

Knowledge Creation via Data Analytics in a High Pressure Die
Casting Operation

by

Adam E. Kopper

A Dissertation
Submitted to the Faculty in partial fulfillment of the requirements for the Degree of

Doctor of Philosophy

in

Materials Science and Engineering

at the

Worcester Polytechnic Institute

August 2020

APPROVED:

Diran Apelian
Alcoa-Howmet Professor of Engineering
Thesis Advisor

Brajendra Mishra
Kenneth G. Merriam Distinguished Professor of Mechanical Engineering
Director, Department of Materials and Manufacturing Engineering

1

Table of Contents

Abstract ...……………………………………..…………………………………………..……... 3
Acknowledgements …………………….………..………………………………….…………… 4
Executive Summary ………………………….……..…………………..……………………….. 6

I. Introduction
REFER TO APPENDICES A and B
Motivation .. 6
Current State of the Industry .. 6
Industry 4.0 …………………………………………………………………….… 8
Problem Statement ……………………………………………….….…………… 8
Machine Learning in HPDC ... 9
Introduction to Artificial Intelligence / Machine Learning / Neural Networks .… 10

Publication Details …………………………….……………………...… 11
II. Approach and Methodology…………………………………...……………...……. 12

REFER TO APPENDIX C
High Pressure Die Casting Data .. 13
Data Science Approach ... 13

III. Results and Discussion .. 19
A. Predicting Quality of Cylinder Block Castings via Supervised Learning

Method …………………………………..….………………………………. 19
REFER TO APPENDIX D

Publication Details .. 19
Approach .. 20
Results .. 21
Conclusions …………………………...………….…………….………. 26

B. Model Selection and Evaluation for Machine Learning: Deep Learning in
Materials Processing .…………………………………………………....... 26

REFER TO APPENDIX E
Publication Details .. 27
Approach .. 27
Bias-Variance Trade-Off ……………...……...………………………… 28
Results .. 30
Conclusions …………………………...………….…………….………. 36

IV. Conclusions and Impact ... 37
Data Collection and Fusion ... 37
Developing a Machine Learning Skillset ... 37
HPDC Data Conclusions ... 38
Impact ……………………………...…………………………………………… 39

V. Recommendations for Future Work ... 40

2

VI. References …………………………………………..……………………..………. 43

Appendices
A. Literature Review ……………………………………………..…………...……… A-1
B. Machine Learning Pathway for Harnessing Knowledge and Data in Material

Processing …..…………...……………………………….……….………….…… B-1
C. Approach and Methodology …………………………………………….………… C-1
D. Predicting Quality of Cylinder Block Castings via Supervised Learning Method... D-1
E. Model Selection and Evaluation for Machine Learning: Deep Learning in Materials

Processing ……...………….…………….…………………………………….….. E-1

3

Abstract

Big Data is a term typically associated with large internet entities such as Facebook, eBay, and Google
where every click, search, and upload builds an actionable dataset used to target advertisements and enhance
the user experience. The Data Science realm classifies data as Big Data by the three V’s: volume, velocity
and variety. The high-pressure die-casting (HPDC) process is a commonly employed method of producing
large volumes of cast components particularly in aluminum alloys. The automated pieces of equipment are
interfaced such that any signal passed from one machine to another, or sensor input, is data which may be
relevant to the output of the process. For each part cast, it is possible to record the input parameters: melt
temperature, lock up tonnage, cycle time, plunger velocities, cavity fill time, intensification pressure, dwell
time, and spray time to name a few. Outputs parameters are generally lacking across all parts, rather they
are measured on an audit basis. Is die casting process data truly big data? In the scale of the internet giants
and major banking and credit firms, no. However, in some respects to the three V’s, it is. Certainly, in a
die casting facility with multiple machines running production the velocity of data generation is high on the
input side. Die casting data resides in spreadsheets, databases, images, and shift notes. Thus, variety of
data is a consideration. Generating great volume, unfortunately, is often a challenge. It is posited that the
same tools can be used to gain knowledge into the HPDC process as in other truly Big Data environments.

Production HPDC process data, generously donated by FCA Kokomo Casting Plant, covering one year of
production across 12 die casting machines and 20 die cavities was used to assess the applicability of
machine learning algorithms such as Random Forest, Support Vector Machine, and XGBoost for the
prediction of casting quality and performance metrics. The challenges which arise from the characteristics
of materials processing data, using HPDC as the exemplar, have been identified. The proper data
preparation methods for machine learning have been described. Predictive modeling of part quality and
mechanical properties of die-cast engine blocks has been performed with an emphasis on model evaluation
and cross-validation.

4

Acknowledgements

Many thanks to God for multiple doors opened, abundant resources provided, and invaluable people placed
in my path without whom I could never had accomplished this doctoral degree. For those of you who have
been a part of this journey with me, I would like to express my most sincere gratitude.

In December of 2016 my friend and colleague, Ray Donahue, and I were at Logan Airport. The winter
ACRC meetings at WPI had just concluded. He and I were talking about the potential of my embarking on
a PhD program. He could tell I was not completely sure about it. Ray had his PhD, a long successful career,
and countless industry accolades and awards. He said this to me, “The time is going to go by. Either, in
three years, you will have a PhD, or you won’t. It only depends what you decide.” He went on to say, “I
have no doubt you will finish. I know you; it’s what you do.” It was that simple. In those few words, Ray
pushed aside all the what-ifs and worries that were clouding my view of myself and what I could accomplish.
Ray was right. Ray passed away in October 2017 quite unexpectedly. There are many milestones along
the path to a PhD that are worth celebrating like passing the qualifying exams, having your thesis proposal
accepted, research epiphanies, and those presentations where you know you just nailed it. Ray and I did
not have a chance to celebrate those, but he was there for the most difficult step, the first one. Thank you,
Ray.

Professor Diran Apelian, thank you for your guidance, encouragement, wisdom, and friendship extending
over many years. It has been an incredible adventure since we first met at the old CMI Tech Center. It
gives me great comfort to know you remain in my corner throughout it all. You have shown me that the
title “advisor” has no expiration date. At 45 years of age, I discovered that the title “student” does not
either.

Rasika Karkare, I could not have wished for a better research partner. Revising these papers line-by-line
over zoom was much more fun than it should have been. Professor Randy Paffenroth, thank you for your
patience and assistance as I ventured into a new world of Data Science. My vocabulary is much different
than it was when we first met. I catch myself cringing when the word “correlated” is thrown around so
casually. That’ll stick with me.

Professor Mishra, I always look forward to your ice breaker jokes at ACRC meetings. Professor Carl
Soderhjelm, I value our friendship very much and I always enjoyed sharing a meal with you and Pamela
when I am in town. Dr. Kevin Anderson thank you for being my advocate at Mercury Marine looking out
for me and providing interesting opportunities in research and professional development.

I could not have begun my PhD program without the generous support of my employer, Mercury Marine.
I especially want to thank Chris Drees and Mike Meyer for believing in me and approving my research
proposal. Thank you to Jerry Cegielski for his unwavering support providing me time and funding.
Conducting graduate level research from a remote location would be much more difficult without my on-
site “graduate laboratory” to be a sounding board for ideas, coding assistance, proof reading, and
encouragement. To Alex Monroe, I am so blessed to have you to exchange ideas with, to challenge me at
times, and to share perspective. Thank you, David Blondheim and Brian Fruchter, for so much coding
help when I started out.

5

Saving the dearest for last, thank you mom and dad for a lifetime of love and support. To my two sons,
Nathan and Benjamin, whom I love so much. Never stop learning. Never stop growing. You make me
so proud and I will always believe in you. My loving wife and best friend, Maria, this accomplishment is
as much yours as it is mine. You have been so patient and supportive over the course of this program.
Together we made it work.

6

Executive Summary

I. INTRODUCTION

Motivation

Big Data and Artificial Intelligence (AI) are terms often associated with relatively new internet entities such
as Facebook, eBay, and Google. AI itself is not new, but its growth has been accelerated by this new
business space. Social media sites like Facebook have users who voluntarily provide mountains of personal
data. By collecting data from their users, Facebook gains knowledge on hobbies, dining preferences, travel
preferences, posting trends, the popularity of any given topic across all users; the categories are literally
endless. The most useful data can drive targeted advertising, site content, upgrades to the user experience,
etc. Implementing these methodologies into their operations is not exactly a revolution to that industry
because they had no prior way of doing business. Data is their business.

Established business sectors had to find ways to integrate this application of data into the existing systems
in their organizations. Service industries such as banking, hotels, and shipping use Big Data extensively to
reach their customers in a more personalized experience, while increasing their adaptability to new ways
of how their customers want to shop for a mortgage, book a room, or pay for and print shipping labels.

Every interaction with a customer is a source of data. Through AI and machine learning, knowledge is
generated about an individual, a gender, an age group, a socioeconomic group, a regional population, or
any other illuminating segmentation. This knowledge is then utilized to make data-driven decisions that
improve how a business operates to gain and keep delighted, loyal customers.

Materials processing operations generate extensive amounts of data. Perhaps not to the level of the internet
giants, but enough high-dimensional samples to make analysis a challenge by traditional methods. In the
same way these internet and service providers gather data about their customers, materials processors gather
data about their product. What is not common is the application of data science to create knowledge. For
the materials industry, new knowledge from the product data would be in the form of insight into the effects
of process parameters, component designs, environment, materials composition, or any other area of interest.
A higher level of monitor and control becomes justifiable when the data is being leveraged to improve the
business. Imagine the benefit if these operations could predict part, or lot, quality by monitoring critical
process inputs and running the data through a machine learning algorithm in near real time. Such a future
would result in increased uptime, reduced operational costs, rapid response to production issues, and data
driven confidence that the product made between quality checks is acceptable.

Current State of the Industry

An important materials processing method for casting near net-shape components today is high pressure
die casting (HPDC). HPDC is the most utilized casting method for aluminum components by tonnage in
the United States and widely used throughout world [1], [2]. Aluminum die-cast components are primarily
employed where weight reduction and high annual production volumes are required, especially automotive
applications. In terms of dollars, the North American Die Casting Association reported aluminum die
castings to be over $8 billion in sales for 2019, while the American Foundry Society reports the entire
aluminum foundry industry to be $9.67 billion [3]. In HPDC, we have a robust industry using state of the
science technology making components critical to the daily lives of people all around the globe. As the
manufacturing sector marches toward an Industry 4.0 future, HPDC and, indeed the entire foundry industry,

7

must be a part of it. A key piece in making this happen is the implementation of AI and creating knowledge
from casting process data.

Modern foundries have the capability to capture a vast amount of process data on a daily basis [4]. These
include molten metal preparation details, casting process parameters, simulation results, part geometry,
Non-Destructive Evaluation (NDE) data, etc. The first obstacle to using this data is cultural and centers on
organization for analysis. Data fusion for machine learning is more difficult when the data is stored within
operational silos (Figure 1). The type of data and collection methods used by isolated departments within
the same facility have evolved over years. Methods range from high-tech automatic uploading to a cloud
database to handwritten records in a logbook. This creates challenges for combining the various sources
into a cohesive dataset as the collection frequency and identifiers often differ. Communication among
stakeholders through the entire process is critical to identify which, how, and how often data should be
collected to give the best description of the system to be modeled. Integrated data is the prerequisite for
performing machine learning, and it is a lost opportunity for the foundry industry if no effort is made to
compile, fuse, and analyze these data to better understand the process factors influencing the quality of the
castings.

Figure 1. Departmental data silos are a challenge to implementing machine
learning in many materials manufacturing operations.

Resources are tight in casting plants. Between the development of new products and the attention demanded
by the most difficult castings, there is little time left to dedicate to the analysis of the parts that are running
very well day in and day out. However, it is a missed opportunity to merely count the easy parts as blessings.
The data from these castings hold the key to solving the issues with trouble castings. It is the data from the
good parts that will right the ship when a normally well-behaved process beings making scrap parts. By
collecting data, creating knowledge, and applying that knowledge, operations can put up data-determined
guardrails to keep the process in control. When resources are tight, we need new tools to watch over that
for which there is no person available to do. Machine learning can be that set of tools for the foundry and
for the metal processing industry in general.

8

Industry 4.0

The fourth industrial revolution that ushered the Internet of Things (IoT) and the Internet of Services (IoS)
has come to be known as Industry 4.0. At the Hannover Messe in 2011, Germany launched a project called
“Industrie 4.0” designed to fully digitize manufacturing. The larger vision of Industry 4.0 is the digital
transformation of manufacturing to integrate connected factories within industry, decentralized and self-
optimizing systems and the digital supply chain in the information-driven cyber-physical environment of
the fourth industrial revolution [5], [6], Figure 2.

Figure 2. Chronology and characterization of the four Industrial Revolutions [5].

The initial goals of Industry 4.0 have been automation, manufacturing process improvement and
productivity optimization. The more advanced goals are innovation and the transition to new business
models and revenue sources using information technologies and services as cornerstones. These
developments will transform manufacturing plants into smart factories. Three keystone digital technologies
will enable the transformation to smart factories: (i) connectivity, which implies executing industrial IoT to
collect data from various segments of the plant; (ii) intelligent automation which includes advanced robotics,
machine vision, digital twins, distributed control; and (iii) cloud-scale data management and analytics (AI
and Machine Learning) [7].

Problem Statement

Traditional research into the effects of process parameters on the quality of cast products are structured to
investigate a wide range of input settings. To investigate the effect of a parameter, e.g. intensification
pressure, a traditional study evaluates a limited number of samples cast at three levels: no intensification
pressure, an intermediate amount of pressure, and the maximum safely attainable with the machine and set-
up used. The purpose is to observe a difference in the output, e.g. a casting, which can be measured and
analyzed from one set of parameters to the next. From a study such as this, we, as an industry, learn that
porosity is reduced as intensification pressure is increased. These studies serve as a compass to direct which
parameters should be controlled and where one should begin developing their process. On the other hand,
in production environments, only one optimized set of parameters is used which has some natural variation
associated with it. The objective in production is to observe no difference from one casting to the next; to
make the same quality part cycle after cycle. However, it is true that a small percentage of parts are not of
acceptable quality and are salvaged or scrapped. The root cause for some process scrap is not easily

9

determined from our current understanding of process parameter effects. Further complicating root cause
detection is the relatively few examples of non-conforming product from which to gather data.

Few samples may be required to discern the porosity or mechanical property impact of a given input
variable over a wide range in values. Finding a similar relationship over a much narrower range, due to
natural variation of the equipment and process, requires many more samples. Machine learning accuracy
thrives on large datasets. Additionally, it may be that previously dismissed input parameters become highly
important in tightly controlled processes, their effect being overshadowed by large experimental changes
in pressure or velocity. Machine learning algorithms have the capacity to look at high dimension datasets
with many features so that all collected input data can be examined. The question we are asking is: Given
enough data, can machine learning algorithms uncover new insight into process parameters or interactions
of process parameters which are important in predicting casting quality or performance metrics from
production process data?

The industry needs tools which can recognize patterns that are too nuanced for humans to see. The
foundations of machine learning lie in statistical pattern recognition [8], [9]. A key capability of machine
learning algorithms is their ability to uncover patterns and relationships between inputs and outputs for
high-dimensional datasets [10]. Casting process data is high-dimensional, having many inputs:
temperatures, velocities, pressures, timers, and chemical composition. There are opportunities to add more
dimensions [4], however, having too many adds confusing noise to the data. There is a need to begin
exploring data the industry is currently collecting and determining which parameters matter and which are
missing. This research is aims to do that working with HPDC process data and to inspire casting operations
to begin creating knowledge from their own process data.

Machine Learning in HPDC - Literature Review

A comprehensive literature review can be found in Appendix A of this volume. There, one will find an
overview of AI, a detailed description of the HPDC process, and a review of the effects various process
parameters have on casting quality, porosity, and tensile properties. A summary highlighting the main
concepts introduced follows.

HPDC is rich for data mining. Potentially useful data can be pulled from the controllers of each piece of
equipment in the modern integrated work cell. Blondheim estimates that there are over 300,000 data which
can be captured for each cycle [4]. If one includes thermal imaging data of the die cavity and the individual
data points which make up the shot trace, this number explodes to over 2M input variable data per cycle.
A reasonable estimate for an annual volume on one die casting machine is 100,000 cycles. That would
equate to two-hundred billion data points per machine per year. Clearly, amassing features is not the
challenge. Learning which features are most important and collecting enough observations to be sure of it
is where the difficulty resides. Researchers in this space are turning to AI seeking insight into this problem.

Early applications of machine learning to HPDC center on the application of Neural Networks to predict
virtual process outputs. Rai et al. used supervised learning by creating datasets with process simulation
software and then teaching a Neural Network to predict cavity fill time, solidification time, and porosity
based on the process inputs of melt and die temperature and slow and fast shot velocities [26]. They found
that the results of the Neural Network model compared well to those generated by commercially available
finite element mesh-based simulation software but did so in near real time. Similarly, Yarlagadda et al.
predicted fill time from the melt temperature, die temperature, injection pressure, and casting weight with
a Neural Network trained via process simulation software and went a step further by including domain
expertise from casting specialists [27]. Their predictions matched very closely to actual production die
castings.

10

Simulation software packages are built utilizing assumptions which generate useful direction in building
die casting tooling and choosing initial process settings. During process development, parameters are tuned
more finely to optimize part quality. This tuning is done based on domain expertise and the results of actual
castings. It is reasonable to expect a Neural Network to find the rules the simulation software is using and
make very similar predictions. The next step is to apply the algorithms to serial production castings and
determine which input variables are driving quality or mechanical performance metrics and direct the
process engineer how to tune the process for best results.

The leap between the computationally trained algorithms and algorithms trained on observational data from
casting operations may seem daunting. There are many variables which are not monitored or controlled on
the factory floor (ambient environment, die temperature, cooling water flow rate). These features may not
be included in the simulation, are held constant, or provided as an output. In a controlled experiment where
413-alloy aluminum was cast into simple cylindrical geometry under three levels of squeeze (intensification)
pressure, die preheat temperature, and molten metal temperature, Soundararajan et al. were able to train and
test a Neural Network predicting the ultimate tensile strength (UTS) and yield strength (YS) of extracted
tensile bars with a correlation coefficient of 0.95 and 0.96 respectively [28]. In their work, the selected
settings represent a wider range of process inputs than one might encounter on a fully developed production
process. Predicting the UTS variation of each sample accounting for small variations as seen in production
processes is a more difficult problem. This type of research lays the foundation from which the industry
can build and develop algorithms which predict the UTS of serial production castings with low variation in
input parameters.

In the literature, it is generally assumed that the process operates as consistently as possible. Several cycles,
perhaps 5 to 10, are run to achieve a thermal steady state before collecting samples for investigation. The
number of samples collected for analysis tends to be small, less than 50. The industry has gained much
from these studies, but there are some potentially significant parameters which cannot be accounted for in
lab-scale or development-cell scale operations. In the late 1990’s Balasubramaniam applied statistical
analysis to 27 casting variables from manufacturing production and found that higher intensification
pressure rise time and lower cycle time were key inputs which improved the part density [29]. Interestingly,
this study was unique in identifying these inputs as important. Die casting is a thermal process and time is
an important factor that is often overlooked or simply held as constant as possible, but rarely measured and
reported. The impact of variation in overall cycle time or timers for specific segments of the cycle are not
published. Time impacts the die temperature. Running shorter cycle times will put more heat into the die
raising the die temperature. But overall cycle time is not the whole picture. Increasing cycle time by
increasing the dwell time (the time between casting and part ejection) will also put more heat into the die.
Thus, it depends not only on if time is changing but when time is changing. This highlights the need for
more high-dimensional parametric research. Our research sought to uncover potentially important features
which have not been the subject of prior process parameter studies.

Introduction to Artificial Intelligence (AI), Machine Learning (ML) and Neural Networks
(NN)

The following section contains material from the first journal article submitted for publication from this
research. It can be read in its entirely in Appendix B – Machine Learning Pathway for Harnessing
Knowledge and Data in Material Processing. The paper serves as a primer for the metalcasting industry
to start thinking about the future and the smart foundries of Industry 4.0. Explanation is given as to how
artificial intelligence, machine learning, and deep learning are integral to realizing this future. A case study
illustrates the challenges of foundry data and the methodology of a machine learning application. Finally,
perspective is provided on value of AI with a caution to the danger of incorrect application.

11

Publication Details:

Ning Sun, Adam Kopper, Rasika Karkare, Randy C. Paffenroth, and Diran Apelian,
“Machine Learning Pathway for Harnessing Knowledge and Data in Material
Processing”, International Journal of Metalcasting, Accepted for publication, July 2020.

A summary highlighting the key points are given below.

Artificial Intelligence

Artificial Intelligence is the use of computer algorithms intended to mimic tasks commonly performed by
humans. Algorithms for image recognition, health analytics, natural language processing, and self-driving
vehicles are all examples of AI that have transformed industries that affect our daily lives [11]. AI clearly
has a role to play in advanced manufacturing where there are myriad tasks that could be automated by
algorithms such as defect detection, process optimization, and new materials development, to name but a
few [6].

Machine Learning

It is generally agreed that both machine learning and deep learning are forms of artificial intelligence rather
than something entirely unique. The term machine learning, in this text, represents the family of methods
which use statistical and probability models trained on historical data to make predictions about new
observations. Common methods which fall under this umbrella include linear regression, decision trees, k-
means clustering, Apriori algorithm, and Support Vector Machines (SVM) [12]–[19]. While packages and
commands readily exist to facilitate using such algorithms, these methods are not black box functions
shrouded in mystery. Many of them rely on using mathematical distances to determine how various
observations are alike and what outcome should be expected if trained on relevant samples where that
information is known.

Deep Learning

Deep learning utilizes the same data preparation strategies and similar functions with which to make
predictions as machine learning [20]. Mostly, what makes two different is how feature engineering is
performed (Figure 3) [21]. Feature engineering is where the data scientist relies on domain expertise to
engineer the model inputs to make a higher performing model. In machine learning, this is performed
manually. Deep learning utilizes hidden layers comprised of nodes which automatically assign weights to
variables as the algorithm learns more about the data [22]–[24]. In this way, the deep learning algorithms
are more of a black box than their machine learning kin. By using the training data to generate the weights
automatically, deep learning algorithms can be more accurate than a human would otherwise be. As deep
learning algorithms add additional complexity (i.e. increase the number of hidden layers or nodes per layer),
it is critical that large datasets be used to train them. If not, the resulting model will not generalize well
and, thereby, perform poorly on new data.

12

Figure 3. The difference between machine learning and deep learning is how the feature
engineering is performed [21]. Traditional machine learning utilizes subject matter expert
input to the model while deep learning employs automatic processes.

Challenges of Foundry Datasets

It turns out that analyzing materials processing data is not straightforward [25]. As materials
processing companies bring their data to the data science community to find answers, new insight
into how the data is traditionally collected and the challenges which are created thereby are brought
to light. Let us look at three of them: most metalcasting data are not Big Data, heterogenous data
sources resulting in missing inputs and outputs, and an imbalance in output data class where high
quality samples far outweigh unacceptable samples. In this research, we work to navigate these
challenges in the application of pre-preprocessing techniques and selecting appropriate algorithms
that suit this type of data. No small part of the value of this thesis is to provide metal casters a
foundation to build from, identifying pitfalls, and demonstrating the correct methodology with
which they can begin examining their own data.

II. APPROACH and METHODOLOGY

This section summarizes Appendix C – Approach and Methodology of this thesis. There, a description of
the HPDC data used for this project including a table of the features evaluated can be examined. The bulk
of Appendix C provides detailed explanations and illustrations of the tasks performed in the machine
learning research conducted and submitted for publication during this thesis project. After each example,
the key components of the Python code are listed with helpful references for the reader.

The published literature contains many papers which report observations of various process inputs on
mechanical properties and porosity. Forward focused HPDC facilities do a good job of capturing many of
these data for each casting they produce. As an industry, we believe that we are collecting the correct data.
The literature confirms the importance and die casters document and demonstrate process control to their
customers by this data. The hypothesis that this work aims to test is that die casters collect the correct input

13

information and, given a large enough dataset, quality and performance properties can be predicted from
that data.

High Pressure Die Casting Data

Universally, die casters are not to the level where every potential important variable is captured, and has
been for years, such that large datasets are commonplace. There is also the challenge of accessibility to the
data for analysis. Leaders in the industry recognize the importance of taking the first steps in bringing
machine learning into die casting. The Aluminum Casting Research Center (ACRC) at WPI is an industry-
university consortium where a cross-section of the aluminum casting industry including alloy producers,
casters, industry suppliers, and end users meet and sponsor pre-competitive fundamental research [30].
FCA, a major automobile manufacturer with a large die casting operation and longtime member of the
ACRC, partnered with this research team to provide a calendar year worth of HPDC process data, alloy
chemistry checks, and mechanical property testing data. The size of each dataset is given in Table I. The
details of the datasets with respect to which inputs and outputs are available and descriptions of each are
given in Tables C-I and C-II at the end of Appendix C.

Table I. Size details of the FCA datasets.

Dataset Name Raw Dataset
(Rows x Columns)

HPDC Process 956,986 x 109
Alloy Composition 980 x 17
Tensile Testing 1,634 x 14

The cycle summary data is historically the best, and often the only, information available to troubleshoot
the process and make intuitive, experience-based predictions regarding quality of castings. For this reason,
it is also the most easily and widely stored data. Additional data from the cycle are collected and appended
to this information prior to uploading into long-term storage. The HPDC process data can be thought of as
a spreadsheet with each row representing an individual casting and each column containing a piece of
information about that casting. Similarly, in the mechanical property dataset, each row represents a tensile
bar and the columns contain the input and output variables associated with each bar. The chemistry dataset
has rows which represent each check and columns containing the amount of each elemental constituent in
the melt at that time. This description is rather straightforward; however, visualization is difficult. The
raw HPDC dataset has 109 columns. Humans are finite beings and, as such, have no ability to visualize
what is happening in 109 dimensions. Fortunately, machines can perform these tasks on our behalf via
machine learning algorithms that analyze high-dimensional data.

Modern HPDC equipment is more interconnected than ever to facilitate data organization and collection in
the die casting cell. Platforms now exists for storing and accessing large amounts of data with which to
train machine learning models. The need largely remains within the die casting industry to begin taking
advantage of this reality and start investigating how to process data and train algorithms to create knowledge
for data-driven decision making.

Data Science Approach

Data science projects are more intricate than collecting data and plugging it into an algorithm. The answers
one gets from the algorithm will be misleading without following the required steps and understanding how
each impacts the results. There are steps one must take in an iterative process to generate reliable

14

predictions and actionable results. An overview is given below with more detail on the methods used and
references in the subsections that follow. The main building blocks of a data science project are initial data
exploration, pre-processing to prepare the data for use in algorithms, running the algorithms, evaluating the
results, iterating as necessary, and communicating the results.

Data exploration is quite simply looking at the data. The strategies of how to pre-process the data for
machine learning are developed by first examining the data. Production data is messy. Missing values,
erroneous sensor readings, duplicated entries, typos, format changes in the source files, etc. must be sorted
out before one can engage in meaningful analysis. Considering the FCA HPDC process data set with over
950,000 observations and 109 variables, one cannot simply scroll through and hope to catch these issues
by eye. Running summaries of the data, examining the data class, and locating NaN values are a few of the
tasks to accomplish in this step. Fortunately, there are simple commands to execute which reveal issues in
the data. These are standard procedure cleaning methods.

However, some advanced techniques were implemented. In the data cleaning step, we encounter two of
the key challenges with foundry data: heterogeneous data and class imbalance. Both are popular domains
for data science research today. In this work, heterogeneous input data was handled with naïve mean or
median imputation, or sample removal, due to relatively few instances in the large HPDC process dataset.
For classification modeling, imbalance between good parts and process scrap leads to predictive results
which err toward classifying the minority class, process scrap, as good parts. To address class imbalance,
we implemented the oversampling methods Synthetic Minority Oversampling TEchnique (SMOTE) and
Boderline SMOTE [31]–[33]. These are data augmentation tools which increase the population of the
minority class to train better models. New, synthetic samples are generated by selecting an example of the
minority class, finding its nearest neighbors (k-neighbors = 5 is the default), and drawing a line between
the example and one of its neighbors at random (Figure 4). The new sample is created along the connection
line. Some of the disadvantages of SMOTE are lessened in Borderline SMOTE. While SMOTE generates
new samples from all the minority class samples, Borderline SMOTE is a selective technique which models
those along the boundaries which separate one class from another. By focusing along the border, we are
creating more training data where the samples from one class resemble those of another class. The objective
is to reduce the probability of classifying process scrap as a good part.

15

Figure 4. An illustration of SMOTE application showing a) the unbalanced data prior to
synthetic data generation and b) the balanced dataset after SMOTE. In this classification
example, many synthetic data are generated far from the border of the two class clusters
which is less useful for making predictions between classes.

Other methods performed in the pre-processing step are covered further in Appendix C. These include the
discretization of categorical variables, checking for correlation between variables, and data standardization.
Data standardization is a crucial step which is, perhaps, easy to overlook if one does not know how to
properly execute machine learning. The data collected in HPDC contains a wide range in scale. Also,
different equipment manufacturers may capture data in only English or metric units. In round figures,
intensification pressure of 10,000 psi, melt temperature of 1300 F/ 704 C, cycle time of 150 seconds, biscuit
size of 2 inches, and an iron content of 0.60% are a few examples which show the range of scale is in orders
of magnitude. If left in this format, the intensification pressure would register as highly significant and
outweigh any influence the iron content would show simply because the numbers are larger. This is because
many machine learning algorithms rely on a mathematical distance calculation to determine the similarity
between two samples. Bringing the columns of data into the same scale makes these comparisons uniform
and meaningful. While standardization is not necessary for every algorithm, it is typically a case of either

16

being essential to the algorithm (i.e. K-Nearest Neighbors [12]) or the algorithm is not hurt by it (i.e.
Random Forest [34], [35]) . The method employed throughout this work is the Z-transformation [36], [37]
(Equation 1). K-Nearest Neighbors (KNN) is a supervised learning method highly sensitive to distances
[12]. Thus, benefits from standardizing data are readily shown in Figure 5 where KNN was applied to the
toydata dataset (see Appendix C) with and without Z-transformation.

𝑍 , =
,

 Eq. 1

Where:

 𝑍 , is the Z-transform value in the ith row of the jth column
 𝑋 , is the original value in the ith row of the jth column
 𝜇 is the mean of the original values in the jth column
 𝜎 is the standard deviation of the original values in the jth column

Figure 5. K-Nearest Neighbor classification of machine identifier a) without Z-transform
and b) with Z-transform. Each point represents the true and predicted machine class.
Misclassified samples display as bi-colored points. The axes were chosen to show
separation between three different machines. With the Z-transform, the model performed
much better, classifying at a 90% accuracy.

The final pre-processing task to cover in this summary is dimension reduction. Machine learning
algorithms are adept at working in high dimensions, but there are negatives associated with too many
features. The curse of dimensionality refers to how a given dataset becomes sparser as it is projected into
higher and higher dimensions [38], [39]. Thus, more samples are required as dimensionality increases.
Increasing dimension also increases the amount of noise in the dataset. An important method for dimension
reduction implemented in this work is the Principal Component Analysis (PCA). PCA is an unsupervised
dimension reduction technique [40]–[42]. The goal of PCA is to determine linear combinations of the input
variables, called principal components (PCs), which capture the most variation in the dataset while
minimizing the error when the dataset is reconstructed from the PCs. In doing so, a high-dimensional
dataset can be condensed into a smaller number of PCs. PCA enables visualization of high-dimensional
datasets in two or three dimensions. Figure 6 shows a two-dimensional scatter plot of PCs 1 and 2 which
were derived form a sample dataset of ten dimensions (see toydata, Appendix C). As one reads this figure,
it is important to recognize that this is a simple scatter plot. PC1 and PC2 are not functions of one another.
The main disadvantage of PCA is that it is limited to linear principal components.

17

Figure 6. Two-component PCA. On the toydata dataset, we see a separation of the
castings into clusters by machine number.

Moving on to the algorithms themselves, it is important to consider the amount of data one has available
and complexity of the algorithms selected with respect to the bias-variance trade-off [43], [44]. Bias is
error in the model driven by the underlying assumptions in the algorithm. Variance refers to the error in the
model due to its sensitivity to noise in the training dataset. Understanding these two phenomena is essential
to remedy underfitting and overfitting conditions in the model performance. Figure 7 shows how models
can be too complex (high variance) or too simple (high bias) and thus overfit or underfit the training data
respectively. Either will result in poor performance on the testing data or new production data fed into the
model. There is a desirable sweet spot where the model is general enough to make reliable predictions on
the training data which translate to the performance on new data such as the middle plot of Figure 7.
Choosing the correct algorithm and properly tuning it to work with the type of data being collected is how
one arrives at the best performing model. Minimizing the predictive error between the training and testing
datasets is the target for determining the best model.

Figure 7. The phenomenon of underfitting and overfitting is seen in this figure [45]. We
want a model that is optimal for the kind of data and application that we are exploring.
For example, a good fit is illustrated in the center plot. The plots on the right and left show
underfitting and overfitting respectively and should be avoided.

18

The primary machine learning algorithm used in this work is Random Forest [34], [35]. This method was
used extensively in Appendix D - Predicting Quality of Cylinder Block Castings via Supervised Learning
Method and proved to be the best traditional machine learning algorithm investigated when paired with
PCA in Appendix E - Model Selection and Evaluation for Machine Learning: Deep Learning in
Materials Processing. In Appendix E, Random Forest was examined alongside SVM and XGBoost [46],
[47] in the machine learning category. It was outperformed by a shallow Neural Network which was
reported by my research colleague Rasika Karkare in the same article. Appendix D focuses on Random
Forest to classify part quality and ultimate tensile strength, while Appendix E applies it to a regression
problem to predict ultimate tensile strength values.

Random Forest is selected because it works well with high-dimensional data, is robust to non-linear data,
has low bias, and variance is reduced through bagging [34]. To combat misclassification, Random Forest
uses the results from hundreds, or thousands, of tree estimators to make predictions. Random Forest is an
ensemble learning, or prediction by committee, approach where the observations are randomly broken into
subsets and built into trees split on a random subset of the features. The predictions of many trees built
from the training data are compiled to make a final prediction for each observation. In a classification
model, group voting among the trees is conducted to determine the predicted class. For regression models,
the final reported value is calculated the by average of the predictions for each observation from all the
trees. The result of the ensemble can be better than what any one of the trees would determine on its own.
A detailed explanation of how the tree estimators are built is given in Appendix C.

In Appendix E, XGBoost was chosen to evaluate a more recent adaptation of Random Forest which, in
addition to bagging, uses boosting to reduce bias by training the subsequent model on the errors of its
predecessor. Bagging reduces overfitting while boosting improves accuracy at the cost of possible
overfitting [48], [49]. SVM was chosen for its ability to determine non-linear decision functions via the
kernel trick. The kernel trick maps the input data into a higher dimensional feature space where the data is
linearly separable resulting in non-linear boundaries between the input data [50], [51]. These methods are
compared to a Neural Network which is effective for handling nonlinearity, tolerant of noise, utilizes
advanced learning methods, and generalizes well.

Finally, this summary would be remiss without mentioning training, testing, and cross-validation. This
description is placed at the end of the approach because it is vital for evaluation of model performance, but
it arches over the process more broadly. Holding out a testing dataset prior to performing the machine
learning step is how the trained model is evaluated. This is data that is new to the trained model, so the
predictive error on the testing data is what one could expect on newly generated data from the process.
Recognize that the train/test split can influence the model. For that reason, cross-validation is conducted
to determine how different splits of the data affect the model performance metrics. K-folds is a common
method of cross-validation [52]. In K-folds, the user sets the number of folds and the model is run that
many times on the training data. Each time, a different segment of the training population is set aside as
the test data and run through a model created on the balance of the training data for that fold.

The performance of the algorithm can be measured in many ways. Mean absolute error (MAE, Equation
2) and mean squared error (Equation 3) values can be used to score regression algorithms [53], [54].
Accuracy, precision, recall, and f1-scores (Equations 4-7) are often chosen to evaluate classifiers [55].
Regardless of the algorithm, it is common for the error on the training data to be less than the test data.
When the difference between the two is large, the model is said to be overfit to the training data. Data
scientists are keenly aware of over-fitting because such a model does not generalize. The model shows
amazing accuracy on the training data, however, when fed new data, the predictions of the algorithm are
unreliable.

𝑀𝐴𝐸 = ∑ 𝑌 − 𝑌 Eq. 2

19

Where

 MAE is the mean absolute error
 𝑛 is the number of samples in the dataset
 𝑌 is the actual value of the output
 𝑌 is the predicted value of the output

𝑀𝑆𝐸 = ∑ 𝑌 − 𝑌 Eq. 3

Where

 MSE is the mean squared error

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (𝑇𝑃 + 𝑇𝑁) / (𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁) Eq. 4
(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛) = 𝑇𝑃 / (𝑇𝑃 + 𝐹𝑃) Eq. 5
(𝑅𝑒𝑐𝑎𝑙𝑙) = 𝑇𝑃 / (𝑇𝑃 + 𝐹𝑃) Eq. 6
(𝑓1_𝑠𝑐𝑜𝑟𝑒) = 2 ∗ ((𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙)/(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙)) Eq. 7

Where

 TP is the number of true positives
 TN is the number of true negatives
 FP is the number of false positives
 FN is the number of false negatives

III. RESULTS and DISCUSSION

A. Predicting Quality of Cylinder Block Castings via Supervised Learning Method

The following section contains material from the second journal article to be submitted for publication from
this research. It can be read in its entirely in Appendix D - Predicting Quality of Cylinder Block Castings
via Supervised Learning Method. The paper is directed toward the HPDC industry and a scaled down
version is submitted for the 2020 NADCA Congress and Tabletop which will be held virtually due to the
COVID-19 pandemic. An introduction section is given to highlight the need for this research and the
challenges associated with HPDC data. HPDC process data is analyzed via supervised machine learning
methods to successfully model the prediction of good parts and process scrap as determined by the die
casting machine (DCM). Additionally, the prediction of ultimate tensile strength via a classification method
of extracted tensile bars is performed and the important features identified are discussed. Supervised
learning is found to be a useful tool for materials processing applications.

Publication Details:

Adam Kopper and Diran Apelian, “Predicting Quality of Cylinder Block Castings via
Supervised Learning”, submitted to Intl. J. of Metal Casting.

The work is summarized, and highlights are given below.

20

Approach

At the center of the HPDC work cell is the die casting machine (DCM). Ancillary equipment fills out the
cell to execute tasks of metal delivery, die preparation, casting removal and trimming the part of excess
material like runners and overflows. The DCM can be programmed to identify a casting as being good,
scrap, or a warm-up shot based on the parameters which created the casting. This is accomplished by setting
upper and lower control limits (UCL and LCL) for key variables as determined by the manufacturing
engineer. The DCM is using a series of Boolean checks (Is parameter n between LCLn and UCLn?), all of
which must be TRUE for a part to be good [56]. If a part is cast with too low of intensification pressure,
for example, the machine will identify the casting as scrap and send a signal to the operator or a robot to
place the part into the scrap hopper or set it aside for inspection. Parts cast within the prescribed limits are
labeled good parts and further processed as normal.

The FCA HPDC process dataset was used for this study. Removing highly correlated columns, noisy
features, and those with no variation brought the number of columns down from 109 to 83 columns of
input/output variable data. The data is collected from 12 HPDC work cells and 20 die casting tools.
Periodically, the production castings are destructively evaluated for mechanical property testing via a
tensile test. In this dataset, there are 1494 observations for which both the HPDC process variables and the
mechanical property data are collected into 159 columns. The blocks are cast in E380 aluminum alloy [57]
and subjected to T5 heat treatment post castings. For a specific application, a subset of the blocks receives
an additional 24-hour natural age prior to T5.

Two classification models are used in this study, Decision Tree and Random Forest. The Decision Tree
classifier is a supervised machine learning method used to build a predictive model for a given process
output by sorting the castings into classes at various nodes using an input variable as the sorting criteria
[13]. This input variable is chosen by the algorithm because sorting by it provides the greatest information
gain to the model. Random Forest classifiers use many Decision Trees together to train the model [34].
Both methods are examined in this study. The splits in the trees are determined by Gini index (Equation
8), which is a measure of the purity of the resulting nodes by making a split [58]. The Gini index varies
between zero and one. A Gini of zero represents a pure node where all the observations are of the same
class. A high Gini value means that the various classes are mixed and there is a high probability that a new
observation would be misclassified.

𝐺𝑖𝑛𝑖 = 1 − ∑ 𝑃 Eq. 8

Where:

 𝐺𝑖𝑛𝑖 is the Gini index
 𝑛 is the number of classes
 𝑃 is the probability of finding each class in the node

When developing the models, the datasets are split into training and test subsets. Model performance
metrics include accuracy, precision, recall, f1-score (Equations 4-7) [55]. Accuracy is percentage of
correctly classified observations. Precision is the proportion of predicted positives which are correct.
Recall is the proportion of actual positives correctly classified as positive. f1-score is the harmonic mean
of the precision and recall and is useful for unbalanced datasets, such as the one in this study, where there
are many more good parts than process scrap.

There are two objectives of this research: The first is to use machine learning via a classification model to
predict the quality label assigned by the DCM: good part, process scrap, and warm-up. The second is to
determine which other classifications can be determined by this method; specifically, the presence of
discontinuities (i.e. porosity) in a tensile bar machined from the casting was examined. The first objective
evaluates machine learning on a large dataset where it is known that the correct information has been

21

captured to classify the observations. The second uses a small dataset where there may be parameters which
influence the classification that are not captured in the dataset.

Results

DCM Quality Label Classification

A successful classification model evaluates the die casting process data and the known class assigned to the
part in the training dataset and determines what the rules are such that the model will accurately assign
testing samples to the correct class. The three labels are: good part, process scrap, and warm-up. Initial
Decision Tree models run on the FCA HPDC process dataset had little difficulty identifying warm-up shots.
This is because warm-up shots typically have different process settings from production shots utilizing low
shot velocity and minimal intensification pressure. The challenge is separating the good parts from the
process scrap. For the remainder of this exercise the warm-up shots have been utilized in a calculation as
a process input which designates the number of shots performed since the last warm-up shot was made.
This value is included to serve as a directional proxy for die temperature. Since this column equals zero
for all warm-up shots, the prediction of warm-up shots by the model becomes automatic. Thus, the warm-
up shots are removed from the dataset.

Summaries of the model performance will be shown via confusion matrix (Table II). The matrix rows track
the actual known classifications of the test population and the columns correspond to the classifications of
the test population as predicted by the model. A perfect model would have zero FN and FP predictions.

Table II. Interpretation of the confusion matrix. A perfect model would have zero FN
and FP predictions. For this study, positives are good parts and negatives are process scrap.

 Predicted Value
 Positive Negative

Actual Value
Positive TP FN
Negative FP TN

Both Decision Tree and Random Forest performed reasonably well on the testing data which is made up of
174,869 rows of data which the models had not seen before, especially predicting good parts. Although,
manufacturing operations make many good parts, it is predicting the process scrap which is of the greatest
value. The results showed too many FP results: 1,577 for the Decision Tree and 1,613 for the Random
Forest. False Positives must be minimized, as these would have a negative impact on downstream
operations. Unbalanced data is a challenge for modeling production manufacturing data. Since each split
in each tree is done without the consideration of any other splits, the best Gini split may sweep many process
scrap samples into a node which overwhelmingly consists of good parts. This results in misclassification
when the node is a leaf. Fortunately, there are methods to working with unbalanced data.

To reduce the amount of FP, the issue of data imbalance is addressed by generating more process scrap data
by which to train the model. The simplest way to do this is to reproduce samples from the process scrap
class, but this provides no new information to the algorithm. A better method, which does provide new
information to the model via the creation of new minority class samples, is called Synthetic Minority
Oversampling TEchnique (SMOTE) [31], [32]. SMOTE creates each new minority class sample by
selecting an example of the minority class, finding its nearest neighbors, and drawing a line between the
example and one of its neighbors at random. The new sample is created along the connection line. This is
done repeatedly until the minority class balances out the majority class.

To investigate, the training data was oversampled using SMOTE and new Decision Tree and Random
Forest models were trained. Predictions were made on the same testing data using the new models. It is

22

important that SMOTE be applied to the training data only, and not the testing data. This way the testing
data is faithful to the process. The results are shown in Table III and Table IV for the Decision Tree and
Random Forest respectively. By balancing out the process scrap with the good parts, the new models are
more adept at recognizing process scrap and FP are reduced.

Table III. Confusion matrix showing the performance of the Decision Tree with SMOTE
classifier model for part quality.

Decision Tree w/ SMOTE –
Part Quality

Predicted Value
Good Part Process Scrap

Actual Value
Good Part 164,716 3,282

Process Scrap 924 5,947

Table IV. Confusion matrix showing the performance of the Random Forest w/ SMOTE
classifier model for part quality.

Random Forest w/ SMOTE –
Part Quality

Predicted Value
Good Part Process Scrap

Actual Value
Good Part 165,443 2,555

Process Scrap 1038 5,833

Comparing Tables III and IV, it is difficult to see which model is best suited for our data. Both exhibit
false positives and false negatives. To determine the better performing model, it is useful to use scoring
metrics. These measures are tabulated for both models below (Table V). The metrics associated with the
minority class (process scrap) are more telling for model performance. The models perform quite similarly,
however, the Random Forest is the better model due to the higher f1-score for the process scrap class. The
results between the testing and training datasets are nearly the same, therefore, neither model is overfitting
to the training data.

Table V. Key scoring metrics for the part quality Decision Tree and Random Forest classifiers with
SMOTE training data. Mean values are reported from 5-fold cross validation.

 Decision Tree w/ SMOTE Random Forest w/ SMOTE
 Training Data Test Data Training Data Test Data
Model Accuracy 98.81 % 98.70 % 98.40 % 98.66 %
Precision 98.76 % 98.64 % 98.41 % 98.63 %
Recall 98.81 % 98.70 % 98.40 % 98.66 %
f1-Score 98.76 % 98.64 % 98.40 % 98.55 %
f1-Score
(Process Scrap)

97 % 74 % 99 % 76 %

A useful summary for the process engineer can be pulled from the model called feature importance [59].
Understanding the influence of each variable on the model helps the engineer determine which variables to
monitor more accurately, perform designs of experiment around, and where to invest in process control
measures for best results. Feature importance of the Random Forest with SMOTE model are given in Table
VI below. The list of 83 variables was truncated at values greater than 0.02.

23

Table VI. Feature importance for the part quality Random Forest
classifier with SMOTE generated training data.

Part Quality Random Forest w/ SMOTE
Feature Name Importance
Time Between Cycles 0.2830
Biscuit Length 0.0868
Final Intensifier Pressure 0.0641
Plunger position at the end of shot 0.0505
Cycle Time 0.0480
Average Intermediate Shot
Velocity

0.0426

Cavity Fill Time 0.0392
Average Fast Shot Velocity 0.0381
Shots Since Last Warm-up Shot 0.0314
Intensification Velocity Rise Time 0.0239
Dwell Time 0.0239
Intensification Stroke 0.0215

Feature importance can also be used to assist in feature selection for creating more efficient models which
take less time to run and perform better when noisy features are removed. Ultimately, the final set of
features is based on trial and error and the preferred performance metric. The same Random Forest model
set-up was run using only the top 12 features shown in Table VI. Dropping the low importance input
variables minimally reduces predictive power, and overfitting to the training data is still avoided (Table
VII).

Table VII. Scoring metrics for the part quality Random Forest with SMOTE classifier
models using the top 12 features. Mean values are reported from 5-fold cross validation.

 Random Forest Classifier
 Training Data Test Data
Model Accuracy 98.81 % 98.55 %
Precision 98.82 % 98.48 %
Recall 98.81 % 98.55 %
f1-Score 98.81 % 98.45 %
f1-Score
(Process Scrap)

99 % 79 %

Breaking the data down into unique combinations of DCM number and die cavity number yielded
interesting results. It was observed that, when subsets representing each combination of DCM number and
die cavity number were run across the general part quality Random Forest classifier, the metrics of the
predictions varied. This suggests that each DCM and cavity combination is to some degree a unique process.
The details of this result are shown in Appendix D.

The example of predicting part quality assigned by the DCM is a straightforward example where the dataset
is very large and contains all the information available to the DCM for labeling parts good or process scrap.
Many materials processing problems are more difficult due to the challenges of small datasets. Next, we
turn our attention to how well Random Forest classification modeling can be applied to predicting porosity
in castings using the process data by which they were made.

24

Porosity Classification

HPDC process input data is used by manufacturing operations as a real-time quality check. Thus, it is of
interest to test if these data can be analyzed further to predict levels of porosity in good parts. For the cast
component of this study, production castings are selected for destructive mechanical property testing via
testing tensile bars extracted from the casting itself. Ultimate tensile strength, yield strength, tensile strain
(elongation), and hardness data are collected for the purpose of quality assessment [60]. In most HPDC
products, the location of the tensile bars is limited to the few heavy areas of the casting which can
accommodate their geometry. Intensification pressure is applied during solidification to compress gas
porosity and feed shrinkage; however, once the gates freeze, pressure is no longer transmitted to the last
areas to solidify (i.e. heavy walled sections). In the long freezing range aluminum alloys commonly utilized
in HPDC, like 380-alloy, the resulting shrinkage is often microshrinkage which is difficult to detect via
NDE methods such as digital X-ray. Thus, the presence of porosity is a characteristic of HPDC which must
be controlled and not necessarily an indication of a poor casting. Discontinuities do impact the measured
mechanical properties resulting in additional work and cost to reproduce the test. It has been shown that
mechanical properties are dependent on the amount of porosity in the area of fracture [61]–[64]. Making a
connection between mechanical properties and porosity is of interest to die casters because, in many
applications, the presence of porosity can result in scrap due to uncovered porosity after machining or loss
of pressure tightness or leaking. Finding which process inputs contribute to porosity in a mature process is
challenging for humans to solve. It is also a difficult problem to model because all the castings in the new
dataset are classified as good parts, so the difference between any given input variable from one observation
to the next is likely small.

Binary classification by the noted presence of a discontinuity on the tensile bar fracture surface proved to
be a poor target for prediction. Cáceres’ research shows that a binary classification for porosity is not
adequate since the amount of porosity affects the mechanical properties [61]. Whether or not the porosity
was observed by the tester in the tensile bar has no bearing on how the bar performed. Figure 8 shows an
empirical cumulative distribution function for the bars with and without observed discontinuities. The
curve for the data with observed discontinuity is shifted to lower UTS values. There is considerable overlap
which supports the assertion that microshrinkage porosity is often undetectable via visual inspection.

Figure 8. Empirical cumulative distribution functions for the UTS of tensile bars with and
without observed discontinuities on the facture surface by visual inspection.

25

A classification model based on a UTS value has two benefits: undetected porosity gets captured in the
lower performing bars and the two classes can be set up to be more balanced. Two classes were selected:
UTS < 205 MPa and UTS ≥ 205 MPa. There is no assignment of “good” versus “bad” implied in selecting
the ranges. The value of 205 MPa is chosen as it is the median value of the tensile bar dataset. Importantly,
80% of the bars with observed discontinuities exhibited less than 205 MPa of UTS as well. A Random
Forest classifier was used to predict which UTS class each bar in the test dataset would fall into using the
HPDC process input data. Table VIII shows the Random Forest classifier results cross validated over 10
iterations. This model is slightly overfitting to the training data as there is more of a difference between
the training and testing metrics than we saw in the DCM quality label example. One of the better performing
models is shown in Table IX.

Table VIII. Key scoring metrics for the Random Forest classifier model predicting UTS
over or under 205 MPa. The support of the test dataset is: 138 UTS < 205 MPa samples
and 161 UTS ≥ 205 MPa samples.

 Random Forest Classifier:
UTS over/under 205 MPa

 Training Data Test Data
Model Accuracy 60.62 % 56.87 %
Precision (weighted) 60.76 % 57.13 %
Recall (weighted) 60.62 % 56.87 %
f1-Score (weighted) 60.57 % 56.37 %

Table IX. Confusion matrix of the Random Forest classifier for UTS tensile bars above
and below 205 MPa using HPDC process inputs only.

Random Forest Model – UTS
Predicted Value

> 205 MPa < 205 MPa

Actual Value
> 205 MPa 98 63
< 205 MPa 47 91

If die casting operations examine their data in this way, there is benefit gained even from imperfect models.
Referring to Table IX, the test dataset consists of 299 samples of which 161 were of the higher UTS class.
This amounts to 53.8% high UTS samples. This model suggests that there are operating conditions where
high UTS bars can be expected. If those conditions are employed, one would find that 98 of 145 are high
UTS bars, or 67.6%. The parameters which rise to the top of the feature importance list in Table X are
worthy of study since splitting on their value has the largest impact on UTS prediction.

26

Table X. Average feature importance calculated over ten iterations of the Random Forest classifier.
Feature Name Importance Feature Name Importance
Ejection Forward Time 0.0747 Total Tie Bar Tonnage 0.0379
Spray Robot Time 0.0505 Final Intensifier Pressure 0.0357

Die Close Tank Level 0.0498
Avg Head Pressure during
Intermediate Shot

0.0349

Avg Head Pressure during Fast
Shot

0.0466 Extract Robot Cycle Time 0.0348

Shot Count Since Last Warm
Up Shot

0.0414 Cycle Time 0.0347

Die Close Time 0.0403 Die Opening Time 0.0329
Intensification Pressure Rise
Time

0.0396 Vacuum Pressure during Shot 0.0321

Average Fast Shot Velocity 0.0386 Ladle Pour Time 0.0332
Avg Head Pressure during Slow
Shot

0.0383 Intensification Stroke 0.0304

Conclusions

 Supervised learning performed better on the larger HPDC process dataset. The complete
population has 874,344 observations and the DCM makes quality determinations based on this
data, so the right data is collected. The result is a good model.

