

> 205 MPa < 205 MPa 

Actual Value 
> 205 MPa 98 63 
< 205 MPa 47 91 

 
 
If die casting operations examine their data in this way, there is benefit gained even from imperfect models.  
Referring to Table IX, the test dataset consists of 299 samples of which 161 were of the higher UTS class.  
This amounts to 53.8% high UTS samples.  This model suggests that there are operating conditions where 
high UTS bars can be expected.  If those conditions are employed, one would find that 98 of 145 are high 
UTS bars, or 67.6%.  The parameters which rise to the top of the feature importance list in Table X are 
worthy of study since splitting on their value has the largest impact on UTS prediction.  
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Table X.  Average feature importance calculated over ten iterations of the Random Forest classifier. 
Feature Name Importance Feature Name Importance 
Ejection Forward Time 0.0747 Total Tie Bar Tonnage 0.0379 
Spray Robot Time 0.0505 Final Intensifier Pressure 0.0357 

Die Close Tank Level 0.0498 
Avg Head Pressure during 
Intermediate Shot 

0.0349 

Avg Head Pressure during Fast 
Shot 

0.0466 Extract Robot Cycle Time 0.0348 

Shot Count Since Last Warm 
Up Shot 

0.0414 Cycle Time 0.0347 

Die Close Time 0.0403 Die Opening Time 0.0329 
Intensification Pressure Rise 
Time 

0.0396 Vacuum Pressure during Shot 0.0321 

Average Fast Shot Velocity 0.0386 Ladle Pour Time 0.0332 
Avg Head Pressure during Slow 
Shot 

0.0383 Intensification Stroke 0.0304 

 

Conclusions 

 Supervised learning performed better on the larger HPDC process dataset.  The complete 
population has 874,344 observations and the DCM makes quality determinations based on this 
data, so the right data is collected.  The result is a good model. 

 Oversampling using SMOTE is effective for teaching the model to better predict the minority 
class. 

 The Random Forest classifier outperforms a single Decision Tree by reducing variance.  The 
ability to differentiate good parts from process scrap improve when focusing on unique 
combinations of machine and cavity number as stand-alone processes. 

 For predicting porosity, UTS has been shown to be a better output for predictive modeling than 
relying on porosity observation alone.  Microshrinkage porosity can easily be missed by the 
unaided eye, but its effect is apparent in the UTS measured. 

 A key difference between the DCM part label problem and the porosity prediction problem is the 
size of the dataset available to the model.  The smaller tensile bar dataset is impacted by 
overfitting issues that the larger dataset avoids.  

 

 

B. Model Selection and Evaluation for Machine Learning: Deep Learning in Materials 
Processing 

The following section contains material from the third journal article to be submitted for publication from 
this research.  It can be read in its entirely in in Appendix E – Model Selection and Evaluation for Mahcine 
Learning: Deep Learning in Materials Processing.  The paper is directed more generally toward the 
material processing industry with a focus on proper evaluation of model performance and the bias-variance 
trade-off.  An introduction section is given to highlight the usefulness of predicting UTS citing its 
connection to porosity in the casting which is of high interest to foundries.  Predictions of UTS based on 
HPDC process data are made via traditional machine learning methods (Random Forest, Support Vector 
Machine, and XGBoost) and a shallow Neural Network.  Algorithm predictions are compared to an 
alternative of predicting the mean from historical data.  All the machine learning algorithms and the Neural 
Network outperform the historical mean prediction with the Neural Network achieving the lowest mean 
absolute error in its predictions. 



 

27 
 

Publication Details: 

Adam Kopper, Rasika Karkare, Randy C. Paffenroth, and Diran Apelian, “Model Selection 
and Evaluation for Machine Learning: Deep Learning in Materials Processing”, 
Integrating Materials and Manufacturing Innovation, submitted 7/10/2020. 

The work is summarized, and highlights are given below. 

 

Approach  

It is paramount to understand the type of data HPDC operations generate, and the machine learning and 
deep learning methods that are best suited for analysis.  One is often introduced to the terms machine 
learning, deep learning, and Neural Network as buzz words used interchangeably in marketing or general 
audience publications.  All of these are subsets of artificial intelligence and defining where machine 
learning ends and deep learning begins is somewhat blurry. Perhaps it is best to look at these as a continuum 
of complexity.  Machine learning algorithms reside on the lower end of the complexity spectrum making 
use of linear and other low-order functions [12].  While deep learning is at the other end employing layers 
of mathematical transformations and activation functions for creating models [65].  The most suitable 
method depends on the data available. 

This study was conducted to compare the performance of various machine learning and deep learning 
methods in predicting the UTS of tensile bars excised from engine block castings.  The mean absolute error 
of the algorithm is used to score the methods.  Furthermore, an explanation of the importance of bias-
variance trade-off is given to provide context for the results [43], [44]. 

When designing castings, minimum mechanical properties may be specified by the designer which are 
required for the final product.  Process and alloy selection are largely driven by these requirements [66].  
Testing mechanical properties such as UTS, YS, and elongation requires destructive methods which can 
only be conducted on an audit basis.  Tensile testing of test bars extracted from the cast part itself, or cast 
alongside the part, is the most employed method to measure these properties [67].  The tensile bars come 
from four different locations in the engine block and are machined to a 0.350 inch (9 mm) diameter sub-
sized geometry based on ASTM B 557 (Figure 9) [60].  The dataset captures the UTS, YS, and the tensile 
strain.  The 0.2% offset method is used to calculate the YS [68].  The tensile strain is measured with the 
extensometer over the course of the test and is reported as a percentage.  Included in the dataset is a notes 
column which is text mined for mentions of fracture location and the presence of observed discontinuities 
such as porosity or an inclusion [13].  Each bar is classified accordingly.  Tests with no indication of a 
discontinuity are classified as unknown, rather than to assume none were present. 
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G – Gage Length 1.400 +/- .005 

(35.5 +/- 0.1) 

R – Radius (min) 0.25 

(6.35) 

D – Diameter 0.350 +/- .007 

(9.0 +/- 0.2) 

A – Reduced Section 
Length (min) 

1.650 

(41.9) 

Figure 9.  Tensile bar geometry per ASTM B557 [60, p. 55]. 
Dimensions in inches (mm). 

Tensile test data were examined to determine which output to target for prediction.  Like most production 
manufacturing data, there is noise in the data that can be difficult to filter out with certainty as the actual 
tensile bars are not typically retained and were not available for this study.  Statistical analysis via Welch’s 
t-test is performed to detect significant shifts in the mean value of UTS and tensile strain from one 
population to another [69].  Location of bar extraction, presence of observed discontinuities, and the heat 
treatment were analyzed.  The results of Welch’s t-test confirmed that the mean UTS value is statistically 
different based on the presence of defects and heat treatment used.  UTS was selected over Quality Index 
(QI) [70], [71] and tensile strain for its sensitivity to the presence of observed anomalies in the tensile bars.  
The literature has shown that UTS is sensitive to the presence of such casting features in tensile bars [72] 
[73].  This connection of UTS to porosity is very useful to die casting producers, since quality issues in die 
casting are largely porosity related [74].  Preliminary modeling efforts confirmed that UTS was showing 
less error in the model performance as compared to prediction of tensile strain and QI. 

 

Bias-Variance Trade-Off 

When choosing an algorithm, the two most important considerations are size of the available data and bias-
variance trade-off [43], [44].  This dataset of 1494 tensile tests are exceedingly large when compared to 
typical mechanical property studies.  However, in the world of data science, this is not Big Data.  The 
amount of data available is a limiting factor in the complexity of the model.  Figure 10 shows a performance 
comparison of the models as data size increases. 
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Figure 10.  Performance comparison of Neural Network models with traditional machine 
learning models as training data size increases.  On smaller datasets, traditional 
algorithms outperform deep learning models however, as the amount of data increases, 
deep learning models perform better. 

For smaller datasets, one would pick traditional algorithms as compared to deep learning models. However, 
as the quantity of data increases, deep learning models perform better because traditional algorithms reach 
a saturation point and do not improve any further whereas deep learning models performance keeps 
increasing with training data size [75].      

Understanding the bias-variance trade-off is essential in deciding which algorithms to select for a particular 
dataset and application.  In Figure 11, the X-axis shows model complexity and the Y-axis is predictive 
error.  As model complexity increases, variance increases and bias decreases.  An increase in the variance 
causes the model to overfit to the training data and it fails to generalize on new data. The left side of the 
plot shows a high bias but low variance region. This implies that the model is too simple and, hence, it is 
highly biased.  It fails to learn the complexity of the data.  The ideal point is where bias and variance 
intersect, as shown by the optimum model complexity in Figure 11 [43]. 
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Figure 11. Bias-variance trade-off [43], [44] shows how error changes as the complexity 
of the model increases.  The region on the right is that of high variance and low bias 
whereas the region on the left is that of high bias and low variance.  These regions are 
where the model overfits or underfits the training data and should be avoided.  The optimal 
model complexity is where variance and bias intersect, and one should utilize algorithms 
in this region.  

Figure 7 shows the phenomena of overfitting and underfitting.  The Overfitted graphic in Figure 7 depicts 
a model from the region in Figure 11 where variance is high.  Such a model will fail to generalize because 
it is too specific to the training data.  The Underfitted graphic from Figure 7 shows an example from the 
region in Figure 11 where bias is high.  Here, the model fails to learn enough complexity in the dataset and 
underfits [44], [45].  The Good Fit/Robust graphic in Figure 7 shows the optimum model which corresponds 
to the intersection of bias and variance in the bias variance trade-off and gives a robust fit to the data.   

Mean absolute error (MAE) values are reported to score the algorithm (Equation 2).  It is common for some 
overfitting to the training data to exist in the model, so the error on the training data tends to be less than 
the test data.  The goal of a robust model is to minimize the difference in error between the training data 
and testing data results. 

The data was properly pre-processed before machine learning.  Methods such as discretization, 
standardization, and dimension reduction via PCA were performed.  For machine learning algorithms, 
Random Forest, SVM, and XGBoost were chosen.  These methods are compared to a Neural Network deep 
learning algorithm.  

 

Results 

Machine Learning Regression Results 

The process of adjusting the controlling parameters within the algorithm is called tuning [76].  The chosen 
method of tuning selected for these models is Grid Search Cross-Validation (GSCV) [77].  In GSCV, 
multiple parameters can be tuned at once optimizing the model with respect to the target metric rather than 
each parameter at a time.  The goal of tuning is to minimize the difference between the training and testing 
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data results.  Figure 12 was generated using the default parameters of the algorithm while Figure 13 shows 
the improvement realized from tuning.  In the Random Forest and the XGBoost the difference between the 
training and testing error decreases.  The model becomes more general.  The tuned SVM is not far from 
where the default parameters started. 

 

Figure 12.  MAE in UTS prediction results for the high dimension dataset using default 
settings. Both the Random Forest and the XGBoost are showing significant overfitting to 
the training data. 

 

Figure 13.  MAE in UTS prediction results for the high dimensional dataset using tuned 
parameters.  Compared to the default algorithm results in Figure 7, the amount of overfit 
in the Random Forest and XGBoost is lessened.  The SVM improvement is imperceptible 
in the graph. 

Figure 13 represents the algorithm performances on the full dataset containing all process input columns.  
Dimension reduction techniques were applied to the data to reduce noise of marginal features and further 
reduce the gap between the testing and training error.  The Random Forest and XGBoost algorithms have 
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an output called feature importance that shows which parameters have the most influence in training the 
model.  The top 15 features from the tuned high dimensional Random Forest are shown in Figure 14.   

 

Figure 15.  Feature importance generated from the tuned Random Forest regressor.  The 
top 15 features are shown. 

Machine 503 is connected to the heat treat schedule including the natural age step which resulted in a 
statistically significant higher UTS than the standard heat treatment (Appendix D).  The Random Forest 
was able to identify that as being important.   The die close tank level variable refers to the fluid level in 
the hydraulic tank.  It is showing up as important because of a highly positive correlation to Machine 503 
of 0.82.   Beyond these two, the important features uncovered by the high dimensional tuned Random Forest 
look much like the parameters one finds in the literature when investigating the impact of process settings 
on mechanical properties or defects [78]–[82].  Based on this observation, a new feature selected dataset, 
“LitRev Features”, was evaluated.  The selected features are: Machine 503, average slow shot velocity, 
average fast shot velocity, average intermediate shot velocity, cycle time, intensification pressure, 
intensification pressure rise time, melt temperature, robot spray time (a proxy for amount of time the die 
was open between shots), and vacuum pressure during the shot.  The predictive performance is displayed 
in Figure 15.  The Random Forest improved significantly from the full feature set iteration in Figure 13. 
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Figure 15.  Machine learning results on the feature selected dataset using important 
features from the literature.  Small reductions in the training and testing error were found 
in all three algorithms with the most improvement in the XGBoost test data. 

Additionally, a different dimension reduction method, PCA, was applied to the high dimensional dataset.  
The number of principal components to explain 85% of the variation in the original dataset is 27.  Each 
principal component is a linear combination of the original 77 dimensions, thus none of the inputs are 
completely dropped from the analysis as they are in feature selection.  The PCA transformed data can be 
run through the same machine learning algorithms as the original data and the same tuning methods are 
employed.  In Figure 16, the PCA Random Forest demonstrates the best performance overall in terms of 
UTS MAE and the degree of overfit.   

 

Figure 16.  Machine learning results on the PCA transformed dataset using top 27 
principal components which explain 85% of the variation in the high-dimensional 
dataset.  The Random Forest applied to the PCA dataset is the best machine learning 
performance in this study. 
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Neural Network Regression Results 

Deep learning based Neural Networks have proven useful for advanced analytics of big manufacturing 
datasets [65].  In this section, we will show results of a Neural Network model for predicting the UTS and 
a comparison of the Neural Network with traditional state-of-the-art machine learning models namely, the 
Random Forest, SVM, and XGBoost for the same dataset as shown above.  

Selecting the right combination of parameters for the Neural Network is critical for optimizing the target 
metric and reducing the overfitting phenomenon [83].  We choose the parameters of the network in a way 
such that the model generalizes and does well on data that it has not seen during training. Success is 
measured by reducing both the MAE of the model and the difference between the training and testing MAE.  
The parameters tuned in the optimization of the Neural Network are learning rate, batch size, number of 
hidden layers, and the number of nodes within the hidden layer.  Figures 17 and 18 show the how the 
number of hidden layers and the number of nodes affect MAE.  Similar plots for the other parameters 
examined are included in the full text in Appendix E. 

The learning rate parameter should be chosen in a way such that it is low enough that the model is able to 
reach the minimum error solution, while at the same time, it should be high enough such that the model 
does not take excessive time to converge [84].  A learning rate of 0.001 was the best performer. 

Smaller batch sizes were found to give lower error as compared to higher batch sizes.  The difference in the 
MAE is more significant as the batch size is increased above 128.  We train the model using batches instead 
of training the entire data at once in order to make it computationally efficient and have other desirable 
properties such as avoiding local minima [83], [84].  We use a batch size of one for this analysis. 

Figure 17 shows a comparison of the MAE using different number of hidden layers [85].  Using one hidden 
layer not only gives the best performance in terms of the MAE value but also gives the lowest difference 
between the training and the testing errors as compared to using a higher number of hidden layers.  

Hidden layers of a Neural Network are comprised of nodes, which are the basic units of a Neural Network.  
The hidden layer is where the learning of the data takes place which includes learning important features 
of the dataset; also, obtaining a compressed representation of the data.  Contrast this with machine learning 
where this step is accomplished by human input during pre-processing.  The complexity of the model 
increases as the number of hidden layers is increased.  
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Figure 17.  A comparison of MAE as the number of hidden layers changes.  The MAE 
value is lowest for one hidden layer as compared to higher number of hidden layers.  
Using one hidden layer optimizes the performance in terms of the metric itself and 
reduces overfitting. 

 

Figure 18.  Evaluation of MAE values in terms of number of nodes in the hidden layer.  A 
higher number of nodes in the hidden layer performs better than fewer nodes.  

Figure 18 shows a comparison in terms of MAE with number of nodes in the hidden layer.  A larger number 
of nodes gives lower errors as compared to lesser nodes in the hidden layer for this dataset.  The difference 
between the training and testing errors is also low which shows that the model would generalize better on 
unseen data.  
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Figure 19.  Comparison of the optimized Neural Network model with optimized state-of-
the-art traditional algorithms namely, Random Forest and XGBoost [75].  The Neural 
Network model gives the best performance in terms of the training as well as testing 
errors as compared to the traditional algorithms. 

Figure 19 shows a comparison of the optimized Neural Network model using the best combination of 
parameters with traditional machine learning algorithms namely, Random Forest and XGBoost.  The Neural 
Network gives the best performance in terms of MAE as compared to the other two models on this dataset.  

Figures 16 and 19 illustrate that by using either traditional machine learning methods or a Neural Network 
we can reduce the error in predicting UTS below that of predicting the mean value.  Our results demonstrate 
the importance of understanding the relationship between algorithm complexity and the predictive error on 
a particular dataset.  In the context of Figure 10, the tensile dataset fits in the area where the traditional 
machine learning and shallow Neural Networks cross.  It is crucial to appreciate the bias-variance trade-off 
for this relationship, so that we select the appropriate algorithm, with optimal parameters, to improve the 
predictive performance. 

Conclusions 

 Machine learning and Neural Network regression models utilizing HPDC process data as inputs 
can improve the predictability of UTS above that of predicting the mean from prior tests.  It is 
reasoned that the predictive power can be improved by increasing the number of rows and adding 
new input data columns. 

 Principal component analysis is an effective dimension reduction technique to reduce complexity 
and overfitting of a dataset.  A Random Forest of a PCA transformed dataset was the top 
performing machine learning method in this study. 

 To optimize the models, parameter tuning must be performed with the objective of minimizing 
the error in the model predictions as well as the difference between training data and testing data 
errors. 

 It can be seen that given the right combination of parameters for a Neural Network such as 
learning rate, batch size and number of hidden layers, the predictive performance of a Neural 
Network can be optimized not only in terms of the error metric but also in terms of obtaining a 
robust model fit for a given dataset without overfitting or underfitting. 
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 Selecting the correct models to use for the data being considered requires an understanding of the 
bias-variance trade-off such that a balance is struck between algorithm complexity and size of the 
dataset in question. 

 

IV. CONCLUSIONS and IMPACT 

Early project focus group meetings in the ACRC Big Data project brought to light that many in the materials 
processing industry, specifically foundries, were somewhat familiar with machine learning but not actively 
using it for mining knowledge from the data they currently collect.  The needs of the industry were identified 
to be a platform for collection and fusion of data from throughout the operation, skill in the tools with which 
to work on large datasets and perform machine learning analysis, knowledge of how to evaluate the various 
available algorithms, and explore new data which may be helpful in making better predictive models. 

 

Data Collection and Fusion 

The platforms for data collection and organization exist.  However, operationally, a key step is 
implementing an identification strategy that is common to all areas of the operation.  Upfront 
commonization in data identification will save time in merging data from different operational departments 
later.  Disciplined measures include tracking parts by serial numbers or lot codes, standard datetime formats, 
and common units of measure. 

From there, it is a matter of connecting the DCM, and other hubs of data generation, to a server and make 
the data accessible to those who need it.  For modern HPDC, the work cell is integrated enough that all data 
collection can be passed through the DCM computer.  From the DCM, it can be uploaded to the cloud after 
each cycle.  As an operation seeks to collect more and more data, there will be barriers to be overcome.  
There are only so many input slots in a programmable logic controller (PLC).  Once those are full, more 
can be added.  Then there is the issue of how much data a PLC can process.  For example, adding an array 
of 10 thermocouples to a die casting tool to collect the temperature before and after the cycle is not an issue 
for most PLCs to handle.  However, when collecting timeseries data such as the die temperature at 60Hz 
sampling frequency from those same 10 thermocouples over the 100 seconds between die close and die 
open, the data jumps from 20 to 60,000 data points per cycle for die temperature.  At this point, new 
hardware may be required such as data acquisition (DAQ) devices which are designed to handle larger data 
demands. 

The details of data storage are not in the scope of this work, but storage and access are critical pieces of 
successfully implementing a data strategy for machine learning.  Before the advent of data warehousing in 
cloud-based data lakes, companies owned, maintained, and upgraded servers which came at a significant 
cost.  With cloud-based data warehousing, a company rents space on a massive server network so that local 
storage does not get overwhelmed with old data.  Local servers are tasked with short term access for recent 
data and once data reaches a certain age it gets moved up to long term cloud-based storage.  The data is 
stored in a database which can be accessed and downloaded.  

 

Developing a Machine Learning Skillset 

Learning any new skill requires a significant time investment.  Becoming capable at implementing machine 
learning will require foundries to develop talent, or bring in new talent familiar with key machine learning 
programming languages, especially Python [86], [87] and R [88].  The majority of the machine learning 
work in this thesis was conducted in Python 3.  With Python, one can import libraries which facilitate the 
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various activities involved in a machine learning project.  Key libraries used in this project are presented in 
Appendix C – Approach and Methodology.   

AI algorithms will run the data they are fed if it is of the proper type for the model.  To avoid being misled 
one must follow the required steps and understand how each impacts the results.  The main building blocks 
of a data science project are initial data exploration, pre-processing to prepare the data for use in algorithms, 
running the algorithms, evaluating the results, and iterating as necessary.  This thesis serves as an assist to 
metal casters providing a method for machine learning using the type of data the industry generates and 
applying some useful algorithms.  Most importantly, this work educates those new to machine learning on 
the topics of model metrics, the bias-variance trade-off, and cross-validation to evaluate the results of the 
models they train. 

Once the integration and storage of data is set within an operation and some bedrock coding is in place, the 
ability to conduct further feature engineering, perform new analyses, try different algorithms, and add new 
data is very straightforward. 

 

HPDC Data Conclusions 

Data from the HPDC process was made available from FCA for two papers published from this effort.  FCA 
runs a very large, by industry standards, HPDC facility in Kokomo, Indiana with state of the science capital 
equipment.  The data routinely collected by this forward-thinking operation is much like that in my own 
experience in the industry at Mercury Marine and prior employers who ran larger HPDC operations.  
Modern HPDC machines collect much of the data and make it available.  In production data, the 
performance of the machine follows closely to the process settings with some amount of natural variation.   
These data include average shot velocity through the different stages of the shot profile, head/rod pressure 
and intensification data.  Based on the issues which arise at a given company, or for a specific part, 
additional data is collected to gain understanding and find variation in the process.  The data provided by 
FCA is listed at the end of Appendix C. 

The results of the articles in Appendix D and Appendix E suggest that the standard HPDC cycle summary 
data does not contain the silver bullet parameter upon which the amount of porosity or ultimate tensile 
strength depend.  In our regression modeling work, we compared traditional machine learning algorithm 
predictions to making predictions based on the mean UTS value of the training data and found that the error 
was lessened when employing the algorithms.  The data at our disposal is largely what the literature has 
reported as being significant in affecting porosity and resulting mechanical properties in die castings 
(Appendix A).  Notwithstanding, the amount of error reduction was small.  Is the literature wrong?  Not 
likely.  Rather, most published studies investigating the effect of parameter X on porosity examine a wide 
range of X settings.  Our research is aimed at a process where that level of optimization has already been 
performed.  However, there is still variation in the mechanical properties of test bars excised from the 
castings.  After application of feature engineering, feature selection, PCA dimension reduction, various 
algorithms, and parameter tuning only a small improvement was realized.  This suggests that important 
input variables are not captured in the dataset. 

Therefore, we must rethink about what other parameters can be included to increase our predictive power.  
Especially, consider parameters moving within a wide band because accurate control is difficult or costly.  
Perhaps there are parameters the HPDC industry has never considered measuring or controlling.  It has 
been stated that one cannot control anything unless one has measures; the question is which measures?  The 
question begs itself:  are we measuring the correct parameters? One of the indirect key results of AI is the 
realization that perhaps what we have been measuring in the past is not appropriate, and that there are other 
key parameters that we should be capturing. 
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Metallurgists know that alloying elements are important with respect to porosity because the weight 
percentage of alloying elements impacts the solidus temperature of the aluminum alloy [66].  Copper, for 
example has a large effect on porosity in aluminum when increased over the range of zero to four weight 
percent [82], [89], [90].  Alloy composition was explored in this thesis, however, the variation in the 
elemental composition data was minimal (Table XI).  Most rows required imputation to complete the 
dataset because chemistry is measured once per shift.  Matching the cast time stamp of the part selected for 
mechanical testing to the time the furnace was evaluated is rarely close.  With the imputed data, elemental 
weight percentages never came up as being significant to the algorithms because of the low variation.  If a 
facility suspects that their composition is varying significantly, then data collection by real time method 
such as LIBS would be valuable [91]. 

Table XI. Average and standard deviation values of 930 alloy composition checks during the timeframe 
the engine block casting data were collected.  Low variation in elemental composition results in individual 
element weight percent being unimportant in the machine learning algorithms. 

  Cu Si Fe Mn Mg Zn Ni Pb Sn Ti Cr 
Average (wt%) 3.38 8.45 0.89 0.22 0.26 1.36 0.08 0.04 0.02 0.05 0.07 
Std Dev 0.08 0.27 0.04 0.04 0.03 0.27 0.02 0.01 0.02 0.01 0.01 

 

Reflecting on other inputs which were not included in the data for this study, the temperature of the die 
cavity where the metal is solidified into its final shape is perhaps the most influential input parameter that 
is to a large extent passively controlled.  Most die casters rely on a condition of steady state, which is a 
somewhat nebulous combination of cycle time, dwell time, die spray application parameters, cooling water 
temperature and flow rate, the melt temperature and amount of metal delivered during each shot, alloy 
chemistry, and the ambient environment in the factory.  The effects of die temperature on porosity, 
misconceptions on steady state, and its influence on porosity are expanded on in Section V – 
Recommendations for Future Work. 

 

Impact 

A major impact of this research is fueling conversations, getting the industry thinking about data, talking 
about data, and using their data.  Professional industry societies like American Foundry Society (AFS), 
North American Die Casting Association (NADCA), and The Minerals, Metals, and Materials Society 
(TMS) are creating forums through conferences and webinars to educate the industry on the application of 
machine learning to materials processing.  I have been honored to participate and share my research through 
these organizations. 

This project has garnered industry attention by way of presentations at national conferences like the 2018 
AFS Metalcasting Congress and 2018 AFS Aluminum Division Specialty Conference.  Further propagation 
occurred in presentations for the ASM Milwaukee Chapter in November 2018 and twice yearly at WPI’s 
Advanced Casting Research Center from 2017 through 2020.   Industry has responded.  The American 
Foundry Society (AFS) scheduled their first Foundry 4.0 Conference for June 8-10, 2020.  Due to COVID-
19 pandemic, the conference has been postponed until spring 2021.  This conference will bring in experts 
from around the industry to discuss what the foundry of the future will look like and machine learning will 
be an important pillar of the program. 

Universities and professional societies are critical in the distribution of publications and knowledge.  WPI 
via the ACRC, AFS, and NADCA provide excellent opportunities for their member organizations to learn 
about the future of the metalcasting industry through papers, trade magazines, conferences, courses, and 
collaborative research.  It is now in the hands of the foundries themselves to be intentional about data 
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collection and organization.  Metalcasting operations must identify promising talent in the industry and 
support their continuing education as Mercury Marine has chosen to do.  

The following papers and industry presentations are products of this research: 

1. Adam Kopper, Ning Sun, Diran Apelian, “Creating Knowledge from Big Data in Metal Casting 
Operations”, Presented at 122nd Metalcasting Congress, April 3-5, 2018, Fort Worth, TX, AFS. 

2. Adam Kopper, “Influence of Process Variables on Mechanical Properties of High-Pressure Die 
Castings”, Presented at AFS Aluminum Cast Conference 2018, November 5-7, 2018, Knoxville, 
TN, AFS. 

3. Adam Kopper, “Data Analytics Opportunities in Production Foundry Operations”, Presented at 
ASM Milwaukee Chapter Meeting, November 19, 2018, Milwaukee, WI. 

4. Ning Sun, Adam Kopper, Rasika Karkare, Randy C. Paffenroth, Diran Apelian, “Machine Learning 
Pathway for Harnessing Knowledge and Data in Material Processing”, International Journal of 
Metalcasting, Accepted for publication, July 2020. 

5. Adam Kopper, Rasika Karkare, Randy C. Paffenroth, and Diran Apelian, “Model 
Selection and Evaluation for Machine Learning: Deep Learning in Materials Processing”, 
J. of Integrating Materials and Manufacturing Innovation, submitted 7/10/2020. 

6. Adam E. Kopper, Diran Apelian, “Predicting Quality of Cylinder Block Castings via Supervised 
Learning Method”, International Journal of Metalcasting, Submitted July 2020. 

7. Adam Kopper, “Bringing Artificial Intelligence to Your Materials Organization”, TMS, July 22, 
2020.  Webinar. 

8. Adam Kopper, “Casting Quality Prediction via Supervised Machine Learning”, To be Presented at 
AFS Foundry 4.0 Conference, June 8-9, 2021 

 

V. RECOMMENDATIONS for FUTURE WORK 

Machine learning in manufacturing is in its infancy which makes the potential for future work seemingly 
boundless.  There are many aspects of manufacturing to which machine learning can be applied near to the 
scope of this work.  Similarly, one can think of studies far from the field of the present one, but no less 
interesting and transformative.  In this section, we cover some of the data believed to increase the 
performance of algorithms in predicting UTS and porosity as well as interesting food for thought on other 
applications of machine learning.  Owing to the large datasets required to start generating meaningful 
results, it is important to start collecting data now in these areas. 

In the previous section, the temperature of the die cavity was proposed to be an important piece of missing 
information.  At start-up, the die cavity steel increases in temperature as castings are made until the process 
reaches steady state.   Often this concept of steady state has more to do with how the parts look than actual 
temperature readings from the cavity.  Experience and process development history establish the criterion 
for steady state, which is usually an established number of cycles, rather than a temperature value.   

Die cavities are plumbed and cooled with water lines to obtain favorable solidification patterns in the parts 
and keep the dies from getting too hot that the cycle time is impacted.  Water lines are typically on or off 
at the valve, not cycled and timed like one might find in a low-pressure permanent mold casting operation.  
As a result, the die cavity is a heat sink with its temperature a function of the heat put in by the casting and 
the heat removed by the water lines, convection from air movement, and conducted into other die 
components.  None of these heat removal operations are actively controlled with respect to the die 
temperature.  Thus, timing changes within the process due to delays small and large, affect the temperature 
of the die.  This is supported by the high feature importance of robot spray time, ejection time, and shot 
count since last warm-up shot in the present research each of which can serve as a pseudo-proxy for die 
temperature.   
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The importance of die temperature as a boundary condition for solidification processing and the potential 
for variation suggest that die temperature be studied further.  Miller demonstrated in a 1-D model how many 
cycles it takes to attain a quasi-steady state [92].  This work challenges the common notions of steady state, 
as the actual number of cycles to reach a quasi-steady state are often much larger than five.  Other studies, 
especially modeling based investigations, have shown that die temperature is a high impact parameter on 
castings and the dies themselves [93]–[96].  Die temperature was found to be relevant to making predictions 
via application of machine learning and Neural Networks [26], [27].  Mercury Marine has implemented 
thermal imaging technology for die temperature measurement and has demonstrated promise in anomaly 
detection such as active warm-up shot detection, die spray issues, and water line issues [95].  The data 
collected has not been used to actively control the temperature of the cavity steel.  For these reasons, a 
robust and reliable method of collecting the die temperature is the next source of data to drive predictive 
modeling forward.  Knowing how and what to measure will lead the industry toward active control of die 
cavity temperature [97], [98]. 

To support this claim that die temperature is an influential parameter, three process simulations were run 
using MAGMASOFT 5.4 [99].  The subject of the simulation is a balance shaft housing for an outboard 
motor application.  In each simulation, six warm-up cycles are used.  Conventional practice would agree 
we are at steady state after these six cycles and the next castings are kept as good parts.  Metal temperature 
in the furnace was set to 677 ˚C (1250 ˚F) and the process parameters such as velocity, cycle time, 
intensification pressure are held constant across all simulations.  The parameter under investigation is the 
starting temperature of the die cavity.  For the three simulations the starting temperature of the cavity was 
set to 149 ˚C (300 ˚F), 232 ˚C (450 ˚F), and 315 ˚C (600 ˚F).  Temperature data was collected in the runner 
and in an overflow as shown in Figure 20.  The timeseries temperature data is presented in Figures 21 and 
22 for the runner and overflow thermocouples respectively.  These results confirm the importance of 
monitoring and controlling die temperature.  After six warm-up cycles the die is generally thought to be at 
steady state, but the simulation tells a different story.  The starting temperature matters to what the die 
temperature will be when the operation starts considering parts to be of good quality. 

    

Figure 20. Thermocouple locations where temperature data is collected during the process 
simulations. a) TC_20 is in the runner as shown on the left and b) TC_23 is in the overflow 
where the metal exits the cavity in the righthand image. 
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Figure 21.  Runner thermocouple temperature over six warm-up shots with varying 
starting temperatures 149 ˚C, 232 ˚C, and 315 ˚C.  By differing starting temperature, the 
resulting “steady state” temperature of the die is not the same. 

 

Figure 22.  Overflow thermocouple temperature over six warm-up shots with varying 
starting temperatures 149 ˚C, 232 ˚C, and 315 ˚C.  By differing starting temperature, the 
resulting “steady state” temperature of the die is not the same. 



 

43 
 

Our simulation predicts the die temperature, but the significance of that is measured by whether or not the 
internal soundness of the part is affected.  Bulk porosity is an output of the simulation software, and Table 
XII has the predicted bulk porosity for the last cycle of the three models.  The percent increase in porosity 
as starting die temperatures drop is enough to suggest that this is a process parameter that warrants more 
attention. 

Table XII.  Effect of initial die temperature on the bulk porosity in the balance shaft housing simulation 
after six cycles. 

Initial Die Temperature (˚C) Bulk Porosity (%) Porosity Increase from 
315 ˚C model 

315 (600 F) 0.413 -- 
232 (450 F) 0.516 + 25% 
149 (300 F) 0.568 + 38 % 

 

Additionally, environmental data such as the ambient temperature and relative humidity in the plant were 
shown in this work to be important variables in determining porosity severity in a sand foundry operation 
(Appendix B).  These may well be important in HPDC porosity too.    

An adjacent application of machine learning which would be of high interest to foundries is X-ray porosity 
recognition and interpretation.  Reading digital X-ray is a method performed by humans which is subjective 
and difficult to maintain a standard.  It starts with being able to identify porosity from everything else in 
the X-ray image.  Can a machine learn how a human determines what porosity looks like? Porosity 
recognition agnostic to the casting of which the X-ray was taken would be highly valuable to the foundry 
industry.  The next step would be to determine if an area of porosity captured on an X-ray is anomalous 
when compared to the standard deviation about a mean X-ray image.  
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Appendix A – Literature Review 

 

I.  Overview of Artificial Intelligence 

The primary objective of the research is to delve into the nexus of materials processing and machine 
learning to begin our understanding of the challenges unique to the materials processing field.  It is 
important to recognize that machine learning may be a new buzz word in industry and media, but the roots 
of machine learning trace back to Allied Forces code breaking during World War II and Alan Turing.  The 
Turing test: where a remote human interrogator must distinguish between a computer and a human based 
on responses to a series of questions posed by the interrogator was proposed in 1950 as a method for 
determining when a computer, or an artificial intelligence, is thinking [1].  The mathematics was maturing, 
but the computing power of the mid-century was prohibitively expensive and only capable of executing 
commands [2], [3].  It could not store data.  In 1956, the Dartmouth Summer Research Project on Artificial 
Intelligence is credited as being the kick-off of artificial intelligence and is, in fact, the event at which the 
term “artificial intelligence” was first introduced [4].  In 1965, Gordon E. Moore authored Moore’s Law 
which states that every couple of years we can expect our computers be twice as fast and cost half as much 
[5] (Figure 1). 

 

Figure 1.  Moore’s original 1965 chart predicting future computing power increases. 
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As computing power increased, popular culture anticipated the dawn of an era where machines would 
become sentient.  Science fiction novels such as Asimov’s I, Robot (1950) and Heinlein’s The Moon is a 
Harsh Mistress (1966); are two classics in which artificial intelligence is presented as both fantastic and 
dangerous to its creator.  Moviegoers of the 1980’s were captivated by the possibilities of AI in classic 
films like WarGames (1983) and The Terminator (1984) while at the same time terrified at how our human 
ingenuity can be turned on us.  These entertaining warning signs have not dissuaded human progress toward 
artificial intelligence, rather they served as inspiration to the curious and industrial minds who awaited the 
tools to make fantasy into reality. 

