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Abstract

The da Vinci Surgical System is one of the most established robot-assisted

surgery device commended for its dexterity and ergonomics in minimally invasive

surgery. Conversely, it inherits disadvantages which are lack of autonomy and haptic

feedback. In order to address these issues, this work proposes an industry-inspired

solution to the field of force control in medical robotics. This approach contributes

to shared autonomy by developing a controller for cooperative object manipulation

with force tracking utilizing available manipulators and force feedback. To achieve

simultaneous position and force tracking of the object, master and slave manipula-

tors were assigned then controlled with Cartesian position control and impedance

control respectively. Because impedance control requires a model-based feedforward

compensation, we identified the lumped base parameters of mass, inertias, and fric-

tions of a three degree-of-freedom double four-bar linkage mechanism with least

squares and weighted least squares regression methods. Additionally, semidefinite

programming was used to constrain the parameters to a feasible physical solution

in standard parameter space. Robust stick-slip static friction compensation was

applied where linear Viscous and Coulomb friction was inadequate in modeling the

prismatic third joint. The Robot Operating System based controller was tested in

RViz to check the cooperative kinematics of up to three manipulators. Addition-

ally, simulation with the dynamic engine Gazebo verified the cooperative controller

applying a constant tension force on a massless spring-damper virtual object. With

adequate model feedback linearization, the cooperative impedance controller tested



on the da Vinci Research Kit yielded stable tension force tracking while simultane-

ously moving in Cartesian space. The maximum force tracking error was +/- 0.5 N

for both a compliant and stiff manipulated object.
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Chapter 1

Introduction

Robot-Assisted Surgery (RAS) technology has been developed since 1984 [4] and

has established itself in modern robotic surgeries ranging from cardiac, colorectal,

gynecologic, thoracic, and urologic surgeries [6]. With the advent of RAS, Camarillo,

et. al [4] explained the advantages and disadvantages of robotic surgeries versus

traditional surgery (Table 1.1) where RAS provided accuracy, diverse sensors, and

stability while also inheriting drawbacks, for example, non-versatility and premature

technology. In 2000, the daVinci Surgical System developed by Intuitive Surgical

acquired FDA approval and quickly gained commercial success for its dexterous

and ergonomic Endowrist manipulator which provided many advantages for general

Minimally Invasive Surgery [7]. While this innovative device is adopted among

surgeons worldwide, it lacks autonomy. It can be seen in table 1.2 that other RASs

adopt supervised or shared control strategies. For example, the NeuroMate utilizes

CT scans to apply trajectory planning which the surgeon must approve and execute.

Another example is the ACROBOT, which uses a virtual fixture to constrain the

robot motion to a region of safety during operation. Additionally, a second major

disadvantage of the da Vinci Surgical System resides in the fact that this method
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INTRODUCTION

detaches the surgeon from natural sensory of the fingers [8]. This sense, called tactile

or haptic feedback in the robotics community [9], is broadly defined as interactions

between robots, humans, and real/simulated environments and their combinations.

It relates to the skin’s sense of force, pressure, vibrations, and/or temperature of the

environment. This problem has encouraged several research initiatives addressing

the application of haptic feedback with force sensors and low-inertia haptic devices

to RAS.

The general hardware of the daVinci Surgical System with additional research

advancements on force feedback presented an opportunity for the emergence of in-

novative software and control. Some examples include virtual fixtures [10], trajec-

tory smoothing [11], and automated camera control [12]. In particular relevance to

this work, Haidegger et. al [13] reviews force control strategies applied to surgical

robotics to achieve a variety of tasks with shared or supervised control. Force control

is an approach to achieve versatile and robust behavior in uncertain environments

and in the presence of modeling errors due to contact forces [14]. Additionally,

a recent development in shared autonomy included dual arm object manipulation

which gained considerable traction due to the successful implementations in in-

dustrial robotics [15]. Here, the objective is to provide an object motion with a

controller that uses the cooperation of two manipulators. The daVinci however,

teleoperates each manipulator with an individual hand of the surgeon. This re-

sults in one standby manipulator that could be better utilized in cooperative object

manipulation with one of the teleoperated manipulators.
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Table 1.1: Advantages and disadvantages of human and robot capabilities [4]

Surgeons Robots

Advantages

Task versatility Repeatability
Judgement experience Stability and accuracy
Hand-eye coordination Tolerant of ionizing radiation
Dexterity in mm-cm scale Diverse sensors
Many sensors Optimized for particular environment
Quickly process extensive and diverse qualitative information Spatial hand-eye transformations handled with ease

Manage multiple simultaneuos tasks

Disadvantages

Tremors Expensive
Fatigue Cumbersome
Imprecision Large
Variability in skill, age, state of mind Inability to process qualitative information
Inability to process quantitative information easily Not versatile
Ineffective at submillimeter scale Technology still in infancy

Table 1.2: Robotic systems with various levels of autonomy [5]

Name Branch of Surgery Level of Autonomy
da Vinci Surgical System General minimally-invasive Direct control
EndoBot General minimally-invasive Direct, shared control, supervised
Trauma Pos General Direct control
Sensei Robotic System Cardiac Direct control
NeuroMate Neurosurgery Supervised
ACROBOT Orthopedic Shared control
ROBODOC Orthopedic Supervised

1.1 Motivation

On the basis of previous technological and research advances, we summarize the

motivation of this work:

• The daVinci Surgical System provided no autonomy incorporated into the

algorithms where surgeons are only able to control two out of three manipula-

tors at any given time. Shared autonomy of the remaining manipulator could

improve surgical tasks and procedures.

• With the advent of force sensors in haptic feedback, a new opportunity for

automated research in robot assisted surgery has ensued. Adoption of force

control that has been widely used in industrial robotics would establish new

medical procedures and enhancements of the daVinci Surgical System.
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1.2 Goal

This research aims to develop controllers for cooperative object manipulation with

two or three daVinci Surgical Manipulators. This entails applying a referenced

tensile/compression force while simultaneously moving the object in Cartesian space.

1.3 Contributions

There are six main contributions of this work:

1. A kinematic and dynamic model for the Patient Side Manipulator (PSM) was

developed using motion capture system, conventional DH notation, and Euler-

Lagrange energy based method. In general, this model construes a double-

parallelogram 5-link remote center of motion mechanism which, to the authors

knowledge, is rarely discussed in literature.

2. Parameter identification of the PSM was conducted to eliminate non-linear

dynamics through feed-forward control providing a basis for more advanced

controllers. Identification is done on a simplified 3 degree-of-freedom (DOF)

mathematical model utilizing least squares/weighted least squares regression

and Semi-Definite Programming (SDP) to obtain the lumped base parameters

of masses, mass locations, inertias, and frictions. SDP provides physically

feasible standard parameter solutions. Additionally, identification requires

Fourier series trajectory optimization to obtain an optimal trajectory mini-

mizing the errors of the least squares solution which infers the non-excitation

of unmodelled dynamics.

3. A robust stick-slip static friction compensation was applied to alleviate pa-

rameter identification errors of the prismatic joint. The compensation utilizes
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the maximum stick-slip friction identified during a force ramp up test.

4. A Robot Operating System (ROS) based cooperative object manipulation with

force tracking controller was developed and tested in RViz and Gazebo simu-

lations. The RViz framework enabled the kinematics of any number of manip-

ulators to be tested for Cartesian movement, object reorientation, and object

force increase/decrease movement. The Gazebo framework facilitated the dy-

namic interaction of manipulator and object which verified the stability of

force tracking while simultaneously moving in Cartesian space.

5. A computed torque controller and impedance controller with feedforward model-

based compensation and robust friction compensation was applied to the PSM

manipulator.

6. A cooperative object manipulation with tensile force tracking controller was

developed and tested for two PSMs on a compliant and stiff environment.

1.4 Outline

The outline of the thesis is as follows: Chapter 2 reviews related work of force con-

trol, cooperative control, medical applications of cooperative control, and parameter

identification. Chapter 3 discusses the system architecture including hardware, and

software of the daVinci Research Kit. Chapter 4 presents the Kinematics and Dy-

namics mathematical modelling to form the standard used in this thesis. Chapter 5

discusses the dynamic identification in detail, for example, mathematical lineariza-

tion, base parameter lumping, Fourier series trajectory optimization, and physical

feasibility Semi-Definite Programming (SDP). In Chapter 6, a simulation environ-

ment was developed and utilized for the development of cooperative control kine-
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matics. Chapter 7 elaborates on methods such as nonlinear feedback linearization,

computed torque controller, and impedance control. In addition to this, the chapter

also discusses controller architecture, test setup, and kinematic calibration. Finally,

chapter 8 states the conclusions of this work and future areas of research.



Chapter 2

Related Work

This chapter presents prior research contributions that serve as a foundation for

the following chapters. We discuss the capabilities and applications of force and

haptic feedback in medical settings, the development of force control from industrial

robotics to medical robotics, the development of cooperative object manipulation

in research institutes, the medical applications that could potentially benefit from

cooperative manipulation, as well as relevant parameter identification research used

throughout this work.

2.1 Force Feedback and Haptic Sensing

The development of haptic sensing technology allowed surgeons to sense forces

and motions during teleoperation of robotic-assisted surgeries. Therefore, research

groups explored various methods of applying force sensors in medical robotics. Oka-

mura et al. [16] developed a modular 2 degree-of-freedom (DOF) force sensing in-

strument for laparoscopic surgery. The biocompatible device is specifically designed

to restore sensory information to minimally invasive surgery and therefore works

for a variety of 5 mm tools. As opposed to previous work, it succeeded in mea-

7
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suring intra-abdominal forces constraining laparoscopic surgery. Rosen et al. [17]

developed an effect controlled teleoperated endoscopic grasper. The force control of

the grasper enables force sensing by allowing the surgeon to discriminate between

different types of soft tissues. Kim et al. [18] developed force sensing capabilities

for a more tactile sensory feedback measuring normal and shear forces from the tool

end effector for minimally invasive surgery. The hardware consists of four capacitive

transducers calibrated and validated using the open surgical system Raven-II [19].

It proved to have adequate measurements, hysteresis, and calibration to be used for

tissue damage prevention.

2.2 Force Control

The emergence of force sensing capabilities encouraged the development of force

control to achieve stable interaction with uncertain environments. For example,

when a robot hits an obstruction along its trajectory, it will not suddenly apply a

large force on the object due to the proportional gain on the joints, but rather, will

be compliant and apply a force ramp-up with large position errors in the controller.

