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Abstract

The standard grid bracing problem has a nice solution via the brace graph. If
we introduce a window by removing an interior vertex of the grid, this solution
comletely breaks down. We examine a 6 x 10 unit grid with a 2 x 2 window and

provide an optimal solution via the Rigidity Matrix.
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Chapter 1

Introduction

1.1 Graphs

The basic concepts from graph theory are defined in standard texts, e.g. Graver [2],
Lovasz [3], Graver and Servatius [1], and Rosen [4]. An edge is a line segment joining
two vertices,denoted by its endpoints. A graph, G(V,E), consists of a finite set of
vertices denoted V(G), a finite set of edges denoted E(G), and an assignment of an
unordered pair of elements of V(G) to each edge e € E(G) called the endpoints, of
e. A graph G, (V,E), is said to be bipartite if it has a partition of its vertex set
into two sets, A and B (V =A U B, AN B = 0), so that every edge in E has one
endpoint in each set.

The power and application of graphs is in the way they show relationships, as
suggested by the example given by Graver [2]. Suppose we let W denote the five
workers in a small carpentry shop that makes table legs, W = {a,b,c,d,e} for Al,
Betty, Cliff, Dan, and Ethel; and suppose we let S denote the four skills needed in
the process of making table legs, S = {f,s1,s2,t} for finishing, sawing, sanding, and

turning (on a lathe). We can model the relationship between workers and tasks by



making a list of pairs consisting of a worker and a task he or she can perform. For

instance, assume that

E:{a;f}v{arsl}v{b781}7{Cf81}7{6751}7{6732}7{Cft}’{df‘S?}’{e;Sl}?{eft}

is a complete listing of such pairs. The two sets V = W U S and E encode all of the
information about 'who can do what’ in our little carpentry shop. To get a "picture’
of this information we select nine points in the plane, label them by the elements of

V and draw in a line segment for each pair in E. This yields Figure 1.1:

Figure 1.1: Carpentry Shop

An embedding of a graph {V, E'} is a function p from a vertex set into m-space,
p:V — R™. A graph, {V, E}, combined with an embedding is called a framework
AV, E,p}. A framework embedded in the plane has for each vertex an assignment
of values (x,y) to indicate location within the plane. For the purposes of this paper,

frameworks will be restricted to 2-space, the Euclidean plane.

1.2 Connectivity

Connectivity will be developed by first considering a disconnected graph. A graph
(V,E) is said to be disconnected if the vertex set can be partitioned into two
nonempty sets A and B(V=AUB ANB=0, A#0, B+#0) so that no
edge has one endpoint in A and the other endpoint in B. We say that a graph
(V,E) is connected if no such partition exists. A path between vertices a and b is a

sequence of vertices ag, ay, ..., a; where,



1. a = ap and a, = b;
2. ag,ay, ...,a; are distinct;
3. a;_1 and a; are adjacent, for ¢ = 1,...,k.

Two vertices are adjacent, if the vertices share an edge. The edges joining successive
vertices in the sequence are called the edges of the path, and the number of these

edges is called the length of the path.

Theorem 1 A graph (V,E) is connected if and only if every pair of its vertices is

joined by a path.

Proof. Assume that there are two vertices a and b in V that are not joined by
a path. Let A be the set of all vertices ¢ so that there is a path from a to ¢ and let
B=V-A Since a € A and b € B, A and B partition V into two nonempty sets.
Suppose that there is an edge e = {a’,b’} with a” € A and b’ € B. Then there must
exist a path from a to ¢’ and the path (of length 1) from a” to b’ yield a path from
a to b’. But, this contradicts the fact that b’ is not in A. We conclude that there is
no edge with one endpoint in A and the other in B; hence (V,E) is not connected.