In the scope of human progress, the wait has been brief.  Since the above, the internet was created, and the 
first website launched in 1991.  Data has since become an endless resource to be mined and monetized 
through targeted advertisements popping up before the eyes of the casual web surfer offering the right 
product at the right time based on data gleaned from internet viewing and purchasing history.  Artificial 
intelligence would go on to notch key victories in man versus machine publicity events.  In 1997, Deep 
Blue defeated chess grand champion Gary Kasparov and Watson tallied a win for AI on the TV gameshow 
Jeopardy! in 2011 [6]–[9].  Both stand as milestones in the progress of computers paralleling humans as 
simply machines taking in, storing, and processing data.   

Behind the headlines, advances in very practical uses of machine learning continued and, today, the use of 
machine learning and deep learning is ubiquitous.  The greatest source of data is people; all of us.  
Algorithms that learn about us, store that information as data, and make decisions are the brains behind 
Amazon’s Alexa™ and Apple’s Siri®.  Texting is a commonplace method of communication that performs 
AI before our eyes, yet many take this marvel for granted.  We even get frustrated and curse an autocorrect 
feature which is an amazing feat of machine learning on its own.  When you send a text, you are offered 
options for your next word to speed the process of communication.  One of those options is often exactly 
the word you were about to type.  This is because the algorithm has been taught how humans communicate 
in various languages.  Moreover, it is learning how the specific owner of the smartphone communicates.  
You can witness learning when you text something unique such as an uncommon name or a nonsense word 
that only you and your brother would understand.  The first time, you are offered similar options which are 
familiar to the AI and, probably, you get autocorrected.  Force the issue, and your phone learns that your 
friend does spell her name that way, and, in context, will offer that spelling after the first couple of letters 
are entered.  How has artificial intelligence become so integrated into our lives without many even noticing?  
The answer is that the economics have changed [10], [11].  Today, we are reaping the benefits of Moore’s 
Law in computing speed and data storage and the growth continues [12].  An updated chart of Moore’s Law 
is presented in Figure 2.   
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Figure 2.  Timeline of computing speed growth [12]. 

Cloud data storage is allowing practically limitless amounts of data to be stored by companies without the 
need to install and maintain server capacity.  Simply rent storage space and the provider houses and 
upgrades the equipment.  The cost of memory has plummeted since Moore’s landmark paper and today a 
megabyte of memory is pennies.  The same amount of data, inflation adjusted, would have cost $5M in 
1965 (Figure 3) [13]. 
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Figure 3.  Cost of memory has dropped sharply over the last 60 years [13].  

As computational power and data storage per dollar increase, applications for AI will grow and improve.  
This is not a fad, rather it is a transformation.  The field of Data Science is growing and the job market for 
this skillset is expected to grow by over 27% from 2016 to 2026 [14].  As recently as 2015, there were 
virtually no undergraduate majors offered in Data Science.  In 2020, there are over 60 universities offering 
a undergraduate Data Science major [15]. 

While marketing applications such as targeted ads and coupons, credit card fraud detection, and streaming 
media service recommendations are the average person’s daily interaction with machine learning, the 
development of next wave applications is well underway [16], [17].  AI is driving object detection and sign 
recognition for autonomous vehicles [18]–[20].  The medical field is using predictive modeling in disease 
diagnosis [21] which is a game changing technology for rural areas and developing nations where doctors 
are few and collaboration is limited.  Facial recognition is going beyond finding individuals and national 
security applications to emotion detection from facial pattern recognition [22], [23].  Once successfully 
introduced in a business function, artificial intelligence is not easily supplanted.  Humans constantly seek 
productivity gains at home and at work.  Businesses create value when they act on data driven decisions.  
Efficiency gains are realized when human resources can focus on executing value-creating action while 
algorithms do the laundry of crunching data 24 hours a day, 7 seven days a week to provide near real-time 
direction.   

Terminology 

In this document, thus far, the terms artificial intelligence and machine learning have been used 
interchangeably.  Even now, as the field of artificial intelligence expands from the research groups and 
universities into the media and to the public, the language has not fully settled.  Media outlets intermix 
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these words so as not to be repetitive or to create pizzazz, and it can be confusing to the reader of this work.  
Figure 4 illustrates how common terms are related.   

 

 

Figure 4.  Organization of common data science terminology. 

For clarity, I will use the following glossary of terms through this text. 

Algorithms:  Any list of instructions which describe how to perform a task.  In data science, these are 
functions programmed in coding language which describe how a computer is to perform a task.  For our 
purposes, algorithm refers to a specific machine learning method or approach. 

Artificial Intelligence (AI):  The general application of employing machines to analyze data in the aim of 
performing tasks or solving problems which require humanlike decision making. 

Data Management:  The collection, storage, and organization of data. 

Data Pre-processing:  Manipulation of data in preparation of performing analysis on the data.  This includes 
merging, cleaning, normalizing, and feature engineering. 

Data Science:  An all-encompassing term for the tools involved in data management, pre-processing, 
analysis, and communication. 

Deep Learning:  A sub-set of machine learning which makes use of neural network learning algorithms to 
perform predictive analyses.  Deep learning algorithms often perform feature engineering functions 
autonomously. 
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Feature Engineering:  The application on domain expertise to the inputs of the dataset.  Feature engineering 
investigates what new information can be gained from the existing input data, application of weight to 
inputs based on experience or physical laws, imputation strategy for missing values, and performing 
mathematical operators like logarithms to specific inputs.  Feature engineering is not applied to output data. 

Machine Learning (ML):   A sub-set of artificial intelligence in which algorithms learn through statistical 
data analysis to make logic predictions.  The teaching can be supervised, where the output of the training 
data is known, or unsupervised, where the output of the training data is not known.  Machine learning 
algorithms rely on feature engineering by the user prior to executing the algorithm. 

Neural Network:  Neural networks are algorithms which run the input data through one or more hidden 
layers to determine the output.  The hidden layers are made of neurons which incorporate weights, bias, 
and an activation function to arrive at an output which can be fed into the next hidden layer if there are 
more than one. 

Observation:  An observation is synonymous with the word sample or individual.  In a data frame, these 
terms describe a row of data which consists of all the inputs and outputs associated with one unique object 
of interest.  In this project, each observation represents a unique cast component. 

Standardizing:  Bringing various input data columns into the same scale so that they can be analyzed by 
machine learning algorithms which rely on mathematical distances to determine likeness. 

Variables:  Also referred to as features, inputs and outputs, or X’s and Y’s; variables represent the columns 
of a data frame.  These are the process parameters which are used to train models for making predictions 
about new observations. 

 

II. Industry 4.0 

The fourth industrial revolution that ushered the Internet of Things (IoT) and the Internet of Services (IoS) 
has come to be known as Industry 4.0.  At the Hannover Messe in 2011, Germany launched a project called 
“Industrie 4.0” designed to fully digitize manufacturing. The larger vision of Industry 4.0 is the digital 
transformation of manufacturing, leveraging advanced technologies and innovation accelerators in the 
convergence of IT (Information Technology) and OT (Operational Technology).  The purpose is to integrate 
connected factories within industry, decentralized and self-optimizing systems and the digital supply chain 
in the information-driven cyber-physical environment of the fourth industrial revolution [16], [24]. The 
evolution toward Industry 4.0 is given in Figure 5. 
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Figure 5. Chronology and characterization of the four Industrial Revolutions [24]. 

What does this mean for the foundry industry? Industry 4.0 is creating disruptive innovation in business 
models and revenue sources transforming manufacturing plants into smart factories or foundries.  Smart 
foundries of the future will utilize Cyber-Physical Systems, digital interplay between the physical process 
and its virtual representation, to assess current production activity, optimize and adjust in real time, to 
ensure the best quality, efficiency, and production scheduling [25], [26].  IOT is the connection of, and 
communication between, every capable device and sensor in a system thereby breaking down the 
departmental and intra-factory information silos which hinder free data exchange.  Extending beyond the 
four walls of the foundry to the subsequent machining and assembly processes downstream opens the 
possibilities of production scheduling adjustments and communication of specific quality issues instantly 
fed upstream to the foundry, even directly to the casting work cell.  Through the proper application of AI 
and machine learning to Big Data analytics, the casting process can be fully mapped out and modeled to 
create knowledge of which combinations of process parameters make goods parts.  Given downstream 
operational feedback and the current state of the process, the work cell can adjust its process accordingly 
to a move into favorable operating window without human interaction.  Three keystone digital technologies 
will enable the transformation to smart factories: (i) connectivity, which implies executing industrial IoT to 
collect data from various segments of the plant; (ii) intelligent automation which includes advanced robotics, 
machine vision, digital twins, distributed control; and (iii) cloud-scale data management and analytics (AI 
and Machine Learning) [17]. 

Machine Learning in Brief 

Avoiding semantical arguments on where the lines are drawn between machine learning and deep learning, 
it is generally agreed that both are forms of artificial intelligence rather than something entirely unique.   
Both are useful in the analysis of materials processing data as well.  The term machine learning, in this text, 
represents the family of methods which use statistical and probability models trained on historical data to 
make predictions about new observations.  Common methods which fall under this umbrella include linear 
regression, decision trees, k-means clustering, Apriori algorithm, and Support Vector Machines (SVM) 
[27]–[34].  While packages and commands readily exist to facilitate using such algorithms, these methods 
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are not black box functions shrouded in mystery.  Many of them rely on using mathematical distances to 
determine how various observations are alike and what outcome should be expected if that information is 
known. 

In materials processing, where the input data often greatly exceeds the output data, unsupervised methods 
such as k-means clustering are powerful tools allowing the user to group observations into clusters of 
likeness.  Using k-means is a good way to detect anomalies in the process which may be associated with 
quality issues in the product or equipment performance issues which would be difficult to detect otherwise 
[35].  When the output data is known, classification and regression models can be created using decision 
trees or SVM for example.  Thus, one can envision models which predict general attributes in a 
classification model or specific values of a given output in regression model.  The details of the specific 
machine learning methods employed in this research are covered in Appendix C – Approach and 
Methodology section of this text. 

Deep Learning in Brief 

Deep learning utilizes the same data preparation strategies and similar functions with which to make 
predictions as machine learning [36].  Mostly, what makes two different is in the feature engineering 
(Figure 6) [37].  Feature engineering is where the data scientist relies on domain expertise to engineer the 
model inputs to make a higher performing model.  One way this can be done is by assigning weights to 
specific input variables based on physical laws, experience, or other sources of privileged information [38], 
[39].  In machine learning, these weights are assigned manually.  Deep learning utilizes hidden layers 
comprised of nodes which automatically assign weights to variables as the algorithm learns more about the 
data [39]–[41].  In this way, the deep learning algorithms are more of a black box than their machine 
learning kin.  By using the training data to generate the weights automatically, deep learning algorithms 
can be more accurate than a human would otherwise be.  As deep learning algorithms add additional 
complexity (i.e. increase the number of hidden layers or nodes per layer), it is critical that large datasets be 
used to train them.  If not, the resulting model will not generalize well and, thereby, perform poorly on new 
data.  The details of the specific deep learning method employed in this research are covered in Appendix 
E - Model Selection and Evaluation for Machine Learning: Deep Learning in Materials Processing 
section of this text. 
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Figure 6.  The difference between machine learning and deep learning is how the feature 
engineering is performed [37].  Traditional machine learning utilizes subject matter expert 
input to the model while deep learning employs automatic processes. 

 

III. Materials Processing and High Pressure Die Casting 

Materials processing is an interesting data processing and analysis challenge.  Oftentimes, the product of 
the companies in materials processing industries is a raw material for the next operation which may be in 
the same facility or at a customer’s operation where further value is added in the journey toward the final 
shape, assembly, etc.  Its place in the product pipeline categorizes materials as commodities and pricing 
pressures are high.  This is true for most engineering materials such as steel, aluminum, PVC, and plywood 
to name a few.  Therefore, production processes are often large scale in terms of production tonnage and 
units per hour.  In this climate, sampling each unit of the product for the purposes of quality assurance or 
process control slows productivity, adds cost, or may not be possible.  Rather, once a process is running, 
the sampling is done by lot, by shift, or some such audit frequency at which the operation is confident in 
the product being produced.  This creates a situation where the process is generating massive amounts of 
input data, but little output data.  Adding to a general scarcity of output data, operational practices and 
situations can lead to missing data as heterogeneous data streams are fused together, where certain input 
data is captured for some parts, but not all parts.  Lastly, for these businesses to be viable, they must be 
good at what they do.  This leads to imbalanced datasets which are rich in good product but contain very 
few examples of bad product.  The aforementioned are important challenges to working with manufacturing 
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data.  The specifics of how to address these challenges through data science methods, and their appropriate 
cited works for the reader, are covered in Appendix C – Approach and Methodology  and Appendix B – 
Machine Learning Pathway for Harnessing Knowledge and Data in Material Processing. 

Raw materials are not an isolated case, engineered components such as fasteners and metal castings reside 
in a similar economic climate.  An important method for casting near net-shape components today is high 
pressure die casting (HPDC). HPDC has been in practice since the mid-nineteenth century.  It started with 
the casting of low temperature lead and tin alloys used in the linotype industry [42].  Today, it is the most 
utilized casting method for aluminum components by tonnage in the United States and widely used 
throughout world [43], [44] (Figures 7 and 8).  In terms of dollars, the North American Die Casting 
Association reported aluminum die castings to be over $8 billion in sales for 2019, while the American 
Foundry Society reports the entire aluminum foundry industry to be $9.67 billion [45].   

 

Figure 7.  Quarterly aluminum foundry shipment by process for the United States foundry 
industry 2010-2018.  More die castings in tonnage are produced than sand and permanent 
mold combined [43]. 
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Figure 8.  Total North American foundry operations by process.  Die casting trails two 
iron casting process as the third most employed process in North America [44]. 

HPDC aluminum components are primarily employed where weight reduction and high annual production 
volumes are required.  Die castings have evolved from largely housing-type components like covers and 
enclosures, sumps, and pump bodies to include more demanding applications like engine blocks and body-
in-white nodes and pillars [46]–[50].  The demand for aluminum die castings is driven by automobile 
production, yet Figure 9 shows many applications in recreational vehicles, marine propulsion, lighting, and 
household appliances [43].   

 

Figure 9.  Breakdown of the 2019 North American die casting industry by application [43]. 
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The 300-series of aluminum-silicon-magnesium alloys is the workhorse family of alloys in HPDC with 
varying chemistries aimed toward optimizing a combination of engineering considerations like cost, 
castability, machinability, corrosion resistance, strength, ductility, and wear resistance [51].  For this work 
in application of machine learning on materials processing, aluminum high pressure die casting will serve 
as the exemplar process.  While the challenges in organizing and analyzing HPDC process data may be 
unique in some respects, they are believed to be similar, in general, across many materials processing 
disciplines.  Machine learning and data science is of great interest to the materials processing industry.  
Imagine the benefit if these operations could model their quality by monitoring critical process inputs and 
running them through a machine learning algorithm.  Such a future would result in increased uptime, rapid 
response to production issues in near real time, and data driven confidence that the product made between 
quality checks is acceptable.   

A typical aluminum HPDC work cell consists of a furnace which holds the molten alloy, a transfer ladle, a 
cold chamber HPDC machine, a steel mold in which the casting is solidified, and a trim press for separating 
the parts from the runner system.  Larger parts, which are awkward or too heavy for manual handling, 
benefit from additional automation such as an industrial robot for removing the solidified casting from the 
die and performing other finishing operations.  Figure 10 shows a typical HPDC casting work cell.  Figure 
11 details key parts of the die casting machine (DCM). 

 

Figure 10.  A typical HPDC work cell layout [42]. 
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Figure 11.  Key components of a cold chamber die casting machine [42]. 

A:  Close Cylinder E:  Ejection Cylinder  I:  Stationary Platen  M:  Shot Cyl. 
B:  Tie Bars  F:  Moving Platen  J:  Cold Chamber  N:  Shot Rod 
C:  Rear Platen  G:  Die (Ejector Half)  K:  Intensifier Accumulator O:  Shot Tip 
D:  Toggle   H:  Die (Stationary Half) L:  Shot Accumulator  P:  Hyd. Tank 

For the sake of establishing an order to the cycle, one may choose die spraying as the start of the HPDC 
process and the steps of the cycle are as follows: 

1. With the moving platen and, consequently, the die in the fully open position, the die cavity is 
sprayed with a release agent either manually or with an auto-sprayer.  Auto-sprayers may be a 
purpose-built device or a six-axis industrial robot.  Within the same step, the spraying is followed 
by an air blow-off to remove excess from the die cavity. 

2. The plunger tip is drawn back to the pour ready position and the moving platen closes the die.  The 
toggle clamp holds the die under locking tonnage.  The tonnage is applied as the toggle puts the tie 
bars in tension imparting a force on the die to keep it closed against the intensification pressure of 
the machine cycle. 

3. Molten alloy is ladled, or otherwise poured, into the cold chamber. 
4. After pour, the shot cylinder valve is opened to begin the plunger movement forward.  Slow shot 

is the term used for the portion of the plunger travel which moves the tip past the pour hole of the 
cold chamber.   

5. Once the risk of metal splashing back out of the pour hole has passed, the shot control valve is 
opened further ramping up the velocity to the point where the metal has reached the gates.  The 
gate is where the metal enters the die cavity. 

6. When the metal has reached the gates, the shot control valve is fully opened the programmed 
amount and fast shot plunger velocities of 3.5 to 5 m/s (140 to 190 inches per second) are attained 
driving the metal to completely fill the cavity in a time period of 0.1-0.2 seconds. 
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7. Upon filling the cavity, the intensifier valve opens and applies additional pressure on the cavity as 
the casting solidifies.  A range of 25 to 50 MPa (3500-7500 psi) [42] is suitable for most 
applications.  This intensification pressure is used to feed porosity which results from volumetric 
shrinkage in the phase change from liquid to solid. 

8. Once the gates are frozen, no further feeding takes place and solidification of the heavier sections 
continues in the part and the biscuit. 

9. Upon solidification, the ejection platen retracts opening the die.  The die is designed such that the 
casting (part, runners, and biscuit) rides with the ejector half of the tooling.  The ejector plate is 
pushed forward driving ejector pins to free the part from the ejector half into a robotic gripper. 

10. The extraction robot tends to post processing routines such as quenching, identification pin-
stamping, trimming, and loading an exit conveyor.  Once the extract robot is clear, the spray cycle 
is initiated, and the process begins again.  Typical cycle times for large tonnage HPDC machines 
(>1600 ton) are in the range of two to three minutes. 

HPDC is rich for data mining.  Useful data can be pulled from the controllers of each piece of equipment 
in the cycle.  Blondheim estimates that there are over 300,000 data which can be captured for each cycle 
[52].  If one includes thermal imaging data of the die cavity and the individual data points which make up 
the shot trace, this number explodes to over 2M input variable data per cycle.  A reasonable estimate for an 
annual volume on one die casting machine is 100,000 cycles.  That would equate to two-hundred billion 
data points per machine per year.  Clearly, amassing features is not the challenge.  Learning which features 
are most important and collecting enough observations to be sure of it is where the difficulty resides.  
Annual production volume of 200,000 pieces per year is a large number for HPDC but it is not Big Data.  
Small data presents challenges in the machine learning space and this thesis will serve to expand our 
understanding of these challenges and how to deal with them.  This topic is covered in more detail in  
Appendix C of this volume. 

 

IV. Application of Machine Learning to Die Casting 

The high productivity nature of HPDC, where manufacturing outpaces the feedback the operation receives 
from quality checks and subsequent operations, is the right environment for applying machine learning 
tools to process data.  Die casters would like to know which input variables are most important to control 
in their process and which outputs should be measured.  They want to be confident that the process is in 
control and making quality castings.  To keep costs low, it is preferable to add controls and measures to the 
casting process rather than add inspection and measurements post casting.  It would be advantageous to 
know when equipment is running optimally and precisely when it is wearing out.  To realize these benefits, 
the foundry industry must understand which machine learning tools fit their data environment. 

Early applications of machine learning to HPDC center on the application of neural networks to predict 
virtual process outputs.  Rai et al.. used supervised learning by creating datasets with process simulation 
software and then teaching a neural network to predict cavity fill time, solidification time, and porosity 
based on the process inputs of melt and die temperature and slow and fast shot velocities [53].  They found 
that the results of the neural network model compared well to those generated by commercially available 
finite element mesh-based simulation software but did so in near real time.  Similarly, Yarlagadda et al.. 
predicted fill time from the melt temperature, die temperature, injection pressure, and casting weight with 
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a neural network trained via process simulation software and went a step further by including domain 
expertise from casting specialists [54].  Their predictions matched very closely to actual production die 
castings. 

This is a worthwhile endeavor; however, simulation software packages are built utilizing assumptions 
which generate useful direction in building die casting tooling and choosing initial process settings.  During 
process development, parameters are tuned more finely to optimize part quality.  This tuning is done based 
on domain expertise and the results of actual castings.  It is reasonable to expect a machine learning or deep 
learning algorithm to find the rules the simulation software is using and make very similar predictions.  The 
next step is to apply the algorithms to serial production castings and determine which input variables are 
driving quality or mechanical performance metrics and direct the process engineer how to tune the process 
for best results. 

The leap between the computationally trained algorithms and algorithms trained on observational data from 
casting operations may seem daunting.  There are many variables which are not monitored or controlled on 
the factory floor (ambient environment, die temperature, cooling water flow rate) which either are not 
included in the simulation, can be held constant, or are tracked as an output.  In a controlled experiment 
where 413-alloy aluminum is cast into simple cylindrical geometry under three levels of squeeze 
(intensification) pressure, die preheat temperature, and molten metal temperature, Soundararajan et al. were 
able to train and test a neural network predicting the UTS and YS of extracted tensile bars with a correlation 
coefficient of 0.95 and 0.96 respectively (Figure 12) [55].  In their experiment, the selected levels represent 
a wider range of process inputs than one might encounter on a fully developed production process.  The 
objective is to see changes in the casting and have an algorithm learn and predict these changes.  A 
production process, however, has one set of parameters.  The objective is that there are no changes in the 
castings, part after part, 24/7.  Predicting the UTS variation of each sample accounting natural process 
variation is a more difficult problem.  This type of research lays the foundation from which the industry 
can build and develop algorithms which predict the UTS of serial production castings with low variation in 
input parameters.   

A European research consortium called MUSIC (MUlti-layers control and cognitive System to drive metal 
and plastic production line for Injected Components) planned to investigate a broader range of process 
inputs via data analytics of experiments conducted on a highly instrumented HPDC cell.  Results presented 
at the 2015 NADCA Die Casting Congress confirm our understanding about the effects of intensification 
pressure on porosity [56].  However, thus far, no predictive modeling based on experimental training data 
have been published.  The application of machine learning tools to observed HPDC production data remains 
uncharted territory in the literature. 
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Figure 12.  Soundararajan et al. demonstrate the possibility for an ANN to predict 
mechanical properties of castings based on input parameters [55]. 

 

V. Literature Review on Input and Output Variables in HPDC 

For a HPDC company to be successful, they must produce good quality castings.  One may ask, what 
measurable outputs constitute a good quality casting?  A quality engineer will answer that a quality casting 
is one that meets the drawing and engineering specifications provided by the customer.  Based on this 
definition, the acceptance criteria from one part to the next will vary according to the service requirements 
of the casting.  Drawings and engineering specifications set the values and tolerances a foundry must target 
for acceptance by the customer.  Examples include dimensions, surface finish, mechanical properties, 
hardness, internal soundness, and pressure tightness.  Any of these can be considered as outputs for machine 
learning.   

Dimensions are checked routinely at beginning and end of shifts and production runs in addition to die set-
ups and in the case of die maintenance performed mid-run.  Typical methods of dimension checks are via 
a coordinate measurement machine (CMM) or 3-D scanning technology.  Surface finish is more often an 
issue as the die cavity begins to reach end of life.  The steel die experiences thermal fatigue cracking on the 
surface which results in rougher and rougher casting surface [57].  Cast comparators and stylus 
profilometers are commonly employed to assign a roughness measure (Ra) to the part [58].   
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Alloy composition is a process input which is called out on engineering drawings.  The specified alloy ties 
directly to mechanical properties and hardness as it is often the purpose of the elements added to the 
aluminum to drive these characteristics.  Regular mechanical property testing is not typically required in 
traditional HPDC, but frequently is performed in other aluminum casting processes [59]–[61].  Even so, 
new structural applications in HPDC have increased industry awareness regarding specifying and 
measuring mechanical properties [46], [62], [63].  Tensile testing via methods outlined in ASTM B 557 is 
the accepted method for capturing yield strength, ultimate tensile strength, and elongation [64].  
Microstructure is another measurable output which may be called out as a required range in grain size, 
eutectic silicon modification rating, and porosity limits [65]–[67].   

Of the possible process outputs in HPDC which affect part performance, the amount of porosity and 
mechanical properties are the most widely studied.  Many HPDC components have a fluid containing or 
transport function.  Pump bodies, oil sumps and pans, compressors, valve bodies, various housings, and 
engine blocks are common examples.  Porosity is the leading scrap issue for such parts and die castings in 
general (Figure 13) [68].  When these components are machined the porosity is exposed.  Exposed porosity 
on sealing surfaces has the potential to undermine sealing gasket function.  Interconnected porosity can link 
one machined surface with another creating an unacceptable leak path.   

 

Figure 13.  Quality issues with die castings [68]. 

It is of great importance that die casters gain as much knowledge about the root causes of porosity and how 
to avoid it in regions of the part where it is not allowed.  It is widely known that the presence of porosity 
decreases the mechanical properties of tensile testing specimens, and this connection is often made in the 
literature (Figure 14).  One may quantify porosity in terms of amount, or one may measure mechanical 
properties and link the lower performance test to increases in porosity [69]–[75]. 
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Figure 14.  Tensile strength suffers with increasing area fraction of defects at the fracture 
[69]. 

In the North American Die Casting Association (NADCA) Operator Training course, students are taught 
that porosity can be generally assigned to two sources:  gas and solidification shrinkage [42].  Gas porosity 
sources can be further broken down into entrapped air, gas from process lubricants, and hydrogen gas from 
the aluminum melt [76]–[78].  Shrinkage porosity results from the volume contraction during solidification 
and is more problematic in thicker regions of the casting which solidify last, after feed paths have been 
frozen off [77], [79], [80]. 

It is important to note that the condition of the starting melt plays a role in determining the resulting 
mechanical properties and porosity in the castings [65], [76], [81], [82].  Inclusions, such as oxide films 
and sludge, in the melt provide nucleation sites for hydrogen gas and block feeding paths exacerbating 
shrinkage [83]–[85].  The old phrase “garbage in, garbage out” certainly holds.  This research is not focused 
on melt cleanliness as an input.  The die-casting facility where these engine blocks are cast uses industry 
best practices in melt preparation and furnace maintenance.  For the purposes of this research, the melt 
cleanliness is taken to be of high quality and practically constant.  By making this assumption, the presence 
of porosity or mechanical property degradation due to hydrogen gas or inclusions in the melt are 
incorporated in the background noise of the data and not expected to be a cause of significant shifts in the 
results. 

Gas from process lubricants can be severe [86], [87] , especially in manually operated die casting equipment 
where the amount of lubrication applied can vary from operator to operator and cycle to cycle.  Fully 
automated HPDC work cells, such as those used in the generation of the data in this work, control the 
application and amount of lubricant very accurately [88].  Equipment issues will occur over normal 
production which lead to an increase in porosity.  Leaking die spray manifolds, a leaking water line from a 
cracked die component, a damaged tip lube applicator, and heavy application of anti-solder compound on 
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the die are all issues for which die casters must be on the alert when a sudden increase in porosity shows 
up in their castings.  What is common about these sources is that they arise and are remedied upon detection.  
They tend to affect most, if not all, castings while the issue is active. 

While hydrogen porosity and external gas evolution can be argued to be in control and, for our purposes, 
constant, air entrapment is a different story.  The two main sources of air in die castings are air being mixed 
with the metal in the cold chamber and die cavity air being mixed with the metal due to the turbulent filling 
of the mold [89].  In a 1979 study of process parameter effects on the density of A380-alloy HPDC castings, 
Garber and Draper established the baseline understanding of the importance of fast shot velocity, 
intensification pressure, die temperature gradient, melt temperature in the holding furnace, and die open 
time [90].  They report that decreasing the fast shot velocity and increasing the intensification pressure have 
the greatest effects on the improving the bulk density of their castings.   They found only a small influence 
from die temperature gradient.  With the exception of die temperature, the parameters they chose remain 
perhaps the most widely captured process input parameters in the industry today.  The following paragraphs 
detail what researchers have found in relating die casting inputs to mechanical properties. 

Effect of HPDC Process Parameter Inputs 

Vacuum 

Die casters have utilized vacuum assist to facilitate removal of air from the cavity during filling.  The 
concept involves connecting a vacuum pump to the venting system of the die to draw out the cavity air and 
any evolved gases ahead of the advancing metal once the plunger passes the pour hole.  Most producers in 
the business of structural automotive die castings, which require the best mechanical properties in the 
industry, are employing a vacuum assisted method [91], [92]. 

Early quantitative studies showed that applying vacuum in the die cavity increased castings density and the 
ultimate strength of HPDC components [93].  Another study from the same research center showed that 
process parameter variation (e.g. shot velocities and intensification pressure) had an overriding effect on 
the density results which masked the effect of the vacuum, however, parts cast under vacuum did show an 
improvement in leak testing [94].  In a more recent work, Cao et al. cast engine blocks while varying the 
vacuum over a range from 100 to 500 mbar holding all else constant.  They observed an increase in 
elongation and tensile strength as well as reduced porosity as the amount of vacuum is increased [95]. 

Slow Shot Velocity 

The amount of mixing in the cold chamber is controlled by two parameters, the “percent full” of the cold 
chamber and the velocity of the plunger at the initiation of the cycle.  The term “percent full” refers to how 
full the cold chamber is with molten alloy for each cycle.  The fuller the cold chamber is with alloy, the less 
air there is to be potentially entrapped.  NADCA recommends 50-70% full to minimize air entrapment 
during slow shot [42].  Slow shot is the term given for the initial plunger velocity setting and travel distance 
at the beginning of the cycle.  Alloy is ladled into the pour hole of the cold chamber just ahead of the 
retracted plunger tip.  The molten alloy runs along the length of the cold chamber until it meets the parting 
line of the die.  At this point a wave is ricocheted back toward the plunger tip.  Timing is key and the 
plunger forward motion is initiated when the ricochet wave meets the tip.  A proper slow shot velocity will 
maintain a built-up wave at the face of the shot tip and push all the chamber air out ahead of it through the 
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cavity and vents [42], [96].  Too fast and the wave will roll entrapping air.  Too slow and the wave will 
disengage from the tip and bounce back entrapping air.  Important process inputs to include in a machine 
learning model from this phase are slow shot velocity and biscuit length which is an indication of the amount 
of metal poured. 

Slow shot velocity has typically been studied in efforts to control the wave motion in the cold chamber.  
Thome, Brevick, and Chu comprehensively modeled the wave formation and its relationship to air 
entrapment accounting not only for a critical velocity for a stable wave front but also a critical acceleration.  
While actual critical values are dependent on cold chamber geometry and the amount of metal poured, 
accelerating to reach the critical velocity too quickly will result in instability and roll over [89].  Verran et 
al.. conducted analysis of the slow shot velocity, fast shot velocity, and intensification pressure with respect 
to their influence on porosity and cold shuts.  They compared density and visual porosity ratings to numeric 
simulations and determined that low porosity results from low velocity in both slow and fast shot in 
combination with high intensification pressure [97].   

Fast Shot Velocity   

The second source of entrapped air is from the die cavity during filling.  As the plunger continues to move 
forward, it is accelerated though an intermediate transition from the slow shot velocity to the fast shot 
velocity.  Fast shot is the term used for the portion of the cycle where the cavity is filled with molten alloy.  
The positions at which the velocity changes take place are determined by volume calculations or with the 
aid of process simulation software.  The objective is to have the plunger at the desired fast shot velocity 
when the molten metal reaches the entrances into the cavity (the gates) [98], [99].  The cavity fill time is 
measured on the order of milliseconds.  A cavity space in the shape of an engine block will accept roughly 
40 pounds of aluminum in one tenth of a second.  It is fascinating that, while filling a cavity in fractions of 
a second and applying enormous intensification pressure, die castings can exhibit incomplete fills, misruns, 
or “cold shuts”.  At the low end of what one might traditionally use for fast shot velocity Verran et al. 
observed cold shuts at 1.23 m/s which were eliminated at 1.95 m/s [97].  Cleary, the high velocities are 
necessary, and 3-5 m/s is typical for the industry [42].  The complex geometry and high fill velocity combine 
to yield a highly turbulent filling pattern.  While it is turbulent, the filling is not chaotic.  Software packages 
simulate the filling pattern quite closely [100]–[102].  Based on the simulated results venting is placed at 
the edges of the casting to allow as much cavity air as possible to escape ahead of the advancing alloy.  
Intermediate and fast shot velocities and cavity fill time are expected to influence porosity and, thus, 
mechanical properties. 

When it comes to linking fast shot velocity to porosity, the results in the literature are mixed and details on 
the venting strategy in the tooling are not always reported.  Gate velocities are also reported in the literature 
in lieu of plunger velocity.  Increased plunger velocity results in increased gate velocity as shown by the 
equations below: 

𝑣𝑜𝑙𝑢𝑚𝑒𝑡𝑟𝑖𝑐 𝑓𝑖𝑙𝑙 𝑟𝑎𝑡𝑒 = 𝐴𝑟𝑒𝑎 ∗ 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦   Eq. 1 

𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 =
.  

     Eq. 2 

 



 

A-21 
 

Dargusch et al. reported no clear trends linking fast shot velocity to porosity in the castings of their study 
of intensification pressure effects [103].  In another study, Okayasu and his team looked at gate velocities 
which at the low to very low end of what is viable in production (0.15-40 m/s).  The connection to the 
plunger velocity is not given in the paper.  High speed cold chamber die casting had lower mechanical 
properties than their “ultra slow” speed die castings.  They attribute this difference to scattered chill 
microstructure structure (e.g. cold flakes) from the metal solidifying the chamber of the shot sleeve [104].  
In Lumley’s study on heat treatment of high pressure die-castings, he varied the gate velocity and found 
that increased gate velocity lead to improved mechanical properties upon heat treatment [105].  
Gunasegaram et al. proposed that increased injection velocity paired with properly designed gating results 
in fragmentation of impurities such as oxides, air bubble, and cold flakes due to the resulting higher shear 
rates and turbulent energy dissipation during flow.  The more broken up and dispersed these were, the better 
the properties would be.  They found that higher UTS and elongation were achieved with higher injection 
velocity [106]. 

Intensification Pressure 

Intensification pressure is applied at the end of the injection cycle to squeeze liquid metal from the thick 
biscuit and runners into the void space formed by contraction of the solidifying metal in the cavity.  While 
the gates remain open and a feed path exists, shrinkage porosity can be supplied with additional metal.  
Once the feed path is frozen, typically this is at the gates but could be within the casting itself, thicker 
sections which contain liquid alloy cannot be fed and the result is shrinkage porosity.  The amount of applied 
intensification pressure is typically in the range of 25 to 50 MPa (3500-7500 psi) [42].  Because the regions 
from which tensile bars can be extracted tend to be thick sections, microporosity from volumetric shrinkage 
is likely to be present.  Thus, variation in the intensification pressure can be expected to influence porosity 
and, thereby, mechanical properties of the tensile bar. 

The literature is consistent on the effect of intensification pressure.  The higher the applied pressure during 
solidification, the better the mechanical properties, particularly ultimate tensile and yield strengths [107], 
and the less porosity is observed [97], [103], [108], [109].  Asquith reports that the relationship between 
intensification pressure and bulk porosity in the casting is linear [110] and follows the formula published 
by Kaye and Street in their book Die Casting Metallurgy [111]:   

% Porosity = a/P +b      Eq. 3 

Where P is the intensification pressure and a and b are empirically determined constants.  The amount of 
intensification pressure available to apply in practice, however, is limited by the size of the die casting 
machine and the projected area of the casting itself [112].     