Force control has been developed for industrial robots [14] and is categorized

into indirect and direct force control. Indirect force control is robust to a particular

environment without actually measuring the forces of contact. Stiffness control,

impedance control and admittance control fall into this category. Direct force control

is the hybrid position/force control where some Cartesian/orientation degrees of

freedom are constrained to position control, and other DOFs are force controlled.

Surgical tasks operate in uncertain environments where there are no quantitative

data, for example, on the size or shape of the object. They also operate in dynamic

environments where, for example, the volume of lungs changes in a relatively small
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amount of time. For this reason, recent medical robotics research focused on indirect

force control and how it applies to robotic surgical tasks [13]. For example, John

Hopkins University applied admittance control on the five degree-of-freedom (DOF)

NeuroMate stereotactic robot for bone drilling applications [20]. Depending on the

force applied to the master tool, the robot moves in a specific direction with a

certain velocity. Another example is the MIRO manipulator at DLR which uses an

impedance control law that allows users to guide the robot to the desired position

[21]. As a safety measure, torque sensing at the joint level provided compliance

in case of a collision. The resulting overview suggests that impedance/admittance

control is practical for environment manipulation in surgery.

The fundamental difference between this dual concept of impedance and admit-

tance controllers is explained in [22]. In impedance control, the plant/manipulator

interacts with the controller and environment through forces. In admittance con-

trol, the controller applies input positions to the plant and produces force outputs

to the environment. This configuration causes the impedance controller to be sta-

ble for stiff environments and the admittance controller to be stable for compliant

environments. It is apparent that the correct choice of force control depends on the

dynamic properties pertaining to the environment.

2.3 Cooperative Object Manipulation

This work, in essence, aims to develop shared autonomy for the daVinci Surgical

system, therefore, it explores various contributions in cooperative object manipula-

tion. The earliest works were published by Schneider [23] at Stanford University.

Schneider’s project analyzed a complex dynamic control problem of multiple-armed

robotic systems. Also, they developed an object impedance controller (OIC) which
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utilizes object level impedance thus, indirectly controlling an object’s internal forces.

Tests were conducted to prove the stability of the controller in free motion and en-

vironmental contact.

Because of OIC stability considerations in flexible environments, Meer et al. [24]

developed the condition that allows, with little modifications, stable OIC if the grasp

matrix rank is higher than the degrees of freedom of the object. Additionally, they

also developed a flexible impedance controller (FIC), modified from the OIC, [25]

which provides intuition on how to use an admissibility matrix to achieve stability

criterions using Nyquist and Bode plots. The system stability can be achieved by

choosing actuator mass, object mass, desired mass, and force filter cutoff frequency.

Moosavian et al. [26] developed a different approach to address the issue of

OIC instability during interaction with a flexible object. They created the multiple

impedance control (MIC) for object manipulation which takes into account the

impedance of multiple end-effectors as well as the impedance of the object. The MIC

simulation resulted in controllable tracking errors and object inertia compensation

for flexible and massive objects under high accelerations.

2.4 Medical Applications of Cooperative Object

Manipulation

Exploration of cooperative object manipulation contributions in dual manipula-

tion [15], multiple robot systems [27], and cooperative aerial robots [28], suggests

that cooperative manipulation for robot-assisted surgery is an oppurtunity for novel

research. Therefore, this thesis explores potential applications of robot surgery re-

quiring the coordination of two manipulators or more.

A necessary task in minimally invasive surgery is needle suturing. The gen-
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eral procedure includes the orientation of the needle, insertion into the object, re-

grasping on the other side, pulling, then tying a knot [29]. Force/cooperative control

can be applied during the pulling, re-grasping, and trying knot steps. The individual

suture materials and general sutures tested in [30] concludes that the modulus of

elasticity of suture materials ranges from 300 to 4000 MPa and the break strength

ranges from 15 to 50 N.

A promising application for cooperative object manipulation control could be

medical grafts, which is a living tissue for surgical transplants. For specific grafts

such as vascular grafts that connect blood vessels, a study concluded that excess

shear forces between the graft and native vessel result in poor long-term patency [31].

Another specific case would be in ligament reconstruction surgery [32], where grafts

are pre-tensioned before suturing. Additionally, skin grafts mostly use the tie-over

bolster dressing technique which requires precision in applying correct tension and

pressure over a small grafting area [33].

Video recordings of actual minimally invasive surgery using the da Vinci Surgical

System show that the surgeon would use the redundant manipulator to retract an

obstruction resulting in a larger workspace of the teleoperated manipulators.

2.5 Parameter Identification

Force control requires feedforward model-based linearization of nonlinear robot dy-

namics [34]. Since the daVinci Surgical System is a proprietary product, informa-

tion such as link lengths, mass, inertias, and frictions are unavailable to researchers.

Therefore, it is required to identify the dynamics with a method known as parameter

identification.

A thorough search of the relevant literature yielded that parameter identification
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started in 1974 for a NASA project to identify the dynamics of a 6 DOF Jet Propul-

sion Laboratory Robot Research Project Manipulator [35]. Wisama Khalil [36]

started research on parameter identification in the 90’s and formulated the mathe-

matical foundation for a complete methodology including least squares regression,

base parameter identification, and trajectory optimization which functions to esti-

mate parameters of robot manipulators mainly focusing on industrial manipulators.

For the da Vinci Surgical System, parameter identification has been done for the

Patient Side Manipulator (PSM), and Master Tool Manipulator (MTM) [37] and re-

sulted in significant torque prediction errors (30-40 %). This work implements many

research advancements about the aforementioned parameter identification procedure

further explained in Chapter 4.



Chapter 3

System Architecture

This chapter explains the hardware and software of the da Vinci Surgical System

and the da Vinci Research Kit (dVRK). The dVRK is a retired commercial da Vinci

Surgical System donated to research groups by Intuitive Surgical.

3.1 da Vinci Surgical System

The da Vinci Surgical System, was formally created in 2000 when it received its

Food and Drug Administration (FDA) approval [7]. This robot allows surgeons to

perform accurate and precise minimally invasive surgical procedures with its dexter-

ous Endowrist manipulators. The system also improved conventional laparoscopic

surgery in ways that enable surgeons to control the camera movement as opposed

to having a patient side assistant manually adjusting the camera.

The da Vinci Surgical System consists of: An ergonomically designed surgeon’s

master console with two 7 degree-of-freedom (DOF) master tool manipulator (MTM)

arms with camera viewport; a patient cart set up joint with three 6 DOF patient

side manipulators (PSM) and one 5 DOF endoscope camera manipulator (ECM);

and a high-performance vision stereoscopic camera endoscope. Figure 3.1 shows the

13
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Figure 3.1: The da Vinci Surgical System at Automated and Interventional Medic-
inal Laboratory

system set up at Worcester Polytechnic Institute (WPI): Automated Interventional

Medicinal Laboratory(AIMLab)

3.1.1 Master Tool Manipulator

The MTMs function to teleoperate the surgeons’ hand movements to PSM motion.

It consists of two left and right 7 DOF manipulators corresponding to each hand

of the surgeon which gives an ergonomic feel while controlling the Patient Side

Manipulator (PSM). Figure 3.2 shows the joint movements of each DOF. Every

joint is equipped with a brushless motor to provide gravity compensation when the

surgeon releases the manipulator. The first three joints of the MTM allow it to

move in Cartesian space. To give natural wrist motion, the last four joints (joints

4-7) construct a gimbal mechanism with all axes intersecting at one point where the
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Figure 3.2: Master Tool Manipulator [3]

fingers pinch the tool. Some consider the MTM to have 8 DOF where the 8th joint

is used to pinch the PSM gripper.

3.1.2 Patient Side Manipulator

The PSM is a 7 DOF manipulator actuated with Maxon brush DC motors. All

motors are located near the base where gear transmissions are used to actuate the

first 2 DOFs and cable transmissions are used to actuate the remaining 5 DOFs.

On all joints, an absolute encoder measures position while Maxon motor Hall effect

sensors measure velocity. Refer to figure 4.3 for detailed kinematics and motion

of the PSM. The first joint actuates the yaw axis. The second joint is a double

four-bar linkage consisting of 5 links (figure 4.3) that forms a pitch axis intersecting

the yaw axis. This intersection constructs a virtual remote center of motion (RCM),



SYSTEM ARCHITECTURE

Figure 3.3: Remote center of motion mechanism of the Patient Side Manipulator.
Source: dVRK Manual

Figure 3.3, which functions as the point of entry in minimally invasive surgery. The

third joint prismatic joint then inserts the tool through this point. These three

joints contribute to the Cartesian movement of the end-effector. The last four joints

consisting of wrist roll, pitch, yaw, and gripper open and close function as the

standard intersecting axis wrist designed for increased dexterity during operation.

3.2 da Vinci Research Kit

Figure 3.4 shows the da Vinci Research Kit (dVRK) setup at the Automation and

Interventional Medicine Lab (AIMLab) at Worcester Polytechnic Institute (WPI)

which consists of 2 PSMs, 1 ECM, 2 MTMs and the corresponding controllers. Since

the da Vinci Surgical System is a proprietary product and provides limited data to

researchers, hardware and firmware must provide access to low-level I/O, joint-level

control, and teleoperation. Kazanzides et al. [38] provided an open-sodaurce research
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Figure 3.4: da Vinci Research Kit Hardware at Automated and Interventional
Medicinal Laboratory
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Figure 3.5: dVRK controller hardware and software architecture

platform consisting of firmware, electronics, and software to control da Vinci systems

while fundamental data. This platform aims to provide researchers with an interface

to implement new algorithms. Here, a centralized computation and distributed I/O

system design was chosen to allow high-level control algorithms to be implemented

on a computer while maintaining real-time hardware control on the I/O boards. The

goal is realized with two IEEE-1394 FPGA boards and two quad-linear amplifiers

packaged in an enclosure for each manipulator. The FPGA processes joint currents,

joint positions, joint efforts, amplifiers temperatures, etc.

Figure 3.5 shows the architecture of the controller: the hardware on the left and

the software on the right. The Research Kit Software is divided into functional

layers: hardware interface (I/O), low-level control (e.g., PID), high-level control,

teleoperation, and applications. With this type of structure, data is synchronized
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up to 1 kHz. The research kit provides forward, and inverse kinematics, homing,

and trajectory generation through the sawIntuitiveResearchKit (SAW) application

that utilizes CISST libraries. SAW applications implement PID control laws which

can run up to 6kHz. Additionally, gains can be set digitally through the software

application.

Recently, John Hopkins University developed a Robot Operating Software (ROS)

bridge interface that communicates with CISST-SAW [39]. ROS is a TCP/IP pro-

tocol messaging service that further simplifies the implementation of new controllers

by creating independent thread nodes communicating with each other through mes-

sages being published and subscribed. In this work, they published satisfactory

results of the real-time latency using ROS with histograms of 1KHz and 2KHz

tests.