 Oversampling using SMOTE is effective for teaching the model to better predict the minority
class.

 The Random Forest classifier outperforms a single Decision Tree by reducing variance. The
ability to differentiate good parts from process scrap improve when focusing on unique
combinations of machine and cavity number as stand-alone processes.

 For predicting porosity, UTS has been shown to be a better output for predictive modeling than
relying on porosity observation alone. Microshrinkage porosity can easily be missed by the
unaided eye, but its effect is apparent in the UTS measured.

 A key difference between the DCM part label problem and the porosity prediction problem is the
size of the dataset available to the model. The smaller tensile bar dataset is impacted by
overfitting issues that the larger dataset avoids.

B. Model Selection and Evaluation for Machine Learning: Deep Learning in Materials
Processing

The following section contains material from the third journal article to be submitted for publication from
this research. It can be read in its entirely in in Appendix E – Model Selection and Evaluation for Mahcine
Learning: Deep Learning in Materials Processing. The paper is directed more generally toward the
material processing industry with a focus on proper evaluation of model performance and the bias-variance
trade-off. An introduction section is given to highlight the usefulness of predicting UTS citing its
connection to porosity in the casting which is of high interest to foundries. Predictions of UTS based on
HPDC process data are made via traditional machine learning methods (Random Forest, Support Vector
Machine, and XGBoost) and a shallow Neural Network. Algorithm predictions are compared to an
alternative of predicting the mean from historical data. All the machine learning algorithms and the Neural
Network outperform the historical mean prediction with the Neural Network achieving the lowest mean
absolute error in its predictions.

27

Publication Details:

Adam Kopper, Rasika Karkare, Randy C. Paffenroth, and Diran Apelian, “Model Selection
and Evaluation for Machine Learning: Deep Learning in Materials Processing”,
Integrating Materials and Manufacturing Innovation, submitted 7/10/2020.

The work is summarized, and highlights are given below.

Approach

It is paramount to understand the type of data HPDC operations generate, and the machine learning and
deep learning methods that are best suited for analysis. One is often introduced to the terms machine
learning, deep learning, and Neural Network as buzz words used interchangeably in marketing or general
audience publications. All of these are subsets of artificial intelligence and defining where machine
learning ends and deep learning begins is somewhat blurry. Perhaps it is best to look at these as a continuum
of complexity. Machine learning algorithms reside on the lower end of the complexity spectrum making
use of linear and other low-order functions [12]. While deep learning is at the other end employing layers
of mathematical transformations and activation functions for creating models [65]. The most suitable
method depends on the data available.

This study was conducted to compare the performance of various machine learning and deep learning
methods in predicting the UTS of tensile bars excised from engine block castings. The mean absolute error
of the algorithm is used to score the methods. Furthermore, an explanation of the importance of bias-
variance trade-off is given to provide context for the results [43], [44].

When designing castings, minimum mechanical properties may be specified by the designer which are
required for the final product. Process and alloy selection are largely driven by these requirements [66].
Testing mechanical properties such as UTS, YS, and elongation requires destructive methods which can
only be conducted on an audit basis. Tensile testing of test bars extracted from the cast part itself, or cast
alongside the part, is the most employed method to measure these properties [67]. The tensile bars come
from four different locations in the engine block and are machined to a 0.350 inch (9 mm) diameter sub-
sized geometry based on ASTM B 557 (Figure 9) [60]. The dataset captures the UTS, YS, and the tensile
strain. The 0.2% offset method is used to calculate the YS [68]. The tensile strain is measured with the
extensometer over the course of the test and is reported as a percentage. Included in the dataset is a notes
column which is text mined for mentions of fracture location and the presence of observed discontinuities
such as porosity or an inclusion [13]. Each bar is classified accordingly. Tests with no indication of a
discontinuity are classified as unknown, rather than to assume none were present.

28

G – Gage Length 1.400 +/- .005

(35.5 +/- 0.1)

R – Radius (min) 0.25

(6.35)

D – Diameter 0.350 +/- .007

(9.0 +/- 0.2)

A – Reduced Section
Length (min)

1.650

(41.9)

Figure 9. Tensile bar geometry per ASTM B557 [60, p. 55].
Dimensions in inches (mm).

Tensile test data were examined to determine which output to target for prediction. Like most production
manufacturing data, there is noise in the data that can be difficult to filter out with certainty as the actual
tensile bars are not typically retained and were not available for this study. Statistical analysis via Welch’s
t-test is performed to detect significant shifts in the mean value of UTS and tensile strain from one
population to another [69]. Location of bar extraction, presence of observed discontinuities, and the heat
treatment were analyzed. The results of Welch’s t-test confirmed that the mean UTS value is statistically
different based on the presence of defects and heat treatment used. UTS was selected over Quality Index
(QI) [70], [71] and tensile strain for its sensitivity to the presence of observed anomalies in the tensile bars.
The literature has shown that UTS is sensitive to the presence of such casting features in tensile bars [72]
[73]. This connection of UTS to porosity is very useful to die casting producers, since quality issues in die
casting are largely porosity related [74]. Preliminary modeling efforts confirmed that UTS was showing
less error in the model performance as compared to prediction of tensile strain and QI.

Bias-Variance Trade-Off

When choosing an algorithm, the two most important considerations are size of the available data and bias-
variance trade-off [43], [44]. This dataset of 1494 tensile tests are exceedingly large when compared to
typical mechanical property studies. However, in the world of data science, this is not Big Data. The
amount of data available is a limiting factor in the complexity of the model. Figure 10 shows a performance
comparison of the models as data size increases.

29

Figure 10. Performance comparison of Neural Network models with traditional machine
learning models as training data size increases. On smaller datasets, traditional
algorithms outperform deep learning models however, as the amount of data increases,
deep learning models perform better.

For smaller datasets, one would pick traditional algorithms as compared to deep learning models. However,
as the quantity of data increases, deep learning models perform better because traditional algorithms reach
a saturation point and do not improve any further whereas deep learning models performance keeps
increasing with training data size [75].

Understanding the bias-variance trade-off is essential in deciding which algorithms to select for a particular
dataset and application. In Figure 11, the X-axis shows model complexity and the Y-axis is predictive
error. As model complexity increases, variance increases and bias decreases. An increase in the variance
causes the model to overfit to the training data and it fails to generalize on new data. The left side of the
plot shows a high bias but low variance region. This implies that the model is too simple and, hence, it is
highly biased. It fails to learn the complexity of the data. The ideal point is where bias and variance
intersect, as shown by the optimum model complexity in Figure 11 [43].

30

Figure 11. Bias-variance trade-off [43], [44] shows how error changes as the complexity
of the model increases. The region on the right is that of high variance and low bias
whereas the region on the left is that of high bias and low variance. These regions are
where the model overfits or underfits the training data and should be avoided. The optimal
model complexity is where variance and bias intersect, and one should utilize algorithms
in this region.

Figure 7 shows the phenomena of overfitting and underfitting. The Overfitted graphic in Figure 7 depicts
a model from the region in Figure 11 where variance is high. Such a model will fail to generalize because
it is too specific to the training data. The Underfitted graphic from Figure 7 shows an example from the
region in Figure 11 where bias is high. Here, the model fails to learn enough complexity in the dataset and
underfits [44], [45]. The Good Fit/Robust graphic in Figure 7 shows the optimum model which corresponds
to the intersection of bias and variance in the bias variance trade-off and gives a robust fit to the data.

Mean absolute error (MAE) values are reported to score the algorithm (Equation 2). It is common for some
overfitting to the training data to exist in the model, so the error on the training data tends to be less than
the test data. The goal of a robust model is to minimize the difference in error between the training data
and testing data results.

The data was properly pre-processed before machine learning. Methods such as discretization,
standardization, and dimension reduction via PCA were performed. For machine learning algorithms,
Random Forest, SVM, and XGBoost were chosen. These methods are compared to a Neural Network deep
learning algorithm.

Results

Machine Learning Regression Results

The process of adjusting the controlling parameters within the algorithm is called tuning [76]. The chosen
method of tuning selected for these models is Grid Search Cross-Validation (GSCV) [77]. In GSCV,
multiple parameters can be tuned at once optimizing the model with respect to the target metric rather than
each parameter at a time. The goal of tuning is to minimize the difference between the training and testing

31

data results. Figure 12 was generated using the default parameters of the algorithm while Figure 13 shows
the improvement realized from tuning. In the Random Forest and the XGBoost the difference between the
training and testing error decreases. The model becomes more general. The tuned SVM is not far from
where the default parameters started.

Figure 12. MAE in UTS prediction results for the high dimension dataset using default
settings. Both the Random Forest and the XGBoost are showing significant overfitting to
the training data.

Figure 13. MAE in UTS prediction results for the high dimensional dataset using tuned
parameters. Compared to the default algorithm results in Figure 7, the amount of overfit
in the Random Forest and XGBoost is lessened. The SVM improvement is imperceptible
in the graph.

Figure 13 represents the algorithm performances on the full dataset containing all process input columns.
Dimension reduction techniques were applied to the data to reduce noise of marginal features and further
reduce the gap between the testing and training error. The Random Forest and XGBoost algorithms have

32

an output called feature importance that shows which parameters have the most influence in training the
model. The top 15 features from the tuned high dimensional Random Forest are shown in Figure 14.

Figure 15. Feature importance generated from the tuned Random Forest regressor. The
top 15 features are shown.

Machine 503 is connected to the heat treat schedule including the natural age step which resulted in a
statistically significant higher UTS than the standard heat treatment (Appendix D). The Random Forest
was able to identify that as being important. The die close tank level variable refers to the fluid level in
the hydraulic tank. It is showing up as important because of a highly positive correlation to Machine 503
of 0.82. Beyond these two, the important features uncovered by the high dimensional tuned Random Forest
look much like the parameters one finds in the literature when investigating the impact of process settings
on mechanical properties or defects [78]–[82]. Based on this observation, a new feature selected dataset,
“LitRev Features”, was evaluated. The selected features are: Machine 503, average slow shot velocity,
average fast shot velocity, average intermediate shot velocity, cycle time, intensification pressure,
intensification pressure rise time, melt temperature, robot spray time (a proxy for amount of time the die
was open between shots), and vacuum pressure during the shot. The predictive performance is displayed
in Figure 15. The Random Forest improved significantly from the full feature set iteration in Figure 13.

33

Figure 15. Machine learning results on the feature selected dataset using important
features from the literature. Small reductions in the training and testing error were found
in all three algorithms with the most improvement in the XGBoost test data.

Additionally, a different dimension reduction method, PCA, was applied to the high dimensional dataset.
The number of principal components to explain 85% of the variation in the original dataset is 27. Each
principal component is a linear combination of the original 77 dimensions, thus none of the inputs are
completely dropped from the analysis as they are in feature selection. The PCA transformed data can be
run through the same machine learning algorithms as the original data and the same tuning methods are
employed. In Figure 16, the PCA Random Forest demonstrates the best performance overall in terms of
UTS MAE and the degree of overfit.

Figure 16. Machine learning results on the PCA transformed dataset using top 27
principal components which explain 85% of the variation in the high-dimensional
dataset. The Random Forest applied to the PCA dataset is the best machine learning
performance in this study.

34

Neural Network Regression Results

Deep learning based Neural Networks have proven useful for advanced analytics of big manufacturing
datasets [65]. In this section, we will show results of a Neural Network model for predicting the UTS and
a comparison of the Neural Network with traditional state-of-the-art machine learning models namely, the
Random Forest, SVM, and XGBoost for the same dataset as shown above.

Selecting the right combination of parameters for the Neural Network is critical for optimizing the target
metric and reducing the overfitting phenomenon [83]. We choose the parameters of the network in a way
such that the model generalizes and does well on data that it has not seen during training. Success is
measured by reducing both the MAE of the model and the difference between the training and testing MAE.
The parameters tuned in the optimization of the Neural Network are learning rate, batch size, number of
hidden layers, and the number of nodes within the hidden layer. Figures 17 and 18 show the how the
number of hidden layers and the number of nodes affect MAE. Similar plots for the other parameters
examined are included in the full text in Appendix E.

The learning rate parameter should be chosen in a way such that it is low enough that the model is able to
reach the minimum error solution, while at the same time, it should be high enough such that the model
does not take excessive time to converge [84]. A learning rate of 0.001 was the best performer.

Smaller batch sizes were found to give lower error as compared to higher batch sizes. The difference in the
MAE is more significant as the batch size is increased above 128. We train the model using batches instead
of training the entire data at once in order to make it computationally efficient and have other desirable
properties such as avoiding local minima [83], [84]. We use a batch size of one for this analysis.

Figure 17 shows a comparison of the MAE using different number of hidden layers [85]. Using one hidden
layer not only gives the best performance in terms of the MAE value but also gives the lowest difference
between the training and the testing errors as compared to using a higher number of hidden layers.

Hidden layers of a Neural Network are comprised of nodes, which are the basic units of a Neural Network.
The hidden layer is where the learning of the data takes place which includes learning important features
of the dataset; also, obtaining a compressed representation of the data. Contrast this with machine learning
where this step is accomplished by human input during pre-processing. The complexity of the model
increases as the number of hidden layers is increased.

35

Figure 17. A comparison of MAE as the number of hidden layers changes. The MAE
value is lowest for one hidden layer as compared to higher number of hidden layers.
Using one hidden layer optimizes the performance in terms of the metric itself and
reduces overfitting.

Figure 18. Evaluation of MAE values in terms of number of nodes in the hidden layer. A
higher number of nodes in the hidden layer performs better than fewer nodes.

Figure 18 shows a comparison in terms of MAE with number of nodes in the hidden layer. A larger number
of nodes gives lower errors as compared to lesser nodes in the hidden layer for this dataset. The difference
between the training and testing errors is also low which shows that the model would generalize better on
unseen data.

36

Figure 19. Comparison of the optimized Neural Network model with optimized state-of-
the-art traditional algorithms namely, Random Forest and XGBoost [75]. The Neural
Network model gives the best performance in terms of the training as well as testing
errors as compared to the traditional algorithms.

Figure 19 shows a comparison of the optimized Neural Network model using the best combination of
parameters with traditional machine learning algorithms namely, Random Forest and XGBoost. The Neural
Network gives the best performance in terms of MAE as compared to the other two models on this dataset.

Figures 16 and 19 illustrate that by using either traditional machine learning methods or a Neural Network
we can reduce the error in predicting UTS below that of predicting the mean value. Our results demonstrate
the importance of understanding the relationship between algorithm complexity and the predictive error on
a particular dataset. In the context of Figure 10, the tensile dataset fits in the area where the traditional
machine learning and shallow Neural Networks cross. It is crucial to appreciate the bias-variance trade-off
for this relationship, so that we select the appropriate algorithm, with optimal parameters, to improve the
predictive performance.

Conclusions

 Machine learning and Neural Network regression models utilizing HPDC process data as inputs
can improve the predictability of UTS above that of predicting the mean from prior tests. It is
reasoned that the predictive power can be improved by increasing the number of rows and adding
new input data columns.

 Principal component analysis is an effective dimension reduction technique to reduce complexity
and overfitting of a dataset. A Random Forest of a PCA transformed dataset was the top
performing machine learning method in this study.

 To optimize the models, parameter tuning must be performed with the objective of minimizing
the error in the model predictions as well as the difference between training data and testing data
errors.

 It can be seen that given the right combination of parameters for a Neural Network such as
learning rate, batch size and number of hidden layers, the predictive performance of a Neural
Network can be optimized not only in terms of the error metric but also in terms of obtaining a
robust model fit for a given dataset without overfitting or underfitting.

37

 Selecting the correct models to use for the data being considered requires an understanding of the
bias-variance trade-off such that a balance is struck between algorithm complexity and size of the
dataset in question.

IV. CONCLUSIONS and IMPACT

Early project focus group meetings in the ACRC Big Data project brought to light that many in the materials
processing industry, specifically foundries, were somewhat familiar with machine learning but not actively
using it for mining knowledge from the data they currently collect. The needs of the industry were identified
to be a platform for collection and fusion of data from throughout the operation, skill in the tools with which
to work on large datasets and perform machine learning analysis, knowledge of how to evaluate the various
available algorithms, and explore new data which may be helpful in making better predictive models.

Data Collection and Fusion

The platforms for data collection and organization exist. However, operationally, a key step is
implementing an identification strategy that is common to all areas of the operation. Upfront
commonization in data identification will save time in merging data from different operational departments
later. Disciplined measures include tracking parts by serial numbers or lot codes, standard datetime formats,
and common units of measure.

From there, it is a matter of connecting the DCM, and other hubs of data generation, to a server and make
the data accessible to those who need it. For modern HPDC, the work cell is integrated enough that all data
collection can be passed through the DCM computer. From the DCM, it can be uploaded to the cloud after
each cycle. As an operation seeks to collect more and more data, there will be barriers to be overcome.
There are only so many input slots in a programmable logic controller (PLC). Once those are full, more
can be added. Then there is the issue of how much data a PLC can process. For example, adding an array
of 10 thermocouples to a die casting tool to collect the temperature before and after the cycle is not an issue
for most PLCs to handle. However, when collecting timeseries data such as the die temperature at 60Hz
sampling frequency from those same 10 thermocouples over the 100 seconds between die close and die
open, the data jumps from 20 to 60,000 data points per cycle for die temperature. At this point, new
hardware may be required such as data acquisition (DAQ) devices which are designed to handle larger data
demands.

The details of data storage are not in the scope of this work, but storage and access are critical pieces of
successfully implementing a data strategy for machine learning. Before the advent of data warehousing in
cloud-based data lakes, companies owned, maintained, and upgraded servers which came at a significant
cost. With cloud-based data warehousing, a company rents space on a massive server network so that local
storage does not get overwhelmed with old data. Local servers are tasked with short term access for recent
data and once data reaches a certain age it gets moved up to long term cloud-based storage. The data is
stored in a database which can be accessed and downloaded.

Developing a Machine Learning Skillset

Learning any new skill requires a significant time investment. Becoming capable at implementing machine
learning will require foundries to develop talent, or bring in new talent familiar with key machine learning
programming languages, especially Python [86], [87] and R [88]. The majority of the machine learning
work in this thesis was conducted in Python 3. With Python, one can import libraries which facilitate the

38

various activities involved in a machine learning project. Key libraries used in this project are presented in
Appendix C – Approach and Methodology.

AI algorithms will run the data they are fed if it is of the proper type for the model. To avoid being misled
one must follow the required steps and understand how each impacts the results. The main building blocks
of a data science project are initial data exploration, pre-processing to prepare the data for use in algorithms,
running the algorithms, evaluating the results, and iterating as necessary. This thesis serves as an assist to
metal casters providing a method for machine learning using the type of data the industry generates and
applying some useful algorithms. Most importantly, this work educates those new to machine learning on
the topics of model metrics, the bias-variance trade-off, and cross-validation to evaluate the results of the
models they train.

Once the integration and storage of data is set within an operation and some bedrock coding is in place, the
ability to conduct further feature engineering, perform new analyses, try different algorithms, and add new
data is very straightforward.

HPDC Data Conclusions

Data from the HPDC process was made available from FCA for two papers published from this effort. FCA
runs a very large, by industry standards, HPDC facility in Kokomo, Indiana with state of the science capital
equipment. The data routinely collected by this forward-thinking operation is much like that in my own
experience in the industry at Mercury Marine and prior employers who ran larger HPDC operations.
Modern HPDC machines collect much of the data and make it available. In production data, the
performance of the machine follows closely to the process settings with some amount of natural variation.
These data include average shot velocity through the different stages of the shot profile, head/rod pressure
and intensification data. Based on the issues which arise at a given company, or for a specific part,
additional data is collected to gain understanding and find variation in the process. The data provided by
FCA is listed at the end of Appendix C.

The results of the articles in Appendix D and Appendix E suggest that the standard HPDC cycle summary
data does not contain the silver bullet parameter upon which the amount of porosity or ultimate tensile
strength depend. In our regression modeling work, we compared traditional machine learning algorithm
predictions to making predictions based on the mean UTS value of the training data and found that the error
was lessened when employing the algorithms. The data at our disposal is largely what the literature has
reported as being significant in affecting porosity and resulting mechanical properties in die castings
(Appendix A). Notwithstanding, the amount of error reduction was small. Is the literature wrong? Not
likely. Rather, most published studies investigating the effect of parameter X on porosity examine a wide
range of X settings. Our research is aimed at a process where that level of optimization has already been
performed. However, there is still variation in the mechanical properties of test bars excised from the
castings. After application of feature engineering, feature selection, PCA dimension reduction, various
algorithms, and parameter tuning only a small improvement was realized. This suggests that important
input variables are not captured in the dataset.

Therefore, we must rethink about what other parameters can be included to increase our predictive power.
Especially, consider parameters moving within a wide band because accurate control is difficult or costly.
Perhaps there are parameters the HPDC industry has never considered measuring or controlling. It has
been stated that one cannot control anything unless one has measures; the question is which measures? The
question begs itself: are we measuring the correct parameters? One of the indirect key results of AI is the
realization that perhaps what we have been measuring in the past is not appropriate, and that there are other
key parameters that we should be capturing.

39

Metallurgists know that alloying elements are important with respect to porosity because the weight
percentage of alloying elements impacts the solidus temperature of the aluminum alloy [66]. Copper, for
example has a large effect on porosity in aluminum when increased over the range of zero to four weight
percent [82], [89], [90]. Alloy composition was explored in this thesis, however, the variation in the
elemental composition data was minimal (Table XI). Most rows required imputation to complete the
dataset because chemistry is measured once per shift. Matching the cast time stamp of the part selected for
mechanical testing to the time the furnace was evaluated is rarely close. With the imputed data, elemental
weight percentages never came up as being significant to the algorithms because of the low variation. If a
facility suspects that their composition is varying significantly, then data collection by real time method
such as LIBS would be valuable [91].

Table XI. Average and standard deviation values of 930 alloy composition checks during the timeframe
the engine block casting data were collected. Low variation in elemental composition results in individual
element weight percent being unimportant in the machine learning algorithms.

 Cu Si Fe Mn Mg Zn Ni Pb Sn Ti Cr
Average (wt%) 3.38 8.45 0.89 0.22 0.26 1.36 0.08 0.04 0.02 0.05 0.07
Std Dev 0.08 0.27 0.04 0.04 0.03 0.27 0.02 0.01 0.02 0.01 0.01

Reflecting on other inputs which were not included in the data for this study, the temperature of the die
cavity where the metal is solidified into its final shape is perhaps the most influential input parameter that
is to a large extent passively controlled. Most die casters rely on a condition of steady state, which is a
somewhat nebulous combination of cycle time, dwell time, die spray application parameters, cooling water
temperature and flow rate, the melt temperature and amount of metal delivered during each shot, alloy
chemistry, and the ambient environment in the factory. The effects of die temperature on porosity,
misconceptions on steady state, and its influence on porosity are expanded on in Section V –
Recommendations for Future Work.

Impact

A major impact of this research is fueling conversations, getting the industry thinking about data, talking
about data, and using their data. Professional industry societies like American Foundry Society (AFS),
North American Die Casting Association (NADCA), and The Minerals, Metals, and Materials Society
(TMS) are creating forums through conferences and webinars to educate the industry on the application of
machine learning to materials processing. I have been honored to participate and share my research through
these organizations.

This project has garnered industry attention by way of presentations at national conferences like the 2018
AFS Metalcasting Congress and 2018 AFS Aluminum Division Specialty Conference. Further propagation
occurred in presentations for the ASM Milwaukee Chapter in November 2018 and twice yearly at WPI’s
Advanced Casting Research Center from 2017 through 2020. Industry has responded. The American
Foundry Society (AFS) scheduled their first Foundry 4.0 Conference for June 8-10, 2020. Due to COVID-
19 pandemic, the conference has been postponed until spring 2021. This conference will bring in experts
from around the industry to discuss what the foundry of the future will look like and machine learning will
be an important pillar of the program.

Universities and professional societies are critical in the distribution of publications and knowledge. WPI
via the ACRC, AFS, and NADCA provide excellent opportunities for their member organizations to learn
about the future of the metalcasting industry through papers, trade magazines, conferences, courses, and
collaborative research. It is now in the hands of the foundries themselves to be intentional about data

40

collection and organization. Metalcasting operations must identify promising talent in the industry and
support their continuing education as Mercury Marine has chosen to do.

The following papers and industry presentations are products of this research:

1. Adam Kopper, Ning Sun, Diran Apelian, “Creating Knowledge from Big Data in Metal Casting
Operations”, Presented at 122nd Metalcasting Congress, April 3-5, 2018, Fort Worth, TX, AFS.

2. Adam Kopper, “Influence of Process Variables on Mechanical Properties of High-Pressure Die
Castings”, Presented at AFS Aluminum Cast Conference 2018, November 5-7, 2018, Knoxville,
TN, AFS.

3. Adam Kopper, “Data Analytics Opportunities in Production Foundry Operations”, Presented at
ASM Milwaukee Chapter Meeting, November 19, 2018, Milwaukee, WI.

4. Ning Sun, Adam Kopper, Rasika Karkare, Randy C. Paffenroth, Diran Apelian, “Machine Learning
Pathway for Harnessing Knowledge and Data in Material Processing”, International Journal of
Metalcasting, Accepted for publication, July 2020.

5. Adam Kopper, Rasika Karkare, Randy C. Paffenroth, and Diran Apelian, “Model
Selection and Evaluation for Machine Learning: Deep Learning in Materials Processing”,
J. of Integrating Materials and Manufacturing Innovation, submitted 7/10/2020.

6. Adam E. Kopper, Diran Apelian, “Predicting Quality of Cylinder Block Castings via Supervised
Learning Method”, International Journal of Metalcasting, Submitted July 2020.

7. Adam Kopper, “Bringing Artificial Intelligence to Your Materials Organization”, TMS, July 22,
2020. Webinar.

8. Adam Kopper, “Casting Quality Prediction via Supervised Machine Learning”, To be Presented at
AFS Foundry 4.0 Conference, June 8-9, 2021

V. RECOMMENDATIONS for FUTURE WORK

Machine learning in manufacturing is in its infancy which makes the potential for future work seemingly
boundless. There are many aspects of manufacturing to which machine learning can be applied near to the
scope of this work. Similarly, one can think of studies far from the field of the present one, but no less
interesting and transformative. In this section, we cover some of the data believed to increase the
performance of algorithms in predicting UTS and porosity as well as interesting food for thought on other
applications of machine learning. Owing to the large datasets required to start generating meaningful
results, it is important to start collecting data now in these areas.

In the previous section, the temperature of the die cavity was proposed to be an important piece of missing
information. At start-up, the die cavity steel increases in temperature as castings are made until the process
reaches steady state. Often this concept of steady state has more to do with how the parts look than actual
temperature readings from the cavity. Experience and process development history establish the criterion
for steady state, which is usually an established number of cycles, rather than a temperature value.

Die cavities are plumbed and cooled with water lines to obtain favorable solidification patterns in the parts
and keep the dies from getting too hot that the cycle time is impacted. Water lines are typically on or off
at the valve, not cycled and timed like one might find in a low-pressure permanent mold casting operation.
As a result, the die cavity is a heat sink with its temperature a function of the heat put in by the casting and
the heat removed by the water lines, convection from air movement, and conducted into other die
components. None of these heat removal operations are actively controlled with respect to the die
temperature. Thus, timing changes within the process due to delays small and large, affect the temperature
of the die. This is supported by the high feature importance of robot spray time, ejection time, and shot
count since last warm-up shot in the present research each of which can serve as a pseudo-proxy for die
temperature.

41

The importance of die temperature as a boundary condition for solidification processing and the potential
for variation suggest that die temperature be studied further. Miller demonstrated in a 1-D model how many
cycles it takes to attain a quasi-steady state [92]. This work challenges the common notions of steady state,
as the actual number of cycles to reach a quasi-steady state are often much larger than five. Other studies,
especially modeling based investigations, have shown that die temperature is a high impact parameter on
castings and the dies themselves [93]–[96]. Die temperature was found to be relevant to making predictions
via application of machine learning and Neural Networks [26], [27]. Mercury Marine has implemented
thermal imaging technology for die temperature measurement and has demonstrated promise in anomaly
detection such as active warm-up shot detection, die spray issues, and water line issues [95]. The data
collected has not been used to actively control the temperature of the cavity steel. For these reasons, a
robust and reliable method of collecting the die temperature is the next source of data to drive predictive
modeling forward. Knowing how and what to measure will lead the industry toward active control of die
cavity temperature [97], [98].

To support this claim that die temperature is an influential parameter, three process simulations were run
using MAGMASOFT 5.4 [99]. The subject of the simulation is a balance shaft housing for an outboard
motor application. In each simulation, six warm-up cycles are used. Conventional practice would agree
we are at steady state after these six cycles and the next castings are kept as good parts. Metal temperature
in the furnace was set to 677 ˚C (1250 ˚F) and the process parameters such as velocity, cycle time,
intensification pressure are held constant across all simulations. The parameter under investigation is the
starting temperature of the die cavity. For the three simulations the starting temperature of the cavity was
set to 149 ˚C (300 ˚F), 232 ˚C (450 ˚F), and 315 ˚C (600 ˚F). Temperature data was collected in the runner
and in an overflow as shown in Figure 20. The timeseries temperature data is presented in Figures 21 and
22 for the runner and overflow thermocouples respectively. These results confirm the importance of
monitoring and controlling die temperature. After six warm-up cycles the die is generally thought to be at
steady state, but the simulation tells a different story. The starting temperature matters to what the die
temperature will be when the operation starts considering parts to be of good quality.

Figure 20. Thermocouple locations where temperature data is collected during the process
simulations. a) TC_20 is in the runner as shown on the left and b) TC_23 is in the overflow
where the metal exits the cavity in the righthand image.

42

Figure 21. Runner thermocouple temperature over six warm-up shots with varying
starting temperatures 149 ˚C, 232 ˚C, and 315 ˚C. By differing starting temperature, the
resulting “steady state” temperature of the die is not the same.

Figure 22. Overflow thermocouple temperature over six warm-up shots with varying
starting temperatures 149 ˚C, 232 ˚C, and 315 ˚C. By differing starting temperature, the
resulting “steady state” temperature of the die is not the same.

43

Our simulation predicts the die temperature, but the significance of that is measured by whether or not the
internal soundness of the part is affected. Bulk porosity is an output of the simulation software, and Table
XII has the predicted bulk porosity for the last cycle of the three models. The percent increase in porosity
as starting die temperatures drop is enough to suggest that this is a process parameter that warrants more
attention.

Table XII. Effect of initial die temperature on the bulk porosity in the balance shaft housing simulation
after six cycles.

Initial Die Temperature (˚C) Bulk Porosity (%) Porosity Increase from
315 ˚C model

315 (600 F) 0.413 --
232 (450 F) 0.516 + 25%
149 (300 F) 0.568 + 38 %

Additionally, environmental data such as the ambient temperature and relative humidity in the plant were
shown in this work to be important variables in determining porosity severity in a sand foundry operation
(Appendix B). These may well be important in HPDC porosity too.

An adjacent application of machine learning which would be of high interest to foundries is X-ray porosity
recognition and interpretation. Reading digital X-ray is a method performed by humans which is subjective
and difficult to maintain a standard. It starts with being able to identify porosity from everything else in
the X-ray image. Can a machine learn how a human determines what porosity looks like? Porosity
recognition agnostic to the casting of which the X-ray was taken would be highly valuable to the foundry
industry. The next step would be to determine if an area of porosity captured on an X-ray is anomalous
when compared to the standard deviation about a mean X-ray image.

VI. REFERENCES

[1] S. P. Udvardy, “2018 State of the Die Casting Industry,” Cast. Eng., no. January 2019, pp. 10–15,
2019.

[2] A. Spada, “Revitalization of North American Metalcasting,” 2012, Accessed: May 24, 2020.
[Online]. Available: https://www.diecasting.org/docs/statistics/North_America.pdf.

[3] J. Folk, “U.S. Aluminum Casting Industry - 2019,” Cast. Eng., no. July 2019, pp. 16–19, Jun. 2019.
[4] D. Blondheim, “Artificial Intelligence, Machine Learning, and Data Analytics: Understanding the

Concepts to Find Value in Die Casting Data,” presented at the 2020 NADCA Executive
Conference, Clearwater Beach, FL, Feb. 25, 2020.

[5] “Industry 4.0: the fourth industrial revolution- guide to Industrie 4.0.” https://www.i-
scoop.eu/industry-4-0/ (accessed May 26, 2020).

[6] K.-D. Thoben, S. Wiesner, T. Wuest, BIBA – Bremer Institut für Produktion und Logistik GmbH,
the University of Bremen, Faculty of Production Engineering, University of Bremen, Bremen,
Germany, and Industrial and Management Systems Engineering, “‘Industrie 4.0’ and Smart
Manufacturing – A Review of Research Issues and Application Examples,” Int. J. Autom. Technol.,
vol. 11, no. 1, pp. 4–16, Jan. 2017, doi: 10.20965/ijat.2017.p0004.

[7] Capgemini Consulting Group, “Industry_4.0_-The_Capgemini_Consulting_V.pdf.” Capgemini,
2014, [Online]. Available: https://www.capgemini.com/consulting/wp-
content/uploads/sites/30/2017/07/capgemini-consulting-industrie-4.0_0_0.pdf.

[8] S. Weiss and I. Kapouleas, An Empirical Comparison of Pattern Recognition, Neural Nets, and
Machine Learning Classification Methods., vol. 1. 1989, p. 787.

44

[9] A. K. Jain, R. P. W. Duin, and Jianchang Mao, “Statistical pattern recognition: a review,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 22, no. 1, pp. 4–37, Jan. 2000, doi: 10.1109/34.824819.

[10] J. Fan and R. Li, “Statistical challenges with high dimensionality: feature selection in knowledge
discovery,” in Proceedings of the International Congress of Mathematicians Madrid, August 22–30,
2006, M. Sanz-Solé, J. Soria, J. L. Varona, and J. Verdera, Eds. Zuerich, Switzerland: European
Mathematical Society Publishing House, 2007, pp. 595–622.

[11] L. Hauser, “Internet Encyclopedia of Philosophy,” Artificial Intelligence.
https://www.iep.utm.edu/art-inte/ (accessed May 26, 2020).

[12] J. Friedman, R. Tibshirani, and T. Hastie, The Elements of Statistical Learning: Data Mining,
Inference, and Prediction. Springer, 2001.

[13] D. Dietrich, B. Heller, and B. Yang, Data Science and Big Data Analytics: Discovering, Analyzing,
Visualizing and Presenting Data, 1st ed. Wiley, 2015.

[14] K. Wagstaff, C. Cardie, S. Rogers, and S. Schroedl, “Constrained K-means Clustering with
Background Knowledge,” in Proceedings of the Eighteenth International Conference on Machine
Learning, 2001, pp. 577–584, Accessed: Jun. 29, 2020. [Online]. Available:
https://www.cs.cmu.edu/~./dgovinda/pdf/icml-2001.pdf.

[15] A. Likas, N. Vlassis, and J. J. Verbeek, “The global k-means clustering algorithm,” Pattern
Recognit., vol. 36, no. 2, pp. 451–461, Feb. 2003, doi: 10.1016/S0031-3203(02)00060-2.

[16] M. Al-Maolegi and B. Arkok, “An Improved Apriori Algorithm for Association Rules,”
ArXiv14033948 Cs, Mar. 2014, Accessed: Jun. 29, 2020. [Online]. Available:
http://arxiv.org/abs/1403.3948.

[17] Yanbin Ye and Chia-Chu Chiang, “A Parallel Apriori Algorithm for Frequent Itemsets Mining,” in
Fourth International Conference on Software Engineering Research, Management and Applications
(SERA’06), Aug. 2006, pp. 87–94, doi: 10.1109/SERA.2006.6.

[18] Y. Zhu and Y. Zhang, “The Study on Some Problems of Support Vector Classifier,” Comput. Eng.
Appl., no. 13, 2003, [Online]. Available: http://en.cnki.com.cn/Article_en/CJFDTotal-
JSGG200313011.htm.

[19] M. Peixeiro, “The Complete Guide to Support Vector Machine (SVM),” Towards Data Science, Jul.
29, 2019. https://towardsdatascience.com/the-complete-guide-to-support-vector-machine-svm-
f1a820d8af0b.

[20] L. Deng and D. Yu, “Deep Learning: Methods and Applications,” Found. Trends Signal Process.,
vol. 7, no. 3–4, pp. 197–387, Jun. 2014, doi: 10.1561/2000000039.

[21] Aporras, “What is the difference between Deep Learning and Machine Learning?,” QuantDare, Jan.
08, 2019. quantdare.com/what-is-the-difference-between-deep-learning-and-machine-learning/
(accessed Jun. 02, 2020).

[22] Y. Jiang et al., “Expert Feature-Engineering vs. Deep Neural Networks: Which Is Better for Sensor-
Free Affect Detection?,” in Artificial Intelligence in Education, Cham, 2018, pp. 198–211, doi:
10.1007/978-3-319-93843-1_15.

[23] F. Nargesian, H. Samulowitz, U. Khurana, E. B. Khalil, and D. Turaga, “Learning Feature
Engineering for Classification,” in Proceedings of the Twenty-Sixth International Joint Conference
on Artificial Intelligence, Melbourne, Australia, Aug. 2017, pp. 2529–2535, doi:
10.24963/ijcai.2017/352.

[24] W. Long, Z. Lu, and L. Cui, “Deep learning-based feature engineering for stock price movement
prediction,” Knowl.-Based Syst., vol. 164, pp. 163–173, Jan. 2019, doi:
10.1016/j.knosys.2018.10.034.

[25] T. Prucha, “From the Editor: AI Needs CSI: Common Sense Input,” Int. J. Met., vol. 12, no. 3, pp.
425–426, Jul. 2018, doi: 10.1007/s40962-018-0235-2.

[26] J. K. Rai, A. M. Lajimi, and P. Xirouchakis, “An intelligent system for predicting HPDC process
variables in interactive environment,” J. Mater. Process. Technol., vol. 203, no. 1–3, pp. 72–79, Jul.
2008, doi: 10.1016/j.jmatprotec.2007.10.011.

45

[27] P. K. D. V. Yarlagadda and E. Cheng Wei Chiang, “A neural network system for the prediction of
process parameters in pressure die casting,” J. Mater. Process. Technol., vol. 89–90, pp. 583–590,
May 1999, doi: 10.1016/S0924-0136(99)00071-0.

[28] R. Soundararajan, A. Ramesh, S. Sivasankaran, and A. Sathishkumar, “Modeling and Analysis of
Mechanical Properties of Aluminium Alloy (A413) Processed through Squeeze Casting Route
Using Artificial Neural Network Model and Statistical Technique,” Adv. Mater. Sci. Eng., vol.
2015, pp. 1–16, 2015, doi: 10.1155/2015/714762.

[29] S. Balasubramaniam and R. Shivpuri, “Improving the Quality in Die Casting Production Using
Statistical Analysis Procedures,” NADCA Trans. T99-071, 1999, [Online]. Available:
http://www.diecasting.org/transactions/T199-071.

[30] “ACRC - Advanced Casting Research Center.” https://wp.wpi.edu/acrc/ (accessed Jun. 02, 2020).
[31] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “SMOTE: Synthetic Minority

Over-sampling Technique,” J. Artif. Intell. Res., vol. 16, pp. 321–357, Jun. 2002, doi:
10.1613/jair.953.

[32] R. Blagus and L. Lusa, “SMOTE for high-dimensional class-imbalanced data,” BMC
Bioinformatics, vol. 14, no. 1, p. 106, Dec. 2013, doi: 10.1186/1471-2105-14-106.

[33] H. Han, W.-Y. Wang, and B.-H. Mao, “Borderline-SMOTE: A New Over-Sampling Method in
Imbalanced Data Sets Learning,” in Advances in Intelligent Computing, vol. 3644, D.-S. Huang, X.-
P. Zhang, and G.-B. Huang, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005, pp. 878–
887.

[34] L. Breiman, “Random Forests,” Mach. Learn., vol. 45, no. October 2001, pp. 5–32, 2001, doi:
10.1023/A:1010933404324.

[35] G. Drakos, “Random Forest Regressor explained in depth,” GDCoder, Jun. 04, 2019.
https://gdcoder.com/random-forest-regressor-explained-in-depth/ (accessed Jul. 12, 2020).

[36] “Z-Transform,” Wolfram MathWorld. https://mathworld.wolfram.com/Z-Transform.html (accessed
May 26, 2020).

[37] T. Wuest, D. Weimer, C. Irgens, and K.-D. Thoben, “Machine learning in manufacturing:
advantages, challenges, and applications,” Prod. Manuf. Res., vol. 4, no. 1, pp. 23–45, Jan. 2016,
doi: 10.1080/21693277.2016.1192517.

[38] R. Bellman, Dynamic Programming. Princeton University Press, 1957.
[39] F. Y. Kuo and I. H. Sloan, “Lifting the Curse of Dimensionality,” Not. AMS, vol. 52, no. 11, pp.

1320–1329, 2005.
[40] H. Abdi and L. J. Williams, “Principal component analysis: Principal component analysis,” Wiley

Interdiscip. Rev. Comput. Stat., vol. 2, no. 4, pp. 433–459, Jul. 2010, doi: 10.1002/wics.101.
[41] S. Wold, K. Esbensen, and P. Geladi, “Principal Component Analysis,” Chemom. Intell. Lab. Syst.,

vol. 2, pp. 37–52, 1987, doi: 10.1016/0169-7439(87)80084-9.
[42] C. Eckart and G. Young, “The approximation of one matrix by another of lower rank,”

Psychometrika, vol. 1, no. 3, pp. 211–218, Sep. 1936, doi: 10.1007/BF02288367.
[43] E. Briscoe and J. Feldman, “Conceptual complexity and the bias/variance tradeoff,” Cognition, vol.

118, no. 1, pp. 2–16, Jan. 2011, doi: 10.1016/j.cognition.2010.10.004.
[44] “Bias-Variance Tradeoff in Machine Learning,” AI Pool, Oct. 20, 2019. https://ai-pool.com/a/s/bias-

variance-tradeoff-in-machine-learning (accessed Jun. 02, 2020).
[45] A. Bhande, “What is underfitting and overfitting in machine learning and how to deal with it,”

medium.com, Mar. 11, 2018. https://medium.com/greyatom/what-is-underfitting-and-overfitting-in-
machine-learning-and-howto-deal-with-it-6803a989c76 (accessed Jun. 08, 2020).

[46] T. Chen and C. Guestrin, “XGBoost: A Scalable Tree Boosting System,” Proc. 22nd ACM SIGKDD
Int. Conf. Knowl. Discov. Data Min., pp. 785–794, Aug. 2016, doi: 10.1145/2939672.2939785.

[47] K. Song, F. Yan, T. Ding, L. Gao, and S. Lu, “A steel property optimization model based on the
XGBoost algorithm and improved PSO,” Comput. Mater. Sci., vol. 174, p. 109472, Mar. 2020, doi:
10.1016/j.commatsci.2019.109472.

46

[48] T. G. Dietterich, “An Experimental Comparison of Three Methods for Constructing Ensembles of
Decision Trees: Bagging, Boosting, and Randomization,” Mach. Learn., vol. 40, no. August 2000,
pp. 139–157, 2000, doi: https://doi.org/10.1023/A:1007607513941.

[49] A. Vezhnevets and O. Barinova, “Avoiding Boosting Overfitting by Removing Confusing
Samples,” in Machine Learning: ECML 2007, Berlin, Heidelberg, 2007, pp. 430–441.

[50] A. Apsemidis, S. Psarakis, and J. M. Moguerza, “A review of machine learning kernel methods in
statistical process monitoring,” Comput. Ind. Eng., vol. 142, Apr. 2020, doi:
10.1016/j.cie.2020.106376.

[51] M. Hofmann, “Support Vector Machines — Kernels and the Kernel Trick.” 2006, Accessed: Jul. 05,
2020. [Online]. Available: https://cogsys.uni-
bamberg.de/teaching/ss06/hs_svm/slides/SVM_Seminarbericht_Hofmann.pdf.

[52] M. Sanjay, “Why and how to Cross Validate a Model?,” Towards Data Science, Nov. 12, 2018.
towardsdatascience.com/why-and-how-to-cross-validate-a-model-d6424b45261f (accessed Jun. 04,
2020).

[53] Cort J. Willmott and Kenji Matsuura, “Advantages of the mean absolute error (MAE) over the root
mean square error (RMSE) in assessing average model performance,” Clim. Res., vol. 30, no. 1, pp.
79–82, 2005.

[54] T. Chai and R. R. Draxler, “Root mean square error (RMSE) or mean absolute error (MAE)? –
Arguments against avoiding RMSE in the literature,” Geosci. Model Dev., vol. 7, no. 3, pp. 1247–
1250, Jun. 2014, doi: 10.5194/gmd-7-1247-2014.

[55] J. Davis and M. Goadrich, “The Relationship between Precision-Recall and ROC Curves,” in
Proceedings of the 23rd International Conference on Machine Learning, New York, NY, USA,
2006, pp. 233–240, doi: 10.1145/1143844.1143874.

[56] J. I. Moore and P. J. Van Huis, “US4493362.pdf,” 4493362, Jan. 15, 1985.
[57] The Aluminum Association, Designations and Chemical Composition Limits for Aluminum Alloys

in the Form of Castings and Ingot, October 2018. Arlington, VA: The Aluminum Association,
2018.

[58] R. I. Lerman and S. Yitzhaki, “A note on the calculation and interpretation of the Gini index,” Econ.
Lett., vol. 15, pp. 363–368, 1984, doi: 10.1016/0165-1765(84)90126-5.

[59] A. Altmann, L. Toloşi, O. Sander, and T. Lengauer, “Permutation importance: a corrected feature
importance measure,” Bioinformatics, vol. 26, no. 10, pp. 1340–1347, Apr. 2010, doi:
10.1093/bioinformatics/btq134.

[60] ASTM International, “ASTM B 557-15, Test Methods for Tension Testing Wrought and Cast
Aluminum- and Magnesium-Alloy Products.” ASTM International, doi: 10.1520/B0557-15.

[61] C. H. Cáceres, “On the effect of macroporosity on the tensile properties of the Al-7%Si-0.4%Mg
casting alloy,” Scr. Metall. Mater., vol. 32, no. 11, pp. 1851–1856, Jun. 1995, doi: 10.1016/0956-
716X(95)00031-P.

[62] M. K. Surappa, E. Blank, and J. C. Jaquet, “EFFECT OF MACRO-POROSITY ON THE
STRENGI~ AND DUCTILITY OF CAST,” vol. 20, no. 9, p. 6.

[63] C. D. Lee and K. S. Shin, “Constitutive prediction of the defect susceptibility of tensile properties to
microporosity variation in A356 aluminum alloy,” Mater. Sci. Eng. A, vol. 599, pp. 223–232, Apr.
2014, doi: 10.1016/j.msea.2014.01.091.

[64] C. D. Lee, “Effects of microporosity on tensile properties of A356 aluminum alloy,” Mater. Sci.
Eng. A, vol. 464, no. 1–2, pp. 249–254, Aug. 2007, doi: 10.1016/j.msea.2007.01.130.

[65] J. Wang, Y. Ma, L. Zhang, R. X. Gao, and D. Wu, “Deep learning for smart manufacturing:
Methods and applications,” J. Manuf. Syst., vol. 48, pp. 144–156, Jul. 2018, doi:
10.1016/j.jmsy.2018.01.003.

[66] D. Twarog, D. Apelian, and A. Luo, High Integrity Casting of Lightweight Components, Publication
#307. NADCA, 2016.

[67] J. G. Kaufman and E. L. Rooy, Aluminum Alloy Castings Properties, Processes, and Applications,
1st ed. ASM, 2004.

47

[68] W. D. Callister, Materials Science and Engineering An Introduction, 3rd ed. Wiley, 1994.
[69] L. M. Surhone, M. T. Timpleton, and S. F. Marseken, Welch’s T Test. VDM Publishing, 2010.
[70] M. Drouzy, S. Jacob, and M. Richard, “Interpretation of Tensile Results by Means of Quality Index

and Probable Yield Strength,” AFS Int. Cast Met. J., no. June 1980, pp. 43–50, 1980.
[71] S. Jacob, “Quality Index in Prediction of Properties of Aluminum Castings - A Review,” AFS

Trans., vol. 108, pp. 811–818, 2000.
[72] M. K. Surappa, E. Blank, and J. C. Jaquet, “EFFECT OF MACRO-POROSITY ON THE

STRENGTH AND DUCTILITY OF CAST,” Scr. Metall., vol. 20, no. 9, pp. 1281–1286, 1986, doi:
10.1016/0036-9748(86)90049-9.

[73] C. H. Caceres and B. I. Selling, “Casting defects and the tensile properties of an Al-Si-Mg alloy,”
Mater. Sci. Eng. A, vol. 220, pp. 109–116, 1996, doi: 10.1016/S0921-5093(96)10433-0.

[74] D. L. Twarog, “State of the Die Casting Industry,” Cast. Eng., no. January, pp. 16–25, 2011.
[75] A. Oppermann, “Artificial Intelligence vs. Machine Learning vs. Deep Learning,” Towards Data

Science, Oct. 29, 2019. https://towardsdatascience.com/artificial-intelligence-vs-machine-learning-
vs-deep-learning2210ba8cc4ac (accessed Jun. 08, 2020).

[76] R. G. Mantovani, T. Horváth, R. Cerri, J. Vanschoren, and A. C. P. L. F. d. Carvalho, “Hyper-
Parameter Tuning of a Decision Tree Induction Algorithm,” in 2016 5th Brazilian Conference on
Intelligent Systems (BRACIS), Oct. 2016, pp. 37–42, doi: 10.1109/BRACIS.2016.018.

[77] D. Krstajic, L. J. Buturovic, D. E. Leahy, and S. Thomas, “Cross-validation pitfalls when selecting
and assessing regression and classification models,” J. Cheminformatics, vol. 6, no. 1, p. 10, Dec.
2014, doi: 10.1186/1758-2946-6-10.

[78] L. Garber and A. B. Draper, “The Effects of Process Variables on the Internal Quality of Aluminum
Die Castings,” NADCA Trans. T79-022, 1979, [Online]. Available:
http://www.diecasting.org/archive/transactions/T79-022.

[79] B. M. Asquith, “The Use of Process Monitoring to Minimize Scrap in the Die Casting Process,”
NADCA Trans. T97-063, 1997, Accessed: May 25, 2020. [Online]. Available:
http://www.diecasting.org/archive/transactions/T97-063.pdf.

[80] S. L. dos Santos, R. A. Antunes, and S. F. Santos, “Influence of injection temperature and pressure
on the microstructure, mechanical and corrosion properties of a AlSiCu alloy processed by HPDC,”
Mater. Des., vol. 88, pp. 1071–1081, Dec. 2015, doi: 10.1016/j.matdes.2015.09.095.

[81] H. Cao, M. Hao, C. Shen, and P. Liang, “The influence of different vacuum degree on the porosity
and mechanical properties of aluminum die casting,” Vacuum, vol. 146, pp. 278–281, Dec. 2017,
doi: 10.1016/j.vacuum.2017.09.048.

[82] I. Outmani, L. Fouilland-Paille, J. Isselin, and M. El Mansori, “Effect of Si, Cu and processing
parameters on Al-Si-Cu HPDC castings,” J. Mater. Process. Technol., vol. 249, pp. 559–569, Nov.
2017, doi: 10.1016/j.jmatprotec.2017.06.043.

[83] L. N. Smith, “A disciplined approach to neural network hyper-parameters: Part 1 -- learning rate,
batch size, momentum, and weight decay,” ArXiv180309820 Cs Stat, Apr. 2018, Accessed: Jun. 08,
2020. [Online]. Available: http://arxiv.org/abs/1803.09820.

[84] Wen Jin, Zhao Jia Li, Luo Si Wei, and Han Zhen, “The improvements of BP neural network
learning algorithm,” in WCC 2000 - ICSP 2000. 2000 5th International Conference on Signal
Processing Proceedings. 16th World Computer Congress 2000, Beijing, China, 2000, vol. 3, pp.
1647–1649, doi: 10.1109/ICOSP.2000.893417.

[85] J. de Villiers and E. Barnard, “Backpropagation neural nets with one and two hidden layers,” IEEE
Trans. Neural Netw., vol. 4, no. 1, pp. 136–141, Jan. 1993, doi: 10.1109/72.182704.

[86] G. Van Rossum and F. L. Drake, Python 3 Reference Manual. Scotts Valley, CA: CreateSpace,
2009.

[87] “Welcome to Python.org,” Python.org. https://www.python.org/ (accessed Jul. 12, 2020).
[88] R Core Team, R: A language and environment for statistical computing. Vienna, Austria: R

Foundation for Statistical Computing, 2013.

48

[89] A. Fabrizi, S. Ferraro, and G. Timelli, “The influence of Sr, Mg and Cu addition on the
microstructural properties of a secondary AlSi9Cu3(Fe) die casting alloy,” Mater. Charact., vol. 85,
pp. 13–25, Nov. 2013, doi: 10.1016/j.matchar.2013.08.012.

[90] S. G. Shabestari and H. Moemeni, “Effect of copper and solidification conditions on the
microstructure and mechanical properties of Al–Si–Mg alloys,” J. Mater. Process. Technol., vol.
153–154, pp. 193–198, Nov. 2004, doi: 10.1016/j.jmatprotec.2004.04.302.

[91] S. W. Hudson, J. Craparo, R. De Saro, and D. Apelian, “Applications of Laser-Induced Breakdown
Spectroscopy (LIBS) in Molten Metal Processing,” Metall. Mater. Trans. B, vol. 48, no. 5, pp.
2731–2742, Oct. 2017, doi: 10.1007/s11663-017-1032-7.