Thermal Inputs 

At its simplest, any type of casting is solidification processing.  The fundamental laws of heat transfer 
dictate the solidification journey of a cast component.  The initial thermal state of the system set the 
boundary conditions for the piece to be cast.  Thermal inputs to the HPDC process include the ambient 
temperature of the factory, the holding temperature of the molten alloy, and the temperature of the die.  
Additional thermal inputs are the details of the die cooling system which determine the rate at which heat 
is removed from the system.  Thermal effects of the die spray application are also considered.  The durations 
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of time over which heat removal can take place are also inputs.  Examples include the time the cooing water 
is on, die spray time, die open time, and delay time between retrieving alloy from the furnace and pouring 
the alloy.  Of these, few are captured as data from shot to shot.  Passive control tends to be the norm where 
a piece of equipment is programmed to do a task and send a signal that it has returned home.  The next 
piece of equipment looking for that signal as an indication to “go” usually operates with a buffer where, if 
it takes too long to see that signal, it relays that something is wrong.  This buffer is generally set to such a 
duration as to minimize a technician returning to the machine repeatedly to reset the same, perhaps benign, 
fault condition.  For example, it may be that when a 40 second task takes 60 seconds, notification is given 
vie error message.  However, smaller variations in time are forgiven, but may impact the thermal condition 
for the following cycle. 

Of the thermal inputs introduced above, in practice and in the literature, melt temperature is the most 
captured and investigated.  dos Santos et al. investigated combinations of melt temperature (579-709 C) 
and intensification pressure for AlSi9Cu3(Fe) (A380 alloy) and found that the porosity tends to increase 
with increasing melt temperature at high pressure, but no strong relationship was observed at low pressure 
[107].  Yang reports similar results in squeeze casting of near-eutectic aluminum silicon alloys with respect 
to mechanical properties; generally, the lower the melt temperature the better the mechanical properties 
[113]. 

The temperature of the die is difficult to fully characterize.  A thermocouple can be used to capture the 
temperature in a specific location of the die, or several can be employed to get a better representation.  The 
shortcoming of this is that the metal is affected not only by the temperature of the die where it came to rest, 
but every part of the die it encountered along the way.  Thermal imaging shows the temperature profile of 
the entire cavity surface within its view but is cost prohibitive to widely employ.  For this reason, researchers 
have long evaluated conditions which impact the die temperature, or otherwise alter the rate of heat 
extraction from the casting, by measuring the grain size or the secondary dendrite arm spacing (SDAS) of 
the resulting microstructure [66], [114].  These measures indicate the solidification rate of the casting.  
Solidification rate is highly influential on the mechanical properties of metals as fast solidification results 
in small grain size.  Per the well-known Hall-Petch equation (Equation 4), smaller grains (and smaller 
SDAS) increase the yield strength of metals.  This has been confirmed in HPDC 380 alloy [115], [116] and, 
specifically, on engine block castings [117].   

𝜎 = 𝜎 +
√

       Eq. 4 

Where: 

 𝜎  is the yield stress of the material 

 𝜎  and 𝑘  are materials constants 

 𝑑 is the grain size of the microstructure 

Effect of Alloy Composition 

Alloy composition follows the specifications of a registering body, such as the Aluminum Association, for 
popular die casting alloys such as A380, A383, B360, and 413 [118].  These specifications call out the 
elemental composition of the alloy in weight percent and the allowable range for each element.  In some 
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circumstances, a tighter range may be specified by the customer, but this is rare due to the added costs 
associated with “off-spec” compositions.  For HPDC, the most common family is the 300-series alloys 
which are primarily alloys of aluminum (Al), silicon (Si), and magnesium (Mg).  Variants of Aluminum 
Association 380 alloy are often used in automotive powertrain castings like engine blocks and transmission 
housings.  E380 is the alloy used in the engine blocks for this research.  Additional alloying elements present 
in 380-type alloys include copper (Cu), zinc (Zn), iron (Fe), and manganese (Mn).  Other trace elements 
are present as well.  Trace elements are controlled to low levels as they are typically undesirable in the alloy. 

The standard practice for measuring alloy composition is optical emission spectroscopy (OES) [119].  In 
OES, a sample of molten alloy is taken from the furnace and poured into a special mold which forms a test 
coupon casting.  The test coupon is typically 2.5-3.0” in diameter and 0.5” thick.  The surface is ground or 
machined and the OES uses a tungsten electrode to spark the prepared surface of the coupon.  The light 
emitted from the spark is analyzed to determine the composition of the alloy.  The purpose for laying out 
the steps of the test is to illustrate that the process is slow compared to production casting rates, thus it is 
not feasible to use OES as a method of capturing alloy composition on each part.  Laser Induced Breakdown 
Spectroscopy (LIBS) is an interesting alternative method which would allow for real time collection of 
compositional data in the furnace for each part cast [120].  Its use is not widespread in die casting operations, 
though there is a real opportunity for data collection with LIBS in launder fed systems.  The effects of 
various alloying elements in aluminum are described in the following paragraphs. 

Silicon (Si) 

In 380-type alloys, the largest elemental addition is Si with a nominal composition of 8.5% by weight.  
Because blending an alloy to a precise weight percent of each element is not practical, alloys are specified 
by an allowable range or a maximum allowable composition.  For Si, that range in 380-aluminum is 7.5-
9.5 wt%.  Silicon plays an important role for die-cast aluminum alloys.  Aluminum and silicon form a 
eutectic phase which increases the freezing range of the alloy.  Long solidification range alloys have 
beneficial feeding characteristics.  As a metal undergoes the phase transformation from liquid to solid, the 
volume contracts.  This phenomenon is commonly called shrinkage.  In long solidification range alloys, 
there is plently of liquid eutectic to feed the length of the mushy (solid + liquid) zone.  Regions in the mushy 
zone which freeze off before being fed are small, even microscopic.  This shrinkage, called microshrinkage, 
is preferred for die casting where there are no risers and limited means by which to feed the shrinking 
casting.   Therefore, Si is an important element used to minimize the size of porosity and increase the 
castability [121]–[123].  The high melting point of Si imparts strength into the alloy at high temperatures 
allowing for parts to be ejected from the steel dies very shortly after solidification is complete [42]. 

The mechanical properties of Al are affected by additions of Si up to 7.0 wt%; strength increases and 
elongation decreases [124].  Additions beyond 7.0 wt% up to the eutectic composition of 12.7 wt% do not 
significantly increase the strength of the alloy [65], [124], [125].   

Magnesium (Mg) 

In the traditional die casting workhorse alloy A380, the Mg is held to a 0.1% by weight maximum.  Similar 
alloys in other regions of the world such as ADC10 in Japan and ISO AlSi8Cu3Fe have long allowed a 0.3% 
by weight maximum Mg content [126].  E380 is an Aluminum Association designation which allows for 
the same 0.3% Mg as the international specifications.  Magnesium combines with silicon to form an 
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effective precipitation hardening compound via T6 heat treatment in sand and permanent mold cast 
aluminum-silicon alloys which contain no copper.  Magnesium is removed by common fluxing processes 
used for cleaning alloys in the smelting operation.  Since traditional high-pressure die-castings were not 
heat treated, there was no cause to replace the Mg loss.  Interest in investigating elevated Mg effects in 
traditional die-casting alloys peaked in the 2000’s with a focus of gaining strength through precipitation 
hardening via heat treatment [105], [116], [127].  Yang et al. examined the effects of Mg on mechanical 
properties in Al-Si-Cu alloys as its weight percent was increased over the range of 0.01% to 0.88% [128].  
They found that as the Mg level was increased, the yield strength and ultimate tensile strength increased.  
In the as-cast condition, additional Mg increased both strength values through the range, however, the 
impact on UTS was less.  While strength increased, the elongation dropped.  Once T6 heat treated, the 
addition of Mg beyond 0.3% offered no strength benefit and elongation continues to drop with increased 
Mg.  Increased strength at the expense of elongation associated with increased Mg levels has been observed 
across similar alloys and other casting processes [116], [129], [130].  Fabrizi et al. examined the effect of 
various alloying elements on AlSi9Cu3(Fe) die-casting alloy [131].  They report an interesting 
interrelationship between the Cu, Strontium (Sr) and Mg content on the amount of microporosity in the 
resulting castings.  While Cu and Sr were found to increase the porosity, additions of Mg were observed to 
counteract this phenomenon.  Porosity analysis showed that adding Sr to a nominal AlSiCu3(Fe) alloy 
increases the porosity nearly three times.  Doubling the Mg of this alloy from 0.24 to 0.46 wt% counteracted 
the Sr effect completely.  Subsequently, increasing the Cu content of the alloy with added Mg brought the 
porosity nearly back where it was with the Sr addition alone. 

Copper (Cu) 

Aluminum-Copper alloys hold great promise with some of the the highest mechanical properties 
commercially available in a lightweight aluminum alloy, but they are challenging to cast because they 
behave in the opposite manner of AlSi alloys.  AlCu alloys have a short freezing range which allows near 
complete feeding of the mushy zone.  The challenge arises at the end of solidification when the shrinkage 
porosity is concentrated in the last areas to solidify.  This porosity can be quite large macroporosity.  There 
is so much concentrated volume contraction that the casting can literally pull itself apart in a phenomenon 
called hot tearing [77], [132].  Sand and semi-permanent mold casting processes use insulated risers to 
continue to provide feed metal into these areas.  HPDC has no such flexibility and, therefore, AlCu alloys 
are not used in HPDC.  This however does not preclude Cu from being added to AlSi alloys like 380, which 
allow 2-3 wt% Cu.  Copper is added to 380-type aluminum alloys to impart strength and hardness in the 
absence of Mg [130].  In some alloys, Cu is restricted to improve the corrosion resistance of the alloy, 
particularly in marine applications [133]. 

The main influence of Cu content in aluminum alloys is its connection to porosity.  Numerous studies have 
shown that microporosity increases with increasing copper content [108], [131], [134]–[136].  The cause 
of the increased porosity is generally attributed to the formation of a low melting point AlCu eutectic which 
solidifies after the feed paths for intensification pressure have been frozen off.  The resulting volume 
contraction is observed as microporosity [137]. 

Iron (Fe) 

It has been long understood that Fe is a bad actor negatively impacting the ductility of Al-Si-Mg alloys 
[138], [139].  The reason is attributed to the morphology of the intermetallic β-phase which it forms in 
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combination with Mg and Si [139]–[141].  The relatively large plate-like geometry is a microstructural 
stress concentrator embrittling the alloy.  Seifeddine and Svennsson sought to predict mechanical properties 
of Al-Si alloys based on Fe content.  A354 was studied with Fe between 0.35 and 0.65 wt% which is where, 
or toward the high end of where, structural die casting alloys are specified.  They found that elongation is 
reduced with increasing iron content, however, the levels studied did not impact the yield and ultimate 
strength of the alloy [141]. 

Despite this knowledge, Fe concentrations of up to 1.3 and even 2 wt% are allowed in many die casting 
alloys.  The necessity of Fe in 300-series die casting alloys is that it remedies parts being stuck to the die 
surface.  This sticking has been shown to accompany the presence of iron-containing intermetallics.  
Consequently, the mechanism for sticking and soldering of aluminum parts to the die steel has been 
approached from the thermodynamics of phase formation [142]–[144].  Aluminum has a high affinity for 
Fe; a fact commonly observed in foundries where molten aluminum dissolves steel foundry tools such as 
skimmers and ladles.  It has been long accepted that Fe pre-existing in the molten alloy would mitigate the 
driving force for further reaction between the molten aluminum and the die steel.  Current research at 
Michigan Technological University by Monroe and Sanders challenges this understanding [145].  
Nonetheless, Fe does provide a service in preventing parts sticking to the die steel even if the mechanism 
is under debate. 

Manganese (Mn) 

The amount of manganese in the alloy in relation to the Fe content can be chosen to promote the 
intermetallic α-phase.  Donahue has shown that there is a critical ratio at which the β-phase formation is 
suppressed, and the morphologically favorable α-phase is formed [50].  The sweet spot for alloy smelting 
control is to keep the Mn around 0.35 wt% and the Fe below 0.40 wt%.  Li et al. observed that morphology 
of the iron intermetallics are influenced by Fe and Mn content in gravity die casting as well.  Increasing the 
ratio of Mn (0.01 to 0.51%) to Fe (0.14 to 0.80%) from 0.07 to 0.64 led to an increase in the ratio of alpha 
to beta intermetallics [146].  Modern structural die-casting alloys, such as A367, take advantage of this 
relationship to reduce the Fe content and increase the ductility of the alloy. 

 

VI. Prediction Target Selection (Ultimate Tensile Strength) 

The published research on the impact of alloy compositions and process parameters is a sizeable collection.  
Ultimately, the impact is determined by a measurable quantity.  Mechanical properties are all-encompassing 
measures of the microstructural features, solidification discontinuities, and porosity from processing effects.  
Efforts to determine predictive equations have been performed to either predict mechanical properties from 
microstructure features and discontinuities or get a better sense of the microstructure and defect population 
from the mechanical properties.  Okayasu et al. evaluated cast microstructures for SDAS, microporosity 
rating, diameter of eutectic structures, aspect ratio of eutectic structures, and dislocation density and found 
that, via multiple regression analysis, equations generated can predict UTS accurately [147].  Such work is 
interesting to predict mechanical properties from microstructural features, but too time consuming for 
characterizing each casting (i.e. from a coupon).  It would be beneficial to the industry to have a similar 
model for process input parameters, and a method to develop such an equation for each casting. 
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Surrapa published his work on the effect of macroporosity at the fracture surface on tensile properties in 
gravity die cast samples.  He reported that the projected pore area on the fracture surface was more 
significant than the bulk porosity calculation one might perform from a density measurement [148].  
Caceras numerically modeled this behavior [149].  This work has expanded to apply similar methods to 
include the effects of microporosity at the fracture surface on the variability of tensile properties [69]–[72], 
[74], [75].  Unfortunately, no articles were discovered during this literature search applying the analysis to 
HPDC A380 alloy.  An operational challenge is that this practice requires the destruction of a casting to 
measure the mechanical properties.  However, for many foundries quantifying digital X-rays manually can 
be arduous and, ultimately, subjective [150]–[153].  On a sample basis, measuring the UTS in the area of 
interest as a quantitative value which can be connected to an indication of porosity via empirically 
determined formulas would benefit the die casting industry.  Only an indication of porosity, though, since 
projected porosity is an area measure and actual porosity is a volumetric quantity.  If a predictive model for 
UTS can be generated based on process input data, the UTS values can be converted to this porosity metric.  

 

VII. Gap in the Literature 

In the highly controlled experiments in the literature, it is generally assumed that the process should run as 
consistently as possible.  Several cycles, perhaps 5 to 10, are run to achieve a thermal steady state before 
collecting samples for investigation.  The number of samples collected for analysis tends to be small, less 
than 50.  The industry has gained much from these studies, but there are some potentially significant 
parameters which cannot be accounted for in lab-scale or development-cell scale operations.  In the late 
1990’s Balasubramaniam applied statistical analysis to 27 casting variables from regular production and 
found that higher intensification pressure rise time and lower cycle time were key inputs which improved 
the part density[154].  Interestingly, these parameters do not show up in any of the studies presented thus 
far.  This highlights the need for more research in high-dimensional studies. 

Die casting is a thermal process and time is an important factor that is often overlooked or simply held as 
constant as possible, but rarely measured and reported.  The impact of variation in overall cycle time or 
timers for specific segments of the cycle are not published.  Time impacts the die temperature.  Running 
shorter cycle times will put more heat into the die raising the die temperature.  But overall cycle time is not 
the whole picture.  Increasing cycle time by increasing the dwell time (the time between casting and part 
ejection) will also put more heat into the die.  Thus, it depends not only on if time is changing but when 
time is changing. 

Variations in the process occur over serial production of shaped castings which have not been investigated.  
For example, in a small-scale tensile-bar casting study, the furnace level changes very little from the first 
shot to the last.  Conversely, in production casting, the level in the furnace can drop (8 in) before being 
refilled (Figure 15).  This can result in variation in the amount of metal delivered by the ladle [155].   
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Figure 15.  Variation in furnace level in production operation is not experienced in small-
scale experiments.  

Longer term variation effects are less obvious without careful data collection and monitoring.  For example, 
as the equipment wears, its ability to deliver the programmed performance diminishes until the next 
scheduled maintenance is performed.  Perhaps a die spray unit gradually slows down until it is greased.  
This may result in a longer cycle time which is difficult to diagnose without the proper data.  These 
intricacies of the HPDC process and their effects on part quality require large, production-sized, datasets to 
understand. 

For this research, the process data from one calendar year of engine block production along with the 
mechanical property quality checks were generously provided by the FCA Kokomo Casting Plant.  The raw 
data is comprised of over 950,000 casting cycles and over 1600 tensile bar test results.  Included in the 
process inputs are many of the process parameters shown to be significant in the literature with respect to 
tensile properties and porosity including average slow and fast shot velocities, intensification pressure, melt 
temperature, and cycle time.  A complete list can be found in at the end of Appendix C – Approach and 
Methodology.  The goal of this project is to apply machine learning to the datasets and uncover the 
challenges associated with materials processing datasets.  It is important to determine which machine 
learning tools work well with the type and size of data collected in HPDC operations.  These findings will 
be based on our attempts to predict mechanical properties of extracted tensile bars from engine block 
castings and learn which process parameters are most important for making accurate predictions. 
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Abstract 
 

Artificial Intelligence (AI) is integral to Industry 4.0 and the evolution of Smart Factories. To 
realize this future, material processing industries are embarking on adopting AI technologies into 
their enterprise and plants; however, like all new technologies, there is always the potential for 
misuse or the false belief that the outcomes are reliable.  The goal of this paper is to provide context 
for the application of machine learning to materials processing.  The general landscapes of data 
science and materials processing are presented, using the foundry and the metal casting industry 
as an exemplar.  The challenges that exist with typical foundry data are that the data are 
unbalanced, semi-supervised, heterogeneous, and limited in sample size.  Data science methods to 
address these issues are presented and discussed.  The elements of a data science project are 
outlined and illustrated by a case study using sand cast foundry data.  Finally, a prospective view 
of the application of data science to materials processing and the impact this will have in the field 
are given. 
 
 

I. Introduction 
 

The fourth industrial revolution that ushered the Internet of Things (IoT) and the Internet of 
Services (IoS) has come to be known as Industry 4.0.  At the Hannover Messe in 2011, Germany 
launched a project called “Industrie 4.0” designed to fully digitize manufacturing. The larger 
vision of Industry 4.0 is the digital transformation of manufacturing, leveraging advanced 
technologies and innovation accelerators in the convergence of IT (Information Technology) and 
OT (Operational Technology).  The purpose is to integrate connected factories within industry, 
decentralized and self-optimizing systems and the digital supply chain in the information-driven 
cyber-physical environment of the fourth industrial revolution [1], [2]. The evolution toward 
Industry 4.0 is given in Figure 1.  
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Figure 1. Industrial Revolutions [1]. 

 
The initial goals of Industry 4.0 typically have been automation, manufacturing process 
improvement and productivity optimization. The more advanced goals are innovation and the 
transition to new business models and revenue sources using information technologies and services 
as cornerstones. These developments will transform manufacturing plants into smart factories or 
foundries.  Three keystone digital technologies will enable the transformation to smart factories: 
(i) connectivity, which implies executing industrial IoT to collect data from various segments of 
the plant; (ii) intelligent automation which includes advanced robotics, machine vision, digital 
twins, distributed control; and (iii) cloud-scale data management and analytics (AI and Machine 
Learning) [3]. 
 
In the metal processing field, particularly in the metal casting industry, whether it be ferrous or 
non-ferrous foundries, many data are collected at various locations within the plant.  However, 
these data are usually siloed within operational departments without an intentional strategy for 
data fusion and transformation into knowledge.  It is a fact that many of our plants and plant 
infrastructures were built prior to the rise of data science capabilities and tools.  The time is now 
to make the transformation of our plants into smart factories in the context of Industry 4.0.   
 
In this paper, our goal is to establish some context of AI and machine learning and how it can be 
appropriately utilized in materials processing where physical laws govern the process.  We use 
metal casting as an example in this work as it is a well-established industry from which we have 
access to process data via the industrial membership of the Advanced Casting Research Center at 
UCI. In metal casting, the quality of the final product is influenced by many factors: metal 
composition, processing conditions, the solidification journey where transport phenomena 
influence the resultant microstructure, post processing treatments, etc. Even with our 
understanding of the materials processing world, working with its manufacturing data is not 
without challenges [4]. Because the industry is well-established, the foundries do not produce 
components with many defects. In other words, scrap rates are low, making it difficult to utilize 
algorithms, based on supervised learning, which learn from successes and failures [5]. This is 
where the need for using machine learning algorithms that can treat unbalanced data arises. 
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Moreover, real-world manufacturing processes are complex and appropriate data may not always 
be available for all parts. Accordingly, the need for advanced unsupervised or semi-supervised 
machine learning algorithms also exists [5].  Section II describes these types of algorithms in detail. 
In this work, we want to show how these techniques can be used to answer the questions: How can 
we develop algorithms and apply AI/Machine Learning to processes where one does not have 
many defective, or otherwise labeled, parts to teach and learn from? It should be noted that the 
fundamentals and the principles presented here are applicable to a host of manufacturing processes. 
 

II. The Landscape of Machine Learning 
 
What is Machine Learning? 
Machine learning is a branch of Artificial Intelligence (AI) where one constructs computer 
algorithms intended to mimic tasks commonly performed by humans. Algorithms for image 
recognition, health analytics, natural language processing, and self-driving vehicles are all 
examples of AI that have transformed industries that affect our daily lives [6].  More specifically, 
AI clearly has a role to play in advanced manufacturing where there are myriad of tasks that could 
be automated by algorithms such as defect detection, process optimization, and new materials 
development, to name but a few [2]. 
 
For many years, classical philosophers have attempted to describe human thinking as a symbolic 
system.  Babbage in the 1830’s realized that punched cards used in the Jacquard loom could control 
operations [6]. Alan Turing in England (1935-1940 era) developed a machine that could compute 
using a set of rules transitions/states to solve mathematical functions [7], [8]. Subsequently, Turing 
went on to expand his view by posing the question: “Can a machine think”? The Term AI was 
formally established in 1956 at a conference at Dartmouth College, Hanover, NH USA by pioneers 
John McCarthy and Marvin Minsky. McCarthy challenged the community to make machines that 
“behave in ways that would be called intelligent if a human were so behaving”; whereas Minsky 
focused on making machines that would do things that “would require intelligence if done by men” 
[9]. 
 
AI and machine learning are closely related to fields such as pattern recognition (an umbrella term 
that covers many different approaches), statistics and statistical learning (where the focus tends to 
be on formal mathematical relationships), and neural networks (a field which has seen great 
advancements in the past few years) [10]. For example, one class of approaches that was common 
in AI’s early years was that of rules-based systems.  In a manufacturing plant, the convention has 
been that engineers develop a knowhow enabling them to detect defects in the final product; in 
turn, they pass on this knowledge to those who follow their footsteps.  It is tempting to distill how 
a human performs such tasks by enumerating a set of rules for defect recognition.  Once such a 
collection of rules is developed, they can then be encoded in a computer language to allow a 
machine to mimic what a human does. Unfortunately, such rules-based systems tend to be quite 
fragile as the interactions in the system can be subtle. As a result, rules-based systems do not 
achieve human level performance. The field of machine learning takes a different perspective by 
developing algorithms that learn by example.  Rather than constructing hand-crafted rules, in 
machine learning, one designs systems that can construct their own rules given a collection of 
examples where the desired task is performed correctly.   
 



 

B-4 
 

 

Elements of Machine Learning 
Algorithms 
Algorithms are the “machines” that can learn and generate the rules. It is reasonable to ask whether 
it is easier to write down explicit rules for a task or to create an algorithm that can generate its own 
rules. Perhaps counterintuitive, the latter is often much easier, more effective, and less error prone. 
Rulemaking algorithms abound, from simple linear regression, to the more complicated support 
vector machines, to cutting edge neural networks [5], [11], [12]. As expected, algorithms are 
imperfect if the training data is inadequate.   In machine learning, and specially in semi-supervised 
learning mode, one requires a large set of training data; without this the algorithms developed may 
be unreliable. 
 
Training data 
For algorithms to be effective, they require many examples to learn from. The question is: Given 
the amount of training data, which algorithm is the most suitable? The choice of algorithms is 
dependent upon the size of training data available. Using techniques such as cross-validation, we 
can test the performance of different algorithms in terms of generalizing on unseen test data [13]. 
This can be done by training the algorithms on different subsets of the data and then testing on the 
rest. Choosing between algorithms should be based on comparing their performance on the test 
set.  
 
Feature Engineering 
Feature engineering is the process of using domain knowledge of the data to create features that 
optimize machine learning algorithms [14], [15]. This is where technical prowess provided by the 
practitioner or the engineer plays an important role. Feature engineering increases the predictive 
power of the algorithms by selecting specific features or creating new features from the data that 
assist in the learning process. 
 
Feature engineering determines what information is given as input to the machine learning 
algorithm.  The danger, however, is that one may carry this out and over-engineer, in the 
engineering parlance, and over-fit, in the machine learning parlance; there is a sweet spot for 
feature engineering. An example may be useful to explain the concept. Many parameters are 
collected during metal casting: alloy composition, environmental conditions in the foundry, 
superheat, temperature changes during the solidification process, etc.  It is not unusual to have 40 
columns of data for a given cast part. Feature engineering helps us address how these parameters 
are communicated to the algorithm. A close collaboration is needed in generating appropriate 
training datasets and the appropriate feature engineering by experts in both manufacturing and 
machine learning. To a large extent the authors of this paper have formed such a team.  
 
Data Pre-Processing 
Many machine learning algorithms require that their input data be numeric.  In the example above, 
how should the chemical composition be represented numerically for a fair comparison with melt 
temperature and foundry environmental conditions? In the original training data, the amount of Si 
is 0.07 weight fraction, the melt temperature is 704 oC, and the temperature of the foundry is 24°C. 
Many machine learning algorithms depend on an appropriate definition of distance, and the rules 
they generate hinge on the distances between the training examples.  By setting Si=0.07, Tmelt=704, 
and Tfloor=24, one is implicitly informing the algorithm that melt temperature is a more important 
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parameter as compared to the composition of silicon or the temperature of the foundry.  However, 
such inferences may be neither intended nor correct.  In order to avoid such inferences, we pre-
process the data such as normalizing the dataset so that all the columns are on the same scale [16]. 
Details of how we normalize using a Z-transform are given in section IV of this paper [17].   
 
Cross-Validation 
One important part of machine learning that we have not yet touched upon is the evaluation of the 
performance of the algorithms we construct.  Cross-validation is a technique that is used for 
algorithm evaluation on unseen data.  Cross-validation can be thought of as testing the algorithm 
in an environment that is faithful to how it will be used during the manufacturing process.  For 
example, given a set of training data (e.g., labeled X-ray images of parts), one can train the 
algorithm in the task of detecting defective parts.  When the algorithm is utilized on the factory 
floor, one would be interested in knowing how well it performs on images of parts as they roll off 
the assembly line, when the true label is not yet known. 
 
There are important differences between how a machine learning algorithm performs on its 
training data, and how it might perform in practice on the factory floor. For example, consider a 
machine learning algorithm that merely memorizes all the X-ray images in its training data and 
whether the image corresponds to a good part.  Such an algorithm would be able to perfectly label 
every image in its training set but would have no ability to correctly label new images.  In data 
science terms, it would not be able to generalize from its training data to new examples, such as 
the current production parts shipping from the foundry.   
 
The machine learning terminology for such an algorithm that performs well on training data but 
fails to generalize is known as overfitting [18].  Avoiding overfitting is an essential part of machine 
learning and a place where the expertise of machine learning practitioners can play a pivotal role.  
Constructing a machine learning algorithm that appears to be quite effective during training but 
fails in the field can be surprisingly easy to do.  However, such situations are clearly to be avoided 
and require a measure of machine learning expertise. 
 

III. The Landscape of Materials Processing – Metal Casting 
 

Machine learning promises to have a transformative impact on the advanced manufacturing 
landscape, where applications of machine learning alongside the IoT is projected to generate $1.2 
to $3.7 trillion of value globally by 2025 [1].  In the metal casting industry, which is one of the 
core building blocks of advanced manufacturing industries, machine learning has only seen 
negligible adoption to date.  Thus, there exists a huge opportunity to utilize AI and machine 
learning in the metal casting industry [19]–[24]. The metal casting industry is at the cusp of its 
data revolution.   
 
Modern foundries have the capability to capture a vast amount of process data on a daily basis 
[25]. These include molten metal preparation details, casting process data, simulation data, part 
geometry data (CAD files), Non-Destructive Evaluation/Testing data, etc. However, these many 
types of data from various sources throughout the operation are often kept in departmental silos 
where their value might have limited utility (Figure 2). Integrated data is the prerequisite for 
performing machine learning, and it is a lost opportunity for the foundry industry if no effort is 
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made to compile, fuse, and analyze these data to better understand the process factors influencing 
the quality of the castings.   
 

 
Figure 2. Data from various sources throughout the casting operation are kept in silos. 

 
Implementation of machine learning in the metal casting industry requires knowledge workers who 
are trained in both data science and materials science and engineering domains [26].  
Unfortunately, most engineers are not trained in data science.  Efforts are underway in academia 
(e.g., WPI, UCI, University at Buffalo, Northwestern U., U. of Wisconsin, etc.) to develop 
curricula for engineering students who can navigate in both domains.   
 
At the Advanced Casting Research Center (ACRC), a consortium consisting of 35 corporations 
has made a commitment to study how machine learning and deep learning can yield transformative 
improvements to metal casting processes. The long-term goal is to develop a framework that can 
be adopted by foundries to transform their data into process cognition and knowledge.  In this 
project, the research team is multidisciplinary comprising of faculty and graduate students from 
Data Science as well as Materials Science and Engineering. The data scientists apply their 
expertise in seeking or developing the effective and appropriate data analysis techniques. Material 
scientists and engineers determine how to treat anomalous data points in the raw dataset and can 
assess whether the predicted results and the feature importance are in-line with observations on 
the shop floor.   
 

IV. Process Cognition and Harnessing of Knowledge in Metal Casting 
 

In the following sections, we review some technical challenges and pitfalls in applying machine 
learning to industrial foundry data and cover some potential solutions to resolve these challenges.  
Subsequently, we navigate the critical steps of machine learning as applied in a case study to 
showcase the implementation of machine learning to metal casting step-by-step.  
 
Challenges of Metal Casting Datasets 
Our team is in a fortunate position to have access to cast data from the industrial partners of ACRC.  
All the data are treated confidentially and are collected from three different casting processes – die 
casting, permanent mold, and sand casting. Though knowledge extracted directly from these front-
line datasets can provide meaningful guidance on process and quality control to foundries, the 
process of converting these data into knowledge is quite challenging to our data scientists due to 
three notable attributes of foundry data as discussed below. 
 
The data are unbalanced 
In machine learning, the algorithm is designed to construct its own rules given a collection of 
examples. The aim is to develop a machine learning model that can predict the quality of cast 
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components. The algorithm is trained by providing it with a large set of processing data, with each 
or some of the parts being labeled.  The algorithm can construct its own set of rules for 
distinguishing between the labels. Based upon these examples, the algorithm applies the rules to 
make predictions on parts whose label is unknown. Ideally, the algorithm would learn from an 
approximately equal number of examples representing each label, however, in reality, the labels 
are unbalanced. The lifeblood of successful foundries is large-scale production of defect-free 
products.  Accordingly, only a small percentage of defective products are available to train the 
machine learning algorithm. For example, in metal casting, the defect rate of a mature product can 
be as low as 2-5%, which introduces significant challenges in developing and testing a robust 
predictive solution.  Moreover, the generation of the quality data could be further complicated by 
the fact that it is too expensive to perform quality inspection for all of the products.  As a result, 
while it is possible and straightforward to measure the processing data (the inputs to the machine 
learning model) of each casting, to generate the quality data (the response variable of the model) 
can be quite difficult. In sum, metal casting is an unbalanced, semi-supervised learning problem 
which is challenging for even state-of-the-art machine learning algorithms.     
 
One of the main tasks in developing the machine learning model is to work meaningfully with 
unbalanced raw datasets supplied by foundries. As shown in Figure 3a, in a dataset containing 500 
castings, only 6% of the total production is categorized as Class 3 and are considered defective. 
The population of good quality parts (Class 1 and Class 2) is much larger than that of the defective 
parts. Several algorithms were explored for data balancing. These algorithms can learn from the 
structure of the minority class in the original dataset and construct their own rules for generating 
new datapoints, or oversample. For illustration, an example of data balancing is shown in Figure 
3. Employing such an algorithm can make the population of all three classes nearly equal. 
 

 
Figure 3. (a) Original and (b) oversampled casting data of each class. 

 
Figures 3a and 3b show the original and the oversampled data respectively. The oversampling is 
done using a popular data balancing approach known as Synthetic Minority Oversampling 
TEchnique (SMOTE) [27]. This approach is used when the number of samples in one class is 
significantly higher than the samples in the other classes, as is typical in manufacturing datasets. 
As the name suggests, this technique generates synthetic samples of the minority class by 
interpolating between two instances of the minority class. The oversampling is done until a point 
that the proportion of the minority class matches that of the majority class, and we have a balanced 
dataset for training. There are also variations of the SMOTE approach that can be used, for 
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example, Borderline-SMOTE is widely used which focuses on the minority class samples that are 
at the border of the majority and the minority class, since these samples are more prone to 
misclassification errors as compared to those that are away from the border [28].  
 
The data are sporadically labeled 
For example, a classic problem in machine learning would be detecting defects in X-ray images of 
manufactured parts.   The algorithm is trained by providing it with a large set of images of parts, 
with each image being labeled by whether the quality of this particular part is acceptable.   From 
a given set of labeled images, the algorithm learns and constructs its own set of rules for 
distinguishing between acceptable and non-acceptable parts, and subsequently applies these rules 
to make predictions on unlabeled images. Labeled data means that processing and quality data of 
the parts manufactured are known. In the machine learning literature, such methods are called 
supervised machine learning, where supervision arises from the availability of labeled training 
data. As shown in Table I, for each individual sample, in the training dataset both the input variable 
(X) and its corresponding output variable (Y) are known. The algorithm can construct rules (e.g., 
Y= f (x;θ)) to perform tasks such as predicting the quality of new parts. When labeled training data 
are not available, the machine learning problem becomes more difficult, and such algorithms are 
referred to as unsupervised machine learning.  Whereas in semi-supervised machine learning only 
a fraction of the training data is labeled; both labeled, and the unlabeled training data are used to 
develop the appropriate algorithm.  
 

Table I. Classes of machine learning tasks and techniques. 

 
 
Most metal casting data are not “Big Data”  
In our dataset, each individual row represents one cast component. The various columns in each 
row contain the recorded parameters when the cast component was produced. Unlike datasets 
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generated from social media activities, the scale of metal casting dataset is quite small. Although 
more sensors can be installed to capture additional processing data during casting (to add more 
columns), the total number of rows in the dataset is still limited by the volume or production 
capability of the foundry. For instance, we have collected data from three casting manufactures 
over the past two years, depending upon the casting method and the size of the casting component, 
the total number of one part produced in one year varies from 300 parts to 7000 parts per year. 
Even if the foundry can save and extract 10 years of historical data, there would only be about 
70,000 rows in this dataset, which is well short of being considered appropriate in the realm of 
“Big Data”. 
 
Along with the oversampling techniques such as SMOTE, we can also use Generative Adversarial 
Networks (GANs), a class of artificial intelligence algorithms, to generate rows of new data by 
learning the structure of the original data and generating new samples that follow the same 
distribution [29], [30]. The original application of this technique was to generate photographs with 
many realistic characteristics that were superficially authentic to human observers. Applying 
GANs to generate more datapoints in metal casting datasets has shown promise. Mixing synthetic 
and real data is one way to overcome the drawback of having a small sized dataset. Synthetic data 
can be used to increase the volume of the data in case of small size datasets such as these, and the 
real data is used so that it is faithful to the original dataset.  
 
 
Case Study of Machine Learning in Metal Casting 
The following paragraphs provide detail for training and evaluating machine learning algorithms 
on production foundry data.  Analysis begins with an investigation of the training data.  The output 
for prediction is a binary pass or fail rating of the porosity classification.  SMOTE is applied to 
overcome the class imbalance between pass and fail samples, and the newly balanced training data 
is standardized.  Several machine learning algorithms are trained on datasets with and without 
dimension reduction.  Algorithm performance is evaluated with a metric of minimizing false 
negative classifications on the testing dataset. 
 
The results shown below are generated using the scikit-learn v0.24 [31], [32], matplotlib v2.0.2 
[33], and pandas v1.0.4 [34], [35] libraries within the Python [36], [37] programming language. 
 
