
eid Ransom 	 Date 

e 	 7—  
KAX - oaw 

FRONTIERS WEB PROGRAMMING 

An Interactive Qualifying Project Report 

Submitted to the Faculty 

Of the 

WORCESTER POLYTECHNIC INSTITUTE 

in partial fulfilment of the requirements for the 

Degree of Bachelor of Science 

by 

Ravi Patel 
	

Date 

Approved: 

Professor Karen A. Lemone, Advisor 

1 



The Computer Science Program in Frontiers is an on-campus research and learning 

experience that teaches students the fundamentals of web programming and an 

introduction to object oriented programming. The goal of our project was to consider 

different learning styles when creating the course program. We gave the students a pre-

test and a post-test to measure how much they learned during the program in the areas of 

HTML, JavaScript, Perl/CGI, and Java with applets. 

2 



1 Introduction 	 5 
2 Background Research 	 7 

2.1 Educational Considerations 	  7 
2.1.1 Structure 	  7 
2.1.2 Motivation 	  8 
2.1.3 Active Engagement 	 9 
2.1.4 Collaboration & Interdependence 	 10 
2.1.5 Content 	  11 
2.1.6 Assessment 	 12 

2.2 Frontiers 	  13 
2.3 Internet Programming 	 14 

2.3.1 HTML 	 14 
2.3.2 JavaScript 	  15 
2.3.3 Perl/CGI 	  17 

3 Methodology 	  19 
3.1 Structure 	  19 
3.2 Motivation 	 20 
3.3 Active Engagement 	 20 
3.4 Collaboration and Interdependence 	 21 
3.5 Content 	 21 
3.6 Assessment 	 21 

4 Results and Analysis 	 23 
4.1 Week One 	 23 

4.1.1 General Lab Organization 	 24 
4.1.2 Lab One: Creating Web Pages 	 25 
4.1.3 Lab Two: JavaScript 	 26 
4.1.4 Lab Three: Perl/CGI 	 28 
4.1.5 Lab Four: Java Applets 	 29 

4.2 Week Two 	 30 
4.3 Pre-Test 	 31 
4.4 Quizzes 	 32 

4.3.1 Quiz One  —  HTML 	 32 
4.3.2 Quiz Two — JavaScript 	 32 
4.3.3 Quiz Three — Perl 	 32 
4.3.4 Quiz Four — Java 	 33 

4.5 Post-Test 	 33 
4.6 Individual Student Progress 	 35 

4.6.1 Stock Ticker Project 	 36 
4.6.1.1 Student 1.1 	 36 
4.6.1.2 Student 1.2 	 36 
4.6.1.3 Student 1.3 	 37 

4.6.2 Web Browser Project 	 37 
4.6.2.1 Student 2.1 	 37 
4.6.2.2 Student 2.2 	 38 

4.6.3 E-Commerce Site 	 3 8 
4.6.3.1 Student 3.1 	  3 8 

3 



	

4.6.3.2 Student 3.2 	 3 9 

	

4.6.3.3 Student 3.3 	 3 9 
4.6.4 Cryptography Project — Cipher text Decryption 	 39 

	

4.6.4.1 Student 4.1 	  3 9 

	

4.6.4.2 Student 4.2 	 40 

	

4.6.4.3 Student 4.3 	 40 

	

4.6.4.4 Student 4.4 	 41 

	

4.6.5 Meet the Sticks 	 41 

	

4.6.5.1 Student 5.1 	 41 

	

4.6.5.2 Student 5.2 	 41 

	

4.6.5.3 Student 5.3 	 42 

	

4.6.6 Create a Fractal 	 Interface 	 42 

	

4.6.6.1 Student 6.1 	 42 

	

4.6.6.2 Student 6.2 	 42 

	

4.6.6.3 Student 6.3 	 43 
5 Conclusion 	 44 

5.1 Summary 	 44 
5.2 Future Work 	 45 

References 	 47 

	

Appendix A - Background 	 Material 	 50 
Appendix B - Activities 	  136 
Appendix C - Student Evaluations 	  147 
Appendix D - Frontiers Qualifying Projects 	  155 

4 



1 Introduction 
The WPI Frontiers program is a two-week academic program that is designed to 

enlighten high school juniors and seniors to the WTI college experience. The program 

illustrates the nature of college work characteristically completed in the field they are 

interested in studying. We developed a curriculum for the Computer Science section of 

the Frontiers program. The two-week program was taught by both WPI faculty and WPI 

college students and was separated into two different elements, Week One and Week 

Two. During the first week, the goal intended for students was to work autonomously 

and learn web programming and an object oriented approach to several types of computer 

language. During the second week of the program, the students were placed into groups 

to complete a project collectively. 

The objective of this Interdisciplinary Qualifying Project (IQP) project was to 

create a program, which facilitates independent study in the subject of Computer Science. 

After much contemplation, we decided to utilize an educational method where each 

student learns the material given to them on an individual basis, working at their own 

pace, and utilizing the resources provided: the instructors and the online tutorial. A large 

advantage from this method was that the student can begin in whatever computer 

language he or she is most comfortable. 

To achieve this goal, we split all of the information into four labs: HTML, 

JavaScript, Perl/CGI, and Java Applets. Each lab was then split into three sections, the 

beginner, "the more", and the advance section. "The more" section was utilized as an 

intermediate section for students who had some computer language experience. After the 

lab reading was completed, each individual student was required to finish the activity 

assigned for that section. It was important for each student to accomplish three sections 

5 



total. After the student had finished all three sections in each lab, he or she was required 

to pass the quiz at the conclusion of the lab work. This segment of the program 

contributed to the first week of the class. 

During the second week of the program, students worked together in groups to 

complete a Frontiers Qualifying Project (FQP). The goal of this assignment was to 

demonstrate to students how the "WPI Plan" worked. Students were split into groups and 

chose projects pertaining to their computer science interests. A prearranged block of 

time was allotted, equal to one week in order to complete this project; working in groups 

of two to four members. Upon completion, each group gave a detailed presentation to the 

class explaining the goal of their project and what they had accomplished. 

The conventional method of teaching is by lecture where each student learns the 

course material at the same pace. Due to the fact that each student in the program had a 

different background in computer science, the goal of our project was to use a different 

method of teaching; where by each student could begin where they felt comfortable and 

work at their own pace. We did this providing each student with a goal, a time 

allowance, initial instruction, and individual help. The students also had plenty of time 

together in the computer lab where they could easily communicate with their fellow 

students for additional assistance. Each student thrived with this educational technique, 

and succeeded not only in the first week of individual exertion but also in the second 

week of group endeavors. 

6 



2 Background Research 

2.1 Educational Considerations 
The focus of this project is the educational considerations for online teaching. To 

do this we needed to "orchestrate the whole learning environment" (Lander 1997) rather 

than merely arranging computer activities. "International conferences, journals, working 

groups, even discussions in the public news make us believe that traditional education is 

about to be replaced by computer-supported teaching and learning." (Ausserhofer 1999) 

When designing an educational program, emphasis needs to be placed on the use of 

technology to develop the learning environment and to produce a better understanding of 

the material, rather than following a program of instruction. 

2.1.1 Structure 
It is important to have a well worked out structure of activities taking place in the 

classroom. According to Lander, having a structure of classroom activities is equally 

crucial when teaching online. There are several different types of structures that one can 

follow. Traditionally, teaching has been structured with reference to curriculum content. 

"However, where students have some freedom to determine content, structure can be 

achieved by establishing a learning cycle that orchestrates and relates the various 

activities being used to reach the goals of course or subject." (Lander 1997) In online 

teaching, all of the course material is provided on the Internet. This is one way to give 

students the freedom to determine content and to work at their own pace. 

There are many different kinds of structural considerations that we needed to 

consider within an educational environment. One of the main theories concerns the 

structure being rehearsed by the online teacher prior to utilization. A curriculum has to 

7 



be more then just a schedule of events; "...it needs to encompass the social interactions 

between participants (including their roles and goal interdependence), motivation and 

opportunities for reflection and evaluation." (Lander 1997) Lander returns to the notion 

that it is crucial for the entire learning environment to be structured within specific 

confines of the material. 

2.1.2 Motivation 
The connection between the course activities and students long term goals of 

obtaining credentials may be plenty to ensure motivation, but this is hardly ever the case, 

"because such distant extrinsic motivation is in competition with much more immediate 

forms related to the current concerns in their lives."(Lander 1997) There are three key 

elements to motivation, according to Lander: first, motivation depends on 

encouragement and excitement, second, Lander harps on the meaning of materials and 

activities that are present for the students, and last, the relevance of all the material being 

presented. 

As an illustration of motivational ideas that teachers may . have, they are 

sometimes required to give a "micro-world classroom" example of their ideas with the 

task of planning a number of lessons in a subject. The reason for this is that they might 

have to accommodate for numerous concealed conditions that are part of a class they are 

teaching. These concealed conditions include varied comprehension levels, curriculum 

frameworks, school discipline policy, and the expectations of other educators. 

Another factor that we take into consideration for motivation is the design of the 

software that we use to teach the students. In order for educational software to maintain 

its innovative edge, instructional designers need to access models that recognize the 

8 



variety of proposed guidelines for developing technology supported learning 

environments which support a constructivist approach." (Harper 1997) The design of the 

software and the educational process has to be appealing to the student. If the design is 

not appealing, the students will start losing interest in the learning process. 

2.1.3 Active Engagement 
Most people understand and comprehend better when they are actively 

participating rather than listening to a lecture. "People learn best by doing things, not by 

being passive recipients." (Lander 1997) Active engagement is one of the major parts of 

motivation; people need to be active in the classroom, even in a class that is taught 

online. "Web-based educational systems are asynchronous, that is, they do not require 

simultaneous presence of teacher and students."(Ausserhofer 1999) Online teaching 

offers many benefits such that the student is able to learn from mistakes when he or she is 

carrying out an action or solving a problem. This is not possible when the student is 

listening to the teacher give a lecture in class. 

By accomplishing tasks on their own, students gain procedural as well as 

declarative knowledge. One of the biggest advantages of teaching a class online is that 

by putting the student in control of their own tasks, they are also in control of what they 

want to do and learn from doing. "They must do the searching, make the decisions, 

interact with multimedia, contribute to conferences and solve problems." (Lander 1997) 

One of the most important issues needed in technology today is how to encourage 

students to actively engage in the process of carrying out activities, answering questions 

and solving problems. 

9 



2.1.4 Collaboration & Interdependence 
"Computer Supported Cooperative Learning (CSCL) is an approach to online 

teaching based on the important idea that students learn more when collaborating with 

others than they do studying in isolation."(Lander 1997) Education is a social process; 

hence it should be treated as that. Students should be allowed to actively help each other, 

and also share ideas and knowledge based on what they are doing. By doing this, they 

are gaining a greater abundance of knowledge, and in turn are passing on the knowledge 

that they already embody. "CSCL is one of the most promising innovations to improve 

teaching and learning with the help of modern information and communication 

technology." (Lehtinen 1999) Collaboration can be made very useful in online teaching. 

CSCL is the process in which the students are encouraged to work together on the 

learning process. This process is very different from the traditional "direct transfer" 

model, which implies that the instructor is the distributor of knowledge. It is believed 

that CSCL will take the place of traditional learning methods used today. We are able to 

visualize this gradual transformation, where everything becomes a networked, 

information society and everyone becomes dependent on an online connection. Schools 

are becoming more dependent on networks and the use of networks. "Educational 

institutions are being forced to find better pedagogical methods to cope with these new 

challenges." (Lehtinen 1999) CSCL has become a major part of many new learning 

styles for various schools. 

As reviewed by Lehtinen, there are two kinds of evidence supporting the 

educational value of CSCL. First, the quality of social interaction among students and 

also between students and teachers is improving because of the introduction of computer 

technology. By introducing computers into the classroom, students interact in the 

10 



learning process much better then the traditional way of teaching. Second, "...there is a 

reasonable amount of published experiments showing positive learning effects when 

CSCL systems have been applied to classroom learning." (Lehtinen 1999) Even though 

these studies have been rather limited in the duration of the experiment, the number of 

participants, and the share of curriculum covered there are some important qualities in the 

results which make them noteworthy. 

2.1.5 Content 
Online teaching changes the role of the educator in many ways. In the classroom, 

the teacher is at the center of everything that is going on. He or she has control over the 

activities and all the other interactions between students during class time. When online 

teaching, it is not possible for the teacher to be in contact with everyone at the same time. 

The students interact more with the computer by working on a problem alone. "The 

technology removes the teacher from the center to the periphery of the learning situation. 

In this position it is more appropriate for the teacher to adopt the role of designer of the 

learning environment, facilitator of the activities, mentor and coach to the 

students ."(Lan der) 

Online teaching demands a different treatment of subject matter. In a classroom 

setting, the curriculum can be "tightly" specified by the teacher. The teacher has control 

of what the student will learn, what information the student will search for and what 

information he or she will investigate. When online teaching, the teacher loses direct 

control over the specific subject matter. The teacher does not have control of what the 

student will search or investigate. 

11 



By working self-paced, the student must take on more responsibility. By giving 

students control over what they learn, we, as educators, have to ask ourselves; will the 

student learn enough information about the subject to make wise decisions for a solution? 

There are many ways to handle this issue. One solution is to raise issues and generate 

questions to be answered by the student during the online teaching process. This enables 

the student to follow the class more efficiently and learn the subject material that is 

presented. (Lander) 

2.1.6 Assessment 
Pre and Post tests are a very easy way to define what a student has learned already 

and what he or she has learned at the end. "The idea of pre and post testing of students is 

often accepted as a viable method to assess the extent to which an educational 

intervention has had an impact on student 'learning'. (Newton 1999) The pre-test is 

given to the student at some point when a course begins to find out what the student has 

already learned in their past education. The Post Test is given at the end of a course to 

judge the student and see what the student has learned during a class. Newton explains 

that, the instructor, to define clearly "why the evaluation is being performed, what is 

being evaluated, when the evaluation will be performed, and how it will be performed." 

These questions better assist us in answering and defining how to judge the student's 

progress and what kind of a test to give them. If we are able to understand why we are 

doing this assessment, we will be able to study the students with a greater amount of 

efficiency. 

12 



2.2 Frontiers 
Frontiers is a climm  tar rtrncyram nffchriarl at Win fnr hinh e•tinnl chlrip.nte p.riteriner 

their junior and senior year. The program runs for two weeks every July. During the 

program, students attend classes, which are specific to their prospective majors. Students 

are also given an account on WPI's computer system for accessing campus PCs and 

UNIX workstations. 

The computer science section of the program is designed to be self paced because 

the students, coming from many different high schools, have diverse backgrounds with 

respect to computer programming. In the past, students with little or no programming 

experience were advised to begin learning with the RoBOTL programming language. 

RoBOTL is designed to teach beginners the basic concepts of object-oriented 

programming. With some experience, students could learn JavaBOTL. JavaBOTL is 

regular java programming except libraries are included which have RoBOTL-like 

methods or commands. JavaBOTL is the next step for students after learning RoBOTL 

or a good starting place for students with a little programming experience. Students with 

more object-oriented programming experience are encouraged to begin programming 

with java. Beginning lessons in java assumes the student has an understanding of 

elementary java syntax. Material covered in java lessons provides information about 

writing java applets. 

There are often a number of students who are familiar with java programming and 

are capable of completing the course material before the end of the program. The main 

objective of this project was to give the Frontiers students of 2002 an introduction to web 

programming. Subject matter includes creating web pages, an introduction to JavaScript, 

server side programming with Perl CGI, and implementing java applets. The amount of 

13 



course material a student covered merely depends on their individual background with 

computer programming. 

2.3 Internet Programming 

2.3.1 HTML 
The Wnrid Wide Wel, is  built (In web 11nOPS These TA/Ph ria ape are orented 1Vith 

41. T 	 - -1 	 T 	 !I T'T'11 KT 	 T T'T'A /TT 
ilypciLUM ivienik.up i,atiguagc 1 1 1VIL..). ',JUG W. LUC utiginai 	 01 II. 1 IVI.La 

was to be device independent." (Richmond 2002) All computers, regardless of system 

structure require access to the World Wide Web, HTML needed to be device 

independent. This means that the language had to follow the same rules on every type of 

system. 

While HTML is widely used to display web pages, its main purpose initially was 

to provide a way of structuring the data in a page. "So the basic HTML elements specify 

such things as headings, titles, and paragraphs - but not margins and fonts." (Richmond 

2002) While the structure is defined within an HTML file, the proper display or 

rendering of the web page was left up to the individual browser. While the original 

developers of HTML decided it was appropriate to only define structure, as the web 

became more commercialized, it was important for the image of businesses to have more 

functionality with the design or layout of pages. "...the original HTML offered very 

little support for layout and presentation, so the demand grew for extensions. Various 

browser manufacturers have introduced new HTML elements oriented towards 

presentation issues - notably Netscape - and some of these have been adopted into the 

HTML standards proposals." (Richmond 2002) Style sheets are currently used to put 

display information into a web document. 

14 



The structural elements of an HTML document are elements. Elements are 

defined within tags. Tags are defined by left and right angle brackets. The first character 

string in the tag is the name of the tag and the name/value pairs which follow are 

attributes of the tag. "HTML documents are free-format - you can use spaces and tabs 

any way you like, and break lines anywhere. White space and line breaks will not affect 

the document appearance in a browser except when used inside certain special tags which 

we'll describe later." (Richmond 2002) The tags in an HTML document are properly 

nested, however, spaces, tabs, new lines, and character case does not affect the resulting 

display. HTML allows one to publish web documents, create links to related works from 

your document, include graphics and multimedia data within ones own document, and 

link to non-World Wide Web information resources on the Internet. 

2.3.2 JavaScript 
"JnyqsPript was  designed to prnvide an  ensy wny fr,r WPI1  lth"rQ  to PrPnte 

interacti -ve 'Web pages." ICS  1999) VvThile 1-ITNIL is used to create static web pages, 

JavaScript is a scripting language designed to be an easy way for people with little or no 

real programming experience to create dynamic web pages. "Unlike Java, which is 

meant for experienced programmers with an understanding of C++, JavaScript is a 

simpler "scripting" language (like dBASE and AppleScript) aimed at those with less 

programming experience." (Savetzl999) JavaScript, which is embedded in HTML tags, 

is lightweight programming code which can be used for form validation, specific browser 

detection, and cookie manipulation. "JavaScript can be used to manage user input as well 

as to show text, play sounds, display images, or communicate with a plug-in in response 

to 'events' such as a mouse-click or exiting or entering a Web page." (Savetzl999) 

15 



While CGI and Java provide some interactivity to the web, JavaScript was not intended 

to replace those. 

A common misconception is that JavaScript is similar to Java. Similarities can be 

found in the syntax and in the names of the languages. Otherwise, the two are distinct 

languages with separate functions and purposes. "JavaScript programs are interpreted 

and run entirely on the client side. This means fewer hits and less processing time on the 

server than with Java (where applets are compiled on the server before being executed on 

the client) or CGI (which requires the server to do the work and rack up hits)." (Savetz) 

Another major distinction is that Java source code is contained in files separate from the 

HTML and JavaScript is embedded between script tags within the HTML files. 

There are currently many clients that support JavaScript, including Netscape 

Navigator 2.0x, Netscape Navigator 3.0x, Netscape Navigator 4.0x, Microsoft 

Internet Explorer 3.0x, and Microsoft Internet Explorer 4.0. Thus, when you 

write a script and embed it in your site, it will be interpreted by different 

interpreters with unequal capabilities and features. Unlike server-side scripts over 

which you have full control of their interpretation, client-side scripts are executed 

by the user's browser. (Clark 1997) 

While the advantage of this difference is reduced server traffic, because the workload is 

transferred to the client, there are issues with JavaScript compatibility between browsers. 

16 



2.3.3 Perl/CGI 
Perl is an acronym for Practical Extraction and Report Language. It is a 

programming language which is in wide use on the World Wide Web in helping to create 

interactive web pages. The basic syntax of Perl is meant to be easy to understand. 

Yet, the open-ended flexibility of Perl offers a seemingly endless possibility — 

which is where the exhilaration and/or intimidation usually set in. The good news 

is that you don't need to master Perl to make it useful. Web developers take 

heart: Perl is simply a hammer, with which you can build a birdhouse or a 

mansion. And you don't need to be Bob Villa to build a birdhouse. (Weiss 1999) 

Beyond the general syntax of Perl, there are so many different possibilities that the 

language appears ambiguous. At the same time, that is what makes the language flexible 

and powerful especially in the context of web programming. The basics of the language 

include if statements, looping statements, functions, and regular expressions. Perl also 

has many features for generating HTML, receiving arguments from the Web, and 

setting/reading cookies. However, the possibilities certainly do not cease there. 

For web programming, Perl is used in the context of CGI. CGI, which stands for 

Common Gateway Interface, is a standard by which Perl is used to interact with web 

pages. The basic concept of CGI is: "the user provides some information on the web 

page and the browser sends this information to the web server. The web server passes 

this information to a particular program; this program "does a bunch of stuff' with the 

information and returns some results to the web server, which passes the results back to 

the user's browser." (Wiess 1999) While any programming language can be used with 

17 



CGI, Perl is the most common because of its ability for data manipulation and its general 

open-endedness and flexibility. 

18 



3 Methodology 

3.1 Structure 
The academic curriculum was structured around many activities with the purpose 

motivating the students. Each activity had a background section explaining everything 

needed for finishing it correctly and students were allotted plenty of time every day 

during lab sessions to complete each activity. During these sessions, the students were 

encouraged to work together in solving the problems and finishing the assignments. This 

lab period also provided the students with plenty of direct assistance from the teaching 

staff, when and if needed and offered the opportunity to explore related topics easily by 

searching online. 

By encouraging the students to work together in order to solve problems, they had 

the freedom to determine their own content and were able to research different areas of 

what they wanted to learn. By also providing all the content online, the students were 

able to learn at their own pace. They did not need to refer to anyone for help, although 

help was readily available, and were able to teach themselves. During this process, the 

students were allowed to collaborate with other students and were allowed to talk while 

they were programming in order to better understand the process. 

The goal of this structure was to teach the students how to learn productively. 

They were given background information and asked to complete each assignment during 

the class period, using the resources available to them. The material for the class was 

available to everyone when they needed it. 

19 



3.2 Motivation 
According to Lander, there are three key elements for motivation in a classroom. 

The first element is that there should be ample encouragement and excitement. This was 

achieved by giving the students three different levels of learning. Students who already 

knew the material were able to do the advanced section and learn more from their time. 

These levels gave all students the encouragement and excitement needed to excel in the 

class. 

The second element was to teach the students the importance of the materials and 

activities. Each activity had a sufficient amount of background needed to complete the 

activity. The students were given enough information to be able to complete the 

activities. 

The third element is that the materials being presented should be relevant to what 

is being taught in the class. The material that the student was asked to learn in each 

section had its relevance in what the student was asked to perform during the class. Each 

of the activity referred the student back to the following section which he completed 

reading. 

3.3 Active Engagement 
The students were actively engaged by participating in the online labs. By 

completing labs they used the materials provided and they learned to find information on 

their own in an independent manner by researching, and going online in order to find 

better ways of implementing the language they learned. By doing this, the students were 

able to learn how to research on their own, and learn how to do things that were not 

taught in a traditional educational setting. Active engagement was a major part of the 

Frontiers program. 

20 



3.4 Collaboration and Interdependence 
Students worked together and helped each other find solutions to problems faster 

and easier then they would have been able to do alone. This encouraged interaction 

between students and offered an additional method to teaching separate from the 

traditional 'teacher teaches student' strategy. This enabled the students were able to learn 

from each other. As discussed in the Background Research in Section 2.1.4, education is 

a social process; hence it should be treated as that. 

3.5 Content 
The content of the program was given to each student. Links were provided to 

related materials which would encourage students to expand on what they were given 

through independent research. The student were asked to, in the advanced section, go out 

and look for other websites that may help them build a better webpage. The content that 

was offered to them was also very important to the student to learn. This is the reason 

that the student had to complete each activity to show that they knew how to do that part 

of class. This also ensured that the student learned the content that was given to him/her, 

and also learned more by doing his/her own research over the World Wide Web. 

3.6 Assessment 
The pre-test and the post-test are the same exact test. It is multiple-choice and 

includes one question out of each section from the labs. The advantage to giving students 

the same exact test before and after the course is in measuring what the students learned. 

The students were asked questions from all of the web programming languages they were 

going to learn during the two-week program. In each section, they had approximately 

three questions, each of these questions were exactly setup the way the labs were setup 

21 



up. The first question was the least challenging, the second was a bit more difficult, and 

the third one was from the advanced section. 

22 



4 Results and Analysis 
The Frontiers Program was structured to run over a span of two weeks. During 

the first week, students worked alone or collaboratively to cover the background material 

and complete the activities associated with each lab. All of the activities were done in the 

student's public_html directory, so we were easily able to check on their progress during 

the first week. 

They were able to get help from other students, the teaching assistant, the 

professor, or the undergraduate student assistants. The second week of the program was 

set up to be a group-oriented project. All of the students were put into groups of two or 

three. We polled the students to see who they wanted to work with and which projects 

they preferred to work on. There were ten projects to choose from. Three projects were 

done using Perl/CGI, three using java, and four were using java applets. The first week 

helped the students develop their skills and helped them learn more about web 

programming which, in turn, helped them when working on projects. 

The formal assessment results in the instructors' decision-making process include 

a pre-test, a post-test, four quizzes, and a survey. Other information that is included is the 

individual students' progress through the four labs. 

4.1 Week One 
The labs during the first week were divided into three parts: the introductory 

section, the "more" section, and the advanced section. The students were asked to review 

the material in each section. Each section had its own activity that the student was to 

complete and post on their web page. When the student finished one section, they were 

able to move onto the next section. We organized the class this way because the students 

23 



would be able to move at their own pace. Lander says where the student has freedom to 

determine content; structure can be achieved by the activities used in the class. After the 

students had completed work on the lab, they were given a written quiz, which included 

four multiple-choice questions and one short answer question. There would be only one 

multiple-choice question based on material covered in the optional advanced section. 