Now assume that every two vertices of (V,E) are joined by a path and let A
and B be any partition of V into two nonempty sets. Choose a € A and b € B
and let a = ag,aq,...,ar, = b be a path joining a and b. Let a; be the last vertex
along the path in A; since b € B, i < k. Then the next vertex a;,; is in B and the
edge {a;, a;1+1} has one endpoint in A and the other in B. We conclude that (V,E)

is connected. Q.E.D.



Chapter 2

Rigidity Theory

2.1 Motions
Let (V, E, p) be a framework with indexed vertex set V.= {ay, ..., a,} . Then:

e A motion of framework F comprises an indexed family of functions P;:

[0,1] = R™, i = 1,...,n, so that:

1. P;(0) = p,, for all i;
2. P;(t) is differentiable on the interval [0, 1], for all i;
3. |Pi(t),P;(t)| = |p;,p;| . for all t € [0,1] and {a;, a;} € E.
e The function P;(t) is called the trajectory of the point p, under the motion.

e The notation ’pi,pj‘ denotes the distance between the points p, and p; in

R™. We have

= pipy| = 5 — a5l = V(@ — )%, i m = 1

= [Py = /(s —3)? + (g — ) i m = 2



e For a fixed time ¢, the framework (V,E,q), where q; = P;(t), is the position

to which the initial framework has moved at time t.

e A motion {P;} of the framework (V,E,p) is a rigid motion if all the distances

between vertices are preserved by the motion:
Pi(1). P;(t)| = |p; byl

forallt € [0,1] and all 1 <i < j <n.

e A motion P of the framework (V,E,p) is a deformation if the distance between

at least one pair of vertices is changed by the motion:
Pi(t), P; ()] # |pis Pyl

for some t € [0,1] and some {a;,a;} # E

e A framework (V,E p) is said to be rigid if all of its motions are rigid motions,

that is, if it admits no deformations.

2.2 Velocity Vector

The differentiability of a motion P; implies that, at each position along the trajectory
of a point, the velocity vector is well defined; For a vertex a; € V, the trajectory of
the corresponding point of the framework is given by P;(t). If we let x;(t) and y;(¢)
denote the coordinates of this given point at time k, the wvelocity vector which we

denote by P;(t), is given by



2.3 Infinitesimal Motion

e An infinitesimal motion of the m-dimensional framework (V,E p) is a function

q: V — R™ so that (pz - p]) ' (qz - qj) = 07 for all {aiaa’j} € FE.

e An infinitesimal motion q of the framework (V,E,p) is called an infinitesimal

rigid motion if (p; — p;) - (q; —q;) = 0, for all a;,a; € V.

e An infinitesimal motion q of the framework (V,E.p) is an infinitesimal defor-

mation if (p; — p;) - (q; — q;) # 0, for some a;,a; € V.

e A framework (V,E,p) is said to be infinitesimally rigid if all of its infinitesimal

motions are infinitesimal rigid motions.

e If a framework (V,E,p) is infinitesimally rigid then it is rigid.

2.4 Mathematical Framework

Let (V,E,p) denote an arbitrary but fixed framework in 2-dimensional space, let V
= {a1,...,a,}, and (z;,7;) denote the embedding of p;, for i« = 1,....n. Let q : V
— R? be an arbitrary function from the vertex set into the vector space R? and let
(u;,v;) denote the coordinates of q;, for i = 1,...,n. The vector q; is assigned to the
point p;,.

The set of vectors in R*" that corresponds to the infinitesimal rigid motions of a
framework is the solution set to the collection of linear equations corresponding to
all pairs of distinct vertices in V. Also, the set of vectors in R?>" that corresponds to
the infinitesimal rigid motions of a framework is the solution set to the collection of
linear equations corresponding to the edges in E.

Let M(F) denote the subspace of infinitesimal motions of the framework F =



(V,E,p) and let R(F) denote the subspace of infinitesimal rigid motions. Since every

infinitesimal rigid motion of F is an infinitesimal motion of F,
R(F) € M(F).