Training Data  
Shown below (Table II) is a snapshot of a portion of the dataset collected from a sand cast foundry. 
This dataset has 510 rows and 28 columns; each individual row represents a cast component. The 
various columns in each row give the processing parameters captured: component ID, metal 
chemistry, casting processing details, and quality data (X-ray inspection results). All the cast 
components were inspected, and the quality results were labeled with varying levels depending 
upon the appearance of porosity. Class 1 indicates that the casting was porosity-free, Class 2 
indicates fine porosity, and Class 3 indicates large porosity voids. A dummy variable was used to 
divide quality data into a binary quality condition as given in Equation 1. 
 

Y = 
𝑃𝑎𝑠𝑠:   𝑖𝑓 𝑡ℎ𝑒 𝑞𝑢𝑎𝑙𝑖𝑡𝑦 𝑙𝑒𝑣𝑒𝑙 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑎𝑟𝑡 𝑖𝑠 𝐶𝑙𝑎𝑠𝑠 1 𝑜𝑟 𝐶𝑙𝑎𝑠𝑠 2
𝐹𝑎𝑖𝑙:  𝑖𝑓 𝑡ℎ𝑒 𝑞𝑢𝑎𝑙𝑖𝑡𝑦 𝑙𝑒𝑣𝑒𝑙 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑎𝑟𝑡 𝑖𝑠 𝐶𝑙𝑎𝑠𝑠 3                        

 

 

Eq.   1 
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Table II. A snapshot showing portion of one dataset containing 510 rows and 28 columns. 
 

 
 
Data Standardization 
Since the physical meaning and the scale of all processing parameters incorporated into a given 
dataset varies significantly, the raw data in each column that represents a particular class needs to 
be standardized to ensure the data are unitless and are of comparable scale. Once all processing 
parameters are incorporated into a given dataset, the data in each column are standardized using a 
statistical method, called the Z-transform [17], [38], which converts the values in each column 
using the following equation: 
 

𝑍 , =
𝑋 , − 𝜇

𝜎
 

 
Where 

 𝑍 ,  is the Z-transformed value of the parameter in one data cell 
 𝑋 ,  is the original value of the parameter in the data cell 
 𝜇  is the mean of the original values of the parameter in the data column 
 𝜎  is the standard deviation of the original values of the parameter in the data column   

  
Table III is a snapshot of the dataset after normalizing using a Z-transform. Compared with the 
original dataset shown in Table II, the values in each cell of the transformed dataset are on the 
same scale regardless of the physical meaning and the scale of these processing parameters. The 
data are now unitless.  

 
 
 
 
 
 

Eq.   2  
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Table III. A snapshot showing portion of the dataset after applying Z-transform. 
 

 
 
Dimension Reduction: 
All datasets collected from foundries are comprised of many columns regardless of the type of 
casting process. If the whole dataset were to be plotted on a scatter plot, this plot would need to 
have as many axes as the data has columns. However, the human perceptual system is designed to 
process three dimensions.  As a result, foundry engineers will often have difficulty producing 
meaningful visual representations of their data.  Fortunately, representing high-dimensional data 
in a low-dimensional space is a well-studied problem.  In particular, Principal Component Analysis 
(PCA) is a classic dimension reduction technique allowing us to blend a large set of correlated 
variables in the original dataset into a smaller number of newly created representative variables 
[39]–[41]. This is a powerful tool explored in our study to compress the dimensionality of the 
original dataset and allow visualization of the complicated dataset on a two- or three-dimensional 
plot whose axes correspond to the newly created principal components. We can then use these 
principal components as the predictors in the machine learning model in place of the original larger 
set of variables.  We evaluated this technique against the original high-dimension data and found 
that the dimension reduction via PCA was not necessary in this case study.  However, PCA is an 
important method employed in many machine learning projects so we offer the following detailed 
description. 
 
Compared with the original dataset which contained 28 columns, the dataset is now represented 
with three newly created columns, PC1, PC2, and PC3; therefore, the complicated dataset can be 
visualized with the three-dimensional plot shown in Figure 4b. The PCA plot is a scatter plot, in 
other words, PC1 is not a function of PC2 or PC3.  These three components were used to display 
the dataset into several groupings of points. Each point in Figure 4 represents a cast component, 
and the position of the point is determined by all the input variables describing how the casting 
was manufactured. The output variable of the casting, in this case, the quality of the part (Class 1, 
2, or 3), is marked by color. 
 

PourID Temp_Floor RH_Floor Gr_Floor LadleTemp LadleDensityPP
6750 1.34 1.48 2.03 -1.69 -0.48
6756 0.43 0.85 0.78 0.20 0.58
6758 1.19 0.91 1.33 -0.23 -0.90
6766 0.73 1.23 1.31 0.06 -0.69
6768 -0.03 1.29 0.86 0.20 -1.32
6770 0.12 1.29 0.95 -0.23 -1.11
6773 0.88 1.10 1.30 -0.67 -1.32
6835 -1.26 0.21 -0.42 0.06 -0.05
6837 0.43 -0.43 -0.28 0.93 0.58
6839 -0.34 -0.94 -0.90 1.22 0.16
6841 -0.34 -0.94 -0.90 0.93 -0.48
6844 -0.80 -1.13 -1.13 0.49 0.58
6849 0.12 0.21 0.11 -0.23 -0.26
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The formation of clusters is most likely accounted for by the variations in production conditions. 
We investigated castings in the small cluster and found that they were manufactured in the last 
quarter of 2016. The cluster separation, most likely, is related to the seasonal changes when these 
parts were manufactured. This type of variation can more easily be detected once the data are 
visualized on a plot. 
 

   
  
Figure 4. (a) Two-dimensional PCA plot with color-coded quality feature of the original dataset. 

 (b) Three-dimensional PCA plot with color-coded quality feature of the original dataset. 
 

The Singular Value Decomposition, or SVD, is a computational method often employed to 
calculate principal components for a dataset. Using SVD to perform PCA is efficient and 
numerically robust [41]. The singular value plot of the dataset is shown in Figure 5. The x-axis of 
this plot represents the first six principal components, and the y-axis shows the singular values of 
these components. The singular values of these principal components are plotted in the order from 
largest to smallest. The statistical interpretation of singular values is in the form of variance in the 
data explained by the various components. It can be interpreted that if a component has a high 
singular value, it represents a high percentage of variance in the dataset. 

(a) (b) 
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Figure 5. Singular value decomposition plot of the dataset. 

 
As shown in Figure 5, the first principal component (PC1) and the second principal component 
(PC2) respectively represent about 27% and 18% of the variance of the dataset. Since the first two 
principal components represent less than 50% of the original data, it is necessary to introduce more 
principal components to better capture the essence of the original dataset.  
 
Machine Learning Classifiers for Quality Prediction 
The main objective of the data analysis work is to develop a machine learning based model to be 
used for part quality prediction. The performance of the models developed are evaluated by cross-
validation. The complete dataset was divided into two sets of data, one for training the algorithms, 
and the other set for testing the performance of the algorithms. The testing dataset is about 10% 
the size of the original dataset. Since the quality of each casting in the test set is known, and the 
quality result is simplified into two possible classifications, “pass” or “fail”, the performance of 
the model is measured via four numbers obtained from applying the algorithm to the testing 
dataset. These numbers are called True Positives TP, False Positives FP, True Negatives TN, and 
False Negatives FN. They can be presented using a two by two matrix called a confusion matrix. 
In our study, since the “fail” class is more critical to the foundry operation, we call the “fail” class 
Positives (P) and the “pass” class Negatives (N). The confusion matrix we used to present the 
output of cross validation in our study is shown in Table IV. If the model mistakenly predicted a 
bad part as a good part, it created a False Negative case. A model with good performance should 
give very few False Negatives, because the cost of this error would be high for the foundry. 
 

Table IV. Confusion Matrix to Visualize Model Performance. 
 

 Predicted # of Good Part Predicted # of Bad Part 
Actual # of Good Part True Negative False Positive 
Actual # of Bad Part False Negative True Positive 
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Several algorithms were evaluated to predict part quality, and the confusion matrices of these 
algorithms are shown in Table V [5]. We use the SMOTE technique for oversampling and 
increasing the number of minority class samples in the dataset. We then use the oversampled data 
for training the classification algorithms such as Random Forest [42], Logistic Regression [43] 
and Support Vector Classifier (SVC) [11]. Specifically, Logistic Regression is a machine learning 
algorithm that is used for performing classification tasks based on the logistic function using 
probabilities. For example, anything above a probability threshold of 0.5 is predicted as one class 
and anything below 0.5 is predicted as another. Random Forest is a decision tree [44] based 
machine learning algorithm that is widely used in a number of classification as well as regression 
applications. Random Forest makes the prediction using the average of the predictions of the trees 
that build the forest in case of regression tasks and using the majority vote of the trees for label 
prediction in case of a classification task.  SVC is a machine learning algorithm that is defined by 
a hyperplane that separates the classes in a dataset. It uses a labeled set of data as the training set 
and then categorizes new data on the correct side of the optimal separating hyperplane.  Ensemble 
Learning combines the predictions obtained using all the classifiers mentioned above and then 
makes a prediction based on the majority vote for a certain class for every sample in the test dataset. 
Combining SMOTE with SVC performed best as seen in Table V below. No False Negatives were 
assigned by this model with only two False Positives.  
 
Employing this method in a production environment allows for targeted selection of production 
parts for detailed quality inspection.  Instead of a random sampling of parts, the system can select 
suspect parts identified by a validated model. 
 

Table V. Several algorithms and their confusion matrix for performance evaluation. 
 

         
 
 
 
                                                    
 

 
 
 
 
 
 
 

 
Important Features Influencing Part Quality 
In addition to making a quality prediction, another application of machine learning is the 
identification of critical features which are predicted to have the greatest influence on the quality 
of the product [45]. Some algorithms, for instance, Random Forest and other ensemble methods, 
can rank the various features (variables) in the dataset in terms of their importance to the predicted 
quality. Foundry engineers can benefit from this function to identify parameters to monitor and 
control product quality. 

SMOTE + Algorithm Confusion Matrix 

Random Forest [42] 22 5
6 14

 

Logistic Regression [43] 22 5
9 11

 

Ensemble Learning 23 4
8 12

 

SVC [11]  
(Best Performance) 

23 2
0 19
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For this case study, Figure 6 shows the rankings of feature importance relevant to the quality 
calculated by two machine learning algorithms, namely the XGBoost [46] and Random Forest. 
Like Random Forest, XGBoost is a decision tree-based algorithm that is used for classification and 
regression problems. These algorithms are used for finding the most important features in a dataset 
in terms of the label predictions for many applications. The two algorithms differ in the way that 
most important features are selected. XGBoost uses a criterion known as F-score to decide which 
features are the most important in terms of the label prediction. F-score for a feature is defined as 
the number of times that a feature in the dataset is used for prediction. Higher F-scores represent 
the most important features. Similarly, for Random Forest, permutation importance is used as the 
criterion for selecting the top features in the dataset. Permutation importance permutes, or 
randomly shuffles, the values of every feature in the dataset by taking one column at a time and 
checking by how much the predictions change. Moreover, if after permuting the values of a column 
in the dataset, the predictions change significantly, then that column is deemed as important in 
terms of the predictions. We check the feature importance using two different algorithms to 
compare and see if they agree with each other. Figure 6 shows the top four features found by using 
these two techniques and it can be seen that at least three of the top features found by these 
algorithms are common.  The Random Forest determined environmental conditions such as the 
grains of moisture content in the air on the foundry floor (Gr_Floor), relative humidity (RH_Floor), 
and ambient temperature (Temp_Floor) in addition to the metal temperature in the ladle 
(LadleTemp) to be important factors in predicting casting quality. XGBoost replaces ambient 
temperature with the density of the metal inside the riser, or feeder. We validated these predictions 
using domain expertise of foundry engineers and these were indeed the top features related to part 
quality according to domain experts. This is where machine learning can be exploited to target 
important inputs for better control over the casting process. Further, techniques such as feature 
importance can be used to drive designs of experiment, identify issues more quickly through 
targeted monitoring, and improve the overall cognition of the process.   
 

 
 

Figure 6. Feature importance relevant to quality by rankings: (a) generated by Random Forest 
and (b) generated by XGBoost. 

 
 
 
 
 

(a) (b) 
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V. Prospective View of Machine Learning for Manufacturing  
 

The abilities to gather data, mine it for knowledge, and apply the insights that we gain are 
transforming almost everything that we do as a society and manufacturing is no exception.  On the 
other hand, modern automated factors are well-springs of data where more information can be 
measured about manufacturing processes than ever dreamed before.  These two ideas make the 
manufacturing industry ripe for a data revolution in which quality can be improved, production 
can be accelerated, and waste can be minimized, if only the right collaborations between data 
scientists, material engineers and the industrial sector can be achieved. 

 
Modern machine learning, and deep learning in particular, provide tantalizing opportunities for 
progress, but the very power and generality of such data science methods bring along an important 
measure of responsibility. If used wisely, then such techniques allow for unprecedented 
improvements in the full flowering of Industry 4.0.  If used unwisely, then the unbalanced, semi-
supervised, and partially observed data that naturally arise in manufacturing problems, if not 
treated correctly from a data science and statistical perspective, can lead us astray.  Perhaps as put 
best by the National Research Council of the National Academies [47]: 

 
“Overlooking this foundation may yield results that are not useful at best, or harmful at 
worst. In any discussion of massive data and inference, it is essential to be aware that it is 
quite possible to turn data into something resembling knowledge when actually it is not. 
Moreover, it can be quite difficult to know that this has happened.” 
 

However, through the opportunity that we have had working with so many industrial partners of 
the ACRC, who have generously worked with us and shared their data, we have at least helped 
begin a conversation on how best to use data science, machine learning, and deep learning in 
manufacturing problems. We see tremendous opportunities in improving the quality of cast 
components via the enabling tools we are developing, and there is also an implicit opportunity for 
major advances in planning for manufacturing and supply chain management.  We are at the 
beginning of a revolution. 

 
 

VI. Concluding Comments 
 

Almost over six decades ago, C. P. Snow wrote a critical essay titled “The Two Cultures” [48] that 
not only pointed out the gap between the sciences and the arts, but also the opportunities if we 
could cross the bridge between the two cultures.  If he were alive today, C.P. Snow may have 
written about the “Three Cultures”- the Arts, Sciences, and Engineering/Manufacturing.  The 
authors of this paper are a good example of individuals from “three cultures” who have worked 
together and learned much from each other.  However, to do so required emotional as well as time 
commitments and investments.  The dividends those investments have paid for the authors have 
been invaluable and impactful.  In a similar way, the execution of the Fourth Industrial Revolution 
will require a cultural diffusion and much discourse between data scientists and manufacturing 
engineers.  There is no question that future of work will be transformed in the 21st century, as well 
as the future of the worker.  But as has been stated before, the future is for us to make. 
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Appendix C – Approach and Methodology 
 
 
The primary objective of the research is to delve into the nexus of materials processing and data science to 
begin our understanding of the challenges unique to the materials processing field.  Materials processing is 
an interesting machine learning challenge.  While it is the author’s belief that the application of machine 
learning is beneficial to any materials manufacturing technology, this work is centered on the high pressure 
die casting (HPDC) of aluminum alloys.  The literature review in this volume (Appendix A) gives a 
comprehensive overview of the HPDC process and examples of the research which has driven our 
understanding about which HPDC process parameters influence microstructural discontinuities, such as 
porosity, and their impact on the resulting mechanical properties.   
 
The published literature contains many papers which report observations of various process inputs on 
mechanical properties and porosity.  Forward focused HPDC facilities do a good job of capturing many of 
these data for each casting they produce.  As an industry, we believe that we are collecting the correct data.  
The literature confirms the importance and die casters document and demonstrate process control to their 
customers by this data.  The hypothesis that this work aims to test is that die casters collect the correct input 
information and, given a large enough dataset, quality and performance properties can be predicted from 
that data. 
 
I.  High Pressure Die Casting Data 
Die casting is a thermal process where molten metal is delivered to a machine, injected into a die, and 
allowed to solidify.  Key input data to predict solidification phenomena are those variables which affect the 
thermal system:  temperatures, times, pressures, filling velocities, flow rate of cooling lines, and amount of 
die spray applied to aid part removal are some of the data which could be collected and analyzed.  Other 
data is useful for machine health and predictive maintenance such as motor amperage draw and cycle times 
for each piece of equipment.  At the holding furnace, the temperature of the metal and metal level can be 
captured as time series data or at the start of each cycle.  Alloy composition is periodically sampled at the 
machine or upstream in the melting operation.  From the literature, the reported HPDC input variables 
which drive mechanical properties and porosity are intensification pressure, slow shot velocity, fast shot 
velocity, vacuum pressure, and melt temperature.  Alloy composition is also an important factor, though 
the ranges investigated to measure an effect are wider than the variation in the alloy of this study.  More 
detail and a complete list of references is included in Appendix A - Literature Review. 

 
Modern foundry equipment is PLC driven and integrated such that input and output signals are passed 
between the equipment in the work cell throughout the cycle.  Being a thermal process, time is an important 
factor in HPDC.  Timing of signal activity, when sensors are made on periphery equipment and on the die 
casting machine, can be captured.  The level of detail is up to the operation.  For example, one could capture 
the time it takes an extraction robot to complete its entire cycle, or record each segment of that cycle: extract, 
trim, pin stamp, etc. as separate variables.  The DCM is the hub of the cell and all the peripheral equipment 
relay their signals through the DCM.  This is convenient for organizing the data and assigning each value 
to a serialized part number. 
 
The DCM is programmed by the process engineer to perform movements which have been developed to 
produce acceptable castings which meet the specifications of the design.  The shot velocity profile dictates 
the velocities the machine will move the plunger forward and when to change from one speed setting to 
another as it travels.  An example of a shot velocity profile is shown in Figure 1.  Modern machines are 
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equipped with fast acting valves which give the engineer great flexibility and precision in performance [1].  
The intensification pressure is another important parameter programmed into the DCM for the purpose of 
increasing the soundness of the casting.  The onboard injection monitoring computer captures the velocity, 
pressure, and position inputs as well as how the machine performed with respect to those inputs in a 
combination diagram called a shot trace. 
 

 
Figure 1.  Schematic of a shot trace in aluminum high pressure die casting. 

 
From the shot trace, key process outputs can be summarized and displayed to the operator.  Even now, it is 
common practice for this summary data to be stored on the injection monitoring computer.  Storage 
constraints dictate that the oldest cycle data be deleted as new machine cycles were performed and stored.  
This allows technicians and engineers to review recent history and make comparisons to aid in 
troubleshooting, but data is being lost.  With the improved connectivity and memory storage options of 
2010’s era technology, this data can be uploaded to cloud-based data storage after each cycle and 
maintained indefinitely.  The cycle summary data is historically the best, and often the only, information 
available to troubleshoot the process and make intuitive, experience-based predictions regarding the quality 
of the resulting castings.  For this reason, it is also the most easily and widely stored data.  Additional data 
from the cycle are collected and appended to this information prior to uploading into long-term storage.   
 
To make robust predictive models one needs relevant data to the problem at hand and prefers a large 
quantity of it; Big Data.  Unfortunately, HPDC is not a Big Data environment when compared to YouTube 
or Facebook.  Conceding that there are always exceptions, production demand for a newly designed HPDC 
component varies from approximately 10,000 to over 1 million pieces per year.  Consider the following 
hypothetical scenario at the high end of the production demand spectrum.  An imaginary part is cast in a 
single-cavity die.  Each cycle of the process yields one part and 1 million are needed per year.  For simplicity, 
assume the useful life of each tool is 100,000 cycles and each machine can run 100,000 cycles per year.  
Ideally, ten identical dies in ten identical die casting machines would cover the demand.   
 
However, as uncovered in Appendix D, combinations of die and machine can behave as unique processes 
unto themselves dividing the 1 million sample dataset into 10 subsets of 100,000 each.  Further 
complicating the picture, die casting operations do not set a die in a machine and run it until the useful life 
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is spent.  During this year of production, an operation would need to pull dies periodically and perform 
maintenance on them, while another back-up die runs in its place.  Perhaps 15 identical dies are required to 
allow for the maintenance rotation.  If divided evenly over the first year, each die would have a rounded 
67,000 cycles on it.  For flexibility in dealing with which dies require maintenance, a die may be approved 
to run on three of the ten machines.  Assuming an even split, each combination of die cavity and machine 
would have 22,000 samples cast with their process input data recorded.  22,000 pieces would require nearly 
60 days to cast.  Sampling one piece per day for mechanical properties would yield 60 measured outputs 
for each die cavity/machine pair (0.27% sampled).  This scenario shows how a seemingly expansive dataset 
can become quite small.  Small data is a challenge for machine learning.  Research in this space, such as 
this project, strives to improve a difficult data science domain. 
 
As an industry, die casters are generally not to the level where every potential important variable is captured, 
and has been for years, such that large datasets are commonplace.  There is also the challenge of 
accessibility to the data for analysis.  Leaders in the industry recognize the importance of taking the first 
steps in bringing machine learning into die casting.  The Aluminum Casting Research Center (ACRC) at 
WPI is an industry-university consortium where a cross-section of the aluminum casting industry including 
alloy producers, casters, industry suppliers, and end users meet and sponsor pre-competitive fundamental 
research [2].  FCA, a major automobile manufacturer with a large die casting operation and longtime 
member of the ACRC, partnered with the research team to provide a calendar year worth of HPDC process 
data, alloy composition checks, and mechanical property testing data.  The size of the datasets is given in 
Table I.  The details of the datasets with respect to which inputs and outputs are available and descriptions 
of each are given in Tables C-I and C-II at the end of the appendix. 
 

Table I.  FCA datasets size details. 
Dataset Name Raw Dataset 

(Rows x Columns) 
HPDC Process 956,986 x 109 
Alloy Composition 980 x 17 
Tensile Testing 1,634 x 14 

 
 
The HPDC process data can be thought of as a spreadsheet with each row representing an individual casting 
and each column containing a piece of information about that casting.  The columns are the input variables 
which produced the castings and output variables which are data determined about the castings after they 
are made.  Similarly, in the mechanical property dataset each row represents a tensile bar and the columns 
contain the input and output variables associated with each bar.  The composition dataset has rows which 
represent each test and columns containing the amount of each elemental constituent in the melt at that time.  
This description is rather straightforward; however, visualization is difficult.  The raw HPDC dataset has 
109 columns.  Humans are finite beings and, as such, have no ability to visualize what is happening in 109 
dimensions.  Fortunately, machines can perform these tasks on our behalf via machine learning algorithms 
that analyze high-dimensional data. 
   
The literature provides an understanding of which variables are important for mechanical properties.  
Today’s HPDC equipment is more interconnected than ever to facilitate data organization and collection in 
the die casting cell.  Platforms now exists for storing and accessing large amounts of data with which to 
train machine learning models.   The need largely remains within the die casting industry to begin taking 
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advantage of this reality and start investigating how to process data and train algorithms to create knowledge 
for data-driven decision making. 
 
 
II. Data Science Approach 
 
Data science projects are more intricate than collecting data and plugging it into an algorithm.  There are 
steps one must take in an iterative process to generate reliable predictions and actionable results.  An 
overview is given below with more detail on the methods used and references in the subsections that follow.  
The main building blocks of a data science project are: 
 
Data exploration:  Here we gain an understanding of the data in front of us.  We determine how much data 
we have, what data types make up the features, generate statistical summaries of the features, initial 
visualization to uncover relationships between features.  For example, it would save us a lot of time to see 
that that one of our many input features is linearly correlated to our target output.  One has to look at their 
data before moving any further. 
 
Pre-processing:  This makes up the bulk of the effort.  Many necessary actions fall under the pre-processing 
step and iterations of development tend to bring us back to this step.  Pre-processing involves the cleaning 
of the dataset, feature engineering, standardization or normalization of the data, and dimension reduction. 
 
Machine Learning Algorithms: Once the data is ready for analysis, the algorithms are selected in regard to 
the problem at hand, data collected, and the information one is looking to gain.  Within the off-the-shelf 
algorithms, there are hyperparameters which can be adjusted for optimum performance. 
 
Model Evaluation: To evaluate the model, cross-validation is conducted to get a better idea of how the 
model will operate in general rather than on one training instance.  Performance is evaluated by comparing 
how the algorithm did on the training and testing data with respect to the chosen performance metric. 
 
Iteration:  Most of the time, model performance is not the best it can be on the first attempt.  It is not as 
accurate as we hoped, the model is overfitting the training data, or perhaps we want to try looking at a 
subset of features or a different set of hyperparameters.  Iteration is critical to optimizing model 
performance. 
 
Reporting:  Performing data analytics is most effective when accompanied with an effective method to 
communicate what we have found.  Creating graphs and figures to show our results help tell the story of 
the data. 
 
This section describes the software, pre-processing methods, machine learning algorithms, and evaluation 
techniques used in this project.  For the purpose of an illustrative example for data pre-processing and 
machine learning algorithms, a faithful subset of the FCA HPDC process data was created named toydata 
(Table II).  This small dataset was built by selecting features which capture the range in scale of the HPDC 
process data from three arbitrarily chosen machines.  The process inputs included in toydata are biscuit 
length, cavity fill time, final intensification pressure, average velocity of the plunger during slow shot, spray 
robot cycle time, molten metal temperature in the furnace, and the ladle pour time.   Incorporating the 
machine, which was set to 1, 2, and 3 respectively, provides toydata with a categorical feature in the dataset. 
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Table II.  The toydata dataset for illustration purposes.

 
 
 
Software/Libraries/Helpful Resources 
 
The benefits of machine learning are realized on very large datasets such as the HPDC process dataset.  
There is still a place for spreadsheet software for manageable datasets.  However, when datasets grow too 
large, purpose-built software is required.  Excessively large datasets, Big Data, utilize other tools for 
performing advanced statistical analysis and model generation.  Two such tools are computing codes R and 
Python [3]–[5].  Both are open source and free to download.  R and Python have numerous ready-made 
packages perform data analysis, organization and visualization.  A key advantage is an engaged user 
community with an endless amount of helpful information on the internet and continual adaption to the 
needs of the data science community.  Both are computing codes so there is a more involved learning curve 
as compared to point and click commands of Microsoft Excel, for example [6].  The flexibility in analysis 
tools available and reproducibility of custom graphics make R and Python programming indispensable 
skills for performing machine learning in materials processing.   
 
The following few paragraphs highlight open source libraries, modules, and packages recommended for 
someone who is interested in getting started in machine learning in Python.  The examples are provided in 
context of how they were utilized for this research.  To ascertain the full functional extent of each, the 

BiscuitLength CavityFillTime FinalIntensifierPressure SlowShotVelAve SprayRobotTime MetalTemp LadlePourTime machine
2.6 103 6379 4.3 61.30 1217 11.97 1
2.6 103 6453 3.9 54.97 1217 11.42 1
2.5 102 6473 3.6 58.33 1216 10.85 1
2.7 103 6440 3.8 62.43 1222 11.00 1
2.7 105 6343 3.9 63.62 1219 11.14 1
2.6 103 6421 3.9 56.22 1235 11.50 1
2.5 104 6314 4.1 58.40 1219 10.82 1
2.6 105 6460 3.6 55.07 1219 11.30 1
2.7 104 6356 4.0 60.60 1224 10.82 1
2.6 102 6541 4.2 56.65 1224 10.52 1
2.9 106 6446 2.4 59.03 1232 9.02 2
2.5 105 6432 2.3 58.72 1229 11.95 2
2.5 103 6525 2.4 61.90 1234 9.12 2
2.5 105 6640 2.9 59.55 1221 9.27 2
2.6 104 6336 2.4 58.15 1225 12.59 2
2.7 105 6484 2.6 60.50 1232 12.62 2
2.9 107 6397 2.4 61.80 1229 9.15 2
2.8 102 6522 2.4 57.88 1235 9.70 2
2.7 107 6358 2.5 61.33 1222 9.62 2
2.5 104 6398 2.4 59.35 1215 11.12 2
2.7 103 6269 5.6 57.70 1230 9.35 3
2.6 101 6365 6.1 59.35 1225 10.92 3
2.7 101 6468 4.5 55.67 1231 11.50 3
2.6 100 6423 4.3 55.40 1228 11.69 3
2.5 101 6339 5.8 59.22 1223 11.42 3
2.8 101 6298 4.8 54.97 1227 11.62 3
2.8 100 6265 5.7 58.95 1224 11.35 3
2.8 102 6350 5.2 56.20 1230 11.32 3
2.5 100 6284 5.3 57.95 1230 11.75 3
2.5 99 6445 4.3 54.53 1212 11.65 3
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reader is encouraged to visit the cited websites and read for themselves the capability of these packages, 
work through the tutorials, and determine their suitability for your data. 
 
pandas [7]–[9] 
Pandas is a data structuring package for conducting data analysis in Python.  Data can be structured as either 
a one-dimensional series or two-dimensional data frame.  While the diversity of data which pandas can 
handle is wide ranging, the data in the present study is of the tabular kind as an Excel spreadsheet, to name 
a common example.  Pandas is capable to import files such as .xlsx and .csv files directly into Python as a 
pandas DataFrame.  The first important feature is the ability to summarize and review the data after 
importing.  This includes statistical summaries, data type identification by column, the shape (dimensions) 
of the data frame, and the presence of missing data (or NaN).  Once the basic information about the data is 
understood, within pandas one can change the data type of specific columns, create subsets, and compare 
and merge different data frames.  Columns and rows can be created, removed, renamed, and reordered.  The 
creation of a new column can be based on, but not limited to, a mathematical operation, splitting character 
strings, Boolean conditions, and discretization.  The flexibility is high so that in one line of code a new 
column may be created utilizing more than one of these conditions.  In addition to this built in functionality, 
pandas allows the user to create their own functions and apply the data to them.  In short, pandas is a very 
useful tool in accessing and working with data frames. 
 
NumPy [10]–[12] 
NumPy (pronounced Num-Pie) is a basic building block of working with numerical data in Python.  The 
other libraries listed in this section are built upon NumPy.  NumPy utilizes efficient n-dimensional 
homogenous arrays (ndarrays) typically for mathematical calculations.  Though pandas is built upon 
NumPy, there are times where the algorithm with which one is working requires an array or a data frame 
specifically, so it is a good practice to import both into your Python code.  Similar to a pandas data frame, 
NumPy ndarrays can be sliced, merged, subset, etc. to create new ndarrays.  A very useful function in 
NumPy is the creation of random numbers or arrays of random numbers.  This is a great way to generate 
data with which to practice new data science techniques. 
 
Matplotlib [13], [14] 
Matplotlib is the go-to library for data visualization.  A critical component to any data science project is the 
creation of plots and charts which tell the story of that data.  Matplotlib offers a wide selection of plot styles 
that are highly customizable, and easily reproduced once the code is written. Matplotlib.org offers many 
examples and tutorials to aid the user in getting started. 
 
Scikit-learn [15], [16, p. 1] 
Machine learning algorithms can be composed in Python from scratch.  For efficiency, the scikit-learn 
library is a comprehensive suite of popular machine learning algorithms which are plug and play into Python 
code.  The user simply loads the algorithm from the proper scikit-learn module and adjusts the parameters 
of the model as needed.  In addition to these algorithms, scikit-learn offers modules for pre-processing 
(standardization, one-hot encoding), dimension reduction (feature selection, Principal Component 
Analysis), and model selection (cross-validation, metrics). 
 
colab.research.google.com [17]– Google’s Colaboratory, Colab for short, offers the ability to write Python 
code in a web browser.  The benefit is free access to Google’s graphic processing units (GPUs).  GPUs are 
gaming hardware which has been appropriated for machine learning.  Large data science projects can 
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overwhelm computers set-up for general home and office use.  In such cases, running machine learning 
algorithms on Colab GPUs will accelerate one’s progress.   
 
stackoverflow.com [18]– User community driven, one-stop answer site for your coding questions.  If you 
have an error in your code the answer is almost certainly on this website.  Learning to ask the right question 
takes time.  Building out one’s data science coding lexicon will help in asking the right questions.   
 
towardsdatascience.com [19]– A community of bloggers posting useful quick tutorials on a specific topic 
of data science from basic beginner tips to advanced and specialized techniques.  These insightful blogs 
help explain the highly technical in plain English. 
 
kaggle.com [20]– An excellent source for data with which to hone one’s skills. 
 
The FCA dataset was analyzed using both R and Python.  The initial data fusion and cleaning was conducted 
in R to create a comma separated values (.csv) file.  Python has this capability via pandas and NumPy as 
described above.  This file is uploaded into Python for the predictive model analysis for part quality and 
mechanical properties.  The steps for preparing the data and the analyses performed are detailed below 
using toydata where graphics benefit the reader.  At the end of each section, there is a supplemental table 
with the Python libraries used in the examples given along with citations of where to find more information 
on each.   
 
Data Pre-processing 
 
Cleaning the Dataset 
 
Real world production data is messy.  Missing values, erroneous sensor readings, duplicated entries, typos, 
format changes in the source file, etc. must be sorted out before one can engage in meaningful analysis.  
Considering the FCA HPDC process data set with over 950,000 observations and 109 variables, one cannot 
simply scroll through and hope to catch these issues by eye.  Running summaries of the data, examining 
the data class, and locating NaN values are a few of the tasks to accomplish in this step.  Fortunately, there 
are simple commands to execute which reveal issues in the data, but how to address them is up to the data 
scientist and the domain experts involved in the project.  One example of how bad data comes to be is when 
a monitoring sensor fails, it is common for production to continue until such a time when a technician is 
available to replace it.  Each cycle while the sensor is malfunctioning, its column in the dataset will be left 
blank or populated with bad data.  Bad data can be recognized by its scale or upon comparison to typical 
values when the sensor was working properly.  There is often no way to recover the actual missing values 
and erroneous sensor readings.  Even so, this does not mean that these columns should simply be deleted.  
For example, one can impute the mean or median value depending on whether the distribution is Gaussian 
or not.   
 
Another source of missing data is not a result of something going awry, rather it is a result of sampling 
frequency.  This is called heterogeneous data, and alloy composition is a good example.  Every casting has 
a composition; however, the furnace is only evaluated once per shift as a quality control audit.  Parts cast 
near the time when the composition check occurred can be estimated to be near that composition, but after 
hours have passed, that assumption is less valid.  For this study, elemental compositions were imputed into 
the merged dataset based on proximity in time to when the alloy was measured.  The composition of the 
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E380 aluminum alloy cast was quite consistent and no measures were taken showing the alloy to be out of 
specification. 
 
A popular domain for Data Science research is in the area of synthetic data generation for AI [21]–[23].  
These methods are promising and more faithful attempts to create new synthetic data which better represent 
the original data than mean imputation or sample duplication.  The downside of these naïve methods is that 
the statistical distribution of the data will change upon imputation and duplication provides no new 
information to the algorithm.  The objective is to fill gaps of the dataset, inputs and outputs, with created 
values which maintain the statistical measures of the true data from which it was derived.  Synthetic data 
generation can be used for data masking as a security measure and creating data when gathering additional 
real data is very expensive or risky such as autonomous vehicle training. [24], [25]. 
 
An important area where synthetic data creation is being explored is the balancing of imbalanced datasets.  
The Synthetic Minority Oversampling TEchnique (SMOTE) provides new information to the model via the 
creation of new minority class samples with which to train the algorithm [26], [27].  It is very important 
that a testing dataset be set aside which represents the properties of the original dataset prior to using 
SMOTE.  SMOTE creates each new minority class sample by selecting an example of the minority class, 
finding its nearest neighbors (k-neighbors = 5 is the default), and drawing a line between the example and 
one of its neighbors at random.  The new sample is created along the connection line.  This is done 
repeatedly until the minority class balances out the majority class or meets a prescribed ratio.  A 
disadvantage of SMOTE is that it is prone to making synthetic data which is not representative of the 
process under investigation.  Another is that SMOTE will generate data far from the borders of classes 
which the algorithm can easily classify already.  Figure 2a shows a randomly generated dataset created 
from scikit-learn make_classification module [28]–[30].  The dataset is comprised of 2000 samples 
representing two clustered classes.  The weight of the majority class is 0.96 (1920 samples).  Figure 2b 
shows the same dataset after the application of SMOTE.  The new dataset is balanced via SMOTE at 1920 
samples in each class. 
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Figure 2.  An illustration of SMOTE application showing a) the unbalanced data prior to 
synthetic data generation and b) the balanced dataset after SMOTE. In this classification 
example, many synthetic data are generated far from the border of the two class clusters 
which is less useful for making predictions between classes. 