Chapter 4

Kinematic and Dynamic Models of

the Patient Side Manipulator

A mathematical model of kinematics and dynamics of the Patient Side Manipulator

(PSM) is used as building blocks to develop control algorithms in the later sections.

Various research references are used to standardize this process.

4.1 Kinematics

The standard transformation matrix, T ∈ SO4, is the relative position and rotation

of one frame to another which can be formulated to describe the kinematics of a

robot manipulator. To standardize this transformation, the conventional Denavit-

Hartenberg (DH) [40] was used:

• zi axis: direction of joint axis.

• xi axis: parallel to common normal.

• yi axis: right hand rule to complete z and x.

• di: Distance along zi−1 to xi.

20
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• ai: zi−1 to current zi.

• θ: Angle about zi−1.

• α: Angle about common normal (xi) (zi−1 to current zi).

Technical documents, table 4.2, of the da Vinci Research Kit (dVRK) provides

joint limits and maximum velocities of the PSM and MTM. Figure 4.2a gives a

visualization of q1 − q6 . The manual also provides DH parameters to represent

accurate kinematics of the PSM. However, it did not describe the kinematics of the

double four-bar linkage (Links 1, 2, 3, 4, and 5 in Figure 4.1). These kinematics are

the basis that represent the motion of each body mass and body inertia that is used

in the dynamics model. Therefore, we developed detailed kinematics for the PSM

with matching output tool-tip kinematics.

4.1.1 Kinematics Measurement

A measurement technique using the optitrack motion capture is used to obtain

unknown kinematics link lengths. The setup (Figure 4.1) uses six motion capture

(Mocap) cameras to track a total of 18 optical markers (three markers on each link

and three extra ones for the world position). Every three markers represent a rigid

body transformation of position and rotation. The PSM is actuated along the full

range of joint q1 while q2 is held constant at 0 radians, then along the full range

of q2 while q1 is held constant at 0 radians. A least squares regression is used to

identify the relative axis rotation position and orientation between any two given

rigid bodies. We can then represent the axis locations in a global coordinate frame

and later measure the distance between every axis along a plane parallel to the axis’.

For further details about this method, refer to appendix A.1. The results of the link

lengths are shown in Table 4.1 with notation in Figure 4.2a.
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Figure 4.1: Motion tracking setup for calculating the link lengths and remote center
of motion of the Patient Side Manipulator. Three Markers are placed on each link
to represent a coordinate frame. The global coordinate frame is named PSM on the
bottom of the picture.

Table 4.1: Kinematic Measurement Link length Results. For notations refer to figure
4.2a

Link lengths [m]
l1 0.150
l2 0.150
l12 0.00958
l′2 0.1842
l3 0.5152
l4 0.5156
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Table 4.2: PSM-MTM Joint Limits and Velocity Limits

PSM 1 2 3 4 5 6 7 8
Joint Upper Limit [rad] 1.58 0.93 0.24 3.03 3.03 3.03 3.03
Joint Lower Limit [rad] -1.58 -0.93 -0.24 -3.03 -3.03 -3.03 -3.03
Max Velocity [rad/s] 2 2 0.4 6 5 5 -
MTM
Joint Upper Limit [rad] 1.27 1.19 0.72 1.68 3.27 0.82 7.92 0.52
Joint Lower Limit [rad] -0.72 -0.35 -0.25 -3.60 -1.71 -0.82 -8.34 -
Max Velocity [rad/s] 1.1 1.1 1.1 2 2 2 2 -

Table 4.3: Denavit-Hartenberg Parameters: Conventional

Frame Parent Frame a α d θ
1 0 0 −π/2 0.1524 π/2
2 1 0 −π/2 0.0296 -π/2 + q1
3 2 0.150 0 0 -β + q2
4 3 0.516 0 0 β + π/2 - q2
5 4 0.2881 0 0 -β + q2
6 5 -0.0430 π/2 0 −π/2
7 6 0 0 q3 π/2
8 7 0 π/2 0 π/2 + q4
9 8 0.0091 −π/2 0 π/2 + q5
10 9 0.0102 0 0 q6
11 10 0 −π/2 0 -π/2
C1* 2 0 0 0 q2
C2-int* 2 0 -π/2 0 -π/2− β + q2
C2* C2-int 0 0 δq3 0

4.1.2 Patient Side Manipulator Kinematics

The resulting link lengths are used to construct a standard kinematic model with

DH parameters (Table 4.3). Using these parameters, we develop a kinematic model

(Figure 4.2b).

By observation of Figure 4.2, the double four-bar linkage with a total of 5 moving

bodies (l1 - l5) was lumped to 3 moving bodies (m2, m3, and m4) actuated by q2

which simplifies the model while still accurately describing the dynamics of the

robot. Counterweight mc1 is added and actuated by q2. The frame C1, with frame
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Figure 4.2: (a) PSM showing the double parallelogram structure of the pitch joint.
Notation l′s are for link length measurement results (b) Derived kinematic frames for
every link of the Patient Side Manipulator. Frame 0 represents the base frame of the
Manipulator and frame 11 represents the end effector frame. Estimated locations
of the masses are shown. The double parallelogram structure is assumed to be
a serial chain with links 2,3, and 4. mc1 and mc2 are counterweight masses that
actuate according to joints q2 and q3 respectively where frames C1, and C2 follow
DH convention.
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2 parent, was added to follow DH convention. Another counterweight mc2 is added

and actuated by δq3. δ is a measured constant that represents a different range of

motion. The additional parent-child tree is frame 2, C2-int, then C2. For this model,

the last three joints q4 − q6 and the resulting end-effector frame coincide with the

PSM kinematics in the manual. Frame 4’s orientation is always horizontal to the z0

axis of the robot.

The calculated end effector 6 x N Jacobian using equation 4.1 is used to check the

correct motion of the mathematical model. N = degrees of freedom of robot. This

equation is also used for dynamics derivation and in chapter 5 for force controllers.

J =

Jv
Jo

 (4.1)

where the linear Jacobian, Jv:

Jv =

[
d(p01)

dq1

d(p02)

dq2
...

d(p0N )

dqN

]
(4.2)

and the orientation Jacobian, Jo:

Jo =

[
d(z00)

dq1

d(z01)

dq2
...

d(z0N−1)

dqN

]
(4.3)

4.2 Dynamic Model

Figure 4.2b shows the mass (mi) and estimated center of mass (COM) locations of

the dynamic model. The COMs are represented by a vector ri = [rix, riy, riz] that

originates from Ti and rotates with Ti+1 (The corresponding link joint angle). In

order to simplify the model, some assumptions were developed as follows:
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• Counterweight mc1 was lumped with m2 as both were actuated by q2.

• For the purpose of controllers, only the first three joints were considered in

the dynamics model. The last 3 wrist masses (m were assumed to be lumped

into the tool mass, frame 6, with q4 = q5 = q6 = 0

As part of the previous assumption, there are 11 identifiable masses, n = 11,

with three degrees-of-freedom, N = 3.

4.2.1 Euler-Lagrange Energy Method

Equations of motion were derived using the Euler-Lagrange energy-based method

[40] which uses the derivatives of Kinetic and Potential Energy. To obtain the

Kinetic Energy of the robot manipulator, the following equations were used:

K =
1

2
q̇TB(q)q̇ (4.4)

where B is:

B(q) =
n∑
i=1

miJ
(mi)T
v Jmi

v + JmiT
o Rmi

Imi
RT
mi
Jmi
o (4.5)

and Inertia tensor about its center of mass:

Imi
=


Ii,xx Ii,xy Ii,xz

Ii,xy Ii,yy Ii,yz

Ii,xz Ii,yz Ii,zz

 (4.6)

Wheremi is the mass at link i and Ii is the Inertia matrix of eq. (4.6). B describes the

sum of kinetic energy of every link based off the mass mi moving in the world frame

(multiply Jmi
v ) and the energy of the rotating mass inertia Imi of mass i rotating
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about the world frame (multiply by R, and Jmi
o ). Jmi

v is the linear Jacobian and

Jmi
o is the orientation Jacobian at the point mi presented in equations 4.2 and 4.2.

The Potential Energy (P) of the robot manipulator is:

P = −
n∑
i=1

mig
T
o pmi

(4.7)

where gTo ∈ R3 is the vector describing the direction and magnitude of gravity

acceleration and pmi
∈ R3 is the vector describing the mass i location in world

frame.

The kinetic and potential energy is used to derive the Lagrange (L) which is

then used to derive the equations of motion for generalized forces (τ). In this case,

the generalized forces are joint torques.

L(q, q̇) = K(q, q̇)− P (4.8)

d

dt
(
∂L

∂q̇
)T − (

∂L

∂q̇
)T = τ (4.9)

To verify the model, equation 4.9 is reformulated to the more common mass iner-

tia(M), Coriolis (C), and gravity (G) matrices.

M(q)q̈ + C(q, q̇)q̇ +G(q) = τ f + τm (4.10)

In this situation, the torque τ is due to friction torques τ f and motor torques τm.

τ = τ f + τm (4.11)
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4.2.2 Friction Model

To completely model the dynamics, linear Viscous (Fv) and Coulomb friction (Fc)

of each joint were added as [41]:

τf = Fvqd + Fcsign(qd) (4.12)

The equation states that Fv is proportional to the joint velocity qd and Fc is a

constant friction depending if either qd is positive or negative. Fv is a n x n matrix

where Fv = diag(F1, F2, ..., Fn) (similar for Fc, Fvo, and Fco).

Friction in the positive velocity direction might not be the same as the negative

velocity direction (F+ 6= F−). To model this situation, consider a Viscous and

Coloumb friction offset, Fvo and Fco, which is suitable for linear regression. The

resulting friction is:

τf = Fvqd + Fcsign(qd) + Fvo(δi,0 − 1) + Fco(δi,0 − 1) (4.13)

where δqdi,0 is the Kronecker Delta Function that returns a value 1 when qd,i is 0

and 0 otherwise. For control stability in Chapter 5, the sign function in equation

(4.12) is changed to a continuous sigmoid function:

Fcsign(qd) = Fcsigmf(qd) = Fc(
−2

1 + exp−ax
+ 1) (4.14)

The sigmoid function of Fc describes a continuous transition between positive and

negative values of qd. Parameter a, the slope of this transition, is chosen to be as

small as possible which results in a stable controller for the system. The resulting

friction used in this work is :
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τf = Fvqd + Fcsigmf(qd) + Fvo(δi,0 − 1) + Fco(δi,0 − 1) (4.15)

where the Kroenecker Delta function is deleted because an exact zero velocity, qd,i,

is only achievable in theory. Therefore, the friction model simplified for linear re-

gression is:

τf = Fvqd + Fcsigmf(qd) + (Fvo + Fco) (4.16)

When the friction model is used in a controller to compensate the robot friction

in Chapter 7, we apply zero friction compensation when the joint velocity is below

a certain threshold (deadband).