[92] R. A. Miller, “Multi-time Scale Systems and Quasi Equilibrium,” NADCA Trans. T16-082, 2016,
[Online]. Available: https://www.diecasting.org/archive/transactions/T16-082.pdf.

[93] S. Shahane, N. Aluru, P. Ferreira, S. G. Kapoor, and S. P. Vanka, “Optimization of solidification in
die casting using numerical simulations and machine learning,” J. Manuf. Process., vol. 51, pp.
130–141, Mar. 2020, doi: 10.1016/j.jmapro.2020.01.016.

[94] W. Sequeira, S. Sikorski, and M. Brown, “Application of Simulation As A Front-End Design Tool
In Die Cast Product Development And For The Optimization Of The Die Casting Process,” NADCA
Trans. T02-012, 2002, [Online]. Available: https://www.diecasting.org/archive/transactions/T02-
012.pdf.

[95] D. Blondheim, “Unsupervised Machine Learning and Statistical Anomaly Detection Applied to
Thermal Images,” NADCA Trans. T18-071, 2018, [Online]. Available:
http://www.diecasting.org/transactions/T18-071.

[96] B. Kosec, G. Kosec, and M. Soković, “Case of temperature field and failure analysis of die-casting
die,” J. Achiev. Mater. Manuf. Eng., vol. 20, pp. 471–474, 2007, doi: 10.1.1.526.5501.

[97] W. Bishenden and R. Bhola, “Die Temperature Control,” NADCA Trans. T99-051, 1999, [Online].
Available: https://www.diecasting.org/archive/transactions/T99-051.pdf.

[98] D. Schwam, “Additive Manufacturing of Cores with Conformal Cooling Lines,” NADCA Trans.
T16-041, 2016, [Online]. Available: http://www.diecasting.org/transactions/T16-041.

[99] MAGMASOFT. MAGMA.

A-1

Appendix A – Literature Review

I. Overview of Artificial Intelligence

The primary objective of the research is to delve into the nexus of materials processing and machine
learning to begin our understanding of the challenges unique to the materials processing field. It is
important to recognize that machine learning may be a new buzz word in industry and media, but the roots
of machine learning trace back to Allied Forces code breaking during World War II and Alan Turing. The
Turing test: where a remote human interrogator must distinguish between a computer and a human based
on responses to a series of questions posed by the interrogator was proposed in 1950 as a method for
determining when a computer, or an artificial intelligence, is thinking [1]. The mathematics was maturing,
but the computing power of the mid-century was prohibitively expensive and only capable of executing
commands [2], [3]. It could not store data. In 1956, the Dartmouth Summer Research Project on Artificial
Intelligence is credited as being the kick-off of artificial intelligence and is, in fact, the event at which the
term “artificial intelligence” was first introduced [4]. In 1965, Gordon E. Moore authored Moore’s Law
which states that every couple of years we can expect our computers be twice as fast and cost half as much
[5] (Figure 1).

Figure 1. Moore’s original 1965 chart predicting future computing power increases.

A-2

As computing power increased, popular culture anticipated the dawn of an era where machines would
become sentient. Science fiction novels such as Asimov’s I, Robot (1950) and Heinlein’s The Moon is a
Harsh Mistress (1966); are two classics in which artificial intelligence is presented as both fantastic and
dangerous to its creator. Moviegoers of the 1980’s were captivated by the possibilities of AI in classic
films like WarGames (1983) and The Terminator (1984) while at the same time terrified at how our human
ingenuity can be turned on us. These entertaining warning signs have not dissuaded human progress toward
artificial intelligence, rather they served as inspiration to the curious and industrial minds who awaited the
tools to make fantasy into reality.

In the scope of human progress, the wait has been brief. Since the above, the internet was created, and the
first website launched in 1991. Data has since become an endless resource to be mined and monetized
through targeted advertisements popping up before the eyes of the casual web surfer offering the right
product at the right time based on data gleaned from internet viewing and purchasing history. Artificial
intelligence would go on to notch key victories in man versus machine publicity events. In 1997, Deep
Blue defeated chess grand champion Gary Kasparov and Watson tallied a win for AI on the TV gameshow
Jeopardy! in 2011 [6]–[9]. Both stand as milestones in the progress of computers paralleling humans as
simply machines taking in, storing, and processing data.

Behind the headlines, advances in very practical uses of machine learning continued and, today, the use of
machine learning and deep learning is ubiquitous. The greatest source of data is people; all of us.
Algorithms that learn about us, store that information as data, and make decisions are the brains behind
Amazon’s Alexa™ and Apple’s Siri®. Texting is a commonplace method of communication that performs
AI before our eyes, yet many take this marvel for granted. We even get frustrated and curse an autocorrect
feature which is an amazing feat of machine learning on its own. When you send a text, you are offered
options for your next word to speed the process of communication. One of those options is often exactly
the word you were about to type. This is because the algorithm has been taught how humans communicate
in various languages. Moreover, it is learning how the specific owner of the smartphone communicates.
You can witness learning when you text something unique such as an uncommon name or a nonsense word
that only you and your brother would understand. The first time, you are offered similar options which are
familiar to the AI and, probably, you get autocorrected. Force the issue, and your phone learns that your
friend does spell her name that way, and, in context, will offer that spelling after the first couple of letters
are entered. How has artificial intelligence become so integrated into our lives without many even noticing?
The answer is that the economics have changed [10], [11]. Today, we are reaping the benefits of Moore’s
Law in computing speed and data storage and the growth continues [12]. An updated chart of Moore’s Law
is presented in Figure 2.

A-3

Figure 2. Timeline of computing speed growth [12].

Cloud data storage is allowing practically limitless amounts of data to be stored by companies without the
need to install and maintain server capacity. Simply rent storage space and the provider houses and
upgrades the equipment. The cost of memory has plummeted since Moore’s landmark paper and today a
megabyte of memory is pennies. The same amount of data, inflation adjusted, would have cost $5M in
1965 (Figure 3) [13].

A-4

Figure 3. Cost of memory has dropped sharply over the last 60 years [13].

As computational power and data storage per dollar increase, applications for AI will grow and improve.
This is not a fad, rather it is a transformation. The field of Data Science is growing and the job market for
this skillset is expected to grow by over 27% from 2016 to 2026 [14]. As recently as 2015, there were
virtually no undergraduate majors offered in Data Science. In 2020, there are over 60 universities offering
a undergraduate Data Science major [15].

While marketing applications such as targeted ads and coupons, credit card fraud detection, and streaming
media service recommendations are the average person’s daily interaction with machine learning, the
development of next wave applications is well underway [16], [17]. AI is driving object detection and sign
recognition for autonomous vehicles [18]–[20]. The medical field is using predictive modeling in disease
diagnosis [21] which is a game changing technology for rural areas and developing nations where doctors
are few and collaboration is limited. Facial recognition is going beyond finding individuals and national
security applications to emotion detection from facial pattern recognition [22], [23]. Once successfully
introduced in a business function, artificial intelligence is not easily supplanted. Humans constantly seek
productivity gains at home and at work. Businesses create value when they act on data driven decisions.
Efficiency gains are realized when human resources can focus on executing value-creating action while
algorithms do the laundry of crunching data 24 hours a day, 7 seven days a week to provide near real-time
direction.

Terminology

In this document, thus far, the terms artificial intelligence and machine learning have been used
interchangeably. Even now, as the field of artificial intelligence expands from the research groups and
universities into the media and to the public, the language has not fully settled. Media outlets intermix

A-5

these words so as not to be repetitive or to create pizzazz, and it can be confusing to the reader of this work.
Figure 4 illustrates how common terms are related.

Figure 4. Organization of common data science terminology.

For clarity, I will use the following glossary of terms through this text.

Algorithms: Any list of instructions which describe how to perform a task. In data science, these are
functions programmed in coding language which describe how a computer is to perform a task. For our
purposes, algorithm refers to a specific machine learning method or approach.

Artificial Intelligence (AI): The general application of employing machines to analyze data in the aim of
performing tasks or solving problems which require humanlike decision making.

Data Management: The collection, storage, and organization of data.

Data Pre-processing: Manipulation of data in preparation of performing analysis on the data. This includes
merging, cleaning, normalizing, and feature engineering.

Data Science: An all-encompassing term for the tools involved in data management, pre-processing,
analysis, and communication.

Deep Learning: A sub-set of machine learning which makes use of neural network learning algorithms to
perform predictive analyses. Deep learning algorithms often perform feature engineering functions
autonomously.

A-6

Feature Engineering: The application on domain expertise to the inputs of the dataset. Feature engineering
investigates what new information can be gained from the existing input data, application of weight to
inputs based on experience or physical laws, imputation strategy for missing values, and performing
mathematical operators like logarithms to specific inputs. Feature engineering is not applied to output data.

Machine Learning (ML): A sub-set of artificial intelligence in which algorithms learn through statistical
data analysis to make logic predictions. The teaching can be supervised, where the output of the training
data is known, or unsupervised, where the output of the training data is not known. Machine learning
algorithms rely on feature engineering by the user prior to executing the algorithm.

Neural Network: Neural networks are algorithms which run the input data through one or more hidden
layers to determine the output. The hidden layers are made of neurons which incorporate weights, bias,
and an activation function to arrive at an output which can be fed into the next hidden layer if there are
more than one.

Observation: An observation is synonymous with the word sample or individual. In a data frame, these
terms describe a row of data which consists of all the inputs and outputs associated with one unique object
of interest. In this project, each observation represents a unique cast component.

Standardizing: Bringing various input data columns into the same scale so that they can be analyzed by
machine learning algorithms which rely on mathematical distances to determine likeness.

Variables: Also referred to as features, inputs and outputs, or X’s and Y’s; variables represent the columns
of a data frame. These are the process parameters which are used to train models for making predictions
about new observations.

II. Industry 4.0

The fourth industrial revolution that ushered the Internet of Things (IoT) and the Internet of Services (IoS)
has come to be known as Industry 4.0. At the Hannover Messe in 2011, Germany launched a project called
“Industrie 4.0” designed to fully digitize manufacturing. The larger vision of Industry 4.0 is the digital
transformation of manufacturing, leveraging advanced technologies and innovation accelerators in the
convergence of IT (Information Technology) and OT (Operational Technology). The purpose is to integrate
connected factories within industry, decentralized and self-optimizing systems and the digital supply chain
in the information-driven cyber-physical environment of the fourth industrial revolution [16], [24]. The
evolution toward Industry 4.0 is given in Figure 5.

A-7

Figure 5. Chronology and characterization of the four Industrial Revolutions [24].

What does this mean for the foundry industry? Industry 4.0 is creating disruptive innovation in business
models and revenue sources transforming manufacturing plants into smart factories or foundries. Smart
foundries of the future will utilize Cyber-Physical Systems, digital interplay between the physical process
and its virtual representation, to assess current production activity, optimize and adjust in real time, to
ensure the best quality, efficiency, and production scheduling [25], [26]. IOT is the connection of, and
communication between, every capable device and sensor in a system thereby breaking down the
departmental and intra-factory information silos which hinder free data exchange. Extending beyond the
four walls of the foundry to the subsequent machining and assembly processes downstream opens the
possibilities of production scheduling adjustments and communication of specific quality issues instantly
fed upstream to the foundry, even directly to the casting work cell. Through the proper application of AI
and machine learning to Big Data analytics, the casting process can be fully mapped out and modeled to
create knowledge of which combinations of process parameters make goods parts. Given downstream
operational feedback and the current state of the process, the work cell can adjust its process accordingly
to a move into favorable operating window without human interaction. Three keystone digital technologies
will enable the transformation to smart factories: (i) connectivity, which implies executing industrial IoT to
collect data from various segments of the plant; (ii) intelligent automation which includes advanced robotics,
machine vision, digital twins, distributed control; and (iii) cloud-scale data management and analytics (AI
and Machine Learning) [17].

Machine Learning in Brief

Avoiding semantical arguments on where the lines are drawn between machine learning and deep learning,
it is generally agreed that both are forms of artificial intelligence rather than something entirely unique.
Both are useful in the analysis of materials processing data as well. The term machine learning, in this text,
represents the family of methods which use statistical and probability models trained on historical data to
make predictions about new observations. Common methods which fall under this umbrella include linear
regression, decision trees, k-means clustering, Apriori algorithm, and Support Vector Machines (SVM)
[27]–[34]. While packages and commands readily exist to facilitate using such algorithms, these methods

A-8

are not black box functions shrouded in mystery. Many of them rely on using mathematical distances to
determine how various observations are alike and what outcome should be expected if that information is
known.

In materials processing, where the input data often greatly exceeds the output data, unsupervised methods
such as k-means clustering are powerful tools allowing the user to group observations into clusters of
likeness. Using k-means is a good way to detect anomalies in the process which may be associated with
quality issues in the product or equipment performance issues which would be difficult to detect otherwise
[35]. When the output data is known, classification and regression models can be created using decision
trees or SVM for example. Thus, one can envision models which predict general attributes in a
classification model or specific values of a given output in regression model. The details of the specific
machine learning methods employed in this research are covered in Appendix C – Approach and
Methodology section of this text.

Deep Learning in Brief

Deep learning utilizes the same data preparation strategies and similar functions with which to make
predictions as machine learning [36]. Mostly, what makes two different is in the feature engineering
(Figure 6) [37]. Feature engineering is where the data scientist relies on domain expertise to engineer the
model inputs to make a higher performing model. One way this can be done is by assigning weights to
specific input variables based on physical laws, experience, or other sources of privileged information [38],
[39]. In machine learning, these weights are assigned manually. Deep learning utilizes hidden layers
comprised of nodes which automatically assign weights to variables as the algorithm learns more about the
data [39]–[41]. In this way, the deep learning algorithms are more of a black box than their machine
learning kin. By using the training data to generate the weights automatically, deep learning algorithms
can be more accurate than a human would otherwise be. As deep learning algorithms add additional
complexity (i.e. increase the number of hidden layers or nodes per layer), it is critical that large datasets be
used to train them. If not, the resulting model will not generalize well and, thereby, perform poorly on new
data. The details of the specific deep learning method employed in this research are covered in Appendix
E - Model Selection and Evaluation for Machine Learning: Deep Learning in Materials Processing
section of this text.

A-9

Figure 6. The difference between machine learning and deep learning is how the feature
engineering is performed [37]. Traditional machine learning utilizes subject matter expert
input to the model while deep learning employs automatic processes.

III. Materials Processing and High Pressure Die Casting

Materials processing is an interesting data processing and analysis challenge. Oftentimes, the product of
the companies in materials processing industries is a raw material for the next operation which may be in
the same facility or at a customer’s operation where further value is added in the journey toward the final
shape, assembly, etc. Its place in the product pipeline categorizes materials as commodities and pricing
pressures are high. This is true for most engineering materials such as steel, aluminum, PVC, and plywood
to name a few. Therefore, production processes are often large scale in terms of production tonnage and
units per hour. In this climate, sampling each unit of the product for the purposes of quality assurance or
process control slows productivity, adds cost, or may not be possible. Rather, once a process is running,
the sampling is done by lot, by shift, or some such audit frequency at which the operation is confident in
the product being produced. This creates a situation where the process is generating massive amounts of
input data, but little output data. Adding to a general scarcity of output data, operational practices and
situations can lead to missing data as heterogeneous data streams are fused together, where certain input
data is captured for some parts, but not all parts. Lastly, for these businesses to be viable, they must be
good at what they do. This leads to imbalanced datasets which are rich in good product but contain very
few examples of bad product. The aforementioned are important challenges to working with manufacturing

A-10

data. The specifics of how to address these challenges through data science methods, and their appropriate
cited works for the reader, are covered in Appendix C – Approach and Methodology and Appendix B –
Machine Learning Pathway for Harnessing Knowledge and Data in Material Processing.

Raw materials are not an isolated case, engineered components such as fasteners and metal castings reside
in a similar economic climate. An important method for casting near net-shape components today is high
pressure die casting (HPDC). HPDC has been in practice since the mid-nineteenth century. It started with
the casting of low temperature lead and tin alloys used in the linotype industry [42]. Today, it is the most
utilized casting method for aluminum components by tonnage in the United States and widely used
throughout world [43], [44] (Figures 7 and 8). In terms of dollars, the North American Die Casting
Association reported aluminum die castings to be over $8 billion in sales for 2019, while the American
Foundry Society reports the entire aluminum foundry industry to be $9.67 billion [45].

Figure 7. Quarterly aluminum foundry shipment by process for the United States foundry
industry 2010-2018. More die castings in tonnage are produced than sand and permanent
mold combined [43].

A-11

Figure 8. Total North American foundry operations by process. Die casting trails two
iron casting process as the third most employed process in North America [44].

HPDC aluminum components are primarily employed where weight reduction and high annual production
volumes are required. Die castings have evolved from largely housing-type components like covers and
enclosures, sumps, and pump bodies to include more demanding applications like engine blocks and body-
in-white nodes and pillars [46]–[50]. The demand for aluminum die castings is driven by automobile
production, yet Figure 9 shows many applications in recreational vehicles, marine propulsion, lighting, and
household appliances [43].

Figure 9. Breakdown of the 2019 North American die casting industry by application [43].

A-12

The 300-series of aluminum-silicon-magnesium alloys is the workhorse family of alloys in HPDC with
varying chemistries aimed toward optimizing a combination of engineering considerations like cost,
castability, machinability, corrosion resistance, strength, ductility, and wear resistance [51]. For this work
in application of machine learning on materials processing, aluminum high pressure die casting will serve
as the exemplar process. While the challenges in organizing and analyzing HPDC process data may be
unique in some respects, they are believed to be similar, in general, across many materials processing
disciplines. Machine learning and data science is of great interest to the materials processing industry.
Imagine the benefit if these operations could model their quality by monitoring critical process inputs and
running them through a machine learning algorithm. Such a future would result in increased uptime, rapid
response to production issues in near real time, and data driven confidence that the product made between
quality checks is acceptable.

A typical aluminum HPDC work cell consists of a furnace which holds the molten alloy, a transfer ladle, a
cold chamber HPDC machine, a steel mold in which the casting is solidified, and a trim press for separating
the parts from the runner system. Larger parts, which are awkward or too heavy for manual handling,
benefit from additional automation such as an industrial robot for removing the solidified casting from the
die and performing other finishing operations. Figure 10 shows a typical HPDC casting work cell. Figure
11 details key parts of the die casting machine (DCM).

Figure 10. A typical HPDC work cell layout [42].

A-13

Figure 11. Key components of a cold chamber die casting machine [42].

A: Close Cylinder E: Ejection Cylinder I: Stationary Platen M: Shot Cyl.
B: Tie Bars F: Moving Platen J: Cold Chamber N: Shot Rod
C: Rear Platen G: Die (Ejector Half) K: Intensifier Accumulator O: Shot Tip
D: Toggle H: Die (Stationary Half) L: Shot Accumulator P: Hyd. Tank

For the sake of establishing an order to the cycle, one may choose die spraying as the start of the HPDC
process and the steps of the cycle are as follows:

1. With the moving platen and, consequently, the die in the fully open position, the die cavity is
sprayed with a release agent either manually or with an auto-sprayer. Auto-sprayers may be a
purpose-built device or a six-axis industrial robot. Within the same step, the spraying is followed
by an air blow-off to remove excess from the die cavity.

2. The plunger tip is drawn back to the pour ready position and the moving platen closes the die. The
toggle clamp holds the die under locking tonnage. The tonnage is applied as the toggle puts the tie
bars in tension imparting a force on the die to keep it closed against the intensification pressure of
the machine cycle.

3. Molten alloy is ladled, or otherwise poured, into the cold chamber.
4. After pour, the shot cylinder valve is opened to begin the plunger movement forward. Slow shot

is the term used for the portion of the plunger travel which moves the tip past the pour hole of the
cold chamber.

5. Once the risk of metal splashing back out of the pour hole has passed, the shot control valve is
opened further ramping up the velocity to the point where the metal has reached the gates. The
gate is where the metal enters the die cavity.

6. When the metal has reached the gates, the shot control valve is fully opened the programmed
amount and fast shot plunger velocities of 3.5 to 5 m/s (140 to 190 inches per second) are attained
driving the metal to completely fill the cavity in a time period of 0.1-0.2 seconds.

A-14

7. Upon filling the cavity, the intensifier valve opens and applies additional pressure on the cavity as
the casting solidifies. A range of 25 to 50 MPa (3500-7500 psi) [42] is suitable for most
applications. This intensification pressure is used to feed porosity which results from volumetric
shrinkage in the phase change from liquid to solid.

8. Once the gates are frozen, no further feeding takes place and solidification of the heavier sections
continues in the part and the biscuit.

9. Upon solidification, the ejection platen retracts opening the die. The die is designed such that the
casting (part, runners, and biscuit) rides with the ejector half of the tooling. The ejector plate is
pushed forward driving ejector pins to free the part from the ejector half into a robotic gripper.

10. The extraction robot tends to post processing routines such as quenching, identification pin-
stamping, trimming, and loading an exit conveyor. Once the extract robot is clear, the spray cycle
is initiated, and the process begins again. Typical cycle times for large tonnage HPDC machines
(>1600 ton) are in the range of two to three minutes.

HPDC is rich for data mining. Useful data can be pulled from the controllers of each piece of equipment
in the cycle. Blondheim estimates that there are over 300,000 data which can be captured for each cycle
[52]. If one includes thermal imaging data of the die cavity and the individual data points which make up
the shot trace, this number explodes to over 2M input variable data per cycle. A reasonable estimate for an
annual volume on one die casting machine is 100,000 cycles. That would equate to two-hundred billion
data points per machine per year. Clearly, amassing features is not the challenge. Learning which features
are most important and collecting enough observations to be sure of it is where the difficulty resides.
Annual production volume of 200,000 pieces per year is a large number for HPDC but it is not Big Data.
Small data presents challenges in the machine learning space and this thesis will serve to expand our
understanding of these challenges and how to deal with them. This topic is covered in more detail in
Appendix C of this volume.

IV. Application of Machine Learning to Die Casting

The high productivity nature of HPDC, where manufacturing outpaces the feedback the operation receives
from quality checks and subsequent operations, is the right environment for applying machine learning
tools to process data. Die casters would like to know which input variables are most important to control
in their process and which outputs should be measured. They want to be confident that the process is in
control and making quality castings. To keep costs low, it is preferable to add controls and measures to the
casting process rather than add inspection and measurements post casting. It would be advantageous to
know when equipment is running optimally and precisely when it is wearing out. To realize these benefits,
the foundry industry must understand which machine learning tools fit their data environment.

Early applications of machine learning to HPDC center on the application of neural networks to predict
virtual process outputs. Rai et al.. used supervised learning by creating datasets with process simulation
software and then teaching a neural network to predict cavity fill time, solidification time, and porosity
based on the process inputs of melt and die temperature and slow and fast shot velocities [53]. They found
that the results of the neural network model compared well to those generated by commercially available
finite element mesh-based simulation software but did so in near real time. Similarly, Yarlagadda et al..
predicted fill time from the melt temperature, die temperature, injection pressure, and casting weight with

A-15

a neural network trained via process simulation software and went a step further by including domain
expertise from casting specialists [54]. Their predictions matched very closely to actual production die
castings.

This is a worthwhile endeavor; however, simulation software packages are built utilizing assumptions
which generate useful direction in building die casting tooling and choosing initial process settings. During
process development, parameters are tuned more finely to optimize part quality. This tuning is done based
on domain expertise and the results of actual castings. It is reasonable to expect a machine learning or deep
learning algorithm to find the rules the simulation software is using and make very similar predictions. The
next step is to apply the algorithms to serial production castings and determine which input variables are
driving quality or mechanical performance metrics and direct the process engineer how to tune the process
for best results.

The leap between the computationally trained algorithms and algorithms trained on observational data from
casting operations may seem daunting. There are many variables which are not monitored or controlled on
the factory floor (ambient environment, die temperature, cooling water flow rate) which either are not
included in the simulation, can be held constant, or are tracked as an output. In a controlled experiment
where 413-alloy aluminum is cast into simple cylindrical geometry under three levels of squeeze
(intensification) pressure, die preheat temperature, and molten metal temperature, Soundararajan et al. were
able to train and test a neural network predicting the UTS and YS of extracted tensile bars with a correlation
coefficient of 0.95 and 0.96 respectively (Figure 12) [55]. In their experiment, the selected levels represent
a wider range of process inputs than one might encounter on a fully developed production process. The
objective is to see changes in the casting and have an algorithm learn and predict these changes. A
production process, however, has one set of parameters. The objective is that there are no changes in the
castings, part after part, 24/7. Predicting the UTS variation of each sample accounting natural process
variation is a more difficult problem. This type of research lays the foundation from which the industry
can build and develop algorithms which predict the UTS of serial production castings with low variation in
input parameters.

A European research consortium called MUSIC (MUlti-layers control and cognitive System to drive metal
and plastic production line for Injected Components) planned to investigate a broader range of process
inputs via data analytics of experiments conducted on a highly instrumented HPDC cell. Results presented
at the 2015 NADCA Die Casting Congress confirm our understanding about the effects of intensification
pressure on porosity [56]. However, thus far, no predictive modeling based on experimental training data
have been published. The application of machine learning tools to observed HPDC production data remains
uncharted territory in the literature.

A-16

Figure 12. Soundararajan et al. demonstrate the possibility for an ANN to predict
mechanical properties of castings based on input parameters [55].

V. Literature Review on Input and Output Variables in HPDC

For a HPDC company to be successful, they must produce good quality castings. One may ask, what
measurable outputs constitute a good quality casting? A quality engineer will answer that a quality casting
is one that meets the drawing and engineering specifications provided by the customer. Based on this
definition, the acceptance criteria from one part to the next will vary according to the service requirements
of the casting. Drawings and engineering specifications set the values and tolerances a foundry must target
for acceptance by the customer. Examples include dimensions, surface finish, mechanical properties,
hardness, internal soundness, and pressure tightness. Any of these can be considered as outputs for machine
learning.

Dimensions are checked routinely at beginning and end of shifts and production runs in addition to die set-
ups and in the case of die maintenance performed mid-run. Typical methods of dimension checks are via
a coordinate measurement machine (CMM) or 3-D scanning technology. Surface finish is more often an
issue as the die cavity begins to reach end of life. The steel die experiences thermal fatigue cracking on the
surface which results in rougher and rougher casting surface [57]. Cast comparators and stylus
profilometers are commonly employed to assign a roughness measure (Ra) to the part [58].

A-17

Alloy composition is a process input which is called out on engineering drawings. The specified alloy ties
directly to mechanical properties and hardness as it is often the purpose of the elements added to the
aluminum to drive these characteristics. Regular mechanical property testing is not typically required in
traditional HPDC, but frequently is performed in other aluminum casting processes [59]–[61]. Even so,
new structural applications in HPDC have increased industry awareness regarding specifying and
measuring mechanical properties [46], [62], [63]. Tensile testing via methods outlined in ASTM B 557 is
the accepted method for capturing yield strength, ultimate tensile strength, and elongation [64].
Microstructure is another measurable output which may be called out as a required range in grain size,
eutectic silicon modification rating, and porosity limits [65]–[67].

Of the possible process outputs in HPDC which affect part performance, the amount of porosity and
mechanical properties are the most widely studied. Many HPDC components have a fluid containing or
transport function. Pump bodies, oil sumps and pans, compressors, valve bodies, various housings, and
engine blocks are common examples. Porosity is the leading scrap issue for such parts and die castings in
general (Figure 13) [68]. When these components are machined the porosity is exposed. Exposed porosity
on sealing surfaces has the potential to undermine sealing gasket function. Interconnected porosity can link
one machined surface with another creating an unacceptable leak path.

Figure 13. Quality issues with die castings [68].

It is of great importance that die casters gain as much knowledge about the root causes of porosity and how
to avoid it in regions of the part where it is not allowed. It is widely known that the presence of porosity
decreases the mechanical properties of tensile testing specimens, and this connection is often made in the
literature (Figure 14). One may quantify porosity in terms of amount, or one may measure mechanical
properties and link the lower performance test to increases in porosity [69]–[75].

A-18

Figure 14. Tensile strength suffers with increasing area fraction of defects at the fracture
[69].

In the North American Die Casting Association (NADCA) Operator Training course, students are taught
that porosity can be generally assigned to two sources: gas and solidification shrinkage [42]. Gas porosity
sources can be further broken down into entrapped air, gas from process lubricants, and hydrogen gas from
the aluminum melt [76]–[78]. Shrinkage porosity results from the volume contraction during solidification
and is more problematic in thicker regions of the casting which solidify last, after feed paths have been
frozen off [77], [79], [80].

It is important to note that the condition of the starting melt plays a role in determining the resulting
mechanical properties and porosity in the castings [65], [76], [81], [82]. Inclusions, such as oxide films
and sludge, in the melt provide nucleation sites for hydrogen gas and block feeding paths exacerbating
shrinkage [83]–[85]. The old phrase “garbage in, garbage out” certainly holds. This research is not focused
on melt cleanliness as an input. The die-casting facility where these engine blocks are cast uses industry
best practices in melt preparation and furnace maintenance. For the purposes of this research, the melt
cleanliness is taken to be of high quality and practically constant. By making this assumption, the presence
of porosity or mechanical property degradation due to hydrogen gas or inclusions in the melt are
incorporated in the background noise of the data and not expected to be a cause of significant shifts in the
results.

Gas from process lubricants can be severe [86], [87] , especially in manually operated die casting equipment
where the amount of lubrication applied can vary from operator to operator and cycle to cycle. Fully
automated HPDC work cells, such as those used in the generation of the data in this work, control the
application and amount of lubricant very accurately [88]. Equipment issues will occur over normal
production which lead to an increase in porosity. Leaking die spray manifolds, a leaking water line from a
cracked die component, a damaged tip lube applicator, and heavy application of anti-solder compound on

A-19

the die are all issues for which die casters must be on the alert when a sudden increase in porosity shows
up in their castings. What is common about these sources is that they arise and are remedied upon detection.
They tend to affect most, if not all, castings while the issue is active.

While hydrogen porosity and external gas evolution can be argued to be in control and, for our purposes,
constant, air entrapment is a different story. The two main sources of air in die castings are air being mixed
with the metal in the cold chamber and die cavity air being mixed with the metal due to the turbulent filling
of the mold [89]. In a 1979 study of process parameter effects on the density of A380-alloy HPDC castings,
Garber and Draper established the baseline understanding of the importance of fast shot velocity,
intensification pressure, die temperature gradient, melt temperature in the holding furnace, and die open
time [90]. They report that decreasing the fast shot velocity and increasing the intensification pressure have
the greatest effects on the improving the bulk density of their castings. They found only a small influence
from die temperature gradient. With the exception of die temperature, the parameters they chose remain
perhaps the most widely captured process input parameters in the industry today. The following paragraphs
detail what researchers have found in relating die casting inputs to mechanical properties.

Effect of HPDC Process Parameter Inputs

Vacuum

Die casters have utilized vacuum assist to facilitate removal of air from the cavity during filling. The
concept involves connecting a vacuum pump to the venting system of the die to draw out the cavity air and
any evolved gases ahead of the advancing metal once the plunger passes the pour hole. Most producers in
the business of structural automotive die castings, which require the best mechanical properties in the
industry, are employing a vacuum assisted method [91], [92].

Early quantitative studies showed that applying vacuum in the die cavity increased castings density and the
ultimate strength of HPDC components [93]. Another study from the same research center showed that
process parameter variation (e.g. shot velocities and intensification pressure) had an overriding effect on
the density results which masked the effect of the vacuum, however, parts cast under vacuum did show an
improvement in leak testing [94]. In a more recent work, Cao et al. cast engine blocks while varying the
vacuum over a range from 100 to 500 mbar holding all else constant. They observed an increase in
elongation and tensile strength as well as reduced porosity as the amount of vacuum is increased [95].

Slow Shot Velocity

The amount of mixing in the cold chamber is controlled by two parameters, the “percent full” of the cold
chamber and the velocity of the plunger at the initiation of the cycle. The term “percent full” refers to how
full the cold chamber is with molten alloy for each cycle. The fuller the cold chamber is with alloy, the less
air there is to be potentially entrapped. NADCA recommends 50-70% full to minimize air entrapment
during slow shot [42]. Slow shot is the term given for the initial plunger velocity setting and travel distance
at the beginning of the cycle. Alloy is ladled into the pour hole of the cold chamber just ahead of the
retracted plunger tip. The molten alloy runs along the length of the cold chamber until it meets the parting
line of the die. At this point a wave is ricocheted back toward the plunger tip. Timing is key and the
plunger forward motion is initiated when the ricochet wave meets the tip. A proper slow shot velocity will
maintain a built-up wave at the face of the shot tip and push all the chamber air out ahead of it through the

A-20

cavity and vents [42], [96]. Too fast and the wave will roll entrapping air. Too slow and the wave will
disengage from the tip and bounce back entrapping air. Important process inputs to include in a machine
learning model from this phase are slow shot velocity and biscuit length which is an indication of the amount
of metal poured.

Slow shot velocity has typically been studied in efforts to control the wave motion in the cold chamber.
Thome, Brevick, and Chu comprehensively modeled the wave formation and its relationship to air
entrapment accounting not only for a critical velocity for a stable wave front but also a critical acceleration.
While actual critical values are dependent on cold chamber geometry and the amount of metal poured,
accelerating to reach the critical velocity too quickly will result in instability and roll over [89]. Verran et
al.. conducted analysis of the slow shot velocity, fast shot velocity, and intensification pressure with respect
to their influence on porosity and cold shuts. They compared density and visual porosity ratings to numeric
simulations and determined that low porosity results from low velocity in both slow and fast shot in
combination with high intensification pressure [97].

Fast Shot Velocity

The second source of entrapped air is from the die cavity during filling. As the plunger continues to move
forward, it is accelerated though an intermediate transition from the slow shot velocity to the fast shot
velocity. Fast shot is the term used for the portion of the cycle where the cavity is filled with molten alloy.
The positions at which the velocity changes take place are determined by volume calculations or with the
aid of process simulation software. The objective is to have the plunger at the desired fast shot velocity
when the molten metal reaches the entrances into the cavity (the gates) [98], [99]. The cavity fill time is
measured on the order of milliseconds. A cavity space in the shape of an engine block will accept roughly
40 pounds of aluminum in one tenth of a second. It is fascinating that, while filling a cavity in fractions of
a second and applying enormous intensification pressure, die castings can exhibit incomplete fills, misruns,
or “cold shuts”. At the low end of what one might traditionally use for fast shot velocity Verran et al.
observed cold shuts at 1.23 m/s which were eliminated at 1.95 m/s [97]. Cleary, the high velocities are
necessary, and 3-5 m/s is typical for the industry [42]. The complex geometry and high fill velocity combine
to yield a highly turbulent filling pattern. While it is turbulent, the filling is not chaotic. Software packages
simulate the filling pattern quite closely [100]–[102]. Based on the simulated results venting is placed at
the edges of the casting to allow as much cavity air as possible to escape ahead of the advancing alloy.
Intermediate and fast shot velocities and cavity fill time are expected to influence porosity and, thus,
mechanical properties.

When it comes to linking fast shot velocity to porosity, the results in the literature are mixed and details on
the venting strategy in the tooling are not always reported. Gate velocities are also reported in the literature
in lieu of plunger velocity. Increased plunger velocity results in increased gate velocity as shown by the
equations below:

𝑣𝑜𝑙𝑢𝑚𝑒𝑡𝑟𝑖𝑐 𝑓𝑖𝑙𝑙 𝑟𝑎𝑡𝑒 = 𝐴𝑟𝑒𝑎 ∗ 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 Eq. 1

𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 =
.

 Eq. 2

A-21

Dargusch et al. reported no clear trends linking fast shot velocity to porosity in the castings of their study
of intensification pressure effects [103]. In another study, Okayasu and his team looked at gate velocities
which at the low to very low end of what is viable in production (0.15-40 m/s). The connection to the
plunger velocity is not given in the paper. High speed cold chamber die casting had lower mechanical
properties than their “ultra slow” speed die castings. They attribute this difference to scattered chill
microstructure structure (e.g. cold flakes) from the metal solidifying the chamber of the shot sleeve [104].
In Lumley’s study on heat treatment of high pressure die-castings, he varied the gate velocity and found
that increased gate velocity lead to improved mechanical properties upon heat treatment [105].
Gunasegaram et al. proposed that increased injection velocity paired with properly designed gating results
in fragmentation of impurities such as oxides, air bubble, and cold flakes due to the resulting higher shear
rates and turbulent energy dissipation during flow. The more broken up and dispersed these were, the better
the properties would be. They found that higher UTS and elongation were achieved with higher injection
velocity [106].

Intensification Pressure

Intensification pressure is applied at the end of the injection cycle to squeeze liquid metal from the thick
biscuit and runners into the void space formed by contraction of the solidifying metal in the cavity. While
the gates remain open and a feed path exists, shrinkage porosity can be supplied with additional metal.
Once the feed path is frozen, typically this is at the gates but could be within the casting itself, thicker
sections which contain liquid alloy cannot be fed and the result is shrinkage porosity. The amount of applied
intensification pressure is typically in the range of 25 to 50 MPa (3500-7500 psi) [42]. Because the regions
from which tensile bars can be extracted tend to be thick sections, microporosity from volumetric shrinkage
is likely to be present. Thus, variation in the intensification pressure can be expected to influence porosity
and, thereby, mechanical properties of the tensile bar.

The literature is consistent on the effect of intensification pressure. The higher the applied pressure during
solidification, the better the mechanical properties, particularly ultimate tensile and yield strengths [107],
and the less porosity is observed [97], [103], [108], [109]. Asquith reports that the relationship between
intensification pressure and bulk porosity in the casting is linear [110] and follows the formula published
by Kaye and Street in their book Die Casting Metallurgy [111]:

% Porosity = a/P +b Eq. 3

Where P is the intensification pressure and a and b are empirically determined constants. The amount of
intensification pressure available to apply in practice, however, is limited by the size of the die casting
machine and the projected area of the casting itself [112].

Thermal Inputs

At its simplest, any type of casting is solidification processing. The fundamental laws of heat transfer
dictate the solidification journey of a cast component. The initial thermal state of the system set the
boundary conditions for the piece to be cast. Thermal inputs to the HPDC process include the ambient
temperature of the factory, the holding temperature of the molten alloy, and the temperature of the die.
Additional thermal inputs are the details of the die cooling system which determine the rate at which heat
is removed from the system. Thermal effects of the die spray application are also considered. The durations

A-22

of time over which heat removal can take place are also inputs. Examples include the time the cooing water
is on, die spray time, die open time, and delay time between retrieving alloy from the furnace and pouring
the alloy. Of these, few are captured as data from shot to shot. Passive control tends to be the norm where
a piece of equipment is programmed to do a task and send a signal that it has returned home. The next
piece of equipment looking for that signal as an indication to “go” usually operates with a buffer where, if
it takes too long to see that signal, it relays that something is wrong. This buffer is generally set to such a
duration as to minimize a technician returning to the machine repeatedly to reset the same, perhaps benign,
fault condition. For example, it may be that when a 40 second task takes 60 seconds, notification is given
vie error message. However, smaller variations in time are forgiven, but may impact the thermal condition
for the following cycle.

Of the thermal inputs introduced above, in practice and in the literature, melt temperature is the most
captured and investigated. dos Santos et al. investigated combinations of melt temperature (579-709 C)
and intensification pressure for AlSi9Cu3(Fe) (A380 alloy) and found that the porosity tends to increase
with increasing melt temperature at high pressure, but no strong relationship was observed at low pressure
[107]. Yang reports similar results in squeeze casting of near-eutectic aluminum silicon alloys with respect
to mechanical properties; generally, the lower the melt temperature the better the mechanical properties
[113].

The temperature of the die is difficult to fully characterize. A thermocouple can be used to capture the
temperature in a specific location of the die, or several can be employed to get a better representation. The
shortcoming of this is that the metal is affected not only by the temperature of the die where it came to rest,
but every part of the die it encountered along the way. Thermal imaging shows the temperature profile of
the entire cavity surface within its view but is cost prohibitive to widely employ. For this reason, researchers
have long evaluated conditions which impact the die temperature, or otherwise alter the rate of heat
extraction from the casting, by measuring the grain size or the secondary dendrite arm spacing (SDAS) of
the resulting microstructure [66], [114]. These measures indicate the solidification rate of the casting.
Solidification rate is highly influential on the mechanical properties of metals as fast solidification results
in small grain size. Per the well-known Hall-Petch equation (Equation 4), smaller grains (and smaller
SDAS) increase the yield strength of metals. This has been confirmed in HPDC 380 alloy [115], [116] and,
specifically, on engine block castings [117].

𝜎 = 𝜎 +
√

 Eq. 4

Where:

 𝜎 is the yield stress of the material

 𝜎 and 𝑘 are materials constants

 𝑑 is the grain size of the microstructure

Effect of Alloy Composition

Alloy composition follows the specifications of a registering body, such as the Aluminum Association, for
popular die casting alloys such as A380, A383, B360, and 413 [118]. These specifications call out the
elemental composition of the alloy in weight percent and the allowable range for each element. In some

A-23

circumstances, a tighter range may be specified by the customer, but this is rare due to the added costs
associated with “off-spec” compositions. For HPDC, the most common family is the 300-series alloys
which are primarily alloys of aluminum (Al), silicon (Si), and magnesium (Mg). Variants of Aluminum
Association 380 alloy are often used in automotive powertrain castings like engine blocks and transmission
housings. E380 is the alloy used in the engine blocks for this research. Additional alloying elements present
in 380-type alloys include copper (Cu), zinc (Zn), iron (Fe), and manganese (Mn). Other trace elements
are present as well. Trace elements are controlled to low levels as they are typically undesirable in the alloy.

The standard practice for measuring alloy composition is optical emission spectroscopy (OES) [119]. In
OES, a sample of molten alloy is taken from the furnace and poured into a special mold which forms a test
coupon casting. The test coupon is typically 2.5-3.0” in diameter and 0.5” thick. The surface is ground or
machined and the OES uses a tungsten electrode to spark the prepared surface of the coupon. The light
emitted from the spark is analyzed to determine the composition of the alloy. The purpose for laying out
the steps of the test is to illustrate that the process is slow compared to production casting rates, thus it is
not feasible to use OES as a method of capturing alloy composition on each part. Laser Induced Breakdown
Spectroscopy (LIBS) is an interesting alternative method which would allow for real time collection of
compositional data in the furnace for each part cast [120]. Its use is not widespread in die casting operations,
though there is a real opportunity for data collection with LIBS in launder fed systems. The effects of
various alloying elements in aluminum are described in the following paragraphs.

Silicon (Si)

In 380-type alloys, the largest elemental addition is Si with a nominal composition of 8.5% by weight.
Because blending an alloy to a precise weight percent of each element is not practical, alloys are specified
by an allowable range or a maximum allowable composition. For Si, that range in 380-aluminum is 7.5-
9.5 wt%. Silicon plays an important role for die-cast aluminum alloys. Aluminum and silicon form a
eutectic phase which increases the freezing range of the alloy. Long solidification range alloys have
beneficial feeding characteristics. As a metal undergoes the phase transformation from liquid to solid, the
volume contracts. This phenomenon is commonly called shrinkage. In long solidification range alloys,
there is plently of liquid eutectic to feed the length of the mushy (solid + liquid) zone. Regions in the mushy
zone which freeze off before being fed are small, even microscopic. This shrinkage, called microshrinkage,
is preferred for die casting where there are no risers and limited means by which to feed the shrinking
casting. Therefore, Si is an important element used to minimize the size of porosity and increase the
castability [121]–[123]. The high melting point of Si imparts strength into the alloy at high temperatures
allowing for parts to be ejected from the steel dies very shortly after solidification is complete [42].

The mechanical properties of Al are affected by additions of Si up to 7.0 wt%; strength increases and
elongation decreases [124]. Additions beyond 7.0 wt% up to the eutectic composition of 12.7 wt% do not
significantly increase the strength of the alloy [65], [124], [125].

Magnesium (Mg)

In the traditional die casting workhorse alloy A380, the Mg is held to a 0.1% by weight maximum. Similar
alloys in other regions of the world such as ADC10 in Japan and ISO AlSi8Cu3Fe have long allowed a 0.3%
by weight maximum Mg content [126]. E380 is an Aluminum Association designation which allows for
the same 0.3% Mg as the international specifications. Magnesium combines with silicon to form an

A-24

effective precipitation hardening compound via T6 heat treatment in sand and permanent mold cast
aluminum-silicon alloys which contain no copper. Magnesium is removed by common fluxing processes
used for cleaning alloys in the smelting operation. Since traditional high-pressure die-castings were not
heat treated, there was no cause to replace the Mg loss. Interest in investigating elevated Mg effects in
traditional die-casting alloys peaked in the 2000’s with a focus of gaining strength through precipitation
hardening via heat treatment [105], [116], [127]. Yang et al. examined the effects of Mg on mechanical
properties in Al-Si-Cu alloys as its weight percent was increased over the range of 0.01% to 0.88% [128].
They found that as the Mg level was increased, the yield strength and ultimate tensile strength increased.
In the as-cast condition, additional Mg increased both strength values through the range, however, the
impact on UTS was less. While strength increased, the elongation dropped. Once T6 heat treated, the
addition of Mg beyond 0.3% offered no strength benefit and elongation continues to drop with increased
Mg. Increased strength at the expense of elongation associated with increased Mg levels has been observed
across similar alloys and other casting processes [116], [129], [130]. Fabrizi et al. examined the effect of
various alloying elements on AlSi9Cu3(Fe) die-casting alloy [131]. They report an interesting
interrelationship between the Cu, Strontium (Sr) and Mg content on the amount of microporosity in the
resulting castings. While Cu and Sr were found to increase the porosity, additions of Mg were observed to
counteract this phenomenon. Porosity analysis showed that adding Sr to a nominal AlSiCu3(Fe) alloy
increases the porosity nearly three times. Doubling the Mg of this alloy from 0.24 to 0.46 wt% counteracted
the Sr effect completely. Subsequently, increasing the Cu content of the alloy with added Mg brought the
porosity nearly back where it was with the Sr addition alone.

Copper (Cu)

Aluminum-Copper alloys hold great promise with some of the the highest mechanical properties
commercially available in a lightweight aluminum alloy, but they are challenging to cast because they
behave in the opposite manner of AlSi alloys. AlCu alloys have a short freezing range which allows near
complete feeding of the mushy zone. The challenge arises at the end of solidification when the shrinkage
porosity is concentrated in the last areas to solidify. This porosity can be quite large macroporosity. There
is so much concentrated volume contraction that the casting can literally pull itself apart in a phenomenon
called hot tearing [77], [132]. Sand and semi-permanent mold casting processes use insulated risers to
continue to provide feed metal into these areas. HPDC has no such flexibility and, therefore, AlCu alloys
are not used in HPDC. This however does not preclude Cu from being added to AlSi alloys like 380, which
allow 2-3 wt% Cu. Copper is added to 380-type aluminum alloys to impart strength and hardness in the
absence of Mg [130]. In some alloys, Cu is restricted to improve the corrosion resistance of the alloy,
particularly in marine applications [133].

The main influence of Cu content in aluminum alloys is its connection to porosity. Numerous studies have
shown that microporosity increases with increasing copper content [108], [131], [134]–[136]. The cause
of the increased porosity is generally attributed to the formation of a low melting point AlCu eutectic which
solidifies after the feed paths for intensification pressure have been frozen off. The resulting volume
contraction is observed as microporosity [137].

Iron (Fe)

It has been long understood that Fe is a bad actor negatively impacting the ductility of Al-Si-Mg alloys
[138], [139]. The reason is attributed to the morphology of the intermetallic β-phase which it forms in

A-25

combination with Mg and Si [139]–[141]. The relatively large plate-like geometry is a microstructural
stress concentrator embrittling the alloy. Seifeddine and Svennsson sought to predict mechanical properties
of Al-Si alloys based on Fe content. A354 was studied with Fe between 0.35 and 0.65 wt% which is where,
or toward the high end of where, structural die casting alloys are specified. They found that elongation is
reduced with increasing iron content, however, the levels studied did not impact the yield and ultimate
strength of the alloy [141].

Despite this knowledge, Fe concentrations of up to 1.3 and even 2 wt% are allowed in many die casting
alloys. The necessity of Fe in 300-series die casting alloys is that it remedies parts being stuck to the die
surface. This sticking has been shown to accompany the presence of iron-containing intermetallics.
Consequently, the mechanism for sticking and soldering of aluminum parts to the die steel has been
approached from the thermodynamics of phase formation [142]–[144]. Aluminum has a high affinity for
Fe; a fact commonly observed in foundries where molten aluminum dissolves steel foundry tools such as
skimmers and ladles. It has been long accepted that Fe pre-existing in the molten alloy would mitigate the
driving force for further reaction between the molten aluminum and the die steel. Current research at
Michigan Technological University by Monroe and Sanders challenges this understanding [145].
Nonetheless, Fe does provide a service in preventing parts sticking to the die steel even if the mechanism
is under debate.

Manganese (Mn)

The amount of manganese in the alloy in relation to the Fe content can be chosen to promote the
intermetallic α-phase. Donahue has shown that there is a critical ratio at which the β-phase formation is
suppressed, and the morphologically favorable α-phase is formed [50]. The sweet spot for alloy smelting
control is to keep the Mn around 0.35 wt% and the Fe below 0.40 wt%. Li et al. observed that morphology
of the iron intermetallics are influenced by Fe and Mn content in gravity die casting as well. Increasing the
ratio of Mn (0.01 to 0.51%) to Fe (0.14 to 0.80%) from 0.07 to 0.64 led to an increase in the ratio of alpha
to beta intermetallics [146]. Modern structural die-casting alloys, such as A367, take advantage of this
relationship to reduce the Fe content and increase the ductility of the alloy.

VI. Prediction Target Selection (Ultimate Tensile Strength)

The published research on the impact of alloy compositions and process parameters is a sizeable collection.
Ultimately, the impact is determined by a measurable quantity. Mechanical properties are all-encompassing
measures of the microstructural features, solidification discontinuities, and porosity from processing effects.
Efforts to determine predictive equations have been performed to either predict mechanical properties from
microstructure features and discontinuities or get a better sense of the microstructure and defect population
from the mechanical properties. Okayasu et al. evaluated cast microstructures for SDAS, microporosity
rating, diameter of eutectic structures, aspect ratio of eutectic structures, and dislocation density and found
that, via multiple regression analysis, equations generated can predict UTS accurately [147]. Such work is
interesting to predict mechanical properties from microstructural features, but too time consuming for
characterizing each casting (i.e. from a coupon). It would be beneficial to the industry to have a similar
model for process input parameters, and a method to develop such an equation for each casting.

A-26

Surrapa published his work on the effect of macroporosity at the fracture surface on tensile properties in
gravity die cast samples. He reported that the projected pore area on the fracture surface was more
significant than the bulk porosity calculation one might perform from a density measurement [148].
Caceras numerically modeled this behavior [149]. This work has expanded to apply similar methods to
include the effects of microporosity at the fracture surface on the variability of tensile properties [69]–[72],
[74], [75]. Unfortunately, no articles were discovered during this literature search applying the analysis to
HPDC A380 alloy. An operational challenge is that this practice requires the destruction of a casting to
measure the mechanical properties. However, for many foundries quantifying digital X-rays manually can
be arduous and, ultimately, subjective [150]–[153]. On a sample basis, measuring the UTS in the area of
interest as a quantitative value which can be connected to an indication of porosity via empirically
determined formulas would benefit the die casting industry. Only an indication of porosity, though, since
projected porosity is an area measure and actual porosity is a volumetric quantity. If a predictive model for
UTS can be generated based on process input data, the UTS values can be converted to this porosity metric.

VII. Gap in the Literature

In the highly controlled experiments in the literature, it is generally assumed that the process should run as
consistently as possible. Several cycles, perhaps 5 to 10, are run to achieve a thermal steady state before
collecting samples for investigation. The number of samples collected for analysis tends to be small, less
than 50. The industry has gained much from these studies, but there are some potentially significant
parameters which cannot be accounted for in lab-scale or development-cell scale operations. In the late
1990’s Balasubramaniam applied statistical analysis to 27 casting variables from regular production and
found that higher intensification pressure rise time and lower cycle time were key inputs which improved
the part density[154]. Interestingly, these parameters do not show up in any of the studies presented thus
far. This highlights the need for more research in high-dimensional studies.

Die casting is a thermal process and time is an important factor that is often overlooked or simply held as
constant as possible, but rarely measured and reported. The impact of variation in overall cycle time or
timers for specific segments of the cycle are not published. Time impacts the die temperature. Running
shorter cycle times will put more heat into the die raising the die temperature. But overall cycle time is not
the whole picture. Increasing cycle time by increasing the dwell time (the time between casting and part
ejection) will also put more heat into the die. Thus, it depends not only on if time is changing but when
time is changing.

Variations in the process occur over serial production of shaped castings which have not been investigated.
For example, in a small-scale tensile-bar casting study, the furnace level changes very little from the first
shot to the last. Conversely, in production casting, the level in the furnace can drop (8 in) before being
refilled (Figure 15). This can result in variation in the amount of metal delivered by the ladle [155].

A-27

Figure 15. Variation in furnace level in production operation is not experienced in small-
scale experiments.

Longer term variation effects are less obvious without careful data collection and monitoring. For example,
as the equipment wears, its ability to deliver the programmed performance diminishes until the next
scheduled maintenance is performed. Perhaps a die spray unit gradually slows down until it is greased.
This may result in a longer cycle time which is difficult to diagnose without the proper data. These
intricacies of the HPDC process and their effects on part quality require large, production-sized, datasets to
understand.