 
 
Borderline SMOTE is a selective oversampling method which increases the number of minority class 
samples in the region of the border between two class clusters [31].  When two samples of opposite class 
are not similar, i.e. far apart in Figure 2a, training the algorithm to classify them correctly is easy.  The 
error increases along the border where minority class samples are more likely to be grouped into the 
majority class.  Generating more minority class in this region will accentuate what is unique about one class 
versus the other and improve predictive performance.  Figure 3 displays Borderline SMOTE applied to the 
data from Figure 2a. 
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Figure 3.  An illustration of Borderline SMOTE application to the example dataset in 
Figure 2a.  Here, the synthetic data are generated along the border of the two class clusters 
for the purposes of training the model to better differentiate between similar samples of 
different classes. 

 
 
Typos are problematic with manually entered datasets.  In the FCA data, typos in the serial numbers on the 
mechanical property dataset were encountered.  These typos had to be corrected since the HPDC process 
data and the mechanical property data were to be merged on the serial number and it was important to retain 
as much of the mechanical property dataset as possible.  The erroneous serial numbers were identified by 
reviewing only the serial numbers from the tensile bars which were not found in the HPDC process 
database.  A needle in the haystack search for humans that takes a computer seconds to perform.  The next 
step is manual, but the number of instances was not daunting.  The serial number is a code which contains 
the Julian day, year, model letter designation, die casting machine number, die cavity number, work shift, 
and shot number.  Errors could be identified such as transposed digits based on limited possibilities and 
date time information about that part.  If the instances were sufficiently large, a script could be written to 
perform the same tasks and typos could be autocorrected.  If the serial number could not be corrected with 
a high confidence, the row was omitted from the combined process and property dataset. 
 
Cleaning the data is often an iterative process as downstream operations will fail if the data is not organized 
correctly.  Upon cleaning, the data sets the dimensions are changed as shown in Table III.   
 

Table III.  Effect of cleaning on the data set shape (n-rows x n-columns). 
Dataset Name Raw Dataset Cleaned Dataset Combined Dataset 
HPDC Process 956,986 x 109 954,313 x 95 

1,485 x 140 Alloy Composition 980 x 17 933 x 17 
Tensile Testing 1,634 x 14 1,623 x 15 
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Observation count drops as rows with missing data or duplicated data are removed.  The number of features 
can increase as combinations of variables are added such as the calculation of the Quality Index [32] in the 
tensile test data set.  On the other hand, features are removed when they do not contain variation or are 
otherwise deemed unimportant to the analysis.  Therefore, the resulting number of features after working 
with the data may increase or decrease.  The combined data set is the result of matching the data sets first 
on serial number between the HPDC data and the tensile testing data then on machine number and date of 
the alloy composition data set. 
 
Supplement i.  Libraries, modules, and algorithms used in this example along with citations to assist the 
reader in accessing them.  The purpose served by each is given in the Notes column. 

Library.module Algorithm Notes Reference 
pandas  Use: Dataframe management [7]–[9] 

sklearn.datasets make_classification Use: Create sample data clusters 
for SMOTE demonstration 
n_samples = 2000 
n_features = 2 
n_clusters_per_class = 1 
weights = 0.96 

[15], [16], 
[28] 

imblearn.over_sampling SMOTE 
BorderlineSMOTE 

Use: Generate synthetic data in 
the minority class.  
Default parameters used. 

[27], [29]–
[31] 

matplotlib pyplot Use: Scatter plots for SMOTE 
visualization 

[13], [14], 
[33] 

 
 
Continuous vs Discrete Data 
 
In the dataset, there are continuous variables such as melt temperature, fast shot velocity, and intensification 
pressure.  Likewise, there are discrete variables such as machine ID, cavity number, and work shift.  
Continuous variables fit nicely into machine learning algorithms which base predictions on the distance 
between two values.  However, discrete data, especially discrete data which is represented by numeric 
identifiers such as those listed above, cannot be properly characterized by finding the difference.  Even so, 
it is useful data and can be incorporated into the analysis.  Using toydata, the categorical feature, machine, 
is a good example for illustrating how to deal with discrete data.  In Table II, the column for machine 
identifier contains ones, twos and threes.  Many machine learning algorithms struggle with this type of data 
entry as it is computing a distance between numerical machine identifiers which it interprets as continuous 
data.  While the distance between 1 and 2 and the distance between 2 and 3 both have a value of one, the 
pair 1 and 3 have a distance of two (Figure 4).  This is interpreted as parts cast on machines 1 and 3 are less 
alike than parts cast on machines 1 and 2.  Knowing that all three machines are identical, machine 1 and 
machine 2 are no further apart than machine 1 and machine 3.  We need data representation which the 
algorithm will correctly interpret.  
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Figure 4.  Discrete numerical data challenge of machine identifier. 
 

To deal with the challenge of discrete data, data scientists utilize a method known as one-hot encoding [34].  
One-hot encoding takes the tall vector which has discrete machine number data consisting of 1’s, 2’s, and 
3’s and converts it into a wide set of dummy variables.  Call them machine_1, machine_2, and machine_3.  
Where machine has a value of one (1), machine_1 also has a value of one (1) while machine_2 and 
machine_3 both have a value of zero (0) (Table IV).   
 
Table IV.  After one-hot encoding the machine variable, toydata has three new columns of machine ID 
data each specific to one machine.  The original machine column is dropped from the dataset. 

 
 
By employing one-hot encoding we now have three columns which capture the machine identifier as 
numerical data and the distance between each machine is one.  The original machine data column is 

BiscuitLength CavityFillTime FinalIntensifierPressure SlowShotVelAve SprayRobotTime MetalTemp LadlePourTime machine_1 machine_2 machine_3
2.6 103 6379 4.3 61.3 1217 11.97 1 0 0
2.6 103 6453 3.9 54.97 1217 11.42 1 0 0
2.5 102 6473 3.6 58.33 1216 10.85 1 0 0
2.7 103 6440 3.8 62.43 1222 11 1 0 0
2.7 105 6343 3.9 63.62 1219 11.14 1 0 0
2.6 103 6421 3.9 56.22 1235 11.5 1 0 0
2.5 104 6314 4.1 58.4 1219 10.82 1 0 0
2.6 105 6460 3.6 55.07 1219 11.3 1 0 0
2.7 104 6356 4 60.6 1224 10.82 1 0 0
2.6 102 6541 4.2 56.65 1224 10.52 1 0 0
2.9 106 6446 2.4 59.03 1232 9.02 0 1 0
2.5 105 6432 2.3 58.72 1229 11.95 0 1 0
2.5 103 6525 2.4 61.9 1234 9.12 0 1 0
2.5 105 6640 2.9 59.55 1221 9.27 0 1 0
2.6 104 6336 2.4 58.15 1225 12.59 0 1 0
2.7 105 6484 2.6 60.5 1232 12.62 0 1 0
2.9 107 6397 2.4 61.8 1229 9.15 0 1 0
2.8 102 6522 2.4 57.88 1235 9.7 0 1 0
2.7 107 6358 2.5 61.33 1222 9.62 0 1 0
2.5 104 6398 2.4 59.35 1215 11.12 0 1 0
2.7 103 6269 5.6 57.7 1230 9.35 0 0 1
2.6 101 6365 6.1 59.35 1225 10.92 0 0 1
2.7 101 6468 4.5 55.67 1231 11.5 0 0 1
2.6 100 6423 4.3 55.4 1228 11.69 0 0 1
2.5 101 6339 5.8 59.22 1223 11.42 0 0 1
2.8 101 6298 4.8 54.97 1227 11.62 0 0 1
2.8 100 6265 5.7 58.95 1224 11.35 0 0 1
2.8 102 6350 5.2 56.2 1230 11.32 0 0 1
2.5 100 6284 5.3 57.95 1230 11.75 0 0 1
2.5 99 6445 4.3 54.53 1212 11.65 0 0 1
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removed from the input dataset prior to running the algorithm.  One-hot encoding can be applied to character 
string data as well. 
 
Supplement ii.  Libraries, modules, and algorithms used in this example along with citations to assist the 
reader in accessing them.  The purpose served by each is given in the Notes column. 

Library.module Algorithm Notes Reference 
pandas  pandas.get_dummies() command 

used for one-hot encoding.  
Within the parentheses, one can 
specify the dataframe and which 
columns to convert. 

[7]–[9] 

 
 
Standardizing the Data 
 
Once the data set is fully numeric and discrete variables have been managed, the issue of scale is addressed.  
The data collected in high pressure die casting contains a wide range in scale.  Also, different equipment 
manufacturers may capture data in only English or metric units.  In round numbers, intensification pressure 
of 10,000 psi, melt temperature of 1300 F/ 704 C, cycle time of 150 seconds, biscuit size of 2 inches, and 
an iron content of 0.60% are a few examples which show the range of scale is in orders of magnitude.  If 
left in this format, the intensification pressure would register as highly significant and outweigh any 
influence the iron content would show simply because the numbers are larger.  Recent developments in 
high pressure die casting alloys show that iron content is very influential on mechanical properties [35] and 
this significance would perhaps not come to light because of the issue of scale.  The standardization method 
which was employed in this study is the Z-transform (Equation 1), which brings all the variables into the 
same scale, resolves the issue of units, and leads to meaningful distances when considering multiple 
columns of data  [36], [37].  Table V shows the Z-transformed toydata. 
 

𝑍 , =  
,   

        Eq. 1 

Where: 
 𝑍 ,  is the Z-transform value in the ith row of the jth column 

 𝑋 ,  is the original value in the ith row of the jth column 

  𝜇  is the mean of the original values in the jth column 

 𝜎   is the standard deviation of the original values in the jth column 
 
An advantage of the Z-transform is that anomalies are easy to detect upon performing a summary of the 
standardized data set.  A summary of the standardized data set will reveal anomalous values.  For this data 
set, variable with maximum standardized values greater than 10 were examined.  Large standardized values 
for a given variable signify that examples of this condition are rare.  Machine learning relies on many 
examples of each condition in order to generate the most accurate model.  It is important to investigate 
these in the original data; applying domain expertise to decide if it should be removed from the data set for 
the purpose of the analysis.  Removing anomalies from the data set does not necessarily mean deleting 
those rows and never looking back.  Anomalies provide information about the fringes of the process window 
that may prove valuable if more data were to be collected in that space.  Once the additional data is collected, 
then that can be added back into the machine learning model. 
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Table V.  The toydata data frame after Z-transformation.  Each column is now on the same scale and has 
an average value of 0 and a standard deviation of 1. 

 
 
To present benefits of the Z-transform graphically, toydata with and without Z-transformation are run 
through a K-Nearest Neighbors (KNN) algorithm.  KNN is a supervised learning method highly sensitive 
to distances [38].  Thus, benefits from standardizing data are readily shown.  Importing the 
KNeighborsClassifier from scikit-learn.neighbors, the machine column from toydata is predicted as the 
target output.  The remaining toydata columns are the input parameters.  Since machine is being predicted, 
the one-hot encoded machine columns are not included with the Z-transform input data.  Due to the small 
size of toydata the model was trained on all the data and predictions were made on the same training data.  
One should expect a high performing model in this case.  Figure 5 clearly shows the impact of standardizing 
the data.  Without the Z-transform, the model accuracy is poor, misclassifying one-third of the samples.  
After Z-transform, 90% of the samples are classified correctly. 
 

BiscuitLength CavityFillTime FinalIntensifierPressure SlowShotVelAve SprayRobotTime MetalTemp LadlePourTime machine_1 machine_2 machine_3
-0.3259 0.0000 -0.3301 0.3828 1.1413 -1.2643 1.0270 1.4142 -0.7071 -0.7071
-0.3259 0.0000 0.5281 0.0400 -1.4617 -1.2643 0.4809 1.4142 -0.7071 -0.7071
-1.1406 -0.4841 0.7600 -0.2171 -0.0800 -1.4250 -0.0851 1.4142 -0.7071 -0.7071
0.4888 0.0000 0.3773 -0.0457 1.6059 -0.4607 0.0639 1.4142 -0.7071 -0.7071
0.4888 0.9682 -0.7476 0.0400 2.0953 -0.9429 0.2029 1.4142 -0.7071 -0.7071
-0.3259 0.0000 0.1569 0.0400 -0.9477 1.6286 0.5603 1.4142 -0.7071 -0.7071
-1.1406 0.4841 -1.0839 0.2114 -0.0513 -0.9429 -0.1148 1.4142 -0.7071 -0.7071
-0.3259 0.9682 0.6092 -0.2171 -1.4206 -0.9429 0.3617 1.4142 -0.7071 -0.7071
0.4888 0.4841 -0.5969 0.1257 0.8534 -0.1393 -0.1148 1.4142 -0.7071 -0.7071
-0.3259 -0.4841 1.5486 0.2971 -0.7709 -0.1393 -0.4127 1.4142 -0.7071 -0.7071
2.1182 1.4524 0.4469 -1.2454 0.2078 1.1464 -1.9021 -0.7071 1.4142 -0.7071
-1.1406 0.9682 0.2845 -1.3311 0.0803 0.6643 1.0071 -0.7071 1.4142 -0.7071
-1.1406 0.0000 1.3631 -1.2454 1.3880 1.4679 -1.8028 -0.7071 1.4142 -0.7071
-1.1406 0.9682 2.6967 -0.8169 0.4216 -0.6214 -1.6539 -0.7071 1.4142 -0.7071
-0.3259 0.4841 -0.8288 -1.2454 -0.1541 0.0214 1.6426 -0.7071 1.4142 -0.7071
0.4888 0.9682 0.8876 -1.0740 0.8123 1.1464 1.6724 -0.7071 1.4142 -0.7071
2.1182 1.9365 -0.1214 -1.2454 1.3469 0.6643 -1.7730 -0.7071 1.4142 -0.7071
1.3035 -0.4841 1.3283 -1.2454 -0.2651 1.6286 -1.2269 -0.7071 1.4142 -0.7071
0.4888 1.9365 -0.5737 -1.1597 1.1536 -0.4607 -1.3063 -0.7071 1.4142 -0.7071
-1.1406 0.4841 -0.1098 -1.2454 0.3394 -1.5857 0.1830 -0.7071 1.4142 -0.7071
0.4888 0.0000 -1.6058 1.4968 -0.3391 0.8250 -1.5744 -0.7071 -0.7071 1.4142
-0.3259 -0.9682 -0.4925 1.9252 0.3394 0.0214 -0.0156 -0.7071 -0.7071 1.4142
0.4888 -0.9682 0.7020 0.5541 -1.1739 0.9857 0.5603 -0.7071 -0.7071 1.4142
-0.3259 -1.4524 0.1801 0.3828 -1.2849 0.5036 0.7490 -0.7071 -0.7071 1.4142
-1.1406 -0.9682 -0.7940 1.6681 0.2859 -0.3000 0.4809 -0.7071 -0.7071 1.4142
1.3035 -0.9682 -1.2695 0.8112 -1.4617 0.3429 0.6795 -0.7071 -0.7071 1.4142
1.3035 -1.4524 -1.6522 1.5824 0.1749 -0.1393 0.4114 -0.7071 -0.7071 1.4142
1.3035 -0.4841 -0.6665 1.1540 -0.9559 0.8250 0.3816 -0.7071 -0.7071 1.4142
-1.1406 -1.4524 -1.4319 1.2397 -0.2363 0.8250 0.8086 -0.7071 -0.7071 1.4142
-1.1406 -1.9365 0.4353 0.3828 -1.6427 -2.0679 0.7093 -0.7071 -0.7071 1.4142
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Figure 5. K-Nearest Neighbor classification of machine identifier a) without Z-transform 
and b) with Z-transform.  Each point represents the true and predicted machine class. 
Misclassified samples display as bi-colored points.  The axes were chosen to show 
separation between the three machines.  With the Z-transform, the model performed much 
better, classifying at a 90% accuracy. 

 
 
Supplement iii.  Libraries, modules, and algorithms used in this example along with citations to assist the 
reader in accessing them.  The purpose served by each is given in the Notes column. 

Library.module Algorithm Notes Reference 
pandas  Use: Dataframe management [7]–[9] 

sklearn.pre-processing StandardScaler Use: Applies Z-transform to a 
dataframe 

[15], [16], 
[39] 

sklearn.neighbors KNeighborsClassifier Use: Machine learning algorithm 
n_neighbors = 3 
weights = ‘uniform’  

[15], [16], 
[40] 

matplotlib pyplot Use: Scatter plots for KNN 
visualization 

[13], [14], 
[33] 

 
 
Correlation Between Variables 
 
Some machine learning algorithms are sensitive to correlation between variables in the data set.  The effect 
of keeping two correlated variables in the data set is that the underlying contribution to variance is doubled.  
Correlation coefficients are not only an indication of how two variables are related, but also a measure of 
how strongly related they are (Equation 2) [41].  Correlation coefficients range between -1 and 1.  Any 
variable correlated to itself has a coefficient of 1.  Therefore, if two variables 𝑥  and 𝑥  have a correlation 
of, or near, 1 they are highly positively correlated and one of them should be removed from the data.   
Similarly, coefficients near -1 are highly negatively correlated and one of the variables should be removed.  
Comparing Equations 1 and 2, it can be seen that the data need not be standardized prior to checking for 
correlation; the values are standardized within the correlation coefficient equation.   
 

𝑟 =  ∑ (
  

)( )      Eq. 2 

Where: 
 𝑟 is the correlation coefficient between variables (columns) 𝑥  and 𝑥  
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 𝑛 is the number of samples (rows) in the dataset 
 𝑥  and 𝑥  are the ith value in variables 𝑥  and 𝑥  respectively 

 𝜇  and 𝜇  are the mean of the values in 𝑥  and 𝑥  respectively 

 𝜎   and 𝜎  are the standard deviation of the values in 𝑥  and 𝑥  respectively 
 
For the purposes of this research, variables with a correlation coefficient greater than 0.85 or less than -0.85 
were considered correlated enough to remove one of them.  A correlation matrix is a comparison tool which 
displays the correlation coefficients between variables in a dataset.  An example of a correlation matrix is 
shown in Figure 6.   
 

 
Figure 6.  Correlation matrix of toydata.  The amount of correlation is depicted by the size 
and color of the circle.  Blue circles show a positive correlation between two features and 
red circles show a negative correlation.  The size of the circle and depth of color are 
redundant depictions of the magnitude of the correlation coefficient.  Note that correlating 
any feature to itself yields a coefficient of 1.0.   

 

Figure 6 shows a strong negative correlation (-0.75) between the categorical feature machine_3 and 
CavityFillTime.  This means that when a casting is run on machine_3, CavityFillTime decreases.  This 
works the other way around too, as CavityFillTime increases, the casting is not run on machine_3.   
 
Supplement iv.  Libraries, modules, and algorithms used in this example along with citations to assist the 
reader in accessing them.  The purpose served by each is given in the Notes column. 

Library.module Algorithm Notes Reference 
biokit.viz corrplot Use: Plotting correlation matrix [31] 
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Dimension Reduction Techniques 
 
Feature Selection: 
Feature selection is a dimension reduction technique which is performed by the data scientist much like the 
name implies.  From the high-dimensional dataset, specific features are selected to run through the 
algorithm.  These selections are not made haphazardly.  A key resource in deciding which inputs to keep is 
the domain expert.  A domain expert is a specialist in the field from which the data was generated who has 
reliable knowledge and experience useful to making choices regarding the data to be used.  In the absence 
of domain expertise some machine learning algorithms, like Random Forest, track feature importance in 
the model generated from the high-dimension data [43].  A new Random Forest model can be created using 
the top n most important features.  The actual number of features chosen may be based on an arbitrary 
number, a minimum feature importance value, or top percentage of features. 
 
Principal Component Analysis (PCA): 
PCA is an unsupervised dimension reduction technique [44], [45].  The goal of PCA is to determine linear 
combinations of the input variables, called principal components (PCs), which capture the most variation 
in the dataset while minimizing the error when the dataset is reconstructed from the PCs.  In doing so, a 
high-dimensional dataset can be condensed into a smaller number of PCs.  Python packages like scikit-
learn [15] do all the mathematics behind the scenes, but it is important to understand what the algorithm is 
doing.  The steps for PCA are as follows: 
 
Step 1: Start with the standardized dataset A, with n rows and d columns.  In data science terms, the shape 

of matrix A is n x d. 
 
Step 2: Calculate the covariance of matrix A, Cov(𝐴) [46].  Covariance describes how one variable changes 

in relation to another.  The covariance matrix is given by Equation 3.  Cov(𝐴) is a square matrix, d 
x d. 

𝐶𝑜𝑣(𝐴) =        Eq. 3 

 Where 𝐴  is the transpose of 𝐴; a d x n matrix. 
 
Step 3: Perform Singular Value Decomposition (SVD) [47] on the Cov(𝐴) matrix (Equation 4), and obtain 

the singular values (𝜎 , 𝜎 , … 𝜎 ) from 𝛴 which are arranged in decreasing order along the diagonal 
of 𝛴 (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 5). 

   
𝐶𝑜𝑣(𝐴) = 𝑈𝛴𝑉       Eq. 4 

 

Σ= 

𝜎 0 0 0
0 𝜎 0 0
0 0 … 0
0 0 0 𝜎

      Eq. 5 

Where: 
 U and 𝑉  are orthogonal matrices [48] where the columns of 𝑉  are the right singular 

vectors if 𝐴 𝐴 is used.  In the case where 𝐴𝐴 is used, the left singular vectors are the 
columns of U [48], [49]. 

 𝛴 is a diagonal matrix which contains the singular values, 𝜎 , of 𝐶𝑜𝑣(𝐴) 
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Calculate the explained variance (Equation 6). 
𝑒𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑑 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = [𝜎 / ∑ 𝜎] ∗ 100   Eq. 6 
 

Step 4: Choose the number of singular vectors, k, which yields the desired cumulative explained variance 
from Step 3; 80-85% is a good minimum value.   The value of k must be between 1 and d.  These 
singular vectors make up a new matrix, W, which has the shape d x k. 

 
Step 5: Project A onto the new feature space by taking the dot product of matrix A and matrix W (Equation 

7).  This new matrix, Y, has the shape n x k where the columns are the PCs. 
𝑌 = 𝐴𝑊       Eq. 7 

 
Now, the standardized dataset A has been reduced from d-dimensional space to k-dimensional space.  In 
the case where k is equal to two or three, the data can be plotted and visually inspected.  Also, the new 
matrix, Y, can be input into regression and classification algorithms to create models less susceptible to 
overfitting with less computational time required to run them.   
 
In Table VI, the PCA transformation of standardized toydata (Table V) is shown.  In PCA, the number of 
PCs determined is equal to the number of columns, d, in the dataset.  The goal is dimension reduction, so a 
number less than d is desired.  In the scikit-learn PCA algorithm, the number of PCs can be specified as an 
integer or the amount of explained variance can be entered as a decimal between 0 and 1 [50].  In this 
example, the minimum explained variance is specified to be 0.85 and the algorithm yields five PCs (Figure 
7).  Reducing the dimensionality of toydata from ten to five.  Unlike feature selection, where entire columns 
are removed, in PCA all the original columns are represented in each of the PCs.  Thus, no feature has been 
removed though the dimensions are reduced. 
 
 

 
Figure 7.  Plot of the cumulative explained variance as PCs are added in rank order.  The 
first five PCs, in total, explain 89.2% of the variance in the original toydata dataset. 
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Table VI.  The first five PCs from the toydata PCA.  Note, there are 10 PCs in the PCA, only the first five 
are shown as that is what is required to achieve a minimum explained variance of 0.85. 

 
 
The primary reason to use PCA is for dimension reduction which offers benefits of reduced computation 
time in predictive modeling and the ability to visualize high-dimensional datasets in two or three 
dimensions.  Figure 8 shows the two-dimensional scatter plot of PCs 1 and 2.  As one reads this figure, it 
is important to recognize that this is a simple scatter plot.  PC1 and PC2 are not functions of one another.  
The main disadvantage of PCA is that it is limited to linear principal components. 

 

PC1 PC2 PC3 PC4 PC5
-0.3425 2.1937 1.1681 0.5850 -0.1636
-0.5536 2.1344 -0.4662 -0.9768 -0.5579
-0.1246 2.4797 -0.4458 -0.4541 0.6473
0.5593 1.3762 1.3861 -0.4321 0.1943
0.7116 1.5664 2.4890 0.5223 0.1071
-0.2977 0.6253 -0.1563 -1.4142 -1.4152
-0.3287 2.0107 0.8973 0.2770 0.1997
0.0768 2.0234 -0.2823 -1.0395 -0.7444
0.2956 1.0377 1.7499 -0.4186 -0.2037
-0.0962 1.4867 -0.6929 -1.9095 0.2613
3.0641 -2.1458 0.6680 -1.1008 -0.0885
1.7317 -0.0180 -1.3512 1.3757 -1.0718
2.7294 -0.9024 -1.2176 -0.0402 1.4797
2.8224 0.3993 -1.9553 -0.3053 1.8973
0.9743 -0.0720 -0.6589 1.8799 -1.7520
1.9772 -0.6876 -0.6445 0.8904 -1.8119
3.3776 -1.8868 1.6178 -0.1853 0.1793
2.1074 -1.9283 -1.0306 -1.4026 -0.2202
2.8153 -0.6236 1.0145 1.0417 0.5802
1.4926 0.8871 -0.9332 1.9255 0.3432
-1.5888 -1.9684 1.3231 -0.3764 1.1518
-2.2704 -0.7969 0.3001 0.4156 1.1611
-1.7603 -1.3212 -1.0658 -0.9307 -0.4497
-2.2160 -0.8009 -1.3898 -0.2515 -0.2793
-2.4706 -0.2301 -0.0537 1.1388 1.0222
-2.4888 -1.5835 0.3034 -0.2414 -0.9351
-2.6597 -1.4580 1.3428 0.4828 0.1397
-2.0192 -1.7835 0.4377 -0.5664 -0.5905
-2.7955 -0.8532 -0.2610 1.0304 0.1201
-2.7226 0.8394 -2.0926 0.4806 0.7997
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Figure 8. Two-component PCA.  On the toydata dataset, we see a separation of the 
castings into clusters by machine number. 

 
Supplement v.  Libraries, modules, and algorithms used in this example along with citations to assist the 
reader in accessing them.  The purpose served by each is given in the Notes column. 

Library.module Algorithm Notes Reference 
pandas  Use: Data frame management [7]–[9] 

sklearn.decomposition PCA Use: PCA transform the standardized 
toydata dataset 
n_components = 0.85 
svd_solver = ‘full’ 
Used pca.explained_variance_ratio_ to 
calculate cumulative sum of explained 
variance 

[15], [16], 
[50]  

matplotlib plyplot Use: Create and customize plots [13], [14], 
[33] 

matplotlib patches Use: Generate custom legend for scatter 
plot 

[13], [14], 
[51] 

 
 
Machine Learning Algorithms 
 
Classification vs. Regression Models 
 
When making machine learning predictions the data scientist has two common options at their disposal.  
The first is to predict that new sample data belongs in a certain category, or class.  This is classification 
modeling.  In some cases, the classes may be outputs included in the raw dataset.  For example, a 
classification model is used when one is interested in predicting whether new data is representative of 
good parts or process scrap.  Other datasets require the creation of a new output columns based on the 
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values of another output column.  Here, continuous data can be binned into ranges of values and these 
bins are now the classes being predicted by the model.  Classification models are useful when predicting 
general outputs like good or bad, greater than or less than, low/medium/high, etc. 
 
Regression models, on the other hand, are used to make specific prediction values for continuous output 
variables.  In regression models, one is looking to predict the actual temperature, material strength, selling 
price of housing, etc. based on the input data provided.   

 
Over-fitting and the Bias-Variance Trade-Off 
 
There are many machine learning algorithms and neural networks available for analyzing data.  When 
choosing which to implement, the two most important considerations are size of the available data and bias-
variance trade-off.  The FCA dataset of 1494 tensile tests are exceedingly large when compared to typical 
mechanical property studies in the literature.  However, in the world of data science, this is not Big Data.  
The amount of data available is a limiting factor in the complexity of the model chosen (Figure 9).  It is 
difficult to provide a numerical direction to the reader on what should be considered a small dataset versus 
a large dataset.  A large dataset is one which captures enough examples representative of the most variation 
within the space one is looking to model. 
 

 

Figure 9.  Performance comparison of Neural Network models with traditional machine 
learning models as training data size increases.  On smaller datasets, traditional 
algorithms outperform deep learning models however, as the amount of data increases, 
deep learning models perform better. 

Figure 9 shows a performance comparison of the models as data size increases. For smaller datasets, one 
would pick traditional machine learning algorithms. However, as the quantity of data increases, deep 
learning models perform better because traditional algorithms reach a saturation point and do not improve 
any further whereas deep learning models performance keeps increasing with training data size [52].      

Understanding the bias-variance trade-off is essential in deciding which algorithms to select for a given 
dataset and application.  Bias is error in the model driven by the underlying assumptions in the algorithm. 
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For example, in linear regressions, the bias is high because the algorithm only has linear equations at its 
disposal to fit the data.  Variance refers to the error in the model due to its sensitivity to noise in the training 
dataset.  When variance is high, the algorithm will model the specifics of training set and not be able to 
generalize to new data.  In Figure 10, the X-axis shows model complexity and the Y-axis is generalization 
error.  As model complexity increases, variance increases and bias decreases.  An increase in the variance 
causes the model to overfit to the training data and it fails to generalize on new data. The left side of the 
plot shows a high bias but low variance region. This implies that the model is too simple and, hence, it is 
highly biased.  It fails to learn the complexity of the data.  The ideal point is where bias and variance 
intersect, as shown by the optimum model complexity in the plot below [53]. 

 

Figure 10. Bias-variance trade-off [53], [54] shows how error changes as the complexity 
of the model increases.  The region on the right is that of high variance and low bias 
whereas the region on the left is that of high bias and low variance.  These regions are 
where the model overfits or underfits the training data and should be avoided.  The optimal 
model complexity is where variance and bias intersect, and one should utilize algorithms 
in this region.  

           

Figure 11. The phenomenon of underfitting and overfitting is seen in this figure [55].  We 
want a model that is optimal for the kind of data and application that we are exploring.  
For example, a good fit is illustrated in the center plot.  The plots on the right and left show 
underfitting and overfitting respectively and should be avoided.  
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Figure 11 shows the phenomena of overfitting and underfitting.  It can be seen in the leftmost plot that the 
model follows the data very closely and, thus, overfits.  This is the region of high variance in the bias-
variance trade-off where the model will fail to generalize on testing data because it almost memorizes the 
training data.  The middle figure shows the optimum model which corresponds to the lowest point of bias 
and variance in the bias variance trade-off and gives a robust fit to the data.  The rightmost figure shows an 
example of high bias in the bias-variance trade-off.  Here, the model fails to learn enough complexity in the 
dataset and underfits [54], [55]. 
 
Decision Tree / Random Forest 
 
The Decision Tree is a supervised machine learning method with known outputs applicable to classification 
and regression problems [56].  Decision Tree classifiers build a predictive model by evaluating the input 
variables and sorting the observations at various nodes into classes.  The nodes split, forming branches of 
the tree which terminate at a node which does not split, a leaf.  Each split creates another layer of depth in 
the model.  Without placing restrictions on the model, the sorting will continue until each branch of the tree 
ends at a pure leaf consisting of one class.  While this results in a high scoring model, overfitting to the 
training data is highly likely and the model will not score well on new data.  This propensity to overfit is a 
by-product of what makes the Decision Tree so advantageous to materials manufacturing problems.  The 
algorithm is not limited to a functional form.  Rather, it evaluates each feature and makes decisions on 
where to split based on the information gained by doing so. 
 
To combat misclassification, an improved model which uses the results from hundreds, or thousands, of 
Decision Trees to make predictions is called Random Forest [43], [57].  Random Forest is an ensemble 
learning, or prediction by committee, approach where the observations are randomly broken into subsets 
and built into trees splitting on a random subset of the features.  The predictions of many trees built from 
the training data are compiled to make a final prediction for each observation.  In a classification model, 
group voting among the trees is conducted to determine the predicted class.  The result of the group vote 
can be better than what any one of the trees would determine on its own.   
 
To explain Random Forest, we apply the scikit-learn RandomForestClassifier model to the toydata database  
[15], [58].  To have enough data to split into training and testing sets, toydata was expanded to 99 samples.  
Supervised learning methods require an output by which to train the data, so we will attempt to predict the 
machine (1, 2, or 3) which made the casting based on the process inputs.  Due to the small data size, a 90/10 
training to testing data split was performed.  For the Random Forest classifier itself, default parameters 
were used with the exceptions of setting the number of estimators (trees) to 1000, maximum features to 
consider at each node to 3, and maximum samples per estimator to 12.   
 
Once the Random Forest algorithm has been run, the trees created on the training data can be viewed to 
understand upon which features the cuts were made.  A sample tree from a Random Forest classifier is 
shown in Figure 12 followed by an explanation of the details behind the Random Forest algorithm.  In 
Figure 12, each node has data associated with it.  First, on nodes where a split is made, the criterion for the 
split is shown.  This information is not applicable for the leaf nodes.  Next, a Gini index is given, which is 
a measure of the purity of the node [59].  Gini is followed by the number of samples in the node.  The value 
shows three numbers in brackets which represent the class make-up of the samples in the node.  Lastly, the 
class to which the node is assigned is displayed as determined by the majority class in the node.   
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Figure 12.  Sample tree from a Random Forest model of the toydata dataset.  In this 
example, 1000 trees were used to train the algorithm with maximum features set to a value 
of 3 and maximum samples set to 12.  Note how each leaf is pure as no restrictions were 
placed with respect to minimum samples per leaf or maximum depth of the tree.  

 
In the scikit-learn RandomForestClassifer, Gini index is the default calculation upon which the model splits 
a node [60].  Gini has a value between zero and one.  The value indicates the probability of misclassifying 
an observation.  A Gini of zero represents a pure node where all the observations are of the same class, no 
split is made.  A high Gini value means that the various classes are mixed and there is a high probability 
that a new observation would be misclassified.  The equation for Gini is given in Equation 8. 
 

𝐺𝑖𝑛𝑖 = 1 − ∑ 𝑃        Eq. 8 
Where: 

 𝐺𝑖𝑛𝑖 is the Gini index 
 𝑛 is the number of classes 
 𝑃  is the probability of finding each class in the node 
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For a split, the Gini index is calculated for each feature with respect to the observations in the node.  The 
split is made on the feature which results in the lowest Gini values in the resulting child nodes.  This is 
repeated down the tree until a stopping criterion is met.  Examples of stopping criteria include: 
 

 All the leaf nodes are pure 
 All the leaf nodes are sufficiently pure by setting a predetermined minimum Gini index 
 All the leaf nodes contain too few samples to split by setting a minimum samples to split value. 
 The maximum depth of the tree is met by setting a maximum tree depth value. 

 
Classification Random Forests can be summarized in a confusion matrix [61].  The confusion matrices in 
Figure 13 show how the model performed on the training data and the testing data.  Across the matrix rows 
are the actual classes and the columns are the predicted classes.  Correct classifications reside along the 
diagonal.  With no restrictions placed on training the model, the training trees terminate at pure nodes and 
Figure 13b shows a very nearly perfect model.  On the testing data (Figure 13c), however, the model 
demonstrates it has overfit to the training data and does not perform quite as well. 
 

a)   

𝑏) 
30 0 0
1 30 0
0 1 27

  c) 
3 0 0
1 1 0
1 0 4

 

  Training data                Testing data 
 

Figure 13. a) depicts the row and column layout of the confusion matrices for the toydata 
Random Forest: b) the training data and c) the testing data.  The testing data shows two 
misclassified observations where one machine 2 and one machine 3 sample are both 
classed as machine 1. 

 
Thus far, we have focused on using Random Forest as a classification model.  Random Forest can build 
regression models to predict continuous variables as well.  Scikit-learn RandomForestRegressor operates 
in a similar way as the classifier [62].  Rather than Gini index, the regressor uses error metric reduction 
(mean squared error or mean absolute error) as the splitting criterion to create the purest nodes as the tree 
is constructed.  At the leaf nodes, an average value for the output of interest is calculated from the known 
output values of the samples within that leaf.  For the final reported value, the predictions of the observations 
from all the trees are averaged.   
 
A helpful output that Random Forest offers is feature importance [63].   This report resonates with materials 
processing engineers because it boils the model down to buttons and knobs that can be pressed and turned 
to conduct experiments.  Data-driven decisions of which parameters to consider for a design of experiment.  
The alternative is hard earned experience.  When the two line up, the team can be confident that they have 
now captured knowledge from data.  When they diverge, the opportunity to move away from long held 
beliefs and feelings which have yet to produce solutions is opened to the group.  The feature importance 

machine 1

machine 2

machine 3

machine 1
machine 2
machine 3
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from the toydata example Random Forest is given in Table VII.  The results show that the most 
distinguishing feature between machines 1, 2, and 3 is the average plunger velocity during slow shot. 
 