Chapter 5

Parameter Identification

For parameter identification, the identifiable parameters (δ) must be reformulated

to δd such that it is linear to the regressor matrix Y:

M(q)q̈ + C(q, q̇)q̇ +G(q)− τf = Y δd = τm (5.1)

where δd is the vector of linear lumped inertial parameters or standard parameters.

Equations (5.2) and (5.3) are used to lump the nonlinear terms of mass mi times

mass location ri in different combinations. The Matlab substitute function was used

to find the combination of nonlinear terms in the left hand side of eq. (5.1) and

replace with linear terms li and lli respectively.

li =


li,x

li,y

li,z

 = miri =


miri,x

miri,y

miri,z

 (5.2)
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lli =


lli,xx lli,xy lli,xz

lli,xy lli,yy lli,yz

lli,xz lli,yz lli,zz

 = miRi =


mir

2
i,x miri,xri,y miri,xri,z

miri,xriy mir
2
i,y miri,yri,z

miri,yriz miri,yriz mir
2
i,z

 (5.3)

In conclusion the vector δd of all standard parameters of the robot with N links is:

δd =

[
δTd1 δTd2 δTd2 ... δTdN

]T
(5.4)

where:

δdi =

[
Ii,xx Ii,xy Ii,xz Ii,yy Ii,yz Ii,zz li,x li,y li,z lli,xx lli,xy lli,xz lli,yy lli,yz lli,zz mi fi

]T
(5.5)

where fi is the vector of all friction components of link i which in our case:

fi =

[
Fc,i Fv,i Fco,i Fvo,i

]
(5.6)

is the Coulomb friction, Viscous friction, Coulomb friction offset, and Viscous fric-

tion offset respectively (refer to eq. 4.16).

5.1 Base Parameters with SVD Decomposition

Not all parameters in δd give contribution to joint torques [42]. This leads to 3

categories of parameters:

• Independent identifiable parameters

• Identifiable parameters in linear combinations
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• Unidentifiable parameters

Independent identifiable parameters are ones that have independent columns in Y.

The identifiable parameters in linear combinations only contribute to joint torques

in linear combinations. Therefore, the corresponding parameters can be grouped

in linear combinations to preserve its contribution to joint torques and conversely.

Similarly, corresponding columns in Y are deleted. Unidentifiable parameters do

not contribute to the joint torques and are not in the model of equation (5.1).

From a linear algebra perspective, this is a rank deficient problem. By making

the Y matrix into a full rank matrix, it is possible to have a linear least squares

regression that estimates the parameters that correctly correspond to the measured

output torques. These regrouped parameters which make the new Y matrix full

rank is called the minimal base parameters, δb. A numerical method using the SVD

decomposition [43] is modified to a more robust and automatic calculation of the

base parameters [42]. Let Y be the (n x c) regressor matrix and δd be a vector of size

c. n is the rows of the regressor matrix corresponding to the degree of freedom of

the robot. c is the number of linear parameters in δd. The rank(Y ) = p < c where

p is the dimension of the base parameters vector, δb. First, an SVD decomposition

of Y gives:

Y = USV T = U

∑ O

O O


V T

1

V T
2

 (5.7)

where U ∈ Rnxn, V1 ∈ Rcxp, V2 ∈ Rcx(c−p),
∑
∈ Rpxp.

∑
is the diagonal matrix of

singular values. U and V are orthagonal matrices.

Notice that the null columns of V T
2 correspond to the identifiable parameters.

The remaining columns are identifiable by linear combinations. With this informa-

tion, the columns of Y that correspond to absolutely identifiable, δi, and unidentifi-
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able parameters are eliminated to generate a new regressor matrix Y’ and parameter

vector δ′d. To represent this mathematically:

EY T =

Y T
i

Y ′T

 (5.8)

and as for parameters:

Eδd =

δi
δ′d

 (5.9)

where E is an c x c permutation matrix. This matrix of identifiable parameters in

linear combinations is derived by SVD:

Y ′ = U ′S ′V ′T = U ′

∑′ O

O O


V ′T1
V ′T2

 (5.10)

where

Y ′V ′2 = O (5.11)

The above equation shows that the columns of V ′2 define the linear combinations of

regressor Y’ that results in a null space. Using V2, an equation is derived as:

Y ′δ′d = Y ′(δ′d + V ′2δ
′
a) (5.12)

where δ′a ∈ Rp is an arbitrary vector. The above equation proves that there are

infinite solutions to the combined vector:

δ′r = (δ′d + V ′2δ
′
a) (5.13)
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Next, the columns of V ′2 (also δ′d) can be rearranged by a permutation matrix E’

such that:

E ′TV ′2 =

V ′21
V ′22

 (5.14)

E ′T δ′d =

δ′d1
δ′d2

 (5.15)

E ′TY ′T =

Y ′T1
Y ′T2

 (5.16)

The purpose of this method is to acquire an E’ matrix that makes V ′22 a full rank

square matrix. There exists many E’ solutions. After, a solution to equation (5.13)

is:

δ′r1 = δ′d1 − V ′21V ′−122 δ′d2 (5.17)

where δ′r1 is the lumped linear combinations of parameters in δ′d. This process is

bijective by adding the codomain δ′d2 [44]:

δ′r1
δ′d2

 =

1 −V ′21V ′−122

0 1


δ′d1
δ′d2

 = GδA (5.18)

Finally, the final regressor matrix Yb is built:

Yb =

[
Yi Y ′1

]
(5.19)

where Yi are the columns of matrix Y with absolute identifiable parameters and Y ′1
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are the columns of matrix Y’ corresponding to the parameters δ′d1. Similarly for the

parameters:

δb =

 δi
δ′r1

 (5.20)

resulting in the final regressor equation:

Ybδb = τm (5.21)

Using equations (5.9), (5.16), (5.18), and (5.20) we are able to define a bijective

function that maps from standard parameters to base parameters:

 δb
δ′d2

 = m(δd) (5.22)

and its inverse

δd = m−1(δb, δ
′
d2) (5.23)

5.2 Least Squares Regression

Consider robot joint positions, velocities, accelerations, and torques measured at

every time instant t1, t2, t3, ..., and tM . Therefore, equation (5.21) could be rewritten

as [37]:

YBδb =



Yb(t1)

Yb(t2)

...

Yb(tM)


δb = Wbδb =



τ(t1)

τ(t2)

...

τ(tM)


= ω (5.24)
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where Wb is the resulting regressor matrix to a specific trajectory for M data points.

Since numerical errors of different joint torques may affect the solution, a diagonal

weighting matrix A is premultiplied to both sides of equation (5.21) where:

A = diag(a1 a2 ... aN) (5.25)

and ai = 1/τi,max. Another weighting matrix P is used to normalize the different

magnitudes in parameters where P is:

P = diag( 1
|Wb,1|

1
|Wb,2|

... 1
|Wb,c|

) (5.26)

where |Wb,c| is the norm of column c of regressor matrix Wb. The δb using the

normalized WbP must be premultiplied by P to get the correct solution.

5.3 Fourier Series Optimal Trajectory

The trajectory for parameter identification must allow accurate estimation of the

dynamics parameters [45] that does not excite unmodelled dynamics. By excitation

of the identifiable parameters, the regressor matrix in equation (5.24) is a well-

conditioned matrix. The condition number of a matrix is the largest singular value

divided by the smallest singular value of a matrix. Intuitively, this is the sensitivity

of the solution δb with respect to errors in Wb or τ . For closed-loop kinematic chain

robots, a good regressor for parameter identification should have a condition number

around 100 [46]. Therefore, the optimal trajectory should be a trajectory q, q̇, q̈ that

minimizes the condition number of regressor Wb:

minimize cond(Wb(q(t))) (5.27)
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Method from [46] is applied to develop sinusoidal trajectories of the form:

qi(t) =
l∑

i=1

ail
wf l

sin(wf lt)−
bil
wf l

cos(wf lt) + qi0 (5.28)

where l is the number of fourier series harmonics and w is the fundamental fre-

quency. Here l is chosen to be l = 5 and 6 different fundamental frequencies,w =[
0.1 0.12 0.13 0.14 0.16 0.2

]
rad/s, were used to generate 6 different trajec-

tories used to identify the model. Variables ail, b
i
l, and qi0 are variables to minimize

the condition number. Here, the number of discrete data points (M = 6000) and

s = 0, 1, 2, ... tf/ts, tf , where the final time (tf = 30 s) and the sampling time

(ts = 0.005 s), were chosen. The constraints are position and velocity limits of the

PSM at every time in the trajectory. Refer to Table 4.2 for the limits.

qmin ≤ q(sts) ≤ qmax (5.29)

q̇min ≤ q(sts) ≤ q̇max (5.30)

Optimization uses Matlab fmincon ”active-set” constrained optimization method.

Table 5.1 gives the resulting condition numbers of the optimization results for six

different trajectories with different fundamental frequencies, w. Figure 5.1 shows

the position and velocity trajectory for three joints for 15 s with w = 0.13Hz.

5.4 Parameter Physical Feasibility Analysis

Souza, et. al [44] states that the mass inertia matrix, M, of equation (5.1) needs to be

positive semidefinite [47] to be a physical realizable robot. Also, dynamic simulations

would require positive principal inertias and masses. This paper introduced the
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Figure 5.1: Resulting optimal trajectory for three joints when w = 0.13 rad/s and l
= 5

problem and solution to the physical feasibility of parameter identification of robot

manipulators. Here, constraining the positive semidefinite property of the inertia

matrix Ii and the mass mi of link i by constraints maintains the feasibility of matrix

M:

D = (δ ∈ Rn : mi > 0, Ii > 0|i = 1, ..., N) (5.31)

and the same constraint in linear matrix inequality (LMI) form:

Di(δi) =

Ii O

O mi

 =



Ii,xx Ii,xy Ii,xz 0

Ii,xy Ii,yy Ii,yz 0

Ii,xz Ii,yz Ii,zz 0

0 0 0 mi


≥ 0 (5.32)
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where Di ≥ 0 in this notation means that matrix Di must be positive semidefinite.

For a robot of N links the constraint is expanded:

D(δ) =



D1(δ1) 0 ... 0

0 D2(δ2) ... 0

... ...
. . . ...