This allowed the students to skip the advanced sections and still pass the quizzes. 

4.1.1 General Lab Organization 
The course was divided into four separate labs to be reviewed, not necessarily 

completed, during the first week of the Frontiers program. The first lab covered the 

Client/Server model, file management in the UNIX operating system, and the Hypertext 

Markup Language (HTML). The second lab covered the basics of the JavaScript 

language. The next lab gives an introduction to Perl and how it is used in CGI. The last 

lab provides an introduction to the java programming language and covers the basics for 

creating java applets. 

Each student in the Frontiers program has a different background with computer 

programming. With this in mind, the HTML, JavaScript, Perl/CGI, and java applet labs 

were divided into three sections. The first section for each topic is an introductory 

section, which all students were expected to understand regardless of past programming 

experience. This section generally covers background information or basic concepts. 

The second section of each lab was meant to provide the students with a functional 

understanding for the subject. The last section for each topic was the advanced section. 

Not all students are expected to understand the material covered in this section. This 

section is an extension on the basics covered in the previous sections. While the 

24 



advanced sections are not completely necessary for all students, those who breeze over 

the previous sections should find it useful if not challenging. 

There is sample code provided throughout all of the labs. These sections of code 

are clearly marked with block quotes, courier font, and red lettering. If there is a full 

example provided, where the student can simply copy the entire sample into a file, the 

code is also given a white background. The sample code provides a template for students 

to manipulate or add to. Most of the sample code is also accompanied with examples, 

which illustrate exactly what the code is doing. 

4.1.2 Lab One: Creating Web Pages 
In the first lab, the Client/Server Model and the file management in UNIX are 

only given one section each. These sections arc both necessary for any advancement in 

the labs. All students need to understand how the client/server model works and what the 

necessary UNIX commands are to start applying or testing anything they learn in the 

labs. The basics of the UNIX directory structure and relative and absolute pathnames 

were discussed in the UNIX section. After that, commands used in working with files 

and directories in UNIX are discussed. There are also subsections on getting information 

using finger, accessing man pages, understanding file permissions, and changing file 

permissions using chmod. Activity 1.1 is associated with these sections. It required that 

students first login to their UNIX accounts. Then they create a directory named 

"public_html" in their home directory, and a dummy file in that directory named 

"index.html". The permissions for the directory and file would then be set to read, write, 

and execute permission for the user, and read permission only for group and all. Students 

would then be instructed to use `ls —1' to check those permissions. 

25 



The next section is an introduction to HTML, it explains what tags are, how they 

are implemented, and how they can be applied to creating web pages. The basic tags 

included were used for text display, creating hyper links, and displaying images. Activity 

1.2 asked students to edit their "--public_html/index.html" files to display information 

such as a title, a heading, and various hyper links. 

The next section, entitled "More HTML", discusses some of the various tag 

attributes and how to represent color in hexadecimal form. This section also goes over 

adding sound and creating ordered, unordered, and definition lists in web pages. 

Specifically, the body, basefont, font, and img tags and background, bgcolor, text, link, 

vlink, and alink attributes were explained. These topics cover the basics for adding style 

to web pages. Activity 1.3 required the students to add style to their web pages using the 

tags and attributes discussed. Each student had their picture taken so they could post it 

on their web page. 

The final section of lab 1 was "Advanced HTML", it was not a required section 

for all students because it would not be necessary in the following labs. The advanced 

HTML was divided in two subsections. The first dealt with creating tables and 

manipulating their structure, size, and style. The second subsection, on frames, explained 

the structure of basic frames and how to use the target and scrolling attributes. At the end 

of this lab, there was also a list of 'Good Web Publishing Techniques'. Activity 1.4 had 

the students format their web page from previous activities using tables. 

4.1.3 Lab Two: JavaScript 
In previous Frontier programs, the students would be learning object-oriented 

programming with Java. After JavaScript is included in HTML, it can be run, simply by 

26 



bringing up the web page. There is no compiling involved, which removes some 

complications for students just getting started. There are many snippets or examples of 

JavaScript code that can be found on the web. Students who complete the material could 

continue learning outside the course. 

In the introductory section of this lab, some background information about 

JavaScript is given. We explained how JavaScript worked and some things it is 

commonly used for. There is an example of how to include scripts in an HTML file, and 

there is a type of "Hello World!" example using an alert box, which is provided, 

explained, and illustrated. Basic JavaScript syntax was explained and there was another 

example provided which uses the document.write() function. In the associated activity 

students are asked to create a page, which displays some alert when the page was loaded. 

The next section in the JavaScript lab begins with an example, which illustrates 

how variables were used. Then there were examples of comparing variables and values 

using relational operators. The next subsection discusses the syntax of the if/else 

structure in general and in the context of a confirm box. Activity 2.2 requires students to 

display a confirm box on their web page. 

The advanced JavaScript section explains how various events are defined and 

handled using functions. There were also subsections on using for and while loops and 

how they can be used to work with arrays. There was also a simple example, which 

explains how you can set and read cookies using JavaScript. The activity for this section 

asked students to write an HTML page which useed JavaScript to work with text boxes 

and arrays. 

27 



4.1.4 Lab Three: Perl/CGI 
The textbook for the course, "The Web Wizard's Guide to Peri and CGI", began 

with the basics of the Perl/CGI development process and then described the details of the 

Perl language that were useful for Web application programming. Further topics in the 

textbook include variable lists (arrays), looping statements, hash lists, subroutines, 

regular expressions, and working with files. There are basic UNIX commands discussed 

in the appendix and a quick reference to built in Perl functions and modules in the back 

cover. 

The Perl/CGI lab was a good introduction to programming for beginners. While 

Perl is an interpreted programming language which can be used in conjunction with 

HTML, it will also be an extension on the student web pages. It does not require 

compilation and can be as simple as cut and paste. 

The first section of the Perl/CGI lab does not cover any CGI. It simply covers 

various aspects of the Perl language. It explained how to work with variables, arrays, and 

hashes. There were also descriptions for commonly used functions, which were built into 

the Perl language. The activity required students to write a Perl script, which prompts the 

user for a name, course name, and four quiz scores. The script should then calculate and 

display the students average. 

The next section, "More Perl/CGI", explains how a Perl script can interpret form 

data passed by an HTML page. It explained how to use the QUERY_STRING and 

CONTENT LENGTH environment variables. There was also a description on how a 

CGI program can send a response back to the user. The corresponding activity asked 

students to create an HTML file with the following text boxes: first name, middle initial, 

last name, street address, city, state, zip code, and email address. After a user submits the 

28 



form, the data should be sent to a CGI script, which simply formats the data using and 

HTML list and sends it back to the user browser. 

The advanced Perl/CGI section gave a brief explanation of pattern matching and 

decoding form data. There was a reference to the book where students can find functions 

which make it easy to work with cookies using Perl/CGI. There is also a program 

described which automatically sends email. Activity 3.3 was divided into two parts. The 

first part asks the students to modify their previous program to also email the form data to 

the owner of the site (themselves). The next section of the activity was taken out of the 

textbook. It requires cookies to save the users preference for background color. When a 

user selected a color and then comes back to the page, the background color should take 

affect. 

4.1.5 Lab Four: Java Applets 
Lab four taught students how to work with Java applets. This subject was chosen 

because it fits in with the theme of "Web Programming" and because it serves as a very 

good introduction to 'Object-Oriented Programming'. There are plenty of examples 

provided in the lab, which really helps beginning programmers get through the material. 

All of the activities in this lab ask the students to progressively build a working Tic-Tac-

Toe applet. 

The introduction to Java Applets section explained the basic applets structure: 

import statements, class declarations, init functions, and paint functions. There was a 

subsection at the end, which described how to compile a java program and embed into an 

HTML document. The activity for this section required students to set up the game using 

the init function and draw the initial board using the paint function. 

29 



The "More Java Applets" section described how to work with java variables, 

arrays, and two-dimensional arrays. Detailed examples were provided in each of these 

subsections. The activity for this section asks students to first declare a three by three 

array of integers representing blocks in the Tic-Tac-Toe board. The init function should 

set the values of that array to equal 0. Then it should set the value for the center square to 

1 and the value for the upper left square to 2. The paint function should use two for loops 

to interpret those values and place X' s and 0' s accordingly. 

In the advanced section there were subsections on event handling, specifically the 

mouseUp function, logical operators, adding graphics, and adding sound. The activity 

associated with this section required students to declare a variable named "curPlayer" to 

keep track of whose turn it is. There should also be a mouseUp function defined which 

interprets the mouse position into squares on the board, assigns values accordingly, and 

calls the repaint function. 

4.2 Week Two 
The second week for the Frontiers Program consisted of a Qualifying Project. 

They used all the material learned in the first week to do their major project. This project 

consisted of such things as an e-commerce website, a stock ticker program, and even a 

web browser. The students were asked to work in groups of 2, 3 or 4 and were split up 

into whichever project they wanted to do. 

The reason for these projects was to show the students a "real world" experience 

in the Web Development field. They were required to work in groups, like they do in the 

real world, in order to complete the project. They had to set goals, and setup a schedule 

of things in which they would work on. This project is similar to the two projects, MQP 

30 



and IQP which WPI students are required to finish in order to graduate. In these two 

projects, WPI students have to work in groups to achieve their goals. 

4.3 Pre-Test 
Full results available in Appendices A.: The Pre-Test basically showed us what 

the students where possible of doing. The average score in section are as follows in 

Figure 4.1.P: 

Section (points possible) Average score 

HTML (5) 3.2 

JavaScript (3) 1.667 

Perl (4) 1.2778 

Java (3) 

Total Pre-Test Average (15) 

0.444 

6.0556 

Figure 4.1.P 

We were able to see that most students had some experience with HTML and JavaScript. 

From the test scores of the other two sections, Perl and Java, we are able to lead say that 

mostly no student in the class had experience of it. 

The highest grade that was recorded on the pre-test was an eleven out of fifteen 

and the lowest recorded on was a three out of fifteen. Student 4.2 did not take the test. 

Out of the eighteen students in the class, three students started the programming 

section of each lab with javaBOTL. The rest of the students did the Perl and Java Labs as 

they were given. 

31 



4.4 Quizzes 
There were four quizzes that were offered to the students. All of the students did 

not finish all the labs; hence all of the students did not take all the quizzes. The quiz 

grades and the students' progress through the activities are available in the Appendices B, 

C, D, and E. 

4.3.1 Quiz One — HTML 
'NIL section of the program contained a quiz and also four activities. The 

students were asked to do all the activities they were able to do. All of the students were 

required to take the HTML quiz. Eleven out of the eighteen students finished all four 

activities in the section. The average for the quiz was 93.3. Four out of the eighteen 

students got the advanced question wrong on the quiz. This question was the one that 

most students had problems with. 

4.3.2 Quiz Two — JavaScript 
All of the students were required to attempt this section of the program. This 

section contained a quiz and three activities. The average on the quiz for this section was 

91.67. The problem that most students had a difficulty in was number three on the quiz. 

Six out of the eighteen students in the class finished all the activities available for this 

lab. 

4.3.3 Quiz Three — Perl 
The students were not required to do this lab or take the quiz. Some of the 

students jumped from this to either Java or, some of the less experienced students, to 

javaBOTL. Three out of the eighteen people did not attempt to take the quiz. The quiz 

average for the rest of the class was 83.67. The problem that most students on had on the 

quiz was with number one. Nine out of the eighteen people completed all of the activities 

32 



for this section. One of the students took the quiz without doing any of the activities and 

got a perfect score One student did not attempt either the lab or the quiz. Two of the 

students attempted the lab, but did not take the quiz. 

4.3.4 Quiz Four — Java 
The students were not required to do this lab or the quiz also. Ten out of the 

eighteen students attempted this section also took the quiz. The average for the quiz was 

86.5. There wasn't one problem that gave a major problem to everyone, it was a wide 

variety of questions in the quiz that people had got wrong on. Seven out of those ten 

people who attempted this section, achieved what they were supposed to achieve, which 

was a working tic-tac-toe game. The other three students only finished the first two 

sections of the lab. 

4.5 Post-Test 
The post-test was given the last day of classes. The post-test was given too see if 

the students had learned anything through the program that we had setup. The following 

chart, Figure 4.2.P, shows the total for each section, and the average score for the pre and 

the post test. 

33 



12 

10 

E! 8 
co 

6 

4 

2 

0 
HTML JavaScnpt 	 Perl Java Total Score 

Average Score Comparison 

16 

14 

Post-Test 

—6-  Pre-Test 

Total Possible 

Figure 4.2.P 

As we are able to see from the chart, there is a substantial gain in the total score 

for test. The average score for the test increased fifty-four percent. Out of fifteen points, 

the lowest grade in the post-test was a nine and the highest grade was a fourteen. 

34 



Pre-Test and Post-Test Scores 

P 

\ 	 el, 	 .3 	 b, 	 0 	 co 	 '1 	 r\0 	 ,\N 	 <1,<5 	 <o 	 p;\ 

	

e"" 	 zc'‘`. 	 ec". 	 ocn\`' 	 e 	 C`- 
\Z> 	 pg, 	 xo 

con ` 	 c,\•>— 	 c.j*, 	 c„;,- 	 ej',. — 

Student Number 

16 

14 

12 

1 0 

o 	 8 

6 

4 

2 

0 

n  Pre-Test 
is  Post-Test 

Figure 4.3.P 

4.6 Individual Student Progress 
The most important assignment throughout the two week educational process was 

the Frontiers Qualifying Project (FQP), which would be completed during the second half 

of the program. There was an assortment of ten different projects for the students to 

decide upon. We anticipated each student spending a majority of their time during the 

first week working in the Perl or java applet labs. For this reason alone all of the possible 

FQPs were concerned with either Perl or java programming. After completing the 

assignments based on the labs in the Frontiers program; the students were then 

individually polled regarding which of the FQPs they would be interested in working on. 

They were also asked to specify which of their piers they would prefer to work with and 

which they would prefer not to work with. Taking this information into consideration, 

we then divided the students into project groups each consisting of two to four members. 

35 



Six of the ten possible projects were selected. The following individual student 

information is organized according to which project each student was directly involved 

with. 

4.6.1 Stock Ticker Project 
In this assignment students would write a CGI script to look up stock data. This 

project provides students with exposure to real world HTML on the web and experience 

with writing Perl scripts in the context of CGI and to work with HTML forms. Students 

would create a web page where a user can enter stock symbols in a text box and select 

various stock information options to be displayed such as company name, price, change, 

volume, average volume, day's range, fifty-two week range, and market capitalization. 

4.6.1.1 Student 1.1 

This particular student demonstrated some knowledge of HTML on the pre-test, 

however lacked knowledge in other sections. During the first week, he completed all of 

the HTML activities, most of the JavaScript, and the introduction to Perl. This student 

worked on a javaBOTL program rather than the java applets. 

-1.6.1.2 Student 1.2 

Student 1.2 knew some HTML and some JavaScript; this was proven on the pre-

test exam. He was a dedicated student who spent a bulk of time completing every 

activity including the advanced sections; however he was unable to complete the 

advanced java applets section due to time constraints. This student carried much of the 

weight of his group project. He worked with little help from his group members on 

completing the Perl programming assignment. 

36 



4.6.1.3 Student 1.3 

This student failed to show a prospective score on the pre-test. He only 

completed two activities in the HTML section and two activities in the JavaScript section. 

He scored well on the first two tests, and poorly on the Perl section. He did not take the 

fourth quiz. When working in the stock ticker group, this student spent all his time on the 

HTML pages and did not help with any of the Perl programming. 

4.6.2 Web Browser Project 
he web browser project involves Perl/CGI, exposure to real world HTML, 

working with HTML forms, and maintaining state on the web using cookies. For this 

assignment, students would create their own web browser. First students collaborated 

several ideas for a catchy and marketable name for the browser. After completing that 

step in the process they would create an HTML page containing two frames. The first 

frame would contain a form where a user could enter a web URL. On form submission, 

the target of the provided URL would be displayed in the second frame. Cookies would 

be used to implement various navigational buttons such as `back,' forward,' and 'home.' 

4.6.2.1 Student 2.1 

This student came into the program with some knowledge of HTML. He 

completed all activities in the HTML lab, most of the JavaScript, and a good number of 

the Perl activities. He was very at ease with asking questions when he was mystified 

with a problem or when he was just curious about subject matter beyond what was being 

covered. He really enjoyed programming in Perl and was unable to get to the java applet 

lab. He only had one project partner and they worked well together. 

37 



4.6.2.2 Student 2.2 

Student 2.2 completed all of the HTML and Pert activities, most of the JavaScript 

activities, and none of the java applets activities. He preferred not to ask for help when 

he had problems but was generally able to work through them alone. He worked well 

with his project partner and scored well on the post-test. 

4.6.3 E-Commerce Site 
The goal of this project was to create an e-commerce site which would accept 

orders from buyers over the web. The information provided by the user concerning 

purchases would be displayed as a dynamically created shopping cart by a Perl/CGI 

script. The application would originate with a home page that has buttons leading to the 

department pages as well as the shopping cart page. The department page would provide 

a name and price for each product and a text box where the user can specify the desired 

quantity of each distinct product. The shopping cart page would provide a list of selected 

products and buttons to finalize the purchase, return to the home page, and reset the 

current shopping cart. On order finalization, the application would provide a summary of 

purchases and a total price for the order. 

4.6.3.1 Student 3.1 

This student completed all of the HTML and Perl activities, most of the 

JavaScript activities, and none of the java applet activities. He received a perfect score 

on the HTML, JavaScript and Perl quizzes. He did not take the java applet quiz. Due to 

the vast knowledge that the student encompassed he was able to contribute a great deal of 

assistance to his group members for the completion of their project. 

38 



4.6.3.2 Student 3.2 

Student 3.2 scored well on the pre-test and had some background information in 

HTML and java programming. This student would ask questions when he was unsure of 

the material at hand. Therefore he moved through all four of the labs during the first 

week. He also scored well on all of the quizzes. Overall his contribution, similar to his 

partners was impressive, his previous background knowledge allowed him to ascertain 

the best possible techniques to efficiently accomplish the project. 

4.6.3.3 Student 3.3 

This student had some experience with HTML prior to the Frontiers program. He 

completed most of the HTML and JavaScript activities, all of the Perl activities, and none 

of the java applet lab. He scored well on the first three quizzes but did not take the java 

applet quiz. This student's knowledge was useful considering the work and quizzes; 

however he moved far slower than his other group members and may have held the group 

behind. 

4.6.4 Cryptography Project — Cipher text Decryption 
The goal of the cryptography project was to write a java program that decrypts a 

cipher text file encrypted by a public key. A cipher text file would contain an encrypted 

message. A public key consists of a very large number: z, and another smaller number 

called the encryption key: n. to convert the cipher text, the students would need a private 

key consisting of three numbers: p, q, and s. p and q are both prime numbers with the 

property: p*q=z. s is called the decryption key. 

4.6.4.1 Student 4.1 

39 



This student scored very well on the pretest and had some obvious knowledge of 

HTML, JavaScript, and Perl. He completed all the activities for all the labs except for the 

advanced JavaScript section because he was encouraged to move on. This student's 

knowledge did not move the group towards any extensive conquests; however he did 

work diligently to complete the tasks at hand. 

4.6.4.2 Student 4.2 

Student 4.2 began the course with no programming experience. He was 

considering electrical engineering as well as computer science to as his major. He moved 

through the material on the course web page very slowly and even took notes, unlike 

many of the other students. He completed most of the HTML and JavaScript activities 

and received a perfect score on the corresponding quizzes. Rather than moving onto the 

Perl and java applet labs, this student was instructed to begin object-oriented 

programming with the RoBOTL programming language. This prepared him for an FQP 

in the java programming language which helped his score in the java applet section of the 

post-test despite not completing any of the original java applet lab material. Since the 

students took a great deal of time to understand the material he was able to contribute to 

the project extensively. His industrious attitude enabled him to do so well. 

4.6.4.3 Student 4.3 

This student completed all of the activities for the labs, including advanced 

sections, and he scored well on the four quizzes. He was an active member within the 

group and may have been the anchor between the students. Despite this progress, he did 

not score well on the post-test. 

40 



4.6.4.4 Student 4.4 

Student 4.4 began the program with possibly some knowledge of HTML. He 

completed every single activity and scored very well on all of the quizzes. He was very 

comfortable asking questions and did some extra work with graphics in the Movie Lab. 

He and student 4.3 they were able to provide most of the informative background on the 

project. 

4.6.5 Meet the Sticks 
The assignment for the 'Meet the Sticks' project was to develop an applet which 

would draw simple stick people. The first method utilized would be called `drawPerson' 

and it would require the ability to draw a stick figure. The next method, called 

drawFamily, would draw two adults and two children by calling the drawPerson method 

four times and providing appropriate heights and locations. Additionally, students would 

add a width parameter to the drawFamily method and provide scrollbars. 

4.6.5.1 Student 5.1 

After completing most of the HTML and JavaScript and all of the Perl material, 

this student was advised to begin object-oriented programming in the RoBOTL 

programming language. This worked well because he then chose an FQP which involved 

java applets, and did very well on the project itself. 

4.6.5.2 Student 5.2 

Student 5.2 began the course with some background in HTML. She completed all 

of the activities in the HTML, JavaScript, and Perl labs. Rather than moving directly to 

the fourth lab (java applets), she was directed to start with the RoBOTL programming 

41 



language. Although she did not complete any of the java applet material, she chose a 

java applet related FQP because of her experience in RoBOTL and was successful. 

4.6.5.3 Student 5.3 

This student did most of the activities for the HTML, JavaScript, and Perl labs. 

He was more interested in getting to the java programming. He did all of the java applet 

activities. He also did most of the work on his java applet project. 

4.6.6 Create a Fractal Interface 
In the fractal interface project, students would learn about the creation of fractals, 

and how to create a series of web-accessible tools to inspect and explore fractals using 

java applets. 

4.6.6.1 Student 6.1 

On the pretest, this student scored well in the HTML and JavaScript sections. He 

went through the material for the labs and completed all of the activities very quickly. 

He skipped over the last Perl activity to begin java programming sooner. After 

completing the course material early, this student began learning about XML and then 

scheme. His knowledge and ability to move quickly through the material was beneficial 

to the group 

4.6.6.2 Student 6.2 

Student 6.2 began the class with some knowledge of HTML and possibly java. 

He was very anxious to begin programming with java. He did the minimum number of 

activities for the HTML, JavaScript, and Perl labs. While he completed the java applets 

42 



lab, he did not spend much time in the lab doing actual work, but was in turn successful 

in contributing to the project as a whole. 

4.6.6.3 Student 6.3 

Student 6.3 had some background with HTML. He completed most of the 

activities in all four labs, omitting each of the advanced sections. This student was able 

to move on without completing the advanced sections because that material was not 

included in the quizzes and tests. This student scored well comparatively and showed 

substantial improvement between the pre-test and the post-test. His gradual 

understanding of the material was beneficial to the group because it not only allowed him 

to contribute but to continue to learn in the process. 

43 



5 Conclusion 

5.1 Summary 
Technological advancements are rapidly shaping  today's society. Changes are 

being  made  in all aspects of everyday life, including the area of education. With the 

expansion of the Internet, existing  teaching  methods  have been  enhanced and new 

techniques have been conceived. Education and  the  Internet are  equivalent in that the 

primary purpose of both  is  to  share information. 

By creating  an online learning environment,  the team  was able to structure the 

course material to  fit  the  Frontiers  program. Students were presented with  activities to 

motivate them and background material to help them succeed. They were also 

encouraged to work  together in  solving problems. If a  student became interested  in a 

particular subject, the class structure would allow him/her to research on their own- 

outside of the chosen  course  material.  The  self-paced aspect of the online  program 

compensated for the individual students' varied computer programming backgrounds. 

Traditional lecturing would have made this compensation impossible. 

During the first  week  of the course, all students  sufficiently  progressed  through 

the HTML and JavaScript material. Each spent a majority of his/her  time  learning to 

program with Perl/CGI or java, depending on their previous experience and personal 

preference. These experiences provided  the programming  background necessary  for  each 

of the Frontiers Qualifying Project groups to succeed during the second week. 

One of the  major  flaws in this  kind of a program  is that all students  are not as 

motivated as others. These students either did not do any of  the  work, or just sat in front 

of the computer,  searching  on the web. We saw  this happen to a  few students during 

44 



class. These students did not finish the activities that they were supposed to or even 

reach to the point where they should have after the first week of class was over. This was 

one of the biggest flaws in the program. 

Even though the program was not flawless, we saw a considerable number of 

students learn a lot during the two weeks of the program. We are able to see this because 

of the pre-test and the post-test scores. There is substantial amount of change in these 

recorded scores. We also saw that mostly all students were actively involved in their 

Frontiers Qualifying Project. Everyone was involved and wanted to finish their project to 

the best of their abilities. This is where our other mistake came in. Some of the projects 

that were offered to the students were very difficult to finish in the time provided to them. 

A couple of these groups did not finish their projects because they were not given 

sufficient amount of time to do so. 

5.2 Future Work 
While having plenty of class time for questions and collaboration was effective, it 

would have been more helpful to use the discussion board that we had available for the 

class. The team should have encouraged the students in the class to use this tool. This 

would have made some of the common problems, which individual students were 

experiencing, more easily addressable for the teaching staff. 

The quizzes for each lab were in multiple choice format. Because the program 

was self paced and each student took the quizzes when they decided they were ready, it 

became a substantial task to administer the quizzes, correct them, record grades, and 

return them to the students. All of this had to be done quickly because, students would 

await their quiz results before continuing to the next lab. This process could have been 

45 



conducted much more efficiently if the quizzes had been automated using some web 

based quizzing system. We believe that the quizzing system that we had available should 

have been used. We encourage this for the next program. This would have greatly 

improved class organization. 