Table VII.  Rank ordered feature importance from the toydata Random Forest example 
Feature Importance 
Average Slow Shot Plunger Velocity 0.343 
Cavity Fill Time 0.210 
Spray Robot Cycle Time 0.134 
Ladle Pour Time 0.119 
Final Intensification Pressure 0.083 
Molten Metal Temperature 0.073 
Biscuit Length 0.038 

 
 
In addition to feature importance, Random Forest models are advantageous for their ability to handle high-
dimensional data, capability of learning complex non-linear relationships, and the lack of dependence on a 
particular distribution of the data.  The main drawback is the tendency to overfit the training data.  Without 
placing limits on the model, Random Forest will learn according to the specifics of the training data and 
not be general enough for new data fed into the model.  Another weakness of Random Forests is a sensitivity 
to irrelevant and noisy data.  An example of a very noisy input in the FCA data are the timers associated 
with the opening and closing of slides in the die.  Slides are tooling cavity components that form features 
in the part which would be undercut in a purely open/close die configuration.  Slides pull in directions 
perpendicular to the parting direction of the tool halves.  Timers measure how many seconds it takes from 
when a signal to move the slides is given until the slide meets a limit switch indicating that it is open or 
closed.  This data becomes noisy due to how hydraulics work in a scenario when two slides are ordered to 
be moved at once.  In short, when two slides are activated, whichever slide takes the least amount of force 
to start moving will open fully before the second begins to move.  If it takes t seconds to open each slide, 
the timer data for Slide 1 is t or 2t depending on whether Slide 2 is 2t or t respectively.  Any bit of debris 
or metal flash can be the reason one slide moves ahead of the other and results in a noisy variable.  Once a 
split is made, there is no going back, and the trees continue to build themselves.  The split on a piece of 
irrelevant data effects the rest of the model.  Careful consideration of the data input in the model must be 
taken to avoid this scenario.  These slide timers were ultimately removed from the data prior to running 
algorithms.   
 
The Random Forest itself is an improvement on the Decision Tree, since the weaknesses listed above are 
more severe when utilizing a single tree with one final outcome.  Nonetheless, employing Random Forest 
alone does not guarantee the elimination of overfitting.  Tuning the hyperparameters, the settings within 
the algorithm, aids in reducing overfitting.  The model can be tuned to be a more general predictor by 
limiting the maximum depth of the tree, the maximum number of features evaluates at each node, and 
setting a minimum sample required to split a node.  Random Forest classification and regression models 
are implemented in this research to predict quality data and ultimate tensile strength respectively.   
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Supplement vi.  Libraries, modules, and algorithms used in this example along with citations to assist the 
reader in accessing them.  The purpose served by each is given in the Notes column. 

Library.module Algorithm Notes Reference 
pandas  Use: Dataframe management [7]–[9] 

sklearn.model_selection train_test_split Use: Make train and test datasets 
test_size = 0.1 
random_state = 0 

[15], [16], 
[64] 

sklearn.ensemble RandomForestClassifier Use: Machine learning algorithm 
n_estimators = 1000 
bootstrap = True 
max_samples = 12 
max_features = 3 

[15], [16], 
[58] 

sklearn.metrics confusion_matrix Use: Create confusion matrix to 
assess algorithm performance 

[15], [16], 
[65] 

sklearn.metrics classification_report Use: Reports accuracy, precision, 
recall, and f1-score for each class 

[15], [16], 
[66] 

sklearn.tree export_graghviz Use: Tree visualization. Export 
tree as .dot file 

[15], [16], 
[67] 

subprocess call Use: Convert .dot to .png [68] 
IPython.display Image Use: Display tree in Jupyter 

notebook 
[69] 

 
 
Support Vector Machine (SVM) 
 
Like Random Forest models, Support Vector Machines can also be used as classification or regression 
models.  SVMs look to separate classes of data by determining a decision boundary between the populations 
with the widest separation between them (Figure 14).  This decision boundary and its associated margins 
can be linear or non-linear.  The boundary is an (n-1)-dimensional subspace for an n-dimensional space.  
For example, the hyperplane for one-dimensional data is a point, for two-dimensional data a line, for three-
dimensional data a plane, and for more than three dimensions and the term hyperplane is used [70].  The 
margin hyperplanes are determined by the observations closest to boundary.  The boundary is optimized 
when the margin is maximized.  Simply put there are many hyperplanes which can be drawn to separate 
the data; the algorithm selects the one in the middle. 
 
When data populations are not linearly separable by a hyperplane, soft margins or a kernel trick can be used 
(Figure 15).  Soft margins allow for some misclassification of observations while maintaining a wider 
margin.  The user determines the allowance of misclassifications in the model.  Kernel tricks seek a non-
linear decision boundary by projecting the data into a higher dimensional space where the examples are 
linearly separable.  Kernels are selected and tuned in the code to optimize the SVM.  In scikit-learn SVM 
[71], the soft margin is controlled by the regularization parameter, C, and the kernel is tuned by the 
parameter gamma.  A large C value will result in a narrower margin for fewer misclassifications, but the 
risk of overfitting increases.  The gamma value determines how wiggly or meandering the boundary can be 
[72].  Higher gamma values create more winding boundaries; however, one must guard against overfitting 
when adjusting the gamma parameter. 
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Figure 14.  Support vector classifier example with linearly separable populations. Class 
predictions are made based on which side of the hyperplane the sample lies. 

 

   
Figure 15.  Support vector classifier example with non-linearly separable populations. 

 
 
The Radial Basis Function (RBF) kernel trick was used in an SVM regressor to predict ultimate tensile 
strength in this work [73].  For the regressor SVM (SVR), the objective is to predict continuous values.  
This is accomplished by setting an allowable error using the epsilon parameter.  The model seeks to 
construct a line with margins set by epsilon such that the most points fall between the margins [74].  
Thereby, the error, or length of the support vectors, between the actual values and predicted values is 
reduced.  The C parameter provides slack to the model to better fit the data by allowing more data to fall 
outside the margin.  A plot of an example SVR is shown in Figure 16.  Here, 25 random samples are 
selected from the combined HPDC process and tensile testing dataset.  An SVR was run to predict the UTS 
based on cycle time.  Over these 25 samples, the results show that as cycle time increases one can expect a 
decrease in UTS. 
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Figure 16.  Support vector regression for UTS prediction based on cycle time.  The blue 
points are the actual values.  Predictions are made along the green line.  Eplison was set 
to 15 and is shown as the margins in red.  The linear kernel was employed and C=1.0.  As 
cycle time increases ultimate strength decreases. 

 
Supplement vii.  Libraries, modules, and algorithms used in this example along with citations to assist 
the reader in accessing them.  The purpose served by each is given in the Notes column. 

Library.module Algorithm Notes Reference 
pandas  Use: Dataframe management [7]–[9] 

sklearn.pre-processing StandardScaler Use: Applies Z-transform to a 
dataframe 

[15], [16], 
[39] 

sklearn.svm SVC Use: Support Vector Classifier 
algorithm 

[15], [16], 
[71] 

sklearn.svm SVR Use: Support Vector Regressor [15], [16], 
[73] 

matplotlib pyplot Use: Create and customize plots [13], [14], 
[33] 

 
 
XGBoost 
 
XGBoost, short for extreme gradient boosting, is an advanced tree based algorithm developed by Chen 
[75]–[77].  This method has risen in popularity for supervised machine learning due to its computational 
speed and model performance and can be used to work both classification and regression problems.  
Bridging the evolution from Random Forests to XGBoost is beyond the scope of this document.  The 
method was chosen to determine how a state-of-the-science tree-based algorithm would compare to 
traditional Random Forest and SVR.  The following brief definitions and references are given to assist the 
reader.  Boosting is a method of combining relatively weak models improving the accuracy overall at the 
risk of overfitting [78]–[80].  In boosting, the models are built sequentially with prior knowledge of the 
errors from the preceding models.  A modification to boosting is Gradient Boosting, a method which 
improves the predictive power along the direction of the gradient to optimize the objective [81]. 
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Supplement viii.  Libraries, modules, and algorithms along with citations to assist the reader in accessing 
them.  The purpose served by each is given in the Notes column. 

Library.module Algorithm Notes Reference 
pandas  Use: Dataframe management [7]–[9] 
xgboost XGBRegressor Use: Machine learning algorithm [75], [77] 

 
 
Machine Learning Model Evaluation 
 
Training, Testing, and Cross-Validation 
 
Prior to running an analysis, it is a best practice to divide the dataset into two parts:  a training set and a test 
set.  In this study, 80/20 and 90/10 training to test splits were most often employed (Figure 17).  The goal 
of the split is to have enough training data to create a strong predictive model while holding back a testing 
dataset enough to capture the essence of the complete dataset.  This allows the data scientist to train the 
model with a larger dataset then test the performance on a smaller population that the model has not seen.   
 

 
Figure 17.  It is best practice to split the pre-processed data prior to training the 
machine learning algorithm into training and testing datasets.  80/20 is a good 
starting point.  For the smaller tensile bar dataset, 90/10 was used. 

 
The train/test split can influence the model.  For that reason, cross-validation is conducted to determine 
how different splits of the data affect the model performance metrics.  K-folds is a common method of 
cross-validation [82].  In K-folds, the user sets the number of folds and the model is run that many times 
on the training data.  Each time, a different segment of the training population is set aside as the test data 
and run through a model created on the balance of the training data for that fold as seen in Figure 18. 

 

 
Figure 18.  K-folds cross-validation where the number of folds is equal to five. 
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The performance of the algorithm can be measured in many ways.  Mean absolute error and standard 
deviation values can be used to score regression algorithms.  Accuracy, precision, recall, and f1-scores are 
often chosen to evaluate classifiers.  Regardless of the algorithm, it is common for the error on the training 
data to be less than the test data.  When the difference between the two is large, the model is said to be 
overfit to the training data.  Data scientists are keenly aware of over-fitting because such a model does not 
generalize.  The model shows amazing accuracy on the training data, however, when fed new data, the 
predictions of the algorithm are unreliable.  The goal of a robust model is to minimize the difference in 
error between the training data and testing data results. 
 

The above methods in pre-processing, algorithm selection, and model evaluation were performed on the 
FCA HPDC dataset.  Algorithms modeled classification of part quality and ultimate tensile strength as well 
regression predictions of ultimate tensile strength.  These studies are published in three technical articles 
presented in Appendices B, D, and E of this thesis. 

 
References: 
[1] J. I. Moore and P. J. Van Huis, “US4493362.pdf,” 4493362, Jan. 15, 1985. 
[2] “ACRC - Advanced Casting Research Center.” https://wp.wpi.edu/acrc/ (accessed Jun. 02, 

2020). 
[3] R Core Team, R: A language and environment for statistical computing. Vienna, Austria: R 

Foundation for Statistical Computing, 2013. 
[4] G. Van Rossum and F. L. Drake, Python 3 Reference Manual. Scotts Valley, CA: 

CreateSpace, 2009. 
[5] “Welcome to Python.org,” Python.org. https://www.python.org/ (accessed Jul. 12, 2020). 
[6] “Microsoft Excel, Spreadsheet Software, Excel Free Trial.” https://www.microsoft.com/en-

us/microsoft-365/excel (accessed Jul. 12, 2020). 
[7] The pandas development team, pandas-dev/pandas: Pandas. Zenodo, 2020. 
[8] W. McKinney, “Data Structures for Statistical Computing in Python,” in Proceedings of the 

9th Python in Science Conference, 2010, pp. 51–56, Accessed: Jan. 09, 2020. [Online]. 
Available: http://conference.scipy.org/proceedings/scipy2010/pdfs/mckinney.pdf. 

[9] “pandas - Python Data Analysis Library.” https://pandas.pydata.org/ (accessed Jul. 12, 
2020). 

[10] T. E. Oliphant, “Python for Scientific Computing,” Comput. Sci. Eng., vol. 9, no. 3, pp. 10–
20, Jun. 2007, doi: 10.1109/MCSE.2007.58. 

[11] S. van der Walt, S. C. Colbert, and G. Varoquaux, “The NumPy Array: A Structure for 
Efficient Numerical Computation,” Comput. Sci. Eng., vol. 13, no. 2, pp. 22–30, Mar. 2011, 
doi: 10.1109/MCSE.2011.37. 

[12] “NumPy.” https://numpy.org/ (accessed Jul. 12, 2020). 
[13] J. D. Hunter, “Matplotlib: A 2D Graphics Environment,” Comput. Sci. Eng., vol. 9, no. 3, 

pp. 90–95, Jun. 2007, doi: 10.1109/MCSE.2007.55. 
[14] “Matplotlib: Python plotting — Matplotlib 3.2.2 documentation.” https://matplotlib.org/ 

(accessed Jul. 12, 2020). 
[15] F. Pedregosa et al., “Scikit-learn: Machine Learning in Python,” J. Mach. Learn. Res., vol. 

12, pp. 2825–2830, 2011, doi: 10.1016/j.patcog.2011.04.006. 



 

C-32 
 

[16] “scikit-learn: machine learning in Python — scikit-learn 0.23.1 documentation.” 
https://scikit-learn.org/stable/ (accessed Jul. 12, 2020). 

[17] “Google Colaboratory.” https://colab.research.google.com/notebooks/intro.ipynb (accessed 
Jul. 12, 2020). 

[18] “Stack Overflow - Where Developers Learn, Share, & Build Careers,” Stack Overflow. 
https://stackoverflow.com/ (accessed Jul. 12, 2020). 

[19] “Towards Data Science,” Towards Data Science. https://towardsdatascience.com/ (accessed 
Jul. 12, 2020). 

[20] “Kaggle: Your Machine Learning and Data Science Community.” https://www.kaggle.com/ 
(accessed Jul. 12, 2020). 

[21] T. D. Pigott, “A Review of Methods for Missing Data,” Educ. Res. Eval., vol. 7, no. 4, pp. 
353–383, Dec. 2001, doi: 10.1076/edre.7.4.353.8937. 

[22] M. Pampaka, G. Hutcheson, and J. Williams, “Handling missing data: analysis of a 
challenging data set using multiple imputation,” Int. J. Res. Method Educ., vol. 39, no. 1, 
pp. 19–37, Jan. 2016, doi: 10.1080/1743727X.2014.979146. 

[23] G. E. A. P. A. Batista and M. C. Monard, “An analysis of four missing data treatment 
methods for supervised learning,” Appl. Artif. Intell., vol. 17, no. 5–6, pp. 519–533, May 
2003, doi: 10.1080/713827181. 

[24] A. Kantarci, “Synthetic Data Generation in 2020: in-Depth guide,” appliedAI, Jul. 15, 2020. 
https://research.aimultiple.com/synthetic-data-generation/ (accessed Jul. 17, 2020). 

[25] C. Dilmegani, “The Ultimate Guide to Synthetic Data in 2020,” appliedAI, Jul. 19, 2018. 
https://research.aimultiple.com/synthetic-data/ (accessed Jul. 17, 2020). 

[26] R. Blagus and L. Lusa, “SMOTE for high-dimensional class-imbalanced data,” BMC 
Bioinformatics, vol. 14, no. 1, p. 106, Dec. 2013, doi: 10.1186/1471-2105-14-106. 

[27] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “SMOTE: Synthetic 
Minority Over-sampling Technique,” J. Artif. Intell. Res., vol. 16, pp. 321–357, Jun. 2002, 
doi: 10.1613/jair.953. 

[28] “sklearn.datasets.make_classification — scikit-learn 0.23.1 documentation.” https://scikit-
learn.org/stable/modules/generated/sklearn.datasets.make_classification.html (accessed Jul. 
17, 2020). 

[29] J. Brownlee, “SMOTE for Imbalanced Classification with Python,” Machine Learning 
Mastery, Jan. 16, 2020. https://machinelearningmastery.com/smote-oversampling-for-
imbalanced-classification/ (accessed Jul. 17, 2020). 

[30] G. Lemaitre, F. Nogueira, D. Oliveira, and C. Aridas, “imblearn.over_sampling.SMOTE — 
imbalanced-learn 0.5.0 documentation.” https://imbalanced-
learn.readthedocs.io/en/stable/generated/imblearn.over_sampling.SMOTE.html (accessed 
Jul. 17, 2020). 

[31] H. Han, W.-Y. Wang, and B.-H. Mao, “Borderline-SMOTE: A New Over-Sampling 
Method in Imbalanced Data Sets Learning,” in Advances in Intelligent Computing, vol. 
3644, D.-S. Huang, X.-P. Zhang, and G.-B. Huang, Eds. Berlin, Heidelberg: Springer 
Berlin Heidelberg, 2005, pp. 878–887. 

[32] M. Drouzy, S. Jacob, and M. Richard, “Interpretation of Tensile Results by Means of 
Quality Index and Probable Yield Strength,” AFS Int. Cast Met. J., no. June 1980, pp. 43–
50, 1980. 



 

C-33 
 

[33] “matplotlib.pyplot.scatter — Matplotlib 3.2.2 documentation.” 
https://matplotlib.org/3.2.2/api/_as_gen/matplotlib.pyplot.scatter.html (accessed Jul. 12, 
2020). 

[34] K. Potdar, T. S., and C. D., “A Comparative Study of Categorical Variable Encoding 
Techniques for Neural Network Classifiers,” Int. J. Comput. Appl., vol. 175, no. 4, pp. 7–9, 
Oct. 2017, doi: 10.5120/ijca2017915495. 

[35] R. J. Donahue and G. K. Sigworth, “Die Casting Alloys that will Allow the Die Caster to 
Compete with Alloys A356, A357, 358 and 359 in PM Applications,” NADCA Trans. T16-
022, 2016, [Online]. Available: http://www.diecasting.org/transactions/T16-022. 

[36] “Z-Transform,” Wolfram MathWorld. https://mathworld.wolfram.com/Z-Transform.html 
(accessed May 26, 2020). 

[37] T. Wuest, D. Weimer, C. Irgens, and K.-D. Thoben, “Machine learning in manufacturing: 
advantages, challenges, and applications,” Prod. Manuf. Res., vol. 4, no. 1, pp. 23–45, Jan. 
2016, doi: 10.1080/21693277.2016.1192517. 

[38] J. Friedman, R. Tibshirani, and T. Hastie, The Elements of Statistical Learning: Data 
Mining, Inference, and Prediction. Springer, 2001. 

[39] “sklearn.preprocessing.StandardScaler — scikit-learn 0.23.1 documentation.” https://scikit-
learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html (accessed 
Jul. 12, 2020). 

[40] “sklearn.neighbors.KNeighborsClassifier — scikit-learn 0.23.1 documentation.” 
https://scikit-
learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html (accessed 
Jul. 12, 2020). 

[41] R. Taylor, “Interpretation of the Correlation Coeffcient: A Basic Review,” J. Diagn. Med. 
Sonogr., vol. 6, no. 1, pp. 35–39, 1990, doi: 10.1177/875647939000600106. 

[42] T. Cokelaer, biokit: Access to Biological Web Services from Python. . 
[43] L. Breiman, “Random Forests,” Mach. Learn., vol. 45, no. October 2001, pp. 5–32, 2001, 

doi: 10.1023/A:1010933404324. 
[44] H. Abdi and L. J. Williams, “Principal component analysis: Principal component analysis,” 

Wiley Interdiscip. Rev. Comput. Stat., vol. 2, no. 4, pp. 433–459, Jul. 2010, doi: 
10.1002/wics.101. 

[45] S. Wold, K. Esbensen, and P. Geladi, “Principal Component Analysis,” Chemom. Intell. 
Lab. Syst., vol. 2, pp. 37–52, 1987, doi: 10.1016/0169-7439(87)80084-9. 

[46] “6.5.4.1. Mean Vector and Covariance Matrix,” Engineering Statistics Handbook. 
https://www.itl.nist.gov/div898/handbook/pmc/section5/pmc541.htm (accessed Jul. 14, 
2020). 

[47] G. H. Golub and C. Reinsch, “Singular Value Decomposition and Least Squares Solutions,” 
in Linear Algebra, J. H. Wilkinson, C. Reinsch, and F. L. Bauer, Eds. Berlin, Heidelberg: 
Springer Berlin Heidelberg, 1971, pp. 134–151. 

[48] G. Strang, Introduction to linear algebra, 4. ed. Wellesley, Mass: Wellesley-Cambridge 
Press, 2009. 

[49] J. Tan, “Parallel Singular Value Decomposition.” 
http://www.cs.csi.cuny.edu/~gu/teaching/courses/csc76010/slides/SVD%20by%20Jiaxing.p
df (accessed Jul. 13, 2020). 



 

C-34 
 

[50] “sklearn.decomposition.PCA — scikit-learn 0.23.1 documentation.” https://scikit-
learn.org/stable/modules/generated/sklearn.decomposition.PCA.html (accessed Jul. 12, 
2020). 

[51] “matplotlib.patches — Matplotlib 3.2.2 documentation.” 
https://matplotlib.org/3.2.2/api/patches_api.html (accessed Jul. 12, 2020). 

[52] A. Oppermann, “Artificial Intelligence vs. Machine Learning vs. Deep Learning,” Towards 
Data Science, Oct. 29, 2019. https://towardsdatascience.com/artificial-intelligence-vs-
machine-learning-vs-deep-learning2210ba8cc4ac (accessed Jun. 08, 2020). 

[53] E. Briscoe and J. Feldman, “Conceptual complexity and the bias/variance tradeoff,” 
Cognition, vol. 118, no. 1, pp. 2–16, Jan. 2011, doi: 10.1016/j.cognition.2010.10.004. 

[54] “Bias-Variance Tradeoff in Machine Learning,” AI Pool, Oct. 20, 2019. https://ai-
pool.com/a/s/bias-variance-tradeoff-in-machine-learning (accessed Jun. 02, 2020). 

[55] A. Bhande, “What is underfitting and overfitting in machine learning and how to deal with 
it,” medium.com, Mar. 11, 2018. https://medium.com/greyatom/what-is-underfitting-and-
overfitting-in-machine-learning-and-howto-deal-with-it-6803a989c76 (accessed Jun. 08, 
2020). 

[56] D. Dietrich, B. Heller, and B. Yang, Data Science and Big Data Analytics: Discovering, 
Analyzing, Visualizing and Presenting Data, 1st ed. Wiley, 2015. 

[57] G. Drakos, “Random Forest Regressor explained in depth,” GDCoder, Jun. 04, 2019. 
https://gdcoder.com/random-forest-regressor-explained-in-depth/ (accessed Jul. 12, 2020). 

[58] scikit-learn developers, sklearn.ensemble.RandomForestClassifier. . 
[59] R. I. Lerman and S. Yitzhaki, “A note on the calculation and interpretation of the Gini 

index,” Econ. Lett., vol. 15, pp. 363–368, 1984, doi: 10.1016/0165-1765(84)90126-5. 
[60] “3.2.4.3.1. sklearn.ensemble.RandomForestClassifier — scikit-learn 0.23.1 

documentation.” https://scikit-
learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html 
(accessed Jul. 12, 2020). 

[61] M. Sokolova and G. Lapalme, “A systematic analysis of performance measures for 
classification tasks,” Inf. Process. Manag., vol. 45, no. 4, pp. 427–437, Jul. 2009, doi: 
10.1016/j.ipm.2009.03.002. 

[62] “3.2.4.3.2. sklearn.ensemble.RandomForestRegressor — scikit-learn 0.23.1 
documentation.” https://scikit-
learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html 
(accessed Jul. 12, 2020). 

[63] A. Altmann, L. Toloşi, O. Sander, and T. Lengauer, “Permutation importance: a corrected 
feature importance measure,” Bioinformatics, vol. 26, no. 10, pp. 1340–1347, Apr. 2010, 
doi: 10.1093/bioinformatics/btq134. 

[64] scikit-learn developers, sklearn.model_selection.train_test_split. . 
[65] scikit-learn developers, sklearn.metrics.confusion_matrix. . 
[66] scikit-learn developers, sklearn.metrics.classification_report. . 
[67] scikit-learn developers, sklearn.tree.export_graphviz. . 
[68] Python Software Foundation, subprocess — Subprocess management. . 
[69] The IPython development team, IPython. . 
[70] W. S. Noble, “What is a support vector machine?,” Nat. Biotechnol., vol. 24, no. 12, pp. 

1565–1567, Dec. 2006, doi: 10.1038/nbt1206-1565. 



 

C-35 
 

[71] “sklearn.svm.SVC — scikit-learn 0.23.1 documentation.” https://scikit-
learn.org/stable/modules/generated/sklearn.svm.SVC.html (accessed Jul. 14, 2020). 

[72] M. Peixeiro, “The Complete Guide to Support Vector Machine (SVM),” Towards Data 
Science, Jul. 29, 2019. https://towardsdatascience.com/the-complete-guide-to-support-
vector-machine-svm-f1a820d8af0b. 

[73] “sklearn.svm.SVR — scikit-learn 0.23.1 documentation.” https://scikit-
learn.org/stable/modules/generated/sklearn.svm.SVR.html (accessed Jul. 14, 2020). 

[74] A. Geron, Hands-On Machine Learning with Scikit-Learn and TensorFlow, 1st ed. 
O’Reilly, 2017. 

[75] T. Chen and C. Guestrin, “XGBoost: A Scalable Tree Boosting System,” Proc. 22nd ACM 
SIGKDD Int. Conf. Knowl. Discov. Data Min., pp. 785–794, Aug. 2016, doi: 
10.1145/2939672.2939785. 

[76] J. Brownlee, “A Gentle Introduction to XGBoost for Applied Machine Learning,” Machine 
Learning Mastery, Aug. 17, 2016. https://machinelearningmastery.com/gentle-introduction-
xgboost-applied-machine-learning/ (accessed Jun. 02, 2020). 

[77] xgboost developers, “XGBoost Documentation,” XGBoost Documentation, 2020. 
https://xgboost.readthedocs.io/en/latest/index.html (accessed Jul. 14, 2020). 

[78] T. G. Dietterich, “An Experimental Comparison of Three Methods for Constructing 
Ensembles of Decision Trees: Bagging, Boosting, and Randomization,” Mach. Learn., vol. 
40, no. August 2000, pp. 139–157, 2000, doi: https://doi.org/10.1023/A:1007607513941. 

[79] Y. Freund and R. E. Schapire, “Experiments with a New Boosting Algorithm,” in 13th 
International Conference on Machine Learning, San Francisco, 1996, pp. 148–156. 

[80] Y. Freund and R. E. Schapire, “A decision-theoretic generalization of on-line learning and 
an application to boosting,” J. Comput. Syst. Sci., vol. 55, no. 1, pp. 119–139, 1997. 

[81] J. H. Friedman, “Stochastic gradient boosting,” Comput. Stat. Data Anal., vol. 38, no. 4, pp. 
367–378, Feb. 2002, doi: 10.1016/S0167-9473(01)00065-2. 

[82] M. Sanjay, “Why and how to Cross Validate a Model?,” Towards Data Science, Nov. 12, 
2018. towardsdatascience.com/why-and-how-to-cross-validate-a-model-d6424b45261f 
(accessed Jun. 04, 2020). 

 
  



 

C-36 
 

 

Table C-I.  FCA HPDC process dataset descriptions. 
Variable Name Description Category 
MachineID Die casting machine on which the part was cast Input 
SerialNumb  Unique identifier given to the casting when it is 

made.  Can be used to merge datasets. 
 

CreatedDateStamp Date and Time the casting was produced. Input 
AvgFastHeadPressure Average pressure reading on the head side of the 

shot cylinder during fast shot. 
Input 

AvgFastRodPressure Average pressure reading on the rod side of the 
shot cylinder during fast shot. 

Input 

AvgIntermediateHeadPressure  Average pressure reading on the head side of the 
shot cylinder during intermediate shot. 

Input 

AvgIntermediateRodPressure  Average pressure reading on the rod side of the 
shot cylinder during intermediate shot. 

Input 

AvgSlowHeadPressure  Average pressure reading on the head side of the 
shot cylinder during slow shot. 

Input 

AvgSlowRodPressure  Average pressure reading on the rod side of the 
shot cylinder during slow shot. 

Input 

BiscuitLength  The thickness of the biscuit calculated based on 
the end of stroke position of the shot rod. 

Input 

CavityFillTime  The time taken to fill the part geometry cavity in 
the die.  Calculated from 
CavityFillTimeWinStartPos until the end of the 
shot velocity is detected. 

Input 

CavityFillTimeWinStartPos  Position programmed by the engineer to begin 
timing cavity fill time.  This is typically the 
position of the shot cylinder when the metal is at 
the gates. 

Setting 

DieCloseTankLevel  Level of the hydraulic fluid reservoir Input 
DieCloseTankTemp  Temperature of the hydraulic fluid reservoir. Input 
DwellTimePre  Programmed time to allow the part to solidify 

between the end of the shot and the opening of 
the die. 

Setting 

DwellTime2Pre  Same as DwellTimePre.  For any given row if 
one was null the other had a value. 

Setting 

EndofShotPosition  Position where fast shot velocity decelerates to 
the end of shot velocity. 

Input 

FastShotVelAve  Calculated average shot velocity at which the 
plunger moved forward during fast shot. 

Input 

FastShotVelWinEnd  Position of the shot cylinder when the DCM 
stops measuring velocity for the average fast 
shot calculation. 

Setting 

FastShotVelWinStart  Position of the shot cylinder when the DCM 
begins measuring velocity for the average fast 
shot calculation. 

Setting 

FastSpeedSetting  Programmed plunger velocity during fast shot. Setting 
FastStartPosSetting  Programmed position at which the DCM 

increases to fast shot velocity. 
Setting 
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FinalIntensifierPressure  Maximum pressure applied to the biscuit during 
intensification phase. 

Input  

FinalIntensPressWinEnd  End position for measuring intensification 
pressure. 

Setting 

FinalIntensPressWinStart  Start position for measuring intensification 
pressure. 

Setting 

IntensificationStroke  Amount of plunger forward movement after 
intensification is initiated. 

Input 

IntensPressRiseTime  Time measured to reach the programmed 
intensification pressure. 

Input 

IntensPressRiseTimeWinEndPress
  

Measured pressure at the end of the 
intensification rise time window. 

Input 

IntensPressRiseTimeWinStartVelocity
  

Measured plunger velocity at the start of the 
intensification rise time window. 

Input 

IntensStartPosSetting  Programmed position at which the DCM 
engages the intensifier accumulator. 

Setting 

IntensVelRiseTime  Calculated average velocity at which the plunger 
moved forward during intensification rise 
window. 

Input 

IntensVelRiseTimeWinEndPOS  End position for measuring intensification rise 
time velocity (position controlled). 

Setting 

IntensVelRiseTimeWinEndVEL  End velocity for measuring intensification rise 
time velocity (velocity controlled). 

Setting 

IntensVelRiseTimeWinStartPOS
  

Start position for measuring intensification rise 
time velocity (position controlled). 

Setting 

IntensVelRiseTimeWinStartVEL
  

Start velocity for measuring intensification rise 
time velocity (velocity controlled). 

Setting 

IntermediateSpeedSetting  Programmed plunger velocity during 
intermediate shot. 

Setting 

IntermediateStartPosSetting  Programmed position at which the DCM 
increases to the intermediate shot velocity. 

Setting 

IntermediateVelAve  Calculated average shot velocity at which the 
plunger moved forward during intermediate shot. 

Input 

IntermediateVelWinEnd  Position of the shot cylinder when the DCM 
stops measuring velocity for the average 
intermediate shot calculation. 

Setting 

IntermediateVelWinStart  Position of the shot cylinder when the DCM 
begins measuring velocity for the average 
intermediate shot calculation. 

Setting 

MetalTemp  The temperature of the molten alloy in the 
holding furnace at the die cast cell. 

Input 

ShotDecelSetting  Not used.  
ShotDecelSpeedSetting  Not used.  
ShotDecelStartPosSetting  Not used.  
ShotDelayTimePre  Programmed delay time between pouring into 

the cold chamber and initiating slow shot. 
Setting 

ShotForwardPosSetting  Not used.  
ShotTankLevel  Not used.  
ShotTankTemp  Not used.  
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SlowShotVelAve  Calculated average shot velocity at which the 
plunger moved forward during slow shot. 

Input 

SlowShotVelWinEnd  Position of the shot cylinder when the DCM 
stops measuring velocity for the average slow 
shot calculation. 

Setting 

SlowShotVelWinStart  Position of the shot cylinder when the DCM 
begins measuring velocity for the average slow 
shot calculation. 

Setting 

SlowSpeedSetting  Programmed plunger velocity during slow shot. Setting 
TieBarTon1  Tons of force measured by the load cell on tie 

bar #1 when the die is closed and locked. 
Input 

TieBarTon2  Tons of force measured by the load cell on tie 
bar #2. 

Input 

TieBarTon3  Tons of force measured by the load cell on tie 
bar #3. 

Input 

TieBarTon4  Tons of force measured by the load cell on tie 
bar #4. 

Input 

TieBarTonTotal  Sum of the tonnage of all four tie bars. Input 
TipLubeTimePre  Programmed time for which tip lube is applied to 

the plunger tip. 
Setting 

Overflows_OK Post casting check to determine that all the 
overflows ejected with the part. 

 

Trimmed Post casting log that the part was run on the trim 
press. 

 

PartDegated Post casting log that the part was de-gated.  
Quenched Post casting log that the part was quenched.  
Reject Operator override label of DCM label Output 
Scrap DCM quality label based on specific process 

parameter values. 
Output 

WarmUp DCM quality label based on specific process 
parameter values. 

Output 

PinMarked Post casting log that the part was pin marked 
(serial ID). 

 

CycleTime Elapsed time for the entire process to produce 
one piece. 

Input 

PhaseTime00 (Cycle Time) See above. Input 
PhaseTime01 (Dwell Time) Elapsed time between end of shot and die open. Input 
PhaseTime02 (Dwell Time 2) See above.  One or the other is active on each 

row, so the two columns were merged for 
analysis. 

Input 

PhaseTime03 (Die Open Time) Elapsed time to open the die. Input 
PhaseTime04 (Extract Robot Time) Elapsed time for the extract robot to complete its 

full cycle. 
Input 

PhaseTime05 (Spray Robot Time) Elapsed time for the spray robot to complete its 
full cycle. 

Input 

PhaseTime06 (Liner Load Time) Elapsed time to load cast in liners into the die. Input 
PhaseTime07 (Core Insert Time) Elapsed time to insert core feature into the die. Input 
PhaseTime08 (Die Close Time) Elapsed time to close the die. Input 
PhaseTime09 (Ladle Pour Time) Elapsed time for the ladle to pour molten alloy 

into the cold chamber. 
Input 
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PhaseTime10 (Shot Delay Time) Elapsed time between pour complete and shot 
forward. 

Input 

PhaseTime11 (Core 1 Insert Time) Elapsed time to move Core 1 slide forward. Input 
PhaseTime12 (Core 2 Insert Time) Elapsed time to move Core 2 slide forward. Input 
PhaseTime13 (Core 3 Insert Time) Elapsed time to move Core 3 slide forward. Input 
PhaseTime14 (Core 4 Insert Time) Elapsed time to move Core 4 slide forward. Input 
PhaseTime15 (Core 5 Insert Time) Elapsed time to move Core 5 slide forward. Input 
PhaseTime16 (Core 6 Insert Time) Elapsed time to move Core 6 slide forward. Input 
PhaseTime17 (Core 1 Pull Time) Elapsed time to pull Core 1 slide open. Input 
PhaseTime18 (Core 2 Pull Time) Elapsed time to pull Core 2 slide open. Input 
PhaseTime19 (Core 3 Pull Time) Elapsed time to pull Core 3 slide open. Input 
PhaseTime20 (Core 4 Pull Time) Elapsed time to pull Core 4 slide open. Input 
PhaseTime21 (Core 5 Pull Time) Elapsed time to pull Core 5 slide open. Input 
PhaseTime22 (Core 6 Pull Time) Elapsed time to pull Core 6 slide open. Input 
PhaseTime23 
(Ejection Forward Time) 

Elapsed time to move the ejection cylinder 
forward and free the casting from the die. 

Input 

PhaseTime24-29  Not Used.  
TubesLoaded Pre-casting log that cast-in tubes were inserted 

into the die. 
 

LinersLoaded Pre-casting log that cast-in liners were loaded 
into the die. 

 

VacuumCheckPosition Programmed position at which the vacuum 
pressure on the cavity is measured. 

Setting 

VacuumPressDuringShot Measured vacuum pressure. Input 
VacuumPurgeResult Measured pressure when clearing the vacuum 

chill block of debris. 
Input 

LubeVolTotal Not used.  
 
Table C-II.  FCA mechanical property testing dataset descriptions. 