So F is infinitesimally rigid if and only if

since R(F) C M(F), F is infinitesimally rigid if and only if

dim [R(F)] = dim [M(F))].

2.5 Infinitesimal Translation

Let 7(4,):R* — R? be the infinitesimal translation that assigns the vector (u,v) to
each point in the plane, that is, the constant function 7, (z,y) = (u,v). If (z,y)

and (Z,y) are any two points in the plane,

~

(i — T,y — y) : (T(U,v)(i"v?)) - T(u,v)(xay)) = (i" — T,y — y) : (070) =0,

confirming that the infinitesimal translations neither shrink nor stretch the distance
between any pair of points in the plane, therefore it is an infinitesimal rigid motion
of the plane. The collection of all infinitesimal translations forms a 2-dimensional

vector space spanned by 71 9) and 79 1). So for any infinitesimal translation 7,

T(uw) = UT(1,0) T VT(0,1)-

2.6 Infinitesimal Rotations

Let (z,y) be any point in the plane, The trajectory of (x,y) under a rotation about

the origin is given by



(x(t),y(t)) = (rcos(8 + at), rsin(f + at)), where x = z(0) = rcos(0)

y =y(0) = sin(0)

for time ¢ € [0, 1] . The rotation is counterclockwise when a is positive, and clockwise
when a is negative. The larger the absolute value of a, the faster the rotation.

Differentiating with respect to time and evaluating the derivative at t = 0,
a(rcos(0), —rsin(0)) = a(y, —x).

The initial velocity of a rotation at a point (z,y) is perpendicular to the segment
from that point to the center of rotation, and its length is proportional to the
distance from that point to that center.

A unit infinitesimal rotation with center (xq,yo),

Pzowo) (@ y) = (¥ — Yo, 20 — ).

The remaining infinitesimal rotations with center (zo,yo) are the scalar multiples of
P(wo.y0)- This is an infinitesimal rigid motion of the plane.
Let (z,y) and (Z,y) be any two point in the plane,

A A

(i - T, Z) - y) ’ (p($0,yo)(x7 y) - p(fBo,yo)('rﬂ y))

~

= @ —2,9—y) ((J — yo,x0 — &) — (y — Y0, 20 — 7))

= 0.

2.7 Infinitesimal Translations and Rotations

Theorem 2 The set of all infinitesimal translations and rotations of the plane

forms a 3-dimensional vector space.



Proof 7(1,0), T(0,1) and p(o ) are independent infinitesimal motions of the plane. Any
infinitesimal translation of the plane is a linear combination of 7(1 ¢y and 7o 1). The
next equation shows that any infinitesimal rotation of the plane is a linear combi-

nation of these three vectors:

aP(zo,m0) = @P0,0) + (—ayo)T(1,0) + (ax0)T(0,1)-

Any linear combination of these three vectors is either an infinitesimal rotation or

an infinitesimal translation. Moreover,
ap,0) + bra,0) +¢7(0,1) = 70y, i fa = 0;
Clp(o’o) -+ bT(LO) + CT(O, 1) = Clp(c/a’_b/a), zfa 7é 0.

S0 p(0,0)s T(0,1), and 7(1,0) span the space of infinitesimal motions in the plane. To

see that p(o,0), 70,1), and 719y form a basis, we observe that if,

(ap,0) + bT0,1) + cT,0)) (2, y) = (x,y) for all (z,y) € R?2thena=b=c=0

2.8 General Position

A set P = {p,,...,p,} in the plane is in general position if no two points are equal
and no three lie on a line. A framework (V,E p) is in general position whenever the

set of points P = {pl, o p|V‘} is in general position.

Theorem 3 Let F = (V,E,p) be any framework embedded in the plane in gen-
eral position with |V| > 2. Then R(F) is the 3-dimensional space of infinitesimal

translations and rotations restricted to the points in P = {p,, ..., P,}.

Proof.