Many of the more advanced students had previously been exposed to HTML and 

JavaScript and therefore breezed over the first two labs. In a few cases, it was important 

especially when working on the FQPs for students to have a better understanding of these 

topics. A possible solution would be to organize the course material so that each of the 

topics would be covered a little bit at a time. An example would be to cover basic UNIX 

commands, then an introduction to HTML, then an introduction to JavaScript, and then 

an introduction to Perl/CGI. In this case, topics in the HTML section would only provide 

enough information for students to succeed in the introductory JavaScript or Perl/CGI 

labs. This format would reduce the amount of time for all students to begin learning the 

more exciting Perl/CGI or java programming and encourage them to learn only what they 

primarily need in the beginning HTML sections without skipping over it. 

One of our primary objectives was to keep the students learning for the duration 

of the course regardless of their previous web programming experiences. There were a 

few cases where students progressed through all of the course material. Future 

extensions on this material may include topics regarding the current version of HTML, 

cascading style sheets (CSS), Dynamic HTML (DHTML), or PHP (recursive acronym 

for "PHP: Hypertext Preprocessor"). 

46 



References 

Ausserhofer, Andreas. Web-Based Teaching and Learning: A Panacea?. IEEE 
Communications Magazine. March 1999. 

Bakken, S. S., A. Aulbach, E. Schmid, J. Winstead, L. T. Wilson, R. Lerdorf, A. 
Zmievski, J. Ahto. PHP Manual, PHP Documentation Group, (April 2002), 
http://www.php.net/manual/en/.  

A manual for using PHP: Hypertext Preprocessor, covers getting started with PHP, 
language basics, major features, and a function reference 

Bradenbaugh, Jerry. JavaScript Application Cookbook, O'Reilly & Associates, 
(September 1999). 

A source for well documented JavaScript applications 

Brusilovsky, P., et al. A Tool for Developing Adaptive Electronic Textbooks on WWW, 
(October 1996) http://www.contrib.andrew.cmu.edui-plb/WebNet96.html   

A description of an approach for developing adaptive electronic textbooks. The goal is to 
design world wide web based applications which help the user learn at their own pace 
without the assistance of a human teacher. 

Clark, Scott, Dan Ragle, Andy King. Browser Compatibility, 1997, 
http://www.webreference.com/js/column6/index.html.  

Eckel, Bruce. Thinking in Java, 2 nd  Edition, Prentice Hall, Inc., Upper Saddle River, NJ, 
2000. 

A complete introduction to object oriented programming in Java, includes java applets. 

Flanagan, David. JavaScript: The Definitive Guide, ? Edition, O'Reilly & Associates, 
(June 1998) 

A guide to learning to program with JavaScript 

Frontiers. (January 2002). http://www.wpi.edu/Admin/AO/Frontiers/.  

Information on the frontiers program at WPI. 

Gibson, Elizabeth J., et al. A Comparative Analysis of Web-Based Testing and 
Evaluation Systems. (October 1999), 
http://renoir.csc.ncsu.edu/IVIRA/Reports/WebBasedTesting.html.  

This is an assessment of four web based testing and evaluation systems; Mklesson, 
Eval, Turorial Gateway, and OLAA. The six main bases of criteria are testing 

47 



functionality, tracking capabilities, grading capabilities, automatic tutorial building 
capabilities, implementation issues, and security issues. 

Gundavaram, Shishir. CGI Programming on the World Wide Web. 

A guide for CGI programming, includes input, output, forms, server side includes, and 
cookies. 

Harper, Barry. Creating Motivating Interactive Learning Environments: a Constructive 
View. 1997. 
http://www.curtin.edu.au/conference/ascilite97/papers/Harper/Harper.html.  

Lander, Denis. Online Teaching: Educational Considerations, 
http://homepages.eu.rmit.edu.auiresdl/teaching3.htm1 . (1997) 

Lash, David A. The Web Wizard's Guide to Fed and CGI, Addison Wesley, Boston, 
(2002). 

This is a book designed to teach people with little or no programming experience how to 
use Perl and CGI. The book covers Perl basics, generating HTML, variables, loops, hash 
lists, subroutines, regular expressions, files, cookies, and basic UNIX commands. 

Lehtinen, Emo. Computer Supported Collaborative Learning: A Review. 
http://www.kas.utu.fi/papers/clnet/clnetreport.html . (1999) 

Lemone, Karen A. Adaptive Web Technologies, 
http://penguin.wpi.edu:4546/course/cs525/objectives.html.  

This is a distance learning web page which covers many types of web programming such 
as HTML, JavaScript, Perl, and XML. 

Lemone, Karen A. Frontiers: Computer Science Page, (2001). 
http://penguin.wpi.edu:4546/course/Frontiers.  

This is the frontiers page that was used for Computer Science in 2000. 

Levine, Alan, Writing HTML — A Tutorial for Creating Web Pages, Maricopa Center for 
Learning and Instruction, (June 2000), version 4.5.2, 
http://www.mcli.dist.maricopa.eduituti .  

This is a tutorial for helping teachers create learning resources that access information on 
the Internet. Includes standards on HTML and lessons in HTML, an introduction to 
JavaScript, introduction to CGI, and an introduction to multimedia on the web. 

Newton, Robert. Pre and Post Testing. 1999. 
http://www.icbl.hw.ac.uk/ltdi/cookbook/infopre_and_posti.  

48 



Richmond, Alan. Introduction to HTML, 2002, 
http://www.wdvl.com/Authoring/HTML/Intro/.  

Savetz, Kevin M. Getting the Jump on JavaScript, 
http://www.mactech.comiarticles/mactechNo1.12/12.07/JavascriptIntro/.  

Wall, L., T. Christiansen, and R. Schwartz. Programming Perl, 2nd  Edition, O'Reilly & 
Associates, (September 1996). 

A guide to learning Perl 

Weiss, Arron. The Perl You Need to Know, 2000, 
http://www.wdvl.com/Authoring/Languages/Perl/PerlfortheWeb/index.html.  

World Wide Web Consortium (W3C), HTML 4.01 Specification — W3C Recommendation 
24 December 1999, (December 1999),  http://www.w3.org/TR/htm1401/.  

This is a specification for Hyper Text Markup Language (HTML) version 4.01. This is a 
recommendation made by the World Wide Web Consortium. 

49 



Appendix A - Background Material 

Lab 1 - Creating Web Pages 
Client-Server Basics 
Basics of the UNIX Operating System 
Introduction to HTML 
More HTML 
Advanced HTML 

Lab 2 - JavaScript 
Introduction to JavaScript 
More Javascript 
Advanced JavaScript 

Lab 3 - Perl/CGI 
Introduction to Peri 
Introduciton to CGI 
Advanced Peri 

Lab 4 - Java Applets 
Introduction to Java Applets 
More Java Applets 
Advanced Java Applets 

50 



Client/Server Basics 
Web Programming, depends heavily on the Client/Server Model of computing. 

This document that you are reading was "delivered" to you by a client and a server 
working together. Your browser, most likely Netscape or Internet Explorer, is the client. 
This client (e.g., IE) requested this document from a WWW server - the one where this 
page is stored - if you look in the Location: field at the top of the page, you will see the 
server - it is the address after http://. When you click on any of the links within a page, 
the server where these linked pages are stored will "serve" them to your client, IE, which 
will then display them. 

In this picture, by 
Michael Grobe, at the 
University of Kansas, the 
computer you are using 
is Computer A. The 
computer at the server 
site where this page is 
stored, is Computer B, 
and Computer C would 
be the computer that 
contains any document 
that you transfer to by 
clicking on a link.  

Computer A     
Computer '3                            

docu1.ntml                           

Hgpertext 
Link    

t                               

Client.                                              

Net                                                 

Computer C   

HTTP 
Hypertext Transfer Protocol is the name of the language that clients and servers use to 
communicate with each other. HTTP is the underlying protocol of the World Wide Web. 
It enables us to interconnect and access many different types of documents such as text 
and graphics and sound, etc. that can reside on any computer on the Internet. 

HTTP is a Client/Server protocol: functioning of the WWW is divided between two 
groups of applications: Web Servers, and Web Clients (often Browsers.) 

Web Browsers are the user interface to the Web. They allow users to request any 
document on the Web, and they handle displaying of these documents. The most 
common type of document is the HTML text file. Pictures, sound, video, applications, 
and other file formats are also found on the Web. 

51 



The program that accepts browser requests, and delivers the data is called a Web Server. 

Each communication between a Web browser and a Web server (an HTTP 
transaction)consists of a Request and a Response. 

A Request is always initiated by the browser. The Server just waits for the browser to 
connect. In the request message, the browser asks for a specific document. The Name of 
this document can be typed in by the user: 

http://cs.wpi.edu/-kal  

or it can be embedded in HTML document tags: 

<a href="http://cs.wpi.edu/-kalu > KAL's Home Page </a> 
<img srcimages/www.gif"> 
<form action= "http://cs.wpi.edu/cgi-bin/kal/hw.pl "> </form> 

The Browser will strip the server network name, and put the file name in the request 
message. Besides the file name, the Request can contain data from the HTML form, or 
other parameters. 

When it receives the Request, the server will check if the requested file exists. If it does, 
the server checks if it is a CGI program. If the file is a CGI script, the server will run it, 
and pass its output to the browser. If it is not a CGI script, the complete file will be sent 
to browser in the response message. 

On the client side, after it receives the response, the browser displays the document 
according to document type. 

52 



Basics of the UNIX Operating System 

Introduction 
We will be using the UNIX operating system, a powerful network operating system, or 
OS. The user interface of a UNIX system is called a shell. Shells are what actually 
respond to what you type and tell the OS what you want it to do. 

Logging In 
This module will introduce you to some fundamental ideas and techniques for using the 
UNIX environment. 

We will be using PC's and logging in over a network. One way to do this is to: 

1. Go to the start menu 
2. Select Run ... 
3. Type telnet when the window for the program appears 
4. Under the Connect menu, select one of the wpi machines (ask us which they are!) 

or select Remote System and type wpi.wpi.edu  and select connect. 
5. Type your User Name and Password when prompted to do so. 

Understanding Directories 
The directory structure of the UNIX system is very similar to that of a personal computer. 
Folders on a personal computer are called directories in UNIX. Directories can contain 
files and other directories called subdirectories that, in turn, can contain files and 
subdirectories and so on. The UNIX directory structure is analogous to the trunk and 
roots of a tree. 

___--- 	 Files 

'1 7\1 
ill  

Figure 1: Directory Structure Example 

Every UNIX system contains a 'root' directory which is the trunk of the tree. The files and 
directories branch out from the trunk. Users have their own space set aside on the disk for 
their files and directories. This space is called the user's 'home directory.' The home 
directory of a user is represented by their username. 

This refers to the root directory. 

53 



ryan 

F.=- 1  
fu el 	 myDir 

ti 	 This refers to the users home directory. 

This refers to the current working directory. 

This refers to the super directory of the current working directory, or the 
• • 	 directory up one level. 

This refers to the previous directory. 

Z2t 
root 

filet 

Figure 2: Sample Directory Tree 

Figure 2 represents a sample directory tree.  ryan's  home directory contains two items: a 
subdirectory,  myDir,  and a file,  filet.  Every time  ryan  logs into this computer, he will 
begin at his home directory. The home direCtory of a user can be represented by a '—,' 
(called a tilde). Similarly, the home directory of any other user can be represented by 
'—usernames. 

For example, for  ryan,  would represent his own home directory, while  —kate  would 
represent the home directory of user  kate. 

UNIX is case-sensitive; that means  filet, Filet,  and  FILE1  all refer to different files. A 'I' 
is used to separate subdirectories. A  pathname  is a sequence of symbols used to identify 
a file or directory. Every file has a  filename.  The simplest type of pathname is just a 
filename. If you specify a filename as the pathname, the operating system looks for that 
file in the current working directory. If the file resides in a different directory, you must 
tell the operating system how to find that directory by specifying a pathname. 

54 



There are 2 types of pathnames. If the pathname starts form your current working 
directory then it is a  relative pathname.  If it starts from the root directory then it is an 
absolute pathname. 

For Figure 2, the pathname of Filelwould be: 

If user  ryan  is in his home directory: 

filel 

If user  ryan  is outside his home directory: 

-/filel 

If user  kate  wants to refer to  ryan's  file: 

-ryan/filel 

Absolute pathname for  ryan's  file: 

/ryan/filel 

Similarly, the pathname of  file2  would be: 

If user  ryan  is in his home directory: 

myDir/file2 

If user  ryan  is outside his home directory: 

-/myDir/file2 

If user  kate  wants to refer to  ryan's  file: 

-ryan/myDir/file2 

Absolute pathname for  ryan's file: 

/ryan/myDir/file2 

Managing Files 
Now that you've seen the UNIX directory structure, we can look at some commands to 
use. The following is an overview of some useful commands. 

cd (Change Directory) 

55 



The command cd switches the user from the current working directory to a different 
directory. 

For example, in order to change myDir in ryan's home directory: 

If user ryan is in his home directory: 

cd myDir 

If user  ryan  is outside his home directory: 

cd -/myDir 

If user katewants to access ryan's files in myDir: 

cd -ryan/myDir 

'  can also perform the following specific tasks: 

takes users to their home directory. 

cd  takes a user up one directory. (If ryan is in myDir, this command will take 
him to the directory above, which is his home directory.) 

takes users to the directory they were previously in. (If kate were previously 
in her home directory, but had changed to ryan's (via cd —ryan,) then cd - 
would take her back to her home directory.) 

takes users to the root directory. 

Is (List) 

Is displays either the contents of the current directory, if no path is specified, or the 
contents of the specified directory. For example 

is -ryan 

would display: 
myDir/ 	 filel 

Thus, the contents of the home directory of ryan is the subdirectory, myDir,  and the file 
filel  . 

Is also has some options. One of the most common is  is -1 which displays the contents of 
the specified or current directory with more information. For example: 

is  -1 -ryan 

might produce the following output: 
drwx-w---x  2  ryan  100  4096 Jun 14  2000 myDir 
-rwx-w---x 1  ryan 100 1450 Jun  14 13:01  filel 

cd 

cd 

56 



The first character in each line represents whether the item is a file or a directory  (d  for 
directory,  -  for file). The next nine characters represent the permissions set to that item 
(permissions will be discussed below). The next number represents the number of links of 
the file. (Not discussed here.) Next is the owner of the file,  ryan.  Following this is the 
userid of the user;  ryan  is user 100. Following this is the size.  filet  is 1450 bytes. A byte 
is the amount of space needed to store 1 character in a computer.  myDir  is 4096 bytes 
(all directories are 4096 bytes). Next is the month, followed by the day, followed by 
either the year or time the item was created. If the file way created during the current 
year, the time is displayed, if not the year is displayed. And finally, the last column is the 
full filename. 

pwd (Present or Print Working Directory) 

This command displays the pathname of the current directory. For example, if  ryan's 
current directory is  myDir, 

pwd 
would display: 

/ryan/MyDir/ 

rm (Remove) 

The remove command deletes a file. For example, if  ryan  wishes to delete  filel  he can 
type: 

rm filel 
It is important to remember that once a file is deleted, it is gone forever. Use this 
command carefully! 

cp (Copy) 

The copy command, is used to copy a file or group of files. If  kate  wishes to copy  t! 	 to 
myDir  she types: 

cp filel -/myDir/ 
We can use cp to make a copy of a file. If  kate  wants another file just like  filel  in her 
home directory called  filelsave,  she can type: 

cp filel filelsave 

my (Move) 

Move performs the exact same function as cp, except that after the file is copied, it is 
deleted from the original location. For example, if  kate  wishes to move  filel  to  myDir, 
(and keep the same name) she can type: 

my filel -/myDir/ 
If she is in her home directory and wants to move it to  myDir  AND give it a different 
name, she can type: 

my filel -/myDir/newFilel 
An is of the home directory would no longer show  filel. my  is often used to rename a 
file. 

57 



mkdir (Make Directory) 

The  mkdir  command creates a new directory. For example, if  ryan  wishes to create the 
directory  newDir  within his home directory he types: 

mkdir newDir 

rmdir (Remove Directory) 

The  rmdir  command removes an empty directory (so you have to remove the files in the 
directory first with  rm).  For example, if  ryan  wishes to delete the empty directory 
newDir  he types: 

rmdir newDir 

more 

The command  more  displays the contents of files one screen at a time. For example. to 
display the contents of  filel  one screen at a time use the following command: 

more filel 
(Then hit the space bar to get another screenful) 

Getting Information 

who or whoami 

who  and the related command  whoami  give information about users logged into the 
computer.  whoami  informs you of your username while  who  lists all the people currently 
logged into the same computer that you are logged into. 

For example, for user  ryan,  the command  whoami  displays: 

ryan 
Possible output for the command  who: 

kate tty0 Jul 14 12:00 
ryan ttyl Jul 14 11:45 
mike tty8 Jul 14 05:45 

The first field is the username, the second field is the terminal port they are connected to, 
and the final two fields are the date and time of connection. 

finger 

An easy way to find out more about someone is to 'finger' them from your terminal. 
'finger'ing someone will tell you if they're currently logged on, or when they, last logged 
off, their home directory, real name, shell, and their mail status. The following is sample 
output for the command: 

finger ryan 
Login name: ryan In real life: Ryan Doe 
Phone: 555-1234 
Directory: /usrl/ryan 	 Shell: /sh/tcsh 

58 



No unread mail. 
User 	 Real Name Idle TTY Host 
ryan 	 Ryan Doe 0:03 pl moose.wpi.edu  

Typing  finger  with no arguments returns a list of all users on the system. 

quota 

quota  displays your disk quota. A disk quota is the amount of disk space that you are 
allocated. Every once in awhile, you should check to see if you are running out of disk 
space: The following is sample output from the command  quota. 

Disk quotas for user ryan (uid 100): 
Filesystem blocks quota limit 
/ryan 	 3498 	 4000 5000 

Getting Help 

man command_name 

The man command accesses the online unix manual pages. Because they are hard to read, 
we often try every other option before resorting to the man pages (ask your friend, try the 
web, look it up in a book, etc.) In the above, command_name is the name of the 
command you want to look up. If you don't know the name of the command, you can do 
a keyword search by adding the "-k" option before the command_name. If the command 
you are looking for is anywhere in the man pages, this will find it. 

Understanding File Permissions 
Unlike personal computers where usually only one person has access to the information 
contained within the computer, UNIX allows many people to access the computer and its 
information. In order to ensure the privacy and security of data and programs on a UNIX 
system, the file system is designed to allow users access only to that information that they 
have permission to access. 

Every file is stored with a file permission that designates who has the ability to (1) read 
from, (2) write to, and/or (3) execute that particular file. 

A file permission consists of nine items: three groups of the three letters,  r, w  and  x 
where  r  means  read, w  means  write  and  x  means  execute.  For example: 

-rwx-w---x filel.txt 

The three groups are Owner, Group and Public. For the above: 

Owner: rwx Group: r-- Public: --x 

Here, the Owner (usually the creator) of the file has permission to read, write (change) 
and execute  filel.txt.  We won't be using groups, but here the Group has permission to 
Read (look at) the file, but not to Write (change) or Execute the file. And the final three 

59 



characters represent the level of access that the Public (sometimes called the World) has 
to the file. 

Therefore, in our example the Owner of the file has permission to  read, write,  and 
execute  the file. The Group has the ability only to  read  from the file, and the Public has 
the ability only to  execute  the file. 

Changing File Permission 
When we create our web pages, we will give the Public permission to access our pages, 
but not change them.  chmod  is a unix command to change the permissions of a file. there 
are two methods to use chmod, one is to use the binary/octal method, the other is to use 
arguments  to specify how to change the permissions. 

Binary/Octal Method: 

chmod permission filename 
where permission is a three digit number with each digit an octal number (0 - 7). The first 
digit represents the Owner's permissions, the second represents the Group's permissions, 
and the third represents the Public's permissions. Each digit is a combination of the three 
possible permissions:  read, write,  and  execute.  We have to look at each octal digit in 
binary (base 2) to understand the meaning. Let's do this with the example 

chmod 755 filel.txt 

In binary,  755  is  111 101  101  (spaces for clarity). Each group of three binary digits 
represents the triple  rwx.  The first group,  111,  means that the owner can  read, write  and 
execute file 1 .txt.  The next group of three,  101  indicates that the Group can  read  and 
execute,  but not  write  (change)  file 1. txt.  The third group, also  101  indicates that the 
Public can  read  and  execute,  but not  write  to  file 1 . txt.  Therefore, the value for a 
permission of Owner to  read, write,  and  execute,  Group  read,  and Public  read,  (rwx  r-
-  r--)  would be  44;  the value for a permission of Owner to  read, write,  and  execute, 
Group to  read, write,  and  execute,  and Public none  (rwx rwx  ---)  would be  77 0;  and 
the value for permission for all 3 groups to perform all 3 operations  (rwx rwx rwx) 
would be  777. 

The other syntax for this command is: 

chmod who[+/-]permissions file 
who  has to be a single letter signifying which set of permissions to affect: user, group, or 
other. The codes are as follows: 

u = user 
g = group 
o = other 
a = all 

The [+/-] designates whether to allow or disallow the following permissions. The 
permissions, like octal mode, are for reading, writing, and executing. The codes for these 
are: 

r = read 
w = write 

60 



x = execute 

There can even be more than one argument to specify how to set all the permissions. 
These arguments must be separated by a comma: 

chmod who[+/-]permissions,who[+/-]permissions file 

If I have a file named  foo,  and I want to make sure everyone has permission to read it, I 
would execute the following command: 

chmod a+r foo 

This means, for the file foo, I want to add the read permission to all the sets of 
permissions. Suppose I want to give everyone read and write, and execute permission 
(this means anyone can erase it too!). The command would look like: 

chmod a+rwx foo 

Now, suppose I want to give everyone read permission, but only give myself write and 
execute permissions, I would type: 

chmod a+r,u+wx foo 

The advantages of using this method over the octal method is that it is easier to 
understand, and you can set one permission regardless of the other permissions. The 
disadvantage is that a complicated command takes longer to type and think out (once you 
know the octal codes, the octal method is almost always faster, but if you forget them, the 
letter method is usually easier to understand). The best way to learn how to use chmod is 
to use it. Try the examples in your unix account. You can create a dummy file named foo 
by typing: 

touch foo 

you can check the permissions on foo by typing: 
is -1 foo 

61 



Introduction to HTML 

What is HTML? 

Hypertext markup language, or HTML, is the language of the World Wide Web. Every 
page found on the World Wide Web, from  USAToday  to  WPI,  is written in HTML. 
HTML is a way of describing to the browser, such as Netscape Navigator, Microsoft 
Internet Explorer, or Mosiac, how to display and format text and images on a page. It 
consists of a series of commands, called tags, which begin with a < and then end with a 
>. Tags tell the browser what to do with the text or images associated with it. 

How HTML Tags Work 
An HTML tag is made up of a < followed by the command and ending with a >. Inside 
the <> is the name of the command, the  tagname.  Some tags also take  attributes,  which 
gives the tag some specific information, or  value.  Therefore, the basic structure of a tag 
is: 

<tagname attribute="value" 

For example, in order to insert an image into a page you would use the <img> tag like 
this: 

<img src="americanGothic.png"> 

Assuming that there was a file named "americanGothic.png" in the current directory, this 
tag would result in: 

There are two main types of tags. The first type are standalone tags, like <img>, in which 
one tag is all that is needed to perform an action. The second type are container tags, 

62 



which consist of a starting tag and a ending tag that alters everything between them. The 
structure of a container tag is: 

<tagname attribute="value" 	 ></tagname> 

An example of a container tag would be <u></u>, which underlines text. The HTML text 

<u>This text is underiined.</u> This text is not. 

would produce: 

This text is underlined.  This text is not. 

Underlining isn't always a good idea because links are underlined also, and readers may 
get confused and not know if the underline is for emphasis or if the underline represents a 
link. 

HTML is a case-insensitive language. For example, <Center> is the same as <center> 
which is the same as <CENTER> which is the same as <CeNtEr>. It is your preference 
how you choose to write your tags. 

Basic Tags 
The four most important tags that each page must contain are <html>, <head>, <title>, 
and <body>. Each of these are container tags that appear at the top of each HTML file in 
the following order: 

<html> 

This tag tells the browser that this file is an HTML document. This is the first tag that 
will appear in all HTML documents; since it is a container tag, it will also be the last tag 
in all HTML documents. Its syntax is simply: 

<html> 

</html> 

<head> and <title> 

The next necessary part to all web pages is the <head> tag. This tag contains the title of 
the page (and sometimes other information). The title of the page tells the reader what the 
page is about and will appear at the top of the browser's window. The syntax for these 
tags is: 

<head> 
<title>Title of Web Page</title> 
</head> 

<body> 

63 



The final tag that most web pages need is the <body> tag. This tag tells the browser that 
the following information should be displayed. It can also contain the formatting 
information for the page (this will be discussed later). The syntax for this tag is: 

<body> 

</body 

Therefore all web pages must have the following structure: 

<html-P 
<head> 
<title>Title of Web Page</title> 
</head> 
<body> 

• 
Body of page 

</body> 
</html> 

End of line tags 
Probably the most basic tags that will be used many times in web pages are <br>, break, 
and <p>, paragraph. These tags will end the current line, much the same as a carriage 
return in a word processor. It is important to note that these tags must be used in place of 
a carriage return since the browser will not recognize a carriage return in an HTML file. 
It is also important to note that all whitespace characters such as tabs, spaces, and 
carriage returns will be combined by the browser into one space. 

<br> 

The break tag, <br>, will end the current line and any text placed after it will continue on 
the next line. For example: 

I want to end this line here--> <br> This is the next line. 

becomes 

I want to end this line here--> 
This is the next line. 

<p> 

The <p> tag acts exactly like <br>, except that it is to be used at the end of paragraphs. It 
will end the current line and create a blank line between the paragraphs (this can also be 
achieved by using two <br> tags). For example: 

...this is the end of this paragraph--> <p> This is the 
beginning of the next... 

becomes 

64 



...this is the end of this paragraph--> 

This is the beginning of the next... 

Basic text formatting tags 
It is often necessary to change the format of some text in order to emphasize a point, to 
set it apart from other text, or to show importance. The following container tags enable 
the block formatting of text to show emphasis: 

<b>, <u>, and <i> 

The <b> tag changes the text contained within the tag to boldface; the <u> tag underlines 
the text contained within the tag; and the <i> tag changes the text contained within the 
tag to italics. 