For this research, the process data from one calendar year of engine block production along with the
mechanical property quality checks were generously provided by the FCA Kokomo Casting Plant. The raw
data is comprised of over 950,000 casting cycles and over 1600 tensile bar test results. Included in the
process inputs are many of the process parameters shown to be significant in the literature with respect to
tensile properties and porosity including average slow and fast shot velocities, intensification pressure, melt
temperature, and cycle time. A complete list can be found in at the end of Appendix C – Approach and
Methodology. The goal of this project is to apply machine learning to the datasets and uncover the
challenges associated with materials processing datasets. It is important to determine which machine
learning tools work well with the type and size of data collected in HPDC operations. These findings will
be based on our attempts to predict mechanical properties of extracted tensile bars from engine block
castings and learn which process parameters are most important for making accurate predictions.

A-28

VIII. References

[1] A. M. Turing, “I.—COMPUTING MACHINERY AND INTELLIGENCE,” Mind, vol. LIX, no.
236, pp. 433–460, Oct. 1950, doi: 10.1093/mind/LIX.236.433.

[2] W. D. Nordhaus, “Two Centuries of Productivity Growth in Computing,” J. Econ. Hist., vol. 67, no.
1, pp. 128–159, Mar. 2007, doi: 10.1017/S0022050707000058.

[3] W. D. Nordhaus, “The Progress of Computing,” Social Science Research Network, Rochester, NY,
SSRN Scholarly Paper ID 285168, Sep. 2001. Accessed: Jun. 29, 2020. [Online]. Available:
https://papers.ssrn.com/abstract=285168.

[4] J. McCarthy, M. Minsky, N. Rochester, and C. E. Shannon, “A Proposal for the Dartmouth Summer
Research Project on Artificial Intelligence.” Aug. 31, 1955, Accessed: Feb. 17, 2020. [Online].
Available: https://wvvw.aaai.org/ojs/index.php/aimagazine/article/view/1904.

[5] G. E. Moore, “Cramming More Components Onto Integrated Circuits,” Proc. IEEE, vol. 86, no. 1,
pp. 82–85, Jan. 1998, doi: 10.1109/JPROC.1998.658762.

[6] M. Campbell, A. J. Hoane, and F. Hsu, “Deep Blue,” Artif. Intell., vol. 134, no. 1, pp. 57–83, Jan.
2002, doi: 10.1016/S0004-3702(01)00129-1.

[7] F.-H. Hsu, Behind Deep Blue: Building the Computer that Defeated the World Chess Champion.
Princeton University Press, 2004.

[8] D. A. Ferrucci, “Introduction to ‘This is Watson,’” IBM J. Res. Dev., vol. 56, no. 3.4, p. 1:1-1:15,
May 2012, doi: 10.1147/JRD.2012.2184356.

[9] “Build Watson | Proceedings of the 19th international conference on Parallel architectures and
compilation techniques.” https://dl.acm.org/doi/abs/10.1145/1854273.1854275 (accessed Jun. 29,
2020).

[10] G. D. Hutcheson, “Moore’s Law: The History and Economics of an Observation that Changed the
World,” Electrochem. Soc. Interface, no. Spring 2005, pp. 17–21, 2005.

[11] G. D. Hutcheson, “The Economic Implications of Moore’s Law,” in High Dielectric Constant
Materials: VLSI MOSFET Applications, H. R. Huff and D. C. Gilmer, Eds. Berlin, Heidelberg:
Springer, 2005, pp. 1–30.

[12] J. Hruska, “Moore’s Law is dead, long live Moore’s Law - ExtremeTech.”
https://www.extremetech.com/extreme/203490-moores-law-is-dead-long-live-moores-law (accessed
Feb. 17, 2020).

[13] P. Johnson, “Falling Cost of Memory: 1957 to Present – Let’s Talk Data.”
https://letstalkdata.com/2014/04/falling-cost-of-memory-1957-to-present/ (accessed Feb. 17, 2020).

[14] M. Rieley, “Big data adds up to opportunities in math careers : Beyond the Numbers: U.S. Bureau
of Labor Statistics.” https://www.bls.gov/opub/btn/volume-7/big-data-adds-up.htm (accessed Feb.
17, 2020).

[15] “Data Science Major | Best 62 Data Science Bachelor’s Programs for 2020,”
DiscoverDataScience.org. https://www.discoverdatascience.org/programs/bachelors-in-data-
science/ (accessed Feb. 17, 2020).

[16] K.-D. Thoben, S. Wiesner, T. Wuest, BIBA – Bremer Institut für Produktion und Logistik GmbH,
the University of Bremen, Faculty of Production Engineering, University of Bremen, Bremen,
Germany, and Industrial and Management Systems Engineering, “‘Industrie 4.0’ and Smart
Manufacturing – A Review of Research Issues and Application Examples,” Int. J. Autom. Technol.,
vol. 11, no. 1, pp. 4–16, Jan. 2017, doi: 10.20965/ijat.2017.p0004.

[17] Capgemini Consulting Group, “Industry_4.0_-The_Capgemini_Consulting_V.pdf.” Capgemini,
2014, [Online]. Available: https://www.capgemini.com/consulting/wp-
content/uploads/sites/30/2017/07/capgemini-consulting-industrie-4.0_0_0.pdf.

[18] “Press Release: Ford Invests in Argo AI, a New Artificial Intelligence Company, in Drive for
Autonomous Vehicle Leadership,” businesswire, Feb. 10, 2017.
https://www.businesswire.com/news/home/20170210005537/en/Ford-Invests-Argo-AI-New-
Artificial-Intelligence (accessed Jul. 01, 2020).

A-29

[19] L. Claussmann and M. Revilloud, “A Study on AI-based Approaches for High-Level Decision
Making in Highway Autonomous Driving,” 2017, pp. 3671–3676, doi:
10.1109/SMC.2017.8123203.

[20] S. S. Shadrin, O. O. Varlamov, and A. M. Ivanov, “Experimental Autonomous Road Vehicle with
Logical Artificial Intelligence,” J. Adv. Transp., vol. 2017, pp. 1–10, 2017, doi:
10.1155/2017/2492765.

[21] R. A. Greenes, “Clinical Decision Support and Knowledge Management,” in Key Advances in
Clinical Informatics, Elsevier, 2017, pp. 161–182.

[22] M. S. Bartlett, G. Littlewort, M. Frank, C. Lainscsek, I. Fasel, and J. Movellan, “Fully Automatic
Facial Action Recognition in Spontaneous Behavior,” in 7th International Conference on Automatic
Face and Gesture Recognition (FGR06), Southampton, UK, 2006, pp. 223–230, doi:
10.1109/FGR.2006.55.

[23] M. S. Bartlett, G. Littlewort, M. Frank, C. Lainscsek, I. Fasel, and J. Movellan, “Recognizing Facial
Expression: Machine Learning and Application to Spontaneous Behavior,” in 2005 IEEE Computer
Society Conference on Computer Vision and Pattern Recognition (CVPR’05), San Diego, CA, USA,
2005, vol. 2, pp. 568–573, doi: 10.1109/CVPR.2005.297.

[24] “Industry 4.0: the fourth industrial revolution- guide to Industrie 4.0.” https://www.i-
scoop.eu/industry-4-0/ (accessed May 26, 2020).

[25] A. S. Vanli, A. Akdogan, K. Kerber, S. Ozbek, and M. N. Durakbasa, “SMART DIE CASTING
FOUNDRY ACCORDING TO INDUSTRIAL REVOLUTION 4.0,” Acta Tech. Napoc., vol. 61,
no. IV, pp. 787–792, 2018.

[26] R. K. Jain, P. Banerjee, D. Baksi, and S. K. Samanta, “IoT Based Interface Device for Automatic
Molding Machine towards SMART FOUNDRY-2020,” in 2019 10th International Conference on
Computing, Communication and Networking Technologies (ICCCNT), Kanpur, India, Jul. 2019, pp.
1–6, doi: 10.1109/ICCCNT45670.2019.8944549.

[27] J. Friedman, R. Tibshirani, and T. Hastie, The Elements of Statistical Learning: Data Mining,
Inference, and Prediction. Springer, 2001.

[28] D. Dietrich, B. Heller, and B. Yang, Data Science and Big Data Analytics: Discovering, Analyzing,
Visualizing and Presenting Data, 1st ed. Wiley, 2015.

[29] K. Wagstaff, C. Cardie, S. Rogers, and S. Schroedl, “Constrained K-means Clustering with
Background Knowledge,” in Proceedings of the Eighteenth International Conference on Machine
Learning, 2001, pp. 577–584, Accessed: Jun. 29, 2020. [Online]. Available:
https://www.cs.cmu.edu/~./dgovinda/pdf/icml-2001.pdf.

[30] A. Likas, N. Vlassis, and J. J. Verbeek, “The global k-means clustering algorithm,” Pattern
Recognit., vol. 36, no. 2, pp. 451–461, Feb. 2003, doi: 10.1016/S0031-3203(02)00060-2.

[31] M. Al-Maolegi and B. Arkok, “An Improved Apriori Algorithm for Association Rules,”
ArXiv14033948 Cs, Mar. 2014, Accessed: Jun. 29, 2020. [Online]. Available:
http://arxiv.org/abs/1403.3948.

[32] Yanbin Ye and Chia-Chu Chiang, “A Parallel Apriori Algorithm for Frequent Itemsets Mining,” in
Fourth International Conference on Software Engineering Research, Management and Applications
(SERA’06), Aug. 2006, pp. 87–94, doi: 10.1109/SERA.2006.6.

[33] Y. Zhu and Y. Zhang, “The Study on Some Problems of Support Vector Classifier,” Comput. Eng.
Appl., no. 13, 2003, [Online]. Available: http://en.cnki.com.cn/Article_en/CJFDTotal-
JSGG200313011.htm.

[34] M. Peixeiro, “The Complete Guide to Support Vector Machine (SVM),” Towards Data Science, Jul.
29, 2019. https://towardsdatascience.com/the-complete-guide-to-support-vector-machine-svm-
f1a820d8af0b.

[35] D. Blondheim, “Unsupervised Machine Learning and Statistical Anomaly Detection Applied to
Thermal Images,” NADCA Trans. T18-071, 2018, [Online]. Available:
http://www.diecasting.org/transactions/T18-071.

A-30

[36] L. Deng and D. Yu, “Deep Learning: Methods and Applications,” Found. Trends Signal Process.,
vol. 7, no. 3–4, pp. 197–387, Jun. 2014, doi: 10.1561/2000000039.

[37] Aporras, “What is the difference between Deep Learning and Machine Learning?,” QuantDare, Jan.
08, 2019. quantdare.com/what-is-the-difference-between-deep-learning-and-machine-learning/
(accessed Jun. 02, 2020).

[38] A. Zheng and A. Casari, Feature Engineering for machine learning: Principles and techniques for
data scientists. Beijing: O-Reilly, 2018.

[39] Y. Jiang et al., “Expert Feature-Engineering vs. Deep Neural Networks: Which Is Better for Sensor-
Free Affect Detection?,” in Artificial Intelligence in Education, Cham, 2018, pp. 198–211, doi:
10.1007/978-3-319-93843-1_15.

[40] F. Nargesian, H. Samulowitz, U. Khurana, E. B. Khalil, and D. Turaga, “Learning Feature
Engineering for Classification,” in Proceedings of the Twenty-Sixth International Joint Conference
on Artificial Intelligence, Melbourne, Australia, Aug. 2017, pp. 2529–2535, doi:
10.24963/ijcai.2017/352.

[41] W. Long, Z. Lu, and L. Cui, “Deep learning-based feature engineering for stock price movement
prediction,” Knowl.-Based Syst., vol. 164, pp. 163–173, Jan. 2019, doi:
10.1016/j.knosys.2018.10.034.

[42] W. Butler, Basic Operator Training Program. NADCA, 2015.
[43] S. P. Udvardy, “2018 State of the Die Casting Industry,” Cast. Eng., no. January 2019, pp. 10–15,

2019.
[44] A. Spada, “Revitalization of North American Metalcasting,” 2012, Accessed: May 24, 2020.

[Online]. Available: https://www.diecasting.org/docs/statistics/North_America.pdf.
[45] J. Folk, “U.S. Aluminum Casting Industry - 2019,” Cast. Eng., no. July 2019, pp. 16–19, Jun. 2019.
[46] D. Twarog, D. Apelian, and A. Luo, High Integrity Casting of Lightweight Components, Publication

#307. NADCA, 2016.
[47] J. L. Jorstad and D. Apelian, High Integrity Die Castings (Sound, Reliable and Heat Treatable),

NADCA Publication #404. Wheeling, IL: NADCA.
[48] S. Wiesner, F. Niklas, and R. Miller, “HP-DC Alloys for Structural Castings: AlMg4Fe2 and

AlMg4Zn3Fe2 (Castaduct-42 and -18),” NADCA Trans. T18-061, p. 10.
[49] C. Wu, X. Zeng, S. Shankar, G. Birsan, A. Lombardi, and G. Byczynski, “Microstructure and

Uniaxial Tensile Properties of Heat Treatable Al-Zn Alloy for Structural HPDC Components,”
NADCA Trans. T18-103, [Online]. Available: http://www.diecasting.org/transactions/T18-103.

[50] R. J. Donahue and G. K. Sigworth, “Die Casting Alloys that will Allow the Die Caster to Compete
with Alloys A356, A357, 358 and 359 in PM Applications,” NADCA Trans. T16-022, 2016,
[Online]. Available: http://www.diecasting.org/transactions/T16-022.

[51] L. Wang, M. Makhlouf, and D. Apelian, “Aluminium die casting alloys: alloy composition,
microstructure, and properties-performance relationships,” Int. Mater. Rev., vol. 40, no. 6, pp. 221–
238, Jan. 1995, doi: 10.1179/imr.1995.40.6.221.

[52] D. Blondheim, “Artificial Intelligence, Machine Learning, and Data Analytics: Understanding the
Concepts to Find Value in Die Casting Data,” presented at the 2020 NADCA Executive
Conference, Clearwater Beach, FL, Feb. 25, 2020.

[53] J. K. Rai, A. M. Lajimi, and P. Xirouchakis, “An intelligent system for predicting HPDC process
variables in interactive environment,” J. Mater. Process. Technol., vol. 203, no. 1–3, pp. 72–79, Jul.
2008, doi: 10.1016/j.jmatprotec.2007.10.011.

[54] P. K. D. V. Yarlagadda and E. Cheng Wei Chiang, “A neural network system for the prediction of
process parameters in pressure die casting,” J. Mater. Process. Technol., vol. 89–90, pp. 583–590,
May 1999, doi: 10.1016/S0924-0136(99)00071-0.

[55] R. Soundararajan, A. Ramesh, S. Sivasankaran, and A. Sathishkumar, “Modeling and Analysis of
Mechanical Properties of Aluminium Alloy (A413) Processed through Squeeze Casting Route
Using Artificial Neural Network Model and Statistical Technique,” Adv. Mater. Sci. Eng., vol.
2015, pp. 1–16, 2015, doi: 10.1155/2015/714762.

A-31

[56] M. Winkler, L. Kallien, and T. Feyertag, “Correlation between Process Parameters and Quality
Characteristics in Aluminum High Pressure Die Casting,” NADCA Trans. T15-022, 2015, [Online].
Available: http://www.diecasting.org/transactions/T15-022.

[57] D. Klobčar, L. Kosec, B. Kosec, and J. Tušek, “Thermo fatigue cracking of die casting dies,” Eng.
Fail. Anal., vol. 20, pp. 43–53, Mar. 2012, doi: 10.1016/j.engfailanal.2011.10.005.

[58] U. C. Nwaogu, N. S. Tiedje, and H. N. Hansen, “A non-contact 3D method to characterize the
surface roughness of castings,” J. Mater. Process. Technol., vol. 213, no. 1, pp. 59–68, Jan. 2013,
doi: 10.1016/j.jmatprotec.2012.08.008.

[59] G. Dingus, “MECHANICAL PROPERTIES OF CAST ALUMINUM WHEELS,” AFS Conf. Mech.
Prop. Alum. Cast., pp. 295–304, 1987.

[60] J. G. Kaufman and E. L. Rooy, Aluminum Alloy Castings Properties, Processes, and Applications,
1st ed. ASM, 2004.

[61] G. K. Sigworth and F. DeHart, “Recent Developments in the High Strength Aluminum-Copper
Casting Alloy 206,” AFS Trans., pp. 341–354, 2003.

[62] A. I. Taub, P. E. Krajewski, A. A. Luo, and J. N. Owens, “The evolution of technology for materials
processing over the last 50 years: The automotive example,” JOM, vol. 59, no. 2, pp. 48–57, Feb.
2007, doi: 10.1007/s11837-007-0022-7.

[63] S. Cecchel, G. Cornacchia, A. Panvini, and D. Ferrario, “Analysis and Development of a Safety
Relevant Component for Commercial Vehicles,” NADCA Trans. T17-053, 2017, [Online].
Available: http://www.diecasting.org/transactions/T17-053.

[64] ASTM International, “ASTM B 557-15, Test Methods for Tension Testing Wrought and Cast
Aluminum- and Magnesium-Alloy Products.” ASTM International, doi: 10.1520/B0557-15.

[65] G. K. Sigworth, S. Shivkumar, and D. Apelian, “The Influence of Molten Metal Processing on
Mechanical Properties of Cast Al-Si-Mg Alloys,” Trans. Am. Foundrymens Soc., pp. 811–824,
1989.

[66] I. R. McAdams and Q. Han, “Effect of Cooling Conditions on Silafont 36 Phase Formation and
Secondary Dendrite Arm Spacing,” NADCA Trans. T17-062, 2017, [Online]. Available:
http://www.diecasting.org/transactions/T17-062.

[67] D. Schwam, “Additive Manufacturing of Cores with Conformal Cooling Lines,” NADCA Trans.
T16-041, 2016, [Online]. Available: http://www.diecasting.org/transactions/T16-041.

[68] D. L. Twarog, “State of the Die Casting Industry,” Cast. Eng., no. January, pp. 16–25, 2011.
[69] C. H. Caceres and B. I. Selling, “Casting defects and the tensile properties of an Al-Si-Mg alloy,”

Mater. Sci. Eng. A, vol. 220, pp. 109–116, 1996, doi: 10.1016/S0921-5093(96)10433-0.
[70] C. D. Lee, “Effects of microporosity on tensile properties of A356 aluminum alloy,” Mater. Sci.

Eng. A, vol. 464, no. 1–2, pp. 249–254, Aug. 2007, doi: 10.1016/j.msea.2007.01.130.
[71] C. D. Lee and K. S. Shin, “Constitutive prediction of the defect susceptibility of tensile properties to

microporosity variation in A356 aluminum alloy,” Mater. Sci. Eng. A, vol. 599, pp. 223–232, Apr.
2014, doi: 10.1016/j.msea.2014.01.091.

[72] C. D. Lee, T. I. So, and K. S. Shin, “Effect of geometric array of eutectic silicon particles and
microscopic voids on the tensile behaviour of a cast aluminium alloy,” Mater. Sci. Eng. A, vol. 599,
pp. 28–37, Apr. 2014, doi: 10.1016/j.msea.2014.01.063.

[73] C. Lee, “Effect of Ti-B addition on the variation of microporosity and tensile properties of A356
aluminium alloys,” Mater. Sci. Eng. A, vol. 668, pp. 152–159, Jun. 2016, doi:
10.1016/j.msea.2016.05.059.

[74] A. M. Gokhale and G. R. Patel, “Analysis of variability in tensile ductility of a semi-solid metal cast
A356 Al-alloy,” Mater. Sci. Eng. A, vol. 392, no. 1–2, pp. 184–190, Feb. 2005, doi:
10.1016/j.msea.2004.09.051.

[75] A. M. Gokhale and G. R. Patel, “Quantitative fractographic analysis of variability in tensile ductility
of a squeeze cast Al–Si–Mg base alloy,” Mater. Charact., vol. 54, no. 1, pp. 13–20, Jan. 2005, doi:
10.1016/j.matchar.2004.10.003.

A-32

[76] J. E. Gruzleski and B. M. Closset, Treatment of liquid aluminum-silicon alloys. Des Plaines, IL:
American Foundrymen’s Society, 1999.

[77] J. Campbell, Complete Casting Handbook: Metal Casting Processes, Metallurgy, Techniques and
Design. Butterworth-Heinemann, 2015.

[78] G. K. Sigworth and C. Wang, “Mechanisms of porosity formation during solidification: A
theoretical analysis,” Metall. Trans. B, vol. 24, no. 2, pp. 349–364, Apr. 1993, doi:
10.1007/BF02659138.

[79] M. C. Flemings, Solidification Processing, 1st ed. McGraw-Hill, 1974.
[80] X. P. Niu, K. K. Tong, B. H. Hu, and I. Pinwill, “Cavity pressure sensor study of the gate freezing

behaviour in aluminium high pressure die casting,” Int. J. Cast Met. Res., vol. 11, no. 2, pp. 105–
112, Sep. 1998, doi: 10.1080/13640461.1998.11819264.

[81] D. Apelian, “How Clean is the Metal You Cast? The Issue of Assessment: A Status Report,” in AFS
International Conference on Molten Aluminum Processing, Nov. 1992, vol. 3, pp. 1–15.

[82] S. DasGupta and D. Apelian, “INTERACTION OF INITIAL MELT CLEANLINESS, CASTING
PROCESS AND PRODUCT QUALITY: CLEANLINESS REQUIREMENTS FIT FOR A
SPECIFIC USE,” in AFS International Conference on Molten Aluminum Processing, Nov. 1998,
pp. 233; 235–258.

[83] M. Makhlouf, D. Apelian, and L. Wang, “Sludge Formation Tendency of Selected Aluminum Die
Casting Alloys,” NADCA Trans. T01-083, 2001, [Online]. Available:
http://www.diecasting.org/archive/transactions/T01-083.pdf.

[84] J. Campbell, “An overview of the effects of bifilms on the structure and properties of cast alloys,”
Metall. Mater. Trans. B, vol. 37, no. 6, pp. 857–863, Dec. 2006, doi: 10.1007/BF02735006.

[85] J. L. Jorstad, “Understanding Sludge,” NADCA Trans. T87-011, 1987, [Online]. Available:
http://www.diecasting.org/archive/transactions/T87-011.pdf.

[86] A. Kopper, “Die Casting Plunger Lubricant Success Story: T6 Heat Treatable Die Castings,”
NADCA Trans. T09-023, 2009, [Online]. Available: http://www.diecasting.org/transactions/T09-
023.

[87] Y. F. He, X. J. Xu, F. Zhang, D. Q. Li, S. P. Midson, and Q. Zhu, “Impact of Die and Plunger
Lubricants on Blistering during T6 Heat Treatment of Semi-Solid Castings,” NADCA Trans. T13-
012, 2013, [Online]. Available: http://www.diecasting.org/transactions/T13-012.

[88] Q. Han, F. Yin, M. Rakita, J. Zhang, K. Blowers, and C. Vian, “Comparison of Lube Applications:
Continuous and Pulse Spray,” NADCA Trans. T19-063, 2019, [Online]. Available:
http://www.diecasting.org/transactions/T19-063.

[89] M. C. Thome, J. R. Brevick, and Y.-L. Chu, “Modeling the Effect of Shot Plunger Acceleration on
Wave Formation and Air Entrapment in Cold Chamber Die Casting (A Progress Report),” The Ohio
State University, ERC-94-04, Dec. 1993. Accessed: May 25, 2020. [Online]. Available:
https://www.diecasting.org/archive/erc/ERC-94-04.pdf.

[90] L. Garber and A. B. Draper, “The Effects of Process Variables on the Internal Quality of Aluminum
Die Castings,” NADCA Trans. T79-022, 1979, [Online]. Available:
http://www.diecasting.org/archive/transactions/T79-022.

[91] Magna Cosma, “Cosma International Aluminum High Pressure Die Casting.” Cosma International,
2014, Accessed: May 24, 2020. [Online]. Available: https://www.magna.com/docs/default-
source/default-document-library/cosma_casting_brochure_english.pdf?sfvrsn=0.

[92] Shiloh Industries, “Castlight,” Castlight, May 25, 2020. Shiloh.com/solutions/castlight.
[93] J. R. Brevick, I. Ziv, S.-H. (Patrick) Cheng, Y.-L. Chu, T. Altan, and B.-S. Chun, “Vacuum Assisted

Die Casting: Casting Properties and Contained Gas Contents,” The Ohio State University, ERC-94-
52, Oct. 1994. Accessed: May 25, 2020. [Online]. Available:
https://www.diecasting.org/archive/erc/ERC-94-52.pdf.

[94] K. A. Wyman, J. Brevik, Y.-L. Chu, and T. Altan, “A Preliminary Investigation into the Effects of
Vacuum Assist in Cold Chamber Die Casting,” The Ohio State University, ERC-92-04, Jan. 1992.

A-33

Accessed: May 25, 2020. [Online]. Available: https://www.diecasting.org/archive/erc/ERC-92-
04.pdf.

[95] H. Cao, M. Hao, C. Shen, and P. Liang, “The influence of different vacuum degree on the porosity
and mechanical properties of aluminum die casting,” Vacuum, vol. 146, pp. 278–281, Dec. 2017,
doi: 10.1016/j.vacuum.2017.09.048.

[96] C. Huang and W. Bishenden, “Venting Design and Process Optimization of Die Casting Process for
Structural Components,” NADCA Trans. T14-042, 2014, [Online]. Available:
http://www.diecasting.org/transactions/T14-042.

[97] G. O. Verran, R. P. K. Mendes, and M. A. Rossi, “Influence of injection parameters on defects
formation in die casting Al12Si1,3Cu alloy: Experimental results and numeric simulation,” J.
Mater. Process. Technol., vol. 179, no. 1–3, pp. 190–195, Oct. 2006, doi:
10.1016/j.jmatprotec.2006.03.089.

[98] R. A. Miller, “Gate Speed, Fraction Solid, and the Effect on Mechanical Properties,” NADCA Trans.
T18-042, 2018, [Online]. Available: http://www.diecasting.org/transactions/T18-042.

[99] R. A. Miller, “The ‘Gating Equation’ Updated,” NADCA Trans. T15-092, 2015, [Online].
Available: http://www.diecasting.org/transactions/T15-092.

[100] C. W. Kim and K. D. Siersma, “Shot profile optimization by moving Finite Element Method and
Simulated Annealing,” NADCA Trans. T08-111, p. 5.

[101] D. Gaddam and M. Gondek, “Next Generation Approach to Designing the Optimal High Pressure
Die Casting Tooling and Process,” NADCA Trans. T15-093, 2015, [Online]. Available:
http://www.diecasting.org/transactions/T15-093.

[102] D. Gaddam, “Autonomous Optimization of Die Casting Processes,” AFS Trans., vol. 124, pp. 25–
32, 2016.

[103] M. S. Dargusch, G. Dour, N. Schauer, C. M. Dinnis, and G. Savage, “The influence of pressure
during solidification of high pressure die cast aluminium telecommunications components,” J.
Mater. Process. Technol., vol. 180, no. 1–3, pp. 37–43, Dec. 2006, doi:
10.1016/j.jmatprotec.2006.05.001.

[104] M. Okayasu, S. Yoshifuji, M. Mizuno, M. Hitomi, and H. Yamazaki, “Comparison of mechanical
properties of die cast aluminium alloys: cold v . hot chamber die casting and high v . low speed
filling die casting,” Int. J. Cast Met. Res., vol. 22, no. 5, pp. 374–381, Oct. 2009, doi:
10.1179/174313309X380413.

[105] R. N. Lumley, R. G. O’Donnell, D. R. Gunasegaram, and M. Givord, “Heat Treatment of High-
Pressure Die Castings,” Metall. Mater. Trans. A, vol. 38, no. 10, pp. 2564–2574, Sep. 2007, doi:
10.1007/s11661-007-9285-4.

[106] D. R. Gunasegaram, M. Givord, R. G. O’Donnell, and B. R. Finnin, “Improvements engineered in
UTS and elongation of aluminum alloy high pressure die castings through the alteration of runner
geometry and plunger velocity,” Mater. Sci. Eng. A, vol. 559, pp. 276–286, Jan. 2013, doi:
10.1016/j.msea.2012.08.098.

[107] S. L. dos Santos, R. A. Antunes, and S. F. Santos, “Influence of injection temperature and pressure
on the microstructure, mechanical and corrosion properties of a AlSiCu alloy processed by HPDC,”
Mater. Des., vol. 88, pp. 1071–1081, Dec. 2015, doi: 10.1016/j.matdes.2015.09.095.

[108] I. Outmani, L. Fouilland-Paille, J. Isselin, and M. El Mansori, “Effect of Si, Cu and processing
parameters on Al-Si-Cu HPDC castings,” J. Mater. Process. Technol., vol. 249, pp. 559–569, Nov.
2017, doi: 10.1016/j.jmatprotec.2017.06.043.

[109] E. Fiorese and F. Bonollo, “Simultaneous Effect of Plunger Motion Profile, Pressure, and
Temperature on the Quality of High-Pressure Die-Cast Aluminum Alloys,” Metall. Mater. Trans. A,
vol. 47, no. 12, pp. 6453–6465, Dec. 2016, doi: 10.1007/s11661-016-3732-z.

[110] B. M. Asquith, “The Use of Process Monitoring to Minimize Scrap in the Die Casting Process,”
NADCA Trans. T97-063, 1997, Accessed: May 25, 2020. [Online]. Available:
http://www.diecasting.org/archive/transactions/T97-063.pdf.

[111] A. Kaye and A. C. Street, Die Casting Metallurgy. Butterworth Scientific, 1982.

A-34

[112] R. K. Kuppili and P. Praveen, “Design and Analysis of High Pressure Die Casting Die for Gear Box
Cover,” Int. J. Sci. Eng. Res., vol. 7, no. 7, pp. 86–89, 2016.

[113] L. J. Yang, “The effect of casting temperature on the properties of squeeze cast aluminium and zinc
alloys,” J. Mater. Process. Technol., vol. 140, no. 1–3, pp. 391–396, Sep. 2003, doi:
10.1016/S0924-0136(03)00763-5.

[114] J.-I. Cho and C.-W. Kim, “The Relationship between Dendrite Arm Spacing and Cooling Rate of
Al-Si Casting Alloys in High Pressure Die Casting,” Int. J. Met., vol. 8, no. 1, pp. 49–55, Jan. 2014,
doi: 10.1007/BF03355571.

[115] M. Okayasu and S. Yoshida, “Influence of solidification rate on material properties of cast
aluminium alloys based on Al–Si–Cu and Al–Si–Mg,” Int. J. Cast Met. Res., vol. 28, no. 2, pp.
105–116, Apr. 2015, doi: 10.1179/1743133614Y.0000000128.

[116] E. Sjölander and S. Seifeddine, “Influence of alloy composition, solidification rate and artificial
aging on plastic deformation behaviour of Al–Si–Cu–Mg casting alloys,” Int. J. Cast Met. Res., vol.
26, no. 1, pp. 28–36, Feb. 2013, doi: 10.1179/1743133612Y.0000000025.

[117] M. A. Irfan, D. Schwam, A. Karve, and R. Ryder, “Porosity reduction and mechanical properties
improvement in die cast engine blocks,” Mater. Sci. Eng. A, vol. 535, pp. 108–114, Feb. 2012, doi:
10.1016/j.msea.2011.12.049.

[118] The Aluminum Association, Designations and Chemical Composition Limits for Aluminum Alloys
in the Form of Castings and Ingot, October 2018. Arlington, VA: The Aluminum Association,
2018.

[119] ASTM International, “E1251-17A, Standard Test Method for Analysis of Aluminum and Aluminum
Alloys by Spark Atomic Emission Spectrometry.” ASTM International, 2017, [Online]. Available:
http://www.astm.org/cgi-bin/resolver.cgi?E1251-17a.

[120] S. W. Hudson, J. Craparo, R. De Saro, and D. Apelian, “Applications of Laser-Induced Breakdown
Spectroscopy (LIBS) in Molten Metal Processing,” Metall. Mater. Trans. B, vol. 48, no. 5, pp.
2731–2742, Oct. 2017, doi: 10.1007/s11663-017-1032-7.

[121] J. L. Jorstad and D. Apelian, “Hypereutectic Al-Si Alloys: Practical Processing Techniques,” Cast.
Eng., no. May 2004, pp. 50–55, 2004.

[122] L. Wang, D. Apelian, and M. Makhlouf, “Development of High Performance Die Casting Alloys
Part 1: Alloy Design,” NADCA Trans. T11-021, 2011, [Online]. Available:
https://www.diecasting.org/archive/transactions/T11-021.pdf.

[123] Y. C. Kim, S. W. Choi, C. W. Kim, J. I. Cho, and C. S. Kang, “Influence of Process Parameters on
the Fluidity of High Pressure Die-Casting Al-Si Alloys,” Adv. Mater. Res., vol. 813, pp. 171–174,
2013, doi: https://doi.org/10.4028/www.scientific.net/amr.813.171.

[124] L. F. Mondolfo, Aluminum Alloys: Structure & Properties. Butterworth-Heinemann, 1976.
[125] M. Tsukuda, M. Harada, T. Suzuki, and S. Koike, “The effect of Si, Mg, Fe on the mechanical

properties of Al-Si-Mg alloys for casting,” J. Jpn. Inst. Light Met., vol. 28, no. 3, pp. 109–115, Aug.
1977, doi: https://doi.org/10.2464/jilm.28.109.

[126] J. G. Gensure and D. L. Potts, International Metallic Materials Cross-Reference, 3rd ed.
Schenectady, NY: Genium Publishing Corporation, 1988.

[127] R. N. Lumley, I. J. Polmear, and P. R. Curtis, “Rapid Heat Treatment of Aluminum High-Pressure
Diecastings,” Metall. Mater. Trans. A, vol. 40, no. 7, pp. 1716–1726, Jul. 2009, doi:
10.1007/s11661-009-9836-y.

[128] H. Yang, S. Ji, W. Yang, Y. Wang, and Z. Fan, “Effect of Mg level on the microstructure and
mechanical properties of die-cast Al–Si–Cu alloys,” Mater. Sci. Eng. A, vol. 642, pp. 340–350, Aug.
2015, doi: 10.1016/j.msea.2015.07.008.

[129] J. Y. Hwang, R. Banerjee, H. W. Doty, and M. J. Kaufman, “The effect of Mg on the structure and
properties of Type 319 aluminum casting alloys,” Acta Mater., vol. 57, no. 4, pp. 1308–1317, Feb.
2009, doi: 10.1016/j.actamat.2008.11.021.

[130] Y. Zeden, A. M. Samuel, F. H. Samuel, and S. Alkahtani, “Effects of Cu, Mg, and Sr, on the
Mechanical Properties and Machinability of Near-Eutectic Al-11%Si Casting Alloys,” Light Met.

A-35

2012 Ed. Carlos E Suarez TMS Miner. Met. Mater. Soc., pp. 321–326, 2012, doi:
https://doi.org/10.1007/978-3-319-48179-1_54.

[131] A. Fabrizi, S. Ferraro, and G. Timelli, “The influence of Sr, Mg and Cu addition on the
microstructural properties of a secondary AlSi9Cu3(Fe) die casting alloy,” Mater. Charact., vol. 85,
pp. 13–25, Nov. 2013, doi: 10.1016/j.matchar.2013.08.012.

[132] J. R. Brevick and S. N. Dubey, “OVERVIEW OF RECENT RESEARCH REGARDING HOT
TEARING OF DIE CASTING ALLOYS,” NADCA Trans. T12-013, 2012, [Online]. Available:
http://www.diecasting.org/transactions/T12-013.

[133] J. L. Jorstad, D. L. Zalensas, and American Foundrymen’s Society, Eds., Aluminum casting
technology, 2. ed., reprint. Des Plaines, Ill: American Foundrymen’s Society, 2001.

[134] C. H. Cáceres, M. B. Djurdjevic, T. J. Stockwell, and J. H. Sokolowski, “The effect of Cu content
on the level of microporosity in Al-Si-Cu-Mg casting alloys,” Scr. Mater., vol. 40, no. 5, pp. 631–
637, Feb. 1999, doi: 10.1016/S1359-6462(98)00492-8.

[135] F. Sanna, A. Fabrizi, S. Ferraro, G. Timelli, P. Ferro, and F. Bonollo, “Multiscale characterisation of
AlSi9Cu3(Fe) die casting alloys after Cu, Mg, Zn and Sr addition,” Metall. Ital., vol. 105, no. 4, pp.
13–24, Apr. 2013.

[136] S. G. Shabestari and H. Moemeni, “Effect of copper and solidification conditions on the
microstructure and mechanical properties of Al–Si–Mg alloys,” J. Mater. Process. Technol., vol.
153–154, pp. 193–198, Nov. 2004, doi: 10.1016/j.jmatprotec.2004.04.302.

[137] Z. Li, A. M. Samuel, F. H. Samuel, C. Ravindran, and S. Valtierra, “Effect of alloying elements on
the segregation and dissolution of CuAl2 phase in Al-Si-Cu 319 alloys,” J. Mater. Sci., vol. 38, no.
March 2003, pp. 1203–1218, 2003, doi: https://doi.org/10.1023/A:1022857703995.

[138] W. Bonsack, “Iron problematic factor in quality of alumimnum alloy die castings,” Trans. Am.
Foundrymens Soc., pp. 712–720, 1961.

[139] P. N. Crepeau, “Effect of Iron in Al-Si Casting Alloys: A Critical Review,” Trans. Am.
Foundrymens Soc., pp. 361–366, 1995.

[140] M. A. Moustafa, “Effect of iron content on the formation of β-Al5FeSi and porosity in Al–Si
eutectic alloys,” J. Mater. Process. Technol., vol. 209, no. 1, pp. 605–610, Jan. 2009, doi:
10.1016/j.jmatprotec.2008.02.073.

[141] S. Seifeddine and I. L. Svensson, “Prediction of mechanical properties of cast aluminium
components at various iron contents,” Mater. Des., vol. 31, pp. S6–S12, Jun. 2010, doi:
10.1016/j.matdes.2009.11.023.

[142] S. Shankar and D. Apelian, “Die soldering: Effect of process parameters and alloy characteristics on
soldering in the pressure die casting process,” Int. J. Cast Met. Res., vol. 15, no. 2, pp. 103–116,
Sep. 2002, doi: 10.1080/13640461.2002.11819469.

[143] S. Shankar and D. Apelian, “Die soldering: Mechanism of the interface reaction between molten
aluminum alloy and tool steel,” Metall. Mater. Trans. B, vol. 33, no. 3, pp. 465–476, Jun. 2002, doi:
10.1007/s11663-002-0057-7.

[144] J. Song, X. Wang, T. DenOuden, and Q. Han, “Evolution of Intermetallic Phases in Soldering of the
Die Casting of Aluminum Alloys,” Metall. Mater. Trans. A, vol. 47, no. 6, pp. 2609–2615, Jun.
2016, doi: 10.1007/s11661-016-3454-2.

[145] A. K. Monroe and P. G. Sanders, “Reducing Die Lubricant by Understanding the Importance of
Draft Angle and Casting Alloy,” NADCA Trans. T19-083, 2019, [Online]. Available:
https://www.diecasting.org/archive/transactions/T19-083.pdf.

[146] Z. Li, N. Limodin, A. Tandjaoui, P. Quaegebeur, P. Osmond, and D. Balloy, “Influence of Sr, Fe
and Mn content and casting process on the microstructures and mechanical properties of AlSi7Cu3
alloy,” Mater. Sci. Eng. A, vol. 689, pp. 286–297, Mar. 2017, doi: 10.1016/j.msea.2017.02.041.

[147] M. Okayasu, K. Ota, S. Takeuchi, H. Ohfuji, and T. Shiraishi, “Influence of microstructural
characteristics on mechanical properties of ADC12 aluminum alloy,” Mater. Sci. Eng. A, vol. 592,
pp. 189–200, Jan. 2014, doi: 10.1016/j.msea.2013.10.098.

A-36

[148] M. K. Surappa, E. Blank, and J. C. Jaquet, “EFFECT OF MACRO-POROSITY ON THE
STRENGTH AND DUCTILITY OF CAST,” Scr. Metall., vol. 20, no. 9, pp. 1281–1286, 1986, doi:
10.1016/0036-9748(86)90049-9.

[149] C. H. Cáceres, “On the effect of macroporosity on the tensile properties of the Al-7%Si-0.4%Mg
casting alloy,” Scr. Metall. Mater., vol. 32, no. 11, pp. 1851–1856, Jun. 1995, doi: 10.1016/0956-
716X(95)00031-P.

[150] ASTM International, “E 505 - 01, Standard Reference Radiographs for Inspection of Aluminum
and Magnesium Die Castings.” ASTM International, 2001.

[151] H. Boerner and H. Strecker, “Automated x-ray inspection of aluminum castings,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 10, no. 1, pp. 79–91, 1988, doi: 10.1109/34.3869.

[152] A. P. Rale, D. C. Gharpure, and V. R. Ravindran, “Comparison of different ANN techniques for
automatic defect detection in X-Ray images,” in 2009 International Conference on Emerging
Trends in Electronic and Photonic Devices & Systems, Dec. 2009, pp. 193–197, doi:
10.1109/ELECTRO.2009.5441138.

[153] L. A. Dobrzański, M. Krupiński, and J. H. Sokolowski, “Methodology of automatic quality control
of aluminium castings,” J. Achiev. Mater. Manuf. Eng., vol. 20, no. 1–2, pp. 69–78, 2007.

[154] S. Balasubramaniam and R. Shivpuri, “Improving the Quality in Die Casting Production Using
Statistical Analysis Procedures,” NADCA Trans. T99-071, 1999, [Online]. Available:
http://www.diecasting.org/transactions/T199-071.

[155] A. K. Monroe, “Personal Communication.”

B-1

Appendix B – Machine Learning Pathway for Harnessing Knowledge and
Data in Material Processing

Ning Sun1, Adam Kopper2, Rasika Karkare3, Randy C. Paffenroth4, and Diran Apelian5

 1 Metso, Shrewsbury, MA 01545 USA

2Mercury Marine, Fond du Lac, WI 54935 USA
3 WPI, Data Science, Worcester, MA 01609 USA

4 WPI, Mathematical Sciences, Computer Science, Data Science, Worcester, MA 01609 USA
5 UCI, Materials Science and Engineering, Irvine, CA 92967 USA

Keywords. Industry 4.0, machine learning, smart factory, IoT, artificial intelligence,
classification models, random forest, XGBoost, unbalanced, semi-supervised, dimension
reduction, principal component analysis, feature importance, data standardization

Abstract

Artificial Intelligence (AI) is integral to Industry 4.0 and the evolution of Smart Factories. To
realize this future, material processing industries are embarking on adopting AI technologies into
their enterprise and plants; however, like all new technologies, there is always the potential for
misuse or the false belief that the outcomes are reliable. The goal of this paper is to provide context
for the application of machine learning to materials processing. The general landscapes of data
science and materials processing are presented, using the foundry and the metal casting industry
as an exemplar. The challenges that exist with typical foundry data are that the data are
unbalanced, semi-supervised, heterogeneous, and limited in sample size. Data science methods to
address these issues are presented and discussed. The elements of a data science project are
outlined and illustrated by a case study using sand cast foundry data. Finally, a prospective view
of the application of data science to materials processing and the impact this will have in the field
are given.

I. Introduction

The fourth industrial revolution that ushered the Internet of Things (IoT) and the Internet of
Services (IoS) has come to be known as Industry 4.0. At the Hannover Messe in 2011, Germany
launched a project called “Industrie 4.0” designed to fully digitize manufacturing. The larger
vision of Industry 4.0 is the digital transformation of manufacturing, leveraging advanced
technologies and innovation accelerators in the convergence of IT (Information Technology) and
OT (Operational Technology). The purpose is to integrate connected factories within industry,
decentralized and self-optimizing systems and the digital supply chain in the information-driven
cyber-physical environment of the fourth industrial revolution [1], [2]. The evolution toward
Industry 4.0 is given in Figure 1.

B-2

Figure 1. Industrial Revolutions [1].

The initial goals of Industry 4.0 typically have been automation, manufacturing process
improvement and productivity optimization. The more advanced goals are innovation and the
transition to new business models and revenue sources using information technologies and services
as cornerstones. These developments will transform manufacturing plants into smart factories or
foundries. Three keystone digital technologies will enable the transformation to smart factories:
(i) connectivity, which implies executing industrial IoT to collect data from various segments of
the plant; (ii) intelligent automation which includes advanced robotics, machine vision, digital
twins, distributed control; and (iii) cloud-scale data management and analytics (AI and Machine
Learning) [3].

In the metal processing field, particularly in the metal casting industry, whether it be ferrous or
non-ferrous foundries, many data are collected at various locations within the plant. However,
these data are usually siloed within operational departments without an intentional strategy for
data fusion and transformation into knowledge. It is a fact that many of our plants and plant
infrastructures were built prior to the rise of data science capabilities and tools. The time is now
to make the transformation of our plants into smart factories in the context of Industry 4.0.

In this paper, our goal is to establish some context of AI and machine learning and how it can be
appropriately utilized in materials processing where physical laws govern the process. We use
metal casting as an example in this work as it is a well-established industry from which we have
access to process data via the industrial membership of the Advanced Casting Research Center at
UCI. In metal casting, the quality of the final product is influenced by many factors: metal
composition, processing conditions, the solidification journey where transport phenomena
influence the resultant microstructure, post processing treatments, etc. Even with our
understanding of the materials processing world, working with its manufacturing data is not
without challenges [4]. Because the industry is well-established, the foundries do not produce
components with many defects. In other words, scrap rates are low, making it difficult to utilize
algorithms, based on supervised learning, which learn from successes and failures [5]. This is
where the need for using machine learning algorithms that can treat unbalanced data arises.

B-3

Moreover, real-world manufacturing processes are complex and appropriate data may not always
be available for all parts. Accordingly, the need for advanced unsupervised or semi-supervised
machine learning algorithms also exists [5]. Section II describes these types of algorithms in detail.
In this work, we want to show how these techniques can be used to answer the questions: How can
we develop algorithms and apply AI/Machine Learning to processes where one does not have
many defective, or otherwise labeled, parts to teach and learn from? It should be noted that the
fundamentals and the principles presented here are applicable to a host of manufacturing processes.

II. The Landscape of Machine Learning

What is Machine Learning?
Machine learning is a branch of Artificial Intelligence (AI) where one constructs computer
algorithms intended to mimic tasks commonly performed by humans. Algorithms for image
recognition, health analytics, natural language processing, and self-driving vehicles are all
examples of AI that have transformed industries that affect our daily lives [6]. More specifically,
AI clearly has a role to play in advanced manufacturing where there are myriad of tasks that could
be automated by algorithms such as defect detection, process optimization, and new materials
development, to name but a few [2].

For many years, classical philosophers have attempted to describe human thinking as a symbolic
system. Babbage in the 1830’s realized that punched cards used in the Jacquard loom could control
operations [6]. Alan Turing in England (1935-1940 era) developed a machine that could compute
using a set of rules transitions/states to solve mathematical functions [7], [8]. Subsequently, Turing
went on to expand his view by posing the question: “Can a machine think”? The Term AI was
formally established in 1956 at a conference at Dartmouth College, Hanover, NH USA by pioneers
John McCarthy and Marvin Minsky. McCarthy challenged the community to make machines that
“behave in ways that would be called intelligent if a human were so behaving”; whereas Minsky
focused on making machines that would do things that “would require intelligence if done by men”
[9].

AI and machine learning are closely related to fields such as pattern recognition (an umbrella term
that covers many different approaches), statistics and statistical learning (where the focus tends to
be on formal mathematical relationships), and neural networks (a field which has seen great
advancements in the past few years) [10]. For example, one class of approaches that was common
in AI’s early years was that of rules-based systems. In a manufacturing plant, the convention has
been that engineers develop a knowhow enabling them to detect defects in the final product; in
turn, they pass on this knowledge to those who follow their footsteps. It is tempting to distill how
a human performs such tasks by enumerating a set of rules for defect recognition. Once such a
collection of rules is developed, they can then be encoded in a computer language to allow a
machine to mimic what a human does. Unfortunately, such rules-based systems tend to be quite
fragile as the interactions in the system can be subtle. As a result, rules-based systems do not
achieve human level performance. The field of machine learning takes a different perspective by
developing algorithms that learn by example. Rather than constructing hand-crafted rules, in
machine learning, one designs systems that can construct their own rules given a collection of
examples where the desired task is performed correctly.

B-4

Elements of Machine Learning
Algorithms
Algorithms are the “machines” that can learn and generate the rules. It is reasonable to ask whether
it is easier to write down explicit rules for a task or to create an algorithm that can generate its own
rules. Perhaps counterintuitive, the latter is often much easier, more effective, and less error prone.
Rulemaking algorithms abound, from simple linear regression, to the more complicated support
vector machines, to cutting edge neural networks [5], [11], [12]. As expected, algorithms are
imperfect if the training data is inadequate. In machine learning, and specially in semi-supervised
learning mode, one requires a large set of training data; without this the algorithms developed may
be unreliable.

Training data
For algorithms to be effective, they require many examples to learn from. The question is: Given
the amount of training data, which algorithm is the most suitable? The choice of algorithms is
dependent upon the size of training data available. Using techniques such as cross-validation, we
can test the performance of different algorithms in terms of generalizing on unseen test data [13].
This can be done by training the algorithms on different subsets of the data and then testing on the
rest. Choosing between algorithms should be based on comparing their performance on the test
set.

Feature Engineering
Feature engineering is the process of using domain knowledge of the data to create features that
optimize machine learning algorithms [14], [15]. This is where technical prowess provided by the
practitioner or the engineer plays an important role. Feature engineering increases the predictive
power of the algorithms by selecting specific features or creating new features from the data that
assist in the learning process.

Feature engineering determines what information is given as input to the machine learning
algorithm. The danger, however, is that one may carry this out and over-engineer, in the
engineering parlance, and over-fit, in the machine learning parlance; there is a sweet spot for
feature engineering. An example may be useful to explain the concept. Many parameters are
collected during metal casting: alloy composition, environmental conditions in the foundry,
superheat, temperature changes during the solidification process, etc. It is not unusual to have 40
columns of data for a given cast part. Feature engineering helps us address how these parameters
are communicated to the algorithm. A close collaboration is needed in generating appropriate
training datasets and the appropriate feature engineering by experts in both manufacturing and
machine learning. To a large extent the authors of this paper have formed such a team.

Data Pre-Processing
Many machine learning algorithms require that their input data be numeric. In the example above,
how should the chemical composition be represented numerically for a fair comparison with melt
temperature and foundry environmental conditions? In the original training data, the amount of Si
is 0.07 weight fraction, the melt temperature is 704 oC, and the temperature of the foundry is 24°C.
Many machine learning algorithms depend on an appropriate definition of distance, and the rules
they generate hinge on the distances between the training examples. By setting Si=0.07, Tmelt=704,
and Tfloor=24, one is implicitly informing the algorithm that melt temperature is a more important

B-5

parameter as compared to the composition of silicon or the temperature of the foundry. However,
such inferences may be neither intended nor correct. In order to avoid such inferences, we pre-
process the data such as normalizing the dataset so that all the columns are on the same scale [16].
Details of how we normalize using a Z-transform are given in section IV of this paper [17].

Cross-Validation
One important part of machine learning that we have not yet touched upon is the evaluation of the
performance of the algorithms we construct. Cross-validation is a technique that is used for
algorithm evaluation on unseen data. Cross-validation can be thought of as testing the algorithm
in an environment that is faithful to how it will be used during the manufacturing process. For
example, given a set of training data (e.g., labeled X-ray images of parts), one can train the
algorithm in the task of detecting defective parts. When the algorithm is utilized on the factory
floor, one would be interested in knowing how well it performs on images of parts as they roll off
the assembly line, when the true label is not yet known.

There are important differences between how a machine learning algorithm performs on its
training data, and how it might perform in practice on the factory floor. For example, consider a
machine learning algorithm that merely memorizes all the X-ray images in its training data and
whether the image corresponds to a good part. Such an algorithm would be able to perfectly label
every image in its training set but would have no ability to correctly label new images. In data
science terms, it would not be able to generalize from its training data to new examples, such as
the current production parts shipping from the foundry.

The machine learning terminology for such an algorithm that performs well on training data but
fails to generalize is known as overfitting [18]. Avoiding overfitting is an essential part of machine
learning and a place where the expertise of machine learning practitioners can play a pivotal role.
Constructing a machine learning algorithm that appears to be quite effective during training but
fails in the field can be surprisingly easy to do. However, such situations are clearly to be avoided
and require a measure of machine learning expertise.

III. The Landscape of Materials Processing – Metal Casting

Machine learning promises to have a transformative impact on the advanced manufacturing
landscape, where applications of machine learning alongside the IoT is projected to generate $1.2
to $3.7 trillion of value globally by 2025 [1]. In the metal casting industry, which is one of the
core building blocks of advanced manufacturing industries, machine learning has only seen
negligible adoption to date. Thus, there exists a huge opportunity to utilize AI and machine
learning in the metal casting industry [19]–[24]. The metal casting industry is at the cusp of its
data revolution.

Modern foundries have the capability to capture a vast amount of process data on a daily basis
[25]. These include molten metal preparation details, casting process data, simulation data, part
geometry data (CAD files), Non-Destructive Evaluation/Testing data, etc. However, these many
types of data from various sources throughout the operation are often kept in departmental silos
where their value might have limited utility (Figure 2). Integrated data is the prerequisite for
performing machine learning, and it is a lost opportunity for the foundry industry if no effort is

B-6

made to compile, fuse, and analyze these data to better understand the process factors influencing
the quality of the castings.

Figure 2. Data from various sources throughout the casting operation are kept in silos.

Implementation of machine learning in the metal casting industry requires knowledge workers who
are trained in both data science and materials science and engineering domains [26].
Unfortunately, most engineers are not trained in data science. Efforts are underway in academia
(e.g., WPI, UCI, University at Buffalo, Northwestern U., U. of Wisconsin, etc.) to develop
curricula for engineering students who can navigate in both domains.