Let q € R(F). Let V = {ay, ..., a,} and denote the coordinates of p; by (z;,y;)
and the coordinates of q; by (u;, v;), for all i. Clearly, the restriction of the translation
Tur,m) t0 P is a rigid motion of F. Hence q = q — Ty, v,) € R(F). Denote the

coordinates of q; by (4, 9;), for all 4, and note that ¢, = (0,0). The condition
($2 — T1,Y2 _yl) ) (@2 — 0,09 _0) =0

gives us that q, = a(ys — y1, 1 — o2), where a = Uy /(ys — y1) when y; # yo and
a = g/ (x1 — z2) otherwise. (Since the points are in general position, either y; # yo
or x1 # 5. This also is true for unit grids to be defined later.)

Now define

A~

q=q-— AP(z1,y1) = A~ T(ur,vr) =~ AP(z1,41)5

as above, q € R(F). Furthermore, g, = (0,0) and g, = (0,0). Finally, for : > 2, we

must have

(5 — x1,9 —y1) - (4, — 0,0, —0) =0
and

(i — x2,y; — y2) - (4, — 0,9, — 0) = 0.

Since (z;,y;) is not on the line through (21, y2) and (z3, y2), the vectors (x; —x1, y; —
y1) and (x; — xo,y; — y2) are not parallel, whereas (1, 0;) is perpendicular to both
of them. Hence the only solution to the above equations is (u;, ;) = (0,0). So q
assigns the zero vector to each point of F and, therefore, q is the restriction of
T(ur,o1) T @P(a1 1) 1O P

Infinitesimal rigid motions must be a combination of an infinitesimal rigid motion
since all motions of the plane are a linear combination of infinitesimal translations

or rotations.

10



Since R(F) is a 3-dimensional subset of M(F), M(F) = R(F) if and only if
M(F) is also 3-dimensional.

Theorem 4 Let F = (V,E,p) be a framework embedded in the plane in general
position with |V| > 2. Then dim [M(F)] > 3, and F is infinitesimally rigid if and
only if dim [M(F)] = 3.

2.9 Degrees of Freedom

Let F be a framework (V,E,p) in general position. F has

o dim [M(F)] degrees of freedom
o dim [M(F)] — dim [R(F)] internal degrees of freedom.

Adding a single edge to a framework adds a single linear equation to the list of linear
equations defining M(F) and can reduce the dimension of M(F) by at most one.
An edge is an implied edge if the linear equation associated with the edge is a linear

combination of the linear equations associated with the other edges of F.

Theorem 5 Let (V,E,p) be a framework embedded in the plane with |V'| > 2 and in

general position. If |E| < 2|V|—3, then the framework is not infinitesimally rigid.

Proof. Let F = (V,E,p) be a framework embedded in the plane in general

position where E = {61, s e‘E|} and let E; = {ey, e, ..., e;} . Starting with
M(V, By, p) = RV,

the entire space, and adding edges one at a time, each edge of the framework may

reduce the dimension of M(V, E;_1,p) by at most one. Thus,

dim [M(V, E;,p)] > 2n —i

11



and
dim [M(V, E,p)] = 2|V| - |E.

So F can be infinitesimally rigid only if 3 > 2 |V|—|E|, that is, only if |[E| > 2|V|-3.

2.10 Rigidity Matrix

Let F be a framework (V,E;p) and let p, denote the vector p(i), so p maps V into

R2, identifying p with a 2n-tuple of real numbers:

(p11,p21,p12,p22, ~"7p1n7p2n)7

where (pi;, po;) are the coordinates of p,. An edge length is a constant fixed
by a quadratic equation. This implies that there are |E| quadratic equations. The
quadratic function is ¢ : R?* — RI®l defined by ¢ (p)z’j = (p; - p;)*. The coordinates
of R!®l are indexed by the pairs ij in lexicographical order. ¢ is continuously differ-
entiable and the Rigidity Matrixz for the embedding p , R(p), is defined by ¢'(p) =
2R(p). R(p) is an | E| by 2n matrix whose entries are functions for the coordinates
of p as a point in R?",