<b>This text is bold.</b> <br> 
<i>This text is italicized. </i> <br> 
<u>This text is underlined.</u> <br> 
This text is not formated. 

becomes 

This text is bold. 
This text is italicized 
This text is underlined.  
This text is not formatted. 

<h#> 

The heading tag, <h#>, makes text larger than the surrounding text, as in a newspaper 
headline. The number in the heading tag tells the browser how big you want the text to 
be. A number from 1 to 6 may be used, with 1 being the largest and 6 the smallest. The 
heading tag automatically creates a break after itself, therefore any text placed after the 
heading will continue on the next line. 

<hl>This is heading 1</h1> 
<h2>This is heading 2</h2> 
<h3>This is heading 3</h3> 
<h4>This is heading 4</h4> 
<h5>This is heading 5</h5> 
<h6>This is heading 6</h6> 

becomes 

65 



This is heading 1 

This is heading 2 

This is heading 3 

This is heading 4 

This is heading 5 

This is heading 6 

<center> 

The <center> tag, as its name implies, centers text contained within the tag. This tag can 
be used to center anything from one character to the entire contents of the page. 

<center>This text is centered.</center> 
<br> 
This text is not centered. 

becomes 

This text is centered. 

This text is not centered. 

Horizontal line tag 

<hr> 

It is often necessary to separate portions of a page from one another through the use of 
horizontal line separators (as seen in this page). In order to create these lines, use the 
<hr> tag. The <hr> tag will automatically create a break before and after itself, therefore 
any text following it will continue on the next line. 

... end of one section 
<hr> 
beginning of next section  . 

becomes 

... end of one section 

66 



beginning of next section ... 

It is possible to change the attributes of the line through the use of the size, width, and 
noshade attributes. 

The size attribute changes the thickness of the line. The value of the size is represented in 
pixels and is called point size. 

Size 1 line: 
<hr size=1> 
Size 6 line: 
<hr size=6> 
Size 20 line: 
<hr size=20> 

becomes 

Size 1 line: 

Size 6 line: 

Size 20 line: 

The width attribute changes the width of the line. The value of the width can either be 
represented as a pixel value or a percentage of the total width of the page. 

Width 200 line: 
<hr width=200> 
50% total width of page line: 
<hr width=50%> 

becomes 

Width 200 line: 

50% total width of page line: 

The noshade attribute changes the line to a solid grey line. 

Size 1 line: 
<hr size=1 noshade> 

67 



Size 6 line: 
<hr size=6 noshade> 
Size 20 line: 
<hr size=20 noshade> 

becomes 

Size 1 line: 

Size 6 line: 

Size 20 line: 

Links 

<a href="..."> 

Navigating the World Wide Web is achieved through the use of links, or a connection 
from one web page to another. When a person clicks their mouse on a link, the browser 
takes them to the page the link represents. To create a link, use the href attribute of the 
<a> (anchor) container tag. This attribute is followed by the web address of the page you 
want to link to. Note: Both text and images may be used as a link. 

This creates a link to <a href="http://www.wpi.edu ">WPI's 
web page</a> 

becomes 

This creates a link to  WPI's web page 

Images 

<img sre="..."> 

Until now we have dealt only with text, but the real importance of the web is the ability 
to add images to a page in order to make it more pleasing to a visitor. To add images to a 
page, use the <img> standalone tag. To specify the image to display use the src (source) 
attribute followed by the path and filename of the image. Valid image formats include 
GIF (.gif), JPEG (.jpg or .jpeg), and PNG (.png). 

This is the WPI logo: <img src="wpi.png"> 

68 



assuming 'wpi.png' is contained within the same directory as the HTML file, this 
becomes: 

This is the WPI logo: 

69 



More HTML 

<body> 
As you have learned, the <body> tag contains all of the text and images in a page. 
However, this is not the only function this tag performs. <body> also controls the color 
scheme and the background of a page through its attributes. 

The background attribute can be used to designate an image file as a background to a 
page. The image would be tiled across the page if it is smaller than the browser window. 

The syntax for this tag is: 

<body background="filename.gif/jpg/png"> 
The following are two methods for specifying color in a web page. 

#RRGGBB (Red, Green, Blue) 

This method requires you to provide the amounts of red, green and blue contained within 
the color in hexadecimal form. For example, red would be represented by #FF0000 
(red:255, green:0, blue:0) and likewise blue would be represented by #0000FF. This 
method can be used on all browsers; however, it requires a knowledge of hexadecimals 
and of color content. 

Netscape Color Names 

The method involves simply using the name of the color in the attribute. For example, 
"red" would produce red and "blue" would produce blue. This method is advantageous if 
you do not know the exact makeup of the color. However, this method only works in 
Netscape Navigator and Internet Explorer - other browsers may not display the page 
correctly. 

Since the #RRGGBB method works for all browsers, we will be using it exclusively. 

The  bgeolor  attribute sets the background color of the page. Its syntax is: 

<body bgcolor="#RRGGBB".> 
The  text  attribute sets the color of the text on the page. This attribute will affect all the 
text not specifically colored by the  <font> tag.  Its syntax is: 

<body text =" #RRGGBB"> 
The  alink, vlink,  and  link  attributes set the color of the links contained in the page.  link 
refers to the color of the unvisited (unclicked) link.  vlink  refers to the color of the link 
after it has been visited (clicked).  alink  refers to the color of the link while it is active 
(while it is being clicked). The syntax of this attribute is: 

<body link="#RRGGBB" vlink="#RRGGBB" alink="#RRGGBB"> 

70 



<basefont> 
The <basefont> tag can be used to set the size and font of all the text contained within a 
page through the use of the  size  and  face  attributes. This tag usually appears directly after 
the body tag. 

The  size  attribute specifies the size of the font. Valid values range from 1 - 7 (1 being the 
smallest). For example: 

This is font 1 
This is font 2 
This is font 3 
This is font 4 
This is font 5 
This is font 6 

This is font 7 
The syntax for this attribute is: 

<basefont size="[i-7]"> 

The  face  attribute sets the type of font displayed on the page. This attribute will only 
work correctly on computers that have the specified font installed on them. (i.e., if you 
want your page to use "Times New Roman" font, in order for a visitor to your page to see 
the font, they must have "Times New Roman" installed on their system.) This attribute is 
also currently supported only by Microsoft Internet Explorer and Netscape Navigator. 
The syntax for this attribute is: 

<basefont face="font type (i.e., Arial)"> 

<font> 
The <font> container tag sets the color, font face, and size of selected text through the 
color, size,  and  face  attributes. 

The  color  attribute sets the color of the text inside the container tag. The syntax of this 
attribute is: 

<font color="#RRGGBB">Text to be changed</font> 

This HTML text: 

<font color="#FF0000">This is red</font> <br> 
This is normal <br> 
<font color="#000OFF">This is blue</font> 

71 



This text is aligned to the left 

would result in: 

This is red 
This is normal 
This is blue 

The  size  attribute works the same as the size attribute of <basefont> in that it sets the size 
of the text inside the container tag. However, if the <basefont> tag has been used to set 
the font size for the page, you may change the size of the text relative to the base font (i.e. 
+2 would be the base font + 2). The syntax for this attribute is: 

<font size="(1-7) or (+/- relative value)"> 

These tags: 
<font size="2">This is set to font 2</font> This is not 

or 
<basefont size="3"> 
<font size="+2">This is set to font 5</font> 

would result in: 

This is set to font 2 This is not 

This is set to font 5 

The  face  attribute sets the type of font of the text inside the container tag. This attribute 
will only work correctly on computers that have this type of font installed on them. (i.e. if 
you want your page to use "Times New Roman" font, in order for a visitor to your page 
to see that font, they must have "Times New Roman" installed on their system. This 
attribute is also only supported by Netscape Navigator and Internet Explorer. The syntax 
for this attribute is: 

font face="font type"› 

More on the <IMG> Tag 

The <img> tag is used to display images on web pages. Moreover, it is possible to control 
both the appearence of the image and how it reacts to the surrounding text throught the 
use of the  align, alt, border, width,  and  height  attributes. 

The  align  attribute controls the way text reacts to the image. The syntax for this tag is: 

<img src="image.xxx" align="left/right/top/middle/bottom> 
The results of each of the align values are: 

align="left" 

72 



1111.1111WRIPP",  

align="bottom" 

This text is aligned to the bottom 

align="right" 

This text is aligned to the right 

align="top" 

This text is aligned to the top 

This text is aligned to the middle 

align="middle" 

The  alt  attribute is used to display text in place of the image when the image is not, or 
cannot be, loaded (usually when the user is viewing a page with a text-only browser.) The 
syntax for this attribute is: 

<img src="path/image.xxx" alt="alternate text"› 

For example, the following tag 
Edvard Munch <img src="scream.jpg" alt="The Scream"› 

would result, on a graphical browser, in: 

Edvard Munch 

73 



This is a border of size 20. 

and a text-only browser in: 

Edvard Munch <The Scream> 

The  border  attribute controls the size of the black border surrounding the image. The 
syntax for this attribute is: 

<img  src="image.xxx" border = "size"> 
For example: 

<img  src="picasso.jpg" border= "5"> 

44 This is a border of size 5. 

<img  src="picasso.jpg" border="20" 

The  width  and  height  attributes set the size of the image in order to enlarge or reduce the 
size of the image. You can set the exact size of the image by specifying these attributes. 
For example, with our 140x109 image of Van Gough's "Starry Night", 

<img  src="starryNight.jpg"› 
<img  src="starryNight.jpg" width="280"  height= "218"> 

Becomes: 

74 



It is not necessary to specify both  height  and  width  attributes for an image. If you only 
specify one, the browser will automatically scale the other. 

Lists 

HTML allows a page designer to present data in the form of a list. There are three main 
types of lists: ordered, unordered, and definition lists. 

An  ordered list,  as its name implies, is used to display a list of items that are sorted by 
importance or sequence. An ordered list is created by using the <ol>...</ol> container tag. 
Each item is signified with the <li> (List Item) tag. The syntax for this tag is: 

<ol> 
<li>first item 
<li>second item 

•  • • 
001> 

For example: 

<ol> 
<li>Do this first 
<li>Do this next 
<li>Do this last 
</ol> 

produces: 

1. Do this first 
2. Do this next 
3. Do this last 

It is possible to change the type of count marks (e.g., 1 2 3 to a b c, etc...) through the 
type  attribute and the starting position through the  start  attribute. 

There are five different types of count marks for use with the  type  attribute: 

type="A" 

type="a" 

type="I" 

type="i" 

type="l" 

capital letters (e.g. A, B, C, ...) 

lowercase letters (e.g. a, b, c, ...) 

capital roman numerals (e.g. I, II, III, ...) 

lowercase roman numerals (e.g. i, ii , iii , ...) 

default numbers (e.g. 1, 2, 3, ...) 
The  start  attribute allows the list to be started anywhere within the list. For example, 
start="5" would start the list with number 5 (or whichever count mark is being used). 

For example: 

<01 type=I start=3> 

75 



<li>Open the file menu 
<li>Click on 'save as' 
<li>Type 'document.txt' 
<li>Click 'OK' 
</ol> 

This would result in 

III. Open the file menu 
IV. Click on 'save as' 
V. Type 'document.txt' 

VI. Click 'OK' 

An  unordered list  is used to present a list of items marked by bullet points instead of 
count marks. An unordered list is created by using the <ul>...</ul> container tag. As with 
an ordered list, each list element is denoted by the <li> tag. The syntax for an unordered 
list is the same as that of an ordered list. 

An example of an unordered list is: 

<ul> 
<li>Item one 
<li>Item two 
<li>Item three 
</ul> 

• Item one 
• Item two 
• Item three 

It is possible to change the shape of the bullet from the default disc to a square or a circle 
through the use of the  type  attribute. The type attribute may be used in the <ul> tag, to 
change all the bullets, or in the <li> tag, to change all bullets following that tag. For 
example: 

<ul type="square"> 
<li>Item one 
<li type="circle">Item two 
<li>Item three 
<li type="disc">Item four 
</ul> 

• Item one 
o Item two 
o Item three 
• Item four 

The last major type of list that is supported by HTML is the  definition list.  A definition 
list consists of a list of terms followed by their corresponding definitions indented on the 
line below. A definition list is created by implementing the <dl>..</d1> container tag. 

76 



Each term is denoted by the <dt> (Definition list Term) tag and, likewise, each definition 
is denoted by the <dd> (Definition list Definition) tag. The syntax for this tag is: 

<dl> 
<dt>Dog 
<dd>(n.) a canine 
<dt>Cat 
<dd>(n.) a feline 
/dl> 

Which becomes: 
Dog 
(n.) a canine 
Cat 
(n.) a feline 

Adding sound to a web page 

It is possible to add not only images, but also add sound to web pages; thus making them 
truly dynamic. The <embed> tag allows for the addition of sound to a web page. Valid 
sound formats are WAV (.wav), AU (.au), and MIDI (.mid). The syntax of this tag is: 

embed src="path/sound.xxx" loop="value"> 

The  loop  attribute defines the number of times the sound will repeat. The value would 
either be a number, signifying the number of repeats, or 'infinite,' signifying that the 
sound will repeat until a different page is loaded. 

The <embed> tag behaves very much like the <img> tag; however, instead of displaying 
an image on the page, the <embed> tag plays the specified sound and displays a console 
on the page. 

This console allows the visitor to your page to stop, pause, and control the volume of the 
background sound. As with the <img> tag, the <embed> tag also allows the page 
designer to control the height and width of the console. In order to display the console as 
above, use the following values: 

<embed src="sound.---xx" height="60" width="14 5 "> 

In order to not display the console at all, simply set the height and width attributes to 0. 

77 



Advanced HTML 

Tables 
Tables make it possible to format text, data, images, or some combination in such a way 
as to align them in a sensible manner. An HTML table consists of several container tags: 
<table>, <tr>, <td>, and <th>. 

<table> 
This tag is the wrapper that surrounds the other tags that make up the table. The <table> 
tag is necessary in every table; without it or the ending </table> all the interior tags will 
be ignored. 

<tr> 
The Table Row tag, <tr>„</tr>, denotes the beginning of a row of the table. The </tr> tag 
must be used to end each row. The total number of <tr> tags specifies the number of rows 
contained within a table. 

<td> 
The Table Data tag, <td>..</td>, contains the actual data of the table. The <td> tag may 
only appear within a table row, <tr>, tag. Each data tag is called a cell and it is not 
necessary to have the same number of cells in each row -- the short rows will be filled 
with blank cells. 

<th> 
The Table Header tag, <th>„</th>, acts the same as the <td> tag except that, by default, 
all data within the cell is aligned to the center and is boldface. 

An example of a simple table: 

<table> 
<tr> 

<th>Name</th> 
<th>BA</th> 
<th>HR</th> 

</tr> 
<tr> 

<td>Larkin</td> 
<td>.300</td> 
<td>3</td> 

</tr> 
<tr> 

<td>Morris</td> 
<td>.290</td> 
<td>6</td> 

</tr> 
</table> 

becomes 

78 



Name BA HR 
Larkin .300 3 

Morris .290 6 
As with most other tags, it is possible to change the appearance of a table through the use 
of attributes. Each table tag has its own attributes with some attributes having the ability 
to be used in more than one tag. The following is a description of each attribute and the 
table tags it can be used in. 

The  border  attribute can only be used with the table tag. It controls the size of the border 
surrounding the table. The size is represented by a pixel value with the default being 0, no 
border. 

<table border="2"> 
<tr> 

<th>Name</th> 
<th>BA</th> 
<th>HR</th> 

</tr> 
<tr> 

<td>Larkin</td> 
<td>.300</td> 
<td>3</td> 

</tr> 
<tr> 

<td>Morris</td> 
<td>.290</td> 
<td>6</td> 

</tr> 
</table> 

becomes 

Name r  BA HR 
Larkin .300 3 
Morris [29016 

The  cellpadding  and  cellspacing  attributes can only be used with the table tag. They 
control the space between table elements. The cellpadding attribute controls the amount 
of space between cell data and the cell wall. The cellspacing attribute controls the space 
between the cells of a table. The size is represented by a pixel value. 

<table border="2" cellpadding="20" cellspacing="5"> 
<tr> 

<th>Name</th> 
<th>BA</th> 
<th>HR</th> 

</tr> 
<tr> 

<td>Larkin</td> 
<td>.300</td> 
<td>3</td> 

</tr> 

79 



Name  BA  HR      

.300 	 3 Larkin 

Morris .290 
	

6 

<tr> 
<td>Morris</td> 
<td>.290</td> 
<td>6</td> 

</tr> 
</table> 

becomes 

The  align  attribute can be used on all of the table tags. It controls the alignment of text to 
the left, center, or right inside a cell, or to align the table on the page. Valid values for 
this attribute are  align=" right",  align="center",  and  align="left".  When used in a 
<table> tag, the entire table is affected. If used in the <tr> tag, all cells in that specific 
row will be aligned accordingly. If used within either the <th> or <td> tag, only that cell 
will be aligned. 

<table border="2"> 
<tr> 

<th>Player Name</th> 
<th>Batting Average</th> 
<th>Home Runs</th> 

</tr> 
<tr align="center"> 

<td>Larkin</td> 
<td>.300</td> 
<td align="right">3</td> 

</tr> 
<tr> 

<td align="center">Morris</td> 
<td>.290</td> 
<td>6</td> 

</tr> 
</table> 

Player Name Batting Avg. Home Runs 

Larkin 	 .300 	 I 	 3 

Morris ri90 	 16 

The  valign  attribute can be used on all of the tags. It controls the vertical alignment of the 
text within a cell. Valid values for this attribute are  valign="top", valign="middle",  and 
valign="bottom".  As with  align,  what cells the attribute affects is based on what tag it is 
used in. If the attribute is used in the <table> tag, all cells in the table are aligned 

80 



Player Name 
Barry 
Larkin 

Batting Avg. 
.300 

Home Runs 

3 

Hal 
Morris 	 .290 

6 

accordingly. If used in the <tr> tag, all cells in that specific row will be aligned 
accordingly. If used within either the <th> or <td> tag, only that cell will be aligned. 

<table border="2"> 
<tr> 

<th>Player Name</th> 
<th>Batting Average</th> 
<th>Home Runs</th> 

</tr> 
<tr> 

<td>Barry<br>Larkin</td> 
<td valign="top">.300</td> 
<td>3</td> 

</tr> 
<tr> 

<td>Hal<br>Morris</td> 
<td valign="bottom">.290</td> 
<td valign="middle">6</td> 

</tr> 
</table> 

The  bgeolor  attribute can be applied to all of the table tags. This attribute controls the 
background color of the cells. The color can be represented by either the actual color 
name (i.e. "red") or its hexadecimal value (i.e. #FF0000 = red). If the attribute is used in 
the <table> tag, all cells in the table are colored accordingly. If used in the <tr> tag, all 
cells in that specific row will be colored accordingly. If used within either the <th> or 
<td> tag, only that cell will be colored. 

<table bgcolor="white" border="2"> 
<tr bgcolor="#FF0000"> 

<th>Player Name</th> 
<th>Batting Average</th> 
<th>Home Runs</th> 

</tr> 
<tr> 
<td>Barry<br>Larkin</td> 
<td>.300</td> 
<td bgcolor="#00FF00">3</td> 

</tr> 
<tr> 

<td>Hal<br>Morris</td> 
<td>.290</td> 
<td bgcolor="0000FF">6</td> 

</tr> 
</table> 

1 layer"`  ame Batting  AT  Home Runs 
Barry 	 1300 '3  

8l 



Larkin 

Hal 
Morris 

.290 

The  width  and  height  attributes can be applied to the <table>, <td>, and <th> tags. They 
control the size of the table elements. The sizes are represented as either pixel sizes or as 
a relative percentage. If the attribute is used in the <table> tag, the width and height 
control the size of the entire table. A percentage, in this case, is relative to the width and 
height of the entire web page. 

<table border="2" width="35%"> 
<tr> 

<th>Name</th> 
<th>BA</th> 
<th>HR</th> 

</tr> 
<tr> 

<td>Larkin</td> 
<td width="50">.300</td> 
<td>3</td> 

</tr> 
<tr> 
<td>Morris</td> 
<td>.290</td> 
<td height="50">6</td> 

</tr> 
</table> 

Name 

Larkin 

Morris   

BA  HR 

3       .300         

.290  6       

The  colspan  and  rowspan  attributes apply only to the <td> and <th> tags. They control 
the number of columns and rows (respectively) that a single cell spans. The value 
represents the number of columns or rows the cell should span. The results are the same 
whether this attribute is used in either tag. 

<table border="2" cellpadding="3"> 
<tr> 
<td colspan="4" bgcolor="red">Cincinnati Reds 

Stats</td> 
</tr> 
<tr> 

<th>Name</th> 
<th>BA</th> 
<th>HR</th> 
<th>RBI</th> 

</tr> 
<tr> 

<td>Larkin</td> 
<td>.300</td> 
<td>3</td> 

82 



<td rowspan="2">40</td> 
</tr> 
<tr> 

<td>Morris</td 
><td>.290</td> 
<td>6</td> 

</tr> 
</table> 

becomes 

Name FBA HR RBI 

ILarkin .300 3 
40 

! Morris 1.290 1 6 

Frames 
An HTML frame is an advanced formatting technique that allows a web page to be split 
up into sub-areas that each hold a separate HTML document. Each sub-area, or frame, 
retains the full functionality of a non-frame HTML document with the added ability to 
interact with the other frames.  Here is an example of a framed page.   

Structure of a frame 

Every framed HTML page begins with a  frame document,  that tells the browser exactly 
how to load each frame and where to place it on the screen. A frame document is exactly 
the same as a normal web page except that the <body> tag is replaced by the <frameset> 
tag. Let's examine, line-by-line, the frame document of the example framed page: 

<html> 
<head> 

<title>Frames Example</title> 
</head> 
<frameset rows="50%,*" border=l> 

<frameset cols="50%,*"> 
<frame src="tilel.html"> 
<frame src="tile2.html"› 

</frameset> 
<frameset cols="60%,*"> 

<frame scrolling="yes" src="tile3.html"› 
<frame src="tile4.html" name = "four"> 

</frameset> 
</frameset> 
</html> 

<frameset rows="50%,*" border="1"› 

This tag begins by setting the size of the two rows, in this case. By specifying '50%' the 
first row will be half the size of the screen. The '*' means 'the rest of; since in this case 
the first row takes up half the screen, the remainder of the screen is used by the second 

83 



row. It is possible to specify a pixel value for the size, but since screen size may vary it is 
often better to give relative values. 
<frameset cols="50%,*"> 

This tag, since it is nested within the other frameset, will split the top row into, in this 
case, two pieces. This tag is setting the column size to half the screen, therefore both 
frames will be the same size. 
<frame src="tilel.html"› 
<frame src="tile2.html"> 

These two frame tags are loading the html pages that will appear in the top two columns. 
The first instance of the frame tag loads the first HTML file, while the remaining 
instances load pages into the frames in the order that they are listed. 
K/frameset> 

This ending tag closes the first row. Therefore, at this point, there are two pages loaded in 
the first row and the second row is blank. 
<frameset cols="60 96,*" 

This frameset tag will now control the second (bottom) row. This time it sets the first 
column of the second row to 60%; thus the second column will be 40% the size of the 
screen. 
<frame scrolling="yes" src="tile3.html"› 

This frame tag loads the HTML document 'tile3' into the first column of the second row. 
The  scrolling  attribute controls the frame's ability to be scrollable (as well as whether it 
has a scrollbar). Since the attribute is set to 'yes' this frame is scrollable. 
<frame src="tile4.html" name="four"› 

This tag loads the final HTML document, placing it into the second row, second column. 
The  name  attribute gives the frame a name. This is used to load documents into a frame 
using a link contained within a separate frame. This is accomplished through the use of 
the  target  attribute of the <a href > tag. For example: 

<a href="docl.html" target="frame2"> 

This tag will load the HTML document 'docl' into the frame named 'frame2'. This is how 
the example was able to change frame #4 to frame #5. Also, in order to load a document 
full screen instead of inside a frame, use the target value "_top". 

<a href="fullscreen.html" target="_top"> 

Good Web Publishing Techniques 
In order to create effective web pages, it is not enough to know how to program in 
HTML. It is also important to understand what is included in well designed web pages. 
The design and lay out of a web page is as important as the information it contains. The 
following is a list of things to consider when designing an effective web page: 

• Design first  - Sit down before you start coding the page and layout what you 
want the page to look like. The worst thing you can do is 'improvise' your web 
site 

• Have a purpose  - Make sure you have a reason for creating each page. It can be 
as simple as "I want people to know about me." (No, "just because" is not a good 
reason) Make sure the information on the page follows and complements the 
purpose. 

• Choose good backgrounds  - Make sure when, or if, you decide to use a 
background color or image that it does not interfere with either the text or images 

84 



contained within the page. Also, choose backgrounds that are easy on the eyes: 
neon yellow text on an orange background is sure to make any visitor to your 
page run screaming to the optometrist. 

• No Spelling or Grammatical Errors  - Check and double check your page for 
both. No one will take any of your information seriously if it is riddled with lazy 
errors. 

• Put the most important information first  - Only about 10% of all web visitors 
scroll through an entire page. Not many people will wade through an ocean of 
background or unrelated information to get to the good stuff hidden three pages 
down. 

• Don't put too much (or too little) information on a page  - If one page is fifteen 
screens long, it is a good bet that no one will take the time to get to the bottom. 
Likewise, it is a waste of bandwidth to have one page contain only a couple of 
sentences. Break up pages by topic, trying to keep them between one and four 
screens long. 

• Don't clutter  - Make sure to keep everything spaced logically. It makes viewing 
and understanding the page much easier when the visitor does not have to fight 
the layout of the page. 

• Make sure all links work  - Make sure when including links to other pages that 
you have linked to a stable page. Check the links contained within your page 
often to make sure they still work. There is nothing worse than clicking on a link 
and being rewarded with a "404 - Page not found" error. 

• Include a link to your main page  - Always include a link to your main (front) 
page on all your pages. This is especially helpful if your main page contains a site 
map, the web equivalent of a table of contents. 