Variable Name Description Category 
start_date Date of the tensile test.  
SerialNumb Unique identifier given to the casting when it is made.  Can be 

used to merge datasets. 
 

heat_treat_date Heat treat date of the block casting. Input 
cavity Cavity number in which the block was cast. Input 
Bulkhead Location in the block where the tensile bars was extracted. Input 
diameter_mm Measured diameter of the tensile bar.  Used to calculate 

material strength. 
Input 

final_length_mm Measured final length of the tensile bar after failure. Output 
UTS_MPa Ultimate Tensile Strength.  The peak strength measured prior to 

failure. 
Output 

YS_MPa Yield Strength.  Calculated by the testing software as the 
strength at the intersection of the 0.2% offset of the elastic 
portion of the stress-strain curve and the measured stress-strain 
curve.  

Output 

Elong Percent elongation.  Calculated by dividing the posttest 
distance between gage markers by the original distance 
between the gage marks of 25.4 mm. 

Output 
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tensile_strain Tensile strain measured by the extensometer.  This was used in 
place of percent elongation due to the increased accuracy. 

Output 

fracture_loc Operator text notes on the location of fracture in relation to the 
gage marks.  Also visible defects on the fracture surface are 
noted in this column. 

Input 

furnace_no Heat treat furnace number used for the casting. Input 
hardness_BHN Brinell hardness taken on the tensile bar. Output 
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ABSTRACT 
The process input data which materials processing operations can collect for each unit of 
production is extensive.  Large datasets have long been difficult to work with as computing power 
to execute analysis in a timely fashion was unavailable.  Further, the great velocity at which the 
data is generated makes near real-time decision making unwieldy without a new set of tools with 
which to do the work.  When troubleshooting by a small dataset, such as the last few hours of 
production, observations made on the measured parameters can be misleading.  Machine learning 
is opening doors to high-dimensional data analysis in material processing.  In this work, high-
pressure die-casting (HPDC) is explored as an exemplar of high-volume materials processing.  
HPDC process summary data from a full year of production data covering over 950,000 machine 
cycles is analyzed via supervised machine learning methods to successfully model the prediction 
of good parts and process scrap as determined by the die casting machine.  Additionally, the 
prediction of ultimate tensile strength via a classification method of extracted tensile bars is 
performed and the important features identified are discussed.  Supervised learning is found to be 
a useful tool for materials processing applications. 
 
I. INTRODUCTION 
Machine learning has been sparked by a simultaneous decrease in cost of computer memory and 
increase in computing power [1], [2].  While applications such as advertisements, coupon targeting, 
credit card fraud detection, and streaming media service recommendations are the average person’s 
daily interaction with machine learning, the development of next wave applications is well 
underway [3].  Artificial intelligence is driving object detection and sign recognition for 
autonomous vehicles on land and sea [4], [5].  The medical field is using predictive modeling in 
disease diagnosis which is a game changing technology for rural areas and developing nations 
where doctors are few and collaboration is limited [6].  Facial recognition is going beyond finding 
individuals for national security applications to emotion detection from facial pattern recognition 
[7]–[9].  Machine learning is often associated with advanced computing technology sectors; 
however, it is of great interest to manufacturing and materials processing industries as well.   
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Oftentimes, the products of companies in materials processing industries are raw materials for the 
next operation.  This may be in the same facility or at a customers’ operation where further value 
is added in the journey toward the final shape, assembly, etc.  Its place in the product pipeline 
categorizes many materials as commodities and pricing pressures are high.  For efficiency, 
production processes tend to be large scale in terms of production tonnage and units per hour.  
These processes are often thermally controlled.  Once they are running, any interruption has 
significant quality and downtime implications in getting the process back to operating temperature.  
In this climate, sampling each unit of the product for the purposes of quality assurance or process 
control slows productivity, adds cost, or simply is not possible (see Figure 1).  Even with 100% 
inspection of the product, analysis of the input parameters is required to gain knowledge and 
improve the outcome.  Machine learning is a toolset which can analyze the input parameters and, 
in near real time, provide actionable direction on the output product.  Thereby, increasing 
confidence in the product being made without increasing sampling.  

 
Figure 1 [10].  In many materials processing operations, the product is generated 
too quickly for 100% inspection.  New tools are required to garner insight into the 
product between quality checks. 

 
Early opportunities for implementing machine learning in foundries are entering into the literature.  
Traditional casting process simulation used for optimizing tool designs and process settings 
involved a significant amount of trial and error and running modified simulations in series, which 
is highly time consuming.  Autonomous optimization routines have been built into the simulation 
software which now runs many iterations aimed at improving certain outputs such as fill time, 
porosity, or air entrapment [11].  Rather than one value for each parameter, the user sets up a range 
of values to test and the software finds the optimum solution.  This capability greatly increases the 
efficiency of process development.  In other applications, companies are monitoring the data they 
collect to detect anomalous behavior in the process [12].  While no predictions are being made, 
the idea is that the process is under control and making good quality parts while as the parameters 
are within a three-sigma variation of their respective means.  If a parameter falls out of those 
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specifications, the part serial number is flagged for additional inspection and the equipment is 
serviced to determine the root cause and solution.  Similarly, machine maintenance is moving away 
from preventative, where consumables are replaced or service performed on a schedule based on 
history or recommendations, toward predictive [13], [14].  In predictive maintenance, sensors and 
meters are applied throughout the equipment in a manufacturing cell to ensure that various 
machines are maintaining a consistent amperage draw, cycle time, hydraulic pressure, etc.  The 
goal is for the machine to indicate, through data, to the maintenance team when it requires service. 
 
In all these examples, machine learning is implemented to improve the operation and save cost.  
Autonomous optimization in process simulation increases speed to market and reduces the cost of 
trial and learn process development.  Anomaly detection in process parameters aims to reduce 
scrap costs through early detection.  Predictive maintenance reduces downtime costs through 
identifying declines in equipment performance.  Such cost saving measures are great places to 
apply machine learning and build the culture in the materials processing industry.  Ultimately, 
materials processing operations are headed toward truly smart factories where machines can 
correct for their own performance variation given a window in which they can self-adjust.  To 
realize this future, our industry must capture the knowledge of domain experts, build a data science 
skillset, cultivate a culture of data driven decision making, and begin creating knowledge from the 
data already being generated in our operations. 
 
So, why has this not happened yet? It turns out that analyzing materials processing data is not 
straightforward [15].  As materials processing companies bring their data to the data science 
community to find answers, new insight into how the data is traditionally collected and the 
challenges which are created thereby are brought to light.  Let us look at three of them:  a culture 
of departmental data keeping, collection of many input data and few outputs, and an imbalance in 
output data class where high quality samples far outweigh unacceptable samples. 
 
The first obstacle is cultural and centers on organizing data for analysis.  Data fusion for machine 
learning is more difficult when the data is stored within operational silos (see Figure 2).  The type 
of data and methods used by siloed departments within the same facility have evolved, in isolation, 
over years.  Methods range from high-tech automatic uploading to a cloud database to handwritten 
records in a logbook.  This creates challenges for combining the various sources of data into a 
cohesive dataset as the collection frequency and identifiers often differ.  Communication among 
stakeholders through the entire process is critical to identify which, how, and how often data should 
be collected to give the best description of the system to be modeled.  A culture of uniformity, 
traceability, and trust is required to tie the data together in meaningful ways. 
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Figure 2.  Departmental data silos are a challenge to implementing machine 
learning in many materials manufacturing operations. 

 
The next challenge is specific to machine learning.  Materials processes are established and 
controlled on the input end while output measures are commonly performed on an audit basis.  A 
set of quality checks represents a production lot, or a shift, which occurs over several hours.  Thus, 
there is a wealth of data on the process inputs and timeseries records, but scant output data.  
Similarly, there is missing process input data.  Owing to the method of data collection, some inputs 
are audited as well.  In other example, a non-essential monitoring sensor fails, and maintenance is 
not available to replace it for some time, creating a gap in data collection for a specific 
measurement.  Collecting data on different frequencies results in heterogeneous data where certain 
data exists for a subset of the population, but not all the population.  How do work with instances 
of missing data require the assistance of subject matter expert.  Working with heterogeneous data 
of interest to many researchers in Data Science [16]–[18].  
 
Lastly, manufacturers are very capable at what they do.  Well-developed manufacturing operations 
are looking for improvements in production yields, for example, from 96% good product to 97%.  
There are two difficulties here.  The first is the dataset is highly imbalanced where there are many 
more good products than nonconforming (Figure 3).  Robust machine learning algorithms need to 
be trained on both.  In the example given above, if the model predicts all the production to be good, 
it would be 96% accurate but, in effect, unhelpful.  The second difficulty is that very large amounts 
of data are required to know if a small improvement in predictability is real or a result of error and 
noise in the data [19]. 
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Figure 3. Unbalanced data is a challenge for making predictions on manufacturing 
data.  Robust models need to be trained on many good and scrap parts. 

 
The computing power and the tools exist to increase data-driven decision making in materials 
processing.  Materials processing is rich with data from which knowledge can be created and 
incorporated into a future of smart factories.  Active application of machine learning in the industry 
exists and the challenges are coming to the surface.  The opportunity is now for industry and 
academia to work together to determine the right set of tools and methods which are most 
applicable to accelerate progress. 
 
High Pressure Die Casting 
As an exemplar materials processing method, consider high-pressure die-casting (HPDC) of 
aluminum alloys.  HPDC is the most utilized process for casting aluminum alloy components [20], 
[21].  The process offers the advantages of high productivity and complex part geometries [22].  
At the center of the HPDC work cell is the die casting machine (DCM).  Ancillary equipment fills 
out the cell to execute tasks of metal delivery, die preparation, casting removal and trimming the 
part of excess material like runners and overflows.  The DCM can be programmed to identify a 
casting as being good, scrap, or a warm-up shot based on the parameters which created the casting.  
This is accomplished by setting upper and lower control limits (UCL and LCL) for key variables 
as determined by the manufacturing engineer.  The DCM is using a series of Boolean checks (Is 
parameter n between LCLn and UCLn?), all of which must be TRUE for a part to be good [23].  If 
one of the process parameters falls out of the programmed window, the check returns FALSE and 
the part is labeled scrap.  If a part is cast with too low of intensification pressure, for example, the 
machine will identify the casting as scrap and send a signal to the operator or a robot to place the 
part into the scrap hopper or set it aside for inspection.  Parts cast within the prescribed limits are 
labeled good parts and further processed as normal. 
 
When envisioning HPDC process data, imagine a spreadsheet where rows represent individual 
castings, and columns are various input parameters and process outputs.  The number of inputs 
can be very high.  Blondheim estimates that a fully monitored die casting cell with thermal imaging 
for die temperature data collection can exceed 2,000,000 inputs per cycle [24].  If the imaging data 
is removed, the total opportunity still tops 300,000 inputs per cycle.  Humans can visualize two- 
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and three-dimensional data quite well, but we have no way to visualize 300,000-dimensional data.  
Data science and machine learning provide the tools to analyze high-dimensional data.   
 
There are two objectives of this research:  The first is to use machine learning via a classification 
model to predict the quality label assigned by the DCM: good part, process scrap, and warm-up.  
The second is to determine which other classifications can be determined by this method; 
specifically, the presence of discontinuities (e.g. porosity) in a tensile bar machined from the 
casting was examined. 
 
II. METHOD 
The Decision Tree classifier is a supervised machine learning method used to build a predictive 
model for a given process output by sorting the castings into classes at various nodes using an 
input variable as the sorting criteria [2].   This input variable is chosen by the algorithm because 
sorting by it provides the greatest information gain to the model.  Random Forest classifiers use 
many Decision Trees together to make predictions of what class each casting belongs [25].  Both 
methods are examined in this study. 
 
Decision Trees are effective, easy to analyze machine learning algorithms which can be applied in 
both classification and regression problems.  The Decision Tree classifier is a supervised machine 
learning method which means that the model is trained and tested on data with known output 
classifications.  Once the model is developed, it can be used to make predictions on castings where 
the class is not known.  Decision Trees build a predictive model by evaluating the variables and 
sorting the observations at various nodes into classes.  The nodes split, forming branches of the 
tree which terminate at a leaf.  Without placing restrictions on the model, the sorting will continue 
until each branch of the tree ends at a pure leaf consisting of one class.  While this may result in a 
high scoring model, overfitting to the training data can be a problem, and it will not score highly 
on new data which the model has not seen before.   
 
One method by which the splits are determined is Gini factor (Equation 1), which is a measure of 
the purity of the resulting nodes by making a split [26].  The Gini factor varies between zero and 
one.  A Gini of zero represents a pure node where all the observations are of the same class.  A 
high Gini value means that the various classes are mixed and there is a high probability that an 
observation may be misclassified.  
 

𝐺𝑖𝑛𝑖 = 1 − ∑ 𝑃        Eq. 1 
Where: 

 𝐺𝑖𝑛𝑖 is the Gini index 
 𝑛 is the number of classes 
 𝑃  is the probability of finding each class in the node 
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Splits in the tree are made by evaluating the Gini over each input for the node in question.  The 
feature with the lowest Gini for the samples in that node will become the split criterion and the 
tree continues to build.  If the node is pure, or the Gini is not reduced, the branch terminates at a 
leaf.  The user can specify other stopping criteria such as the maximum depth of the tree, minimum 
Gini required for a split, and minimum samples required to split a node.  Doing so will result in a 
more general predictive model which is desirable.     
 
An improvement upon the Decision Tree, Random Forest uses many tree estimators for making 
predictions.  Random Forest works well with high-dimensional data, is robust to non-linear data, 
has low bias, and variance is reduced through bagging [25].  The randomization of the model 
resides in the building of the trees in the forest.  The samples and features available to build each 
tree are randomly selected according to user defined limits.  Random Forest is a prediction by 
committee approach.  The results of many trees trained on the subsets are compiled to classify 
each observation.  The number of tree estimators is set in the algorithm prior to creating the model.   
 
The data used for this study is a large production dataset from a HPDC production of engine block 
castings at FCA Kokomo Casting Plant.  The full dataset consists of over 950,000 observations, 
each row representing a production casting, and 83 columns of input/output variable data.  The 
data is collected from 12 HPDC work cells and 20 die casting tools.  Periodically, the production 
castings are destructively evaluated for mechanical property testing via a tensile test.  In this dataset, 
there are 1495 observations for which both the HPDC process variables and the mechanical 
property data are collected into 159 columns.  The blocks are cast in E380 aluminum alloy [27] 
and subjected to T5 heat treatment post castings.  For a specific application, a subset of the blocks 
receives an additional 24-hour natural age prior to T5. 

Prior to training the models, the data was cleaned to remove missing data, drop columns with no 
variation, and remedy bad data.  Bad data, for example, may be intermittent sensor glitches, mis-
scaled data, format errors, etc.  Effective remedies rely on domain expertise of those close to the 
process to decide whether to impute a suitable value such as a median value, adjust to the proper 
scale, or remove the row or column as unreliable. 
 
When developing the models, the datasets are split into training and test subsets.  Unless otherwise 
noted, the split uses 80% of the rows for training and the remaining 20% for testing the model.  
Model performance metrics include accuracy, precision, recall, f1-score.  Accuracy is percentage 
of correctly classified observations.  This calculation is shown in Equation 2 where TP is the 
number of true positives, TN is the number of true negatives, FP is the number of false positives, 
and FN is the number of false negatives.  The equations for calculating precision, recall, and f1-
score are given in Equations 3, 4, and 5 respectively.  f1-score is the harmonic mean of the 
precision and recall and is useful for unbalanced datasets, such as the one in this study, where there 
are many more good parts than process scrap.   
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𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  (𝑇𝑃 +  𝑇𝑁) / (𝑇𝑃 +  𝑇𝑁 +  𝐹𝑃 +  𝐹𝑁)   Eq 2. 
(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛) = 𝑇𝑃  /  (𝑇𝑃 +  𝐹𝑃 )      Eq 3. 
(𝑅𝑒𝑐𝑎𝑙𝑙) = 𝑇𝑃  /  (𝑇𝑃 +  𝐹𝑃 )        Eq 4. 

(𝑓1_𝑠𝑐𝑜𝑟𝑒) =  2 ∗ ((𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗  𝑅𝑒𝑐𝑎𝑙𝑙 )/(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑅𝑒𝑐𝑎𝑙𝑙 )) Eq 5. 
 

III. RESULTS AND DISCUSSION 
 
DCM Label Classification 
Our first objective is to create a classification model which evaluates die-casting process data and 
the known class assigned to the part and determines what the rules are such that the model will 
accurately assign new part data to the correct class.  The three labels are: good part, process scrap, 
and warm-up.  The full HPDC data set was used in this exercise split into training and test 
populations.   
 
Summaries of the model performance will be shown via confusion matrix (Table I).  The matrix 
rows track the actual known classifications of the test population and the columns correspond to 
the classifications of the test population as predicted by the model.  A perfect model would have 
zero FN and FP predictions.   
 

Table I.  Interpretation of the confusion matrix.  A perfect model would have zero 
FN and FP predictions. 

  Predicted Value 
  Positive Negative 

Actual Value 
Positive TP FN 
Negative FP TN 

 
 
Decision Tree Classifier 
The results of the initial Decision Tree classifier are plotted in Figure 4.  The graphic is displayed 
not for legibility, rather to show how complex Decision Trees can be.   
 

 
Figure 4.  Complete Decision Tree model for prediction of quality classification. 
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This tree would be even larger if limits had not been placed on it.  The depth of the tree was limited 
to 20 levels and the minimum requirement to make a split was set to 0.1% of the population.  These 
settings are optimized by adjusting them in turn and evaluating performance metrics.  What can 
be understood from Figure 4 is that warm-up shots which are colored purple are easily separated 
from the good parts (orange) and process scrap (green).  This is because warm-up shots typically 
have different process settings from production shots utilizing low shot velocity and minimal 
intensification pressure to reduce wear and tear on the DCM and die while bringing the die up in 
temperature.  The challenge is separating the good parts from the process scrap.  For the remainder 
of this exercise the warm-up shots have been utilized in a calculation as a process input which 
designates the number of shots performed since the last warm-up shot was made.  This value is 
included to serve as a directional proxy for die temperature.  Since this column equals zero for all 
warm-up shots, the prediction of warm-up shots by the model becomes automatic.  Thus, the warm-
up shots are removed from the dataset.   
 
Table II contains the results of the part quality Decision Tree model. 
 

Table II.  Confusion matrix showing the performance of the Decision Tree 
classifier model for part quality.   

Decision Tree Model – Part Quality 
Predicted Value 

Good Part Process Scrap 

Actual Value 
Good Part 167,470 528 

Process Scrap 1,577 5,294 
 
The Decision Tree performed well on the test data which is made up of 174,869 rows of data which 
the model had not seen before.  The model does very well in predicting good parts.  Although, 
manufacturing operations make many good parts, it is predicting the process scrap which is of the 
greatest value.  5,294 of the 6,871 process scrap rows are correctly classified.  The 1,577 process 
scrap castings which are classified as good parts are FPs.  False Positives must be minimized, as 
these would have a negative impact on downstream operations. 
 
Random Forest Classifier 
In the Random Forest, 10 estimators were used with a maximum depth of 35 levels and a 
minimum split size of 100 observations.  The confusion matrix for the Random Forest is shown 
in Table III.  Interestingly, the Random Forest model performs slightly worse on the process 
scrap class than the Decision Tree.  Unbalanced data is a challenge for modeling production 
manufacturing data.  Since each split in each tree is done without the consideration of any other 
splits, the best Gini split may sweep many process scrap samples into a node which is 
overwhelmingly good parts.  This results in misclassification if the node is a leaf.  Fortunately, 
there are methods to working with unbalanced data. 
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Table III.  Confusion matrix showing the performance of the Random Forest model 
for part quality. 

Random Forest Model –  
Part Quality 

Predicted Value 
Good Part Process Scrap 

Actual Value 
Good Part 167,793 205 

Process Scrap 1,613 5,258 
 
 
Oversampling for Imbalanced Data 
To reduce the amount of FP, the issue of data imbalance is addressed by generating more process 
scrap data by which to train the model.  The simplest way to do this is to reproduce samples from 
the process scrap class, but this provides no new information to the algorithm.  A better method, 
which does provide new information to the model via the creation of new minority class samples, 
is called Synthetic Minority Oversampling TEchnique (SMOTE) [28], [29].  SMOTE creates each 
new minority class sample by selecting an example of the minority class, finding its nearest 
neighbors, and drawing a line between the example and one of its neighbors at random.  The new 
sample is created along the connection line.  This is done repeatedly until the minority class 
balances out the majority class.  A disadvantage of SMOTE is that it is challenged by datasets 
where classes overlap.  
 
To investigate, the training data was oversampled using SMOTE and new Decision Tree and 
Random Forest models were trained.  Predictions were made on the same testing data using the 
new models.  It is important that SMOTE be applied to the training data only, and not the testing 
data.  This way the testing data is of a distribution faithful to the process.  The results are shown 
in Table IV and Table V for the Decision Tree and Random Forest respectively.  By balancing out 
the process scrap with the good parts, the new models are more adept at recognizing process scrap 
and FPs are reduced.  The increase in FN is potentially due to overlap in the classes.  A potential 
cause of overlap is from castings where the classification of the machine was overruled by the 
operator.  In such an instance, a good part would be labeled process scrap.  Unfortunately, no 
record of operator intervention is kept by which to verify. 
 

Table IV.  Confusion matrix showing the performance of the Decision Tree with 
SMOTE classifier model for part quality.   

Decision Tree w/ SMOTE –  
Part Quality 

Predicted Value 
Good Part Process Scrap 

Actual Value 
Good Part 164,716 3,282 

Process Scrap 924 5,947 
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Table V.  Confusion matrix showing the performance of the Random Forest w/ 
SMOTE model for part quality. 

Random Forest w/ SMOTE –  
Part Quality 

Predicted Value 
Good Part Process Scrap 

Actual Value 
Good Part 165,443 2,555 

Process Scrap 1038 5,833 
 
SMOTE improves the model performance on the minority class in both Decision Tree and 
Random Forest models.  Comparing Tables IV and V, it is difficult to see which model is best 
suited for our data.  Both exhibit false positives and false negatives.  To determine the better 
performing model, it is useful to use scoring metrics.  These measures are tabulated for both 
models below (Table VI).  The metrics associated with the minority class (process scrap) are 
more telling for model performance.  The models perform quite similarly, however, the Random 
Forest is the better model due to the higher f1-score for the process scrap class.  The results 
between the testing and training datasets are nearly the same, therefore, it can be said that neither 
model is overfitting to the training data. 
 
Table VI.  Key scoring metrics for the part quality Decision Tree and Random Forest classifiers 
with SMOTE training data.  Mean values are reported from 5-fold cross validation. 
 Decision Tree w/ SMOTE Random Forest w/ SMOTE 
 Training Data Test Data Training Data Test Data 
Model Accuracy 98.81 % 98.70 % 98.40 % 98.66 % 
Precision 98.76 % 98.64 % 98.41 % 98.63 % 
Recall  98.81 % 98.70 % 98.40 % 98.66 % 
f1-Score  98.76 % 98.64 % 98.40 % 98.55 % 
f1-Score  
(Process Scrap) 

97 % 74 % 99 % 76 % 

 
Once the model is run, a useful summary for the process engineer can be pulled from the model, 
feature importance [30].  Understanding the influence of each variable on the model helps the 
engineer determine which variables to monitor more frequently or accurately, and where to invest 
in process control measures for best results.  Feature importance of the Random Forest and 
Decision Tree with SMOTE models are given in Table VII below.  The list of 83 variables was 
truncated at values > 0.02.  The feature importance table shows how Random Forest ensemble 
learning softens and enhances the importance of individual features in comparison to the Decision 
Tree algorithm.    
 
  



 

D-12 
 

Table VII.  Feature importance for the part quality Decision Tree and Random Forest classifiers 
with SMOTE generated training data. 

Part Quality Decision Tree w/ SMOTE Part Quality Random Forest w/ SMOTE 
Feature Name Importance Feature Name Importance 
Time Between Cycles 0.4910 Time Between Cycles 0.2830 
Shots Since Last Warm-up 
Shot 

0.1779 Biscuit Length 0.0868 

Biscuit Length 0.0793 Final Intensifier Pressure 0.0641 
Final Intensifier Pressure 0.0595 Plunger position at the end of 

shot 
0.0505 

Average Intermediate Shot 
Velocity 

0.0471 Cycle Time 0.0480 

Cycle Time 0.0207 Average Intermediate Shot 
Velocity 

0.0426 

  Cavity Fill Time 0.0392 
  Average Fast Shot Velocity 0.0381 
  Shots Since Last Warm-up 

Shot 
0.0314 

  Intensification Velocity Rise 
Time 

0.0239 

  Dwell Time 0.0239 
  Intensification Stroke 0.0215 

 
Feature importance can also be used to assist in feature selection for creating more efficient models 
which take less time to run and perform better when noisy features are removed.  Ultimately, the 
final set of features is based on trial and error and the preferred performance metric.  The same 
Random Forest model set-up was run using only the top 12 features (Table VII).  Dropping the 
low importance input variables minimally reduces predictive power, and overfitting to the training 
data is still avoided (Table VIII).  
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Table VIII.  Scoring metrics for the part quality Random Forest with SMOTE 
classifier models using the top 12 features.  Mean values are reported from 5-fold 
cross validation. 

 Random Forest Classifier 
 Training Data Test Data 
Model Accuracy 98.81 % 98.55 % 
Precision 98.82 % 98.48 % 
Recall 98.81 % 98.55 % 
f1-Score  98.81 % 98.45 % 
f1-Score  
(Process Scrap) 

99 % 79 % 

 
Breaking the data down into unique combinations of DCM number and die cavity number yielded 
interesting results.  It was observed that, when subsets representing each combination of DCM 
number and die cavity number were run across the general part quality Random Forest classifier, 
the metrics of the predictions varied.  This suggests that each DCM and cavity combination is to 
some degree a unique process.  The five best and five worst results are presented in Table IX.  
 
Table IX.  Performance metrics of the part quality Random Forest with SMOTE classifier when 
each unique combination of DCM and die cavity subset is run as the test sample. 
Combination 
ID 

Accuracy Precision Recall F1-score 

Top 5 Results 
Combination 17 0.99 0.96 0.89 0.93 
Combination 16 0.99 0.89 0.95 0.92 
Combination 14 0.98 0.87 0.93 0.90 
Combination 13 0.99 0.85 0.92 0.88 
Combination 06 0.99 0.87 0.87 0.87 
Bottom 5 Results 
Combination 23 0.98 0.72 0.81 0.76 
Combination 26 0.98 0.63 0.96 0.76 
Combination 24 0.99 0.72 0.78 0.75 
Combination 25 0.98 0.66 0.77 0.71 
Combination 02 0.98 0.65 0.76 0.70 

 
Combination 16 which offered the largest subset of the overall dataset was examined on its own 
to see if the quality label prediction could be improved.  The dataset is reduced from 874,344 to 
76,226 observations.  However, the noise from multiple processes grouped together is minimized.   
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For the Combination 16 Random Forest classifier model, 100 estimators were used with a 
maximum depth of 11 splits.  The top 12 features as determined by the all-inclusive Random Forest 
were used as the input features.  The confusion matrix is shown in Table X.  The model classifies 
some process scrap in the good part class, but the f1-score for process scrap specifically increases 
to 0.89 as compared to 0.76 when all combinations of DCM and cavity numbers are grouped 
together.   
 

Table X.  Confusion matrix for the Combination 16 test dataset run across the part 
quality Random Forest classifier specific to the Combination 16 dataset.   
Top 12 important features used as inputs. 
 

Random Forest Model – Part Quality 
Combination 16 Data 

Predicted Value 
Good Part Process Scrap 

Actual Value 
Good Part 14,698 83 

Process Scrap 22 443 
 

The takeaway from this analysis is that machine learning algorithms, specifically Random Forest 
classifiers, are adept at analyzing high-dimensional datasets and identifying the quality thresholds 
established for materials processes.  In learning the acceptable range for each variable to make 
quality parts, accurate predictions can be made on new parts of unknown quality.  Oversampling 
techniques such as SMOTE, helps to address the imbalance in the data and makes the model a 
better predictor of the minority class. 
 
The example of predicting part quality assigned by the DCM is a straightforward example where 
the dataset is very large and contains all the information available to the DCM for labeling parts 
good or process scrap.  Many materials processing problems are more difficult due to the 
challenges of small datasets.  Next, we turn our attention to how well Random Forest classification 
modeling can be applied to predicting porosity in castings using process data by which they were 

made.   
 
Porosity Classification 
 
HPDC process input data is used by manufacturing operations as a real-time quality check.  Thus, 
it is of interest to test if these data can be analyzed further to predict levels of porosity in good 
parts.  For the cast component of this study, production castings are selected for destructive 
mechanical property testing via testing tensile bars extracted from the casting itself.  Ultimate 
tensile strength (UTS), yield strength, tensile strain (elongation), and hardness data are collected 
for the purpose of quality assessment [31].  In most HPDC products, the location of the tensile 
bars is limited to the few heavy areas of the casting which can accommodate their geometry.  This 
constraint applies to the engine block geometry in this study.  Thick walled sections are difficult 
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geometries in die cast parts because there is no ability to use risers, as other casting processes do, 
to feed volume contraction during solidification [32].  Intensification pressure is applied during 
solidification to compress gas porosity and feed shrinkage; however, once the gates freeze, 
pressure is no longer transmitted to the last areas to solidify (e.g. heavy walled sections).  In the 
long freezing range aluminum alloys commonly utilized in HPDC, like 380-alloy, the resulting 
shrinkage is often microshrinkage which is difficult to detect via NDA methods such as digital X-
ray.  Thus, the presence of porosity is a characteristic of HPDC which must be controlled and not 
necessarily an indication of a poor casting.  Discontinuities do impact the measured mechanical 
properties resulting in additional work and cost to reproduce the test.  It has been shown that 
mechanical properties are dependent on the amount of porosity in the area of fracture [33]–[36].  
Making a connection between mechanical properties and porosity is of interest to die casters 
because, in many applications, the presence of porosity can result in scrap due to uncovered 
porosity after machining or loss of pressure tightness or leaking.   
 
Finding which process inputs contribute to porosity in a mature process is challenging for humans 
to solve.  It is also a difficult problem to model because all the castings in the new dataset are 
classified as good parts, so the difference between any given input variable from one observation 
to the next is likely small.   
 
The HPDC process dataset was merged with the tensile bar dataset using the part serial number to 
match the observations. The result is a much smaller dataset with 1495 rows.  The comments 
column from the tensile bar dataset was text mined to determine which bars exhibited visual 
discontinuities in the tensile bar fracture surface [37].  Next, the data was run through a Random 
Forest classifier to see if porosity could be predicted.  This newly generated Random Forest 
classifier was unable to discern a difference between the parts which had confirmed porosity in the 
tensile bar and those for which no porosity was observed.  Most of the porosity samples are 
predicted to not have porosity as shown in Table XI. 
 

Table XI.  Confusion matrix showing the performance of the porosity Random 
Forest classifier model on the test dataset for all tensile bars. 

 

Random Forest Model – Porosity 
All Tensile Bar Data 

Predicted Value 
No Porosity Porosity 

Actual Value 
No Porosity 220 0 

Porosity 6 2 
 
The output in the above model is a binary categorization of porosity observed or not.  Cáceres’ 
work shows that a binary classification for porosity is not adequate since the amount of porosity 
affects the mechanical properties [33].  Whether or not the porosity was observed by the tester in 
the tensile bar has no bearing on how the bar performed.  The observation is based on unaided 
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visual inspection.  Porosity in 380-aluminum from volumetric contraction is expected to be 
microshrinkage which may go undetected in visual inspection [38].  Figure 5 shows an empirical 
cumulative distribution function for the bars with and without observed discontinuities.  The curve 
for the data with observed discontinuity is shifted to lower UTS values.  There is considerable 
overlap which supports the supposition that microshrinkage porosity is often undetectable via 
visual inspection. 

 
Figure 5.  Empirical cumulative distribution functions for the UTS of tensile bars 
with and without observed discontinuities on the facture surface by visual 
inspection. 

 
A classification model based on a UTS value has two benefits:  undetected porosity gets captured 
in the lower performing bars and the two classes can be set up to be more balanced.  Two classes 
were selected: UTS < 205 MPa and UTS ≥ 205 MPa.  The groupings have no reflection on engine 
block performance.  There is no assignment of “good” versus “bad” implied in selecting the ranges.  
The value of 205 MPa is chosen as it is the median value of the tensile bar dataset.  Importantly, 
80% of the bars with observed discontinuities exhibited less than 205 MPa of UTS as well.  A 
Random Forest classifier was used to predict which UTS class each bar in the test dataset would 
fall into using the HPDC process input data.  Table XII shows the Random Forest classifier results 
cross validated over 10 iterations.  This model is overfitting to the training data as there is more of 
a difference between the training and testing metrics than we saw in the DCM quality label 
example.  One of the better performing models is shown in Table XIII.   
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Table XII.  Key scoring metrics for the Random Forest classifier model 
predicting UTS over or under 205 MPa.  The support of the test dataset is: 138 
UTS < 205 MPa samples and 161 UTS ≥ 205 MPa samples. 

 Random Forest Classifier: 
UTS over/under 205 MPa 

 Training Data Test Data 
Model Accuracy 60.62 % 56.87 % 
Precision (weighted) 60.76 % 57.13 % 
Recall (weighted) 60.62 % 56.87 % 
f1-Score (weighted) 60.57 % 56.37 % 

 
 

Table XIII.  Confusion matrix of the Random Forest classifier for UTS tensile 
bars above and below 205 MPa using HPDC process inputs only. 
 

Random Forest Model – UTS 
Predicted Value 

> 205 MPa < 205 MPa 

Actual Value 
> 205 MPa 98 63 
< 205 MPa 47 91 

 
If die casting operations examine their data in this way, there is benefit gained even from 
imperfect models.  Referring to Table XIII, the test dataset consists of 299 samples of which 161 
were of the higher UTS class.  This amounts to 53.8% high UTS samples.  This model suggests 
that there are operating conditions where high UTS bars can be expected.  If those conditions are 
employed, one would find that 98 of 145 are high UTS bars, or 67.6%.  The parameters which 
rise to the top of the feature importance list in Table XIV are worthy of study since splitting on 
their value has the largest impact on UTS prediction.   
 
Individual tree estimators can be pulled from the Random Forest and viewed to understand 
which feature and values were chosen for splitting nodes.  Geometry and performance 
requirements are design specific, expect important features and the values set as thresholds for 
splitting the data to vary part number to part number.  In the data for this engine block study, 
higher UTS parts are associated with lower cycle times: in every timer listed in Table XIV, a 
lower timer value is associated with a higher percentage of parts with greater than 205 MPa 
UTS.  Intensification stroke refers to how much the shot rod moves forward under intensification 
pressure; the forward movement is tied to feeding of shrinkage porosity and higher values for 
this variable improve UTS.  Also, consistent production associated with less time between cycles 
and longer continuous runs of parts result in stronger parts. 
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Table XIV.  Average feature importance calculated over ten iterations of the Random Forest 
classifier. 
Feature Name Importance Feature Name Importance 
Ejection Forward Time 0.0747 Total Tie Bar Tonnage 0.0379 
Spray Robot Time 0.0505 Final Intensifier Pressure 0.0357 

Die Close Tank Level 0.0498 
Avg Head Pressure during 
Intermediate Shot 

0.0349 

Avg Head Pressure during 
Fast Shot 

0.0466 Extract Robot Cycle Time 0.0348 

Shot Count Since Last Warm 
Up Shot 

0.0414 Cycle Time 0.0347 

Die Close Time 0.0403 Die Opening Time 0.0329 
Intensification Pressure Rise 
Time 

0.0396 Vacuum Pressure during Shot 0.0321 

Average Fast Shot Velocity 0.0386 Ladle Pour Time 0.0332 
Avg Head Pressure during 
Slow Shot 

0.0383 Intensification Stroke 0.0304 

 

IV. CONCLUSIONS 

 Supervised learning performed better on the larger HPDC process dataset.  The complete 
population has 874,344 observations and we know that the DCM is making quality 
determinations based on this data, so the right data is collected.  The result is a good 
model. 

 Oversampling using SMOTE is effective for teaching the model to better predict the 
minority class. 

 The Random Forest classifier outperforms a single Decision Tree by reducing variance.  
The ability to differentiate good parts from process scrap improve when focusing on 
unique combinations of machine and cavity number as stand-alone processes. 

 For predicting porosity, UTS has been shown to be a better output for predictive 
modeling than relying on porosity observation alone.  Microshrinkage porosity can easily 
be missed by the unaided eye, but its effect is apparent in the UTS measured. 