An example shows the rigidity matrix, where n = 4 and m = 2 and every possible

edge is represented.

| 51 (071) P4 (171)

| 8 (070) P3 (170)

Figure 2.1: Framework with all possible edges and labeled embeddings

12



P = (P17P27P37P4) = (pn,plzaPthQQ,pghP327P417p42)§

Solving the equation R(p) - ¥ = 0, the vector # is the velocity vector which gives
the initial velocities for each edge. If the solution space only includes three solutions
then the framework is rigid since any rigid framework has three degrees of freedom.

Now fix an edge of the framework in the plane. This means fixing zero values for
elements in the ¥. The resulting null space will have no solution if the framework is
rigid. If the framework is not rigid then there will exist a solution and will require
the introduction of a brace or a relocation of a brace. A brace will decrease the

solution space by one if it is not overbracing an element of the framework.

13

P42 — P12

P42 — P22

P11 — P21 Pi2 — P22 P21 — Pui P22 — Pi2 0 0 0 0
P11 — P31 P12 — P32 0 0 P31 — P11 D32 — P12 0 0
P11 — P41 P12 — P42 0 0 0 0 Pa1 —Pn

0 0 P21 — P31 P22 — P32 P31 — P21 P32 — P22 0 0

0 0 P21 — P41 P22 — P42 0 0 P41 — P21

0 0 0 0 P31 —P41 P32 — P42 P41 — P31

P42 — P32




Chapter 3

A Specific Framework

3.1 Rigid Construction

Given a rigid framework we can attach a new vertex by two edges to obtain a bigger
rigid framework. We formulate this as a theorem for future reference. The proof

can be found in Graver [2].

NRVANIAN

Figure 3.1: Rigid Construction

Figure 3.1 shows the statement.

Theorem 6 Attaching two edges with a common vertex to a rigid framework results

in another rigid framework.

3.2 The Unit Grid

An maxn Unit Grid is a framework (V,E,p) embedded in the plane.

14



V - {a(070)7 a(071)7 ceey a/(O,n)a a(l,U)a a’(l,l)a ceey a(17n)7 ceey a(m70)7 “eey a’(m,n)}
E = {(a,(m), CL(Z'+1J)), (CL(Z'J), a(mﬂ))} fOI' O S 7 S m and 0 S] S n.
p: P(@(o,o)) = (0,0)

Figure 3.2 shows a 1 x 5 unit grid. man Unit Grids are not rigid. Figure 3.3

0,1) (1,1) (2,1) (3,1) (4,1) (51)

(0,00 (1,00 (2,00 (3,00 (4,00 (5,0

Figure 3.2: 1 x 5 Unit Grid

demonstrates a 1x1 Unit Grid, also called a unit square. The square framework

b C b C

Figure 3.3: Unit Square and Deformed Unit Square

admits a deformation since the distance between the vertices a and c differs in the
two embeddings. This is true for vertices b and d but not any vertices connected
by an edge. Since this framework admits a deformation it is not rigid. This now
presents an interesting question, How can this framework be made rigid? Adding
an edge connecting a pair of the vertices where the deformation occurs will make
the unit grid rigid, this specific edge will be named a brace. A Brace is an edge of
length v/2 that joins opposite vertices of a unit square framework thus making the

unit square into a rigid unit square.

15



b ¢ b C

Figure 3.4: Two Rigid Unit Squares

Notice that a brace connecting vertices A and C or a brace connecting vertices
B and D makes the unit square rigid just the same.

A cell (7,7) is the unit square composed of edges,

(@(igys AGg—1))s (G0-1)5 Q-1,5-1))s (AG-1,5-1)s A(i-1,5)) (Aai=1,9) Wi g)) -

where 1 < i <nand 1< j<m.A row i consists of cells (¢,7) for j = 1,..m. A

column j consitsts of all cells (i,j) fori=1,...,n.