• Avoid long download times  - Always keep in mind that most people do not have 
fast connections to the web; therefore, make sure that all of your images and other 
data are as small as possible. Most people will lose patience and stop loading a 
page after more than a minute. 

• No graphics larceny  - Please do not steal original pictures or images from other 
peoples' web pages for use on your own. Take the time to design your own 
graphic - it will make your page more individual. 

• Always use the alt attribute  - Not everyone who will visit your site uses a 
graphical browser. By including the alt attribute within the image tag everyone 
who visits your site can enjoy and understand it. 

• Always use the "target=_top" attribute when using frames  - If you use frames 
on any of your pages, always use the 'target=_top' attribute in <a href...> tags to 
link to outside pages. There is nothing worse than clicking on a link within a 
framed page that is supposed to go to an outside site and having the page load 
within that frame (in fact, some people have gotten sued for it). 

• Last but not least, TEST YOUR PAGE!!!  - Before you finalize your page, 
make sure you test it on many different browsers, at several different screen 
resolutions, and (if possible) on several different modem speeds. 

85 



Introduction to JavaScript 
Javascript allows us to add programming code to our web pages. It can be used to create 
small applications such as calculators, games etc. Javascript has many applications which 
can enhance the performance of your website. You can 

1. Detect browsers. Yes, we can detect the browsers from which a client over the 
world wide web is making a request and depending on whether it is Netscape or 
Microsoft Internet Explorer, we can show the page better. 

2. It can be used for "cookies". When a user comes to a specific website, we can 
store information about the user's machine, so that when he or she returns to the 
same site, we can use the information which was stored for that specific user. 

3. We can validate forms using javascript. For instance, we can verify that that a 
person has entered the correct values as required by certain fields; if a user doesn't 
enter the correct information, we could  prompt  the user to do so. 

Implementing JavaScript in HTML 

Javascript is different from HTML. As a result we need to indicate to the browser that 
there exists a javascript embedded in the web page. We do this using the  s cr 	 tag. 

The browser looks for the  <script language="javascript"›  	 javascript 
statements....  /script  >  tags to determine where a javascripts starts and where it ends. 
To print something like "This is an alert message" we write a small javascript as follows: 

<html> 
<head> 
<title>Javascript Labs</title> 
</head><br> 
<body> 

<script language= "javascript"> 
alert  ("This is an alert message."); 

</script> 

</body> 
</html> 

Check it out 

"alert" used in the script above is a standard javascript command that when embedded in 
a script causes an alert box to pop up; it requires that the user click on the "OK" button to 
move on. 

Entering the alert command outside the script tags causes the browser to interpret it as 
plain text, and it is just displayed on the screen. 

86 



Javascript can be embedded in the  <head>  as well as the  <body>  of the HTML page. 
However it is advisable to use it in the  <head >of the web page. 

JavaScript Syntax 

As well as embedding ajavascript is in the  <script language="javascript"›  and 
/script>  tags, there are a few other things that you need to note about the syntax of 

ript. 

1. All lines in javascript end in a semicolon. 
2. Text should always be included within "". If we don't include it in quotes then it is 

interpreted to be a javascript variable, and can lead to errors. 
3. Javascript is case-sensitive for variables, but not for keywords; the variables a, 

and A are considered different. But typing  Alert  (  "This is an error . ")  is the 
sameasaLerT("This  is an error"). 

We can also use javascript to write the same information on a web page, using the 
document.write("string to be printed")  command. 

Try running the following portion of javascript: 

<html> 
<head> 
<title>Javascript Labs</title> 
</head> 
<body> 
Sample program 
<p> 

<script> 
document.write("Running from within the script"); 

</script> 

<p> 
Out of the script 
</body> 
</html> 

Check it out 

87 



More JavaScript 

JavaScript Variables 
Study (and perhaps run) the following example: 

<html> 
<head> 
<title>Javascript Labs</title> 
</head> 
<body> 

<script> 
course_name = "Frontiers"; 
string_name = "This is the"; 
str to display = string_name 4_ 	 II 	 II 	 + course_name + 111 course." 

document.write(str_to_display); 
</script> 

</body> 
</html> 

Comparing variable values: 

if (course_name="Frontiers") f 
document.write("Success"); 

1 
else f 

document.write("Failed"); 

Some operators are: 

Equal to 
Not equal to 

Less than 
Greater than 

<=  Less than or equals 
>=  Greater than or equals 

Creating Popup Boxes 
It is possible to create three different kinds of popup boxes through javascript. 

1. Alert 
2. Confirm 
3. Prompt 

88 



When a confirm box is presented and the user clicks on OK the value returned is true. 
When the user clicks on CANCEL the value returned is false. 

Consider the following: 

if  (  confirm("Do you agree with the terms and conditions of the 
agreement")  ) 
{ 

alert("You agree and can continue setup"); 
} 

else 
{ 

alert("You disagreed, exiting setup"); 

Using if...else Structures 
As we know, different browsers show the same web page differently. At such times we 
need to be able to bring up different pages to show accordingly depending upon the type 
of browser being used. 

The syntax of the if else structure would be: 

if (condition) 
1 

action... 
1 
else 
{ 

action... 

Now let's take a look at some sample javascript showing the if else structure, which you 
might want to test. Here we assume a 24 hour time format. 

if (time >= 1200) 
{ 

alert ("It is after noon."); 
} 
else 
{ 

alert ("It is morning."); 

In the example above, we would need to store a value in the variable 'time' which would 
check the condition and then take the necessary action. 

We can also have nested if else structures, so that we can check for a variety of 
conditions in a nested fashion. Here's how: 

89 



if (conditionl) 
1 

actionl... 
1 
else if (condition2) 
{ 

action2... 
} 
else if (condition3) 
1 

action3... 

actionN... 
} 

Here's an example of nesting if else structures: 

if (gpa > 3.5) 
{ 

alert ("You are a very good student."); 
} 
else if (gpa > 2.9) 
{ 

alert ("You are a good student."); 
} 
else if (gpa > 2.5) 
1 

alert ("You have an OK GPA."); 
1 
else 
{ 

alert ("You really need to put in more effort."); 
} 

In the example above we would have a value stored in the variable 'gpa' which we would 
use in evaluating the various conditions of the if else structure. 

You can also use  and, or,  and  not  to check for multiple conditions in the if statements. 

90 



Advanced JavaScript 

Events and Writing Functions 
You have seen some various pop-up boxes, the alert box and the confirm box. These 
boxes appear on screen even before the entire page loads in the browser window. Ideally, 
you would want to see these messages on the occurence of an  event.  The way to do this 
is to use functions. When we write functions, we can perform specific tasks only when 
we need these tasks be performed and not otherwise. Here's a sample code for all 3 types 
of pop-up boxes: 

Pop up Boxes 

<html> 

<head> 
<script> 

function alertSample() 
{ 

alert("This is an alert box."); 

function confirmSample() 
{ 

if (confirm("If you are 18 or older press OK.")) 
{ 

alert("confirm() returned TRUE. You can view this 
page."); 

1 
else 
1 

alert("confirm() returned FALSE. You cannot view this 
page."); 

1 

function promptSample() 
1 

your_name = prompt("This is a prompt box. Now tell me 
your name."); 

if (your_name != "undefined") 

alert("You entered " + your_name + "."); 
1 
else 
{ 

alert("You didn't enter anything."); 

</script> 
</head> 

91 



<body> 

<form name="javascriptform"> 
<input type="button" value="Alert" onClick="alertSample()"> 
<input type="button" value="Confirm" onClick="confirmSample()"> 
<input type="button" value="Prompt" onClick="promptSample()"> 
</form> 

</body> 

</html> 

Try clicking on the button below and you will trigger an event. 

Similarly, another function would cause another type of popup window to open. The 
following code is from above: 

<form name="javascriptform"> 

<input type="button" value="Confirm" 
onClick="confirmSample()"> 
. . . 
</form> 

This creates the confirm button: 
The  value  tag above with  value="Prompt"  and  onClick="promptSample  ( )  produces 
the following: 
The syntax of a function in javascript is as follows: 

function function_name(variablel, variable2,... variableN) 

function statements... 

The open and closed curly brackets ({,}) mark the start and the end of the function. 

Looping 
There are two different kinds of loops: the 'for loop' and the 'while loop'. 

For loop 
The syntax of the 'for loop' is: 

for( variable  =  initial_value; 
variable conditional final_value; 
variable operator increment/decrement_value 

statements to be looped... 

A factorial is the sum of numbers beginning with 1 up to some other amount (n). The 
resulting sum is refered to as "n factorial" or "n!". A function to calculate n!: 

function factorial(n) ( 

92 



var sum  =  0; 
if  (  (n >= 1) && (n  <=  100)  )  f 

for  (  var i=1;  i<=n;  i+1 ) 

sum  =  sum  +  i; 
1 
alert(n  +  "!  =  " + sum); 

1 
else 
{ 

alert("Invalid Input"); 

The following code is placed within the  body  tags. 

Enter a number between 1 and 100: 
<form name="sampleForm"> 
<input type="text" 

size="5" 
name="upTon> 

<input type-"button" 
value="Calculate" 
onClick="factorial(document.sampleForm.upTo.value)"> 

Enter a number between 1 and 100: 

While loop 
The syntax of the while loop is: 

while  (loop_variaole  relational operator 
terminating_ value) 

statements to be looped... 

The previous for loop could be replaced by the following while loop: 

var i  =  1; 
while  (  i  <=  n 

sum = sum + i; 
++i; 

++i  means "increment i". It is the same as  i = i + 

Arrays 
Here's how we declare an array: 
array_name  =  new Array; 
array_name can be any variable name, 

93 



You can initialize the elements of an array to the value 0 as follows: 

for (i = 0 ;i  <  20;  i++) 
1 

array name[i]  =  0; 

The HTML code displays a button labeled "Enter" and a text area. When the button is 
clicked (onClick) the JavaScript function displayArray() is called. A sample array is 
initialized and the contents of that array are displayed in the text area. 

<html> 
<head> 

<title>Arrays</title> 
<script language="javascript"> 
function displayArray() 

myArray  =  new Array; 
myArray[0] = "Huntington"; 
myArray[1]  =  "Hills"; 
myArray[2] - "High"; 
for  (  var i=0; i<myArray.length; ++i  ) 
{ 

document.myForm.textFour.value  = 
document.myForm.textFour.value + " " + myArray[i]; 

} 

</script> 
</head> 
<body> 

<form name="myForm"> 
<p> 
<input type="button" 

value="Enter" 
name="enter" 
onClick="displayArray();"> 

<p> 
Result: 
<input type="text" 

size="40" 
name="textFour"› 

</form> 
</body> 
</html> 

Check it out 

All arrays in JavaScript are objects. One property of any Array object is the  l engt h. 

Since there are 3 entries in  myArray  in the example above,  myArray  .length  =  3. 

Cookies 
Cookies are used by web pages to help get and store data on the client side. They are 
taken care of by the browsers in name/value pairs. 

94 



When the following html is loaded into a web browser, a cookie set for the corresponding 
site with name="Cookie" and value="Monster!!!": 

<html> 

<head> 
<script> 

function setCookie 
1 

document.cookie-"Cookie=Monster!! 

</script> 
</head> 

<body onLoad="setCookie()"> 
Cookie Monster 
</body> 

</html> 

Set the cookie   

The following HTML can then read the cookie: 

<html> 

<head> 
<script> 

function readCookie 
if ( document.cookie.length < 1 ) { 

document.write('No cookie set for this site.'); 
}else f 

document.write('Cookie for this site: 
document.cookie); 

1 

</script> 
</head> 

<body onLoad="setCookie()"> 
Cookie Monster 
</body> 

</html> 

Read the cookie 

For this site, depending on the browser you are using, the cookie will be stored with the 
following information: 

Name: 	 Cookie 

Value: 	 Monster!!! 

95 



Host: 	 penguin.wpi.edu:4546  

Path: 
	

/course/web/lab02 

Server Secure: no 
Expires: 	 at end of session 

96 



Introductory Pert 
Introduction 

Perl means Practical Extraction and Report Language. Those of you who know awk, sed, 
and shell scripts will think Perl is very much like these. 
Actually, Perl does much more than each of these. Perl syntax also looks like these as 
well as like C. This lab presumes only that you know C. 
There is a good Perl book for beginners by  Eileen Quigley,  published by Prentice-Hall 
called Perl by Example. 

Try some examples 

Scalar Variables 

The following is excerpted from Jacqueline D. Hamilton's awesome online class at 
http://ww-w.cgi101.com. (She has now published this in book form and I highly 
recommend it.) In particular, this material comes from 
http://www.cgi  1 0 1 .com/class/ch2/text.html  . 

Perl has three types of variables: scalars, arrays, and hashes. 

A scalar variable stores a single (scalar) value. Perl scalar names are prefixed with a 
dollar sign ($), so for example, $x, $y, $z, $username, and $url are all examples of scalar 
variable names. Here's how these variables are used: 

$foo = 1; 
$name = "Fred"; 
$pi = 3.141592; 

You do not need to declare a variable before using it. A scalar can hold data of any type, 
be it a string, a number, or whatnot. You can also use scalars in double-quoted strings: 

$fnord = 23; 
$blee = "The magic number is $fnord."; 

Now if you print  $blee,  you will get "The magic number is 23." 

Let's create a file calledfirstp/ and add some scalars to it: 

#!/usr/bin/perl 

97 



$classname = "Electronic Documents"; 

print "Hello there. What is your name?\n"; 

$you = <STDIN>; 

chomp($you); 

print "Hello, $you. Welcome to $classname.\n"; 

Save, and run the script by typing: Perl first.pl  

This time, the program will prompt you for your name, and read your name using the 
following line: 

$you = <STDIN>; 
STDIN is standard input. This is the default input channel for your script; if you're 
running your script in the shell, STDIN is whatever you type as the script runs. 

The program will print "Hello there. What is your name?", then pause and wait for you to 
type something in. (Be sure to hit return when you're through typing your name.) 
Whatever you typed is stored in the scalar variable $you. Since $you also contains the 
carriage return itself, we use 

chomp($you); 
to remove the carriage return from the end of the string you typed in. The following print 
statement: 

print "Hello, $you. Welcome to $classname.\n"; 

prints this new value of $you . As in C, The "\n" at the end if the line is the perl syntax for 
a carriage return. 

Arrays 

Perl array names are prefixed with an at-sign (@). Here is an example: 

@colors = ("red","green","blue"); 

In Perl, array indices start with 0, so to refer to the first element of the array @colors, you 
use $colors[0]. Note that when you're referring to a single element of an array, you prefix 

98 



the name with a $ instead of the @. The $-sign again indicates that it's a single (scalar) 
value; the @-sign means you're talking about the entire array. 

If you wanted to loop through an array, printing out all of the values, you could print each 
element one at a time: 

#!/usr/bin/perl 
# this is a comment 
# any line that starts with a "#" is a comment. 

*colors = ("red","green","blue"); 

print "Scolors[0]\n"; 
print "Scolors[1]\n", 
print "Scolors[2]\n"; 

Or, a much easier way to do this is to use the foreach construct: 

#!/usr/bin/perl 
# this is a comment 
# any line that starts with a "#" is a comment. 

*colors = ("red","green","blue"); 

foreach $i (*colors) { 
Print "$i\n"; 

} 

For each iteration of the foreach loop, Perl sets $i to an element of the @colors array - the 
first iteration, $i is "red". As in C, the braces {} define where the loop begins and end, so 
for any code appearing between the braces, $i is set to the current loop iterator. 

Array Functions 

Since an array is an ordered list of elements, there are a number of functions you can use 
to get data out of (or put data into) the list: 

*colors = ("red","green","blue","cyan","magenta","black","yellow"); 

$elt = pop(@colors); # returns "yellow", the last value of the array. 

99 



$elt = shift(@colors); # returns "red", the first value of the array. 

In these examples we've set $elt to the value returned, but you don't have to do that - if 
you just wanted to get rid of the first value in an array, for example, you'd just type 
shift(@arrayname). Both shift and pop affect the array itself, by removing an element; in 
the above example, after you pop "yellow" off the end of @colors, the array is then equal 
to ("red", "green", "blue", "cyan", "magenta", "black"). And after you shift "red" off the 
front. the array becomes ("green", "blue", "cyan", "magenta", "black"). 

You can also add data to an array: 

*colors = ("green", "blue", "cyan", "magenta", "black"); 
push((icolors,"orange"); # adds "orange" to the end of the *colors array 

@colors now becomes ("green", "blue", "cyan", "magenta", "black", "orange"). 

@morecolors = ("purple","teal","azure"); 
push(*colors,*morecolors); # appends the values in @morecolors to the 
end of *colors 

@colors now becomes ("green", "blue", "cyan", "magenta", "black", "orange", "purple", 
"teal","azure"). 

Here are a few other useful functions for array manipulation: 

*colors = ("green", "blue", "cyan", "magenta", "black"); 
sort(@colors); # sorts the values of *colors alphabetically 

@colors now becomes ("black", "blue", "cyan", "green", "magenta" ). Note that sort does 
not change the actual values of the array itself, so if you want to save the sorted array, 
you have to do something like this: 

@sortedlist = sort(*colors); 
The same thing is true for the reverse function: 

@colors = ("green", "blue", "cyan", "magenta", "black"); 
reverse(*colors); # inverts the *colors array 

@colors now becomes ("black", "magenta", "cyan", "blue", "green" ). Again, if you want 
to save the inverted list, you must assign it to another array. 

$#colors # length-1 of the *colors array, or the last index of the array 
In this example, the value of $#colors is 4. The actual length of the array is 5, but since 
Perl lists count from 0, the index of the last element is length - 1. If you want the actual 
length of the array (the number of elements), you'd use the scalar function: 

scalar(*colors); # the actual length of the array 
In this case, the value of scalar(@colors) is equal to 5. 

join(", ",*colors); # joins *colors into a single string separated by the 
expression ", " 

100 



@colors becomes a single string: "black, magenta, cyan, blue, green". 

Hashes 

A hash is a special kind of array - an associative array, or paired group of elements. Perl 
hash names are prefixed with a percent sign (%), and consist of pairs of elements - a key 
and a data value. Here's how to define a hash: 

Hash Name 	 key 	 value 

%pages 	 = ( "fred", 	 "http://www.wpi.edu/-fred/ ", 

"beth", 	 "http://www.wpi.edu/-beth/ ", 

"john", 	 "http://www.wpi.edu/-john/ " 	 ); 

Another way to define a hash would be as follows: 
%pages = ( fred => "http://www.wpi.edut-fredr , beth => 
"http://www.wpi.edu/-beth/ ", john => "http://vvvvw.wpi.edut-johnr  ); 

Note that quotes aren't needed here. 

This hash consists of a person's name for the key, and their URL as the data element. You 
refer to the individual elements of the hash with a $ sign (just like you did with arrays): 

$pages{lred'} 
In this case, "fred" is the key, and $pages{'fred'} is the value associated with that key - in 
this case, it would be "ht-tp://www.cgi101.comt-fred/". 

If you want to print out all the values in a hash, you'll need a foreach loop: 

foreach $key (keys %pages) { print "$key's page: $pages{$key}\n"; } 
This example uses the keys function, which returns an array consisting only of the keys of 
the named hash. One drawback is that keys %hashname will return the keys in random 
order - in this example, keys %pages could return ("fred", "beth", "john") or ("beth", 
"fred", "john") or any combination of the three. If you want to print out the hash in exact 
order, you have to specify the keys in the foreach loop: 

foreach Skey ("fred","beth","john") { print "Skey's page: $pages{$key}\n"; 
} 

Hashes will be especially useful when you use CGIs that parse form data, because you'll 
be able to do things like $FORM{'lastname'} to refer to the "lastname" input field of your 
form. 

101 



Hash Functions 

Here is a quick overview of the Per1 functions you can use when working with hashes. 

delete $hash{$key} 	 # deletes the specified key/value pair, 

# and returns the deleted value 

exists $hash{$key} 	 # returns true if the specified key 
exists 

keys %hash 

values %hash 

scalar %hash 

# in the hash. 

# returns a list of keys for that hash 

# returns a list of values for that hash 

# returns true if the hash has elements 

# defined (e.g. it's not an empty hash) 

102 



Introductory CGI 
What is CGI? 
CGI is not a language. It's a simple protocol that can be used to communicate between 
Web forms and your program. A CGI script can be written in any language that can read 
STDIN, write to STDOUT, and read environment variables, i.e. virtually any 
programming language, including C, Perl, or even shell scripting. 

Structure of a CGI Script 

Here's the typical sequence of steps for a CGI script: 

1. Read the user's form input. 
2. Do what you want with the data. 
3. Write the HTML response to STDOUT. 

The first and last steps are described below. 

Reading the User's Form Input 

When the user submits the form, your script receives the form data as a set of name-value 
pairs. The names are what you defined in the INPUT tags (or SELECT or TEXTAREA 
tags), and the values are whatever the user typed in or selected. (Users can also submit 
files with forms, but this primer doesn't cover that.) 

This set of name-value pairs is given to you as one long string, which you need to parse. 
It's not very complicated, and there are plenty of existing routines to do it for you. Here's 
one in Perl, a simpler one in Perl,  or  one in C.  For a more elaborate CGI framework, see 
Perl's  CGI.pm  module. The  CGI directory at Yahoo  includes many CGI routines (and 
pre-written scripts), in various languages. 

If that's good enough for you, skip to the next section. If you'd rather do it yourself, or 
you're just curious, the long string is in one of these two formats: 

"namel=valuel&name2=value2&name3=value3" 
"namel=valuel;name2=value2;name3=value3" 

So just split on the ampersands or semicolons, then on the equal signs. 
Then, do two more things to each name and value: 

1. Convert all "+" characters to spaces, and 

103 



2. Convert all "%xx" sequences to the single character whose ascii 
value is "xx", in hex. For example, convert "%3d" to "=". 

This is needed because the original long string is  URL-encoded,  to allow 
for equal signs, ampersands, and so forth in the user's input. 

So where do you get the long string? That depends on the HTTP method 
the form was submitted with: 

• For GET submissions, it's in the environment variable 
QUERY STRING. 

• For POST submissions, read it from STDIN. The exact number of 
bytes to read is in the environment variable 
CONTENT LENGTH. 

(If you're wondering about the difference between GET and POST, see the 
footnote discussing it.  Short answer: POST is more general-purpose, but 
GET is fine for small forms.) 

Sending the Response Back to the User 

First, write the line 

Content-type: text/html 

plus another blank line, to STDOUT. After that, write your HTML response page to 
STDOUT, and it will be sent to the user when your script is done. That's all there is to it. 

Yes, you're generating HTML code on the fly. It's not hard; it's actually pretty 
straightforward. HTML was designed to be simple enough to generate this way. 

If you want to send back an image or other non-HTML response,  here's how to do it.   

That's it. Good Luck! 

See how easy it is? If you still don't believe me, go ahead and write a script. Make sure to 
put the file in the right place on your server, and make it executable. 

104 



Introductory CGI 
What is CGI? 
CGI is not a language. It's a simple protocol that can be used to communicate between 
Web forms and your program. A CGI script can be written in any language that can read 
STDIN, write to STDOUT, and read environment variables, i.e. virtually any 
programming language, including C, Perl, or even shell scripting. 

Structure of a CGI Script 

Here's the typical sequence of steps for a CGI script: 

1. Read the user's form input. 
2. Do what you want with the data. 
3. Write the HTML response to STDOUT. 

The first and last steps are described below. 

Reading the User's Form Input 

When the user submits the form, your script receives the form data as a set of name-value 
pairs. The names are what you defined in the INPUT tags (or SELECT or TEXTAREA 
tags), and the values are whatever the user typed in or selected. (Users can also submit 
files with forms, but this primer doesn't cover that.) 

This set of name-value pairs is given to you as one long string, which you need to parse. 
It's not very complicated, and there are plenty of existing routines to do it for you. Here's 
one in Perl, a simpler one in Perl,  or  one in C.  For a more elaborate CGI framework, see 
Perl's  CGI.pm  module. The  CGI directory at Yahoo  includes many CGI routines (and 
pre-written scripts), in various languages. 

If that's good enough for you, skip to the next section. If you'd rather do it yourself, or 
you're just curious, the long string is in one of these two formats: 

"namel=valuel&name2=value2&name3=value3" 
"namel=valuel,name2=value2;name3=value3" 

So just split on the ampersands or semicolons, then on the equal signs. 
Then, do two more things to each name and value: 

1. Convert all "+" characters to spaces, and 
2. Convert all "%xx" sequences to the single character whose ascii 

value is "xx", in hex. For example, convert "%3d" to "=". 

105 



This is needed because the original long string is  URL-encoded,  to allow 
for equal signs, ampersands, and so forth in the user's input. 

So where do you get the long string? That depends on the HTTP method 
the form was submitted with: 

• For GET submissions, it's in the environment variable 
QUERY STRING. 

• For POST submissions, read it from STDIN. The exact number of 
bytes to read is in the environment variable 
CONTENT LENGTH. 

(If you're wondering about the difference between GET and POST, see the 
footnote discussing it. Short answer: POST is more general-purpose, but 
GET is fine for small forms.) 

Sending the Response Back to the User 

First, write the line 

Content-type: text/html 

plus another blank line, to STDOUT. After that, write your HTML response page to 
STDOUT, and it will be sent to the user when your script is done. That's all there is to it. 

Yes, you're generating HTML code on the fly. It's not hard; it's actually pretty 
straightforward. HTML was designed to be simple enough to generate this way. 

If you want to send back an image or other non-HTML response,  here's how to do it.   

That's it. Good Luck! 

See how easy it is? If you still don't believe me, go ahead and write a script. Make sure to 
put the file in the right place on your server, and make it executable. 

106 



Advanced Perl 
As in the preceding, the following is excerpted from Jacqueline D. Hamilton's awesome 
online class at http://wvvw.cgi101.com . (She has now published this in book form and I 
highly recommend it.) In particular, this material comes from 
http://www.cgi101.com/class/ch4/text.html.  

Introduction 

Now that you have learned some Perl we will use Perl to create useful forms. 