At the Advanced Casting Research Center (ACRC), a consortium consisting of 35 corporations
has made a commitment to study how machine learning and deep learning can yield transformative
improvements to metal casting processes. The long-term goal is to develop a framework that can
be adopted by foundries to transform their data into process cognition and knowledge. In this
project, the research team is multidisciplinary comprising of faculty and graduate students from
Data Science as well as Materials Science and Engineering. The data scientists apply their
expertise in seeking or developing the effective and appropriate data analysis techniques. Material
scientists and engineers determine how to treat anomalous data points in the raw dataset and can
assess whether the predicted results and the feature importance are in-line with observations on
the shop floor.

IV. Process Cognition and Harnessing of Knowledge in Metal Casting

In the following sections, we review some technical challenges and pitfalls in applying machine
learning to industrial foundry data and cover some potential solutions to resolve these challenges.
Subsequently, we navigate the critical steps of machine learning as applied in a case study to
showcase the implementation of machine learning to metal casting step-by-step.

Challenges of Metal Casting Datasets
Our team is in a fortunate position to have access to cast data from the industrial partners of ACRC.
All the data are treated confidentially and are collected from three different casting processes – die
casting, permanent mold, and sand casting. Though knowledge extracted directly from these front-
line datasets can provide meaningful guidance on process and quality control to foundries, the
process of converting these data into knowledge is quite challenging to our data scientists due to
three notable attributes of foundry data as discussed below.

The data are unbalanced
In machine learning, the algorithm is designed to construct its own rules given a collection of
examples. The aim is to develop a machine learning model that can predict the quality of cast

B-7

components. The algorithm is trained by providing it with a large set of processing data, with each
or some of the parts being labeled. The algorithm can construct its own set of rules for
distinguishing between the labels. Based upon these examples, the algorithm applies the rules to
make predictions on parts whose label is unknown. Ideally, the algorithm would learn from an
approximately equal number of examples representing each label, however, in reality, the labels
are unbalanced. The lifeblood of successful foundries is large-scale production of defect-free
products. Accordingly, only a small percentage of defective products are available to train the
machine learning algorithm. For example, in metal casting, the defect rate of a mature product can
be as low as 2-5%, which introduces significant challenges in developing and testing a robust
predictive solution. Moreover, the generation of the quality data could be further complicated by
the fact that it is too expensive to perform quality inspection for all of the products. As a result,
while it is possible and straightforward to measure the processing data (the inputs to the machine
learning model) of each casting, to generate the quality data (the response variable of the model)
can be quite difficult. In sum, metal casting is an unbalanced, semi-supervised learning problem
which is challenging for even state-of-the-art machine learning algorithms.

One of the main tasks in developing the machine learning model is to work meaningfully with
unbalanced raw datasets supplied by foundries. As shown in Figure 3a, in a dataset containing 500
castings, only 6% of the total production is categorized as Class 3 and are considered defective.
The population of good quality parts (Class 1 and Class 2) is much larger than that of the defective
parts. Several algorithms were explored for data balancing. These algorithms can learn from the
structure of the minority class in the original dataset and construct their own rules for generating
new datapoints, or oversample. For illustration, an example of data balancing is shown in Figure
3. Employing such an algorithm can make the population of all three classes nearly equal.

Figure 3. (a) Original and (b) oversampled casting data of each class.

Figures 3a and 3b show the original and the oversampled data respectively. The oversampling is
done using a popular data balancing approach known as Synthetic Minority Oversampling
TEchnique (SMOTE) [27]. This approach is used when the number of samples in one class is
significantly higher than the samples in the other classes, as is typical in manufacturing datasets.
As the name suggests, this technique generates synthetic samples of the minority class by
interpolating between two instances of the minority class. The oversampling is done until a point
that the proportion of the minority class matches that of the majority class, and we have a balanced
dataset for training. There are also variations of the SMOTE approach that can be used, for

B-8

example, Borderline-SMOTE is widely used which focuses on the minority class samples that are
at the border of the majority and the minority class, since these samples are more prone to
misclassification errors as compared to those that are away from the border [28].

The data are sporadically labeled
For example, a classic problem in machine learning would be detecting defects in X-ray images of
manufactured parts. The algorithm is trained by providing it with a large set of images of parts,
with each image being labeled by whether the quality of this particular part is acceptable. From
a given set of labeled images, the algorithm learns and constructs its own set of rules for
distinguishing between acceptable and non-acceptable parts, and subsequently applies these rules
to make predictions on unlabeled images. Labeled data means that processing and quality data of
the parts manufactured are known. In the machine learning literature, such methods are called
supervised machine learning, where supervision arises from the availability of labeled training
data. As shown in Table I, for each individual sample, in the training dataset both the input variable
(X) and its corresponding output variable (Y) are known. The algorithm can construct rules (e.g.,
Y= f (x;θ)) to perform tasks such as predicting the quality of new parts. When labeled training data
are not available, the machine learning problem becomes more difficult, and such algorithms are
referred to as unsupervised machine learning. Whereas in semi-supervised machine learning only
a fraction of the training data is labeled; both labeled, and the unlabeled training data are used to
develop the appropriate algorithm.

Table I. Classes of machine learning tasks and techniques.

Most metal casting data are not “Big Data”
In our dataset, each individual row represents one cast component. The various columns in each
row contain the recorded parameters when the cast component was produced. Unlike datasets

B-9

generated from social media activities, the scale of metal casting dataset is quite small. Although
more sensors can be installed to capture additional processing data during casting (to add more
columns), the total number of rows in the dataset is still limited by the volume or production
capability of the foundry. For instance, we have collected data from three casting manufactures
over the past two years, depending upon the casting method and the size of the casting component,
the total number of one part produced in one year varies from 300 parts to 7000 parts per year.
Even if the foundry can save and extract 10 years of historical data, there would only be about
70,000 rows in this dataset, which is well short of being considered appropriate in the realm of
“Big Data”.

Along with the oversampling techniques such as SMOTE, we can also use Generative Adversarial
Networks (GANs), a class of artificial intelligence algorithms, to generate rows of new data by
learning the structure of the original data and generating new samples that follow the same
distribution [29], [30]. The original application of this technique was to generate photographs with
many realistic characteristics that were superficially authentic to human observers. Applying
GANs to generate more datapoints in metal casting datasets has shown promise. Mixing synthetic
and real data is one way to overcome the drawback of having a small sized dataset. Synthetic data
can be used to increase the volume of the data in case of small size datasets such as these, and the
real data is used so that it is faithful to the original dataset.

Case Study of Machine Learning in Metal Casting
The following paragraphs provide detail for training and evaluating machine learning algorithms
on production foundry data. Analysis begins with an investigation of the training data. The output
for prediction is a binary pass or fail rating of the porosity classification. SMOTE is applied to
overcome the class imbalance between pass and fail samples, and the newly balanced training data
is standardized. Several machine learning algorithms are trained on datasets with and without
dimension reduction. Algorithm performance is evaluated with a metric of minimizing false
negative classifications on the testing dataset.

The results shown below are generated using the scikit-learn v0.24 [31], [32], matplotlib v2.0.2
[33], and pandas v1.0.4 [34], [35] libraries within the Python [36], [37] programming language.

Training Data
Shown below (Table II) is a snapshot of a portion of the dataset collected from a sand cast foundry.
This dataset has 510 rows and 28 columns; each individual row represents a cast component. The
various columns in each row give the processing parameters captured: component ID, metal
chemistry, casting processing details, and quality data (X-ray inspection results). All the cast
components were inspected, and the quality results were labeled with varying levels depending
upon the appearance of porosity. Class 1 indicates that the casting was porosity-free, Class 2
indicates fine porosity, and Class 3 indicates large porosity voids. A dummy variable was used to
divide quality data into a binary quality condition as given in Equation 1.

Y =
𝑃𝑎𝑠𝑠: 𝑖𝑓 𝑡ℎ𝑒 𝑞𝑢𝑎𝑙𝑖𝑡𝑦 𝑙𝑒𝑣𝑒𝑙 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑎𝑟𝑡 𝑖𝑠 𝐶𝑙𝑎𝑠𝑠 1 𝑜𝑟 𝐶𝑙𝑎𝑠𝑠 2
𝐹𝑎𝑖𝑙: 𝑖𝑓 𝑡ℎ𝑒 𝑞𝑢𝑎𝑙𝑖𝑡𝑦 𝑙𝑒𝑣𝑒𝑙 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑎𝑟𝑡 𝑖𝑠 𝐶𝑙𝑎𝑠𝑠 3

Eq. 1

B-10

Table II. A snapshot showing portion of one dataset containing 510 rows and 28 columns.

Data Standardization
Since the physical meaning and the scale of all processing parameters incorporated into a given
dataset varies significantly, the raw data in each column that represents a particular class needs to
be standardized to ensure the data are unitless and are of comparable scale. Once all processing
parameters are incorporated into a given dataset, the data in each column are standardized using a
statistical method, called the Z-transform [17], [38], which converts the values in each column
using the following equation:

𝑍 , =
𝑋 , − 𝜇

𝜎

Where

 𝑍 , is the Z-transformed value of the parameter in one data cell
 𝑋 , is the original value of the parameter in the data cell
 𝜇 is the mean of the original values of the parameter in the data column
 𝜎 is the standard deviation of the original values of the parameter in the data column

Table III is a snapshot of the dataset after normalizing using a Z-transform. Compared with the
original dataset shown in Table II, the values in each cell of the transformed dataset are on the
same scale regardless of the physical meaning and the scale of these processing parameters. The
data are now unitless.

Eq. 2

B-11

Table III. A snapshot showing portion of the dataset after applying Z-transform.

Dimension Reduction:
All datasets collected from foundries are comprised of many columns regardless of the type of
casting process. If the whole dataset were to be plotted on a scatter plot, this plot would need to
have as many axes as the data has columns. However, the human perceptual system is designed to
process three dimensions. As a result, foundry engineers will often have difficulty producing
meaningful visual representations of their data. Fortunately, representing high-dimensional data
in a low-dimensional space is a well-studied problem. In particular, Principal Component Analysis
(PCA) is a classic dimension reduction technique allowing us to blend a large set of correlated
variables in the original dataset into a smaller number of newly created representative variables
[39]–[41]. This is a powerful tool explored in our study to compress the dimensionality of the
original dataset and allow visualization of the complicated dataset on a two- or three-dimensional
plot whose axes correspond to the newly created principal components. We can then use these
principal components as the predictors in the machine learning model in place of the original larger
set of variables. We evaluated this technique against the original high-dimension data and found
that the dimension reduction via PCA was not necessary in this case study. However, PCA is an
important method employed in many machine learning projects so we offer the following detailed
description.

Compared with the original dataset which contained 28 columns, the dataset is now represented
with three newly created columns, PC1, PC2, and PC3; therefore, the complicated dataset can be
visualized with the three-dimensional plot shown in Figure 4b. The PCA plot is a scatter plot, in
other words, PC1 is not a function of PC2 or PC3. These three components were used to display
the dataset into several groupings of points. Each point in Figure 4 represents a cast component,
and the position of the point is determined by all the input variables describing how the casting
was manufactured. The output variable of the casting, in this case, the quality of the part (Class 1,
2, or 3), is marked by color.

PourID Temp_Floor RH_Floor Gr_Floor LadleTemp LadleDensityPP
6750 1.34 1.48 2.03 -1.69 -0.48
6756 0.43 0.85 0.78 0.20 0.58
6758 1.19 0.91 1.33 -0.23 -0.90
6766 0.73 1.23 1.31 0.06 -0.69
6768 -0.03 1.29 0.86 0.20 -1.32
6770 0.12 1.29 0.95 -0.23 -1.11
6773 0.88 1.10 1.30 -0.67 -1.32
6835 -1.26 0.21 -0.42 0.06 -0.05
6837 0.43 -0.43 -0.28 0.93 0.58
6839 -0.34 -0.94 -0.90 1.22 0.16
6841 -0.34 -0.94 -0.90 0.93 -0.48
6844 -0.80 -1.13 -1.13 0.49 0.58
6849 0.12 0.21 0.11 -0.23 -0.26

B-12

The formation of clusters is most likely accounted for by the variations in production conditions.
We investigated castings in the small cluster and found that they were manufactured in the last
quarter of 2016. The cluster separation, most likely, is related to the seasonal changes when these
parts were manufactured. This type of variation can more easily be detected once the data are
visualized on a plot.

Figure 4. (a) Two-dimensional PCA plot with color-coded quality feature of the original dataset.

 (b) Three-dimensional PCA plot with color-coded quality feature of the original dataset.

The Singular Value Decomposition, or SVD, is a computational method often employed to
calculate principal components for a dataset. Using SVD to perform PCA is efficient and
numerically robust [41]. The singular value plot of the dataset is shown in Figure 5. The x-axis of
this plot represents the first six principal components, and the y-axis shows the singular values of
these components. The singular values of these principal components are plotted in the order from
largest to smallest. The statistical interpretation of singular values is in the form of variance in the
data explained by the various components. It can be interpreted that if a component has a high
singular value, it represents a high percentage of variance in the dataset.

(a) (b)

B-13

Figure 5. Singular value decomposition plot of the dataset.

As shown in Figure 5, the first principal component (PC1) and the second principal component
(PC2) respectively represent about 27% and 18% of the variance of the dataset. Since the first two
principal components represent less than 50% of the original data, it is necessary to introduce more
principal components to better capture the essence of the original dataset.

Machine Learning Classifiers for Quality Prediction
The main objective of the data analysis work is to develop a machine learning based model to be
used for part quality prediction. The performance of the models developed are evaluated by cross-
validation. The complete dataset was divided into two sets of data, one for training the algorithms,
and the other set for testing the performance of the algorithms. The testing dataset is about 10%
the size of the original dataset. Since the quality of each casting in the test set is known, and the
quality result is simplified into two possible classifications, “pass” or “fail”, the performance of
the model is measured via four numbers obtained from applying the algorithm to the testing
dataset. These numbers are called True Positives TP, False Positives FP, True Negatives TN, and
False Negatives FN. They can be presented using a two by two matrix called a confusion matrix.
In our study, since the “fail” class is more critical to the foundry operation, we call the “fail” class
Positives (P) and the “pass” class Negatives (N). The confusion matrix we used to present the
output of cross validation in our study is shown in Table IV. If the model mistakenly predicted a
bad part as a good part, it created a False Negative case. A model with good performance should
give very few False Negatives, because the cost of this error would be high for the foundry.

Table IV. Confusion Matrix to Visualize Model Performance.

 Predicted # of Good Part Predicted # of Bad Part
Actual # of Good Part True Negative False Positive
Actual # of Bad Part False Negative True Positive

B-14

Several algorithms were evaluated to predict part quality, and the confusion matrices of these
algorithms are shown in Table V [5]. We use the SMOTE technique for oversampling and
increasing the number of minority class samples in the dataset. We then use the oversampled data
for training the classification algorithms such as Random Forest [42], Logistic Regression [43]
and Support Vector Classifier (SVC) [11]. Specifically, Logistic Regression is a machine learning
algorithm that is used for performing classification tasks based on the logistic function using
probabilities. For example, anything above a probability threshold of 0.5 is predicted as one class
and anything below 0.5 is predicted as another. Random Forest is a decision tree [44] based
machine learning algorithm that is widely used in a number of classification as well as regression
applications. Random Forest makes the prediction using the average of the predictions of the trees
that build the forest in case of regression tasks and using the majority vote of the trees for label
prediction in case of a classification task. SVC is a machine learning algorithm that is defined by
a hyperplane that separates the classes in a dataset. It uses a labeled set of data as the training set
and then categorizes new data on the correct side of the optimal separating hyperplane. Ensemble
Learning combines the predictions obtained using all the classifiers mentioned above and then
makes a prediction based on the majority vote for a certain class for every sample in the test dataset.
Combining SMOTE with SVC performed best as seen in Table V below. No False Negatives were
assigned by this model with only two False Positives.

Employing this method in a production environment allows for targeted selection of production
parts for detailed quality inspection. Instead of a random sampling of parts, the system can select
suspect parts identified by a validated model.

Table V. Several algorithms and their confusion matrix for performance evaluation.

Important Features Influencing Part Quality
In addition to making a quality prediction, another application of machine learning is the
identification of critical features which are predicted to have the greatest influence on the quality
of the product [45]. Some algorithms, for instance, Random Forest and other ensemble methods,
can rank the various features (variables) in the dataset in terms of their importance to the predicted
quality. Foundry engineers can benefit from this function to identify parameters to monitor and
control product quality.

SMOTE + Algorithm Confusion Matrix

Random Forest [42] 22 5
6 14

Logistic Regression [43] 22 5
9 11

Ensemble Learning 23 4
8 12

SVC [11]
(Best Performance)

23 2
0 19

B-15

For this case study, Figure 6 shows the rankings of feature importance relevant to the quality
calculated by two machine learning algorithms, namely the XGBoost [46] and Random Forest.
Like Random Forest, XGBoost is a decision tree-based algorithm that is used for classification and
regression problems. These algorithms are used for finding the most important features in a dataset
in terms of the label predictions for many applications. The two algorithms differ in the way that
most important features are selected. XGBoost uses a criterion known as F-score to decide which
features are the most important in terms of the label prediction. F-score for a feature is defined as
the number of times that a feature in the dataset is used for prediction. Higher F-scores represent
the most important features. Similarly, for Random Forest, permutation importance is used as the
criterion for selecting the top features in the dataset. Permutation importance permutes, or
randomly shuffles, the values of every feature in the dataset by taking one column at a time and
checking by how much the predictions change. Moreover, if after permuting the values of a column
in the dataset, the predictions change significantly, then that column is deemed as important in
terms of the predictions. We check the feature importance using two different algorithms to
compare and see if they agree with each other. Figure 6 shows the top four features found by using
these two techniques and it can be seen that at least three of the top features found by these
algorithms are common. The Random Forest determined environmental conditions such as the
grains of moisture content in the air on the foundry floor (Gr_Floor), relative humidity (RH_Floor),
and ambient temperature (Temp_Floor) in addition to the metal temperature in the ladle
(LadleTemp) to be important factors in predicting casting quality. XGBoost replaces ambient
temperature with the density of the metal inside the riser, or feeder. We validated these predictions
using domain expertise of foundry engineers and these were indeed the top features related to part
quality according to domain experts. This is where machine learning can be exploited to target
important inputs for better control over the casting process. Further, techniques such as feature
importance can be used to drive designs of experiment, identify issues more quickly through
targeted monitoring, and improve the overall cognition of the process.

Figure 6. Feature importance relevant to quality by rankings: (a) generated by Random Forest
and (b) generated by XGBoost.

(a) (b)

B-16

V. Prospective View of Machine Learning for Manufacturing

The abilities to gather data, mine it for knowledge, and apply the insights that we gain are
transforming almost everything that we do as a society and manufacturing is no exception. On the
other hand, modern automated factors are well-springs of data where more information can be
measured about manufacturing processes than ever dreamed before. These two ideas make the
manufacturing industry ripe for a data revolution in which quality can be improved, production
can be accelerated, and waste can be minimized, if only the right collaborations between data
scientists, material engineers and the industrial sector can be achieved.

Modern machine learning, and deep learning in particular, provide tantalizing opportunities for
progress, but the very power and generality of such data science methods bring along an important
measure of responsibility. If used wisely, then such techniques allow for unprecedented
improvements in the full flowering of Industry 4.0. If used unwisely, then the unbalanced, semi-
supervised, and partially observed data that naturally arise in manufacturing problems, if not
treated correctly from a data science and statistical perspective, can lead us astray. Perhaps as put
best by the National Research Council of the National Academies [47]:

“Overlooking this foundation may yield results that are not useful at best, or harmful at
worst. In any discussion of massive data and inference, it is essential to be aware that it is
quite possible to turn data into something resembling knowledge when actually it is not.
Moreover, it can be quite difficult to know that this has happened.”

However, through the opportunity that we have had working with so many industrial partners of
the ACRC, who have generously worked with us and shared their data, we have at least helped
begin a conversation on how best to use data science, machine learning, and deep learning in
manufacturing problems. We see tremendous opportunities in improving the quality of cast
components via the enabling tools we are developing, and there is also an implicit opportunity for
major advances in planning for manufacturing and supply chain management. We are at the
beginning of a revolution.

VI. Concluding Comments

Almost over six decades ago, C. P. Snow wrote a critical essay titled “The Two Cultures” [48] that
not only pointed out the gap between the sciences and the arts, but also the opportunities if we
could cross the bridge between the two cultures. If he were alive today, C.P. Snow may have
written about the “Three Cultures”- the Arts, Sciences, and Engineering/Manufacturing. The
authors of this paper are a good example of individuals from “three cultures” who have worked
together and learned much from each other. However, to do so required emotional as well as time
commitments and investments. The dividends those investments have paid for the authors have
been invaluable and impactful. In a similar way, the execution of the Fourth Industrial Revolution
will require a cultural diffusion and much discourse between data scientists and manufacturing
engineers. There is no question that future of work will be transformed in the 21st century, as well
as the future of the worker. But as has been stated before, the future is for us to make.

B-17

VII. References

[1] “Industry 4.0: the fourth industrial revolution- guide to Industrie 4.0.” https://www.i-
scoop.eu/industry-4-0/ (accessed May 26, 2020).

[2] K.-D. Thoben, S. Wiesner, T. Wuest, BIBA – Bremer Institut für Produktion und Logistik
GmbH, the University of Bremen, Faculty of Production Engineering, University of
Bremen, Bremen, Germany, and Industrial and Management Systems Engineering,
“‘Industrie 4.0’ and Smart Manufacturing – A Review of Research Issues and Application
Examples,” Int. J. Autom. Technol., vol. 11, no. 1, pp. 4–16, Jan. 2017, doi:
10.20965/ijat.2017.p0004.

[3] Capgemini Consulting Group, “Industry_4.0_-The_Capgemini_Consulting_V.pdf.”
Capgemini, 2014, [Online]. Available: https://www.capgemini.com/consulting/wp-
content/uploads/sites/30/2017/07/capgemini-consulting-industrie-4.0_0_0.pdf.

[4] T. Prucha, “From the Editor - Big Data,” Int. J. Met., vol. 9, no. 3, p. 5, 2015.
[5] J. Friedman, R. Tibshirani, and T. Hastie, The Elements of Statistical Learning: Data

Mining, Inference, and Prediction. Springer, 2001.
[6] L. Hauser, “Internet Encyclopedia of Philosophy,” Artificial Intelligence.

https://www.iep.utm.edu/art-inte/ (accessed May 26, 2020).
[7] A. M. Turing, “I.—COMPUTING MACHINERY AND INTELLIGENCE,” Mind, vol.

LIX, no. 236, pp. 433–460, Oct. 1950, doi: 10.1093/mind/LIX.236.433.
[8] C. Bernhardt, Turing’s Vision - The Birth of Computer Science. MIT Press, 2016.
[9] J. McCarthy, M. Minsky, N. Rochester, and C. E. Shannon, “A Proposal for the Dartmouth

Summer Research Project on Artificial Intelligence.” Aug. 31, 1955, Accessed: Feb. 17,
2020. [Online]. Available:
https://wvvw.aaai.org/ojs/index.php/aimagazine/article/view/1904.

[10] K. P. Murphy, Machine learning: a probabilistic perspective. Cambridge, MA: MIT Press,
2012.

[11] Y. Zhu and Y. Zhang, “The Study on Some Problems of Support Vector Classifier,”
Comput. Eng. Appl., no. 13, 2003, [Online]. Available:
http://en.cnki.com.cn/Article_en/CJFDTotal-JSGG200313011.htm.

[12] M. W. Craven and J. W. Shavlik, “Using neural networks for data mining,” Data Min., vol.
13, no. 2, pp. 211–229, Nov. 1997, doi: 10.1016/S0167-739X(97)00022-8.

[13] J. D. Rodriguez, A. Perez, and J. A. Lozano, “Sensitivity Analysis of k-Fold Cross
Validation in Prediction Error Estimation,” IEEE Trans. Pattern Anal. Mach. Intell., vol.
32, no. 3, pp. 569–575, Mar. 2010, doi: 10.1109/TPAMI.2009.187.

[14] C. Reid Turner, A. Fuggetta, L. Lavazza, and A. L. Wolf, “A conceptual basis for feature
engineering,” J. Syst. Softw., vol. 49, no. 1, pp. 3–15, Dec. 1999, doi: 10.1016/S0164-
1212(99)00062-X.

[15] A. Zheng and A. Casari, Feature Engineering for machine learning: Principles and
techniques for data scientists. Beijing: O-Reilly, 2018.

[16] I. Gibson and C. Amies, “Data normalization techniques,” 6259456, Jul. 10, 2001.
[17] “Z-Transform,” Wolfram MathWorld. https://mathworld.wolfram.com/Z-Transform.html

(accessed May 26, 2020).
[18] W. M. P. van der Aalst, V. Rubin, H. M. W. Verbeek, B. F. van Dongen, E. Kindler, and C.

W. Günther, “Process mining: a two-step approach to balance between underfitting and

B-18

overfitting,” Softw. Syst. Model., vol. 9, no. 1, p. 87, Nov. 2008, doi: 10.1007/s10270-008-
0106-z.

[19] J. K. Kittur, G. C. Manjunath Patel, and M. B. Parappagoudar, “Modeling of Pressure Die
Casting Process: An Artificial Intelligence Approach,” Int. J. Met., vol. 10, no. 1, pp. 70–
87, Jan. 2016, doi: 10.1007/s40962-015-0001-7.

[20] E. Kocaman, S. Şirin, and D. Dispinar, “Artificial Neural Network Modeling of Grain
Refinement Performance in AlSi10Mg Alloy,” Int. J. Met., 2020, [Online]. Available:
https://doi.org/10.1007/s40962-020-00472-9.

[21] P. K. D. V. Yarlagadda and E. Cheng Wei Chiang, “A neural network system for the
prediction of process parameters in pressure die casting,” J. Mater. Process. Technol., vol.
89–90, pp. 583–590, May 1999, doi: 10.1016/S0924-0136(99)00071-0.

[22] J. K. Rai, A. M. Lajimi, and P. Xirouchakis, “An intelligent system for predicting HPDC
process variables in interactive environment,” J. Mater. Process. Technol., vol. 203, no. 1–
3, pp. 72–79, Jul. 2008, doi: 10.1016/j.jmatprotec.2007.10.011.

[23] A. Krimpenis, P. G. Benardos, G.-C. Vosniakos, and A. Koukouvitaki, “Simulation-based
selection of optimum pressure die-casting process parameters using neural nets and genetic
algorithms,” Int. J. Adv. Manuf. Technol., vol. 27, no. 5–6, pp. 509–517, Jan. 2006, doi:
10.1007/s00170-004-2218-0.

[24] J. Zheng, Q. Wang, P. Zhao, and C. Wu, “Optimization of high-pressure die-casting process
parameters using artificial neural network,” Int. J. Adv. Manuf. Technol., vol. 44, no. 7–8,
pp. 667–674, Oct. 2009, doi: 10.1007/s00170-008-1886-6.

[25] D. Blondheim, “Artificial Intelligence, Machine Learning, and Data Analytics:
Understanding the Concepts to Find Value in Die Casting Data,” presented at the 2020
NADCA Executive Conference, Clearwater Beach, FL, Feb. 25, 2020.

[26] T. Prucha, “From the Editor: AI Needs CSI: Common Sense Input,” Int. J. Met., vol. 12, no.
3, pp. 425–426, Jul. 2018, doi: 10.1007/s40962-018-0235-2.

[27] R. Blagus and L. Lusa, “SMOTE for high-dimensional class-imbalanced data,” BMC
Bioinformatics, vol. 14, no. 1, p. 106, Dec. 2013, doi: 10.1186/1471-2105-14-106.

[28] H. Han, W.-Y. Wang, and B.-H. Mao, “Borderline-SMOTE: A New Over-Sampling
Method in Imbalanced Data Sets Learning,” in Advances in Intelligent Computing, vol.
3644, D.-S. Huang, X.-P. Zhang, and G.-B. Huang, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2005, pp. 878–887.

[29] A. Creswell, T. White, V. Dumoulin, K. Arulkumaran, B. Sengupta, and A. A. Bharath,
“Generative Adversarial Networks: An Overview,” IEEE Signal Process. Mag., vol. 35, no.
1, pp. 53–65, Jan. 2018, doi: 10.1109/MSP.2017.2765202.

[30] I. Goodfellow, “NIPS 2016 Tutorial: Generative Adversarial Networks,” ArXiv170100160
Cs, Apr. 2017, Accessed: May 27, 2020. [Online]. Available:
http://arxiv.org/abs/1701.00160.

[31] F. Pedregosa et al., “Scikit-learn: Machine Learning in Python,” J. Mach. Learn. Res., vol.
12, pp. 2825–2830, 2011, doi: 10.1016/j.patcog.2011.04.006.

[32] A. Geron, Hands-On Machine Learning with Scikit-Learn and TensorFlow, 1st ed.
O’Reilly, 2017.

[33] J. D. Hunter, “Matplotlib: A 2D Graphics Environment,” Comput. Sci. Eng., vol. 9, no. 3,
pp. 90–95, 2007, doi: 10.1109/MCSE.2007.55.

[34] The pandas development team, pandas-dev/pandas: Pandas. Zenodo, 2020.

B-19

[35] W. McKinney, “Data Structures for Statistical Computing in Python,” in Proceedings of the
9th Python in Science Conference, 2010, pp. 51–56, Accessed: Jan. 09, 2020. [Online].
Available: http://conference.scipy.org/proceedings/scipy2010/pdfs/mckinney.pdf.

[36] G. Van Rossum and F. L. Drake, Python 3 Reference Manual. Scotts Valley, CA:
CreateSpace, 2009.

[37] T. E. Oliphant, “Python for Scientific Computing,” Comput. Sci. Eng., vol. 9, no. 3, pp. 10–
20, Jun. 2007, doi: 10.1109/MCSE.2007.58.

[38] T. Wuest, D. Weimer, C. Irgens, and K.-D. Thoben, “Machine learning in manufacturing:
advantages, challenges, and applications,” Prod. Manuf. Res., vol. 4, no. 1, pp. 23–45, Jan.
2016, doi: 10.1080/21693277.2016.1192517.

[39] C. Eckart and G. Young, “The approximation of one matrix by another of lower rank,”
Psychometrika, vol. 1, no. 3, pp. 211–218, Sep. 1936, doi: 10.1007/BF02288367.

[40] H. Abdi and L. J. Williams, “Principal component analysis: Principal component analysis,”
Wiley Interdiscip. Rev. Comput. Stat., vol. 2, no. 4, pp. 433–459, Jul. 2010, doi:
10.1002/wics.101.

[41] S. Wold, K. Esbensen, and P. Geladi, “Principal Component Analysis,” Chemom. Intell.
Lab. Syst., vol. 2, pp. 37–52, 1987, doi: 10.1016/0169-7439(87)80084-9.

[42] M. Pal, “Random forest classifier for remote sensing classification,” Int. J. Remote Sens.,
vol. 26, no. 1, pp. 217–222, Jan. 2005, doi: 10.1080/01431160412331269698.

[43] R. E. Wright, “Logistic regression.,” in Reading and understanding multivariate statistics.,
Washington, DC, US: American Psychological Association, 1995, pp. 217–244.

[44] D. Dietrich, B. Heller, and B. Yang, Data Science and Big Data Analytics: Discovering,
Analyzing, Visualizing and Presenting Data, 1st ed. Wiley, 2015.

[45] A. Altmann, L. Toloşi, O. Sander, and T. Lengauer, “Permutation importance: a corrected
feature importance measure,” Bioinformatics, vol. 26, no. 10, pp. 1340–1347, Apr. 2010,
doi: 10.1093/bioinformatics/btq134.

[46] T. Chen and C. Guestrin, “XGBoost: A Scalable Tree Boosting System,” Proc. 22nd ACM
SIGKDD Int. Conf. Knowl. Discov. Data Min., pp. 785–794, Aug. 2016, doi:
10.1145/2939672.2939785.

[47] National Research Council, Frontiers in Massive Data Analysis. Washington, D.C.:
National Academies Press, 2013.

[48] C. P. Snow, The Two Cultures. London: Cambridge University Press, 1959.

VIII. Acknowledgements
The authors would like to thank the ACRC consortium members for their support and data for
this project.

C-1

Appendix C – Approach and Methodology

The primary objective of the research is to delve into the nexus of materials processing and data science to
begin our understanding of the challenges unique to the materials processing field. Materials processing is
an interesting machine learning challenge. While it is the author’s belief that the application of machine
learning is beneficial to any materials manufacturing technology, this work is centered on the high pressure
die casting (HPDC) of aluminum alloys. The literature review in this volume (Appendix A) gives a
comprehensive overview of the HPDC process and examples of the research which has driven our
understanding about which HPDC process parameters influence microstructural discontinuities, such as
porosity, and their impact on the resulting mechanical properties.

The published literature contains many papers which report observations of various process inputs on
mechanical properties and porosity. Forward focused HPDC facilities do a good job of capturing many of
these data for each casting they produce. As an industry, we believe that we are collecting the correct data.
The literature confirms the importance and die casters document and demonstrate process control to their
customers by this data. The hypothesis that this work aims to test is that die casters collect the correct input
information and, given a large enough dataset, quality and performance properties can be predicted from
that data.

I. High Pressure Die Casting Data
Die casting is a thermal process where molten metal is delivered to a machine, injected into a die, and
allowed to solidify. Key input data to predict solidification phenomena are those variables which affect the
thermal system: temperatures, times, pressures, filling velocities, flow rate of cooling lines, and amount of
die spray applied to aid part removal are some of the data which could be collected and analyzed. Other
data is useful for machine health and predictive maintenance such as motor amperage draw and cycle times
for each piece of equipment. At the holding furnace, the temperature of the metal and metal level can be
captured as time series data or at the start of each cycle. Alloy composition is periodically sampled at the
machine or upstream in the melting operation. From the literature, the reported HPDC input variables
which drive mechanical properties and porosity are intensification pressure, slow shot velocity, fast shot
velocity, vacuum pressure, and melt temperature. Alloy composition is also an important factor, though
the ranges investigated to measure an effect are wider than the variation in the alloy of this study. More
detail and a complete list of references is included in Appendix A - Literature Review.

Modern foundry equipment is PLC driven and integrated such that input and output signals are passed
between the equipment in the work cell throughout the cycle. Being a thermal process, time is an important
factor in HPDC. Timing of signal activity, when sensors are made on periphery equipment and on the die
casting machine, can be captured. The level of detail is up to the operation. For example, one could capture
the time it takes an extraction robot to complete its entire cycle, or record each segment of that cycle: extract,
trim, pin stamp, etc. as separate variables. The DCM is the hub of the cell and all the peripheral equipment
relay their signals through the DCM. This is convenient for organizing the data and assigning each value
to a serialized part number.

The DCM is programmed by the process engineer to perform movements which have been developed to
produce acceptable castings which meet the specifications of the design. The shot velocity profile dictates
the velocities the machine will move the plunger forward and when to change from one speed setting to
another as it travels. An example of a shot velocity profile is shown in Figure 1. Modern machines are

C-2

equipped with fast acting valves which give the engineer great flexibility and precision in performance [1].
The intensification pressure is another important parameter programmed into the DCM for the purpose of
increasing the soundness of the casting. The onboard injection monitoring computer captures the velocity,
pressure, and position inputs as well as how the machine performed with respect to those inputs in a
combination diagram called a shot trace.

Figure 1. Schematic of a shot trace in aluminum high pressure die casting.

From the shot trace, key process outputs can be summarized and displayed to the operator. Even now, it is
common practice for this summary data to be stored on the injection monitoring computer. Storage
constraints dictate that the oldest cycle data be deleted as new machine cycles were performed and stored.
This allows technicians and engineers to review recent history and make comparisons to aid in
troubleshooting, but data is being lost. With the improved connectivity and memory storage options of
2010’s era technology, this data can be uploaded to cloud-based data storage after each cycle and
maintained indefinitely. The cycle summary data is historically the best, and often the only, information
available to troubleshoot the process and make intuitive, experience-based predictions regarding the quality
of the resulting castings. For this reason, it is also the most easily and widely stored data. Additional data
from the cycle are collected and appended to this information prior to uploading into long-term storage.

To make robust predictive models one needs relevant data to the problem at hand and prefers a large
quantity of it; Big Data. Unfortunately, HPDC is not a Big Data environment when compared to YouTube
or Facebook. Conceding that there are always exceptions, production demand for a newly designed HPDC
component varies from approximately 10,000 to over 1 million pieces per year. Consider the following
hypothetical scenario at the high end of the production demand spectrum. An imaginary part is cast in a
single-cavity die. Each cycle of the process yields one part and 1 million are needed per year. For simplicity,
assume the useful life of each tool is 100,000 cycles and each machine can run 100,000 cycles per year.
Ideally, ten identical dies in ten identical die casting machines would cover the demand.

However, as uncovered in Appendix D, combinations of die and machine can behave as unique processes
unto themselves dividing the 1 million sample dataset into 10 subsets of 100,000 each. Further
complicating the picture, die casting operations do not set a die in a machine and run it until the useful life

C-3

is spent. During this year of production, an operation would need to pull dies periodically and perform
maintenance on them, while another back-up die runs in its place. Perhaps 15 identical dies are required to
allow for the maintenance rotation. If divided evenly over the first year, each die would have a rounded
67,000 cycles on it. For flexibility in dealing with which dies require maintenance, a die may be approved
to run on three of the ten machines. Assuming an even split, each combination of die cavity and machine
would have 22,000 samples cast with their process input data recorded. 22,000 pieces would require nearly
60 days to cast. Sampling one piece per day for mechanical properties would yield 60 measured outputs
for each die cavity/machine pair (0.27% sampled). This scenario shows how a seemingly expansive dataset
can become quite small. Small data is a challenge for machine learning. Research in this space, such as
this project, strives to improve a difficult data science domain.

As an industry, die casters are generally not to the level where every potential important variable is captured,
and has been for years, such that large datasets are commonplace. There is also the challenge of
accessibility to the data for analysis. Leaders in the industry recognize the importance of taking the first
steps in bringing machine learning into die casting. The Aluminum Casting Research Center (ACRC) at
WPI is an industry-university consortium where a cross-section of the aluminum casting industry including
alloy producers, casters, industry suppliers, and end users meet and sponsor pre-competitive fundamental
research [2]. FCA, a major automobile manufacturer with a large die casting operation and longtime
member of the ACRC, partnered with the research team to provide a calendar year worth of HPDC process
data, alloy composition checks, and mechanical property testing data. The size of the datasets is given in
Table I. The details of the datasets with respect to which inputs and outputs are available and descriptions
of each are given in Tables C-I and C-II at the end of the appendix.

Table I. FCA datasets size details.
Dataset Name Raw Dataset

(Rows x Columns)
HPDC Process 956,986 x 109
Alloy Composition 980 x 17
Tensile Testing 1,634 x 14

The HPDC process data can be thought of as a spreadsheet with each row representing an individual casting
and each column containing a piece of information about that casting. The columns are the input variables
which produced the castings and output variables which are data determined about the castings after they
are made. Similarly, in the mechanical property dataset each row represents a tensile bar and the columns
contain the input and output variables associated with each bar. The composition dataset has rows which
represent each test and columns containing the amount of each elemental constituent in the melt at that time.
This description is rather straightforward; however, visualization is difficult. The raw HPDC dataset has
109 columns. Humans are finite beings and, as such, have no ability to visualize what is happening in 109
dimensions. Fortunately, machines can perform these tasks on our behalf via machine learning algorithms
that analyze high-dimensional data.

The literature provides an understanding of which variables are important for mechanical properties.
Today’s HPDC equipment is more interconnected than ever to facilitate data organization and collection in
the die casting cell. Platforms now exists for storing and accessing large amounts of data with which to
train machine learning models. The need largely remains within the die casting industry to begin taking

C-4

advantage of this reality and start investigating how to process data and train algorithms to create knowledge
for data-driven decision making.

II. Data Science Approach

Data science projects are more intricate than collecting data and plugging it into an algorithm. There are
steps one must take in an iterative process to generate reliable predictions and actionable results. An
overview is given below with more detail on the methods used and references in the subsections that follow.
The main building blocks of a data science project are:

Data exploration: Here we gain an understanding of the data in front of us. We determine how much data
we have, what data types make up the features, generate statistical summaries of the features, initial
visualization to uncover relationships between features. For example, it would save us a lot of time to see
that that one of our many input features is linearly correlated to our target output. One has to look at their
data before moving any further.

Pre-processing: This makes up the bulk of the effort. Many necessary actions fall under the pre-processing
step and iterations of development tend to bring us back to this step. Pre-processing involves the cleaning
of the dataset, feature engineering, standardization or normalization of the data, and dimension reduction.

Machine Learning Algorithms: Once the data is ready for analysis, the algorithms are selected in regard to
the problem at hand, data collected, and the information one is looking to gain. Within the off-the-shelf
algorithms, there are hyperparameters which can be adjusted for optimum performance.

Model Evaluation: To evaluate the model, cross-validation is conducted to get a better idea of how the
model will operate in general rather than on one training instance. Performance is evaluated by comparing
how the algorithm did on the training and testing data with respect to the chosen performance metric.

Iteration: Most of the time, model performance is not the best it can be on the first attempt. It is not as
accurate as we hoped, the model is overfitting the training data, or perhaps we want to try looking at a
subset of features or a different set of hyperparameters. Iteration is critical to optimizing model
performance.

Reporting: Performing data analytics is most effective when accompanied with an effective method to
communicate what we have found. Creating graphs and figures to show our results help tell the story of
the data.

This section describes the software, pre-processing methods, machine learning algorithms, and evaluation
techniques used in this project. For the purpose of an illustrative example for data pre-processing and
machine learning algorithms, a faithful subset of the FCA HPDC process data was created named toydata
(Table II). This small dataset was built by selecting features which capture the range in scale of the HPDC
process data from three arbitrarily chosen machines. The process inputs included in toydata are biscuit
length, cavity fill time, final intensification pressure, average velocity of the plunger during slow shot, spray
robot cycle time, molten metal temperature in the furnace, and the ladle pour time. Incorporating the
machine, which was set to 1, 2, and 3 respectively, provides toydata with a categorical feature in the dataset.

C-5

Table II. The toydata dataset for illustration purposes.

Software/Libraries/Helpful Resources

The benefits of machine learning are realized on very large datasets such as the HPDC process dataset.
There is still a place for spreadsheet software for manageable datasets. However, when datasets grow too
large, purpose-built software is required. Excessively large datasets, Big Data, utilize other tools for
performing advanced statistical analysis and model generation. Two such tools are computing codes R and
Python [3]–[5]. Both are open source and free to download. R and Python have numerous ready-made
packages perform data analysis, organization and visualization. A key advantage is an engaged user
community with an endless amount of helpful information on the internet and continual adaption to the
needs of the data science community. Both are computing codes so there is a more involved learning curve
as compared to point and click commands of Microsoft Excel, for example [6]. The flexibility in analysis
tools available and reproducibility of custom graphics make R and Python programming indispensable
skills for performing machine learning in materials processing.

The following few paragraphs highlight open source libraries, modules, and packages recommended for
someone who is interested in getting started in machine learning in Python. The examples are provided in
context of how they were utilized for this research. To ascertain the full functional extent of each, the

BiscuitLength CavityFillTime FinalIntensifierPressure SlowShotVelAve SprayRobotTime MetalTemp LadlePourTime machine
2.6 103 6379 4.3 61.30 1217 11.97 1
2.6 103 6453 3.9 54.97 1217 11.42 1
2.5 102 6473 3.6 58.33 1216 10.85 1
2.7 103 6440 3.8 62.43 1222 11.00 1
2.7 105 6343 3.9 63.62 1219 11.14 1
2.6 103 6421 3.9 56.22 1235 11.50 1
2.5 104 6314 4.1 58.40 1219 10.82 1
2.6 105 6460 3.6 55.07 1219 11.30 1
2.7 104 6356 4.0 60.60 1224 10.82 1
2.6 102 6541 4.2 56.65 1224 10.52 1
2.9 106 6446 2.4 59.03 1232 9.02 2
2.5 105 6432 2.3 58.72 1229 11.95 2
2.5 103 6525 2.4 61.90 1234 9.12 2
2.5 105 6640 2.9 59.55 1221 9.27 2
2.6 104 6336 2.4 58.15 1225 12.59 2
2.7 105 6484 2.6 60.50 1232 12.62 2
2.9 107 6397 2.4 61.80 1229 9.15 2
2.8 102 6522 2.4 57.88 1235 9.70 2
2.7 107 6358 2.5 61.33 1222 9.62 2
2.5 104 6398 2.4 59.35 1215 11.12 2
2.7 103 6269 5.6 57.70 1230 9.35 3
2.6 101 6365 6.1 59.35 1225 10.92 3
2.7 101 6468 4.5 55.67 1231 11.50 3
2.6 100 6423 4.3 55.40 1228 11.69 3
2.5 101 6339 5.8 59.22 1223 11.42 3
2.8 101 6298 4.8 54.97 1227 11.62 3
2.8 100 6265 5.7 58.95 1224 11.35 3
2.8 102 6350 5.2 56.20 1230 11.32 3
2.5 100 6284 5.3 57.95 1230 11.75 3
2.5 99 6445 4.3 54.53 1212 11.65 3

C-6

reader is encouraged to visit the cited websites and read for themselves the capability of these packages,
work through the tutorials, and determine their suitability for your data.

pandas [7]–[9]
Pandas is a data structuring package for conducting data analysis in Python. Data can be structured as either
a one-dimensional series or two-dimensional data frame. While the diversity of data which pandas can
handle is wide ranging, the data in the present study is of the tabular kind as an Excel spreadsheet, to name
a common example. Pandas is capable to import files such as .xlsx and .csv files directly into Python as a
pandas DataFrame. The first important feature is the ability to summarize and review the data after
importing. This includes statistical summaries, data type identification by column, the shape (dimensions)
of the data frame, and the presence of missing data (or NaN). Once the basic information about the data is
understood, within pandas one can change the data type of specific columns, create subsets, and compare
and merge different data frames. Columns and rows can be created, removed, renamed, and reordered. The
creation of a new column can be based on, but not limited to, a mathematical operation, splitting character
strings, Boolean conditions, and discretization. The flexibility is high so that in one line of code a new
column may be created utilizing more than one of these conditions. In addition to this built in functionality,
pandas allows the user to create their own functions and apply the data to them. In short, pandas is a very
useful tool in accessing and working with data frames.

NumPy [10]–[12]
NumPy (pronounced Num-Pie) is a basic building block of working with numerical data in Python. The
other libraries listed in this section are built upon NumPy. NumPy utilizes efficient n-dimensional
homogenous arrays (ndarrays) typically for mathematical calculations. Though pandas is built upon
NumPy, there are times where the algorithm with which one is working requires an array or a data frame
specifically, so it is a good practice to import both into your Python code. Similar to a pandas data frame,
NumPy ndarrays can be sliced, merged, subset, etc. to create new ndarrays. A very useful function in
NumPy is the creation of random numbers or arrays of random numbers. This is a great way to generate
data with which to practice new data science techniques.

Matplotlib [13], [14]
Matplotlib is the go-to library for data visualization. A critical component to any data science project is the
creation of plots and charts which tell the story of that data. Matplotlib offers a wide selection of plot styles
that are highly customizable, and easily reproduced once the code is written. Matplotlib.org offers many
examples and tutorials to aid the user in getting started.

Scikit-learn [15], [16, p. 1]
Machine learning algorithms can be composed in Python from scratch. For efficiency, the scikit-learn
library is a comprehensive suite of popular machine learning algorithms which are plug and play into Python
code. The user simply loads the algorithm from the proper scikit-learn module and adjusts the parameters
of the model as needed. In addition to these algorithms, scikit-learn offers modules for pre-processing
(standardization, one-hot encoding), dimension reduction (feature selection, Principal Component
Analysis), and model selection (cross-validation, metrics).

colab.research.google.com [17]– Google’s Colaboratory, Colab for short, offers the ability to write Python
code in a web browser. The benefit is free access to Google’s graphic processing units (GPUs). GPUs are
gaming hardware which has been appropriated for machine learning. Large data science projects can

C-7

overwhelm computers set-up for general home and office use. In such cases, running machine learning
algorithms on Colab GPUs will accelerate one’s progress.

stackoverflow.com [18]– User community driven, one-stop answer site for your coding questions. If you
have an error in your code the answer is almost certainly on this website. Learning to ask the right question
takes time. Building out one’s data science coding lexicon will help in asking the right questions.

towardsdatascience.com [19]– A community of bloggers posting useful quick tutorials on a specific topic
of data science from basic beginner tips to advanced and specialized techniques. These insightful blogs
help explain the highly technical in plain English.

kaggle.com [20]– An excellent source for data with which to hone one’s skills.

The FCA dataset was analyzed using both R and Python. The initial data fusion and cleaning was conducted
in R to create a comma separated values (.csv) file. Python has this capability via pandas and NumPy as
described above. This file is uploaded into Python for the predictive model analysis for part quality and
mechanical properties. The steps for preparing the data and the analyses performed are detailed below
using toydata where graphics benefit the reader. At the end of each section, there is a supplemental table
with the Python libraries used in the examples given along with citations of where to find more information
on each.

Data Pre-processing

Cleaning the Dataset

Real world production data is messy. Missing values, erroneous sensor readings, duplicated entries, typos,
format changes in the source file, etc. must be sorted out before one can engage in meaningful analysis.
Considering the FCA HPDC process data set with over 950,000 observations and 109 variables, one cannot
simply scroll through and hope to catch these issues by eye. Running summaries of the data, examining
the data class, and locating NaN values are a few of the tasks to accomplish in this step. Fortunately, there
are simple commands to execute which reveal issues in the data, but how to address them is up to the data
scientist and the domain experts involved in the project. One example of how bad data comes to be is when
a monitoring sensor fails, it is common for production to continue until such a time when a technician is
available to replace it. Each cycle while the sensor is malfunctioning, its column in the dataset will be left
blank or populated with bad data. Bad data can be recognized by its scale or upon comparison to typical
values when the sensor was working properly. There is often no way to recover the actual missing values
and erroneous sensor readings. Even so, this does not mean that these columns should simply be deleted.
For example, one can impute the mean or median value depending on whether the distribution is Gaussian
or not.

Another source of missing data is not a result of something going awry, rather it is a result of sampling
frequency. This is called heterogeneous data, and alloy composition is a good example. Every casting has
a composition; however, the furnace is only evaluated once per shift as a quality control audit. Parts cast
near the time when the composition check occurred can be estimated to be near that composition, but after
hours have passed, that assumption is less valid. For this study, elemental compositions were imputed into
the merged dataset based on proximity in time to when the alloy was measured. The composition of the

C-8

E380 aluminum alloy cast was quite consistent and no measures were taken showing the alloy to be out of
specification.

A popular domain for Data Science research is in the area of synthetic data generation for AI [21]–[23].
These methods are promising and more faithful attempts to create new synthetic data which better represent
the original data than mean imputation or sample duplication. The downside of these naïve methods is that
the statistical distribution of the data will change upon imputation and duplication provides no new
information to the algorithm. The objective is to fill gaps of the dataset, inputs and outputs, with created
values which maintain the statistical measures of the true data from which it was derived. Synthetic data
generation can be used for data masking as a security measure and creating data when gathering additional
real data is very expensive or risky such as autonomous vehicle training. [24], [25].

An important area where synthetic data creation is being explored is the balancing of imbalanced datasets.
The Synthetic Minority Oversampling TEchnique (SMOTE) provides new information to the model via the
creation of new minority class samples with which to train the algorithm [26], [27]. It is very important
that a testing dataset be set aside which represents the properties of the original dataset prior to using
SMOTE. SMOTE creates each new minority class sample by selecting an example of the minority class,
finding its nearest neighbors (k-neighbors = 5 is the default), and drawing a line between the example and
one of its neighbors at random. The new sample is created along the connection line. This is done
repeatedly until the minority class balances out the majority class or meets a prescribed ratio. A
disadvantage of SMOTE is that it is prone to making synthetic data which is not representative of the
process under investigation. Another is that SMOTE will generate data far from the borders of classes
which the algorithm can easily classify already. Figure 2a shows a randomly generated dataset created
from scikit-learn make_classification module [28]–[30]. The dataset is comprised of 2000 samples
representing two clustered classes. The weight of the majority class is 0.96 (1920 samples). Figure 2b
shows the same dataset after the application of SMOTE. The new dataset is balanced via SMOTE at 1920
samples in each class.

C-9

Figure 2. An illustration of SMOTE application showing a) the unbalanced data prior to
synthetic data generation and b) the balanced dataset after SMOTE. In this classification
example, many synthetic data are generated far from the border of the two class clusters
which is less useful for making predictions between classes.

Borderline SMOTE is a selective oversampling method which increases the number of minority class
samples in the region of the border between two class clusters [31]. When two samples of opposite class
are not similar, i.e. far apart in Figure 2a, training the algorithm to classify them correctly is easy. The
error increases along the border where minority class samples are more likely to be grouped into the
majority class. Generating more minority class in this region will accentuate what is unique about one class
versus the other and improve predictive performance. Figure 3 displays Borderline SMOTE applied to the
data from Figure 2a.

C-10

Figure 3. An illustration of Borderline SMOTE application to the example dataset in
Figure 2a. Here, the synthetic data are generated along the border of the two class clusters
for the purposes of training the model to better differentiate between similar samples of
different classes.