3.3 Brace Graph

The brace graph contains a vertex for each row and each column of the unit grid.
The vertices will encode the bracing of the unit grid as follows: If the cell in row r;
and column c¢; is braced, the vertices of the brace graph labeled r; and ¢; are joined

by an edge as illustrated by Figure 3.5 and Figure 3.6.

16



(0,3) (1,3) (2,3) (3,3) (4,3)

(&

(0,2)

(1,2)

(2,2)

(3,2)

(4,2)

)

(0,1)

(1,1)

(2,1)

(3,1)

(4,1)

rs

(0,0)

(1,0)

(2,0)

(3,0)

C1 C2

(4,0)

1

C2

C3

Cq

Figure 3.5: 3 x 4 Unit Grid and Associated Bipartite Graph

1

/

T2

/

r3

1

C2

C3

Cq

Figure 3.6: 3 x 4 Unit Grid with 2 braces and Associated Bipartite Graph
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Chapter 4

Rigidifying the Unit Grid

4.1 Number of Braces

If given a unit grid constructed without braces, the unit grid will not be rigid. If
each unit square is made rigid, this intuitively implies that the unit grid must be

rigid. The 1 x 5 unit grid with 5 braces is now rigid but, is it over braced? i.e.

Figure 4.1: 1 x 5 Unit Grid, Overbraced?

Can a brace be removed while having the framework remain rigid? Figure 4.2 shows

Figure 4.2: Removed Brace and the Deformation

the unit grid now admits a deformation which will occur no matter which brace
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is removed. The 1x5 unit grid requires that all squares be braced in order for the
whole framework to be rigid. Extending this to the 1 x & unit grid case requires k
braces to make the framework rigid. Let us compute how many braces are necessary
to brace an mzn grid using Theorem 5. Let r denote the number edges for a rigid

framework and b denote the number of braces in the man unit grid.

VI = (m+1)(n+1)
|E| = 2mn+m+n
r = 2|V|-3
r = b+ |F]
—b = r—|E|

= (2|V]|=3)—(2mn+m+n)
= 2m+1)(n+1)—=3—2mn+m+n)

= m-+n+1Number of Braces for a Rigid Unit Grid (4.1)

Figure 4.3: 3 x 3 Unit Grid with 5 Braces...

Figure 4.3 shows a 3x3 unit grid which by Equation 4.1 requires five braces to be

rigid. As shown, there are five braces but....Figure 4.4 shows otherwise. The picture
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Figure 4.4: 3 x 3 Unit Grid with 5 Braces...yet not rigid!

shows a deformation, which by the definition of rigidity shows that this framework
is not rigid. The condition of requiring a certain number of braces is not sufficient,

the braces must also be properly placed.

4.2 Making the Unit Grid Rigid

Theorem 7 A braced grid will be rigid if and only if its associated brace graph is

connected.

The proof is as given by Graver [2]page 52,

Proof. Consider and man unit grid with usual labeling of its rows and columns.
Referring to an undeformed drawing of it, we will call the vertical edges in the ith
row the edges of row . Similarly, the horizontal edges in column j will be called
the edges of column j. The first observation in this proof is the fact that, in any
deformation, each cell is a parallelogram. It follows from this observation that, no
matter how the grid is deformed, the edges of row i remain parallel to one another.
Similarly, the edges of column j remain parallel to one another. And this is true for

each row index i and each column index j. This observation is illustrated below,
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1 1

T2 )

C1 Co C3
C1 Co C3

Figure 4.5: 2 x 3 Unit Grid and Deformation

Suppose that there is a brace in the unit square constructed of edges (4,7),
(i+1,5), (1,5+1),(1+1,j+1) of the unit grid, that is, an edge from r; to ¢; in the
associated brace graph. Since, in any deformation of the braced grid, the edges of
row ¢ that bound the braced cell are perpendicular to the edges of column j that
bound the braced cell, we conclude that all the edges of row i are perpendicular to
all the edges of column j. Suppose that braces have been added so that there is a

path in the associated bipartite graph from r; to ¢;.