When sending form data to your CGI, your web server encodes the data being sent. 
Alphanumeric characters are sent as themselves; spaces are converted to plus signs (+); 
other characters - like tabs, quotes, etc. - are converted to "%HH" - a percent sign and 
two hexadecimal digits representing the ASCII code of the character. This is called URL 
encoding. Here's a table of some commonly encoded characters: 

Normal Character URL Encoded String 

\t (tab) 	 %09 

\n (return) 	 %OA 

%2F 

%7E 

%3A 

%3B 

%40 

%26 

In order to do anything useful with the data, your CGI script must decode these. 
Fortunately, this is pretty easy to do in Perl, using the substitute and translate commands. 
Perl has powerful pattern matching and replacement capabilities; it can match the most 
complex patterns in a string, using regular expressions. But it's also quite capable of the 
most simple replacements. The basic syntax for substitutions is: 

$mystring =-- s/pattern/replacementi; 

This command substitutes "pattern" for "replacement" in the scalar variable "$mystring". 
Notice the operator is a =— (an equal sign followed by a tilde) - this is a special operator 
for Perl, telling it that it's about to do a pattern match or replacement. Here's an example 
of how it works: 

107 



$greetings = "Hello. My name is xnamex.\n"; $greetings 	 s/xnamex/Bob/; 
print $greetings, 

The above code will print out "Hello. My name is Bob." Notice the substitution has 
replaced "xnamex" with "Bob" in the $greetings string. 

A similar but slightly different command is the translate command: 

$mystring =— tr/searchlist/replacementlist/; 
This command translates every character in "searchlist" to its corresponding character in 
"replacementlist", for the entire value of $mystring. One common use of this is to change 
the case of all characters in a string: 

$lowerc =— tri[A-Z]/[a-z]/; 
This results in $lowerc being translated to all lowercase letters. The brackets around [A-
Z] denote a class of characters to match. 

Decoding Form Data 

With the POST method, form data is sent in an input stream from the server to your CGI 
script. To get this data, store it, and decode it, we'll use the following block of code 
(which is a more complex script that can be used with the  forms page   from Lab #1: 

read(STDIN, $buffer, $ENV{'CONTENTLENGTH'}); 

@pairs = split(/&/, $buffer); 

foreach $pair (@pairs) { 

($name, $value) = split(/=/, $pair); 

$value =- tr/+/ /; 

$value =- s/ 56([a-fA-F0-9][a-fA-F0-9])/pack("C", hex($1))/eg; 

$FORM{$name} = $value; 

} 

Let's look at each part of this. First, we read the input stream using this line: 
read(STDIN, $buffer, $ENV{'CONTENT_LENGTH'}); 

The input stream is coming in over STDIN (standard input), and we're using Perl's read 
function to store the data into the scalar variable $buffer. You'll also notice the third 
argument to the read function, which specifies the length of data to be read; we want to 
read to the end of the CONTENT LENGTH, which is set as an environment variable by 
the server. 

Next we split the buffer into an array of pairs: 

(cupairs = split(/&/, $buffer); 

108 



Form data pairs are separated by & signs when they are transmitted - for example, 
fname-joe&lname=smith. Now we'll use aforeach loop to further splits each pair on the 
equal signs: 

foreach $pair (*pairs) ($name, $value) = split(/=/, $pair); 
The next line translates every "+" sign back to a space: 

$value 	 tr/+/ /; 
Next is a rather complicated regular expression that substitutes every %HH hex pair back 
to its equivalent ASCII character, using the pack() function. For now we'll just use it to 
parse the form data: 

$value =— sP/o(la-fA-F0-911a-fA-F0-91)/pack("C", hex($1))/eg; 
Finally, we store the values into a hash called %FORM: 

$FORM{$name} = $value; } 

The keys of %FORM are the form input names themselves. So, for example, if you have 
three text fields in the form - called name, email-address, and age - you could refer to 
them in your script by using $FORM{'name}, $FORM{'email-address}, and 
$FORMrage 7. 

Let's try it. Create a new CGI script with the following, calling it post. cgi (or postpl) , 
save it, and chmod it: 

#!/usr/bin/perl 

print "Content-type:text/html\n\n"; 

read(STDIN, $buffer, $ENV{'CONTENT LENGTH')); 

@pairs = split(/&/, $buffer); 

foreach $pair (@pairs)  { 

($name, $value) = split(/=/, $pair); 

$value =- tr/+/ /; 

$value 	 s/%([a-fA-F0-9][a-fA-F0-9])/pack("C", hex($1))/eg; 

$FORM{$name} = $value; 

print "<htm1><head><title>Form Output</title></head><body>"; 

print "<h2>Results from FORM post</h2>\n"; 

109 



foreach $key (keys(%FORM)) { 

print "$key = $FORM{$key}<br>"; 

print "</body></html>"; 

Source code: http://www.cgi101.com/class/ch4/post.txt  

This code can be used to handle almost any form, from a simple guestbook form to a 
more complex order form. Whatever variables you have in your form, this CGI will print 
them out, along with the data that was entered. 

Let's test the script. Create an HTML form with the fields listed below: 

<form action="post.cgi" method="POST"> 

Your Name: <input type="text" name="name"> 

Email Address: <input type="text" name="email"> 

Age: <input type="text" name="age"> 

Favorite Color: <input type="text" name="favorite color"> 

<input type="submit" value="Send"> 

<input type="reset" value="Clear Form"› 

</form> 

Source code: http://www.cgi101.com/class/ch4/post.html   

Enter some data into the fields, and press "send" when finished. The output will be the 
variable names of these text boxes, plus the actual data you typed into each field. 

Tip: If you've had trouble getting the boxes to align on your form, try putting <pre> tags 
around the input fields. Then you can line them up with your text editor, and the result is 
a much neater looking form. The reason for this is that most web browsers use a fixed- 
width font (like Monaco or Courier) for preformatted text, so aligning forms and other 
data is much easier in a preformatted text block than in regular HTML. This will only 
work if your text editor is also using a fixed-width font! Another way to align input boxes 
is to put them all into a table, with the input name in the left column, and the input box in 
the right column. 

A Form-to-Email CGI 

110 



Most people using forms want the data emailed back to them, so, let's write a form-to-
mail CGI. First you'll need to figure out where the sendmail program lives on the Unix 
system you're on. (For cgi101.com, it's in /usr/sbin/sendmail. If you're not sure where 
yours is, try doing "which sendmail" or "whereis sendmail"; usually one of these two 
commands will yield the location of the sendmail program.) 

Copy your post.cgi to a new file named mail.cgi. Now the only change will be to the 
foreach loop. Instead of printing to standard output (the HTML page the person sees after 
clicking submit), you want to print the values of the variables to a mail message. So, first, 
we must open a pipe to the sendmail program: 

Smailprog = '/usr/sbin/sendmail'; open (MAIL, "I$mailprog -t") 
The pipe causes all of the ouput we print to that filehandle (MAIL) to be fed directly to 
the sendmail program as if it were standard input to that program. 

You also need to specify the recipient of the email, with either: 

$recipient = 'nullbox@cgi101.com '; $recipient = "nullbox*cgi101.com", 
Perl will complain if you use an "g" sign inside a double-quoted string or a print 
<<EndHTML block. You can safely put an @-sign inside a single-quoted string, like 
'nullbox@cgi101.com', or you can escape the @-sign in other strings by using a 
backslash. For example, "nullbox @cgi 1 0 1 .com". 

You don't need to include the comments in the following code; they are just there to show 
you what's happening. 

#!/usr/bin/perl 

print "Content-type:text/html\n\n"; 

# parse the form data. 

read(STDIN, $buffer, $ENVI'CONTENT LENGTH'}); 

@pairs = split(/&/, $buffer); 

foreach $pair (@pairs) 

($name, $value) = split(/=/, $pair); 

$value =- tr/+/ /; 

Svalue  =-  s/ 96([a-fA-F0-9][a-fA-F0-9])/pack("C", hex($1))/eg; 

$FORM{$name} = $value; 

111 



# where is the mail program? 

$mailprog = '/usr/sbin/sendmail'; 

# change this to your own email address 

$recipient = 'nullbox@cgi101.com '; 

# this opens an output stream and pipes it directly to the 

# sendmail program. If sendmail can't be found, abort nicely 

# by calling the dienice subroutine (see below) 

open (MAIL, "1$mailprog -t") or dienice("Can't access 

$mailprog!\n"); 

# here we're printing out the header info for the mail 

# message. You must specify who it's to, or it won't be 

# delivered: 

print MAIL "To: $recipient\n"; 

# Reply-to can be set to the email address of the sender, 

# assuming you have actually defined a field in your form 

# called 'email'. 

print MAIL "Reply-to: $FORMl'email'I ($FORMYname'l)\n"; 

# print out a subject line so you know it's from your form cgi. 

112 



# The two \n\n's end the header section  of the  message. 

# anything you print after this point will be part  of the 

# body of the mail. 

print MAIL "Subject: Form Data\n\n"; 

# here you're just printing out all the variables and values, 

# just like before in the previous script, only  the  output 

#  is  to the mail message rather than the followup HTML page. 

foreach $key (keys(%FORM)) { 

print MAIL "$key  =  $FORM{$key}\n"; 

} 

# when you finish writing  to  the mail message, be  sure to 

# close the input stream so it actually  gets  mailed. 

close(MAIL); 

# now print something to the HTML page, usually thanking 

# the person for filling out the form, and giving them a 

# link back to your homepage 

print <<EndHTML; 

<h2>Thank You</h2> 

Thank you for writing. Your mail has been delivered.<p> 

Return to our <a href="index.html">home page</a>. 

</body></html> 

EndHTML 

113 



# The dienice subroutine, for handling errors. 

sub dienice  { 

my($errmsg) = @; 

print "<h2>Error</h2>\n"; 

print "$errmsg<p>\n"; 

print "</body></html>\n"; 

exit; 

Now let's test the new script. Here's the form again, only the action this time points to 
mail.cgi: 

<form action="mail.cgi" method="POST "> 

Your Name: <input type="text" name="name "> 

Email Address: <input type="text" name="email "> 

Age: <input type="text" name= "age"> 

Favorite Color: <input type="text" name="favorite color "> 

<input type="submit" value= "Send"> 

<input type="reset" value="Clear Form"› 

</form> 

Save it, enter some data into the form, and press "send". If the script runs successfully, 
you'll get email in a few moments with the results of your post. (Remember to change the 
$recipient in the form to your email address!) 

Sending Mail to More Than One Recipient 
What if you want to send the output of the form to more than one email address? Simple: 
just add the desired addresses to the $recipients line: 

$recipient = tkira@cgi101.com , kira@io.com, webmaster@cgi101.com '; 

Subroutines 

114 



In the above script we used a new structure: a subroutine called "dienice." As in many 
languages, a subroutine is a block of code, separate from the main program, that only gets 
run if it's directly called. In the above example, dienice >/i>only runs if the main 
program can't open sendmail. Rather than aborting and giving you a server error (or 
worse, NO error), you want your script to give you some useful data about what went 
wrong; dienice does that, by printing the error message and closing html tags, and 
exiting from Perl. There are several ways to call a subroutine: 

&subname; &subname(args); subname; subname(args); 
The &-sign before the subroutine name is optional.  args are values to pass into the 
subroutine. 

Subroutines are useful for isolating blocks of code that are reused frequently in your 
script. The structure of a subroutine is as follows: 

sub subname {...code to execute... ) 
A subroutine can be placed anywhere in your CGI, though for readability it's usually 
best to put them at the end, after your main code. You can also include and use 
subroutines from different files and modules. 

You can pass data into your subroutines. For example: 

mysub($a,$b,$c); 
This passes the scalar variables $a, $b, and $c to the mysub subroutine. The data being 
passed (the arguments) are sent as a list. The subroutine accesses the list of arguments 
via the special array "@ ". You can then assign the elements of that array to special 
temporary variables: 

sub mysub [ my($tmpa, $tmpb, $tmpc) =@_; ...code to execute... ) 
Notice the my in front of the variable list? my is a Perl function that limits the scope of 
a variable or list of variables to the enclosing subroutine. This keeps your temporary 
variables visible only to the subroutine itself (where they're actually needed and used), 
rather than to the entire script (where they're not needed). 

We'll be using the dienice subroutine throughout the rest of the book, as a generic 
catch-all error-handler. 

115 



Introduction to Java Applets 

Basic Applet Structure 

Most programs run directly on your computer. A Java applet is a special kind of program 
that runs inside a web browser. The  Applet class  does what's needed to make that work. 

Let's look at a bare-bones applet. This applet will just put a gray box on the screen. 

GrayBox.java 

import java.awt.*; 
import java.applet.*; 

public class GrayBox extends Applet 
{ 
} 

Check this code 

In JavaBOTL, even the bare-bones program did more than the applet above. We learned 
that a lot of behind the scenes stuff was going on. Now, we have to do some of that 
behind the scenes stuff ourselves. This gives us a lot more freedom. 

Let's look at this program line by line. The first two lines are: 

import java.awt.*; 
import java.applet.*; 

We use the  import  keyword to get some things needed for our applet from other files. 
Importing java.awt.* gets all of the things needed for drawing on the screen in Java. 
Doing the same with java.applet.* gives us all the things we need to build applets. Now 
let's look at the next line. 

public class GrayBox extends Applet 

The  class  keyword is used whenever we define a new type of object. The syntax for 
defining a new  class  is: 

public class NewClassName extends ExistingClassName 

GrayBox  is the name of our new  class.  It  extends,  or inherits from,  Applet.  The  Applet 
class  sets up a skeleton which we fill in to create Java applets. By inheriting from  class 
Applet,  we get some functions that we can use. 

import java.awt.*; 
import java.applet.*; 

public class GrayBox extends Applet 
{ 

public void init() f 

116 



// Do one time setup stuff 
1 

public void paint( Graphics g ) { 

// Draw the screen 
1 

We can change the functions we inherited from the  Applet class  to have our  class  do 
more than it does by default. This is called overriding the functions. Two important 
functions we will override in our applet are  init  and  paint. 

Paint Function 

Once we have our applet skeleton in place, we'd like to make our program do something. 
So let's start simple. Let's take a look at the classic "Hello, world!" program done as a 
Java applet. This program puts the words "Hello, world!" on the screen. 

import java.awt.*; 
import java.applet.*; 

public class Hello extends Applet 
1 

public void init() 

1 

public void paint( Graphics g  ) 
1 

g.drawString("Hello, World!", 50,  25  ); 
1 

1 

Check this code 

The  paint  function is called automatically every time our applet needs to draw itself. In 
JavaBOTL, even a blank program still drew stuff on the screen. If we want our Java 
applet to draw anything, we have to code it ourselves. The place we do this is inside the 
paint  function. 

public void paint( Graphics g  ) 
The  paint  function of our applet has a parameter named  g  that is of type  Graphics.  We 
can use this parameter within the  paint  function. The  Graphics class  contains the tools 
we'll need to draw inside an applet's window. We use the  Graphics g  parameter as our 
"graphics toolbox". 

117 



(50, 25) 
Hello,  NV      

(0, 0) 

We can use the  Graphics class  to draw words, lines, shapes, or images. Our "graphics 
toolbox" has drawing functions that do these things. We will be using the  drawString 
and  drawLine  functions. 

To select which "tool" to use, we use the standard  ObjectName.FuctionName  syntax. 
For example, the line of code now added to our  paint  function uses the  drawString  tool 
from our "graphics toolbox". 

public void paint( Graphics g  ) 

g.drawString( "Hello, World!", 50, 25 

Again,  g  is our "graphics toolbox" that we got as a parameter to our, 	 function. The 
dot (.) tells Java we are going to be using something in that toolbox. In this case, that 
something is the  drawString  function. 

The  drawString  function is one of the functions defined in  class Graphics.  It draws a 
string on the screen. A string is a word or phrase surrounded by double quotes. The string 
in our example is "Hello, World!". The  drawString  function takes three parameters. The 
first is the string we want to draw on the screen. The second and third are the x and y 
coordinates for where to start drawing. 

118 



Putting "Hello, world!" on the screen is a good start, but we'd like to do something a bit 
more interesting. This program shows how to draw straight lines on the screen. 

import java.awt.*; 
import java.applet.*; 

public class ShowLine extends Applet 
{ 

public void init() 

public void paint( Graphics g  ) 

g.drawString( "Check out this line!", 50, 25 ); 
g.drawLine( 50, 35, 150, 35 ); 

Check this code   

The only thing that's different here is the new line in the  paint  function. 

g.drawLine( 50, 35, 150, 35 ) ; 

The  drawLine  function is another tool from our "graphics toolbox". To use it, we do 
almost the same thing we did with  drawString.  The difference is that with  drawLine, 
the parameters are two pair of x and y coordinates, which represent the start and end 
points of the line. 

Init Function 

Now that we know how to use the  paint  function, let's take a look at another important 
part of our applet skeleton -- the  init  function. Let's take a look at a program that shows 
how to use the  mit  function. 

import java.awt.*; 
import java.applet.*; 

public class BigX extends Applet 
{ 

public void init() 
{ 

resize( 250, 300  ); 

public void paint( Graphics g ) 
1 

g.drawLine( 0, 0, 	 250, 	 300 ); 
g.drawLine( 0, 300, 	 250, 	 0 ); 

119 



Check this code 

The  init  function is called automatically. It is called when an applet starts, before 
anything else. 

public void init() 

If we look at the applet skeleton, we see that all one-time set-up stuff is done in this 
funtion. Above, we use the  init  function to set the size of our applet window. We do this 
by using the  resize  function. 

resize(  250,  300  ); 
The  resize  function takes two parameters. The first is the width (in pixels) that we want 
for our applet window. The second is the height. Our example uses the resize function to 
make the applet window 250 pixels wide and 300 pixels high. In the  paint  function we 
use  drawLine  to draw an 'X' over the entire applet window by using these values. 

Embeding Java Applets in HTML 

The nice thing about applets is that they run on the client side. The browser downloads 
the applet to your local machine and runs it there. The speed with which an applet is run, 
is relatively high, as it will be running in your browser. 

An applet exists as compiled bytecode (mostly) on some computer connected to a 
network anywhere in the world. As soon as your browser downloads the applet, the 
browser's Java interpreter interprets the bytecode and executes the bytecode instructions. 

As a simple illustration: 

Server side: 

Java code (*.java)--> Compiler--> Compiled Bytecodes 
(*.class  file) 

As an example, let's use the BigX.java file as described above. The  j avac  command is 
used to create a bytecode file as follows: 

ls 
BigX.java 

javac  BigX.java 

is 
BigX.class 	 BigX.java 

After you have a compiled bytecode (*.class) file, you can imbed the java applet in an 
HTML file using the  applet  tag. The syntax for this tag is as follows: 

<applet basecode="applet ur  1" 
code="appiet filename" 

120 



width="pixe/ width" 
height="pixel height"› 

< /applet> 
The  codebase  attribute is optional. It specifies the base URL or pathname of the applet 
specified in the code attribute. 

The 	 attribute is required. It specifies the file that contains the compiled Java code 
for the applet. If the codebase attribute is specified, the code must be located relative to 
that location. 

The  width  attribute is required. It specifies the initial width in pixels that the applet needs 
in the browser's window. 

The  height  attribute is required. It specifies the initial height in pixels that the applet 
needs in the browser's window. 

The  a 1 t  attribute is optional. It specifies text that should be displayed by browsers that 
understand the applet tag but do not support Java. 

The  name  attribute is optional. It gives a name to the applet instance. Applets that are 
running at the same time can look each other up by name and communicate with each 
other. 

The  align  attribute is optional. It specifies the applet's alignment on the page. It behaves 
just like the align attribute of the img tag, and should support at least the same alignment 
values that the img tag does. These values inlcude: top, middle, and bottom. 

The  vspace  attribute is optional. It specifies the margin in pixels that the browser should 
put above and below the applet. It behaves just like the vspace attribute of the img tag. 

The  hspace  attribute is optional. It specifies the margin in pixels that the browser should 
put on either side of the applet. It behaves just like the hspace attribute of the img tag. 

The  <param>  tag, with its name and value attributes, specifies a named parameter and a 
string value that are passed to the applet. These parameters function like environment 
variables or command line arguments do for a regular application. An applet can look up 
the value of a parameter specified in a  param  tag with the  Applet  .  get Parameter  ( ) 
method. Any number of parameters can be included for an applet. 

If a web browser does not support Java and does not understand the applet tag, it will 
ignore the applet and its parameters and will simply display any text that appears in the 
alternate-html  field. 

121 



More Java Applets 

Variables 

To write our Tic Tac Toe applet, we are going to have to use variables so it can 
remember important details. Let's take a look at a Java applet that uses variables to show 
a quote from The Princess Bride. 

import java.awt.*; 
import java.applet.*; 

public class PrincessBride extends Applet 
{ 

int Xposition; 

public void init() 
{ 

Xposition = 100; 

public void paint( Graphics g ) 
{ 

g.drawString( "Hello!", Xposition, 25 ); 
g.drawString( "My name is Inigo Montoya.", Xposition, 50 

) ; 

g.drawString( "You killed my father.", Xposition,  75  ); 
g.drawString( "Prepare to die.", Xposition, 100 ); 

Check this code 

The first thing in the definition of our  PrincessBride class  is a variable declaration. 

int Xposition; 

We declare a variable called  Xposition  of type  int,  so it can only hold integer values. The 
variable  XPosition  is declared here so that both the  init  and the  paint  functions can use 
it. 

After we declare the variable, we need to initialize it. if we look at the applet skeleton 
from the basic applet structure we see that all one-time set-up stuff, such as variable 
initialization, is done in the  init  function. In our example, we initialize the  Xposition 
variable to have value of 100. 

Xposition =  100; 

Now that our variable has been initialized, we can use it. In our example, we use 
Xposition  in the  paint  function. 

122 



( 	 "X", i*60 	 , 25 ); 

( 	 "0", i*60 	 , 25 ); 

if (Boxes[i]  ==  1 ) 
{ 

g.drawString 
} 
else 

1 
g.drawString 

g.drawString( "Hello!", Xposition, 25 ); 
g.drawString( "My name is Inigo Montoya.", Xposition, .50 ); 
g.drawString( "You killed my father.", Xposition, 75 ); 
g.drawString( "Prepare to die.", Xposition, 100 ); 

In these four calls to the  drawString  function, we use  Xposition  as the X coordinate 
parameter. So, all four strings will be drawn starting at X coordinate 100. 

That's how we use variable in Java. First we declare them. Then we initialize them to a 
starting value. Then we use them. 

Arrays 
We've already seen variables in action. They can store a single value. Sometimes, though, 
we need to work with a list of values. We do this using arrays. Using the  for  loop and 
arrays, Java makes it easy to manage lists of items. 

This program shows arrays in action" 

import java.awt.*; 
import java.applet.*; 

public class BoxesExample extends Applet 

int Boxes[]; 	 // Declare an array of integers 

public void init () 

resize (320, 50); 
Boxes  =  new int[5]; 
for  (  int i=0; i<5; i++  ) 
{ 

Boxes[i] = 0; 
} 
Boxes[2]  =  1; 
Boxes[4]  =  1; 

public void paint( Graphics g  ) 
{ 

for  (  int i  =  0; i<5; i++  ) 
1 

123 



Check this code 

This program uses an array to hold a list of five values. An array is just a fancy name for 
a list of things. Like other variables, arrays need to be declared and initialized before we 
can use them. The first thing we do in class BoxesExample  is declare an array of 
integers: 

int Boxes[]; 

This declares an array of integers named Boxes.  The pair of brackets [] tells Java that 
we're declaring an array and not just a variable. The next thing we do is to tell Java how 
many items we want in the array. 

Boxes = new int[5]; 

This tells Java that there will be five integers in our array. The next thing we need to do is 
initialize the individual items in the array. We can initialize them individually, like this: 

Boxes  [0] = 0; 
Boxes[1] = 0; 
Boxes[2] = 0; 

Boxes[3] = 0; 

Boxes[4] = 0; 

Each of these lines accesses an item from our Boxes array and sets it to a value of 0. We 
use the brackets [] here to specify which item in the list. The number in the brackets [] is 
our array index. Index's start from 0 and go to 1 less than the size of the array. 

0 0 1 0 1 
0 
	

1 	 2 	 3 	 4 

For example, array index 2 refers to the 3rd item in our list. But initializing our array one 
item at a time is a bit tedious. So let's look at our old friend the  for  loop. 

for ( int i=0; i<5; i++ ) 
{ 

Boxes[i]  =  0; 

As we know, the example above will cause the code in the  for  loop to repeat 5 times. The 
variable  i  can be used within the loop as a counter. This counter starts at 0 and then 1 is 
added to it each time the loop repeats. 

124 



0 0 
2 0 

0 0 0 
0  

0 

0 
0 

1 	 2 3 4   
0  1  0  0  

1 	 2 	 3 	 4   
010 0  0 
1 	 2 	 3 	 4 

i 	 Boxes[i] = 0; 

0 	 Boxes[0] = 0; 

1 	 Boxes[1] = 0; 

2 	 Boxes[2] = 0; 

3 	 Boxes[3] = 0; 

4 	 Boxes[4] = 0; 

In the  paint  function, we use a  for  loop to step through our array again: 

for ( int i = 0; i<5; i++ 
1 

if (Boxes[i] == 1 ) 

g.drawString ( "X", i*60 , 25  ); 

else 
1 

g.drawString ( "0", i*60 , 25  ); 

This time we use the  for  loop to check the value of each item in our  Boxes  array. When 
Boxeslil  is equal to 1, (Boxes  [1] ==  1), it draws an X, otherwise it draws an 0. 

Our  i  variable is also used to position the X's and O's. We use  i*O0  as the X coordinate 
parameter for the  draw String  function. We can multiply (*), divide (/), add (+), or 
subtract (-). 

Two Dimensional Arrays 
Although arrays are good for lists, the squares in a Tic Tac Toe game don't fit well into a 
simple list. What we need is a table that has rows and columns. We'd like to look at each 
square using its row and column number. A table, or two- dimensional array, allows us to 
do that. 