Typos are problematic with manually entered datasets. In the FCA data, typos in the serial numbers on the
mechanical property dataset were encountered. These typos had to be corrected since the HPDC process
data and the mechanical property data were to be merged on the serial number and it was important to retain
as much of the mechanical property dataset as possible. The erroneous serial numbers were identified by
reviewing only the serial numbers from the tensile bars which were not found in the HPDC process
database. A needle in the haystack search for humans that takes a computer seconds to perform. The next
step is manual, but the number of instances was not daunting. The serial number is a code which contains
the Julian day, year, model letter designation, die casting machine number, die cavity number, work shift,
and shot number. Errors could be identified such as transposed digits based on limited possibilities and
date time information about that part. If the instances were sufficiently large, a script could be written to
perform the same tasks and typos could be autocorrected. If the serial number could not be corrected with
a high confidence, the row was omitted from the combined process and property dataset.

Cleaning the data is often an iterative process as downstream operations will fail if the data is not organized
correctly. Upon cleaning, the data sets the dimensions are changed as shown in Table III.

Table III. Effect of cleaning on the data set shape (n-rows x n-columns).
Dataset Name Raw Dataset Cleaned Dataset Combined Dataset
HPDC Process 956,986 x 109 954,313 x 95

1,485 x 140 Alloy Composition 980 x 17 933 x 17
Tensile Testing 1,634 x 14 1,623 x 15

C-11

Observation count drops as rows with missing data or duplicated data are removed. The number of features
can increase as combinations of variables are added such as the calculation of the Quality Index [32] in the
tensile test data set. On the other hand, features are removed when they do not contain variation or are
otherwise deemed unimportant to the analysis. Therefore, the resulting number of features after working
with the data may increase or decrease. The combined data set is the result of matching the data sets first
on serial number between the HPDC data and the tensile testing data then on machine number and date of
the alloy composition data set.

Supplement i. Libraries, modules, and algorithms used in this example along with citations to assist the
reader in accessing them. The purpose served by each is given in the Notes column.

Library.module Algorithm Notes Reference
pandas Use: Dataframe management [7]–[9]

sklearn.datasets make_classification Use: Create sample data clusters
for SMOTE demonstration
n_samples = 2000
n_features = 2
n_clusters_per_class = 1
weights = 0.96

[15], [16],
[28]

imblearn.over_sampling SMOTE
BorderlineSMOTE

Use: Generate synthetic data in
the minority class.
Default parameters used.

[27], [29]–
[31]

matplotlib pyplot Use: Scatter plots for SMOTE
visualization

[13], [14],
[33]

Continuous vs Discrete Data

In the dataset, there are continuous variables such as melt temperature, fast shot velocity, and intensification
pressure. Likewise, there are discrete variables such as machine ID, cavity number, and work shift.
Continuous variables fit nicely into machine learning algorithms which base predictions on the distance
between two values. However, discrete data, especially discrete data which is represented by numeric
identifiers such as those listed above, cannot be properly characterized by finding the difference. Even so,
it is useful data and can be incorporated into the analysis. Using toydata, the categorical feature, machine,
is a good example for illustrating how to deal with discrete data. In Table II, the column for machine
identifier contains ones, twos and threes. Many machine learning algorithms struggle with this type of data
entry as it is computing a distance between numerical machine identifiers which it interprets as continuous
data. While the distance between 1 and 2 and the distance between 2 and 3 both have a value of one, the
pair 1 and 3 have a distance of two (Figure 4). This is interpreted as parts cast on machines 1 and 3 are less
alike than parts cast on machines 1 and 2. Knowing that all three machines are identical, machine 1 and
machine 2 are no further apart than machine 1 and machine 3. We need data representation which the
algorithm will correctly interpret.

C-12

Figure 4. Discrete numerical data challenge of machine identifier.

To deal with the challenge of discrete data, data scientists utilize a method known as one-hot encoding [34].
One-hot encoding takes the tall vector which has discrete machine number data consisting of 1’s, 2’s, and
3’s and converts it into a wide set of dummy variables. Call them machine_1, machine_2, and machine_3.
Where machine has a value of one (1), machine_1 also has a value of one (1) while machine_2 and
machine_3 both have a value of zero (0) (Table IV).

Table IV. After one-hot encoding the machine variable, toydata has three new columns of machine ID
data each specific to one machine. The original machine column is dropped from the dataset.

By employing one-hot encoding we now have three columns which capture the machine identifier as
numerical data and the distance between each machine is one. The original machine data column is

BiscuitLength CavityFillTime FinalIntensifierPressure SlowShotVelAve SprayRobotTime MetalTemp LadlePourTime machine_1 machine_2 machine_3
2.6 103 6379 4.3 61.3 1217 11.97 1 0 0
2.6 103 6453 3.9 54.97 1217 11.42 1 0 0
2.5 102 6473 3.6 58.33 1216 10.85 1 0 0
2.7 103 6440 3.8 62.43 1222 11 1 0 0
2.7 105 6343 3.9 63.62 1219 11.14 1 0 0
2.6 103 6421 3.9 56.22 1235 11.5 1 0 0
2.5 104 6314 4.1 58.4 1219 10.82 1 0 0
2.6 105 6460 3.6 55.07 1219 11.3 1 0 0
2.7 104 6356 4 60.6 1224 10.82 1 0 0
2.6 102 6541 4.2 56.65 1224 10.52 1 0 0
2.9 106 6446 2.4 59.03 1232 9.02 0 1 0
2.5 105 6432 2.3 58.72 1229 11.95 0 1 0
2.5 103 6525 2.4 61.9 1234 9.12 0 1 0
2.5 105 6640 2.9 59.55 1221 9.27 0 1 0
2.6 104 6336 2.4 58.15 1225 12.59 0 1 0
2.7 105 6484 2.6 60.5 1232 12.62 0 1 0
2.9 107 6397 2.4 61.8 1229 9.15 0 1 0
2.8 102 6522 2.4 57.88 1235 9.7 0 1 0
2.7 107 6358 2.5 61.33 1222 9.62 0 1 0
2.5 104 6398 2.4 59.35 1215 11.12 0 1 0
2.7 103 6269 5.6 57.7 1230 9.35 0 0 1
2.6 101 6365 6.1 59.35 1225 10.92 0 0 1
2.7 101 6468 4.5 55.67 1231 11.5 0 0 1
2.6 100 6423 4.3 55.4 1228 11.69 0 0 1
2.5 101 6339 5.8 59.22 1223 11.42 0 0 1
2.8 101 6298 4.8 54.97 1227 11.62 0 0 1
2.8 100 6265 5.7 58.95 1224 11.35 0 0 1
2.8 102 6350 5.2 56.2 1230 11.32 0 0 1
2.5 100 6284 5.3 57.95 1230 11.75 0 0 1
2.5 99 6445 4.3 54.53 1212 11.65 0 0 1

C-13

removed from the input dataset prior to running the algorithm. One-hot encoding can be applied to character
string data as well.

Supplement ii. Libraries, modules, and algorithms used in this example along with citations to assist the
reader in accessing them. The purpose served by each is given in the Notes column.

Library.module Algorithm Notes Reference
pandas pandas.get_dummies() command

used for one-hot encoding.
Within the parentheses, one can
specify the dataframe and which
columns to convert.

[7]–[9]

Standardizing the Data

Once the data set is fully numeric and discrete variables have been managed, the issue of scale is addressed.
The data collected in high pressure die casting contains a wide range in scale. Also, different equipment
manufacturers may capture data in only English or metric units. In round numbers, intensification pressure
of 10,000 psi, melt temperature of 1300 F/ 704 C, cycle time of 150 seconds, biscuit size of 2 inches, and
an iron content of 0.60% are a few examples which show the range of scale is in orders of magnitude. If
left in this format, the intensification pressure would register as highly significant and outweigh any
influence the iron content would show simply because the numbers are larger. Recent developments in
high pressure die casting alloys show that iron content is very influential on mechanical properties [35] and
this significance would perhaps not come to light because of the issue of scale. The standardization method
which was employed in this study is the Z-transform (Equation 1), which brings all the variables into the
same scale, resolves the issue of units, and leads to meaningful distances when considering multiple
columns of data [36], [37]. Table V shows the Z-transformed toydata.

𝑍 , =
,

 Eq. 1

Where:
 𝑍 , is the Z-transform value in the ith row of the jth column

 𝑋 , is the original value in the ith row of the jth column

 𝜇 is the mean of the original values in the jth column

 𝜎 is the standard deviation of the original values in the jth column

An advantage of the Z-transform is that anomalies are easy to detect upon performing a summary of the
standardized data set. A summary of the standardized data set will reveal anomalous values. For this data
set, variable with maximum standardized values greater than 10 were examined. Large standardized values
for a given variable signify that examples of this condition are rare. Machine learning relies on many
examples of each condition in order to generate the most accurate model. It is important to investigate
these in the original data; applying domain expertise to decide if it should be removed from the data set for
the purpose of the analysis. Removing anomalies from the data set does not necessarily mean deleting
those rows and never looking back. Anomalies provide information about the fringes of the process window
that may prove valuable if more data were to be collected in that space. Once the additional data is collected,
then that can be added back into the machine learning model.

C-14

Table V. The toydata data frame after Z-transformation. Each column is now on the same scale and has
an average value of 0 and a standard deviation of 1.

To present benefits of the Z-transform graphically, toydata with and without Z-transformation are run
through a K-Nearest Neighbors (KNN) algorithm. KNN is a supervised learning method highly sensitive
to distances [38]. Thus, benefits from standardizing data are readily shown. Importing the
KNeighborsClassifier from scikit-learn.neighbors, the machine column from toydata is predicted as the
target output. The remaining toydata columns are the input parameters. Since machine is being predicted,
the one-hot encoded machine columns are not included with the Z-transform input data. Due to the small
size of toydata the model was trained on all the data and predictions were made on the same training data.
One should expect a high performing model in this case. Figure 5 clearly shows the impact of standardizing
the data. Without the Z-transform, the model accuracy is poor, misclassifying one-third of the samples.
After Z-transform, 90% of the samples are classified correctly.

BiscuitLength CavityFillTime FinalIntensifierPressure SlowShotVelAve SprayRobotTime MetalTemp LadlePourTime machine_1 machine_2 machine_3
-0.3259 0.0000 -0.3301 0.3828 1.1413 -1.2643 1.0270 1.4142 -0.7071 -0.7071
-0.3259 0.0000 0.5281 0.0400 -1.4617 -1.2643 0.4809 1.4142 -0.7071 -0.7071
-1.1406 -0.4841 0.7600 -0.2171 -0.0800 -1.4250 -0.0851 1.4142 -0.7071 -0.7071
0.4888 0.0000 0.3773 -0.0457 1.6059 -0.4607 0.0639 1.4142 -0.7071 -0.7071
0.4888 0.9682 -0.7476 0.0400 2.0953 -0.9429 0.2029 1.4142 -0.7071 -0.7071
-0.3259 0.0000 0.1569 0.0400 -0.9477 1.6286 0.5603 1.4142 -0.7071 -0.7071
-1.1406 0.4841 -1.0839 0.2114 -0.0513 -0.9429 -0.1148 1.4142 -0.7071 -0.7071
-0.3259 0.9682 0.6092 -0.2171 -1.4206 -0.9429 0.3617 1.4142 -0.7071 -0.7071
0.4888 0.4841 -0.5969 0.1257 0.8534 -0.1393 -0.1148 1.4142 -0.7071 -0.7071
-0.3259 -0.4841 1.5486 0.2971 -0.7709 -0.1393 -0.4127 1.4142 -0.7071 -0.7071
2.1182 1.4524 0.4469 -1.2454 0.2078 1.1464 -1.9021 -0.7071 1.4142 -0.7071
-1.1406 0.9682 0.2845 -1.3311 0.0803 0.6643 1.0071 -0.7071 1.4142 -0.7071
-1.1406 0.0000 1.3631 -1.2454 1.3880 1.4679 -1.8028 -0.7071 1.4142 -0.7071
-1.1406 0.9682 2.6967 -0.8169 0.4216 -0.6214 -1.6539 -0.7071 1.4142 -0.7071
-0.3259 0.4841 -0.8288 -1.2454 -0.1541 0.0214 1.6426 -0.7071 1.4142 -0.7071
0.4888 0.9682 0.8876 -1.0740 0.8123 1.1464 1.6724 -0.7071 1.4142 -0.7071
2.1182 1.9365 -0.1214 -1.2454 1.3469 0.6643 -1.7730 -0.7071 1.4142 -0.7071
1.3035 -0.4841 1.3283 -1.2454 -0.2651 1.6286 -1.2269 -0.7071 1.4142 -0.7071
0.4888 1.9365 -0.5737 -1.1597 1.1536 -0.4607 -1.3063 -0.7071 1.4142 -0.7071
-1.1406 0.4841 -0.1098 -1.2454 0.3394 -1.5857 0.1830 -0.7071 1.4142 -0.7071
0.4888 0.0000 -1.6058 1.4968 -0.3391 0.8250 -1.5744 -0.7071 -0.7071 1.4142
-0.3259 -0.9682 -0.4925 1.9252 0.3394 0.0214 -0.0156 -0.7071 -0.7071 1.4142
0.4888 -0.9682 0.7020 0.5541 -1.1739 0.9857 0.5603 -0.7071 -0.7071 1.4142
-0.3259 -1.4524 0.1801 0.3828 -1.2849 0.5036 0.7490 -0.7071 -0.7071 1.4142
-1.1406 -0.9682 -0.7940 1.6681 0.2859 -0.3000 0.4809 -0.7071 -0.7071 1.4142
1.3035 -0.9682 -1.2695 0.8112 -1.4617 0.3429 0.6795 -0.7071 -0.7071 1.4142
1.3035 -1.4524 -1.6522 1.5824 0.1749 -0.1393 0.4114 -0.7071 -0.7071 1.4142
1.3035 -0.4841 -0.6665 1.1540 -0.9559 0.8250 0.3816 -0.7071 -0.7071 1.4142
-1.1406 -1.4524 -1.4319 1.2397 -0.2363 0.8250 0.8086 -0.7071 -0.7071 1.4142
-1.1406 -1.9365 0.4353 0.3828 -1.6427 -2.0679 0.7093 -0.7071 -0.7071 1.4142

C-15

Figure 5. K-Nearest Neighbor classification of machine identifier a) without Z-transform
and b) with Z-transform. Each point represents the true and predicted machine class.
Misclassified samples display as bi-colored points. The axes were chosen to show
separation between the three machines. With the Z-transform, the model performed much
better, classifying at a 90% accuracy.

Supplement iii. Libraries, modules, and algorithms used in this example along with citations to assist the
reader in accessing them. The purpose served by each is given in the Notes column.

Library.module Algorithm Notes Reference
pandas Use: Dataframe management [7]–[9]

sklearn.pre-processing StandardScaler Use: Applies Z-transform to a
dataframe

[15], [16],
[39]

sklearn.neighbors KNeighborsClassifier Use: Machine learning algorithm
n_neighbors = 3
weights = ‘uniform’

[15], [16],
[40]

matplotlib pyplot Use: Scatter plots for KNN
visualization

[13], [14],
[33]

Correlation Between Variables

Some machine learning algorithms are sensitive to correlation between variables in the data set. The effect
of keeping two correlated variables in the data set is that the underlying contribution to variance is doubled.
Correlation coefficients are not only an indication of how two variables are related, but also a measure of
how strongly related they are (Equation 2) [41]. Correlation coefficients range between -1 and 1. Any
variable correlated to itself has a coefficient of 1. Therefore, if two variables 𝑥 and 𝑥 have a correlation
of, or near, 1 they are highly positively correlated and one of them should be removed from the data.
Similarly, coefficients near -1 are highly negatively correlated and one of the variables should be removed.
Comparing Equations 1 and 2, it can be seen that the data need not be standardized prior to checking for
correlation; the values are standardized within the correlation coefficient equation.

𝑟 = ∑ (

)() Eq. 2

Where:
 𝑟 is the correlation coefficient between variables (columns) 𝑥 and 𝑥

C-16

 𝑛 is the number of samples (rows) in the dataset
 𝑥 and 𝑥 are the ith value in variables 𝑥 and 𝑥 respectively

 𝜇 and 𝜇 are the mean of the values in 𝑥 and 𝑥 respectively

 𝜎 and 𝜎 are the standard deviation of the values in 𝑥 and 𝑥 respectively

For the purposes of this research, variables with a correlation coefficient greater than 0.85 or less than -0.85
were considered correlated enough to remove one of them. A correlation matrix is a comparison tool which
displays the correlation coefficients between variables in a dataset. An example of a correlation matrix is
shown in Figure 6.

Figure 6. Correlation matrix of toydata. The amount of correlation is depicted by the size
and color of the circle. Blue circles show a positive correlation between two features and
red circles show a negative correlation. The size of the circle and depth of color are
redundant depictions of the magnitude of the correlation coefficient. Note that correlating
any feature to itself yields a coefficient of 1.0.

Figure 6 shows a strong negative correlation (-0.75) between the categorical feature machine_3 and
CavityFillTime. This means that when a casting is run on machine_3, CavityFillTime decreases. This
works the other way around too, as CavityFillTime increases, the casting is not run on machine_3.

Supplement iv. Libraries, modules, and algorithms used in this example along with citations to assist the
reader in accessing them. The purpose served by each is given in the Notes column.

Library.module Algorithm Notes Reference
biokit.viz corrplot Use: Plotting correlation matrix [31]

C-17

Dimension Reduction Techniques

Feature Selection:
Feature selection is a dimension reduction technique which is performed by the data scientist much like the
name implies. From the high-dimensional dataset, specific features are selected to run through the
algorithm. These selections are not made haphazardly. A key resource in deciding which inputs to keep is
the domain expert. A domain expert is a specialist in the field from which the data was generated who has
reliable knowledge and experience useful to making choices regarding the data to be used. In the absence
of domain expertise some machine learning algorithms, like Random Forest, track feature importance in
the model generated from the high-dimension data [43]. A new Random Forest model can be created using
the top n most important features. The actual number of features chosen may be based on an arbitrary
number, a minimum feature importance value, or top percentage of features.

Principal Component Analysis (PCA):
PCA is an unsupervised dimension reduction technique [44], [45]. The goal of PCA is to determine linear
combinations of the input variables, called principal components (PCs), which capture the most variation
in the dataset while minimizing the error when the dataset is reconstructed from the PCs. In doing so, a
high-dimensional dataset can be condensed into a smaller number of PCs. Python packages like scikit-
learn [15] do all the mathematics behind the scenes, but it is important to understand what the algorithm is
doing. The steps for PCA are as follows:

Step 1: Start with the standardized dataset A, with n rows and d columns. In data science terms, the shape

of matrix A is n x d.

Step 2: Calculate the covariance of matrix A, Cov(𝐴) [46]. Covariance describes how one variable changes

in relation to another. The covariance matrix is given by Equation 3. Cov(𝐴) is a square matrix, d
x d.

𝐶𝑜𝑣(𝐴) = Eq. 3

 Where 𝐴 is the transpose of 𝐴; a d x n matrix.

Step 3: Perform Singular Value Decomposition (SVD) [47] on the Cov(𝐴) matrix (Equation 4), and obtain

the singular values (𝜎 , 𝜎 , … 𝜎) from 𝛴 which are arranged in decreasing order along the diagonal
of 𝛴 (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 5).

𝐶𝑜𝑣(𝐴) = 𝑈𝛴𝑉 Eq. 4

Σ=

𝜎 0 0 0
0 𝜎 0 0
0 0 … 0
0 0 0 𝜎

 Eq. 5

Where:
 U and 𝑉 are orthogonal matrices [48] where the columns of 𝑉 are the right singular

vectors if 𝐴 𝐴 is used. In the case where 𝐴𝐴 is used, the left singular vectors are the
columns of U [48], [49].

 𝛴 is a diagonal matrix which contains the singular values, 𝜎 , of 𝐶𝑜𝑣(𝐴)

C-18

Calculate the explained variance (Equation 6).
𝑒𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑑 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = [𝜎 / ∑ 𝜎] ∗ 100 Eq. 6

Step 4: Choose the number of singular vectors, k, which yields the desired cumulative explained variance
from Step 3; 80-85% is a good minimum value. The value of k must be between 1 and d. These
singular vectors make up a new matrix, W, which has the shape d x k.

Step 5: Project A onto the new feature space by taking the dot product of matrix A and matrix W (Equation

7). This new matrix, Y, has the shape n x k where the columns are the PCs.
𝑌 = 𝐴𝑊 Eq. 7

Now, the standardized dataset A has been reduced from d-dimensional space to k-dimensional space. In
the case where k is equal to two or three, the data can be plotted and visually inspected. Also, the new
matrix, Y, can be input into regression and classification algorithms to create models less susceptible to
overfitting with less computational time required to run them.

In Table VI, the PCA transformation of standardized toydata (Table V) is shown. In PCA, the number of
PCs determined is equal to the number of columns, d, in the dataset. The goal is dimension reduction, so a
number less than d is desired. In the scikit-learn PCA algorithm, the number of PCs can be specified as an
integer or the amount of explained variance can be entered as a decimal between 0 and 1 [50]. In this
example, the minimum explained variance is specified to be 0.85 and the algorithm yields five PCs (Figure
7). Reducing the dimensionality of toydata from ten to five. Unlike feature selection, where entire columns
are removed, in PCA all the original columns are represented in each of the PCs. Thus, no feature has been
removed though the dimensions are reduced.

Figure 7. Plot of the cumulative explained variance as PCs are added in rank order. The
first five PCs, in total, explain 89.2% of the variance in the original toydata dataset.

C-19

Table VI. The first five PCs from the toydata PCA. Note, there are 10 PCs in the PCA, only the first five
are shown as that is what is required to achieve a minimum explained variance of 0.85.

The primary reason to use PCA is for dimension reduction which offers benefits of reduced computation
time in predictive modeling and the ability to visualize high-dimensional datasets in two or three
dimensions. Figure 8 shows the two-dimensional scatter plot of PCs 1 and 2. As one reads this figure, it
is important to recognize that this is a simple scatter plot. PC1 and PC2 are not functions of one another.
The main disadvantage of PCA is that it is limited to linear principal components.

PC1 PC2 PC3 PC4 PC5
-0.3425 2.1937 1.1681 0.5850 -0.1636
-0.5536 2.1344 -0.4662 -0.9768 -0.5579
-0.1246 2.4797 -0.4458 -0.4541 0.6473
0.5593 1.3762 1.3861 -0.4321 0.1943
0.7116 1.5664 2.4890 0.5223 0.1071
-0.2977 0.6253 -0.1563 -1.4142 -1.4152
-0.3287 2.0107 0.8973 0.2770 0.1997
0.0768 2.0234 -0.2823 -1.0395 -0.7444
0.2956 1.0377 1.7499 -0.4186 -0.2037
-0.0962 1.4867 -0.6929 -1.9095 0.2613
3.0641 -2.1458 0.6680 -1.1008 -0.0885
1.7317 -0.0180 -1.3512 1.3757 -1.0718
2.7294 -0.9024 -1.2176 -0.0402 1.4797
2.8224 0.3993 -1.9553 -0.3053 1.8973
0.9743 -0.0720 -0.6589 1.8799 -1.7520
1.9772 -0.6876 -0.6445 0.8904 -1.8119
3.3776 -1.8868 1.6178 -0.1853 0.1793
2.1074 -1.9283 -1.0306 -1.4026 -0.2202
2.8153 -0.6236 1.0145 1.0417 0.5802
1.4926 0.8871 -0.9332 1.9255 0.3432
-1.5888 -1.9684 1.3231 -0.3764 1.1518
-2.2704 -0.7969 0.3001 0.4156 1.1611
-1.7603 -1.3212 -1.0658 -0.9307 -0.4497
-2.2160 -0.8009 -1.3898 -0.2515 -0.2793
-2.4706 -0.2301 -0.0537 1.1388 1.0222
-2.4888 -1.5835 0.3034 -0.2414 -0.9351
-2.6597 -1.4580 1.3428 0.4828 0.1397
-2.0192 -1.7835 0.4377 -0.5664 -0.5905
-2.7955 -0.8532 -0.2610 1.0304 0.1201
-2.7226 0.8394 -2.0926 0.4806 0.7997

C-20

Figure 8. Two-component PCA. On the toydata dataset, we see a separation of the
castings into clusters by machine number.

Supplement v. Libraries, modules, and algorithms used in this example along with citations to assist the
reader in accessing them. The purpose served by each is given in the Notes column.

Library.module Algorithm Notes Reference
pandas Use: Data frame management [7]–[9]

sklearn.decomposition PCA Use: PCA transform the standardized
toydata dataset
n_components = 0.85
svd_solver = ‘full’
Used pca.explained_variance_ratio_ to
calculate cumulative sum of explained
variance

[15], [16],
[50]

matplotlib plyplot Use: Create and customize plots [13], [14],
[33]

matplotlib patches Use: Generate custom legend for scatter
plot

[13], [14],
[51]

Machine Learning Algorithms

Classification vs. Regression Models

When making machine learning predictions the data scientist has two common options at their disposal.
The first is to predict that new sample data belongs in a certain category, or class. This is classification
modeling. In some cases, the classes may be outputs included in the raw dataset. For example, a
classification model is used when one is interested in predicting whether new data is representative of
good parts or process scrap. Other datasets require the creation of a new output columns based on the

C-21

values of another output column. Here, continuous data can be binned into ranges of values and these
bins are now the classes being predicted by the model. Classification models are useful when predicting
general outputs like good or bad, greater than or less than, low/medium/high, etc.

Regression models, on the other hand, are used to make specific prediction values for continuous output
variables. In regression models, one is looking to predict the actual temperature, material strength, selling
price of housing, etc. based on the input data provided.

Over-fitting and the Bias-Variance Trade-Off

There are many machine learning algorithms and neural networks available for analyzing data. When
choosing which to implement, the two most important considerations are size of the available data and bias-
variance trade-off. The FCA dataset of 1494 tensile tests are exceedingly large when compared to typical
mechanical property studies in the literature. However, in the world of data science, this is not Big Data.
The amount of data available is a limiting factor in the complexity of the model chosen (Figure 9). It is
difficult to provide a numerical direction to the reader on what should be considered a small dataset versus
a large dataset. A large dataset is one which captures enough examples representative of the most variation
within the space one is looking to model.

Figure 9. Performance comparison of Neural Network models with traditional machine
learning models as training data size increases. On smaller datasets, traditional
algorithms outperform deep learning models however, as the amount of data increases,
deep learning models perform better.

Figure 9 shows a performance comparison of the models as data size increases. For smaller datasets, one
would pick traditional machine learning algorithms. However, as the quantity of data increases, deep
learning models perform better because traditional algorithms reach a saturation point and do not improve
any further whereas deep learning models performance keeps increasing with training data size [52].

Understanding the bias-variance trade-off is essential in deciding which algorithms to select for a given
dataset and application. Bias is error in the model driven by the underlying assumptions in the algorithm.

C-22

For example, in linear regressions, the bias is high because the algorithm only has linear equations at its
disposal to fit the data. Variance refers to the error in the model due to its sensitivity to noise in the training
dataset. When variance is high, the algorithm will model the specifics of training set and not be able to
generalize to new data. In Figure 10, the X-axis shows model complexity and the Y-axis is generalization
error. As model complexity increases, variance increases and bias decreases. An increase in the variance
causes the model to overfit to the training data and it fails to generalize on new data. The left side of the
plot shows a high bias but low variance region. This implies that the model is too simple and, hence, it is
highly biased. It fails to learn the complexity of the data. The ideal point is where bias and variance
intersect, as shown by the optimum model complexity in the plot below [53].

Figure 10. Bias-variance trade-off [53], [54] shows how error changes as the complexity
of the model increases. The region on the right is that of high variance and low bias
whereas the region on the left is that of high bias and low variance. These regions are
where the model overfits or underfits the training data and should be avoided. The optimal
model complexity is where variance and bias intersect, and one should utilize algorithms
in this region.

Figure 11. The phenomenon of underfitting and overfitting is seen in this figure [55]. We
want a model that is optimal for the kind of data and application that we are exploring.
For example, a good fit is illustrated in the center plot. The plots on the right and left show
underfitting and overfitting respectively and should be avoided.

C-23

Figure 11 shows the phenomena of overfitting and underfitting. It can be seen in the leftmost plot that the
model follows the data very closely and, thus, overfits. This is the region of high variance in the bias-
variance trade-off where the model will fail to generalize on testing data because it almost memorizes the
training data. The middle figure shows the optimum model which corresponds to the lowest point of bias
and variance in the bias variance trade-off and gives a robust fit to the data. The rightmost figure shows an
example of high bias in the bias-variance trade-off. Here, the model fails to learn enough complexity in the
dataset and underfits [54], [55].

Decision Tree / Random Forest

The Decision Tree is a supervised machine learning method with known outputs applicable to classification
and regression problems [56]. Decision Tree classifiers build a predictive model by evaluating the input
variables and sorting the observations at various nodes into classes. The nodes split, forming branches of
the tree which terminate at a node which does not split, a leaf. Each split creates another layer of depth in
the model. Without placing restrictions on the model, the sorting will continue until each branch of the tree
ends at a pure leaf consisting of one class. While this results in a high scoring model, overfitting to the
training data is highly likely and the model will not score well on new data. This propensity to overfit is a
by-product of what makes the Decision Tree so advantageous to materials manufacturing problems. The
algorithm is not limited to a functional form. Rather, it evaluates each feature and makes decisions on
where to split based on the information gained by doing so.

To combat misclassification, an improved model which uses the results from hundreds, or thousands, of
Decision Trees to make predictions is called Random Forest [43], [57]. Random Forest is an ensemble
learning, or prediction by committee, approach where the observations are randomly broken into subsets
and built into trees splitting on a random subset of the features. The predictions of many trees built from
the training data are compiled to make a final prediction for each observation. In a classification model,
group voting among the trees is conducted to determine the predicted class. The result of the group vote
can be better than what any one of the trees would determine on its own.

To explain Random Forest, we apply the scikit-learn RandomForestClassifier model to the toydata database
[15], [58]. To have enough data to split into training and testing sets, toydata was expanded to 99 samples.
Supervised learning methods require an output by which to train the data, so we will attempt to predict the
machine (1, 2, or 3) which made the casting based on the process inputs. Due to the small data size, a 90/10
training to testing data split was performed. For the Random Forest classifier itself, default parameters
were used with the exceptions of setting the number of estimators (trees) to 1000, maximum features to
consider at each node to 3, and maximum samples per estimator to 12.

Once the Random Forest algorithm has been run, the trees created on the training data can be viewed to
understand upon which features the cuts were made. A sample tree from a Random Forest classifier is
shown in Figure 12 followed by an explanation of the details behind the Random Forest algorithm. In
Figure 12, each node has data associated with it. First, on nodes where a split is made, the criterion for the
split is shown. This information is not applicable for the leaf nodes. Next, a Gini index is given, which is
a measure of the purity of the node [59]. Gini is followed by the number of samples in the node. The value
shows three numbers in brackets which represent the class make-up of the samples in the node. Lastly, the
class to which the node is assigned is displayed as determined by the majority class in the node.

C-24

Figure 12. Sample tree from a Random Forest model of the toydata dataset. In this
example, 1000 trees were used to train the algorithm with maximum features set to a value
of 3 and maximum samples set to 12. Note how each leaf is pure as no restrictions were
placed with respect to minimum samples per leaf or maximum depth of the tree.

In the scikit-learn RandomForestClassifer, Gini index is the default calculation upon which the model splits
a node [60]. Gini has a value between zero and one. The value indicates the probability of misclassifying
an observation. A Gini of zero represents a pure node where all the observations are of the same class, no
split is made. A high Gini value means that the various classes are mixed and there is a high probability
that a new observation would be misclassified. The equation for Gini is given in Equation 8.

𝐺𝑖𝑛𝑖 = 1 − ∑ 𝑃 Eq. 8
Where:

 𝐺𝑖𝑛𝑖 is the Gini index
 𝑛 is the number of classes
 𝑃 is the probability of finding each class in the node

C-25

For a split, the Gini index is calculated for each feature with respect to the observations in the node. The
split is made on the feature which results in the lowest Gini values in the resulting child nodes. This is
repeated down the tree until a stopping criterion is met. Examples of stopping criteria include:

 All the leaf nodes are pure
 All the leaf nodes are sufficiently pure by setting a predetermined minimum Gini index
 All the leaf nodes contain too few samples to split by setting a minimum samples to split value.
 The maximum depth of the tree is met by setting a maximum tree depth value.

Classification Random Forests can be summarized in a confusion matrix [61]. The confusion matrices in
Figure 13 show how the model performed on the training data and the testing data. Across the matrix rows
are the actual classes and the columns are the predicted classes. Correct classifications reside along the
diagonal. With no restrictions placed on training the model, the training trees terminate at pure nodes and
Figure 13b shows a very nearly perfect model. On the testing data (Figure 13c), however, the model
demonstrates it has overfit to the training data and does not perform quite as well.

a)

𝑏)
30 0 0
1 30 0
0 1 27

 c)
3 0 0
1 1 0
1 0 4

 Training data Testing data

Figure 13. a) depicts the row and column layout of the confusion matrices for the toydata
Random Forest: b) the training data and c) the testing data. The testing data shows two
misclassified observations where one machine 2 and one machine 3 sample are both
classed as machine 1.

Thus far, we have focused on using Random Forest as a classification model. Random Forest can build
regression models to predict continuous variables as well. Scikit-learn RandomForestRegressor operates
in a similar way as the classifier [62]. Rather than Gini index, the regressor uses error metric reduction
(mean squared error or mean absolute error) as the splitting criterion to create the purest nodes as the tree
is constructed. At the leaf nodes, an average value for the output of interest is calculated from the known
output values of the samples within that leaf. For the final reported value, the predictions of the observations
from all the trees are averaged.

A helpful output that Random Forest offers is feature importance [63]. This report resonates with materials
processing engineers because it boils the model down to buttons and knobs that can be pressed and turned
to conduct experiments. Data-driven decisions of which parameters to consider for a design of experiment.
The alternative is hard earned experience. When the two line up, the team can be confident that they have
now captured knowledge from data. When they diverge, the opportunity to move away from long held
beliefs and feelings which have yet to produce solutions is opened to the group. The feature importance

machine 1

machine 2

machine 3

machine 1
machine 2
machine 3

C-26

from the toydata example Random Forest is given in Table VII. The results show that the most
distinguishing feature between machines 1, 2, and 3 is the average plunger velocity during slow shot.

Table VII. Rank ordered feature importance from the toydata Random Forest example
Feature Importance
Average Slow Shot Plunger Velocity 0.343
Cavity Fill Time 0.210
Spray Robot Cycle Time 0.134
Ladle Pour Time 0.119
Final Intensification Pressure 0.083
Molten Metal Temperature 0.073
Biscuit Length 0.038

In addition to feature importance, Random Forest models are advantageous for their ability to handle high-
dimensional data, capability of learning complex non-linear relationships, and the lack of dependence on a
particular distribution of the data. The main drawback is the tendency to overfit the training data. Without
placing limits on the model, Random Forest will learn according to the specifics of the training data and
not be general enough for new data fed into the model. Another weakness of Random Forests is a sensitivity
to irrelevant and noisy data. An example of a very noisy input in the FCA data are the timers associated
with the opening and closing of slides in the die. Slides are tooling cavity components that form features
in the part which would be undercut in a purely open/close die configuration. Slides pull in directions
perpendicular to the parting direction of the tool halves. Timers measure how many seconds it takes from
when a signal to move the slides is given until the slide meets a limit switch indicating that it is open or
closed. This data becomes noisy due to how hydraulics work in a scenario when two slides are ordered to
be moved at once. In short, when two slides are activated, whichever slide takes the least amount of force
to start moving will open fully before the second begins to move. If it takes t seconds to open each slide,
the timer data for Slide 1 is t or 2t depending on whether Slide 2 is 2t or t respectively. Any bit of debris
or metal flash can be the reason one slide moves ahead of the other and results in a noisy variable. Once a
split is made, there is no going back, and the trees continue to build themselves. The split on a piece of
irrelevant data effects the rest of the model. Careful consideration of the data input in the model must be
taken to avoid this scenario. These slide timers were ultimately removed from the data prior to running
algorithms.

The Random Forest itself is an improvement on the Decision Tree, since the weaknesses listed above are
more severe when utilizing a single tree with one final outcome. Nonetheless, employing Random Forest
alone does not guarantee the elimination of overfitting. Tuning the hyperparameters, the settings within
the algorithm, aids in reducing overfitting. The model can be tuned to be a more general predictor by
limiting the maximum depth of the tree, the maximum number of features evaluates at each node, and
setting a minimum sample required to split a node. Random Forest classification and regression models
are implemented in this research to predict quality data and ultimate tensile strength respectively.

C-27

Supplement vi. Libraries, modules, and algorithms used in this example along with citations to assist the
reader in accessing them. The purpose served by each is given in the Notes column.

Library.module Algorithm Notes Reference
pandas Use: Dataframe management [7]–[9]

sklearn.model_selection train_test_split Use: Make train and test datasets
test_size = 0.1
random_state = 0

[15], [16],
[64]

sklearn.ensemble RandomForestClassifier Use: Machine learning algorithm
n_estimators = 1000
bootstrap = True
max_samples = 12
max_features = 3

[15], [16],
[58]

sklearn.metrics confusion_matrix Use: Create confusion matrix to
assess algorithm performance

[15], [16],
[65]

sklearn.metrics classification_report Use: Reports accuracy, precision,
recall, and f1-score for each class

[15], [16],
[66]

sklearn.tree export_graghviz Use: Tree visualization. Export
tree as .dot file

[15], [16],
[67]

subprocess call Use: Convert .dot to .png [68]
IPython.display Image Use: Display tree in Jupyter

notebook
[69]

Support Vector Machine (SVM)

Like Random Forest models, Support Vector Machines can also be used as classification or regression
models. SVMs look to separate classes of data by determining a decision boundary between the populations
with the widest separation between them (Figure 14). This decision boundary and its associated margins
can be linear or non-linear. The boundary is an (n-1)-dimensional subspace for an n-dimensional space.
For example, the hyperplane for one-dimensional data is a point, for two-dimensional data a line, for three-
dimensional data a plane, and for more than three dimensions and the term hyperplane is used [70]. The
margin hyperplanes are determined by the observations closest to boundary. The boundary is optimized
when the margin is maximized. Simply put there are many hyperplanes which can be drawn to separate
the data; the algorithm selects the one in the middle.

When data populations are not linearly separable by a hyperplane, soft margins or a kernel trick can be used
(Figure 15). Soft margins allow for some misclassification of observations while maintaining a wider
margin. The user determines the allowance of misclassifications in the model. Kernel tricks seek a non-
linear decision boundary by projecting the data into a higher dimensional space where the examples are
linearly separable. Kernels are selected and tuned in the code to optimize the SVM. In scikit-learn SVM
[71], the soft margin is controlled by the regularization parameter, C, and the kernel is tuned by the
parameter gamma. A large C value will result in a narrower margin for fewer misclassifications, but the
risk of overfitting increases. The gamma value determines how wiggly or meandering the boundary can be
[72]. Higher gamma values create more winding boundaries; however, one must guard against overfitting
when adjusting the gamma parameter.

C-28

Figure 14. Support vector classifier example with linearly separable populations. Class
predictions are made based on which side of the hyperplane the sample lies.

Figure 15. Support vector classifier example with non-linearly separable populations.

The Radial Basis Function (RBF) kernel trick was used in an SVM regressor to predict ultimate tensile
strength in this work [73]. For the regressor SVM (SVR), the objective is to predict continuous values.
This is accomplished by setting an allowable error using the epsilon parameter. The model seeks to
construct a line with margins set by epsilon such that the most points fall between the margins [74].
Thereby, the error, or length of the support vectors, between the actual values and predicted values is
reduced. The C parameter provides slack to the model to better fit the data by allowing more data to fall
outside the margin. A plot of an example SVR is shown in Figure 16. Here, 25 random samples are
selected from the combined HPDC process and tensile testing dataset. An SVR was run to predict the UTS
based on cycle time. Over these 25 samples, the results show that as cycle time increases one can expect a
decrease in UTS.

C-29

Figure 16. Support vector regression for UTS prediction based on cycle time. The blue
points are the actual values. Predictions are made along the green line. Eplison was set
to 15 and is shown as the margins in red. The linear kernel was employed and C=1.0. As
cycle time increases ultimate strength decreases.

Supplement vii. Libraries, modules, and algorithms used in this example along with citations to assist
the reader in accessing them. The purpose served by each is given in the Notes column.

Library.module Algorithm Notes Reference
pandas Use: Dataframe management [7]–[9]

sklearn.pre-processing StandardScaler Use: Applies Z-transform to a
dataframe

[15], [16],
[39]

sklearn.svm SVC Use: Support Vector Classifier
algorithm

[15], [16],
[71]

sklearn.svm SVR Use: Support Vector Regressor [15], [16],
[73]

matplotlib pyplot Use: Create and customize plots [13], [14],
[33]

XGBoost

XGBoost, short for extreme gradient boosting, is an advanced tree based algorithm developed by Chen
[75]–[77]. This method has risen in popularity for supervised machine learning due to its computational
speed and model performance and can be used to work both classification and regression problems.
Bridging the evolution from Random Forests to XGBoost is beyond the scope of this document. The
method was chosen to determine how a state-of-the-science tree-based algorithm would compare to
traditional Random Forest and SVR. The following brief definitions and references are given to assist the
reader. Boosting is a method of combining relatively weak models improving the accuracy overall at the
risk of overfitting [78]–[80]. In boosting, the models are built sequentially with prior knowledge of the
errors from the preceding models. A modification to boosting is Gradient Boosting, a method which
improves the predictive power along the direction of the gradient to optimize the objective [81].

C-30

Supplement viii. Libraries, modules, and algorithms along with citations to assist the reader in accessing
them. The purpose served by each is given in the Notes column.

Library.module Algorithm Notes Reference
pandas Use: Dataframe management [7]–[9]
xgboost XGBRegressor Use: Machine learning algorithm [75], [77]

Machine Learning Model Evaluation

Training, Testing, and Cross-Validation

Prior to running an analysis, it is a best practice to divide the dataset into two parts: a training set and a test
set. In this study, 80/20 and 90/10 training to test splits were most often employed (Figure 17). The goal
of the split is to have enough training data to create a strong predictive model while holding back a testing
dataset enough to capture the essence of the complete dataset. This allows the data scientist to train the
model with a larger dataset then test the performance on a smaller population that the model has not seen.

Figure 17. It is best practice to split the pre-processed data prior to training the
machine learning algorithm into training and testing datasets. 80/20 is a good
starting point. For the smaller tensile bar dataset, 90/10 was used.

The train/test split can influence the model. For that reason, cross-validation is conducted to determine
how different splits of the data affect the model performance metrics. K-folds is a common method of
cross-validation [82]. In K-folds, the user sets the number of folds and the model is run that many times
on the training data. Each time, a different segment of the training population is set aside as the test data
and run through a model created on the balance of the training data for that fold as seen in Figure 18.

Figure 18. K-folds cross-validation where the number of folds is equal to five.

C-31

The performance of the algorithm can be measured in many ways. Mean absolute error and standard
deviation values can be used to score regression algorithms. Accuracy, precision, recall, and f1-scores are
often chosen to evaluate classifiers. Regardless of the algorithm, it is common for the error on the training
data to be less than the test data. When the difference between the two is large, the model is said to be
overfit to the training data. Data scientists are keenly aware of over-fitting because such a model does not
generalize. The model shows amazing accuracy on the training data, however, when fed new data, the
predictions of the algorithm are unreliable. The goal of a robust model is to minimize the difference in
error between the training data and testing data results.

The above methods in pre-processing, algorithm selection, and model evaluation were performed on the
FCA HPDC dataset. Algorithms modeled classification of part quality and ultimate tensile strength as well
regression predictions of ultimate tensile strength. These studies are published in three technical articles
presented in Appendices B, D, and E of this thesis.

References:
[1] J. I. Moore and P. J. Van Huis, “US4493362.pdf,” 4493362, Jan. 15, 1985.
[2] “ACRC - Advanced Casting Research Center.” https://wp.wpi.edu/acrc/ (accessed Jun. 02,

2020).
[3] R Core Team, R: A language and environment for statistical computing. Vienna, Austria: R

Foundation for Statistical Computing, 2013.
[4] G. Van Rossum and F. L. Drake, Python 3 Reference Manual. Scotts Valley, CA:

CreateSpace, 2009.
[5] “Welcome to Python.org,” Python.org. https://www.python.org/ (accessed Jul. 12, 2020).
[6] “Microsoft Excel, Spreadsheet Software, Excel Free Trial.” https://www.microsoft.com/en-

us/microsoft-365/excel (accessed Jul. 12, 2020).
[7] The pandas development team, pandas-dev/pandas: Pandas. Zenodo, 2020.
[8] W. McKinney, “Data Structures for Statistical Computing in Python,” in Proceedings of the

9th Python in Science Conference, 2010, pp. 51–56, Accessed: Jan. 09, 2020. [Online].
Available: http://conference.scipy.org/proceedings/scipy2010/pdfs/mckinney.pdf.

[9] “pandas - Python Data Analysis Library.” https://pandas.pydata.org/ (accessed Jul. 12,
2020).

[10] T. E. Oliphant, “Python for Scientific Computing,” Comput. Sci. Eng., vol. 9, no. 3, pp. 10–
20, Jun. 2007, doi: 10.1109/MCSE.2007.58.

[11] S. van der Walt, S. C. Colbert, and G. Varoquaux, “The NumPy Array: A Structure for
Efficient Numerical Computation,” Comput. Sci. Eng., vol. 13, no. 2, pp. 22–30, Mar. 2011,
doi: 10.1109/MCSE.2011.37.

[12] “NumPy.” https://numpy.org/ (accessed Jul. 12, 2020).
[13] J. D. Hunter, “Matplotlib: A 2D Graphics Environment,” Comput. Sci. Eng., vol. 9, no. 3,

pp. 90–95, Jun. 2007, doi: 10.1109/MCSE.2007.55.
[14] “Matplotlib: Python plotting — Matplotlib 3.2.2 documentation.” https://matplotlib.org/

(accessed Jul. 12, 2020).
[15] F. Pedregosa et al., “Scikit-learn: Machine Learning in Python,” J. Mach. Learn. Res., vol.

12, pp. 2825–2830, 2011, doi: 10.1016/j.patcog.2011.04.006.

C-32

[16] “scikit-learn: machine learning in Python — scikit-learn 0.23.1 documentation.”
https://scikit-learn.org/stable/ (accessed Jul. 12, 2020).

[17] “Google Colaboratory.” https://colab.research.google.com/notebooks/intro.ipynb (accessed
Jul. 12, 2020).

[18] “Stack Overflow - Where Developers Learn, Share, & Build Careers,” Stack Overflow.
https://stackoverflow.com/ (accessed Jul. 12, 2020).

[19] “Towards Data Science,” Towards Data Science. https://towardsdatascience.com/ (accessed
Jul. 12, 2020).

[20] “Kaggle: Your Machine Learning and Data Science Community.” https://www.kaggle.com/
(accessed Jul. 12, 2020).

[21] T. D. Pigott, “A Review of Methods for Missing Data,” Educ. Res. Eval., vol. 7, no. 4, pp.
353–383, Dec. 2001, doi: 10.1076/edre.7.4.353.8937.

[22] M. Pampaka, G. Hutcheson, and J. Williams, “Handling missing data: analysis of a
challenging data set using multiple imputation,” Int. J. Res. Method Educ., vol. 39, no. 1,
pp. 19–37, Jan. 2016, doi: 10.1080/1743727X.2014.979146.

[23] G. E. A. P. A. Batista and M. C. Monard, “An analysis of four missing data treatment
methods for supervised learning,” Appl. Artif. Intell., vol. 17, no. 5–6, pp. 519–533, May
2003, doi: 10.1080/713827181.

[24] A. Kantarci, “Synthetic Data Generation in 2020: in-Depth guide,” appliedAI, Jul. 15, 2020.
https://research.aimultiple.com/synthetic-data-generation/ (accessed Jul. 17, 2020).

[25] C. Dilmegani, “The Ultimate Guide to Synthetic Data in 2020,” appliedAI, Jul. 19, 2018.
https://research.aimultiple.com/synthetic-data/ (accessed Jul. 17, 2020).

[26] R. Blagus and L. Lusa, “SMOTE for high-dimensional class-imbalanced data,” BMC
Bioinformatics, vol. 14, no. 1, p. 106, Dec. 2013, doi: 10.1186/1471-2105-14-106.

[27] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “SMOTE: Synthetic
Minority Over-sampling Technique,” J. Artif. Intell. Res., vol. 16, pp. 321–357, Jun. 2002,
doi: 10.1613/jair.953.

[28] “sklearn.datasets.make_classification — scikit-learn 0.23.1 documentation.” https://scikit-
learn.org/stable/modules/generated/sklearn.datasets.make_classification.html (accessed Jul.
17, 2020).

[29] J. Brownlee, “SMOTE for Imbalanced Classification with Python,” Machine Learning
Mastery, Jan. 16, 2020. https://machinelearningmastery.com/smote-oversampling-for-
imbalanced-classification/ (accessed Jul. 17, 2020).

[30] G. Lemaitre, F. Nogueira, D. Oliveira, and C. Aridas, “imblearn.over_sampling.SMOTE —
imbalanced-learn 0.5.0 documentation.” https://imbalanced-
learn.readthedocs.io/en/stable/generated/imblearn.over_sampling.SMOTE.html (accessed
Jul. 17, 2020).

[31] H. Han, W.-Y. Wang, and B.-H. Mao, “Borderline-SMOTE: A New Over-Sampling
Method in Imbalanced Data Sets Learning,” in Advances in Intelligent Computing, vol.
3644, D.-S. Huang, X.-P. Zhang, and G.-B. Huang, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2005, pp. 878–887.

[32] M. Drouzy, S. Jacob, and M. Richard, “Interpretation of Tensile Results by Means of
Quality Index and Probable Yield Strength,” AFS Int. Cast Met. J., no. June 1980, pp. 43–
50, 1980.

C-33

[33] “matplotlib.pyplot.scatter — Matplotlib 3.2.2 documentation.”
https://matplotlib.org/3.2.2/api/_as_gen/matplotlib.pyplot.scatter.html (accessed Jul. 12,
2020).

[34] K. Potdar, T. S., and C. D., “A Comparative Study of Categorical Variable Encoding
Techniques for Neural Network Classifiers,” Int. J. Comput. Appl., vol. 175, no. 4, pp. 7–9,
Oct. 2017, doi: 10.5120/ijca2017915495.

[35] R. J. Donahue and G. K. Sigworth, “Die Casting Alloys that will Allow the Die Caster to
Compete with Alloys A356, A357, 358 and 359 in PM Applications,” NADCA Trans. T16-
022, 2016, [Online]. Available: http://www.diecasting.org/transactions/T16-022.

[36] “Z-Transform,” Wolfram MathWorld. https://mathworld.wolfram.com/Z-Transform.html
(accessed May 26, 2020).

[37] T. Wuest, D. Weimer, C. Irgens, and K.-D. Thoben, “Machine learning in manufacturing:
advantages, challenges, and applications,” Prod. Manuf. Res., vol. 4, no. 1, pp. 23–45, Jan.
2016, doi: 10.1080/21693277.2016.1192517.

[38] J. Friedman, R. Tibshirani, and T. Hastie, The Elements of Statistical Learning: Data
Mining, Inference, and Prediction. Springer, 2001.

[39] “sklearn.preprocessing.StandardScaler — scikit-learn 0.23.1 documentation.” https://scikit-
learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html (accessed
Jul. 12, 2020).

[40] “sklearn.neighbors.KNeighborsClassifier — scikit-learn 0.23.1 documentation.”
https://scikit-
learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html (accessed
Jul. 12, 2020).

[41] R. Taylor, “Interpretation of the Correlation Coeffcient: A Basic Review,” J. Diagn. Med.
Sonogr., vol. 6, no. 1, pp. 35–39, 1990, doi: 10.1177/875647939000600106.

[42] T. Cokelaer, biokit: Access to Biological Web Services from Python. .
[43] L. Breiman, “Random Forests,” Mach. Learn., vol. 45, no. October 2001, pp. 5–32, 2001,

doi: 10.1023/A:1010933404324.
[44] H. Abdi and L. J. Williams, “Principal component analysis: Principal component analysis,”

Wiley Interdiscip. Rev. Comput. Stat., vol. 2, no. 4, pp. 433–459, Jul. 2010, doi:
10.1002/wics.101.

[45] S. Wold, K. Esbensen, and P. Geladi, “Principal Component Analysis,” Chemom. Intell.
Lab. Syst., vol. 2, pp. 37–52, 1987, doi: 10.1016/0169-7439(87)80084-9.

[46] “6.5.4.1. Mean Vector and Covariance Matrix,” Engineering Statistics Handbook.
https://www.itl.nist.gov/div898/handbook/pmc/section5/pmc541.htm (accessed Jul. 14,
2020).

[47] G. H. Golub and C. Reinsch, “Singular Value Decomposition and Least Squares Solutions,”
in Linear Algebra, J. H. Wilkinson, C. Reinsch, and F. L. Bauer, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 1971, pp. 134–151.

[48] G. Strang, Introduction to linear algebra, 4. ed. Wellesley, Mass: Wellesley-Cambridge
Press, 2009.

[49] J. Tan, “Parallel Singular Value Decomposition.”
http://www.cs.csi.cuny.edu/~gu/teaching/courses/csc76010/slides/SVD%20by%20Jiaxing.p
df (accessed Jul. 13, 2020).

C-34

[50] “sklearn.decomposition.PCA — scikit-learn 0.23.1 documentation.” https://scikit-
learn.org/stable/modules/generated/sklearn.decomposition.PCA.html (accessed Jul. 12,
2020).

[51] “matplotlib.patches — Matplotlib 3.2.2 documentation.”
https://matplotlib.org/3.2.2/api/patches_api.html (accessed Jul. 12, 2020).