0 0 ... DN(δN)


4Nx4N

≥ 0 (5.33)

The inverse map from equation (5.23) is used to transform the standard parameter

constraints D to the base parameter constraints Dδb .

Dδb(δb, δr2) = D(m−1(δb, δr2)) (5.34)

5.4.1 Semidefinite Programming (SDP) for Least Squares(LS)

parameter identification

The least squares regression problem in the previous section is reformulated to a

semidefinite programming optimization problem by minimizing the square of resid-

ual errors, ‖ε‖2, where:

‖ε‖2 = ‖ω −Wbδb‖2 (5.35)

The above equation is used to formulate a minimization statement:

minimize(u,δb) u

subjectto u ≥ ‖ω −Wbδb‖2
(5.36)

By Schur complement [48], the above equation is formulated to SDP form:
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minimize(u,δb) u

subjectto Uω(u, δb) ≥ 0
(5.37)

where:

Uω(u, δb) =

 u (ω −Wbδb)
T

(ω −Wbδb) 1

 (5.38)

Uω(u, δb) has sN+1 rows which might be too large for SDP formulations. Variable

s is the number of data points along a trajectory. Therefore, a new formulation

of the SDP problem is presented. For a base parameter regressor matrix, a QR

decomposition is done:

Wb = QR =

[
Q1 Q2

]R1

0

 (5.39)

where:

‖QT ε‖2 = (QT ε)T (QT ε) = εTQQT ε = ‖ε‖2 (5.40)

and from eqs. (5.35), (5.39), and (5.40) the LS problem is:

‖ε‖2 = ‖QTω −QTWbδb‖2 = ‖

Q2
1

Q2
2

ω −
R1

0

 δb‖2 (5.41)

By defining:

p1
p2

 =

QT
1

QT
2

ω (5.42)

equation (5.41) is simplified:
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‖ε‖2 = ‖

p1
p2

−
R1

0

 δb‖2 = ‖p2‖2 + ‖p1 −R1δb‖2 (5.43)

From equations (5.36), (5.41), and (5.43):

u− ‖p2‖2 ≥ ‖p1 −R1δb‖2 (5.44)

By Schur complement, eq. (5.44) is reformulated to an SDP problem of:

minimize(u,δb) u

subjectto Up(u, δb) ≥ 0
(5.45)

where:

Up(u, δb) =

 u− ‖p2‖2 (p1 −R1δb)
T

(p1 −R1δb) 1

 (5.46)

The size of matrix Up(u, δb) is a reasonable size as compared to Uω which makes for

an efficient SDP solution. This formulation is expanded to entail the constraints

Dδb from the previous section:

minimize(u,δb),δr2 u

subjectto Fp(u, δb, δr2) ≥ 0
(5.47)

where:

Fp(u, δb, δr2) =

Up(u, δb) 0

0 Dδb(δb, δr2)

 (5.48)

5.5 Results

The tests were done at a 200 Hz sampling rate for a total of 30 s following the Fourier

trajectory. Data collection yielded joint positions, joint velocities, and joint efforts
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data. Offline data processing in Matlab is used to filter the velocities and torques

backward and forwards with the filtfilt function such that it does not produce a

delay on the system. An 8th order Butterworth filter with a cutoff frequency of 3.5

Hz was used. The filtered velocities were derived to achieve acceleration data on

each joint.

Table 5.1 shows the resulting condition number of the regressor matrix Wb given

data from the simulated trajectory and tested trajectory of the hardware. LS Con-

dition Num denotes the condition number for the tested trajectory for an ordinary

least squares formulation. WLS Condition Num means the condition number for

the tested trajectory for a weighted least squares by multiplication of A in equation

(5.25). Note that the SDP does not show a condition number as it is not a regression

method. All simulated and collected data is multiplied by the P weighting matrix

in equation (5.26).

It is apparent the WLS data gives a larger condition number than the LS and

SDP data which results in larger residual errors. The base frequency range of 0.12

and 0.16 gives the smallest condition number for all solutions and also the smallest

residual errors. Choosing the LS or SDP solution for a base frequency of 0.13 gives

the best results of model prediction.

The results for SDP and LS are similar which means the LS solution is physically

feasible. The Cholesky function (function that would return a boolean depending

on positive/negative eigenvalues) in Matlab was used to double check the feasibility

of the mass inertia matrix M throughout the workspace of the robot. On a different

set of tests, the SDP once returned a large difference in residual errors as compared

to the LS solution. Here, the Cholesky function indicated non positive eigenvalues

in the mass matrix indicating a physically non-feasible solution.

Figure 5.2a shows the difference between measured torques and computed torques
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Table 5.1: Fourier Trajectory Condition Number and Residual Errors Results

Fourier Trajectories 1 2 3 4 5 6
w [Hz] 0.1 0.12 0.13 0.14 0.16 0.2
Optimization Condition Num 145.92 136.97 128.74 129.61 111.19 110.87
LS Condition Num 236.90 240.00 159.66 179.50 178.94 158.54
WLS Condition Num 1198.50 1024.80 297.98 606.24 389.43 349.75
LS Residual Errors 1440 1161.8 1034 1252.5 1181.1 1492.3
WLS Residual Errors 1917.5 1466.5 1208 2146.5 1311.4 1792.4
SDP Residual Errors 1434.0 1154.6 1387 1243.6 1169.4 1485.3

obtained from parameter identification. From Figure 5.2b, the maximum error on

each joint is approximated to be 0.4 Nm, 0.25 Nm, 0.75 N (15%, 15%, and 40%

error from the maximum measured torque) for joint 1, joint 2, and joints 3 respec-

tively. Errors of these joint torque are due to unmodeled dynamics such as stick-slip

friction, cable-tension in the transmission, and incorrect kinematics. Figure 5.3a

shows the measured torques vs. computed torques on a test trajectory different

from the identification trajectory. Results show that the model generalizes to an-

other given trajectory and does not overfit the identification trajectory. An increase

in prediction errors on all three joints is observed.

5.6 Friction Modeling and Identification for Con-

trol

40% force estimation error suggests incorrect friction modeling of the third joint. To

study this effect, there are two categories of friction, dynamic or static. The Dahl

model is a dynamic friction model where hysteresis is accounted for as an internal

first-order variable z(t) [49]. Since it seems too complicated, we consider a simpler

Stribeck friction model [50], which is a modified static Viscous and Coulomb friction

model with large friction forces.
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(a)

(b)

Figure 5.2: (a) Measured vs. predicted torque of the first three joints tested on the
same identifying trajectory (b) Absolute errors of the computed trajectory vs. the
measured trajectory
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(a)

(b)

Figure 5.3: (a) Measured vs. predicted torque of the first three joints tested on
a test trajectory (b) Absolute errors of the computed trajectory vs. the measured
trajectory
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After obtaining the base parameters δb from section (5.1), we compute the re-

sulting friction torque using equation:

τf,test = τtest − (Wbδb − τf ) (5.49)

Computing τf (eq. 3.10) separately is viable because friction parameters are abso-

lutely identifiable. Figure 5.4 shows the constant velocity trajectory for the friction

test of the third joint where q1 = 0 and q2 = 0. Figure 5.5 shows the friction forces

vs. velocity where there is a large hysteresis. During constant velocity, the friction

is also not constant which suggest a change in friction based on the joint position.

Due to this, the curve fitting of the Stribeck function failed to execute.

5.6.1 Robust Stick-slip Friction Compensation

Because the Stribeck friction model failed, we explore other causes of the friction

error. An impedance control applied in chapter 7 resulted no motion of the prismatic

joint when commanded a desired Cartesian position. This suggests that the Viscous

and Coulomb friction does not adequately model static stick-slip friction when the

joint is static.

Therefore, we measure the maximum stick-slip friction force to apply robust

stick-slip friction compensation as in [51]. Figure 5.6 shows the force vs. velocity

curve during a test of applied ramp force from 0-2 N in the positive direction and

negative direction. The maximum force in which the joint begins to move is recorded

and used for friction compensation in Chapter 7. Here the chosen static friction

compensations is Fs+ = 1 and Fs− = −1. Figure 5.7 shows an example of the

robust friction compensation force vs. velocity of the model.
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(a)

(b)

Figure 5.4: Velocities (a) and Torques (b) of the third joint while q1 = 0 and q2 = 0.
Data is friction torques from (eq. 5.49). The orange line indicates data processed
with the Butterworth filter.

Figure 5.5: Constant Velocity Test of the third joint: Force vs Velocity



PARAMETER IDENTIFICATION

Figure 5.6: Force Ramp Up Test of the third joint: Force vs Velocity

Figure 5.7: Robust stick-slip friction compensation example



Chapter 6

Cooperative Object Manipulation

in ROS Simulation Environment

This chapter develops Robot Operating Software (ROS) [52] based controllers tested

in simulation environments. This ROS framework streamlines controller software

development because it will communicate with the ROS interface that uses CISST-

SAW libraries to control the Patient Side Manipulator (PSM) [38]. ROS is a

structured communication layer above a heterogeneous computation cluster that

standardizes communication between threads; therefore simplifies software modifi-

cation and development [53]. The controllers communicate with RViz and Gazebo

simulation environments to test the cooperative kinematics, dynamics, and inverse

kinematics of the PSM. A simulation environment avoids real-world nuances of the

mechanical and electrical system.

49
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Table 6.1: Remote Center of Motions for PSM Hardware and Simulations

RCM
Position [mm] RMS Error [mm]
x y z x y z

PSM hardware -1.49 -516.11 2.19 0.62 0.62 0.31
PSM simulation 0.56 -518.60 0.93 0.85 1.91 1.08

6.1 Computer Aided Design (CAD) Modeling

A Solidworks PSM model is modified from a previous design developed at Automa-

tion and Interventional Medicine (AIM) Robotics Research Laboratory at Worcester

Polytechnic Institute. Axis to axis link lengths, remote center of motion (RCM),

and end-effector tool tip position are to be as accurate as possible by combining

kinematic data from the dVRK technical document and the motion capture mea-

surements.

A detailed CAD model is developed as Solidworks uses mesh volume and material

density to estimate mass and inertia values. The base parameters (lumped parame-

ters) from the parameter identification are not used for this simulation because the

model requires values of individual link parameters (standard parameters).

Figure 6.1 shows the resulting model in Solidworks while Figure 6.2 shows the

remote center of motion (RCM) accuracy and precision of simulation vs. hardware.