This program uses a 2D array to determine where to put X's in a 4 X 4 grid. 

import java.awt.* 
import java.applet.* 

public class FourByFour extends Applet 
1 

int Jeep[][]; 

125 



public void init() 
{ 

resize(200, 200); 
Jeep = new int[4][4]; 
for (int row=0; row<4; row++) 

for (int column=0; column<4; column++) 
{ 

Jeep[row][column] = 0; 

1 
Jeep[0] [0] = 1; 
Jeep[3] [3] = 1; 
Jeep[1] [2] = 1; 
Jeep[2] [1] = 1; 

public void paint( Graphics 
{ 

g 	 ) 

g.drawLine( 0, 	 50, 200, 50); 
g.drawLine( 0, 	 100, 200, 100); 
g.drawLine( 0, 	 150, 200, 150); 

g.drawLine( 50, 	 0, 50, 	 200); 
g.drawLine( 100, 	 0, 100, 200); 
g.drawLine( 150, 	 0, 150, 200); 

for (int row=0; row<4; row++) 
{ 

for (int column=0; column<4; column++) 

if (Jeep[row][column] == 1) 
1 

g.drawString("X", column*50 + 20, row*50 + 
20); 

Check this code   

The first thing we do is declare a 2D array like this: 

int Jeep[][]; 

The two pair of brackets [][] tell Java that Jeep is a two-dimensional array. We create 
Jeep almost the same way we created one dimensional arrays. 

Jeep = new int[4][4]; 

126 



The only difference is the second set of brackets. The first number in brackets is how 
many rows are in the table. The second number is how many columns. Here, we make 
Jeep  a 4 X 4 array. 

Since tables have two dimensions, items inside them are accessed using two indices 
instead of one index. 

Jeep[1]  [2] =  1; 

x 

This sets the value in row 1, column 2 of  Jeep  to 1. Initializing a 2D array line by line 
like this would be very tedious. We learned how to initialize arrays using a  for  loop. To 
initialize 2D arrays, we have to use two  for  loops. 

for  (int  row=0; row<4; row++) 
1 

for (int column=0; column<4; column++) 
{ 

Jeep[row][column]  =  0; 

Because  Jeep  has two dimensions, we need two loops, one inside the other, to step 
through each item in the table. We couldn't use  i  for both loops here, because Java 
wouldn't know which  i  to use. Since we're using the loop counters for row and column 
numbers, we call them  row  and  column. 

In the  paint  function, we step through the array using two  for  loops. 

for  (int  row=0; row<4;  row++) 
{ 

for  (int column=0; column<4; column++) 
{ 

if (Jeep[row][column]  == 1) 
1 

g.drawString("X", column*50 +  20,  row*50 + 20); 

Here we use the two  for  loops to check every item in our table to see if it equals 1. If this 
is true, we draw an X. Like with one dimensional arrays, we use math to position our X. 

127 



When we draw the X's,  row  becomes the Y coordinate and  column  becomes the X 
coordinate. The math just helps us make things look good. Java follows the same order of 
operations as algebra. It multiplies and divides, and then adds and subtracts. 

128 



Advanced Java Applets 

Event Handling 

Every time a mouse button or keys on the keyboard are pressed or released, a special 
signal, called an event, goes off. The Applet class skeleton contains functions that are run 
automatically when these events occur. If we want our applet to do something special 
when one of these events occurs, we just need to override the right function. 

To show events in action, this program shows an 'X' in the center of the screen applet 
window, and then alternates between 'X' and '0' with each click of the mouse button. 

import java.awt.*; 
import java.applet.*; 

public class XsAndOs extends Applet 
{ 

// declare variables 
int CurPlayer; 

public void init 

resize(100,100); 
CurPlayer = 1; 

public void paint( Graphics g ) 
{ 

if (CurPlayer == 1) 
{ 

g.drawString ("X", 45, 50); 
} 
else 
{ 

g.drawString ("0", 45, 50); 

public boolean mouseUp (Event evt, int x, int y ) 
1 

repaint(); 
if ( CurPlayer == 1 ) 
{ 

CurPlayer = 2; 
} 
else 
{ 

CurPlayer = 1; 

return true; 

129 



Check this code 

We use the  CurPlayer  variable to keep track of the player whose turn it is. 

In the init function, we set up a 100 by 100 applet window, and initialize the CurPlayer 
variable to 1. The paint function uses a couple of if statements to check the value of the 
CurPlayer variable. It draws an 'X' if CurPlayer is 1, or an '0' otherwise. 

What's really new here is the  mouseUp  function. 

public boolean mouseUp (Event evt, int x, int y ) 

The  mouseUp function is a part of the applet skeleton we haven't seen before. It's called 
automatically whenever someone lets go of the mouse button. 

The parameters to mouseUp are an Event, called evt, and two integers, which are the x 
and y coordinates of the mouse pointer when the button was released. We don't use them 
for anything in our example program, but in our TicTacToe program we will use x and y 
to check which square players click the mouse over. 

First, our mouseUp  function calls the  repaint function. 

repaint(); 

The  repaint  function is used to force Java to redraw our applet window. In redrawing the 
applet window, Java calls  paint  automatically. 

The next thing our mouseUp function does is update the CurPlayer variable, switching 
it to 2 if it was 1 and changing it back to 1 otherwise. 

if ( CurPlayer == 1 ) 
{ 

CurPlayer = 2; 
} 
else 
{ 

CurPlayer = 1; 

Finally, Java expects  mouseUp to return true. 

return true; 

130 



Logical Operators 

We already know that we use  if  statements to check if a condition is true or false. We can 
use logical operators to construct complex conditions. These complex conditions are a 
much more powerful tool. They let us create very specific  if  statements. For our Tic Tac 
Toe applet to determine a winner, we need it to utilize complex conditions. 

This program divides the applet window into three boxes. When the mouse is clicked 
over a box, an X is drawn in it. And when all three boxes show an X, it displayes a 
message. 

import java.awt.*; 
import java.applet.*; 

// This applet will use logical operators to check for a 
// winner. The user must click once on each box in the 
// grid. 

class LogicExample extends Applet 
{ 

int Boxes[]; 	 // Declare an array of integers 

public void init  () 

resize(240,120); 
Boxes  =  new int[3]; 

for  (  int i=0; i<3; i++  ) 

Boxes[i]  =  0; 

public void paint( Graphics g  ) 

for  (  int i  =  0; i<3; i++  ) 
{ 

if (Boxes[i]  ==  1 ) 

g.drawString  (  "X", i*80 , 60  ) ; 

if ((Boxes[0]  ==  1  )  && 
(Boxes[1] == 1 ) && 
(Boxes[2]  ==  1 )) 

g.drawString ("We have a Winner!", 10, 30); 

public boolean mouseUp  (  Event evt, int x, int y  ) 
{ 

131 



int index = x/80; 
for  (  int  i =  0; i<3; i++  ) 
{ 

if  (i ==  index ) 
1 

Boxes[i] = 1; 

repaint(); 
return true; 

Check this code 

Everything should look familiar except for the  &&  in the  paint  function.  &&  is a logical 
operator. Logical operators are used to combine the results of conditions. Let's look at 
some logical operators: 

Syntax 	 Meaning 

Condition) && Condition2 

Conditionl II Condition2 

AND - Both conditions must be 
satisfied for the statement to be true. 

OR - Either one or both conditions must 
be satisfied for the statement to be true. 

In the program above, we use logical operators to check if there are Xs in all three 
positions. 

if ((Boxes[0]  ==  1 ) && 
(Boxes[1]  ==  1 ) && 
(Boxes[2] == 1 )) 

The complex conditional statement here checks if Boxes[0] AND Boxes[1] AND 
Boxes[2] are all equal to one. The if statement is true only if all three conditions are true 
(there's an X in all three positions). If it's true, the message "We have a Winner!" is 
displayed. 

132 



Graphics 

We've already seen the  drawString  and  drawLine  functions from our  Graphics  toolbox. 
But if we want to make our Tic Tac Toe game look better, we'll need a few more things. 

This applet demonstrates a few of them. It changes the background color, changes the 
drawing color, changes the pen width, and then draws a lowercase 'a' using a line and 
circle. 

import java.applet.*; 
import java.awt.*; 

public class Ademo extends Applet 
1 

public void init() 
{ 

resize(80, 120); 

public void paint(Graphics g) 

g.setColor (Color.blue); 
g.fillRect ( 5, 5, 70, 110); 

g.setColor 
g.drawOval 
g.drawLine 

g.drawArc 

(Color.red); 
( 	 10, 	 50, 	 60, 
( 	 70, 	 110, 	 70, 

( 	 10, 	 20, 	 60, 

60); 
40); 

60, 	 0, 180); 

Check this code 

Let's quickly go through the new functions here: 

Function 	 Explanation 

setColor (Color c) 

Changes the drawing color for functions 
using the current graphics toolbox to 
whatever c is. Class  color  predefines a 
number of colors. 

133 



fillRect (int x, int y, int 
width, int height) 

drawOval (int x, int y, int 
width, int height) 

drawArc (int x, int y, int 
width, int height, int 
startAngle, int EndAngle) 

Draws a solid rectangle with an upper 
left-hand corner of x, y. Its width is 
equal to width; height is equal to height. 

Draws an oval with an upper left-hand 
corner of x, y. Its width is equal to 
width; height is equal to height. 

Draws a portion of an oval much like 
drawOval. startAngle  and  endAngle 
are in degrees; 0 is the 3 o'clock 
position. 

Adding Sound 

One of the cooler things about Java is its built in multimedia capabilities. Graphics, 
sound, and interne capabilities are built into the language. Java also has things like 
buttons and menus built in. 

This applet plays a sound file whenever one clicks on the applet. 

import java.applet.*; 
import java.awt.*; 

public class Radio extends Applet 
1 

String Status; 

public void init() 
{ 

resize(100, 100); 
Status  =  "Click to play"; 
setBackground  (  Color.cyan); 

1 
public void paint  (  Graphics g) 
{ 

g.drawString ( Status, 5, 40 ); 
} 
public boolean mouseUp(Event evt, int x, int y) 

play(getCodeBase(), "audio/joy.au "); 

Status  =  "Sound clip played"; 
repaint(); 

return true; 

134 



I 

Check this code   

Let's go through the new things here: 

Function 	 Explanation 

String Status; 

setBackground (Color c) 

play (URL location, String  file) 

getCodeBase  () 

Create a  String  variable called Status. A 
string is just a collection of letters, 
numbers, and spaces. 

Changes the background color of the 
applet. 

Play an audio (.au) clip named file using 
location as the base URL. 

Returns the URL where the applet is 
stored. 

135 



Appendix B - Activities 

Lab 1 - Creating Web Pages 
Activity 1.1 
Activity 1.2 
Activity 1.3 
Activity 1.4 

Lab 2 - JavaScript 
Activity 2.1 
Activity 2.2 
Activity 2.3 

Lab 3 - Perl/CGI 
Activity 3.1 
Activity 3.2 
Activity 3.3 

Lab 4 - Java Applets 
Activity 4.1 
Activity 4.2 
Activity 4.3 

136 



Activity 1.1 
Create a directory in your home directory named  public_html. 

Set the permissions on that directory to  rwx r-- r--. 

Create a dummy file in that directory named  index  .  html  using the  touch  command. 
Set the permissions on that file to  rwx r-- r--. 

Check the permissions using  is -1 filename or directory 

Activity 1.2 
Using HTML, make a personal homepage for yourself by editing 
-/publichtmi/index.html. 

This page should include: 

• a title 
• a heading 
• horizontal line(s) 
• a link to "http://penguin.wpi.edu:4546/course/web " 
• any additional links you would like to add 

Your page can be viewed in any web browser by going to the location: 
"http://users.wpi.edul —username". 

Activity 1.3 

Change the background of your homepage with the  background  or the  bgcolor 

attributes for the  J,,Liy  tag. 

Write a short paragraph about yourself. For example, you could discuss what your 
hobbies are, what high school you go to, what movies you like or have seen recently. Use 
the  -nt  tag on this paragraph and change the  size, color,  and  face  attributes however 
you like. 

Add a picture of yourself to your homepage. Be sure to set the  alt  tag. Set the  align  and 
border  however you like. 

Include a list containing WPI building names, your group member names, or anything 
else. 

137 



G.W.'s Homepage 

George Washington was the 
first president... 

Activity 1.4 

Use a table to format all the data in your homepage however you like. 

Example: 

Activity 2.1 
Create a Lab 2 page at  /publi html /lab2 .  html.  In this file, imbed a JavaScript 
which displays some welcome message in an alert box when the page is loaded. 

Examples: 

"Caution, you are entering your name's Lab 2 page." 
"Welcome to your name's Lab 2 page." 

Include a link to  i ab2 html  in your homepage (index  .  html). 

138 



Activity 2.2 
In your Lab 2 page, after the alert box from Activity 2.1 is displayed, display a confirm 
box with some message. Depending on the users choice, (OK or CANCEL), display a 
different message of the page using the  document . write  ( )  function. 

Example: 

"Do you agree with the terms and conditions of the agreement?" 

If OK, display "You agree and can continue setup." 
If CANCEL, display "You disagree and must exit setup." 

Activity 2.3 
In your Lab 2 page, make an HTML form with three text areas, a button, and a fourth text 
area labeled "Result:". The user should be directed to input data in the first three boxes 
and then click on the button. When the button is clicked, a JavaScript function is called 
and the values of those 3 text areas are passed to the function as parameters. These values 
should be stored in an array and displayed, in reverse order, in the "Result:" text box. 

Use examples given in Advanced JavaScript as guidelines. 

Activity 3.1 
Write a perl script that prompts the user for the following: 

1. user name 
2. course name 
3. first quiz score 
4. second quiz score 
5. third quiz score 
6. fourth quiz score 

The script should then calculate the user's average and display the following message: 
"user name's average for  course name  is  average quiz  score." 

Activity 3.2 
Make an HTML form which asks the user for various personal information. Example: 

• First Name 
• Middle Initial 

139 



• Last Name 
• Street Address 
• City 
• State 
• Zip 
• Email Address 

On submition of this form, the information is sent to a CGI script using the POST 
method. The information should be sent back to the user by the CGI script in a formatted 
table. 

There should be a minimum of 5 feilds to be filled in. 

Activity 3.3 
Use the form you made in  Activity 2.3.  On submition of this form, instead of being 
formatted into a table, the information should be emailed to the owner of the site. 

(Chapter 8, Hands-On Exercises #5) Create an HTML form that allows end users to 
specify a preferred background color when visiting your Web site. Notify end users that 
only red, yellow, green, and white can be used (and enforce that limitation). When a user 
selects a color, generate another screen that thanks the Web site visitor. Set the 
background to that color (if a valid one was selected) and set a cookie with this 
preference. Use this color when the end user visits your site again. 

140 



Learning Java  -  Module 1   
Project 1: Drawing the Board 

Now we are ready to start writing our Tic Tac Toe game. Let's start by drawing the 
board.. 

Here's the skeleton of our Tic Tac Toe game. 

import java.awt.*; 
import java.applet.*; 

public class TicTacToe extends Applet 
{ 

public void init () 

//  set up the game 
1 
public void paint( Graphics g ) 

// draw the board 

} 

1. Fill in the init function so that it resizes the applet window to be 150 pixels wide 
and 200 pixels high. 

2. Fill in the paint function so that it does the following: 

• draw the Tic Tac Toe grid on the screen using the drawLine function. The 
board should create squares that are 50 x 50 pixels. 

• use the drawString function to draw an "X" in the middle square 
• use the drawString function to draw "Game Ready" below the board. 

The program should like this when it's done. 

Back - Step 3: The init Function and Variables 
Next - Module 2: Xs and Os 

141 



Web References 

Java Reference Guide  
Compiling Java Programs 

Learning Java Credits 

142 



Learning Java  -  Module 2   
Project 2: The X and 0 Hotel 

Before we go on to the final module, let's use what we've learned to add to our Tic Tac 
Toe applet. It needs a way of looking at each square individually. So let's make a few 
changes to TicTacToe. Here's a revised skeleton. 

import java.awt.*; 
import java.applet.*; 

public class TicTacToe extends Applet 
1 

// declare variables 

public void init () 

// set up the game 
1 
public void paint( Graphics g  ) 

// draw the board 
// draw X's and 0's in the right place 

1. Declare a 2D array of integers called Board. 
2. In the init function 

a. Make Board a 3 X 3 array. 
b. Initialize each element in Board to 0 by using two for loops. 
c. Set value of the center square to 1. 
d. Set value of the upper left-hand square to 2. 

3. In the paint function 

a. Remove the code that drew one 'X' in the center of the screen. 
b. Use two for loops to step through Board, drawing an 'X' if the current 

square is 1, an '0' if the current square is 2, and nothing if the current 
square is 0. 

Hint: Take a close look at the program from Module 2, Step 3. It does almost 
everything that needs to be added to TicTacToe. 

Take a look  at what your applet should look like. 

143 



Back  - Step 3: 2D Arrays 
Next  - Module 3: Making it all work 

Web References 

Java Reference Guide  
Compiling Java Programs 

Learning Java Credits   

144 



Learning Java  -  Module 3   
Project 3: Playing the Game 

Now that we know events, we can add some interactivity to our Tic Tac Toe program. 

Here's an updated skeleton our TicTacToe program. 

import java.awt.*; 
import java.applet.*; 

public class TicTacToe extends Applet 
1 

// declare variables 

public void init 
{ 

// set up the game 
} 
public void paint( Graphics g ) 

// draw the board 
// draw X's and 0's in the right place 

public boolean mouseUp( Event evt, int x, int y) 
{ 

// update board and switch players (if appropriate) 

Make the following changes to your program from  Project 2. 

1. Add an integer variable named CurPlayer to keep track of whose turn it is. 
2. In the init function, initialize CurPlayer to 1. 
3. Add a mouseUp function to your TicTacToe program. It should do the 

following: 
a. Divide the x and y parameters by 50 to get column and row numbers 
b. Check if the square clicked is a legal place for the current player to 

move (there isn't already an X or an 0 there). 
c. If it is a legal move, update Board, then change the current player, and 

repaint the applet. 

Hints: 

145 



1. You're going to need to convert the x and y pixel coordinates in mouseUp to 
row and column numbers. You can use these numbers to access the item in 
your array that represents that square. You might want to use variables to store 
the results. 

2. You're going to need a way to keep track of the difference between empty 
squares, X's, and O's. Use 0 for empty, 1 for "X", and 2 for "0". 

When you're done with this, you'll have a working game. 

Here's the game in action. 

Back - Step 1: The Main Event 
Next - Step 2: Vulcan Logic 

Web References 

Java Reference Guide  
Compiling Java Programs 

Learning Java Credits   

146 



Appendix C - Student Evaluations 

Pre/Post-Test 

Quiz 1 

Quiz 2 

Quiz 3 

Quiz 4 

1 47 



Pre/Post Test 

Client/Server Basics 
1. Web programming depends heavily on the Client/Server Model. In this model, what 
is the web browser? 

a) Shell 
b) Server 
c) Client 
d) Directory 

UNIX Basics 
2. Which command is used to change file permissions in UNIX? 

a) finger 
b) man 
c) cp 
d) chmod 

HTML 
3. Which tag is used to define a link? 

a) img 
b) a href 
c) link 
d) html 

4. Which is not an attribute for the <body> tag? 
a) basefont 
b) background 
c) text 
d) link 

5. Which tag is used to define a cell in a table? 
a) tr 
b) table 
c) td 
d) th 

JavaScript 
6. Which command is used to display text? 

a) print 

148 



b) cout 
c) System.out.println 
d) document.write 

7. When comparing values, which operator is used to test for equality? 
a) = 
b) == 

c) := 
d) != 

8. If you had an array named array_name, how would you set the first element in that 
array equal to 0? 

a) array_name.1 = 0 
b) array_name.0 = 0 
c) array_name[1] = 0 
d) array_name[0] = 0 

Perl/CGI 
9. Why is Perl a good language to use with CGI? More than one answer. 

a) replacement capabilities 
b) powerful pattern matching capabilitites 
c) object oriented language 
d) it is the only language that can be used with CGI 

10. What hash function is used in Perl to determine if a hash is empty? 
a) scalar 
b) exists 
c) empty 
d) hash 

11. Which perl command is used to replace a pattern? 
a) m/pattern/replacement 
b) s/pattern/replacement 
c) switch/pattern/replacement 
d) replace/pattern/replacement 

Java Applets 
12. Which command would you used to compile a java program? 

a) java 
b) compile 
c) javac 
d) javacompile 

13. Which of the following attributes is required in the applet tag? 

149 



a) name 
b) codebase 
c) width 
d) align 

14. Which of the following is not a mouse event? 
a) mouseDown 
b) mouseOver 
c) mouseExit 
d) mouseDrag 

150 



Quiz 1 

Multiple Choice 

1. Web programming depends heavily on the Client/Server Model. In this model, 
what is the web browser? 

a. shell 
b. server 
c. client 
d. directory 

2. Which UNIX command is used to delete a file? 
a. delete 
b. del 
c. remove 
d. rm 

3. The img tag is used in HTML to display images. Which is a required attribute for 
the img tag? 

a. border 
b. image 
c. src 
d. picture 

4. Which tag is used to define a cell in a table? 
a. tr 
b. table 
c. td 
d. cell 

Short Answer 

5. Write an HTML file which would display the following: 
This text is normal, 
This text is boki. 
This text is italicized. 

This font size is 5. 
'This {Grit Face is courier, 
This  font color is red. 

151 



Quiz 2 

Multiple Choice 

1. 1. What HTML tag do you use to tell the broswer there is JavaScript in the file? 
a. <script language= "javascript"> </script> 
b. <language="javascript"> </language> 

C.  <javascript> </javascript> 
d. <js language="javascript"> </js> 

2. What do all lines in JavaScript end in? 
a. , 
b. : 
c. ; 
d. . 

3. In JavaScript, are the variables Ax and aX the same or different? 
a. same 
b. different 

4. What is the JavaScript variable that you would use to set a 
cookie? 

a. cookie 
b. javascript.cookie 
c. document. cookie 
d. chocolate.chip 

Short Answer 

5. Write an HTML file with embeded JavaScript code which does the 
following: 

Displays a confirm box with the message: 
"If you will be a senior this fall, press OK. Else, 
press CANCEL." 

If the user presses OK, then display: 
"Congratulations Class of 2003!" 

If the user presses CANCEL, then display: 
"You are not graduating next fall." 

152 



Quiz 3 

Multiple Choice 

1. Why is Perl a good language to use with CGI? More than one answer. 
a. replacement capabilities 
b. powerful pattern matching capabilities 
c. object oriented language 
d. none of the above 

2. What programming languages can CGI be used for? 
a. C++ 
b. C 
c. Java 
d. all of the above 

3. In Perl, are the variables Ax and aX the same or different? 
a. same 
b. different 

4. When using the GET method for CGI, data is sent to a perl program in the form of 
one long string of name-value pairs. What is the name of the environment variable 
which contains this string? 

a. GET STRING 
b. CONTENT LENGTH 
c. QUERY STRING 
d. ENV VAR 

Short Answer 

5. What will this print: 
6. 

	

7. 	 $day  =  "Hello, Students. Today is a xday, we are 
going to learn scalar variables.\n"; 

	

8. 	 $day 	 s/xday/Wednesday/; 

	

9. 	 print $day; 

153 



Quiz 4 

Multiple Choice 

1. Which keyword is used in the beginning of a java file to get things needed for an 
applet from other files? 

a. public 
b. class 
c. get 
d. import 

2. Which keyword is used to define a new object? 
a. class 
b. extends 
c. javac 
d. object 

1. Which function is called automatically everytime an applet needs to draw itself? 
a. paint 
b. draw 
c. init 
d. create 

4. Which function is part of the applet skeleton and gets called automatically 
everytime someone lets go of a mouse button? 

a. mouseRelease 
b. mouseUp 
c. mouseClick 
d. letGo 

Short Answer 

5. How would you initialize the following 2 dimensional array named  . to l Table 
using 2 for loops? 

mulTableicol  1 col 2 col 3 col 4 col 5 

row 1 	 1 	 12 	 13 	 4 	 5 r row2 2 F17- 16 	 8 	 10 
row 3 13 	 6 	 9 	 12 15 
row 4 4 	 8 	 12 16 20 
row 5 15 	 110 115 120 125 

154 



Appendix D - Frontiers Qualifying Projects 

Stock Ticker Project 
Web Browser Project 
E-Commerce Site 
Cryptography Project 
Meet the Sticks 
Create a Fractal Interface 

155 



Stock Ticker Program 
This project involves: 

• PerI/CGI 
• Exposure to real world HTML on the Web. 
• Techniques used in web page layout and design. 
• HTML parsing with regular expressions  in Perl. 
• Working with HTML forms. 
• Maintaining state on the Web. 

Level 1 
In this assignment you will develop a simplified Web client. Your cgi script will make 
requests to a remote Web server for an HTML page which contains stock information. To 
simplify this process, you may use the functions defined in LWP::Simple. Here is a 
sample URL of a yahoo page with a single stock: 

http://finance.yahoo.com/q?s=csco&d=t  

You will then need to write a web page parser which uses regular expressions to go thru 
the HTML page. You should locate and extract the following specific information: 

• company name 
• price 
• change 
• image chart URL 

You then need to interpret that stock information and format it into an HTML page which 
is then returned to the user. (The image chart itself should be displayed, not the URL.) 

Level 2 

Your cgi script should have the functionality of the previous level. 

Your script should start by displaying an HTML form. The form should have a text area, 
checkboxes, a submit button, and a clear all button. The text area will be used to enter 
stock symbols. The checkboxes will be used to select what data should be displayed. The 
submit button should submit the form to the cgi script. The clear all button should reset 
your input fields to the original values. The form should look  similar  to this: 

156 



Enter Symbols:I 

price 

• change 

• image chart 
Clear 

The script should be able to make requests and provide results for multiple stock 
symbols. Here is a sample URL of a yahoo page with multiple stocks: 

http://finance.yahoo.com/q?s=csco+t+a&d-t  

You should then add functionality to allow the user to select the following information to 
he displayed as well: 

• volume 
• average volume 
• day's range 
• 52 week range 
• market capitalization 

Level 3 

Your program must have Level 2 functionality. Also, you must implement a welcome 
page, where the user can enter a user name and a password to login onto the Web site. If 
the user is new to the site, they should be able to create a new account and enter at least 
the following information: 

• first name 
• last name 
• street address 
• city 
• state 
• zip code 
• e-mail 
• user name 
• password 
• confirm password 

After a successful login or account creation, the user should be allowed to lookup stock 
symbols. For this, you must write an extended cgi script that can create the new account, 

157 



ensure unique user names, and store the account information in either a flat ASCII file or 
by using functions in the  Storable  module. Also, your HTML forms should use the POST 
method so that account information (especially passwords) can not be viewed in the 
URL. 