[52] A. Oppermann, “Artificial Intelligence vs. Machine Learning vs. Deep Learning,” Towards
Data Science, Oct. 29, 2019. https://towardsdatascience.com/artificial-intelligence-vs-
machine-learning-vs-deep-learning2210ba8cc4ac (accessed Jun. 08, 2020).

[53] E. Briscoe and J. Feldman, “Conceptual complexity and the bias/variance tradeoff,”
Cognition, vol. 118, no. 1, pp. 2–16, Jan. 2011, doi: 10.1016/j.cognition.2010.10.004.

[54] “Bias-Variance Tradeoff in Machine Learning,” AI Pool, Oct. 20, 2019. https://ai-
pool.com/a/s/bias-variance-tradeoff-in-machine-learning (accessed Jun. 02, 2020).

[55] A. Bhande, “What is underfitting and overfitting in machine learning and how to deal with
it,” medium.com, Mar. 11, 2018. https://medium.com/greyatom/what-is-underfitting-and-
overfitting-in-machine-learning-and-howto-deal-with-it-6803a989c76 (accessed Jun. 08,
2020).

[56] D. Dietrich, B. Heller, and B. Yang, Data Science and Big Data Analytics: Discovering,
Analyzing, Visualizing and Presenting Data, 1st ed. Wiley, 2015.

[57] G. Drakos, “Random Forest Regressor explained in depth,” GDCoder, Jun. 04, 2019.
https://gdcoder.com/random-forest-regressor-explained-in-depth/ (accessed Jul. 12, 2020).

[58] scikit-learn developers, sklearn.ensemble.RandomForestClassifier. .
[59] R. I. Lerman and S. Yitzhaki, “A note on the calculation and interpretation of the Gini

index,” Econ. Lett., vol. 15, pp. 363–368, 1984, doi: 10.1016/0165-1765(84)90126-5.
[60] “3.2.4.3.1. sklearn.ensemble.RandomForestClassifier — scikit-learn 0.23.1

documentation.” https://scikit-
learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
(accessed Jul. 12, 2020).

[61] M. Sokolova and G. Lapalme, “A systematic analysis of performance measures for
classification tasks,” Inf. Process. Manag., vol. 45, no. 4, pp. 427–437, Jul. 2009, doi:
10.1016/j.ipm.2009.03.002.

[62] “3.2.4.3.2. sklearn.ensemble.RandomForestRegressor — scikit-learn 0.23.1
documentation.” https://scikit-
learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html
(accessed Jul. 12, 2020).

[63] A. Altmann, L. Toloşi, O. Sander, and T. Lengauer, “Permutation importance: a corrected
feature importance measure,” Bioinformatics, vol. 26, no. 10, pp. 1340–1347, Apr. 2010,
doi: 10.1093/bioinformatics/btq134.

[64] scikit-learn developers, sklearn.model_selection.train_test_split. .
[65] scikit-learn developers, sklearn.metrics.confusion_matrix. .
[66] scikit-learn developers, sklearn.metrics.classification_report. .
[67] scikit-learn developers, sklearn.tree.export_graphviz. .
[68] Python Software Foundation, subprocess — Subprocess management. .
[69] The IPython development team, IPython. .
[70] W. S. Noble, “What is a support vector machine?,” Nat. Biotechnol., vol. 24, no. 12, pp.

1565–1567, Dec. 2006, doi: 10.1038/nbt1206-1565.

C-35

[71] “sklearn.svm.SVC — scikit-learn 0.23.1 documentation.” https://scikit-
learn.org/stable/modules/generated/sklearn.svm.SVC.html (accessed Jul. 14, 2020).

[72] M. Peixeiro, “The Complete Guide to Support Vector Machine (SVM),” Towards Data
Science, Jul. 29, 2019. https://towardsdatascience.com/the-complete-guide-to-support-
vector-machine-svm-f1a820d8af0b.

[73] “sklearn.svm.SVR — scikit-learn 0.23.1 documentation.” https://scikit-
learn.org/stable/modules/generated/sklearn.svm.SVR.html (accessed Jul. 14, 2020).

[74] A. Geron, Hands-On Machine Learning with Scikit-Learn and TensorFlow, 1st ed.
O’Reilly, 2017.

[75] T. Chen and C. Guestrin, “XGBoost: A Scalable Tree Boosting System,” Proc. 22nd ACM
SIGKDD Int. Conf. Knowl. Discov. Data Min., pp. 785–794, Aug. 2016, doi:
10.1145/2939672.2939785.

[76] J. Brownlee, “A Gentle Introduction to XGBoost for Applied Machine Learning,” Machine
Learning Mastery, Aug. 17, 2016. https://machinelearningmastery.com/gentle-introduction-
xgboost-applied-machine-learning/ (accessed Jun. 02, 2020).

[77] xgboost developers, “XGBoost Documentation,” XGBoost Documentation, 2020.
https://xgboost.readthedocs.io/en/latest/index.html (accessed Jul. 14, 2020).

[78] T. G. Dietterich, “An Experimental Comparison of Three Methods for Constructing
Ensembles of Decision Trees: Bagging, Boosting, and Randomization,” Mach. Learn., vol.
40, no. August 2000, pp. 139–157, 2000, doi: https://doi.org/10.1023/A:1007607513941.

[79] Y. Freund and R. E. Schapire, “Experiments with a New Boosting Algorithm,” in 13th
International Conference on Machine Learning, San Francisco, 1996, pp. 148–156.

[80] Y. Freund and R. E. Schapire, “A decision-theoretic generalization of on-line learning and
an application to boosting,” J. Comput. Syst. Sci., vol. 55, no. 1, pp. 119–139, 1997.

[81] J. H. Friedman, “Stochastic gradient boosting,” Comput. Stat. Data Anal., vol. 38, no. 4, pp.
367–378, Feb. 2002, doi: 10.1016/S0167-9473(01)00065-2.

[82] M. Sanjay, “Why and how to Cross Validate a Model?,” Towards Data Science, Nov. 12,
2018. towardsdatascience.com/why-and-how-to-cross-validate-a-model-d6424b45261f
(accessed Jun. 04, 2020).

C-36

Table C-I. FCA HPDC process dataset descriptions.
Variable Name Description Category
MachineID Die casting machine on which the part was cast Input
SerialNumb Unique identifier given to the casting when it is

made. Can be used to merge datasets.

CreatedDateStamp Date and Time the casting was produced. Input
AvgFastHeadPressure Average pressure reading on the head side of the

shot cylinder during fast shot.
Input

AvgFastRodPressure Average pressure reading on the rod side of the
shot cylinder during fast shot.

Input

AvgIntermediateHeadPressure Average pressure reading on the head side of the
shot cylinder during intermediate shot.

Input

AvgIntermediateRodPressure Average pressure reading on the rod side of the
shot cylinder during intermediate shot.

Input

AvgSlowHeadPressure Average pressure reading on the head side of the
shot cylinder during slow shot.

Input

AvgSlowRodPressure Average pressure reading on the rod side of the
shot cylinder during slow shot.

Input

BiscuitLength The thickness of the biscuit calculated based on
the end of stroke position of the shot rod.

Input

CavityFillTime The time taken to fill the part geometry cavity in
the die. Calculated from
CavityFillTimeWinStartPos until the end of the
shot velocity is detected.

Input

CavityFillTimeWinStartPos Position programmed by the engineer to begin
timing cavity fill time. This is typically the
position of the shot cylinder when the metal is at
the gates.

Setting

DieCloseTankLevel Level of the hydraulic fluid reservoir Input
DieCloseTankTemp Temperature of the hydraulic fluid reservoir. Input
DwellTimePre Programmed time to allow the part to solidify

between the end of the shot and the opening of
the die.

Setting

DwellTime2Pre Same as DwellTimePre. For any given row if
one was null the other had a value.

Setting

EndofShotPosition Position where fast shot velocity decelerates to
the end of shot velocity.

Input

FastShotVelAve Calculated average shot velocity at which the
plunger moved forward during fast shot.

Input

FastShotVelWinEnd Position of the shot cylinder when the DCM
stops measuring velocity for the average fast
shot calculation.

Setting

FastShotVelWinStart Position of the shot cylinder when the DCM
begins measuring velocity for the average fast
shot calculation.

Setting

FastSpeedSetting Programmed plunger velocity during fast shot. Setting
FastStartPosSetting Programmed position at which the DCM

increases to fast shot velocity.
Setting

C-37

FinalIntensifierPressure Maximum pressure applied to the biscuit during
intensification phase.

Input

FinalIntensPressWinEnd End position for measuring intensification
pressure.

Setting

FinalIntensPressWinStart Start position for measuring intensification
pressure.

Setting

IntensificationStroke Amount of plunger forward movement after
intensification is initiated.

Input

IntensPressRiseTime Time measured to reach the programmed
intensification pressure.

Input

IntensPressRiseTimeWinEndPress

Measured pressure at the end of the
intensification rise time window.

Input

IntensPressRiseTimeWinStartVelocity

Measured plunger velocity at the start of the
intensification rise time window.

Input

IntensStartPosSetting Programmed position at which the DCM
engages the intensifier accumulator.

Setting

IntensVelRiseTime Calculated average velocity at which the plunger
moved forward during intensification rise
window.

Input

IntensVelRiseTimeWinEndPOS End position for measuring intensification rise
time velocity (position controlled).

Setting

IntensVelRiseTimeWinEndVEL End velocity for measuring intensification rise
time velocity (velocity controlled).

Setting

IntensVelRiseTimeWinStartPOS

Start position for measuring intensification rise
time velocity (position controlled).

Setting

IntensVelRiseTimeWinStartVEL

Start velocity for measuring intensification rise
time velocity (velocity controlled).

Setting

IntermediateSpeedSetting Programmed plunger velocity during
intermediate shot.

Setting

IntermediateStartPosSetting Programmed position at which the DCM
increases to the intermediate shot velocity.

Setting

IntermediateVelAve Calculated average shot velocity at which the
plunger moved forward during intermediate shot.

Input

IntermediateVelWinEnd Position of the shot cylinder when the DCM
stops measuring velocity for the average
intermediate shot calculation.

Setting

IntermediateVelWinStart Position of the shot cylinder when the DCM
begins measuring velocity for the average
intermediate shot calculation.

Setting

MetalTemp The temperature of the molten alloy in the
holding furnace at the die cast cell.

Input

ShotDecelSetting Not used.
ShotDecelSpeedSetting Not used.
ShotDecelStartPosSetting Not used.
ShotDelayTimePre Programmed delay time between pouring into

the cold chamber and initiating slow shot.
Setting

ShotForwardPosSetting Not used.
ShotTankLevel Not used.
ShotTankTemp Not used.

C-38

SlowShotVelAve Calculated average shot velocity at which the
plunger moved forward during slow shot.

Input

SlowShotVelWinEnd Position of the shot cylinder when the DCM
stops measuring velocity for the average slow
shot calculation.

Setting

SlowShotVelWinStart Position of the shot cylinder when the DCM
begins measuring velocity for the average slow
shot calculation.

Setting

SlowSpeedSetting Programmed plunger velocity during slow shot. Setting
TieBarTon1 Tons of force measured by the load cell on tie

bar #1 when the die is closed and locked.
Input

TieBarTon2 Tons of force measured by the load cell on tie
bar #2.

Input

TieBarTon3 Tons of force measured by the load cell on tie
bar #3.

Input

TieBarTon4 Tons of force measured by the load cell on tie
bar #4.

Input

TieBarTonTotal Sum of the tonnage of all four tie bars. Input
TipLubeTimePre Programmed time for which tip lube is applied to

the plunger tip.
Setting

Overflows_OK Post casting check to determine that all the
overflows ejected with the part.

Trimmed Post casting log that the part was run on the trim
press.

PartDegated Post casting log that the part was de-gated.
Quenched Post casting log that the part was quenched.
Reject Operator override label of DCM label Output
Scrap DCM quality label based on specific process

parameter values.
Output

WarmUp DCM quality label based on specific process
parameter values.

Output

PinMarked Post casting log that the part was pin marked
(serial ID).

CycleTime Elapsed time for the entire process to produce
one piece.

Input

PhaseTime00 (Cycle Time) See above. Input
PhaseTime01 (Dwell Time) Elapsed time between end of shot and die open. Input
PhaseTime02 (Dwell Time 2) See above. One or the other is active on each

row, so the two columns were merged for
analysis.

Input

PhaseTime03 (Die Open Time) Elapsed time to open the die. Input
PhaseTime04 (Extract Robot Time) Elapsed time for the extract robot to complete its

full cycle.
Input

PhaseTime05 (Spray Robot Time) Elapsed time for the spray robot to complete its
full cycle.

Input

PhaseTime06 (Liner Load Time) Elapsed time to load cast in liners into the die. Input
PhaseTime07 (Core Insert Time) Elapsed time to insert core feature into the die. Input
PhaseTime08 (Die Close Time) Elapsed time to close the die. Input
PhaseTime09 (Ladle Pour Time) Elapsed time for the ladle to pour molten alloy

into the cold chamber.
Input

C-39

PhaseTime10 (Shot Delay Time) Elapsed time between pour complete and shot
forward.

Input

PhaseTime11 (Core 1 Insert Time) Elapsed time to move Core 1 slide forward. Input
PhaseTime12 (Core 2 Insert Time) Elapsed time to move Core 2 slide forward. Input
PhaseTime13 (Core 3 Insert Time) Elapsed time to move Core 3 slide forward. Input
PhaseTime14 (Core 4 Insert Time) Elapsed time to move Core 4 slide forward. Input
PhaseTime15 (Core 5 Insert Time) Elapsed time to move Core 5 slide forward. Input
PhaseTime16 (Core 6 Insert Time) Elapsed time to move Core 6 slide forward. Input
PhaseTime17 (Core 1 Pull Time) Elapsed time to pull Core 1 slide open. Input
PhaseTime18 (Core 2 Pull Time) Elapsed time to pull Core 2 slide open. Input
PhaseTime19 (Core 3 Pull Time) Elapsed time to pull Core 3 slide open. Input
PhaseTime20 (Core 4 Pull Time) Elapsed time to pull Core 4 slide open. Input
PhaseTime21 (Core 5 Pull Time) Elapsed time to pull Core 5 slide open. Input
PhaseTime22 (Core 6 Pull Time) Elapsed time to pull Core 6 slide open. Input
PhaseTime23
(Ejection Forward Time)

Elapsed time to move the ejection cylinder
forward and free the casting from the die.

Input

PhaseTime24-29 Not Used.
TubesLoaded Pre-casting log that cast-in tubes were inserted

into the die.

LinersLoaded Pre-casting log that cast-in liners were loaded
into the die.

VacuumCheckPosition Programmed position at which the vacuum
pressure on the cavity is measured.

Setting

VacuumPressDuringShot Measured vacuum pressure. Input
VacuumPurgeResult Measured pressure when clearing the vacuum

chill block of debris.
Input

LubeVolTotal Not used.

Table C-II. FCA mechanical property testing dataset descriptions.

Variable Name Description Category
start_date Date of the tensile test.
SerialNumb Unique identifier given to the casting when it is made. Can be

used to merge datasets.

heat_treat_date Heat treat date of the block casting. Input
cavity Cavity number in which the block was cast. Input
Bulkhead Location in the block where the tensile bars was extracted. Input
diameter_mm Measured diameter of the tensile bar. Used to calculate

material strength.
Input

final_length_mm Measured final length of the tensile bar after failure. Output
UTS_MPa Ultimate Tensile Strength. The peak strength measured prior to

failure.
Output

YS_MPa Yield Strength. Calculated by the testing software as the
strength at the intersection of the 0.2% offset of the elastic
portion of the stress-strain curve and the measured stress-strain
curve.

Output

Elong Percent elongation. Calculated by dividing the posttest
distance between gage markers by the original distance
between the gage marks of 25.4 mm.

Output

C-40

tensile_strain Tensile strain measured by the extensometer. This was used in
place of percent elongation due to the increased accuracy.

Output

fracture_loc Operator text notes on the location of fracture in relation to the
gage marks. Also visible defects on the fracture surface are
noted in this column.

Input

furnace_no Heat treat furnace number used for the casting. Input
hardness_BHN Brinell hardness taken on the tensile bar. Output

D-1

Appendix D – Predicting Quality of Cylinder Block Castings via Supervised
Learning Method

Adam E. Kopper1

Diran Apelian2

1. Mercury Marine, Fond du Lac, WI
2. University of California - Irvine, Irvine, CA

ABSTRACT
The process input data which materials processing operations can collect for each unit of
production is extensive. Large datasets have long been difficult to work with as computing power
to execute analysis in a timely fashion was unavailable. Further, the great velocity at which the
data is generated makes near real-time decision making unwieldy without a new set of tools with
which to do the work. When troubleshooting by a small dataset, such as the last few hours of
production, observations made on the measured parameters can be misleading. Machine learning
is opening doors to high-dimensional data analysis in material processing. In this work, high-
pressure die-casting (HPDC) is explored as an exemplar of high-volume materials processing.
HPDC process summary data from a full year of production data covering over 950,000 machine
cycles is analyzed via supervised machine learning methods to successfully model the prediction
of good parts and process scrap as determined by the die casting machine. Additionally, the
prediction of ultimate tensile strength via a classification method of extracted tensile bars is
performed and the important features identified are discussed. Supervised learning is found to be
a useful tool for materials processing applications.

I. INTRODUCTION
Machine learning has been sparked by a simultaneous decrease in cost of computer memory and
increase in computing power [1], [2]. While applications such as advertisements, coupon targeting,
credit card fraud detection, and streaming media service recommendations are the average person’s
daily interaction with machine learning, the development of next wave applications is well
underway [3]. Artificial intelligence is driving object detection and sign recognition for
autonomous vehicles on land and sea [4], [5]. The medical field is using predictive modeling in
disease diagnosis which is a game changing technology for rural areas and developing nations
where doctors are few and collaboration is limited [6]. Facial recognition is going beyond finding
individuals for national security applications to emotion detection from facial pattern recognition
[7]–[9]. Machine learning is often associated with advanced computing technology sectors;
however, it is of great interest to manufacturing and materials processing industries as well.

D-2

Oftentimes, the products of companies in materials processing industries are raw materials for the
next operation. This may be in the same facility or at a customers’ operation where further value
is added in the journey toward the final shape, assembly, etc. Its place in the product pipeline
categorizes many materials as commodities and pricing pressures are high. For efficiency,
production processes tend to be large scale in terms of production tonnage and units per hour.
These processes are often thermally controlled. Once they are running, any interruption has
significant quality and downtime implications in getting the process back to operating temperature.
In this climate, sampling each unit of the product for the purposes of quality assurance or process
control slows productivity, adds cost, or simply is not possible (see Figure 1). Even with 100%
inspection of the product, analysis of the input parameters is required to gain knowledge and
improve the outcome. Machine learning is a toolset which can analyze the input parameters and,
in near real time, provide actionable direction on the output product. Thereby, increasing
confidence in the product being made without increasing sampling.

Figure 1 [10]. In many materials processing operations, the product is generated
too quickly for 100% inspection. New tools are required to garner insight into the
product between quality checks.

Early opportunities for implementing machine learning in foundries are entering into the literature.
Traditional casting process simulation used for optimizing tool designs and process settings
involved a significant amount of trial and error and running modified simulations in series, which
is highly time consuming. Autonomous optimization routines have been built into the simulation
software which now runs many iterations aimed at improving certain outputs such as fill time,
porosity, or air entrapment [11]. Rather than one value for each parameter, the user sets up a range
of values to test and the software finds the optimum solution. This capability greatly increases the
efficiency of process development. In other applications, companies are monitoring the data they
collect to detect anomalous behavior in the process [12]. While no predictions are being made,
the idea is that the process is under control and making good quality parts while as the parameters
are within a three-sigma variation of their respective means. If a parameter falls out of those

D-3

specifications, the part serial number is flagged for additional inspection and the equipment is
serviced to determine the root cause and solution. Similarly, machine maintenance is moving away
from preventative, where consumables are replaced or service performed on a schedule based on
history or recommendations, toward predictive [13], [14]. In predictive maintenance, sensors and
meters are applied throughout the equipment in a manufacturing cell to ensure that various
machines are maintaining a consistent amperage draw, cycle time, hydraulic pressure, etc. The
goal is for the machine to indicate, through data, to the maintenance team when it requires service.

In all these examples, machine learning is implemented to improve the operation and save cost.
Autonomous optimization in process simulation increases speed to market and reduces the cost of
trial and learn process development. Anomaly detection in process parameters aims to reduce
scrap costs through early detection. Predictive maintenance reduces downtime costs through
identifying declines in equipment performance. Such cost saving measures are great places to
apply machine learning and build the culture in the materials processing industry. Ultimately,
materials processing operations are headed toward truly smart factories where machines can
correct for their own performance variation given a window in which they can self-adjust. To
realize this future, our industry must capture the knowledge of domain experts, build a data science
skillset, cultivate a culture of data driven decision making, and begin creating knowledge from the
data already being generated in our operations.

So, why has this not happened yet? It turns out that analyzing materials processing data is not
straightforward [15]. As materials processing companies bring their data to the data science
community to find answers, new insight into how the data is traditionally collected and the
challenges which are created thereby are brought to light. Let us look at three of them: a culture
of departmental data keeping, collection of many input data and few outputs, and an imbalance in
output data class where high quality samples far outweigh unacceptable samples.

The first obstacle is cultural and centers on organizing data for analysis. Data fusion for machine
learning is more difficult when the data is stored within operational silos (see Figure 2). The type
of data and methods used by siloed departments within the same facility have evolved, in isolation,
over years. Methods range from high-tech automatic uploading to a cloud database to handwritten
records in a logbook. This creates challenges for combining the various sources of data into a
cohesive dataset as the collection frequency and identifiers often differ. Communication among
stakeholders through the entire process is critical to identify which, how, and how often data should
be collected to give the best description of the system to be modeled. A culture of uniformity,
traceability, and trust is required to tie the data together in meaningful ways.

D-4

Figure 2. Departmental data silos are a challenge to implementing machine
learning in many materials manufacturing operations.

The next challenge is specific to machine learning. Materials processes are established and
controlled on the input end while output measures are commonly performed on an audit basis. A
set of quality checks represents a production lot, or a shift, which occurs over several hours. Thus,
there is a wealth of data on the process inputs and timeseries records, but scant output data.
Similarly, there is missing process input data. Owing to the method of data collection, some inputs
are audited as well. In other example, a non-essential monitoring sensor fails, and maintenance is
not available to replace it for some time, creating a gap in data collection for a specific
measurement. Collecting data on different frequencies results in heterogeneous data where certain
data exists for a subset of the population, but not all the population. How do work with instances
of missing data require the assistance of subject matter expert. Working with heterogeneous data
of interest to many researchers in Data Science [16]–[18].

Lastly, manufacturers are very capable at what they do. Well-developed manufacturing operations
are looking for improvements in production yields, for example, from 96% good product to 97%.
There are two difficulties here. The first is the dataset is highly imbalanced where there are many
more good products than nonconforming (Figure 3). Robust machine learning algorithms need to
be trained on both. In the example given above, if the model predicts all the production to be good,
it would be 96% accurate but, in effect, unhelpful. The second difficulty is that very large amounts
of data are required to know if a small improvement in predictability is real or a result of error and
noise in the data [19].

D-5

Figure 3. Unbalanced data is a challenge for making predictions on manufacturing
data. Robust models need to be trained on many good and scrap parts.

The computing power and the tools exist to increase data-driven decision making in materials
processing. Materials processing is rich with data from which knowledge can be created and
incorporated into a future of smart factories. Active application of machine learning in the industry
exists and the challenges are coming to the surface. The opportunity is now for industry and
academia to work together to determine the right set of tools and methods which are most
applicable to accelerate progress.

High Pressure Die Casting
As an exemplar materials processing method, consider high-pressure die-casting (HPDC) of
aluminum alloys. HPDC is the most utilized process for casting aluminum alloy components [20],
[21]. The process offers the advantages of high productivity and complex part geometries [22].
At the center of the HPDC work cell is the die casting machine (DCM). Ancillary equipment fills
out the cell to execute tasks of metal delivery, die preparation, casting removal and trimming the
part of excess material like runners and overflows. The DCM can be programmed to identify a
casting as being good, scrap, or a warm-up shot based on the parameters which created the casting.
This is accomplished by setting upper and lower control limits (UCL and LCL) for key variables
as determined by the manufacturing engineer. The DCM is using a series of Boolean checks (Is
parameter n between LCLn and UCLn?), all of which must be TRUE for a part to be good [23]. If
one of the process parameters falls out of the programmed window, the check returns FALSE and
the part is labeled scrap. If a part is cast with too low of intensification pressure, for example, the
machine will identify the casting as scrap and send a signal to the operator or a robot to place the
part into the scrap hopper or set it aside for inspection. Parts cast within the prescribed limits are
labeled good parts and further processed as normal.

When envisioning HPDC process data, imagine a spreadsheet where rows represent individual
castings, and columns are various input parameters and process outputs. The number of inputs
can be very high. Blondheim estimates that a fully monitored die casting cell with thermal imaging
for die temperature data collection can exceed 2,000,000 inputs per cycle [24]. If the imaging data
is removed, the total opportunity still tops 300,000 inputs per cycle. Humans can visualize two-

D-6

and three-dimensional data quite well, but we have no way to visualize 300,000-dimensional data.
Data science and machine learning provide the tools to analyze high-dimensional data.

There are two objectives of this research: The first is to use machine learning via a classification
model to predict the quality label assigned by the DCM: good part, process scrap, and warm-up.
The second is to determine which other classifications can be determined by this method;
specifically, the presence of discontinuities (e.g. porosity) in a tensile bar machined from the
casting was examined.

II. METHOD
The Decision Tree classifier is a supervised machine learning method used to build a predictive
model for a given process output by sorting the castings into classes at various nodes using an
input variable as the sorting criteria [2]. This input variable is chosen by the algorithm because
sorting by it provides the greatest information gain to the model. Random Forest classifiers use
many Decision Trees together to make predictions of what class each casting belongs [25]. Both
methods are examined in this study.

Decision Trees are effective, easy to analyze machine learning algorithms which can be applied in
both classification and regression problems. The Decision Tree classifier is a supervised machine
learning method which means that the model is trained and tested on data with known output
classifications. Once the model is developed, it can be used to make predictions on castings where
the class is not known. Decision Trees build a predictive model by evaluating the variables and
sorting the observations at various nodes into classes. The nodes split, forming branches of the
tree which terminate at a leaf. Without placing restrictions on the model, the sorting will continue
until each branch of the tree ends at a pure leaf consisting of one class. While this may result in a
high scoring model, overfitting to the training data can be a problem, and it will not score highly
on new data which the model has not seen before.

One method by which the splits are determined is Gini factor (Equation 1), which is a measure of
the purity of the resulting nodes by making a split [26]. The Gini factor varies between zero and
one. A Gini of zero represents a pure node where all the observations are of the same class. A
high Gini value means that the various classes are mixed and there is a high probability that an
observation may be misclassified.

𝐺𝑖𝑛𝑖 = 1 − ∑ 𝑃 Eq. 1
Where:

 𝐺𝑖𝑛𝑖 is the Gini index
 𝑛 is the number of classes
 𝑃 is the probability of finding each class in the node

D-7

Splits in the tree are made by evaluating the Gini over each input for the node in question. The
feature with the lowest Gini for the samples in that node will become the split criterion and the
tree continues to build. If the node is pure, or the Gini is not reduced, the branch terminates at a
leaf. The user can specify other stopping criteria such as the maximum depth of the tree, minimum
Gini required for a split, and minimum samples required to split a node. Doing so will result in a
more general predictive model which is desirable.

An improvement upon the Decision Tree, Random Forest uses many tree estimators for making
predictions. Random Forest works well with high-dimensional data, is robust to non-linear data,
has low bias, and variance is reduced through bagging [25]. The randomization of the model
resides in the building of the trees in the forest. The samples and features available to build each
tree are randomly selected according to user defined limits. Random Forest is a prediction by
committee approach. The results of many trees trained on the subsets are compiled to classify
each observation. The number of tree estimators is set in the algorithm prior to creating the model.

The data used for this study is a large production dataset from a HPDC production of engine block
castings at FCA Kokomo Casting Plant. The full dataset consists of over 950,000 observations,
each row representing a production casting, and 83 columns of input/output variable data. The
data is collected from 12 HPDC work cells and 20 die casting tools. Periodically, the production
castings are destructively evaluated for mechanical property testing via a tensile test. In this dataset,
there are 1495 observations for which both the HPDC process variables and the mechanical
property data are collected into 159 columns. The blocks are cast in E380 aluminum alloy [27]
and subjected to T5 heat treatment post castings. For a specific application, a subset of the blocks
receives an additional 24-hour natural age prior to T5.

Prior to training the models, the data was cleaned to remove missing data, drop columns with no
variation, and remedy bad data. Bad data, for example, may be intermittent sensor glitches, mis-
scaled data, format errors, etc. Effective remedies rely on domain expertise of those close to the
process to decide whether to impute a suitable value such as a median value, adjust to the proper
scale, or remove the row or column as unreliable.

When developing the models, the datasets are split into training and test subsets. Unless otherwise
noted, the split uses 80% of the rows for training and the remaining 20% for testing the model.
Model performance metrics include accuracy, precision, recall, f1-score. Accuracy is percentage
of correctly classified observations. This calculation is shown in Equation 2 where TP is the
number of true positives, TN is the number of true negatives, FP is the number of false positives,
and FN is the number of false negatives. The equations for calculating precision, recall, and f1-
score are given in Equations 3, 4, and 5 respectively. f1-score is the harmonic mean of the
precision and recall and is useful for unbalanced datasets, such as the one in this study, where there
are many more good parts than process scrap.

D-8

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (𝑇𝑃 + 𝑇𝑁) / (𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁) Eq 2.
(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛) = 𝑇𝑃 / (𝑇𝑃 + 𝐹𝑃) Eq 3.
(𝑅𝑒𝑐𝑎𝑙𝑙) = 𝑇𝑃 / (𝑇𝑃 + 𝐹𝑃) Eq 4.

(𝑓1_𝑠𝑐𝑜𝑟𝑒) = 2 ∗ ((𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙)/(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙)) Eq 5.

III. RESULTS AND DISCUSSION

DCM Label Classification
Our first objective is to create a classification model which evaluates die-casting process data and
the known class assigned to the part and determines what the rules are such that the model will
accurately assign new part data to the correct class. The three labels are: good part, process scrap,
and warm-up. The full HPDC data set was used in this exercise split into training and test
populations.

Summaries of the model performance will be shown via confusion matrix (Table I). The matrix
rows track the actual known classifications of the test population and the columns correspond to
the classifications of the test population as predicted by the model. A perfect model would have
zero FN and FP predictions.

Table I. Interpretation of the confusion matrix. A perfect model would have zero
FN and FP predictions.

 Predicted Value
 Positive Negative

Actual Value
Positive TP FN
Negative FP TN

Decision Tree Classifier
The results of the initial Decision Tree classifier are plotted in Figure 4. The graphic is displayed
not for legibility, rather to show how complex Decision Trees can be.

Figure 4. Complete Decision Tree model for prediction of quality classification.

D-9

This tree would be even larger if limits had not been placed on it. The depth of the tree was limited
to 20 levels and the minimum requirement to make a split was set to 0.1% of the population. These
settings are optimized by adjusting them in turn and evaluating performance metrics. What can
be understood from Figure 4 is that warm-up shots which are colored purple are easily separated
from the good parts (orange) and process scrap (green). This is because warm-up shots typically
have different process settings from production shots utilizing low shot velocity and minimal
intensification pressure to reduce wear and tear on the DCM and die while bringing the die up in
temperature. The challenge is separating the good parts from the process scrap. For the remainder
of this exercise the warm-up shots have been utilized in a calculation as a process input which
designates the number of shots performed since the last warm-up shot was made. This value is
included to serve as a directional proxy for die temperature. Since this column equals zero for all
warm-up shots, the prediction of warm-up shots by the model becomes automatic. Thus, the warm-
up shots are removed from the dataset.

Table II contains the results of the part quality Decision Tree model.

Table II. Confusion matrix showing the performance of the Decision Tree
classifier model for part quality.

Decision Tree Model – Part Quality
Predicted Value

Good Part Process Scrap

Actual Value
Good Part 167,470 528

Process Scrap 1,577 5,294

The Decision Tree performed well on the test data which is made up of 174,869 rows of data which
the model had not seen before. The model does very well in predicting good parts. Although,
manufacturing operations make many good parts, it is predicting the process scrap which is of the
greatest value. 5,294 of the 6,871 process scrap rows are correctly classified. The 1,577 process
scrap castings which are classified as good parts are FPs. False Positives must be minimized, as
these would have a negative impact on downstream operations.

Random Forest Classifier
In the Random Forest, 10 estimators were used with a maximum depth of 35 levels and a
minimum split size of 100 observations. The confusion matrix for the Random Forest is shown
in Table III. Interestingly, the Random Forest model performs slightly worse on the process
scrap class than the Decision Tree. Unbalanced data is a challenge for modeling production
manufacturing data. Since each split in each tree is done without the consideration of any other
splits, the best Gini split may sweep many process scrap samples into a node which is
overwhelmingly good parts. This results in misclassification if the node is a leaf. Fortunately,
there are methods to working with unbalanced data.

D-10

Table III. Confusion matrix showing the performance of the Random Forest model
for part quality.

Random Forest Model –
Part Quality

Predicted Value
Good Part Process Scrap

Actual Value
Good Part 167,793 205

Process Scrap 1,613 5,258

Oversampling for Imbalanced Data
To reduce the amount of FP, the issue of data imbalance is addressed by generating more process
scrap data by which to train the model. The simplest way to do this is to reproduce samples from
the process scrap class, but this provides no new information to the algorithm. A better method,
which does provide new information to the model via the creation of new minority class samples,
is called Synthetic Minority Oversampling TEchnique (SMOTE) [28], [29]. SMOTE creates each
new minority class sample by selecting an example of the minority class, finding its nearest
neighbors, and drawing a line between the example and one of its neighbors at random. The new
sample is created along the connection line. This is done repeatedly until the minority class
balances out the majority class. A disadvantage of SMOTE is that it is challenged by datasets
where classes overlap.

To investigate, the training data was oversampled using SMOTE and new Decision Tree and
Random Forest models were trained. Predictions were made on the same testing data using the
new models. It is important that SMOTE be applied to the training data only, and not the testing
data. This way the testing data is of a distribution faithful to the process. The results are shown
in Table IV and Table V for the Decision Tree and Random Forest respectively. By balancing out
the process scrap with the good parts, the new models are more adept at recognizing process scrap
and FPs are reduced. The increase in FN is potentially due to overlap in the classes. A potential
cause of overlap is from castings where the classification of the machine was overruled by the
operator. In such an instance, a good part would be labeled process scrap. Unfortunately, no
record of operator intervention is kept by which to verify.

Table IV. Confusion matrix showing the performance of the Decision Tree with
SMOTE classifier model for part quality.

Decision Tree w/ SMOTE –
Part Quality

Predicted Value
Good Part Process Scrap

Actual Value
Good Part 164,716 3,282

Process Scrap 924 5,947

D-11

Table V. Confusion matrix showing the performance of the Random Forest w/
SMOTE model for part quality.

Random Forest w/ SMOTE –
Part Quality

Predicted Value
Good Part Process Scrap

Actual Value
Good Part 165,443 2,555

Process Scrap 1038 5,833

SMOTE improves the model performance on the minority class in both Decision Tree and
Random Forest models. Comparing Tables IV and V, it is difficult to see which model is best
suited for our data. Both exhibit false positives and false negatives. To determine the better
performing model, it is useful to use scoring metrics. These measures are tabulated for both
models below (Table VI). The metrics associated with the minority class (process scrap) are
more telling for model performance. The models perform quite similarly, however, the Random
Forest is the better model due to the higher f1-score for the process scrap class. The results
between the testing and training datasets are nearly the same, therefore, it can be said that neither
model is overfitting to the training data.

Table VI. Key scoring metrics for the part quality Decision Tree and Random Forest classifiers
with SMOTE training data. Mean values are reported from 5-fold cross validation.
 Decision Tree w/ SMOTE Random Forest w/ SMOTE
 Training Data Test Data Training Data Test Data
Model Accuracy 98.81 % 98.70 % 98.40 % 98.66 %
Precision 98.76 % 98.64 % 98.41 % 98.63 %
Recall 98.81 % 98.70 % 98.40 % 98.66 %
f1-Score 98.76 % 98.64 % 98.40 % 98.55 %
f1-Score
(Process Scrap)

97 % 74 % 99 % 76 %

Once the model is run, a useful summary for the process engineer can be pulled from the model,
feature importance [30]. Understanding the influence of each variable on the model helps the
engineer determine which variables to monitor more frequently or accurately, and where to invest
in process control measures for best results. Feature importance of the Random Forest and
Decision Tree with SMOTE models are given in Table VII below. The list of 83 variables was
truncated at values > 0.02. The feature importance table shows how Random Forest ensemble
learning softens and enhances the importance of individual features in comparison to the Decision
Tree algorithm.

D-12

Table VII. Feature importance for the part quality Decision Tree and Random Forest classifiers
with SMOTE generated training data.

Part Quality Decision Tree w/ SMOTE Part Quality Random Forest w/ SMOTE
Feature Name Importance Feature Name Importance
Time Between Cycles 0.4910 Time Between Cycles 0.2830
Shots Since Last Warm-up
Shot

0.1779 Biscuit Length 0.0868

Biscuit Length 0.0793 Final Intensifier Pressure 0.0641
Final Intensifier Pressure 0.0595 Plunger position at the end of

shot
0.0505

Average Intermediate Shot
Velocity

0.0471 Cycle Time 0.0480

Cycle Time 0.0207 Average Intermediate Shot
Velocity

0.0426

 Cavity Fill Time 0.0392
 Average Fast Shot Velocity 0.0381
 Shots Since Last Warm-up

Shot
0.0314

 Intensification Velocity Rise
Time

0.0239

 Dwell Time 0.0239
 Intensification Stroke 0.0215

Feature importance can also be used to assist in feature selection for creating more efficient models
which take less time to run and perform better when noisy features are removed. Ultimately, the
final set of features is based on trial and error and the preferred performance metric. The same
Random Forest model set-up was run using only the top 12 features (Table VII). Dropping the
low importance input variables minimally reduces predictive power, and overfitting to the training
data is still avoided (Table VIII).

D-13

Table VIII. Scoring metrics for the part quality Random Forest with SMOTE
classifier models using the top 12 features. Mean values are reported from 5-fold
cross validation.

 Random Forest Classifier
 Training Data Test Data
Model Accuracy 98.81 % 98.55 %
Precision 98.82 % 98.48 %
Recall 98.81 % 98.55 %
f1-Score 98.81 % 98.45 %
f1-Score
(Process Scrap)

99 % 79 %

Breaking the data down into unique combinations of DCM number and die cavity number yielded
interesting results. It was observed that, when subsets representing each combination of DCM
number and die cavity number were run across the general part quality Random Forest classifier,
the metrics of the predictions varied. This suggests that each DCM and cavity combination is to
some degree a unique process. The five best and five worst results are presented in Table IX.

Table IX. Performance metrics of the part quality Random Forest with SMOTE classifier when
each unique combination of DCM and die cavity subset is run as the test sample.
Combination
ID

Accuracy Precision Recall F1-score

Top 5 Results
Combination 17 0.99 0.96 0.89 0.93
Combination 16 0.99 0.89 0.95 0.92
Combination 14 0.98 0.87 0.93 0.90
Combination 13 0.99 0.85 0.92 0.88
Combination 06 0.99 0.87 0.87 0.87
Bottom 5 Results
Combination 23 0.98 0.72 0.81 0.76
Combination 26 0.98 0.63 0.96 0.76
Combination 24 0.99 0.72 0.78 0.75
Combination 25 0.98 0.66 0.77 0.71
Combination 02 0.98 0.65 0.76 0.70

Combination 16 which offered the largest subset of the overall dataset was examined on its own
to see if the quality label prediction could be improved. The dataset is reduced from 874,344 to
76,226 observations. However, the noise from multiple processes grouped together is minimized.

D-14

For the Combination 16 Random Forest classifier model, 100 estimators were used with a
maximum depth of 11 splits. The top 12 features as determined by the all-inclusive Random Forest
were used as the input features. The confusion matrix is shown in Table X. The model classifies
some process scrap in the good part class, but the f1-score for process scrap specifically increases
to 0.89 as compared to 0.76 when all combinations of DCM and cavity numbers are grouped
together.

Table X. Confusion matrix for the Combination 16 test dataset run across the part
quality Random Forest classifier specific to the Combination 16 dataset.
Top 12 important features used as inputs.

Random Forest Model – Part Quality
Combination 16 Data

Predicted Value
Good Part Process Scrap

Actual Value
Good Part 14,698 83

Process Scrap 22 443

The takeaway from this analysis is that machine learning algorithms, specifically Random Forest
classifiers, are adept at analyzing high-dimensional datasets and identifying the quality thresholds
established for materials processes. In learning the acceptable range for each variable to make
quality parts, accurate predictions can be made on new parts of unknown quality. Oversampling
techniques such as SMOTE, helps to address the imbalance in the data and makes the model a
better predictor of the minority class.

The example of predicting part quality assigned by the DCM is a straightforward example where
the dataset is very large and contains all the information available to the DCM for labeling parts
good or process scrap. Many materials processing problems are more difficult due to the
challenges of small datasets. Next, we turn our attention to how well Random Forest classification
modeling can be applied to predicting porosity in castings using process data by which they were

made.

Porosity Classification

HPDC process input data is used by manufacturing operations as a real-time quality check. Thus,
it is of interest to test if these data can be analyzed further to predict levels of porosity in good
parts. For the cast component of this study, production castings are selected for destructive
mechanical property testing via testing tensile bars extracted from the casting itself. Ultimate
tensile strength (UTS), yield strength, tensile strain (elongation), and hardness data are collected
for the purpose of quality assessment [31]. In most HPDC products, the location of the tensile
bars is limited to the few heavy areas of the casting which can accommodate their geometry. This
constraint applies to the engine block geometry in this study. Thick walled sections are difficult

D-15

geometries in die cast parts because there is no ability to use risers, as other casting processes do,
to feed volume contraction during solidification [32]. Intensification pressure is applied during
solidification to compress gas porosity and feed shrinkage; however, once the gates freeze,
pressure is no longer transmitted to the last areas to solidify (e.g. heavy walled sections). In the
long freezing range aluminum alloys commonly utilized in HPDC, like 380-alloy, the resulting
shrinkage is often microshrinkage which is difficult to detect via NDA methods such as digital X-
ray. Thus, the presence of porosity is a characteristic of HPDC which must be controlled and not
necessarily an indication of a poor casting. Discontinuities do impact the measured mechanical
properties resulting in additional work and cost to reproduce the test. It has been shown that
mechanical properties are dependent on the amount of porosity in the area of fracture [33]–[36].
Making a connection between mechanical properties and porosity is of interest to die casters
because, in many applications, the presence of porosity can result in scrap due to uncovered
porosity after machining or loss of pressure tightness or leaking.

Finding which process inputs contribute to porosity in a mature process is challenging for humans
to solve. It is also a difficult problem to model because all the castings in the new dataset are
classified as good parts, so the difference between any given input variable from one observation
to the next is likely small.

The HPDC process dataset was merged with the tensile bar dataset using the part serial number to
match the observations. The result is a much smaller dataset with 1495 rows. The comments
column from the tensile bar dataset was text mined to determine which bars exhibited visual
discontinuities in the tensile bar fracture surface [37]. Next, the data was run through a Random
Forest classifier to see if porosity could be predicted. This newly generated Random Forest
classifier was unable to discern a difference between the parts which had confirmed porosity in the
tensile bar and those for which no porosity was observed. Most of the porosity samples are
predicted to not have porosity as shown in Table XI.

Table XI. Confusion matrix showing the performance of the porosity Random
Forest classifier model on the test dataset for all tensile bars.

Random Forest Model – Porosity
All Tensile Bar Data

Predicted Value
No Porosity Porosity

Actual Value
No Porosity 220 0

Porosity 6 2

The output in the above model is a binary categorization of porosity observed or not. Cáceres’
work shows that a binary classification for porosity is not adequate since the amount of porosity
affects the mechanical properties [33]. Whether or not the porosity was observed by the tester in
the tensile bar has no bearing on how the bar performed. The observation is based on unaided

D-16

visual inspection. Porosity in 380-aluminum from volumetric contraction is expected to be
microshrinkage which may go undetected in visual inspection [38]. Figure 5 shows an empirical
cumulative distribution function for the bars with and without observed discontinuities. The curve
for the data with observed discontinuity is shifted to lower UTS values. There is considerable
overlap which supports the supposition that microshrinkage porosity is often undetectable via
visual inspection.

Figure 5. Empirical cumulative distribution functions for the UTS of tensile bars
with and without observed discontinuities on the facture surface by visual
inspection.

A classification model based on a UTS value has two benefits: undetected porosity gets captured
in the lower performing bars and the two classes can be set up to be more balanced. Two classes
were selected: UTS < 205 MPa and UTS ≥ 205 MPa. The groupings have no reflection on engine
block performance. There is no assignment of “good” versus “bad” implied in selecting the ranges.
The value of 205 MPa is chosen as it is the median value of the tensile bar dataset. Importantly,
80% of the bars with observed discontinuities exhibited less than 205 MPa of UTS as well. A
Random Forest classifier was used to predict which UTS class each bar in the test dataset would
fall into using the HPDC process input data. Table XII shows the Random Forest classifier results
cross validated over 10 iterations. This model is overfitting to the training data as there is more of
a difference between the training and testing metrics than we saw in the DCM quality label
example. One of the better performing models is shown in Table XIII.

D-17

Table XII. Key scoring metrics for the Random Forest classifier model
predicting UTS over or under 205 MPa. The support of the test dataset is: 138
UTS < 205 MPa samples and 161 UTS ≥ 205 MPa samples.

 Random Forest Classifier:
UTS over/under 205 MPa

 Training Data Test Data
Model Accuracy 60.62 % 56.87 %
Precision (weighted) 60.76 % 57.13 %
Recall (weighted) 60.62 % 56.87 %
f1-Score (weighted) 60.57 % 56.37 %

Table XIII. Confusion matrix of the Random Forest classifier for UTS tensile
bars above and below 205 MPa using HPDC process inputs only.

Random Forest Model – UTS
Predicted Value

> 205 MPa < 205 MPa

Actual Value
> 205 MPa 98 63
< 205 MPa 47 91

If die casting operations examine their data in this way, there is benefit gained even from
imperfect models. Referring to Table XIII, the test dataset consists of 299 samples of which 161
were of the higher UTS class. This amounts to 53.8% high UTS samples. This model suggests
that there are operating conditions where high UTS bars can be expected. If those conditions are
employed, one would find that 98 of 145 are high UTS bars, or 67.6%. The parameters which
rise to the top of the feature importance list in Table XIV are worthy of study since splitting on
their value has the largest impact on UTS prediction.

Individual tree estimators can be pulled from the Random Forest and viewed to understand
which feature and values were chosen for splitting nodes. Geometry and performance
requirements are design specific, expect important features and the values set as thresholds for
splitting the data to vary part number to part number. In the data for this engine block study,
higher UTS parts are associated with lower cycle times: in every timer listed in Table XIV, a
lower timer value is associated with a higher percentage of parts with greater than 205 MPa
UTS. Intensification stroke refers to how much the shot rod moves forward under intensification
pressure; the forward movement is tied to feeding of shrinkage porosity and higher values for
this variable improve UTS. Also, consistent production associated with less time between cycles
and longer continuous runs of parts result in stronger parts.

D-18

Table XIV. Average feature importance calculated over ten iterations of the Random Forest
classifier.
Feature Name Importance Feature Name Importance
Ejection Forward Time 0.0747 Total Tie Bar Tonnage 0.0379
Spray Robot Time 0.0505 Final Intensifier Pressure 0.0357

Die Close Tank Level 0.0498
Avg Head Pressure during
Intermediate Shot

0.0349

Avg Head Pressure during
Fast Shot

0.0466 Extract Robot Cycle Time 0.0348

Shot Count Since Last Warm
Up Shot

0.0414 Cycle Time 0.0347

Die Close Time 0.0403 Die Opening Time 0.0329
Intensification Pressure Rise
Time

0.0396 Vacuum Pressure during Shot 0.0321

Average Fast Shot Velocity 0.0386 Ladle Pour Time 0.0332
Avg Head Pressure during
Slow Shot

0.0383 Intensification Stroke 0.0304

IV. CONCLUSIONS

 Supervised learning performed better on the larger HPDC process dataset. The complete
population has 874,344 observations and we know that the DCM is making quality
determinations based on this data, so the right data is collected. The result is a good
model.

 Oversampling using SMOTE is effective for teaching the model to better predict the
minority class.

 The Random Forest classifier outperforms a single Decision Tree by reducing variance.
The ability to differentiate good parts from process scrap improve when focusing on
unique combinations of machine and cavity number as stand-alone processes.

 For predicting porosity, UTS has been shown to be a better output for predictive
modeling than relying on porosity observation alone. Microshrinkage porosity can easily
be missed by the unaided eye, but its effect is apparent in the UTS measured.

 A key difference between the DCM part label problem and the porosity prediction
problem is the size of the dataset available to the model. The smaller tensile bar dataset
is impacted by overfitting issues that the larger dataset avoids.

V. REFERENCES
[1] W. D. Nordhaus, “Two Centuries of Productivity Growth in Computing,” J. Econ. Hist.,

vol. 67, no. 1, pp. 128–159, Mar. 2007, doi: 10.1017/S0022050707000058.
[2] D. Dietrich, B. Heller, and B. Yang, Data Science and Big Data Analytics: Discovering,

Analyzing, Visualizing and Presenting Data, 1st ed. Wiley, 2015.

D-19

[3] Capgemini Consulting Group, “Industry_4.0_-The_Capgemini_Consulting_V.pdf.”
Capgemini, 2014, [Online]. Available: https://www.capgemini.com/consulting/wp-
content/uploads/sites/30/2017/07/capgemini-consulting-industrie-4.0_0_0.pdf.

[4] H. Cho, Y. Seo, B. V. K. V. Kumar, and R. R. Rajkumar, “A multi-sensor fusion system for
moving object detection and tracking in urban driving environments,” in 2014 IEEE
International Conference on Robotics and Automation (ICRA), Jun. 2014, pp. 1836–1843,
doi: 10.1109/ICRA.2014.6907100.

[5] T. Huntsberger, H. Aghazarian, A. Howard, and D. C. Trotz, “Stereo vision–based
navigation for autonomous surface vessels,” J. Field Robot., vol. 28, no. 1, pp. 3–18, Jan.
2011, doi: 10.1002/rob.20380.

[6] R. A. Greenes, “Clinical Decision Support and Knowledge Management,” in Key Advances
in Clinical Informatics, Elsevier, 2017, pp. 161–182.

[7] M. Xiaoxi, L. Weisi, H. Dongyan, D. Minghui, and H. Li, “Facial emotion recognition,” in
2017 IEEE 2nd International Conference on Signal and Image Processing (ICSIP),
Singapore, Aug. 2017, pp. 77–81, doi: 10.1109/SIPROCESS.2017.8124509.

[8] M. S. Bartlett, G. Littlewort, M. Frank, C. Lainscsek, I. Fasel, and J. Movellan,
“Recognizing Facial Expression: Machine Learning and Application to Spontaneous
Behavior,” in 2005 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR’05), San Diego, CA, USA, 2005, vol. 2, pp. 568–573, doi:
10.1109/CVPR.2005.297.

[9] M. S. Bartlett, G. Littlewort, M. Frank, C. Lainscsek, I. Fasel, and J. Movellan, “Fully
Automatic Facial Action Recognition in Spontaneous Behavior,” in 7th International
Conference on Automatic Face and Gesture Recognition (FGR06), Southampton, UK,
2006, pp. 223–230, doi: 10.1109/FGR.2006.55.

[10] B. Kopper, Untitled. 2020.
[11] D. Gaddam, “Autonomous Optimization of Die Casting Processes,” AFS Trans., vol. 124,

pp. 25–32, 2016.
[12] D. Blondheim, “Unsupervised Machine Learning and Statistical Anomaly Detection

Applied to Thermal Images,” NADCA Trans. T18-071, 2018, [Online]. Available:
http://www.diecasting.org/transactions/T18-071.

[13] M. Paolanti, L. Romeo, A. Felicetti, A. Mancini, E. Frontoni, and J. Loncarski, “Machine
Learning approach for Predictive Maintenance in Industry 4.0,” in 2018 14th IEEE/ASME
International Conference on Mechatronic and Embedded Systems and Applications
(MESA), Oulu, Jul. 2018, pp. 1–6, doi: 10.1109/MESA.2018.8449150.

[14] B. Cline, R. S. Niculescu, D. Huffman, and B. Deckel, “Predictive maintenance
applications for machine learning,” in 2017 Annual Reliability and Maintainability
Symposium (RAMS), Orlando, FL, USA, 2017, pp. 1–7, doi: 10.1109/RAM.2017.7889679.

[15] T. Prucha, “From the Editor: AI Needs CSI: Common Sense Input,” Int. J. Met., vol. 12, no.
3, pp. 425–426, Jul. 2018, doi: 10.1007/s40962-018-0235-2.

[16] A. Chatterjee and A. Segev, “Data Manipulation in Heterogeneous Databases,” SIGMOD
Rec, vol. 20, no. 4, pp. 64–68, Dec. 1991, doi: 10.1145/141356.141385.

[17] W.-S. Li and C. Clifton, “Semantic Integration in Heterogeneous Databases Using Neural
Networks,” p. 12.