Table 6.1 concludes that the simulation RCM location is only around 1-2mm dif-

ferent than the hardware. The root-mean-square (RMS) error shows the movement

of the estimated RCM along the full workspace of joint q1 and q2 where zero RMS

is the ideal RCM. Here the simulation shows higher RMS error values than the

hardware. It is due to the vibrations in the double four-bar linkage and dynamic

solutions solver in Gazebo.
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Figure 6.1: Patient Side Manipulator Solidworks Model

Figure 6.2: Estimated bpost hardware (red) and gazebo (blue) remote center of mo-
tions (RCM). Transparent markers are actual RCM points at a certain joint angle
using btip.
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6.1.1 Exporting to ROS Simulation Models

The Solidworks add-on, Solidworks to URDF exporter [54] developed by the ROS

community, was used to assign coordinate frames of each link, export the kinematic

data into a URDF file, and export the visual STL mesh files into one ROS package.

URDF is an acronym for Universal Robot Description File developed by ROS as

a standard to describe the kinematics of serial chain robots. It is an Extensible

Markup Language (XML) which has tags that determine the relative parent-child

link position, mesh coordinate frame position, joint type/position, the center of mass

position, etc.

This URDF is then visualized in RViz simulation tool integrated with ROS. The

simulation launches with inherent rosnodes, joint state publisher and robot state publisher,

that allows control of each joint angle with a visual toolbar or rostopics that is pro-

grammed through python or C++. To simulate the cooperative environment, two

(three) PSMs were simulated with different position and rotations in a given world.

Figure 6.6 shows the RViz simulation.

6.2 Gazebo

Gazebo is a dynamic simulator wrapper for ROS based on the Bullet dynamic engine

[55]. It allows dynamic simulations of robot manipulators communicating through

ROS. The gazebo simulations used parameters from Solidworks because parameter

identification of the real hardware resulted in base parameters for the simplified

kinematic model. An extra step of mapping it into standard parameters plus adding

the similar kinematic model of the PSM would require further verification.
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Figure 6.3: Cooperative manipulation control simulation in Gazebo with force track-
ing on object (blue line). Left: Slave PSM. Right: Master PSM

6.2.1 Massless Spring-Damper Object Environment

We develop a virtual object being manipulated by the PSMs by applying forces on

the end effectors. These forces are generated by the difference between the length

of the object vs the initial length of the object when the simulation started:

Fi =
vo,i
‖vo,i‖

[Ke(xe,i(t)− xo) + Ce(xe,i(t)− xe,i(t− 1))] (6.1)

where Fi is the force on link i, Ke the stiffness of the environment/object, Ce the

damping of the environment/object, vo,i the vector representing the object and its

norm ‖‖, xe,i(t) the Cartesian position of link i at time t, xe,i(t − 1) the Cartesian

position of link i at time t-1, and xo the initial position of link i at the start of the

simulation. A rosnode is created that listens to the tool-tip positions, calculates the

applied force (6.1), and applies the force on the two manipulators.
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Figure 6.4: ROS controller architecture with RViz simulation. Squares represent
rosnodes and arrows represent rostopics for communication.

6.3 ROS Controller Architecture

The controller was developed to work for both the RViz and Gazebo simulations.

The ROS architecture of this controller interaction with RViz (Figure 6.4) and

Gazebo (Figure 6.5) is shown below.

The ROS software environment consists of rosnodes depicted by squares. Each

rosnode is an individual process that performs computation where each node commu-

nicates with another node using ROS TCP/IP like communication called rostopics

(arrows). This type of architecture reduces code complexity by reducing exposed

API to other nodes.

Node psm controller represents the main controller which receives the Cartesian

positions of the robot from the topic /psm poses, calculates the desired Cartesian

positions, computes inverse kinematics, and outputs the desired joint angles with

the topic /psm/joint poses.

The teleop node is an open source code ROS package [56] that takes keystroke

data and in this work, is modified to output x,y, or z desired Cartesian increments

and x, y, z Euler angles increments with topic /psm/cmd vel. It also outputs an

increment set force with the topic /psm/cmd force. A data collection node called

psm listener receives link position and rotation data from the RViz or Gazebo sim-
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Figure 6.5: ROS controller architecture with Gazebo simulation. Squares represent
rosnodes and arrows represent rostopics for communication.

ulation and publishes the data to psm controller. In RViz, it reads link positions

and rotations using the tf library. In Gazebo, the topic gazebo/link states publishes

link positions and rotations.

Other supplementary nodes that launch with the RViz simulation is the joint state publisher

which is a GUI to change the robot joint angles via joint states. Here this node is

used as it was programmed to receive joint commands from other nodes. robot state publisher

is a node that contains the robot kinematic data from the URDF, receives desired

joint angle data from joint state publisher and publishes the correct position and

rotation of each link of the robot to the RViz simulation.

Other nodes developed to communicate with Gazebo is the gazebo controller

node. This node is just complementary converting the rostopic /psm/joint poses to

rostopics that gazebo reads (top right of Figure 6.5).

The environment node is the virtual object for Gazebo that simulates an elas-

tic massless spring-damper that reads link Cartesian positions via gazebo/link states
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and outputs forces to the robot links in the simulation via /dvrk psm/PSM1/tool roll link/SetForce.

6.3.1 psm controller: Cooperative controller with Force track-

ing

psm controller is centralized controller that stores PSM manipulators as objects, Pi.

For this environment, one PSM is delegated as a master while the rest are slaves.

It receives remote center of motions (RCMs), tool-tip positions from psm listener,

and creates the vector describing the relative tool tip position to a master tool tip

position, vwo,i, in world frame. PSM i initializes by defining xe,i (current cartesian),

xd,i (desired cartesian), Rm
s,i (rotation matrix describing the orientation to a master

PSM), pm,i (3 x 1 vector describing the RCM position to master RCM position),

and vo,i (3 x 1 vector describing the tool tip position to the master tool tip in the

slave coordinate frame).

There are three basic commands of the controller, Cartesian move, orientation

move, and force move that is set up as callbacks to listen for rostopics from the

teleop node. As this is a ROS architecture, this controller can essentially read the

same message from any hardware publishing to the same topic, /psm/cmd vel or

/psm/cmd force. By defining the new desired position xd,i, the controller then solves

the inverse kinematics and publishes an output command /psm/joint poses. It also

publishes the position of the RCM, tool-tip, and vo,i as a TF transform to RViz to

visually check if the kinematic computation is correct.

For the master, move in Cartesian is straightforward. For the slave, the move-

ment is synchronized with the master’s coordinate frame and is defined by:

xid,i = (Rm
s,i)
−1∆x+ xid,i (6.2)
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where the desired position xd,i is incrementally increased/decreased by the variable,

∆x from rostopic /psm/cmd vel. Note, all notation here is in manipulator frame.

Additionally, the orientation move is:

xid,i = (Reul,i − I)(−cii) (6.3)

where I is a 3 x 3 identity matrix, and Reul is an Euler rotation matrix [57] that

describes the change in rotation of the object created by the change of Euler angles

α, β, and γ from the /psm/cmd vel/orientation message. cii is the vector from tool

tip pointing at the centroid of the manipulated object. Last, the force move is:

xid,i = ∆x
cii
‖cii‖

+ xid,i (6.4)

where ∆x is the increment variable from /psm/cmd force.

6.3.2 Controller tested in RViz

Figure 6.6 shows the simulation environment for 3 PSMs in a certain position/rota-

tion that is realistic for a cooperative manipulation task. Also, this Figure shows the

motion of the PSMs to increase the internal tensile force of the object. Additionally,

Figure 6.7 shows the motion of the PSMs to reorient the object.

6.4 Position Controller Force Tracking Results

Figure 6.3 illustrates the gazebo simulation for cooperative manipulation control

with 2 PSMs moving 10mm in the y-direction while tracking a 5 N tensile force on the

object (blue). During this test, the chosen stiffness for equation (6.1) is Ke = 1000

[N/m]. The controller is running at 400 Hz. Figure 6.8 shows quantitative data of
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Figure 6.6: Cooperative manipulation control simulation in RViz with 3 PSMs. This
shows the desired displacement during a tension force increase on the object.

Figure 6.7: Cooperative manipulation control simulation in RViz with 3 PSMs. This
shows the desired reorientation motion of the object.
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Figure 6.8: Gazebo controller tracking 5N force on object with 10mm y-direction
movement

the y-position of the tooltip (top) and force on the object (bottom). Both PSMs

move in the world frame y-direction in coordination and results in the satisfactory

tracking of the Force.



Chapter 7

Cooperative Object Manipulation

with Force Control

This chapter presents the implementation of feedback linearization of the model

from chapter 5, a computed torque controller to verify the model, an impedance

controller for the Patient Side Manipulator (PSM), and the position based coop-

erative controller with force tracking from chapter 6. Finally, the aforementioned

cooperative controller is modified to use an impedance controller for the slave PSM.

7.1 Manipulator Dynamics Linearization

The manipulator dynamics in Equation (4.10) is eliminated with a feedforward

model-based control input [34]:

τm = u = M̂(q)y +N(q, q̇) + τ̂f (q, q̇); (7.1)

where

N(q, q̇) = Ĉ(q, q̇)q̇ + ĝ(q) (7.2)

60
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M̂ is the estimated mass inertia matrix of the robot and N is the estimated Coriolis

matrix, Ĉ, plus estimated gravity matrix, Ĝ. N is used for simplification in controller

software. The generalized coordinates q, q̇, and q̈ represent joint positions, joint

velocities, and joint accelerations respectively. For ideal estimates of the dynamics,

this control input results in the linearized dynamics of the manipulator described

as:

M(q)q̈ = M̂(q)y (7.3)

and:

q̈ = y (7.4)

is the double integrator system. Choosing the desired joint acceleration, y, defines

different types of force control behavior.

7.2 Computed Torque Controller

Defining y as:

y = Kp(qd − q) +Kd(q̇d − q̇) (7.5)

results in the computed torque controller where output torque on each joint is based

on the joint position and joint velocity error with linearized dynamics. Kp is the

positive definite n x n diagonal proportional gain matrix and Kd is the positive

definite n x n diagonal derivative gain matrix. Where n is the degree-of-freedom

(DOF) of the manipulator.
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7.3 Impedance Controller

JThe is added to equation (7.1) to compensate the coupled effects of the interaction

force he. This variable is the estimated interaction to a known stiffness environment.