Level 4 

You must implement the functionality of a Level 3 assignment. Your cgi script needs to 
maintain state between Web pages so that for every request that it receives, it knows who 
the user is. To do this you will use cookies. You must ensure that all cookies do not 
contain real data, such as login information. Here is an example: 

• A user visits your site for the first time or from a different computer than 
previously. 

• Your cgi script realizes that the user is new and replies with a welcome page 
containing a login prompt and create new account prompt. 

1. On login:  The cgi script looks you up in the database and replies with 
either an error page or a stock lookup page. 

2. On create account:  The cgi script validates the information, an entry is 
made in the database, and replies with either an error page or a stock 
lookup page. 

• Any request for stock data that does not contain a valid cookie should be 
answered with an error page that also allows the user to enter a different login or 
create a new account. 

158 



Web Browser 
This project involves: 

• Perl/CGI 
• Exposure to real world HTML on the Web. 
• HTML parsing with  regular expressions  in Perl. 
• Working with HTML forms. 
• Maintaining state on the web. 

Level 1 

In this assignment you will create your own Web browser. The first thing you need to do 
is thing of a catchy and marketable name for your Web browser. (Examples: Internet 
Explorer, Netscape, Mozilla, Opera) Then you must build an HTML page which contains 
two frames. In one frame you should put an HTML form which contains a text box. This 
text box will be used to input the name of a Web document. There should also be a 
submit button. When the submit button is clicked, your cgi script should retrieve the 
document and display it in the second frame. You can use the functions in  LWP::Simple   
module. 

Level 2 

You must fully implement a Level 1 assignment. In addition, you should use cookies to 
implement the following navigation buttons: 

• back 
• forward 
• home 
• set current page to home 

Level 3 

You must fully implement the Level 2 assignment. In addition, when your cgi script loads 
an HTML page, it should parse the document to locate references to other files such as 
images and links. These references may be absolute URLs, relative to the current 
directory, or relative to the path specified in a  ba s e  tag. Your program should convert all 
of these to absolute URLs before it gets displayed. This will display the images and allow 
links to work properly. 

159 



Level 4 

You must fully implement the Level 3 assignment. Your first frame should contain 
another button which allows you to store current web locations in a bookmarks list. The 
bookmarks list should be displayed in the first frame as a drop down menu. When a 
bookmark is selected, your cgi script should load it in the target frame. 

160 



Create Your Own E-Commerce Site 

The goal of the project is to create an e-commerce-"like" application using 
a CLIENT-SERVER architecture, similar to many seen on the web. The 
CLIENT is a web page running on a browser that accepts orders from 
buyers and sends them to the SERVER. The SERVER returns information 
to the browser, which displays the information to the user as a current 
shopping cart. The shopping cart will be created dynamically by a CGI 
script. The CGI script will be written in Perl for the server side and HTML 
(with forms) for the client side. The project will guide you in learning 
some Perl code and extra HTML code. The project, when done, will "act" 
like an e-commerce site. It is up to you how "professional" you would like 
the site to look. Choose your own e-commerce business along with 
products and prices. 

PROCEDURE: 

1. Specification   
2. Example Implementation 
3. Creating Forms   
4. Creating CGI with Perl   
5. Using Perl   
6. Finalizing Project 

You should write: 

• A home page for the store   
• Department pages for the various departments of the store (at 

least 3 departments) 
• A CGI script that dynamically generates a shopping cart 
• A summary finalized page   

The home page has buttons leading to the department pages and the 
shopping cart page. 

The page for a department gives, for each product, its name and price, 
and allows the user to specify the desired quantity of product in a text 
field. It has a button for adding the selected products to the cart and a 
button for returning to the home page. 

161 



The shopping cart page gives the list of products selected so far by the 
user and their quantity. It has buttons to finalize the purchase, return to the 
home page, or reset the current shopping cart. 

A summary finalized page finalizes the order (empties the cart) and 
prints out on the screen the total purchases of the user in an easy-to-read 
format consisting of product name, quantity ordered, price per quantity, 
and total price for that product. Somewhere there has to be a total price for 
the entire order. 

You have to maintain separate shopping carts for each user. For this 
assignment we can assume one user per host name (this is not the case in 
the real world but it makes it much easier) 

Extra Work to make it cool: 

Give the user the ability to change their order in the shopping cart page. 
Make all the department pages one CGI script page (a lot harder than it 
sounds). 
Create a login page, which can be accessed from the home page. You will 
have to keep track of the user using hidden tags throughout the pages. 
There will have to be a data file of users as well as a separate CGI home 
page to keep track of the user (this could be fun). Remember to allow a 
new user to login. You will probably want at least name, password, 
address and e-mail. 

162 



Cryptography Project - Ciphertext Decryption 

Project Advisor: ? 

Introduction 

The FBI's  Carnivore  "email snooping system" is only one of many concerns regarding the 
integrity and privacy of personal electronic communications today . The popular use of 
electronic communications (email, instant messaging services, web-based financial 
transactions, etc) makes it easier than ever for an outsider to intercept supposedly private 
communications between individuals, organizations, businesses and governments. 

One method of securing electronic communications is encryption. Many styles of 
encryption exist, dating back to the beginning of human history: the Julian shift cipher 
(used by Julius Caesar himself) and the Enigma system (used extensively by the German 
military, and cracked by the Allies, in World War II) are just two examples of encryption 
systems. However, one encryption system that is most readily applicable to electronic 
communications is asymmetric-key encryption. 

Probably the most well-known asymmetric-key encryption system is Pretty Good Privacy 
(PGP), written by Phil Zimmerman, and published online (for free, yeah!) in the early 
1990s. The underlying mathematical equations and mechanisms of PGP are so strong that 
the system was classified as a national security concern. Because PGP was available all 
over the world via the Internet, Zimmerman was charged with violation of national 
security by the American government. In some places "violation of national security" is 
called treason, and is punishable by death. (If you're still unconvinced of the seriousness 
of encryption export law, check out  www.cryptography.com .)  

Good encryption systems, when used properly, make communications more difficult to 
be read by a third party. However, as the German military learned in World War II, no 
encryption system is unbreakable. Your task in this project, should you choose to accept 
it, is to play the "unauthorized observer" role. Given an intercepted message, you must 
crack the code and steal your opponent's secrets. (Note: the US government's National 
Security Agency [NSA] handles this sort of role all the time. The NSA handles the 
majority of the American government's intelligence workload, is the world's largest 
employer of theoretical mathematicians and cryptologists, and measures its computing 
power in terms of "How many acres of NSA basement floor space are filled with 
supercomputers.") 

Background 

[Author's note: It would be beneficial to refer to the glossary given below while reading 
through the background material.] 

Suppose Alice wants to send a message to Bob over an insecure network (the Internet, for 
example), while Oscar is listening in. Alice strongly encrypts her message to prevent 

163 



Oscar from reading the contents, but Alice must make it relatively easy for Bob to 
decrypt the message. One way that this can be done easily over the Internet is by using an 
asymmetric-key encryption system. 

Here's how asymmetric-key encryption works: Bob has two "keys," which are really just 
small collections of numbers. Bob has a public key (consisting of a very large number: z, 
and another smaller number called the encryption key: n). 

k[pub] = (z,n) 

Bob also has a private key that consists of three numbers. p, q, and s. p and q are both 
prime numbers, and have the property p*q = z. s is another number, called the decryption 
key. 

k[prv] = (p, q, s) 

[Please note: the encryption and decryption keys, n and s, are not just "some random 
numbers." There is more to it than that. However, the mathematics is a bit complicated to 
discuss here. A more mathematically detailed description of asymmetric-key encryption 
is available at Professor Koeller's algorithms page.] 

When Alice wants to send an encrypted message to Bob, she gets his public key 
(containing z and n) from Bob's website. Alice also has her plaintext message, m. Alice 
encrypts her plaintext message, m, into ciphertext, c, with the following equation: 

c = m^n mod z 

Alice then sends her encrypted message over the Internet to Bob. Bob receives the 
encrypted message, c, and turns it back into the original plaintext with the equation: 

m = cAs mod z 

Notice that this equation uses information available only in Bob's private key: s. For the 
unauthorized observer to obtain s, two things are required: p and q. p and q are plainly 
available in Bob's private key (which you don't have access to), but they can be obtained 
by factorizing z, which is available from Bob's public key (which you do have). [Note: 
Getting s from p and q is surprisingly simple. A process called the Extended Euclidean 
Algorithm does this quite nicely. Don't worry about the specifics of the Extended 
Euclidean Algorithm. A function called "exteuclid" will be provided for you. It will take 
two integer arguments, p and q, and will return s.] 

The strength of asymmetric-key encryption systems rests mostly on properties 
surrounding prime numbers. Go ahead and solve the following two problems on your 
calculator: 

• 1) What is 13 x 7? 

164 



• 2) What are the prime factors of 133? 

The numbers 7, 13, and 19 are relatively small, as prime numbers go. The next two 
problems use numbers that are a bit larger. If you'd like to attempt them, go ahead, but 
don't spend too much time on #4. 

• 3) What's 421 x 509? 
• 4) What are the prime factors of 317461? 

Notice that multiplying two prime numbers together is relatively simple, but finding the 
prime factors of a number (that is, "factorizing" the number) proves to be quite difficult. 
While multiplication is a simple mathematical and computational process, factorization is 
far more difficult. 

Consider this: factorizing a standard PGP public key (which is a number about 200 digits 
long) takes about one year of constant processing power (almost 9000 hours of nonstop 
processor operations) on a computer a few hundred times as powerful as your home 
computer. And PGP is weak, compared to the cryptographic systems used by businesses 
and, especially, governments and their agencies. 

As you'll be playing the unauthorized observer role in this project, you'll be given the 
ciphertext of Alice's message to Bob (which can be easily "snooped" from the Internet), 
and Bob's public key (which he freely posts on his website, so people can send him 
encrypted messages). With these two pieces of information, and plenty of programming 
skill, you'll crack the message. 

In this case, cracking an encrypted message involves three steps. 

• Stepl Factorize Bob's public key. The public key will be some large number, 
which has two prime factors. You must find the two prime factors of Bob's public 
key by writing a factorization program. For example: Say Bob's public key is the 
number 713. Your program's output might look something like this: 

713%2!= 0 

713 % 3 != 0 ... 

713 % 23 == 0, so 23 is one prime factor of the public key. The other factor must 
be 713 / 23 — 31. 

Bob's public key has successfully been cracked! 

• Step2 Compute the decryption key, s, by using the Extended Euclidean 
Algorithm. The Extended Euclidean Algorithm solves the equation n*s mod theta 
= 1 for the variable s. Here, theta = (p-1)(q-1). Again, this might seem a bit 
complicated, but don't worry too much about the specifics of how the equations 

165 



work out. You can take my word for it, or you can read through the "lecture 
slides" part of Professor Koeller's  algorithms page  and convince yourself 
(learning some pretty cool number theory in the process.) 

• Step3 Decrypt the ciphertext message, c. The equation governing this process is 
m = c^s mod z, where: 

m = Alice's plaintext message 

c = Alice's ciphertext message, given in the file cipher.txt 

z = the larger number of Bob's public key. Note that this is the number you're 
already cracked by this point. 

Don't worry too much about the interrelations of the above equations. Just realize that 
your goal is to compute 'm' from the first equation. To do that, you need 4 things: c, s, p 
and q. The ciphertext, c, is given to you. You find s from the Extended Euclidean 
Algorithm, and you've already found p and q by cracking z. 

Glossary 

• Asymmetric-key encryption system - Any encryption system that uses two keys, 
like a public and private key. PGP is one such asymmetric-key encryption system. 

• Brute-force attack - Cracking an encrypted message by using nothing more than 
raw computing power. Other ways of cracking encrypted communications involve 
the use of espionage and reverse engineering poorly designed encrypted systems. 
As you have no spies inside Alice and Bob's organization, and public-key 
encryption is a good method of securing transmissions, you're only option is to 
attempt a brute-force attack on the ciphertext. 

• Ciphertext - Ciphertext is the encrypted (encoded) message that is sent to your 
associate. Alice sends her ciphertext to Bob over an insecure communications 
channel. 

• Cracking - Informal for "factoring." 
• Encrypt - To convert plaintext to ciphertext. 
• Extended Euclidean Algorithm - A relatively simple algorithm, used to compute 

the decryption key "s" from the components of "z." A function called exteuclid 
will be provided for you. Exteuclid will take two integer parameters (p and q) and 
will return s. (Recall that z = p*q) 

• Factoring - Reducing some non-prime number to its prime factors. For example: 

Factoring 12543 yields 111 * 113 

Factoring 96 yields 2 * 2 * 2 * 2 * 2 * 3 

Factoring 510510 yields 2 * 3 * 5 * 7 * 11 * 13 * 17 

• Factorizing - Same as "factoring" 

166 



• Linked List - A data structure often used in various programs for its relative 
simplicity and extraordinarily large size. The linked list has a "head" node, which 
connects to another node, and so on, until the tail node is reached. Each node in a 
linked list can hold some amount of the same type of information. Thus, you can 
have a linked list of any single datatype (a linked list of integers, perhaps, for your 
Biglnt). 

• Mod - Short for modular arithmetic. Also denotes the mathematical operation 
"modulus." (Ex: "7 modulus 3" is the same as "7 mod 3" is the same as 7 % 3) In 
integer division (where we don't concern ourselves with decimals) 7 / 3 = 2, while 
7 % 3 = 1. 100 / 2 = 50, while 100 % 2 =0. x mod y equals the remainder of x 
divided by y. 

• Plaintext - Plain text message. This is the message you write and want to send to 
your friend, associate, partner-in-crime, etc. Plaintext is not encrypted. This 
document, for example, can be considered a plaintext document. 

• Public Key - Part of an asymmetric-key encryption system. The public key is 
what someone uses to encrypt a message, so public keys are usually posted on 
websites, printed on business cards, etc. Asymmetric-key encryption systems are 
designed so that if an unauthorized observer knows the public key the system is 
still very difficult to crack. Public keys consist of two numbers, z and n. 

• Prime Factors - Any positive integer is either a prime number (5, 37, and 101, for 
example), or can be broken down into a string of prime factors (125 = 5 * 5 * 
2701 = 37 * 73, for example). 

• Prime Number - (sometimes referred to just as a "Prime") An integer that is 
divisible only by itself and one. 

• Private Key - Part of an asymmetric-key encryption system. Only one unique 
private key can decrypt the messages from its associated public key. The private 
key is just like your computer password: if it falls into the wrong hands, it spells 
disaster. Private keys consist of three numbers: p, q, and s, where p*q = z, from 
the public key. 

Goal 

Given a ciphertext file, encrypted by a public-key encryption system, build a brute-force 
attack program to decrypt the ciphertext. 

Requirements 

1 - The program will take user-input of the ciphertext filename from the program 
command prompt, and will display the plaintext to the screen. 

2 - As the program may take some time to execute (perhaps a few minutes at most) it 
would be useful to display some sort of progress report for each iteration of the 'cracking' 
loop. This doesn't have to be anything fancy; a simple line of text should suffice. One 
example of this progress report format is: 

"Cracking 1431000479: 1431000479 % 2 != 0" 

167 



"Cracking 1431000479; 1431000479 % 3 != 0" 

...and so on, until you determine the number's prime factors. 

Improvements/Extensions 

The scope of your program's ability is limited by the largest built-in integer value 
available in Java. In reality, public-key encryption systems have a target number to crack 
of more than 200 digits (and in some cases far larger) in length. Your new mission, 
should you choose to accept it, is to create a new type of integer class called BigInt. This 
new class will be a linked list, with each node in the list holding one digit of the entire 
number. As nodes in a linked list are dynamically allocated, the theoretical size of a 
BigInt is hindered only by the amount of memory of the computer system on which it is 
running. To be of use in attacking encrypted messages, you must overload the operators / 
(division) % (modulus), and = (equality). 

Once your new integer type is up and running, you should use it in the cracking program 
you've already written. You can test your BigInt on numbers as small as four or five 
digits. Once you know the BigInt works for these relatively simple cases, go ahead and 
try "recracking" the given ciphertext. You'll probably note the speed difference with 
which the ciphertext is cracked by using default variable types, versus the BigInt variable 
type. 

168 



Meet the Sticks 

This project's goal is to develop an applet that draws simple stick people. You'll 
start out by creating a simple applet; then you will move on to creating more 
complicated ones. The language used will be java. 

PROCEDURE 

1. Create a method called drawPerson 
2. Write another method called drawFamily   
3. Add more functionality to drawFamily 
4. Create a nice web page to display your work. 

11111r 31111111MIW: 

Meet the Sticks — Part 1 

Write a method called drawPerson. As the name suggests, this method will draw a 
person. Not a fancy person - just a stick person, like this: 

Stick Person 

It is very simple - a circle for a head and lines for the body, arms, and legs. In real life 
the length of people's arms and legs are usually proportional to their height. This means 
you should base the size of the body, arms, and legs on how tall the stick person is. 

Getting Started: 

The method header should be: 

private void drawPerson (Graphics g, int height, int baseX, int baseY) 

169 



baseX and baseY should be coordinates located directly between the feet. 
height is the height, given in pixels 

Take a look at the Pseudocode   

Meet the Sticks Part 2 

Write another method called drawFamily. This method will draw a family of two 
"adults" and two "children." The drawFamily method will call the drawPerson method 
four times, giving appropriate heights and locations of the feet each time. 

Getting Started: 

Decide on your own method header. Should the number of adults and children be 
passed as parameters? Should there be parameters that determine the 
locations of each family member or should it just be one center point and the 
family mirrored out from there? 

Assume that the children are half the height of the parents... or you can have 
successive calls to drawPerson draw at different heights. 

Somewhere in your method you will have: 

public void paint (Graphics g) { 
DrawFamily(whatever you decide); 

} 

- Take a look at the Pseudocode 

Meet the Sticks — Part 3 

One of the biggest concepts in "real-world" Computer Science is that all code should be 
able to be reused, reworked, or have some functionality added to it. This is what you will 
be doing in Part 3. You will be adding a width Parameter to the drawFamily method. 

In addition to this width parameter you should also add some extra goodies to the applet. 
Maybe you should add a scrollbar to control the height and another scrollbar to control 
the width of each person. Each bar, of course, should be labeled appropriately. 

Getting Started: 

You will have a new method header for draw person: 

170 



private void drawPerson (Graphics g, int height, int width, int baseX, int baseY) 

This will be different from what you created in Part 2. 

You also will need to use the AWT to add the scrollbars. 

Be sure to implement the adjustmentListener appropriate for the scrollbars. 

Don't forget to have a function for adjusting the bars. 

Look at the  Pseudocode   

171 



Create a Fractal Interface 

Complex Iteration Fractals Tools All Together 

In this project you will learn about the creation of fractals, and you will 
create a series of web-accessible tools to inspect and explore fractals. One 
important aspect of the project is understanding how the complex numbers 
work to make the right colors. Another major part of the project is 
designing a good set of tools for altering the fractals your program 
makes. When you are done, you should have an applet that everyone can 
enjoy! 

PROCEDURE: 

1. Understanding complex numbers 
2. Seeing how iteration works   
3. Making your own fractals   
4. Thinking about tools   
5. Putting it all together 

Understanding complex numbers 

Complex Numbers are more interesting than regular numbers - each one 
has two parts to it. 

• First, the real part of a complex number is just some regular 
number, which can have any value, like 0 or 1 or -22 or 3.1415926 
or 1/3 or Pi. 

• Second, the imaginary part is a real number times i, which is the 
symbol for an imaginary number. By imaginary numbers we don't 
mean twentytwelve or eleventeen... i is the symbol for the square 
root of -1. There really isn't any way to count the square root of -1 
things, so we call it imaginary. Any number times i is imaginary, 

172 



except for one case. Betcha can't guess what we multiply i by to 
get -1? 

i = the square root of -1 

so, when we put these two parts together, we get a complex number . 
Some examples of complex numbers are 

c = -0.754 + 0.0491 i 

c = 5 + -1.22i 

c =0.0+ 1i  

The complex number is the sum of its two parts. You might wonder why 
we can't just add the parts together, and make the whole thing a regular 
number, but there really isn't any way to make any imaginary number into 
a 'normal' number. Complex numbers can't be simplified any more than 
their two basic parts. 

This is a good thing, because for fractals, it's just what you need! When 
graphing your pattern on the monitor, think of the real part of the number 
as the x coordinate, and the imaginary part of the complex number as the y 
coordinate. Another analogy is with the game of Battleship, where you 
shout out shots like 4A or 7D. Think of the imaginary number as the letter 
rows, and the real number as the number columns. The board on which 
you would be playing your game of Battleship would be like the complex 
plane. Different Complex numbers point to different places on the 
complex plane. The real part tells how far to go to the left or right, and the 
imaginary part tells how far to go up or down. 

Complex numbers would be pretty boring if you couldn't change them. 
We can add, subtract, divide, and multiply complex numbers. The 
operations required to do this are not as simple as those for regular 
numbers, because complex numbers have two parts. The way to add a 
complex number is to add the pieces and put them together. For example, 
say we wanted to add two complex numbers. First we would add their real 
parts, and that would be the real part of our answer. Next we would add 
their imaginary parts to get the imaginary part of our answer. That's it for 
addition, and subtraction follows the same method (except that you're 
dealing with  negative  numbers). 

If you understand this, you almost have everything needed to understand 
how to make a fractal of your own, but first, look a little at  Iteration   

173 



Iteration 

Iteration is the process of applying a method of one 
or more steps to an object many times. For example, 
say you wanted a well-finished wooden table. You 
would take an Object, (the rough wooden table) and 
a Process, (varnish, let dry, sand) and Repeat the 
process on the object until you have a finished 
product. The number of times you went through the 
steps are called iterations. 

There are other ways of repeating a process on an 
	

In this applet, the slidebar 
object, specifically recursion. The difference 

	
is the only control for the 

between iteration and recursion is that in iteration 
	

iterated line. When you 
every step is seprate, time-wise. In recursion, on the make your Fractal Interface, 
other hand, every step must start after and finish 

	
you need to think about 

before the start and finish of the step before it. That what Tools it will need. 
means the first step lasts as long as all of them, and 
the second lasts as long as all but one of them, and so 
on. Iteration is what we want because it is much 
faster for the computation of the colors. 

Here is a simple applet that replaces a straight line 
with a line forked into two segments. The slidebar 
controls the number of iterations. What other things 
would be fun to change within this applet? 

Making your own fractals 

Enough preparation! Now you are ready to learn the equations that give us 
the Fractals. 

The first thing you need are some constants and variables to work with. 
Let's agree that if you have an X by Y box for your display, that the 
difference between Xmin and Xmax is the number of pixels wide, and that 
Ymax - Ymin is the number of pixels high. Each pixel has a complex 
number attached to it. That number will depend upon your settings, but if 
you have the boundaries of the fractal, and the width and height of your 
box, you can know the numerical value of every pixel. This is important 
because you start with a set of numbers, and finish with a color for a pixel. 
The variable that holds the value of the color, and also the number of 

174 



iterations, (one varable) needs a name as well. You will need a large 
constant to test the value of your Complex numbers. 

Like your tic-tac-toe board, you need to set up loops that find colors for all 
the pixels, column by column, row by row. At each pixel, you will get a 
complex number based on your position, this complex number will be 
multiplied by another complex number iteratively until the number gets far 
too large, or the color turns black. If the number gets too large, the 
iterative process stops, and a color is returned for that pixel. 

In more detail: you have two complex numbers for every pixel. The first 
we can call X + Yi - this is the one that changes for every pixel. The other 
complex number we can call P + Qi. Iteratively, we will then multiply 
their parts, and see how large the first complex number gets. Here's how 
we find the new X and Y for every iteration. 

the new X = (X*X) - (Y*Y) - P 

the new Y = 2*X*Y + Q 

We then see if the square of the first complex number (X + Yi)is greater 
than a large constant, and our number of iterations is higher than the 
number of colors we can use. If either of those isn't true, the iteration 
stops, and the pixel is painted. In this fashion, all the pixels are colored, 
and you have your fractal! by tinkering with the numbers, you can create 
some beautiful results. 

Thinking about tools 

The importance of getting the mathematics to show a fractal image is 
important, but equally important is making it easy to use. All of us, at one 
time or another have been frustrated with a poor set of controls, whether 
it's a game, or drafting software. You need to think hard about which 
controls you with to include in your Interface. 

Here are some things to get you going: 

• Where on the screen will the main event -the fractal- be? 
• What controls do you need? (numeric input) 
• What controls would make it fun? (color changing function) 
• Can you label everything so that anyone can use your interface, 

even in your absence? 
• Can you include the mouse movement to help navigate the fractal? 

175 



These are just a few ideas. Some are harder to include than others. You 
need to decide which are the most important, or the ones you think make it 
the best program, and work on those. When you are done, everything 
should be a certain way for a certain reason, and it should be easy to use. 

Putting it all Together 

Now that you've seen all the pieces necessary to make a fabulous fractal 
interface, you need to bring them all together. It is important to divide the 
work of the group up so that methods do not get confused, and so that 
things work together well even if they were not made by the same person. 
The finished product should look clean, easy to understand and use, and 
most of all, fun! 

If you finish early, there are many things you can do to take this project 
further. You might want to make a website of favorite complex 
coordinates, an art gallery of numbers that can be plugged into the 
interface. 

176 


	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	03C002I Part 2.PDF
	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93

	02E011M.PDF
	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27

	02E011M.PDF
	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27

	02E011Ma.pdf
	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27