[18] W.-S. Li and C. Clifton, “SEMINT: A tool for identifying attribute correspondences in
heterogeneous databases using neural networks,” Data Knowl. Eng., vol. 33, no. 1, pp. 49–
84, Apr. 2000, doi: 10.1016/S0169-023X(99)00044-0.

D-20

[19] J. Cohen, “Statistical Power Analysis,” Curr. Dir. Psychol. Sci., vol. 1, no. 3, pp. 98–101,
Jun. 1992, doi: 10.1111/1467-8721.ep10768783.

[20] J. Folk, “U.S. Aluminum Casting Industry - 2019,” Cast. Eng., no. July 2019, pp. 16–19,
Jun. 2019.

[21] A. Spada, “Revitalization of North American Metalcasting,” 2012, Accessed: May 24,
2020. [Online]. Available: https://www.diecasting.org/docs/statistics/North_America.pdf.

[22] R. Lumley, Ed., Fundamentals of aluminium metallurgy: production, processing and
applications. Oxford: Woodhead Publ, 2011.

[23] J. I. Moore and P. J. Van Huis, “US4493362.pdf,” 4493362, Jan. 15, 1985.
[24] D. Blondheim, “Artificial Intelligence, Machine Learning, and Data Analytics:

Understanding the Concepts to Find Value in Die Casting Data,” presented at the 2020
NADCA Executive Conference, Clearwater Beach, FL, Feb. 25, 2020.

[25] L. Breiman, “Random Forests,” Mach. Learn., vol. 45, no. October 2001, pp. 5–32, 2001,
doi: 10.1023/A:1010933404324.

[26] R. I. Lerman and S. Yitzhaki, “A note on the calculation and interpretation of the Gini
index,” Econ. Lett., vol. 15, pp. 363–368, 1984, doi: 10.1016/0165-1765(84)90126-5.

[27] The Aluminum Association, Designations and Chemical Composition Limits for Aluminum
Alloys in the Form of Castings and Ingot, October 2018. Arlington, VA: The Aluminum
Association, 2018.

[28] R. Blagus and L. Lusa, “SMOTE for high-dimensional class-imbalanced data,” BMC
Bioinformatics, vol. 14, no. 1, p. 106, Dec. 2013, doi: 10.1186/1471-2105-14-106.

[29] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “SMOTE: Synthetic
Minority Over-sampling Technique,” J. Artif. Intell. Res., vol. 16, pp. 321–357, Jun. 2002,
doi: 10.1613/jair.953.

[30] A. Altmann, L. Toloşi, O. Sander, and T. Lengauer, “Permutation importance: a corrected
feature importance measure,” Bioinformatics, vol. 26, no. 10, pp. 1340–1347, Apr. 2010,
doi: 10.1093/bioinformatics/btq134.

[31] ASTM International, “ASTM B 557-15, Test Methods for Tension Testing Wrought and
Cast Aluminum- and Magnesium-Alloy Products.” ASTM International, doi:
10.1520/B0557-15.

[32] J. Campbell, Complete Casting Handbook: Metal Casting Processes, Metallurgy,
Techniques and Design. Butterworth-Heinemann, 2015.

[33] C. H. Cáceres, “On the effect of macroporosity on the tensile properties of the Al-7%Si-
0.4%Mg casting alloy,” Scr. Metall. Mater., vol. 32, no. 11, pp. 1851–1856, Jun. 1995, doi:
10.1016/0956-716X(95)00031-P.

[34] M. K. Surappa, E. Blank, and J. C. Jaquet, “EFFECT OF MACRO-POROSITY ON THE
STRENGI~ AND DUCTILITY OF CAST,” vol. 20, no. 9, p. 6.

[35] C. D. Lee and K. S. Shin, “Constitutive prediction of the defect susceptibility of tensile
properties to microporosity variation in A356 aluminum alloy,” Mater. Sci. Eng. A, vol.
599, pp. 223–232, Apr. 2014, doi: 10.1016/j.msea.2014.01.091.

[36] C. D. Lee, “Effects of microporosity on tensile properties of A356 aluminum alloy,” Mater.
Sci. Eng. A, vol. 464, no. 1–2, pp. 249–254, Aug. 2007, doi: 10.1016/j.msea.2007.01.130.

[37] V. Gupta and G. S. Lehal, “A Survey of Text Mining Techniques and Applications,” J.
Emerg. Technol. Web Intell., vol. 1, no. 1, pp. 60–76, Aug. 2009, doi: 10.4304/jetwi.1.1.60-
76.

D-21

[38] J. A. Spittle, “Grain refinement in shape casting of aluminium alloys,” Int. J. Cast Met.
Res., vol. 19, no. 4, pp. 210–222, Sep. 2006, doi: 10.1179/136404606225023444.

E-1

Appendix E – Model Selection and Evaluation for Machine Learning: Deep
Learning in Materials Processing

Adam Kopper1*, Rasika Karkare2, Randy C. Paffenroth3, Diran Apelian4

1Mercury Marine, Fond du Lac, WI 54935 USA

2WPI, Data Science, Worcester, MA, 01609 USA
3WPI, Mathematical Sciences, Computer Science, Data Science, Worcester, MA 01609 USA

4UCI, Materials Science and Engineering, Irvine, CA 92967 USA

*Corresponding author, email: adam.kopper@mercmarine.com

Keywords. Machine learning; deep learning; random forest; support vector machine; neural
network; high pressure die casting; principal component analysis; bias-variance trade-off.

Abstract

Materials processing is a critical subset of manufacturing which is benefitting by implementing
machine learning to create knowledge from the data mined/collected and gain a deeper
understanding of manufacturing processes. In this study, we focus on aluminum high-pressure
die-casting (HPDC) process, which constitutes over 60% of all cast Al components. Routinely
collected process data over a year’s time of serial production is used to make predictions on
mechanical properties of castings; specifically, the ultimate tensile strength (UTS). Random
Forest, Support Vector Machine (SVM), and XGBoost regression algorithms were selected from
the machine learning spectrum along with a Neural Network, a deep learning method. These
methods were evaluated and assessed and were compared to predictions based on historical data.
Machine learning, including Neural Network, regression models do improve the predictability of
UTS above that of predicting the mean from prior tests. Choosing the correct models to use for
the data requires an understanding of the bias-variance trade-off such that a balance is struck
between the complexity of the algorithms chosen and the size of the dataset in question. These
concepts are reviewed and discussed in context of HPDC.

I. Introduction

A recent boom in machine learning has been sparked by continuous decrease in the cost of
computer memory and increases in computing power [1], [2]. This, coupled with increased access
to machine learning algorithms and open source software, has broadened the scope of interested
parties beyond the early adopters like social media, banking, and marketing and retail sectors into
manufacturing operations. Materials processing is a critical subset of manufacturing which is
benefitting by implementing machine learning to create knowledge from the data mined/collected
and to gain a deeper understanding of manufacturing processes.

Many materials manufacturing processes tend to be large-scale in terms of production tonnage and
units per hour. Efficiency is a core metric for materials processing plants. In thermally controlled
processes, interruptions have significant downtime implications in returning the process to the
operating temperature. In such an environment, sampling each unit of the product for the purpose

E-2

of quality assurance or process control reduces productivity, adds cost, or just simply is not
practical. Machine learning is an enabling technology with the potential to minimize sampling
and testing while boosting the confidence that both producers and customers have in the end
product.

We consider aluminum high-pressure die-casting (HPDC) for this study, which is the most utilized
process in the world for aluminum alloy near-net shaped components [3], [4]. In brief, the process
consists of a machine which holds a steel die where the casting is formed, and an injection system
for delivering the metal at high speed and holding the solidifying metal under pressure. The
application of machine learning, including Neural Networks, to HPDC has been studied in the
numerical simulation realm. Rai et al. used a supervised learning method by creating datasets with
process simulation software and teaching a Neural Network to predict cavity fill time,
solidification time, and porosity based on the process inputs: melt and die temperature and slow
and fast shot velocities [5]. They found that the results of the Neural Network model compared
well to those generated by commercially available finite element mesh-based simulation software
but did so in much less time. Similarly, Yarlagadda et al. predicted fill time from the melt
temperature, die temperature, injection pressure, and casting weight with a Neural Network trained
via process simulation software and domain expertise from casting specialists [6]. Moving into
the experimental realm, Soundararajan et al. were able to train and test a Neural Network
predicting the ultimate tensile strength (UTS) and yield strength (YS) of extracted tensile bars from
gravity cast aluminum with a correlation coefficient of 0.95 and 0.96, respectively [7]. Their
experimental settings represent a wider range in process input values than one might encounter on
a fully developed production casting, exaggerating the differences for the algorithm to recognize
and learn. In volume production, process parameters are established to ensure uniformity in the
final product. To predict the UTS of each sample to a high accuracy based on typical input variation
is a difficult problem at which this research is directed. It is common practice to collect HPDC
cycle summary data with respect to plunger velocity, pressures, and various timers for each shot
as captured by the shot monitoring software on the die casting machine. While these data are
routinely reviewed for troubleshooting purposes, utilizing such information to make predictions
about the castings themselves is not the norm, and thus the opportunity or a need that this work
addresses.

It is paramount to understand the type of data HPDC operations generate, and the machine learning
and deep learning methods that are best suited for analysis. One is often introduced to the terms
machine learning, deep learning, and Neural Network as buzz words used interchangeably in
marketing or general audience publications. All of these are subsets of artificial intelligence and
defining where machine learning ends and deep learning begins is somewhat blurry. Perhaps it is
best to look at these as a continuum of complexity. Machine learning algorithms reside on the
lower end of the complexity spectrum making use of linear and other low-order functions [8].
While deep learning is at the other end employing layers of mathematical transformations and
activation functions for creating models [9]. The most suitable method depends on the data
available.

This study was conducted to compare the performance of various machine learning and deep
learning methods in predicting the UTS of tensile bars excised from engine block castings. The
mean absolute error of the algorithm is used to score the methods. Furthermore, an explanation of
the importance of bias-variance trade-off is given to provide context for the results [10], [11].

E-3

II. Methodology

Casting Details
The data used for this machine learning study represent a large production dataset from a HPDC
operation. The full dataset consists of over 950,000 observations, each row representing a
production casting, and 83 columns of input/output variable data collected from 12 HPDC work
cells and 20 die casting tools in the production of engine block castings at FCA Kokomo Casting
Plant. Briefly, the core of the set is HPDC process summary data collected via shot monitoring
software (plunger velocities, intensification parameters, timers, melt temperature, to name a few);
specifics can be found in Appendix A. Periodically, the production castings are destructively
evaluated for mechanical property testing via a tensile test. In this dataset, there are 1495
observations for which both the HPDC process variables and the mechanical property data are
collected into 159 columns. The blocks are cast in E380 aluminum alloy [12] and subjected to T5
heat treatment post castings. For a specific application, a subset of the blocks receives an
additional 24-hour natural age prior to T5.

Mechanical Property Testing of Castings
When designing castings, minimum mechanical properties may be specified by the designer which
are required for the final product. Process and alloy selection are largely driven by these
requirements [13]. Testing mechanical properties such as UTS, YS, and elongation requires
destructive methods which can only be conducted on an audit basis. Tensile testing of test bars
extracted from the cast part itself, or cast alongside the part, is the most employed method to
measure these properties [14]. The tensile bars come from four different locations in the engine
block and are machined to a 0.350 inch (9 mm) diameter sub-sized geometry based on ASTM B
557 (Figure 1) [15]. The bars are pulled using an Instron tensile testing machine. A load cell is
used to measure the force on the tensile bar. An extensometer is affixed to the bar to determine
the point of yielding. The dataset captures the UTS, YS, and the tensile strain. The 0.2% offset
method is used to calculate the YS [16]. The tensile strain is measured with the extensometer over
the course of the test and is reported as a percentage. Included in the dataset is a notes column
which is text mined for mentions of fracture location and the presence of observed discontinuities
such as porosity or an inclusion [1]. Each bar is classified accordingly. Tests with no indication
of a discontinuity are classified as unknown, rather than to assume none were present.

For traceability, each engine block is assigned a serial number when it is cast. This unique
character string is stored for each row of the HPDC process dataset. The serial number of the
block casting is recorded in the tensile bar data as well. This identifier is used to merge the two
datasets together, such that the data for each tensile test is expanded to include the HPDC process
data as well. After an initial feature selection exercise [8], to remove columns with no variation
and highly correlated columns, the resulting dataset consists of 1494 observations, or rows, and 80
variables, or columns. Of the 80 columns, 77 are inputs and 3 are outputs (UTS, tensile strain, and
the Quality Index (QI) [17]). QI is an empirical relationship which aids in the interpretation of
tensile test data. Mapping UTS-Elongation data over a grid of iso-QI and iso-YS lines provides
the materials engineer directional insight into how to adjust alloy chemistry, solidification rate,
and heat treatment to achieve the desired result.

E-4

G – Gage Length 1.400 +/- .005
(35.5 +/- 0.1)

R – Radius (min) 0.25
(6.35)

D – Diameter 0.350 +/- .007
(9.0 +/- 0.2)

A – Reduced Section
Length (min)

1.650
(41.9)

Figure 1. Tensile bar geometry per ASTM B557 [15, p. 55].

Dimensions in inches (mm).

Tensile bar data were examined to determine which output to target for prediction. Like most
production manufacturing data, there is noise in the data that can be difficult to filter out with
certainty as the actual tensile bars are not typically retained and were not available for this study.
Statistical analysis via Welch’s t-test is performed to detect significant shifts in the mean value of
UTS and tensile strain from one population to another [18]. Location of bar extraction, presence
of observed discontinuities, and the heat treatment were analyzed, and key results are shown in
Tables I and II. The fracture location along the bar (middle vs. gauge) was not found to
significantly move the mean UTS to a 95% confidence level.

Table I. Mean values for UTS and tensile strain comparing tensile bars from two heat
treatments for all tensile bars. The null hypothesis is that there is no difference

with respect to heat treatment.

 Standard T5
Heat

Treatment

T5 w/
Additional

Natural Age

p-value Reject the null
hypothesis?

Ultimate Strength,
MPa (All Bars)

201 212 2.8E-29 Yes

Tensile Strain, %
(All Bars) 1.4 1.6 9.3E-14 Yes

E-5

Table II. Mean values for UTS and tensile strain comparing tensile bars based on noted
discontinuity on the fracture surface. The null hypothesis is that there is no difference between

bars with an observed discontinuity and those with no noted observation.

 No Observed
Discontinuity

Observed
Discontinuity
(unaided eye)

p-value Reject the null
hypothesis?

Ultimate Strength,
MPa (All Bars)

204 191 1.2E-11 Yes

Tensile Strain, %
(All Bars) 1.4 1.3 0.01 Yes

The results of Welch’s t-test confirmed that the mean UTS value is statistically different based on
the presence of defects and heat treatment used. UTS was selected over QI and tensile strain for
its sensitivity to the presence of observed anomalies in the tensile bars. The literature has shown
that UTS is sensitive to the presence of such casting features in tensile bars. Surappa reported that
the mechanical properties of A356 permanent mold castings are less dependent on the bulk
porosity than they are on the porosity in the test bars themselves [19]. Cáceres and Selling
observed a power law relationship between the UTS and the area fraction of defects on the fracture
surface of tensile bars [20]. This connection of UTS to porosity is very useful to die casting
producers, since quality issues in die casting are largely porosity related [21]. Preliminary
modeling efforts confirmed that UTS was showing less error in the model performance as
compared to prediction of tensile strain and QI.

Data Pre-Processing
Before the data can be processed through machine learning algorithms, there is a significant
amount of pre-processing which must be done to obtain meaningful results. In particular, the idea
of distance between observations is essential to machine learning algorithms and getting such
distances wrong can severely hamper the functioning of machine learning algorithms.
Consequently, common pre-processing operations were performed for the purpose of cleaning the
dataset, dealing with discrete data, and standardizing the data.

Real world production data is messy. Missing values, erroneous sensor readings, duplicated
entries, typos, format changes in the source file, etc. must be sorted out before one can engage in
meaningful analysis. Considering a data set of over 950,000 rows and 109 columns, one cannot
simply scroll through and identify the anomalies. Running summaries of each column, examining
the data class, and locating missing values are a few of the tasks to be carried out. This is where
the expertise of the data scientist and the domain experts are invaluable.

In the dataset, there are continuous variables such as melt temperature, fast shot velocity, and
intensification pressure. Likewise, there are discrete, categorical, variables such as machine
number, cavity number, and work shift. Continuous variables often have easily defined distances
since the distance between two melt temperatures, for example, is easily calculated and
meaningful. However, categorical data, especially those which are represented by numeric
identifiers cannot be properly calculated by simply finding the difference between two numeric

E-6

labels. Even so, it is useful data and can be incorporated into machine learning algorithms. Work
shift is a good example for illustrating how to deal with discrete data. Work shift is often
represented by numerical representation of first (1), second (2), and third (3) shift. While the
distance between 1 and 2 and the distance between 2 and 3 both have a value of one, the pair 1 and
3 have a distance equal to two. Logically, first and third shift are no further apart than first and
second (Figure 2a). To deal with the challenge of discrete data, data scientists utilize a method
known as one-hot encoding [22]. One-hot encoding takes the tall vector which has discrete work
shift data consisting of 1’s, 2’s, and 3’s and converts it into a wide set of three vectors, we will call
them Work Shift 1, Work Shift 2, and Work Shift 3 as shown in Figure 2b.

Figure 2. a) Discrete numerical data challenge of work shift; b) the data after
one-hot encoding.

We now have three vectors which capture the work shift as numerical data and the distance
between each shift is one. The original Work Shift column is removed prior to executing the
algorithm. One-hot encoding can be applied to character string data as well.

Once the data set is fully numeric and discrete variables have been managed, the issue of scale is
addressed. The data collected in HPDC contains a wide range in scale. Also, different equipment
manufacturers may capture data in only English or metric units. In round figures, intensification
pressure of 10,000 psi, melt temperature of 1300 ˚F (704 ˚C), cycle time of 150 seconds, biscuit
size of 2 inches, and an iron content of 0.60% are a few examples which show that the range of
scale is in orders of magnitude. If left in this format, the intensification pressure would register as
highly significant and outweigh any influence the iron content would show just the because the
numbers are larger. The standardization method employed in this study is the Z-transform [23]
(Equation 1), which brings all the variables into the same scale, resolves the issue of units, and
leads to meaningful distances when considering multiple columns of data.

 𝑍 , =
, µ

 Eq. 1

Where
 𝑍 , is the Z-transformed value of the parameter in one data cell
 𝑋 , is the original value of the parameter in the data cell

E-7

 𝜇 is the mean of the original values of the parameter in the data column
 𝜎 is the standard deviation of the original values of the parameter in the data column.

Dimension Reduction Methods
The data is now in the proper format to analyze via machine learning or deep learning methods. It
is possible that performing the analysis on the full dimensional dataset will not produce the best
results. One can start with as much potentially relevant data as possible, but too much meaningless
data adds noise to the model, such as redundant columns and those which are pure noise. To
counteract this, dimension reduction methods, such as feature selection and principal component
analysis (PCA) [24], [25], are conducted on the data. Both methods were implemented in this
work.

Feature selection, as the name implies, is the specific selection of which inputs to run through the
algorithm. The decisions are not made carelessly, rather, with the input and direction of a subject
matter expert. In the absence of this resource, the decision can be made based on the feature
importance [26] from the full dimensional model. The number of features ultimately selected is
based on trial and error and the preferred performance metric.

PCA is another dimension reduction technique. The goal of PCA is to determine linear
combinations of the input variables which capture the most variation in the dataset while
minimizing the error when the dataset is reconstructed from the principal components. In doing
so, a high-dimensional dataset can be condensed into a smaller number of principal components.
PCA is an excellent tool for visualizing a high-dimensional dataset in two or three dimensions.

Bias-Variance Trade-Off
The above pre-processing methods apply to both the machine learning and Neural Network
algorithms. When choosing which path to take, the two most important parameters that need to
be considered are size of the available data and bias-variance trade-off. This dataset of 1494 tensile
tests are exceedingly large when compared to typical mechanical property studies. However, in
the world of data science, this is not “big data”. The amount of data available is a limiting factor
in the complexity of the model.

E-8

Figure 3. Performance comparison of Neural Network models with traditional
machine learning models as training data size increases. On smaller datasets,
traditional algorithms outperform deep learning models however, as the amount of
data increases, deep learning models perform better.

Figure 3 shows a performance comparison of the models as data size increases. For smaller
datasets, one would pick traditional algorithms as compared to deep learning models. However, as
the quantity of data increases, deep learning models perform better because traditional algorithms
reach a saturation point and do not improve any further whereas deep learning models performance
keeps increasing with training data size [27].

Understanding the bias-variance trade-off is essential in deciding which algorithms to select for a
particular dataset and application. In Figure 4, the X-axis shows model complexity and the Y-axis
is predictive error. As model complexity increases, variance increases and bias decreases. An
increase in the variance causes the model to overfit to the training data and it fails to generalize on
new data. The left side of the plot shows a high bias but low variance region. This implies that the
model is too simple and, hence, it is highly biased. It fails to learn the complexity of the data. The
ideal point is where bias and variance intersect, as shown by the optimum model complexity in the
plot below [10].

E-9

Figure 4. Bias-variance trade-off [10], [11] shows how error changes as the
complexity of the model increases. The region on the right is that of high variance
and low bias whereas the region on the left is that of high bias and low variance.
These regions are where the model overfits or underfits the training data and
should be avoided. The optimal model complexity is where variance and bias are
minimized, and one should utilize algorithms in this region.

Figure 5. The phenomenon of underfitting and overfitting is seen in this figure [28].
We want a model that is optimal for the kind of data and application that we are
working on. For example, a good fit is illustrated in the center plot. The plots on
the right and left show underfitting and overfitting respectively and should be
avoided.

Figure 5 shows the phenomena of overfitting and underfitting. It can be seen in the leftmost plot
that the model follows the data very closely and, thus, overfits. This is the region of high variance
in the bias-variance trade-off where the model will fail to generalize on testing data because it
almost memorizes the training data. The middle figure shows the optimum model which
corresponds to the lowest point of bias and variance in the bias variance trade-off and gives a
robust fit to the data. The rightmost figure shows an example of high bias in the bias-variance
trade-off. Here, the model fails to learn enough complexity in the dataset and underfits [11], [28].

E-10

Training, Testing, and Cross-Validation
Recognizing overfitting and underfitting in 2D plots like those shown in Figure 5 is fine for
illustrative purposes, but machine learning and deep learning are often applied to high dimensional
datasets. In these problems, the fit of the model is evaluated by performance metrics comparison
between the training data and faithful testing dataset which captures the essence of the complete
dataset. To accomplish this, the dataset is split into two parts prior to analysis: a training set and
a testing set. In this study a 90/10 training to testing split was most often employed. This allows
the data scientist to train the model with a larger dataset and then test the model performance on a
representative subset not previously seen by the algorithm.

The train/test split can influence the model. To avoid being misled, cross-validation is conducted
to minimize the effect the split has on scoring the model performance metrics [29]–[31]. K-folds
is a common method of cross-validation. In K-folds, the user sets the number of folds and the
model is run as many times taking a different segment of the population as the testing data (Figure
6).

Figure 6. K-folds cross-validation where the number of folds is equal to five.

Mean absolute error (MAE) values are reported to score the algorithm (Equation 2). It is
common for some overfitting to the training data to exist in the model, so the error on the
training data tends to be less than the test data. The goal of a robust model is to minimize
the difference in error between the training data and testing data results.

 𝑀𝐴𝐸 = ∑ 𝑌 − 𝑌 Eq. 2

Where
 MAE is the mean absolute error
 𝑛 is the number of samples in the dataset
 𝑌 is the actual value of the output
 𝑌 is the predicted value of the output

III. Results and Discussion

First, a few comments are in order about machine learning and deep learning via neural network. It is
generally agreed that both are forms of artificial intelligence (AI) rather than something entirely unique
unto each other. Machine learning represents a family of methods which use statistical and probabilistic
models trained on historical data to make predictions about new observations. In machine learning, feature

E-11

engineering, such as weighing one input more heavily or taking a logarithm of an input, is performed
manually. Deep learning is similar, however, weight assignment to features is performed automatically by
the algorithm.

For machine learning algorithms, Random Forest is selected because it works well with high-
dimensional data, is robust to non-linear data, has low bias, and variance is reduced through
bagging [32]. XGBoost was chosen to evaluate a more recent adaptation of Random Forest which,
in addition to bagging, uses boosting to reduce bias by training the subsequent model on the errors
of its predecessor. Bagging reduces overfitting while boosting improves accuracy at the cost of
possible overfitting [33], [34]. SVM was chosen for its ability to determine non-linear decision
functions via the kernel trick. The kernel trick maps the input data into a higher dimensional
feature space where the data is linearly separable resulting in non-linear boundaries between the
input data [35], [36]. These methods are compared to a Neural Network which is effective for
handling nonlinearity, tolerant of noise, utilizes advanced learning methods, and generalizes well.
The following sections cite numerous sources for the reader to delve further into the specifics of
the methods chosen.

Results of Machine Learning Regression Methods
With the pre-processing complete, the machine learning algorithms can be run on the data. Since
the objective is to predict the value of the UTS in extracted tensile bars based on the HPDC process
parameters by which it was made, this is a regression problem [1]. Three algorithms were chosen:
Random Forest, SVM, and XGBoost. The detail on how these algorithms operate can be found in
these references [31], [37], [38]. For each of these methods, there are default parameters used
when none are defined by the user. Figure 7 shows the results in terms of the MAE in UTS
prediction for the default models. For comparison, an additional model was evaluated where the
UTS of the testing data is predicted by the mean UTS of the training data. The default setting for
the Random Forest and XGBoost show significant overfitting where the error on the testing data
exceeds that of the training data. The case of the default Random Forest illustrates well the danger
of misuse. If this model were to be implemented, the expectation would be low error in predictions.
However, the actual experience would show much higher error because the model is too specific
to the training data.

The process of adjusting the controlling parameters within the algorithm is called tuning [39]. The
chosen method of tuning selected for these models is Grid Search Cross-Validation (GSCV) [40].
In GSCV, multiple parameters can be tuned at once optimizing the model with respect to the target
metric rather than each parameter at a time. The goal of tuning is to minimize the difference
between the training and testing data results. Figure 8 shows the improvement realized from
tuning. In the Random Forest and the XGBoost the difference between the training and testing
error decreases. The model becomes more general. The tuned SVM is not far from where the
default parameters started.

E-12

Figure 7. MAE in UTS prediction results for the high dimension dataset using
default settings. Both the Random Forest and the XGBoost are showing significant
overfitting to the training data.

Figure 8. MAE in UTS prediction results for the high dimensional dataset using
tuned parameters. Compared to the default algorithm results in Figure 7, the
amount of overfit in the Random Forest and XGBoost is lessened. The SVM
improvement is imperceptible in the graph.

The results presented thus far represent the algorithm performances on the full dataset containing
all process input columns. Dimension reduction techniques were applied to the data to reduce
noise of marginal features and further reduce the gap between the testing and training error. The
Random Forest and XGBoost algorithms have an output called feature importance that shows
which parameters have the most influence in training the model. The top 15 features from the
tuned high dimensional Random Forest are shown in Figure 9. These features were selected as

E-13

the process inputs for the Random Forest and SVM. Beyond the top 15, the importance of
additional features continues the gradual tailing off seen in Figure 9. The prediction results are
shown in Figure 10. The Random Forest further reduced it overfitting.

Figure 9. Feature importance generated from the tuned Random Forest regressor.
The top 15 features are shown.

Figure 10. Machine learning results on the feature selected dataset using the top
15 important features from the high-dimensional tuned model. Overfitting in the
Random Forest is further reduced from the tuned model.

Machine 503 is connected to the heat treat schedule including the natural age step which resulted
in a statistically significant higher UTS than the standard heat treatment and the Random Forest
was able to identify that as being important. The die close tank level variable refers to the fluid
level in the hydraulic tank. It is showing up as important because of a highly positive correlation

E-14

to Machine 503 of 0.82. Beyond these two, the important features uncovered by the high
dimensional tuned Random Forest look much like the parameters one finds in the literature when
investigating the impact of process settings on mechanical properties or defects [41]–[45]. Based
on this observation, a new feature selected dataset, “LitRev Features”, was evaluated. The selected
features are: Machine 503, average slow shot velocity, average fast shot velocity, average
intermediate shot velocity, cycle time, intensification pressure, intensification pressure rise time,
melt temperature, robot spray time (a proxy for amount of time the die was open between shots),
and vacuum pressure during the shot. The predictive performance is displayed in Figure 11. The
MAE for the training and testing data for all machine learning models dropped slightly with the
biggest gain being in the XGBoost test error.

Figure 11. Machine learning results on the feature selected dataset using
important features from the literature. Small reductions in the training and testing
error were found in all three algorithms with the most improvement in the XGBoost
test data.

Additionally, a different dimension reduction method, PCA, was applied to the high dimensional
dataset. The number of principal components to explain 85% of the variation in the original dataset
is 27. Each principal component is a linear combination of the original 77 dimensions, thus none
of the inputs are completely dropped from the analysis as they are in feature selection. The PCA
transformed data can be run through the same machine learning algorithms as the original data and
the same tuning methods are employed. In Figure 12, the PCA Random Forest demonstrates the
best performance overall in terms of UTS MAE and the degree of overfit.

E-15

Figure 12. Machine learning results on the PCA transformed dataset using top
27 principal components which explain 85% of the variation in the high-
dimensional dataset. The Random Forest applied to the PCA dataset is the best
machine learning performance in this study.

Results of Neural Network Regression Method
Deep learning based Neural Networks have proved useful for advanced analytics of big
manufacturing datasets [9]. In this section, we will show results of a Neural Network model for
predicting the UTS and also show a comparison of the Neural Network with traditional state-of-
the-art machine learning models namely, the Random Forest and XGBoost for the same dataset as
shown above.

The plots below (Figures 13-16) demonstrate the significance of hyperparameter tuning in case of
the Neural Network models [46]. The metric used for comparison is the same as that used in the
machine learning section, i.e., the MAE (Equation 2). Selecting the right combination of
parameters is critical for optimizing the target metric and reducing the overfitting phenomenon.
We choose the parameters of the network in a way such that the model generalizes and does well
on data that it has not seen during training.

E-16

Figure 13. Comparison of MAE across multiple learning rates of the Neural
Network model. It can be seen that intermediate learning rates give the lowest
errors as compared to lower or higher values.

Figure 13 shows a comparison of the MAE values using different learning rates for the ADAM
optimization technique [47]. The learning rate parameter should be chosen in a way such that it is
low enough that the model is able to reach the minimum error solution, while at the same time, it
should be high enough such that the model does not take excessive time to converge [48].

Figure 14. Comparison of the MAE values with different batch sizes of the Neural
Network. Smaller batch sizes show better performance as compared to higher sizes
with this dataset.

Figure 14 shows a comparison of the MAE values with respect to batch size. The results show
that smaller batch sizes give lower error as compared to higher batch sizes. The difference in the
MAE is more significant as the batch size is increased above 128. We train the model using

E-17

batches instead of training the entire data at once in order to make it computationally efficient and
have other desirable properties such as avoiding local minima [46], [48]. We use a batch size of
one for this analysis since it yields the lowest MAE as well as minimal difference between the
training and testing errors.

Figure 15 shows a comparison of the MAE using different number of hidden layers [49]. It can
be seen that using one hidden layer not only gives the best performance in terms of the MAE value
but also gives the lowest difference between the training and the testing errors as compared to
using higher number of hidden layers.

Hidden layers of a Neural Network are comprised of nodes, which are the basic units of a Neural
Network. The hidden layer is where the learning of the data takes place which includes learning
important features of the dataset; also, obtaining a compressed representation of the data. Contrast
this with machine learning where this step is accomplished by human input during pre-processing.
The complexity of the model increases as the number of hidden layers is increased.

Figure 15. A comparison of MAE as the number of hidden layers changes. The
MAE value is lowest for one hidden layer as compared to higher number of
hidden layers. Using one hidden layer optimizes the performance in terms of the
metric itself and reduces overfitting.

E-18

Figure 16. Evaluation of MAE values in terms of number of nodes in the hidden
layer. A higher number of nodes in the hidden layer performs better than fewer
nodes.

Figure 16 shows a comparison in terms of MAE with number of nodes in the hidden layer. A
larger number of nodes gives lower errors as compared to lesser nodes in the hidden layer for this
dataset. The difference between the training and testing errors is also low which shows that the
model would generalize better on unseen data.

Figure 17. Comparison of the optimized Neural Network model with optimized
state-of-the-art traditional algorithms namely, Random Forest and XGBoost [27].
The Neural Network model gives the best performance in terms of the training as
well as testing errors as compared to the traditional algorithms.

Figure 17 shows a comparison of the optimized Neural Network model using the best combination
of parameters with traditional machine learning algorithms namely, Random Forest and XGBoost.

E-19

The Neural Network gives the best performance in terms of MAE as compared to the other two
models on this dataset.

Figures 12 and 17 illustrate that by using either traditional machine learning methods or a Neural
Network we can reduce the error in predicting UTS below that of predicting the mean value. Our
results demonstrate the importance of understanding the relationship between algorithm
complexity and the predictive error on a particular dataset. In the context of Figure 3, the tensile
dataset fits in the area where the traditional machine learning and shallow Neural Networks cross.
It is crucial to appreciate the bias-variance trade-off for this relationship, so that we select the
appropriate algorithm, with optimal parameters, to improve the predictive performance.

The dataset available for this research is typical and highly accessible for modern HPDC
operations. Modern HPDC machines collect much of the data and make it available. In production
data, the performance of the machine follows closely along with the process settings with some
amount of natural variation. The objective is a repeatable cast result day in day out, 24/7. In
contrast, experimental casting parameter studies explore a much wider range for the parameters
under investigation to more clearly see a response in the cast component. The objective is to see
a difference. In the present work, we saw improved prediction of UTS working with production
data, but not a drastic improvement. Therefore, we must rethink about what other parameters can
be included to increase our predictive power. Especially, consider parameters moving within a
wide band because accurate control is difficult or costly. Perhaps there are parameters our industry
has never considered measuring or controlling. It has been stated that one cannot control anything
unless one has measures; the question is which measures? The question begs itself: are we
measuring the correct parameters? One of the indirect key results of AI is the realization that
perhaps what we have been measuring in the past is not appropriate, and that there are other key
parameters that we should be capturing.

The temperature of the die cavity where the metal is solidified into its final shape is perhaps the
most influential input parameter that is to a large extent passively controlled. Most die casters rely
on a condition of steady state, which is a somewhat nebulous combination of cycle time, dwell
time, die spray application parameters, cooling water temperature and flow rate, the melt
temperature and amount of metal delivered during each shot, alloy chemistry, and the ambient
environment in the factory. If all of these are constant, then the die temperature will take care of
itself at steady state. Readers can decide for themselves if this is realistic. Miller demonstrated in
a 1-D model to challenge common notions of how many cycles it takes to attain a quasi-steady
state [50]. Other studies, especially modeling based investigations, have shown that die
temperature is a high impact parameter on castings and the dies themselves [51]–[54]. For these
reasons, a robust and reliable method of collecting the die temperature is the next source of data
to drive predictive modeling forward. Knowing how and what to measure will lead the industry
toward active control of die cavity temperature [55], [56].

IV. Conclusions

 Machine learning and Neural Network regression models utilizing HPDC process data as
inputs can improve the predictability of UTS above that of predicting the mean from prior
tests. It is reasoned that the predictive power can be improved by increasing the number
of rows and adding new input data columns.

E-20

 Principal component analysis is an effective dimension reduction technique to reduce
complexity and overfitting of a dataset. A Random Forest of a PCA transformed dataset
was the top performing machine learning method in this study.

 To optimize the models, parameter tuning must be performed with the objective of
minimizing the error in the model predictions as well as the difference between training
data and testing data errors.

 It can be seen that given the right combination of parameters for a Neural Network such
as learning rate, batch size and number of hidden layers, the predictive performance of a
Neural Network can be optimized not only in terms of the error metric but also in terms
of obtaining a robust model fit for a given dataset without overfitting or underfitting.

 Selecting the correct models to use for the data being considered requires an
understanding of the bias-variance trade-off such that a balance is struck between
algorithm complexity and size of the dataset in question.

V. References

[1] D. Dietrich, B. Heller, and B. Yang, Data Science and Big Data Analytics: Discovering, Analyzing,

Visualizing and Presenting Data, 1st ed. Wiley, 2015.
[2] Capgemini Consulting Group, “Industry_4.0_-The_Capgemini_Consulting_V.pdf.” Capgemini,

2014, [Online]. Available: https://www.capgemini.com/consulting/wp-
content/uploads/sites/30/2017/07/capgemini-consulting-industrie-4.0_0_0.pdf.

[3] J. Folk, “U.S. Aluminum Casting Industry - 2019,” Cast. Eng., no. July 2019, pp. 16–19, Jun. 2019.
[4] A. Spada, “Revitalization of North American Metalcasting,” 2012, Accessed: May 24, 2020.

[Online]. Available: https://www.diecasting.org/docs/statistics/North_America.pdf.
[5] J. K. Rai, A. M. Lajimi, and P. Xirouchakis, “An intelligent system for predicting HPDC process

variables in interactive environment,” J. Mater. Process. Technol., vol. 203, no. 1–3, pp. 72–79, Jul.
2008, doi: 10.1016/j.jmatprotec.2007.10.011.

[6] P. K. D. V. Yarlagadda and E. Cheng Wei Chiang, “A neural network system for the prediction of
process parameters in pressure die casting,” J. Mater. Process. Technol., vol. 89–90, pp. 583–590,
May 1999, doi: 10.1016/S0924-0136(99)00071-0.

[7] R. Soundararajan, A. Ramesh, S. Sivasankaran, and A. Sathishkumar, “Modeling and Analysis of
Mechanical Properties of Aluminium Alloy (A413) Processed through Squeeze Casting Route
Using Artificial Neural Network Model and Statistical Technique,” Adv. Mater. Sci. Eng., vol.
2015, pp. 1–16, 2015, doi: 10.1155/2015/714762.

[8] J. Friedman, R. Tibshirani, and T. Hastie, The Elements of Statistical Learning: Data Mining,
Inference, and Prediction. Springer, 2001.

[9] J. Wang, Y. Ma, L. Zhang, R. X. Gao, and D. Wu, “Deep learning for smart manufacturing:
Methods and applications,” J. Manuf. Syst., vol. 48, pp. 144–156, Jul. 2018, doi:
10.1016/j.jmsy.2018.01.003.

[10] E. Briscoe and J. Feldman, “Conceptual complexity and the bias/variance tradeoff,” Cognition, vol.
118, no. 1, pp. 2–16, Jan. 2011, doi: 10.1016/j.cognition.2010.10.004.

[11] “Bias-Variance Tradeoff in Machine Learning,” AI Pool, Oct. 20, 2019. https://ai-pool.com/a/s/bias-
variance-tradeoff-in-machine-learning (accessed Jun. 02, 2020).

[12] The Aluminum Association, Designations and Chemical Composition Limits for Aluminum Alloys
in the Form of Castings and Ingot, October 2018. Arlington, VA: The Aluminum Association,
2018.

[13] D. Twarog, D. Apelian, and A. Luo, High Integrity Casting of Lightweight Components, Publication
#307. NADCA, 2016.

E-21

[14] J. G. Kaufman and E. L. Rooy, Aluminum Alloy Castings Properties, Processes, and Applications,
1st ed. ASM, 2004.

[15] ASTM International, “ASTM B 557-15, Test Methods for Tension Testing Wrought and Cast
Aluminum- and Magnesium-Alloy Products.” ASTM International, doi: 10.1520/B0557-15.

[16] W. D. Callister, Materials Science and Engineering An Introduction, 3rd ed. Wiley, 1994.
[17] M. Drouzy, S. Jacob, and M. Richard, “Interpretation of Tensile Results by Means of Quality Index

and Probable Yield Strength,” AFS Int. Cast Met. J., no. June 1980, pp. 43–50, 1980.
[18] L. M. Surhone, M. T. Timpleton, and S. F. Marseken, Welch’s T Test. VDM Publishing, 2010.
[19] M. K. Surappa, E. Blank, and J. C. Jaquet, “EFFECT OF MACRO-POROSITY ON THE

STRENGTH AND DUCTILITY OF CAST,” Scr. Metall., vol. 20, no. 9, pp. 1281–1286, 1986, doi:
10.1016/0036-9748(86)90049-9.

[20] C. H. Caceres and B. I. Selling, “Casting defects and the tensile properties of an Al-Si-Mg alloy,”
Mater. Sci. Eng. A, vol. 220, pp. 109–116, 1996, doi: 10.1016/S0921-5093(96)10433-0.

[21] D. L. Twarog, “State of the Die Casting Industry,” Cast. Eng., no. January, pp. 16–25, 2011.
[22] K. Potdar, T. S., and C. D., “A Comparative Study of Categorical Variable Encoding Techniques for

Neural Network Classifiers,” Int. J. Comput. Appl., vol. 175, no. 4, pp. 7–9, Oct. 2017, doi:
10.5120/ijca2017915495.

[23] “Z-Transform,” Wolfram MathWorld. https://mathworld.wolfram.com/Z-Transform.html (accessed
May 26, 2020).

[24] S. Wold, K. Esbensen, and P. Geladi, “Principal Component Analysis,” Chemom. Intell. Lab. Syst.,
vol. 2, pp. 37–52, 1987, doi: 10.1016/0169-7439(87)80084-9.

[25] H. Abdi and L. J. Williams, “Principal component analysis: Principal component analysis,” Wiley
Interdiscip. Rev. Comput. Stat., vol. 2, no. 4, pp. 433–459, Jul. 2010, doi: 10.1002/wics.101.

[26] A. Altmann, L. Toloşi, O. Sander, and T. Lengauer, “Permutation importance: a corrected feature
importance measure,” Bioinformatics, vol. 26, no. 10, pp. 1340–1347, Apr. 2010, doi:
10.1093/bioinformatics/btq134.

[27] A. Oppermann, “Artificial Intelligence vs. Machine Learning vs. Deep Learning,” Towards Data
Science, Oct. 29, 2019. https://towardsdatascience.com/artificial-intelligence-vs-machine-learning-
vs-deep-learning2210ba8cc4ac (accessed Jun. 08, 2020).

[28] A. Bhande, “What is underfitting and overfitting in machine learning and how to deal with it,”
medium.com, Mar. 11, 2018. https://medium.com/greyatom/what-is-underfitting-and-overfitting-in-
machine-learning-and-howto-deal-with-it-6803a989c76 (accessed Jun. 08, 2020).

[29] T. Fushiki, “Estimation of prediction error by using K-fold cross-validation,” Stat. Comput., vol. 21,
no. 2, pp. 137–146, Apr. 2011, doi: 10.1007/s11222-009-9153-8.

[30] M. Sanjay, “Why and how to Cross Validate a Model?,” Towards Data Science, Nov. 12, 2018.
towardsdatascience.com/why-and-how-to-cross-validate-a-model-d6424b45261f (accessed Jun. 04,
2020).

[31] A. Geron, Hands-On Machine Learning with Scikit-Learn and TensorFlow, 1st ed. O’Reilly, 2017.
[32] L. Breiman, “Random Forests,” Mach. Learn., vol. 45, no. October 2001, pp. 5–32, 2001, doi:

10.1023/A:1010933404324.
[33] T. G. Dietterich, “An Experimental Comparison of Three Methods for Constructing Ensembles of

Decision Trees: Bagging, Boosting, and Randomization,” Mach. Learn., vol. 40, no. August 2000,
pp. 139–157, 2000, doi: https://doi.org/10.1023/A:1007607513941.

[34] A. Vezhnevets and O. Barinova, “Avoiding Boosting Overfitting by Removing Confusing
Samples,” in Machine Learning: ECML 2007, Berlin, Heidelberg, 2007, pp. 430–441. ISBN: 978-
3-540-74958-5

[35] A. Apsemidis, S. Psarakis, and J. M. Moguerza, “A review of machine learning kernel methods in
statistical process monitoring,” Comput. Ind. Eng., vol. 142, Apr. 2020, doi:
10.1016/j.cie.2020.106376.

E-22

[36] M. Hofmann, “Support Vector Machines — Kernels and the Kernel Trick.” 2006, Accessed: Jul. 05,
2020. [Online]. Available: https://cogsys.uni-
bamberg.de/teaching/ss06/hs_svm/slides/SVM_Seminarbericht_Hofmann.pdf.

[37] T. K. Ho, “Random decision forests,” in Proceedings of 3rd International Conference on Document
Analysis and Recognition, Montreal, Quebec, Canada, 1995, vol. 1, pp. 278–282, doi:
10.1109/ICDAR.1995.598994.

[38] T. Chen and C. Guestrin, “XGBoost: A Scalable Tree Boosting System,” Proc. 22nd ACM SIGKDD
Int. Conf. Knowl. Discov. Data Min., pp. 785–794, Aug. 2016, doi: 10.1145/2939672.2939785.

[39] R. G. Mantovani, T. Horváth, R. Cerri, J. Vanschoren, and A. C. P. L. F. d. Carvalho, “Hyper-
Parameter Tuning of a Decision Tree Induction Algorithm,” in 2016 5th Brazilian Conference on
Intelligent Systems (BRACIS), Oct. 2016, pp. 37–42, doi: 10.1109/BRACIS.2016.018.

[40] D. Krstajic, L. J. Buturovic, D. E. Leahy, and S. Thomas, “Cross-validation pitfalls when selecting
and assessing regression and classification models,” J. Cheminformatics, vol. 6, no. 1, p. 10, Dec.
2014, doi: 10.1186/1758-2946-6-10.

[41] L. Garber and A. B. Draper, “The Effects of Process Variables on the Internal Quality of Aluminum
Die Castings,” NADCA Trans. T79-022, 1979, [Online]. Available:
http://www.diecasting.org/archive/transactions/T79-022.

[42] B. M. Asquith, “The Use of Process Monitoring to Minimize Scrap in the Die Casting Process,”
NADCA Trans. T97-063, 1997, Accessed: May 25, 2020. [Online]. Available:
http://www.diecasting.org/archive/transactions/T97-063.pdf.

[43] S. L. dos Santos, R. A. Antunes, and S. F. Santos, “Influence of injection temperature and pressure
on the microstructure, mechanical and corrosion properties of a AlSiCu alloy processed by HPDC,”
Mater. Des., vol. 88, pp. 1071–1081, Dec. 2015, doi: 10.1016/j.matdes.2015.09.095.

[44] H. Cao, M. Hao, C. Shen, and P. Liang, “The influence of different vacuum degree on the porosity
and mechanical properties of aluminum die casting,” Vacuum, vol. 146, pp. 278–281, Dec. 2017,
doi: 10.1016/j.vacuum.2017.09.048.

[45] I. Outmani, L. Fouilland-Paille, J. Isselin, and M. El Mansori, “Effect of Si, Cu and processing
parameters on Al-Si-Cu HPDC castings,” J. Mater. Process. Technol., vol. 249, pp. 559–569, Nov.
2017, doi: 10.1016/j.jmatprotec.2017.06.043.

[46] L. N. Smith, “A disciplined approach to neural network hyper-parameters: Part 1 -- learning rate,
batch size, momentum, and weight decay,” ArXiv180309820 Cs Stat, Apr. 2018, Accessed: Jun. 08,
2020. [Online]. Available: http://arxiv.org/abs/1803.09820.

[47] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,” ArXiv14126980 Cs, Jan.
2017, Accessed: Jun. 23, 2020. [Online]. Available: http://arxiv.org/abs/1412.6980.

[48] Wen Jin, Zhao Jia Li, Luo Si Wei, and Han Zhen, “The improvements of BP neural network
learning algorithm,” in WCC 2000 - ICSP 2000. 2000 5th International Conference on Signal
Processing Proceedings. 16th World Computer Congress 2000, Beijing, China, 2000, vol. 3, pp.
1647–1649, doi: 10.1109/ICOSP.2000.893417.

[49] J. de Villiers and E. Barnard, “Backpropagation neural nets with one and two hidden layers,” IEEE
Trans. Neural Netw., vol. 4, no. 1, pp. 136–141, Jan. 1993, doi: 10.1109/72.182704.

[50] R. A. Miller, “Multi-time Scale Systems and Quasi Equilibrium,” NADCA Trans. T16-082, 2016,
[Online]. Available: https://www.diecasting.org/archive/transactions/T16-082.pdf.

[51] S. Shahane, N. Aluru, P. Ferreira, S. G. Kapoor, and S. P. Vanka, “Optimization of solidification in
die casting using numerical simulations and machine learning,” J. Manuf. Process., vol. 51, pp.
130–141, Mar. 2020, doi: 10.1016/j.jmapro.2020.01.016.

[52] W. Sequeira, S. Sikorski, and M. Brown, “Application of Simulation As A Front-End Design Tool
In Die Cast Product Development And For The Optimization Of The Die Casting Process,” NADCA
Trans. T02-012, 2002, [Online]. Available: https://www.diecasting.org/archive/transactions/T02-
012.pdf.

E-23

[53] D. Blondheim, “Unsupervised Machine Learning and Statistical Anomaly Detection Applied to
Thermal Images,” NADCA Trans. T18-071, 2018, [Online]. Available:
http://www.diecasting.org/transactions/T18-071.

[54] B. Kosec, G. Kosec, and M. Soković, “Case of temperature field and failure analysis of die-casting
die,” J. Achiev. Mater. Manuf. Eng., vol. 20, pp. 471–474, 2007, doi: 10.1.1.526.5501.

[55] W. Bishenden and R. Bhola, “Die Temperature Control,” NADCA Trans. T99-051, 1999, [Online].
Available: https://www.diecasting.org/archive/transactions/T99-051.pdf.

[56] D. Schwam, “Additive Manufacturing of Cores with Conformal Cooling Lines,” NADCA Trans.
T16-041, 2016, [Online]. Available: http://www.diecasting.org/transactions/T16-041.

VI. Acknowledgements

The authors of this paper would like to thank the membership of the ACRC consortium at WPI
and UCI. We extend our thanks to FCA, especially Corey Vian and the Kokomo Casting Plant,
for providing the data for this project. FCA is a long-term member of the ACRC consortium.

On behalf of all authors, the corresponding author states that there is no conflict of interest.

E-24

APPENDIX A: Processing Data

Table A-I. HPDC process data used in the analyses.

Variable Name Description
MachineID Die casting machine on which the part was cast. One hot encoding

expands this one column into 12 columns, one per machine.
SerialNumb Unique identifier given to the casting when it is made. Used to

merge process and tensile testing datasets.
AvgFastHeadPressure Average pressure reading on the head side of the shot cylinder

during fast shot.
AvgFastRodPressure Average pressure reading on the rod side of the shot cylinder during

fast shot.
AvgIntermediateHeadPressure Average pressure reading on the head side of the shot cylinder

during intermediate shot.
AvgIntermediateRodPressure Average pressure reading on the rod side of the shot cylinder during

intermediate shot.
AvgSlowHeadPressure Average pressure reading on the head side of the shot cylinder

during slow shot.
AvgSlowRodPressure Average pressure reading on the rod side of the shot cylinder during

slow shot.
BiscuitLength The thickness of the biscuit calculated based on the end of stroke

position of the shot rod.
CavityFillTime The time taken to fill the part geometry cavity in the die.

Calculated from CavityFillTimeWinStartPos until the end of the
shot velocity is detected.

DieCloseTankLevel Level of the hydraulic fluid reservoir
DieCloseTankTemp Temperature of the hydraulic fluid reservoir.
EndofShotPosition Position where fast shot velocity decelerates to the end of shot

velocity.
FastShotVelAve Calculated average shot velocity at which the plunger moved

forward during fast shot.
FinalIntensifierPressure Maximum pressure applied to the biscuit during intensification

phase.
IntensificationStroke Amount of plunger forward movement after intensification is

initiated.
IntensPressRiseTime Time measured to reach the programmed intensification pressure.
IntensVelRiseTime Calculated average velocity at which the plunger moved forward

during intensification rise window.
IntermediateVelAve Calculated average shot velocity at which the plunger moved

forward during intermediate shot.
MetalTemp The temperature of the molten alloy in the holding furnace at the

die cast cell.
SlowShotVelAve Calculated average shot velocity at which the plunger moved

forward during slow shot.
TieBarTon1 Tons of force measured by the load cell on tie bar #1 when the die

is closed and locked.
TieBarTon2 Tons of force measured by the load cell on tie bar #2.
TieBarTon3 Tons of force measured by the load cell on tie bar #3.

E-25

TieBarTon4 Tons of force measured by the load cell on tie bar #4.
TieBarTonTotal Sum of the tonnage of all four tie bars.
TipLubeTimePre Programmed time for which tip lube is applied to the plunger tip.
CycleTime Elapsed time for the entire process to produce one piece.
Dwell Time Elapsed time between end of shot and die open.
Die Open Time Elapsed time to open the die.
Extract Robot Time Elapsed time for the extract robot to complete its full cycle.
Spray Robot Time Elapsed time for the spray robot to complete its full cycle.
Liner Load Time Elapsed time to load cast in liners into the die.
Core Insert Time Elapsed time to insert core feature into the die.
Die Close Time Elapsed time to close the die.
Ladle Pour Time Elapsed time for the ladle to pour molten alloy into the cold

chamber.
Shot Delay Time Elapsed time between pour complete and shot forward.
VacuumPressDuringShot Measured vacuum pressure.
VacuumPurgeResult Measured pressure when clearing the vacuum chill block of debris.
deltatime Time elapsed between cycle start to the next cycle start.
Shots Since Last Warm Up Number of cycles since the last warm-up shot.
Cavity The identification number of the die cavity. One hot encoding

expands this one column into 20 columns, one per cavity.
Model The identification of the block casting model. One hot encoding

expands this one column into 4 columns, one per model.