If force measurement is available, then he is equal to the sensor data. The modified

control input, u, is:

u = M(q)y +N(q, q̇) + τf + JThe (7.6)

The chosen desired acceleration, y, is

y = J−1a M−1
d (Mdẍd +Kp(xd − xe) +Kd(ẋd − ẋe)−MdJ̇aq̇ − ha) (7.7)

where J is the end-effector geometric Jacobian, Ja the end-effector analytical Ja-

cobian, Md the diagonal desired inertia matrix, Kp the diagonal proportional gain

matrix, Kd the diagonal derivative gain matrix, xd desired position vector, xe actual

end effector position vector, and its derivatives. ha is defined as:

ha = TGA he (7.8)

where TGA is the transformation matrix between the geometric Jacobian and analyt-

ical Jacobian. Substituting equations (7.6) and (7.7) into equation (4.10) results in

a decoupled force interaction closed loop system with dynamics:

Md(ẍd − ẍe) +Kd(ẋd − ẋe) +Kp(xd − xe) = ha (7.9)
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Figure 7.1: Impedance Controller on Robot with simulated compliant environment
in the x-direction.

7.4 Stability Analysis

With the identified robot base parameters, the impedance controller interaction with

a one DOF massless spring object in the x-direction is simulated in Matlab ODE.

Figure 7.1 shows stable tracking of desired positions in y and z free motions and

minuscule oscillating stability in the x-direction tracking a given force.

7.5 Force Controller Architecture

Figure 7.2 illustrates the ROS communication framework between the developed

controller and dVRK hardware with sawIntuitiveResearchKit dvrk CISST-ROS in-

terface. PsmForceControl node controller takes position commands from teleop and

publishing outputs as joint efforts. The PsmForceControl node is compiled in C++

with Eigen library for crucial matrix computations. It takes the joint positions, ve-

locities, efforts, and Cartesian positions data from the CISST-SAW rosnode bridge.

It also reads the force magnitude from the load cell. With this data, it is able to
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Figure 7.2: Software Architecture of ROS controllers communicating with
PSM/MTM hardware

compute friction compensation τ̂f (q, q̇), nonlinear dynamic compensation N(q, q̇),

the mass inertia matrix, M̂(q), environment force he, and the end effector Jaco-

bian J(q) all needed for force control. We filter the joint velocities with a 10 point

moving average filter. The node outputs the resulting joint torques to the robot

with topic /dvrk/$psm name/SetEffortJoint. The load cell measurement used an

instrumentation amplifier on Arduino developed by Novoseltseva [58]. It used ROS

rosserial node package to convert serial messages into rostopics publishing analog-

to-digital values at 500Hz.

7.5.1 Robust Stick-slip Friction compensation

We apply the algorithm for friction compensation:

//Friction Compensation

void PsmForceControl::CalcFr(const Eigen::VectorXd &q, const

Eigen::VectorXd &qd)
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{

float x[3]; //Intermediate variable

for (int i=0;i<3;i++)

{

if (abs(qd(i)) < deadband(i)) {

x[i] = 0; // Set velocity to zero because of deadband

}

else {

if (i==2 & v_int(i) > qd(i)) {

x[i] = v_int(i); // Use interpolated velocity for

compensation

}

else {

x[i] = qd(i); // Normal friction compensation

}

}

}

// Stick-slip friction parameters

float Fs_pos = 1;

float Fs_neg = -1;

// Position error on joint 3

float x_e = joint_des(2) - joint_act(2);

if(name == "PSM1")

{

Fr(0) = x[0]*9.542E-2+1.090E-1/(exp(x[0]*-4.0E2)+1.0)+2.751E-1;

Fr(1) = x[1]*1.633E-1+1.631E-1/(exp(x[1]*-4.0E2)+1.0)+1.937E-1;

//Robust stick-slip friction compensation
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if(abs(qd(2)) < deadband(2)) {

if (x_e > pos_deadband) {

Fr(2) = Fs_pos; //Positive stick-slip friction

}

else if (x_e < -pos_deadband) {

Fr(2) = Fs_neg; //Negative stick-slip friction

}

else {

Fr(2) = 0; //No friction compensation because of position

deadband

}

}

else {

Fr(2) = x[2]*7.663E-1+1.069/(exp(x[2]*-4.0E2)+1.0)-3.845E-1;

//Viscous and Coulomb friction compensation

}

}

}

where qd(2) is the velocity of the third joint, q e is the position error of the third

joint, and Fr(2) is the calculated friction compensation of the third joint. The

velocity deadband (vel deadband) is 0.01 rad/s, 0.01 rad/s, and 0.005 m/s for each

joint respectively and the position deadband (pos deadband) is 0.0003 rad for the

third joint.
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Figure 7.3: Computed torque controller joint motion with commanded increments
of the yaw [rad], pitch [rad], and insertion [m] joints respectively. The two different
lines of each plot indicate the desired joint position and the actual joint position.

7.6 Single Manipulator Force Controller Results

7.6.1 Computed Torque Controller

This computed torque controller is used to test whether the feedforward compen-

sation from the estimated model (eq. 7.1) from chapter 5 is correct for the Patient

Side Manipulator (PSM). Figure 7.3 shows results for computed torque controller

of PSM1. Values of Kp and Kd for yaw, pitch, and insertion joint are chosen as

Kp = 25, 20, and 75 and Kd = 10, 11, and 15 respectively. While moving at an

incremental desired joint position of 0.05 rad (0.005 m for prismatic), the first two

joints and third prismatic joints show a maximum steady-state error of 0.03 rad

and 0.002 m. The settling time is around 1s which corresponds to the interpolator
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Figure 7.4: Impedance controller Cartesian motion with commanded increments of
the x [m], y [m], and z [m] positions respectively. The two different lines of each
plot indicate the desired joint position and the actual joint position.

reaching the final desired position in 1s. Comparing the default PID gains from the

CISST-SAW libraries (200, 200, 600) versus the computed torque controller gains

(25, 20, 75), suggests the feedforward model compensation results in satisfactory

linearization.

7.6.2 Impedance Controller

The nonlinear feedforward compensation used for this controller is the same used

for the computed torque controller. Early tests did not use robust stick-slip com-

pensation, resulting in no motion of the third prismatic joint given an incremental

Cartesian command. Because the problem was in joint space and not in Cartesian
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Figure 7.5: Test setup. A load cell is placed in between two springs mounted to
an adapter on the end effectors of the PSM. The springs are interchangeable with
strings.

space, we anticipate errors in static friction modelling. Values for Kp andKd cor-

responding to each XYZ axis respectively is chosen as Kp = diag(15, 15, 15) and

Kd = diag(3, 3, 3). Low Kp values provide good manipulator compliance while still

providing enough input to move the end-effector to the desired position. The re-

sulting low Kp gain similar in all XYZ directions suggests the model compensation

is accurate. The chosen desired inertia matrix, Md = diag(0.35, 0.36, 0.3), is the

same as the estimated inertia matrix, M̂ , at joint positions q1 = q2 = q3 = 0 .

Figure 7.4 shows the end-effector motion with an impedance controller in Carte-

sian space. The steady state error of a 1sec 5mm incremental move in each direction

is 1, 0, and 2 mm respectively. While not the best results for a robot, the trade-

off between a compliant impedance control and tracking error is expected and is

explained later to be satisfactory for cooperative control.

Figure 7.5 shows the setup for the PSM1 impedance controller interaction with
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(a)

(b)

Figure 7.6: Impedance controller applying a force [N] to (a) Compliant spring (b)
Stiff string.
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Figure 7.7: Cooperative force controller with impedance control diagram

an environment. PSM2 is held stiff with a Cartesian position controller where two

springs with a stiffness of 2450 N/m (compliant environment) are attached to the

end-effectors of PSM1 and PSM2. The test on a stiff environment is also conducted

using a string. Figure 7.6 shows an applied tension to (a) springs and (b) strings.

The first three top graphs are x, y, and z-axis desired end effector position, xd [m],

and actual end effector position, xe [m]. The bottom graph is the force [N] on the

object. The horizontal axis shows time [s] of the ROS system. The results verify that

stable force interaction, in this case up to 12 N, is controllable for both compliant

and stiff objects.

7.7 Cooperative Force Control

Figure 7.7 illustrates the control architecture for cooperative object manipulation.

The master PSM utilizes the standard position Cartesian controller from CISST-

SAW libraries and the Slave PSM utilizes the Impedance controller. The object has
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Figure 7.8: Kinematic calibration of PSM1 and PSM2

a certain mass, mo, and certain stiffness, ke. Position control constrains the object

with end-effector output, xe,1 ∈ R3, while the Impedance control interacts with the

object by force, he,2 ∈ R3, and end-effector position, xe,2 ∈ R3 . Ideally, feedback of

he,2 ∈ R3 is data from the force sensor, where in this case, we use a load cell.

7.7.1 Kinematic Calibration

The Optitrack Motion capture along with least squares solution (section A.2) was

used to calibrate the relative RCM position, p12 ∈ R3, and the relative orientation,

T 1
2 ∈ SO4, of PSM1 and PSM2. Refer to Figures 7.8 and 7.9 for notations.

7.7.2 Cooperative Kinematics Revisited

Figure 7.9 shows the cooperative controller kinematics in world frame. In our case,

O2 is the master and O1 is the slave where O2 is our world frame origin. To have O1
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Figure 7.9: Kinematic illustration of the cooperative controller. Black arrows in-
dicate vectors from origin, blue arrows indicate incremental vectors, and the green
line is the object vector. O1 and O2 indicate the origin of each PSM (RCM point).

move in O2 frame, refer to equation (6.2) for XYZ movement and equation (6.3) for

object orientation movement. Note, the previous equations are in each manipulators

frames and the equations presented in this section are all in world frame. The vector

v12 ∈ R3 is the vector from xe,1 (PSM1 end-effector) to xe,2 (PSM2 end-effector):

v12 = xe,2 − xe,1 (7.10)

Therefore, vector v12 represents the manipulated object. In addition, we define

a new variable xf ∈ R1. It allows the separation of the desired position based on

motion xd ∈ R3 and the desired position based on force tracking, xf . The total

desired position, xt ∈ R3, is used as the reference for the impedance controller (eq.