 A key difference between the DCM part label problem and the porosity prediction 
problem is the size of the dataset available to the model.  The smaller tensile bar dataset 
is impacted by overfitting issues that the larger dataset avoids.  
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Abstract 

Materials processing is a critical subset of manufacturing which is benefitting by implementing 
machine learning to create knowledge from the data mined/collected and gain a deeper 
understanding of manufacturing processes.  In this study, we focus on aluminum high-pressure 
die-casting (HPDC) process, which constitutes over 60% of all cast Al components. Routinely 
collected process data over a year’s time of serial production is used to make predictions on 
mechanical properties of castings; specifically, the ultimate tensile strength (UTS).  Random 
Forest, Support Vector Machine (SVM), and XGBoost regression algorithms were selected from 
the machine learning spectrum along with a Neural Network, a deep learning method.  These 
methods were evaluated and assessed and were compared to predictions based on historical data.  
Machine learning, including Neural Network, regression models do improve the predictability of 
UTS above that of predicting the mean from prior tests.  Choosing the correct models to use for 
the data requires an understanding of the bias-variance trade-off such that a balance is struck 
between the complexity of the algorithms chosen and the size of the dataset in question.  These 
concepts are reviewed and discussed in context of HPDC. 

 
I. Introduction 
 
A recent boom in machine learning has been sparked by continuous decrease in the cost of 
computer memory and increases in computing power [1], [2].  This, coupled with increased access 
to machine learning algorithms and open source software, has broadened the scope of interested 
parties beyond the early adopters like social media, banking, and marketing and retail sectors into 
manufacturing operations.  Materials processing is a critical subset of manufacturing which is 
benefitting by implementing machine learning to create knowledge from the data mined/collected 
and to gain a deeper understanding of manufacturing processes.   

Many materials manufacturing processes tend to be large-scale in terms of production tonnage and 
units per hour.  Efficiency is a core metric for materials processing plants.  In thermally controlled 
processes, interruptions have significant downtime implications in returning the process to the 
operating temperature.  In such an environment, sampling each unit of the product for the purpose 
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of quality assurance or process control reduces productivity, adds cost, or just simply is not 
practical.  Machine learning is an enabling technology with the potential to minimize sampling 
and testing while boosting the confidence that both producers and customers have in the end 
product. 

We consider aluminum high-pressure die-casting (HPDC) for this study, which  is the most utilized 
process in the world for aluminum alloy near-net shaped components [3], [4].  In brief, the process 
consists of a machine which holds a steel die where the casting is formed, and an injection system 
for delivering the metal at high speed and holding the solidifying metal under pressure.  The 
application of machine learning, including Neural Networks, to HPDC has been studied in the 
numerical simulation realm.  Rai et al. used a supervised learning method by creating datasets with 
process simulation software and teaching a Neural Network to predict cavity fill time, 
solidification time, and porosity based on the process inputs: melt and die temperature and slow 
and fast shot velocities [5].  They found that the results of the Neural Network model compared 
well to those generated by commercially available finite element mesh-based simulation software 
but did so in much less time.  Similarly, Yarlagadda et al. predicted fill time from the melt 
temperature, die temperature, injection pressure, and casting weight with a Neural Network trained 
via process simulation software and domain expertise from casting specialists [6].  Moving into 
the experimental realm, Soundararajan et al. were able to train and test a Neural Network 
predicting the ultimate tensile strength (UTS) and yield strength (YS) of extracted tensile bars from 
gravity cast aluminum with a correlation coefficient of 0.95 and 0.96, respectively [7].  Their 
experimental settings represent a wider range in process input values than one might encounter on 
a fully developed production casting, exaggerating the differences for the algorithm to recognize 
and learn. In volume production, process parameters are established to ensure uniformity in the 
final product. To predict the UTS of each sample to a high accuracy based on typical input variation 
is a difficult problem at which this research is directed.  It is common practice to collect HPDC 
cycle summary data with respect to plunger velocity, pressures, and various timers for each shot 
as captured by the shot monitoring software on the die casting machine.  While these data are 
routinely reviewed for troubleshooting purposes, utilizing such information to make predictions 
about the castings themselves is not the norm, and thus the opportunity or a need that this work 
addresses.  

It is paramount to understand the type of data HPDC operations generate, and the machine learning 
and deep learning methods that are best suited for analysis.  One is often introduced to the terms 
machine learning, deep learning, and Neural Network as buzz words used interchangeably in 
marketing or general audience publications.  All of these are subsets of artificial intelligence and 
defining where machine learning ends and deep learning begins is somewhat blurry. Perhaps it is 
best to look at these as a continuum of complexity.  Machine learning algorithms reside on the 
lower end of the complexity spectrum making use of linear and other low-order functions [8].  
While deep learning is at the other end employing layers of mathematical transformations and 
activation functions for creating models [9].  The most suitable method depends on the data 
available. 

This study was conducted to compare the performance of various machine learning and deep 
learning methods in predicting the UTS of tensile bars excised from engine block castings.  The 
mean absolute error of the algorithm is used to score the methods.  Furthermore, an explanation of 
the importance of bias-variance trade-off is given to provide context for the results [10], [11]. 
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II. Methodology 
 

Casting Details 
The data used for this machine learning study represent a large production dataset from a HPDC 
operation.  The full dataset consists of over 950,000 observations, each row representing a 
production casting, and 83 columns of input/output variable data collected from 12 HPDC work 
cells and 20 die casting tools in the production of engine block castings at FCA Kokomo Casting 
Plant.  Briefly, the core of the set is HPDC process summary data collected via shot monitoring 
software (plunger velocities, intensification parameters, timers, melt temperature, to name a few); 
specifics can be found in Appendix A.  Periodically, the production castings are destructively 
evaluated for mechanical property testing via a tensile test.  In this dataset, there are 1495 
observations for which both the HPDC process variables and the mechanical property data are 
collected into 159 columns.  The blocks are cast in E380 aluminum alloy [12] and subjected to T5 
heat treatment post castings.  For a specific application, a subset of the blocks receives an 
additional 24-hour natural age prior to T5. 
 
Mechanical Property Testing of Castings 
When designing castings, minimum mechanical properties may be specified by the designer which 
are required for the final product.  Process and alloy selection are largely driven by these 
requirements [13].  Testing mechanical properties such as UTS, YS, and elongation requires 
destructive methods which can only be conducted on an audit basis.  Tensile testing of test bars 
extracted from the cast part itself, or cast alongside the part, is the most employed method to 
measure these properties [14].  The tensile bars come from four different locations in the engine 
block and are machined to a 0.350 inch (9 mm) diameter sub-sized geometry based on ASTM B 
557 (Figure 1) [15].  The bars are pulled using an Instron tensile testing machine.  A load cell is 
used to measure the force on the tensile bar.  An extensometer is affixed to the bar to determine 
the point of yielding.  The dataset captures the UTS, YS, and the tensile strain.  The 0.2% offset 
method is used to calculate the YS [16].  The tensile strain is measured with the extensometer over 
the course of the test and is reported as a percentage.  Included in the dataset is a notes column 
which is text mined for mentions of fracture location and the presence of observed discontinuities 
such as porosity or an inclusion [1].  Each bar is classified accordingly.  Tests with no indication 
of a discontinuity are classified as unknown, rather than to assume none were present. 

For traceability, each engine block is assigned a serial number when it is cast.  This unique 
character string is stored for each row of the HPDC process dataset.  The serial number of the 
block casting is recorded in the tensile bar data as well.  This identifier is used to merge the two 
datasets together, such that the data for each tensile test is expanded to include the HPDC process 
data as well.  After an initial feature selection exercise [8], to remove columns with no variation 
and highly correlated columns, the resulting dataset consists of 1494 observations, or rows, and 80 
variables, or columns.  Of the 80 columns, 77 are inputs and 3 are outputs (UTS, tensile strain, and 
the Quality Index (QI) [17]).  QI is an empirical relationship which aids in the interpretation of 
tensile test data.  Mapping UTS-Elongation data over a grid of iso-QI and iso-YS lines provides 
the materials engineer directional insight into how to adjust alloy chemistry, solidification rate, 
and heat treatment to achieve the desired result. 
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G – Gage Length 1.400 +/- .005 
(35.5 +/- 0.1) 

R – Radius (min) 0.25 
(6.35) 

D – Diameter 0.350 +/- .007 
(9.0 +/- 0.2) 

A – Reduced Section 
Length (min) 

1.650 
(41.9) 

 
Figure 1.  Tensile bar geometry per ASTM B557 [15, p. 55].   

Dimensions in inches (mm). 

Tensile bar data were examined to determine which output to target for prediction.  Like most 
production manufacturing data, there is noise in the data that can be difficult to filter out with 
certainty as the actual tensile bars are not typically retained and were not available for this study.  
Statistical analysis via Welch’s t-test is performed to detect significant shifts in the mean value of 
UTS and tensile strain from one population to another [18].  Location of bar extraction, presence 
of observed discontinuities, and the heat treatment were analyzed, and key results are shown in 
Tables I and II.  The fracture location along the bar (middle vs. gauge) was not found to 
significantly move the mean UTS to a 95% confidence level. 

Table I.  Mean values for UTS and tensile strain comparing tensile bars from two heat 
treatments for all tensile bars. The null hypothesis is that there is no difference  

with respect to heat treatment. 
 

  Standard T5 
Heat 

Treatment 

T5 w/ 
Additional 

Natural Age 

p-value Reject the null 
hypothesis? 

Ultimate Strength, 
MPa (All Bars) 

201 212 2.8E-29 Yes 

Tensile Strain, % 
(All Bars) 1.4 1.6 9.3E-14 Yes 
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Table II.  Mean values for UTS and tensile strain comparing tensile bars based on noted 
discontinuity on the fracture surface.  The null hypothesis is that there is no difference between 

bars with an observed discontinuity and those with no noted observation. 
 

  No Observed 
Discontinuity 

Observed 
Discontinuity 
(unaided eye) 

p-value Reject the null 
hypothesis? 

Ultimate Strength, 
MPa (All Bars) 

204 191 1.2E-11 Yes 

Tensile Strain, % 
(All Bars) 1.4 1.3 0.01 Yes 

The results of Welch’s t-test confirmed that the mean UTS value is statistically different based on 
the presence of defects and heat treatment used. UTS was selected over QI and tensile strain for 
its sensitivity to the presence of observed anomalies in the tensile bars.  The literature has shown 
that UTS is sensitive to the presence of such casting features in tensile bars.  Surappa reported that 
the mechanical properties of A356 permanent mold castings are less dependent on the bulk 
porosity than they are on the porosity in the test bars themselves [19].  Cáceres and Selling 
observed a power law relationship between the UTS and the area fraction of defects on the fracture 
surface of tensile bars [20].  This connection of UTS to porosity is very useful to die casting 
producers, since quality issues in die casting are largely porosity related [21].  Preliminary 
modeling efforts confirmed that UTS was showing less error in the model performance as 
compared to prediction of tensile strain and QI. 

Data Pre-Processing 
Before the data can be processed through machine learning algorithms, there is a significant 
amount of pre-processing which must be done to obtain meaningful results. In particular, the idea 
of distance between observations is essential to machine learning algorithms and getting such 
distances wrong can severely hamper the functioning of machine learning algorithms. 
Consequently, common pre-processing operations were performed for the purpose of cleaning the 
dataset, dealing with discrete data, and standardizing the data. 

Real world production data is messy.  Missing values, erroneous sensor readings, duplicated 
entries, typos, format changes in the source file, etc. must be sorted out before one can engage in 
meaningful analysis.  Considering a data set of over 950,000 rows and 109 columns, one cannot 
simply scroll through and identify the anomalies.  Running summaries of each column, examining 
the data class, and locating missing values are a few of the tasks to be carried out.  This is where 
the expertise of the data scientist and the domain experts are invaluable. 

In the dataset, there are continuous variables such as melt temperature, fast shot velocity, and 
intensification pressure.  Likewise, there are discrete, categorical, variables such as machine 
number, cavity number, and work shift.  Continuous variables often have easily defined distances 
since the distance between two melt temperatures, for example, is easily calculated and 
meaningful.  However, categorical data, especially those which are represented by numeric 
identifiers cannot be properly calculated by simply finding the difference between two numeric 
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labels.  Even so, it is useful data and can be incorporated into machine learning algorithms.  Work 
shift is a good example for illustrating how to deal with discrete data.  Work shift is often 
represented by numerical representation of first (1), second (2), and third (3) shift.  While the 
distance between 1 and 2 and the distance between 2 and 3 both have a value of one, the pair 1 and 
3 have a distance equal to two.  Logically, first and third shift are no further apart than first and 
second (Figure 2a).  To deal with the challenge of discrete data, data scientists utilize a method 
known as one-hot encoding [22].  One-hot encoding takes the tall vector which has discrete work 
shift data consisting of 1’s, 2’s, and 3’s and converts it into a wide set of three vectors, we will call 
them Work Shift 1, Work Shift 2, and Work Shift 3 as shown in Figure 2b. 

  

Figure 2.  a) Discrete numerical data challenge of work shift; b) the data after 
one-hot encoding. 

We now have three vectors which capture the work shift as numerical data and the distance 
between each shift is one.  The original Work Shift column is removed prior to executing the 
algorithm.  One-hot encoding can be applied to character string data as well. 

Once the data set is fully numeric and discrete variables have been managed, the issue of scale is 
addressed.  The data collected in HPDC contains a wide range in scale.  Also, different equipment 
manufacturers may capture data in only English or metric units. In round figures, intensification 
pressure of 10,000 psi, melt temperature of 1300 ˚F (704 ˚C), cycle time of 150 seconds, biscuit 
size of 2 inches, and an iron content of 0.60% are a few examples which show that the range of 
scale is in orders of magnitude.  If left in this format, the intensification pressure would register as 
highly significant and outweigh any influence the iron content would show just the because the 
numbers are larger.  The standardization method employed in this study is the Z-transform [23] 
(Equation 1), which brings all the variables into the same scale, resolves the issue of units, and 
leads to meaningful distances when considering multiple columns of data. 

                  𝑍 , =
, µ

         Eq. 1 

Where 
 𝑍 ,  is the Z-transformed value of the parameter in one data cell 
 𝑋 ,  is the original value of the parameter in the data cell 
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 𝜇  is the mean of the original values of the parameter in the data column 
 𝜎  is the standard deviation of the original values of the parameter in the data column. 

Dimension Reduction Methods 
The data is now in the proper format to analyze via machine learning or deep learning methods.  It 
is possible that performing the analysis on the full dimensional dataset will not produce the best 
results.  One can start with as much potentially relevant data as possible, but too much meaningless 
data adds noise to the model, such as redundant columns and those which are pure noise.  To 
counteract this, dimension reduction methods, such as feature selection and principal component 
analysis (PCA) [24], [25], are conducted on the data.  Both methods were implemented in this 
work.   

Feature selection, as the name implies, is the specific selection of which inputs to run through the 
algorithm.  The decisions are not made carelessly, rather, with the input and direction of a subject 
matter expert.  In the absence of this resource, the decision can be made based on the feature 
importance [26] from the full dimensional model.  The number of features ultimately selected is 
based on trial and error and the preferred performance metric.  

PCA is another dimension reduction technique.  The goal of PCA is to determine linear 
combinations of the input variables which capture the most variation in the dataset while 
minimizing the error when the dataset is reconstructed from the principal components.  In doing 
so, a high-dimensional dataset can be condensed into a smaller number of principal components.  
PCA is an excellent tool for visualizing a high-dimensional dataset in two or three dimensions. 

Bias-Variance Trade-Off 
The above pre-processing methods apply to both the machine learning and Neural Network 
algorithms.  When choosing which path to take, the two most important parameters that need to 
be considered are size of the available data and bias-variance trade-off.  This dataset of 1494 tensile 
tests are exceedingly large when compared to typical mechanical property studies.  However, in 
the world of data science, this is not “big data”.  The amount of data available is a limiting factor 
in the complexity of the model. 
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Figure 3.  Performance comparison of Neural Network models with traditional 
machine learning models as training data size increases.  On smaller datasets, 
traditional algorithms outperform deep learning models however, as the amount of 
data increases, deep learning models perform better. 

Figure 3 shows a performance comparison of the models as data size increases. For smaller 
datasets, one would pick traditional algorithms as compared to deep learning models. However, as 
the quantity of data increases, deep learning models perform better because traditional algorithms 
reach a saturation point and do not improve any further whereas deep learning models performance 
keeps increasing with training data size [27].      

Understanding the bias-variance trade-off is essential in deciding which algorithms to select for a 
particular dataset and application.  In Figure 4, the X-axis shows model complexity and the Y-axis 
is predictive error.  As model complexity increases, variance increases and bias decreases.  An 
increase in the variance causes the model to overfit to the training data and it fails to generalize on 
new data. The left side of the plot shows a high bias but low variance region. This implies that the 
model is too simple and, hence, it is highly biased.  It fails to learn the complexity of the data.  The 
ideal point is where bias and variance intersect, as shown by the optimum model complexity in the 
plot below [10]. 
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Figure 4. Bias-variance trade-off [10], [11] shows how error changes as the 
complexity of the model increases.  The region on the right is that of high variance 
and low bias whereas the region on the left is that of high bias and low variance.  
These regions are where the model overfits or underfits the training data and 
should be avoided.  The optimal model complexity is where variance and bias are 
minimized, and one should utilize algorithms in this region.  

 

           
Figure 5. The phenomenon of underfitting and overfitting is seen in this figure [28].  
We want a model that is optimal for the kind of data and application that we are 
working on.  For example, a good fit is illustrated in the center plot.  The plots on 
the right and left show underfitting and overfitting respectively and should be 
avoided.  

Figure 5 shows the phenomena of overfitting and underfitting.  It can be seen in the leftmost plot 
that the model follows the data very closely and, thus, overfits.  This is the region of high variance 
in the bias-variance trade-off where the model will fail to generalize on testing data because it 
almost memorizes the training data.  The middle figure shows the optimum model which 
corresponds to the lowest point of bias and variance in the bias variance trade-off and gives a 
robust fit to the data.  The rightmost figure shows an example of high bias in the bias-variance 
trade-off.  Here, the model fails to learn enough complexity in the dataset and underfits [11], [28]. 
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Training, Testing, and Cross-Validation 
Recognizing overfitting and underfitting in 2D plots like those shown in Figure 5 is fine for 
illustrative purposes, but machine learning and deep learning are often applied to high dimensional 
datasets.  In these problems, the fit of the model is evaluated by performance metrics comparison 
between the training data and faithful testing dataset which captures the essence of the complete 
dataset. To accomplish this, the dataset is split into two parts prior to analysis:  a training set and 
a testing set.  In this study a 90/10 training to testing split was most often employed.  This allows 
the data scientist to train the model with a larger dataset and then test the model performance on a 
representative subset not previously seen by the algorithm.  

The train/test split can influence the model.  To avoid being misled, cross-validation is conducted 
to minimize the effect the split has on scoring the model performance metrics [29]–[31].  K-folds 
is a common method of cross-validation.  In K-folds, the user sets the number of folds and the 
model is run as many times taking a different segment of the population as the testing data (Figure 
6).   

 
Figure 6.  K-folds cross-validation where the number of folds is equal to five. 

 
Mean absolute error (MAE) values are reported to score the algorithm (Equation 2).  It is 
common for some overfitting to the training data to exist in the model, so the error on the 
training data tends to be less than the test data.  The goal of a robust model is to minimize 
the difference in error between the training data and testing data results. 

 𝑀𝐴𝐸 =  ∑ 𝑌 − 𝑌                      Eq. 2 

Where 
 MAE is the mean absolute error 
 𝑛 is the number of samples in the dataset 
 𝑌  is the actual value of the output 
 𝑌  is the predicted value of the output 

 
III. Results and Discussion 

 
First, a few comments are in order about machine learning and deep learning via neural network.  It is 
generally agreed that both are forms of artificial intelligence (AI) rather than something entirely unique 
unto each other.  Machine learning represents a family of methods which use statistical and probabilistic 
models trained on historical data to make predictions about new observations.  In machine learning, feature 
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engineering, such as weighing one input more heavily or taking a logarithm of an input, is performed 
manually.  Deep learning is similar, however, weight assignment to features is performed automatically by 
the algorithm.   
 

For machine learning algorithms, Random Forest is selected because it works well with high-
dimensional data, is robust to non-linear data, has low bias, and variance is reduced through 
bagging [32].  XGBoost was chosen to evaluate a more recent adaptation of Random Forest which, 
in addition to bagging, uses boosting to reduce bias by training the subsequent model on the errors 
of its predecessor.  Bagging reduces overfitting while boosting improves accuracy at the cost of 
possible overfitting [33], [34].  SVM was chosen for its ability to determine non-linear decision 
functions via the kernel trick.  The kernel trick maps the input data into a higher dimensional 
feature space where the data is linearly separable resulting in non-linear boundaries between the 
input data [35], [36].  These methods are compared to a Neural Network which is effective for 
handling nonlinearity, tolerant of noise, utilizes advanced learning methods, and generalizes well.  
The following sections cite numerous sources for the reader to delve further into the specifics of 
the methods chosen. 

Results of Machine Learning Regression Methods 
With the pre-processing complete, the machine learning algorithms can be run on the data.  Since 
the objective is to predict the value of the UTS in extracted tensile bars based on the HPDC process 
parameters by which it was made, this is a regression problem [1].  Three algorithms were chosen: 
Random Forest, SVM, and XGBoost.  The detail on how these algorithms operate can be found in 
these references [31], [37], [38].  For each of these methods, there are default parameters used 
when none are defined by the user.  Figure 7 shows the results in terms of the MAE in UTS 
prediction for the default models.  For comparison, an additional model was evaluated where the 
UTS of the testing data is predicted by the mean UTS of the training data.  The default setting for 
the Random Forest and XGBoost show significant overfitting where the error on the testing data 
exceeds that of the training data.  The case of the default Random Forest illustrates well the danger 
of misuse.  If this model were to be implemented, the expectation would be low error in predictions.  
However, the actual experience would show much higher error because the model is too specific 
to the training data.  

The process of adjusting the controlling parameters within the algorithm is called tuning [39].  The 
chosen method of tuning selected for these models is Grid Search Cross-Validation (GSCV) [40].  
In GSCV, multiple parameters can be tuned at once optimizing the model with respect to the target 
metric rather than each parameter at a time.  The goal of tuning is to minimize the difference 
between the training and testing data results.  Figure 8 shows the improvement realized from 
tuning.  In the Random Forest and the XGBoost the difference between the training and testing 
error decreases.  The model becomes more general.  The tuned SVM is not far from where the 
default parameters started. 
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Figure 7.  MAE in UTS prediction results for the high dimension dataset using 
default settings. Both the Random Forest and the XGBoost are showing significant 
overfitting to the training data. 

 
Figure 8.  MAE in UTS prediction results for the high dimensional dataset using 
tuned parameters.  Compared to the default algorithm results in Figure 7, the 
amount of overfit in the Random Forest and XGBoost is lessened.  The SVM 
improvement is imperceptible in the graph. 

The results presented thus far represent the algorithm performances on the full dataset containing 
all process input columns.  Dimension reduction techniques were applied to the data to reduce 
noise of marginal features and further reduce the gap between the testing and training error.  The 
Random Forest and XGBoost algorithms have an output called feature importance that shows 
which parameters have the most influence in training the model.  The top 15 features from the 
tuned high dimensional Random Forest are shown in Figure 9.  These features were selected as 
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the process inputs for the Random Forest and SVM.  Beyond the top 15, the importance of 
additional features continues the gradual tailing off seen in Figure 9.  The prediction results are 
shown in Figure 10.  The Random Forest further reduced it overfitting.   

 

Figure 9.  Feature importance generated from the tuned Random Forest regressor.  
The top 15 features are shown. 

 
Figure 10.  Machine learning results on the feature selected dataset using the top 
15 important features from the high-dimensional tuned model.  Overfitting in the 
Random Forest is further reduced from the tuned model. 

Machine 503 is connected to the heat treat schedule including the natural age step which resulted 
in a statistically significant higher UTS than the standard heat treatment and the Random Forest 
was able to identify that as being important.   The die close tank level variable refers to the fluid 
level in the hydraulic tank.  It is showing up as important because of a highly positive correlation 
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to Machine 503 of 0.82.   Beyond these two, the important features uncovered by the high 
dimensional tuned Random Forest look much like the parameters one finds in the literature when 
investigating the impact of process settings on mechanical properties or defects [41]–[45].  Based 
on this observation, a new feature selected dataset, “LitRev Features”, was evaluated.  The selected 
features are: Machine 503, average slow shot velocity, average fast shot velocity, average 
intermediate shot velocity, cycle time, intensification pressure, intensification pressure rise time, 
melt temperature, robot spray time (a proxy for amount of time the die was open between shots), 
and vacuum pressure during the shot.  The predictive performance is displayed in Figure 11.  The 
MAE for the training and testing data for all machine learning models dropped slightly with the 
biggest gain being in the XGBoost test error. 

 
Figure 11.  Machine learning results on the feature selected dataset using 
important features from the literature.  Small reductions in the training and testing 
error were found in all three algorithms with the most improvement in the XGBoost 
test data. 

Additionally, a different dimension reduction method, PCA, was applied to the high dimensional 
dataset.  The number of principal components to explain 85% of the variation in the original dataset 
is 27.  Each principal component is a linear combination of the original 77 dimensions, thus none 
of the inputs are completely dropped from the analysis as they are in feature selection.  The PCA 
transformed data can be run through the same machine learning algorithms as the original data and 
the same tuning methods are employed.  In Figure 12, the PCA Random Forest demonstrates the 
best performance overall in terms of UTS MAE and the degree of overfit.   
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Figure 12.  Machine learning results on the PCA transformed dataset using top 
27 principal components which explain 85% of the variation in the high-
dimensional dataset.  The Random Forest applied to the PCA dataset is the best 
machine learning performance in this study. 

  
Results of Neural Network Regression Method 
Deep learning based Neural Networks have proved useful for advanced analytics of big 
manufacturing datasets [9].  In this section, we will show results of a Neural Network model for 
predicting the UTS and also show a comparison of the Neural Network with traditional state-of-
the-art machine learning models namely, the Random Forest and XGBoost for the same dataset as 
shown above.  

The plots below (Figures 13-16) demonstrate the significance of hyperparameter tuning in case of 
the Neural Network models [46].  The metric used for comparison is the same as that used in the 
machine learning section, i.e., the MAE (Equation 2).  Selecting the right combination of 
parameters is critical for optimizing the target metric and reducing the overfitting phenomenon.  
We choose the parameters of the network in a way such that the model generalizes and does well 
on data that it has not seen during training.  
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Figure 13. Comparison of MAE across multiple learning rates of the Neural 
Network model. It can be seen that intermediate learning rates give the lowest 
errors as compared to lower or higher values. 

Figure 13 shows a comparison of the MAE values using different learning rates for the ADAM 
optimization technique [47].  The learning rate parameter should be chosen in a way such that it is 
low enough that the model is able to reach the minimum error solution, while at the same time, it 
should be high enough such that the model does not take excessive time to converge [48].  

 
Figure 14.  Comparison of the MAE values with different batch sizes of the Neural 
Network. Smaller batch sizes show better performance as compared to higher sizes 
with this dataset. 

Figure 14 shows a comparison of the MAE values with respect to batch size.  The results show 
that smaller batch sizes give lower error as compared to higher batch sizes.  The difference in the 
MAE is more significant as the batch size is increased above 128.  We train the model using 
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batches instead of training the entire data at once in order to make it computationally efficient and 
have other desirable properties such as avoiding local minima [46], [48].  We use a batch size of 
one for this analysis since it yields the lowest MAE as well as minimal difference between the 
training and testing errors. 

Figure 15 shows a comparison of the MAE using different number of hidden layers [49].  It can 
be seen that using one hidden layer not only gives the best performance in terms of the MAE value 
but also gives the lowest difference between the training and the testing errors as compared to 
using higher number of hidden layers.  

Hidden layers of a Neural Network are comprised of nodes, which are the basic units of a Neural 
Network.  The hidden layer is where the learning of the data takes place which includes learning 
important features of the dataset; also, obtaining a compressed representation of the data.  Contrast 
this with machine learning where this step is accomplished by human input during pre-processing.  
The complexity of the model increases as the number of hidden layers is increased.  

 
Figure 15.  A comparison of MAE as the number of hidden layers changes.  The 
MAE value is lowest for one hidden layer as compared to higher number of 
hidden layers.  Using one hidden layer optimizes the performance in terms of the 
metric itself and reduces overfitting. 
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Figure 16.  Evaluation of MAE values in terms of number of nodes in the hidden 
layer.  A higher number of nodes in the hidden layer performs better than fewer 
nodes.  

Figure 16 shows a comparison in terms of MAE with number of nodes in the hidden layer.  A 
larger number of nodes gives lower errors as compared to lesser nodes in the hidden layer for this 
dataset.  The difference between the training and testing errors is also low which shows that the 
model would generalize better on unseen data.  

 
Figure 17.  Comparison of the optimized Neural Network model with optimized 
state-of-the-art traditional algorithms namely, Random Forest and XGBoost [27].  
The Neural Network model gives the best performance in terms of the training as 
well as testing errors as compared to the traditional algorithms. 

Figure 17 shows a comparison of the optimized Neural Network model using the best combination 
of parameters with traditional machine learning algorithms namely, Random Forest and XGBoost.  
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The Neural Network gives the best performance in terms of MAE as compared to the other two 
models on this dataset.  

Figures 12 and 17 illustrate that by using either traditional machine learning methods or a Neural 
Network we can reduce the error in predicting UTS below that of predicting the mean value.  Our 
results demonstrate the importance of understanding the relationship between algorithm 
complexity and the predictive error on a particular dataset.  In the context of Figure 3, the tensile 
dataset fits in the area where the traditional machine learning and shallow Neural Networks cross.  
It is crucial to appreciate the bias-variance trade-off for this relationship, so that we select the 
appropriate algorithm, with optimal parameters, to improve the predictive performance. 

The dataset available for this research is typical and highly accessible for modern HPDC 
operations. Modern HPDC machines collect much of the data and make it available.  In production 
data, the performance of the machine follows closely along with the process settings with some 
amount of natural variation.   The objective is a repeatable cast result day in day out, 24/7.  In 
contrast, experimental casting parameter studies explore a much wider range for the parameters 
under investigation to more clearly see a response in the cast component.  The objective is to see 
a difference.  In the present work, we saw improved prediction of UTS working with production 
data, but not a drastic improvement.   Therefore, we must rethink about what other parameters can 
be included to increase our predictive power.  Especially, consider parameters moving within a 
wide band because accurate control is difficult or costly.  Perhaps there are parameters our industry 
has never considered measuring or controlling.  It has been stated that one cannot control anything 
unless one has measures; the question is which measures?  The question begs itself:  are we 
measuring the correct parameters? One of the indirect key results of AI is the realization that 
perhaps what we have been measuring in the past is not appropriate, and that there are other key 
parameters that we should be capturing. 

The temperature of the die cavity where the metal is solidified into its final shape is perhaps the 
most influential input parameter that is to a large extent passively controlled.  Most die casters rely 
on a condition of steady state, which is a somewhat nebulous combination of cycle time, dwell 
time, die spray application parameters, cooling water temperature and flow rate, the melt 
temperature and amount of metal delivered during each shot, alloy chemistry, and the ambient 
environment in the factory.  If all of these are constant, then the die temperature will take care of 
itself at steady state.  Readers can decide for themselves if this is realistic.  Miller demonstrated in 
a 1-D model to challenge common notions of how many cycles it takes to attain a quasi-steady 
state [50].  Other studies, especially modeling based investigations, have shown that die 
temperature is a high impact parameter on castings and the dies themselves [51]–[54].  For these 
reasons, a robust and reliable method of collecting the die temperature is the next source of data 
to drive predictive modeling forward.  Knowing how and what to measure will lead the industry 
toward active control of die cavity temperature [55], [56]. 
 
IV. Conclusions 
 

 Machine learning and Neural Network regression models utilizing HPDC process data as 
inputs can improve the predictability of UTS above that of predicting the mean from prior 
tests.  It is reasoned that the predictive power can be improved by increasing the number 
of rows and adding new input data columns. 
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 Principal component analysis is an effective dimension reduction technique to reduce 
complexity and overfitting of a dataset.  A Random Forest of a PCA transformed dataset 
was the top performing machine learning method in this study. 

 To optimize the models, parameter tuning must be performed with the objective of 
minimizing the error in the model predictions as well as the difference between training 
data and testing data errors. 

 It can be seen that given the right combination of parameters for a Neural Network such 
as learning rate, batch size and number of hidden layers, the predictive performance of a 
Neural Network can be optimized not only in terms of the error metric but also in terms 
of obtaining a robust model fit for a given dataset without overfitting or underfitting. 

 Selecting the correct models to use for the data being considered requires an 
understanding of the bias-variance trade-off such that a balance is struck between 
algorithm complexity and size of the dataset in question. 
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APPENDIX A: Processing Data 
 

Table A-I.  HPDC process data used in the analyses. 
 

Variable Name Description 
MachineID Die casting machine on which the part was cast.  One hot encoding 

expands this one column into 12 columns, one per machine. 
SerialNumb  Unique identifier given to the casting when it is made.  Used to 

merge process and tensile testing datasets. 
AvgFastHeadPressure Average pressure reading on the head side of the shot cylinder 

during fast shot. 
AvgFastRodPressure Average pressure reading on the rod side of the shot cylinder during 

fast shot. 
AvgIntermediateHeadPressure  Average pressure reading on the head side of the shot cylinder 

during intermediate shot. 
AvgIntermediateRodPressure  Average pressure reading on the rod side of the shot cylinder during 

intermediate shot. 
AvgSlowHeadPressure  Average pressure reading on the head side of the shot cylinder 

during slow shot. 
AvgSlowRodPressure  Average pressure reading on the rod side of the shot cylinder during 

slow shot. 
BiscuitLength  The thickness of the biscuit calculated based on the end of stroke 

position of the shot rod. 
CavityFillTime  The time taken to fill the part geometry cavity in the die.  

Calculated from CavityFillTimeWinStartPos until the end of the 
shot velocity is detected. 

DieCloseTankLevel  Level of the hydraulic fluid reservoir 
DieCloseTankTemp  Temperature of the hydraulic fluid reservoir. 
EndofShotPosition  Position where fast shot velocity decelerates to the end of shot 

velocity. 
FastShotVelAve  Calculated average shot velocity at which the plunger moved 

forward during fast shot. 
FinalIntensifierPressure  Maximum pressure applied to the biscuit during intensification 

phase. 
IntensificationStroke  Amount of plunger forward movement after intensification is 

initiated. 
IntensPressRiseTime  Time measured to reach the programmed intensification pressure. 
IntensVelRiseTime  Calculated average velocity at which the plunger moved forward 

during intensification rise window. 
IntermediateVelAve  Calculated average shot velocity at which the plunger moved 

forward during intermediate shot. 
MetalTemp  The temperature of the molten alloy in the holding furnace at the 

die cast cell. 
SlowShotVelAve  Calculated average shot velocity at which the plunger moved 

forward during slow shot. 
TieBarTon1  Tons of force measured by the load cell on tie bar #1 when the die 

is closed and locked. 
TieBarTon2  Tons of force measured by the load cell on tie bar #2. 
TieBarTon3  Tons of force measured by the load cell on tie bar #3. 
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TieBarTon4  Tons of force measured by the load cell on tie bar #4. 
TieBarTonTotal  Sum of the tonnage of all four tie bars. 
TipLubeTimePre  Programmed time for which tip lube is applied to the plunger tip. 
CycleTime Elapsed time for the entire process to produce one piece. 
Dwell Time Elapsed time between end of shot and die open. 
Die Open Time Elapsed time to open the die. 
Extract Robot Time Elapsed time for the extract robot to complete its full cycle. 
Spray Robot Time Elapsed time for the spray robot to complete its full cycle. 
Liner Load Time Elapsed time to load cast in liners into the die. 
Core Insert Time Elapsed time to insert core feature into the die. 
Die Close Time Elapsed time to close the die. 
Ladle Pour Time Elapsed time for the ladle to pour molten alloy into the cold 

chamber. 
Shot Delay Time Elapsed time between pour complete and shot forward. 
VacuumPressDuringShot Measured vacuum pressure. 
VacuumPurgeResult Measured pressure when clearing the vacuum chill block of debris. 
deltatime Time elapsed between cycle start to the next cycle start. 
Shots Since Last Warm Up Number of cycles since the last warm-up shot. 
Cavity The identification number of the die cavity.  One hot encoding 

expands this one column into 20 columns, one per cavity. 
Model The identification of the block casting model.  One hot encoding 

expands this one column into 4 columns, one per model. 
 