7.7):
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xt =
v12
‖v12‖

xf + xd (7.11)

With this reformulation, xf is updated at time step t by a proportion gain, Kf ,

from the error of the actual force magnitude of the load cell, he ∈ R1, and desired

force, hd ∈ R1:

xf (t) = xf (t− 1) +Kf (he − hd) (7.12)

7.7.3 Position Based Force Tracking

To test whether the kinematics are correct, both PSMs were controlled using the

standard Cartesian position controller from the CISST-SAW libraries. Figure 7.5

shows this setup. PSM2 is the master and PSM1 is the slave moving to compensate

the force on the load cell. We set the desired tensile force to 5 N. Figure 7.10 shows

the results of this test with the first top three showing the XYZ axis desired position

and actual position [m] and the bottom graph showing the force output of the load

cell. The horizontal axis is the time [s] of the ROS system. Figure 7.10a shows that

with a 0.2 N force deadband and a 0.0002 xd,2 increment at 500 Hz, force tracking

results in an unstable behavior of the controller. Changing the deadband to 0.4

N (Figure 7.10b) gives a stable result for tracking the force during a 5 cm move

in the x-direction of the master. This result concludes that a position Cartesian

force tracking is sensitive to environment stiffness and would require to adjust gains

accordingly.
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(a)

(b)

Figure 7.10: Position Cartesian force tracking results on a spring. (a) Unstable limit
cycles (b) Stable with simultaneous motion
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7.7.4 Cooperative Object Manipulation with Force Track-

ing

This test uses the same setup as in Figure 7.5. A load cell placed in between the

end-effectors was used to measure the force magnitude. The relative end-effector po-

sitions were known from the kinematic calibration and forward kinematics. Figure

7.11 shows the results for cooperative impedance force tracking of PSM1 and PSM2

while simultaneously moving in synchronization with PSM2 master for a compli-

ant spring. The blue line represents actual end-effector position, xe, the red line

represents the desired position, xd, and the yellow line represents desired position

force tracking, xf . Because there is no damping gain, 1-2 N maximum force track-

ing errors occurred in the beginning to stabilize from 0 to 5 N. Once the controller

tracked a 5 N force, the maximum force tracking error while simultaneously moving

in Cartesian trajectory is 0.5 N. The cooperative force tracking on stiff suture string

is also tested (Figure 7.12) resulting in a 0.5 N maximum force tracking error.
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(a)

(b)

Figure 7.11: Cooperative force tracking with impedance controller with a compliant
spring. (a) Motion of the Manipulators. Left: slave PSM1 Impedance, Right: master
PSM2 Cartesian (b) Tensile force magnitude [N] vs Time [s]
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(a)

(b)

Figure 7.12: Cooperative force tracking with impedance controller with a stiff suture
string. (a) Motion of the Manipulators. Left: slave PSM1 Impedance, Right: master
PSM2 Cartesian (b) Tensile force magnitude [N] vs Time [s]



Chapter 8

Conclusion and Future Work

8.1 Conclusion

This work applied kinematic link length calibration, parameter identification, con-

troller development in simulations, and cooperative object manipulation with force

tracking to a remote center of motion (RCM) double four-bar linkage Patient Side

Manipulator of the da Vinci Research Kit. Parameter identification for a simplified

3 degree-of-freedom (DOF) model with least squares, weighted least squares, and

semi-definite programming resulted in base parameters that predicted joint torques/-

forces adequately for different trajectories. However, 15%, 15%, and 40% joint errors

of measured vs. predicted torque/force ensued due to 100+ condition number and

unmodeled dynamics. A computed torque controller proved that linearization with

model-based dynamics (from parameter identification) and robust stick-slip friction

compensation was adequate because it decreased the PD gains significantly com-

pared to the original PD gains. In order to yield adequate tracking errors and sta-

ble interaction, this work conducted several single manipulator impedance tests with

free motion, stiff environment interaction, and compliant environment interaction.
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Position Cartesian cooperative controller with force tracking caused instability on a

compliant environment when choosing slightly different gains. Utilizing a load cell,

the cooperative object manipulation controller proved to work on a compliant and

stiff environment with constant tension force tracking while simultaneously moving

in Cartesian space. Nonetheless, 1-2 N maximum force tracking errors occurred in

the beginning due to the lack of a damping gain. Once the controller tracked a 5 N

force, the maximum force tracking error was +/- 0.5 N for both compliant and stiff

environments during motion.

8.2 Discussion and Future Work

An impedance controller applied to a robot that is not designed for force control

presents specific issues. Since there are no references that state the parameter

identification condition number for our particular double four bar-linkage robot, we

found that parallel structured robots have large condition numbers around 600-700

[59]. Serial chain robots have condition numbers as low as 4 [46]. However, adding

a gravity compensation spring increased the condition number to 111. Therefore,

the resulting 100-200 condition number of the PSM is contingent upon the chosen

structure of the model (parallel or serial) and the chosen identified parameters (i.e.,

frictions).

Simplifying the 5-link double four-bar linkage structure to a 3-link mathematical

model is adequate for torque prediction. However, the variability of the individ-

ual parameters restricts this work being applied to develop dynamically accurate

simulations of the da Vinci. The demand for simulations has increased to provide

accesibility in the medical robotics education/research community .

For a general scientific contribution, parameter identification of the Patient Side
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Manipulator (PSM) should include all 7 degree-of-freedoms (DOF) with wrist dy-

namics. For cooperative force control, this addition in wrist dynamics would only

be significant if the wrist was used for applying forces on the object.

While torque prediction was adequate for the first two joints, it was not suitable

for the third prismatic joint. Constant velocity tests on the third joint results show

large hysteresis and position-based friction forces. Consequently, the impedance

controller without static friction compensation failed to actuate the prismatic joint

as the robot moved in low velocities. While the robust static friction compensation

is satisfactory for our means, a better stick-slip friction modeling using dynamic

models could help alleviate these errors [49]. Additionally, modeling the residual

errors/unmodeled dynamics as a stochastic disturbance and applying an adaptive

controller could reduce said errors [60]. In this reference, the adaptive control was

used to control an unmodeled robot. Applying adaptive control to linearize the

system for impedance control would require further research.

The impedance free motion tracking errors raise concerns about the controller’s

efficacy in a medical setting. A marginal 2 mm error on a compliant manipulator is

acceptable as long as hardware and software safety checks are implemented. Using

a state machine to validate the safety of different controllers in different conditions

would satisfy this controller in a medical environment [61].

A larger concern for medical applications is the stability of the controller through-

out the workspace. This system with friction compensation, filter delays, desired

force position, and deadbands introduces a hybrid close-looped system. Piece-

wise, each part of the system is proven to be stable from previous work and refer-

ences [25] [51] [62]. A global stability solution would prove to validate this impedance

controller research work. Similarly, the stability of the cooperative controller with

position master and impedance slave with a certain DOF object has not been the-
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oretically proven. Hypro toolbox [63] provides a toolbox to simulate and analyze

the stability of hybrid systems using ordinary differential equations and reachable

sets [64]. This toolbox could be used to prove stability.

With a particular set of gains, the cooperative object manipulation with force

tracking controller in our experiments proved to be stable. Additional experiments

with different objects’ stiffness and DOFs, filter parameters, controller gains, and

desired inertias would further validate the stability of the proposed controller. Also,

it is essential to check the Jacobian matrix at different joint positions, joint velocities,

and in general different instances as this is the main factor that introduces instability

in the system. Also, the system should implement an integrated force sensor to show

the cooperative controller stability because a lower DOF force sensor could induce

energy into the closed-loop system [65].

The Jacobian matrix is not dimensionless due to the revolute-revolute-prismatic

joint configuration; therefore, it should be normalized [66]. While this reference

utilizes the normalized Jacobian matrix to design a robot, no reference has shown

how to normalize the Jacobian for force control application as in equation (7.7).

Related work [26] explored the use of object impedance control (multiple impedance

control) which uses object impedance (both end-effector impedance and object

impedance). This controller proved to eliminate object inertias and results in

smoother trajectories. These types of controllers should be implemented and tested

on the system.

Since medical applications are a core motivation for this work, the controller

should be tested on, for example, compliant gel phantoms that represent organs.

The controller should also be implemented in an intraoperative minimally invasive

surgery environment where the remote center of motion is located at the patients’

incision.
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The 3rd da Vinci manipulator should be implemented in the cooperative object

manipulation controller. The cooperation of three manipulators will apply a uniform

internal force on an object, for example, a skin graft that requires low internal forces

(i.e. 1-5 N) and uniform internal stresses. A particularly useful demonstration has

two manipulators use the cooperative controller to reorient an object with small

internal forces while the 3rd manipulator is moved to various desired positions on

the object previously not reachable before reorientation.



Appendix A

A.1 Least Squares Solution for Estimating the

Axis of Rotation [1]

C =
P∑
p=1

N∑
k=1

[(vpk −m
p)n]2 (A.1)

Minimizing the cost function of equation A.1 defines the vector representation n of

the Axis of Rotation (AoR). For P markers and N frames, the vector component

vpk − mp should be on a plane perpendicular to AoR. The cost function is first

differentiated with respect to n:

P∑
p=1

N∑
k=1

(vpk −m
p)n(vpk −m

p) = 0 (A.2)

Differentiating the cost function wrt mp:

mpn = (
1

N

N∑
k=1

vpk)n = ~vpn (A.3)

by substituting mpn from eq. (A.3) into eq. (A.2) results in:

P∑
p=1

N∑
k=1

vpkn− ~vpnvpk = 0 (A.4)
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Figure A.1: (a) (b)The axis of rotation defined by point m. o is the optical camera
origin where vpt at time instant t is a vector pointing at the circle around center of
axis mp. Source [1]

and reformulating to a least squares form:

P∑
p=1

[
( 1
N

N∑
k=1

vpk(v
p
k)
T )− ~vpk(

~vpk)
T

]
n = 0

An = 0

(A.5)

With this form we can get the least squares pseudoinverse of A to get the vector

that is perpendicular to axis n. To get where the axis is would need a point where

vector n originates, m , this is done by minimizing the cost function:

C =
P∑
p=1

N∑
k=1

[(vpk −m)2 − (rp)2]2 (A.6)

xAoR = m+ τn (A.7)

With a defined direction of the axis above, a point m on the axis must be



Figure A.2: Least squares solution of the resulting axis position for link length
calculation. Axis a-b is found with marker data link b rotating about markers of
link a.

defined to fully represent the axis. This variable m is found by again minimizing a

cost function in equation (A.6).

A.2 Least Squares Solution for Estimating the

Remote Center of Motion [2]

With a minimum of three optical markers defining a rigid body transformation from

the optical frame as :

T cm =

Rtool ~p

0 1

 (A.8)

where p =

[
px py pz

]
and Rtool ∈ SO3 rotation matrix. By sweeping across the

RCM’s range of motion, and taking the Rtool,i and pi at every time step, there exists

a constant 3x1 vector (btip) from the tool frame to the RCM point and a also a



3x1 vector (bpost) from optical frame to the RCM point (refer to figure 4.1). The

following equations formulate this procedure:

bpost = Rtoolbtip + p (A.9)

Rtool1 −I

Rtool2 −I
...

...

RtoolN −I


 btip
bpost

 = −



p1

p2
...

pN


(A.10)

The rows of matrix [Rtool − I] and −p are expanded for the N number of data

points. A pseudoinverse of equation (A.10) gives the least squares best fit for the

vectors btip and bpost.
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