O O O ®) o—o0
=Ty Gy Ty G Ti,  Cjp = Cj

Figure 4.6: Path from r; to c;

Since the edges of row r;, and the edges of row r;, are perpendicular to the edges
of column ¢;,, the edges of row r;, are parallel to the rods of row r;,. Similarly, the

edges of column ¢;, are parallel to the edges of column ¢;,. Inductively,
e all the edges in all the rows of the path are parallel to one another;
e all the edges in all the columns of the path are parallel to one another; and

e all the edges in all the rows of the path a perpendicular to all the edges in all

the columns of the path.
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In particular, the row edges bounding the i7,jth cell are perpendicular to the
column edges bounding the ¢,jth cell. In short, if there is a path from r; to ¢; in the
associated brace graph, the cell in the ith row and jth column must remain square
under all motions of the braced grid. Thus, if the associated graph is connected,
then there is a path from each r; to each ¢; and each cell must remain square under
all motions; that is, the braced grid has no deformations. To prove the converse,
assume that G is an m x n braced unit grid whose associated brace graph is not
connected, show that G admits a deformation. Let A denote the set of vertices of
the component of the associated brace graph that contains r1, and let B be the set
of the remaining vertices. Hence, if e is an edge either both of its endpoints are in
A or both are in B. Equivalently, if the 7,jth cell is braced, then either r; and c;
are both in A or they are both in B. Notice that the edges along the top and left
side of an unbraced grid may be independently reoriented. Using this observation
a deformation of the braced grid is constructed. Let a denote the measure of some
small angle and adjust the edges along the left side and top of the unbraced grid as

follows:
o If r; € A, the corresponding edge is vertical,
o If ¢; € A, the corresponding edge is horizontal.

e If r; € B, the corresponding edge makes a counterclockwise angle of measure

a with the vertical.

o If ¢; € B, the corresponding edge makes a counterclockwise angle of measure

a with the horizontal.
Figure 4.7 demonstrates this construction.

A = {ry,r3,co,c3,¢c5F B = {rq,c1,c4}.
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&1

1

T2

r3

Figure 4.7: Constrution of Deformation

The figure shows that sets of the deformed grid whose row and column vertices
are in the same set are square! Thus all of the square that could be braced are.
Hence, the undeformed braced grid can be deformed by increasing a from 0 to some
positive value.

The results allow the solution for the rigidity of a unit grid to become apparent
through observing the connectivity of the associated brace graph. To show that this

is true, let’s revisit some of the previous examples and their brace graph.

1 r Te T3 T r Ty T3

Ty >l< () >$ <

r3 €1 Cy C3 rs Ci1 Cy C3
C1 C2 C3 C1 Ca C3

Figure 4.8: 3 x 3 Unit Grids with associated Bipartite Graphs

In Figure 4.8 the left hand figure is not rigid while the figure on the right side
is rigid. Notice the accompanying brace graphs, the associated brace graph for the

figure on the left side is disconnected while for the figure on the right the associated

23



graph is connected. This example shows the solution.
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Chapter 5

A New Problem

5.1 Unit Grid with a Window

Given an man unit grid, delete a vertex a(; € V' such that ¢ # 0,1,n — 1,n and
J #0,1,m —1,m, and all the edges incident with vertex a; ). This creates a 222
window . There must not exist a brace within cells (¢, j), (i +1,7), (i+1,7+1), and
(7,7 + 1). The smallest unit grid where a window can exist is a 4x4 unit grid.
Figure 5.1 shows a 3 x 3 unit grid where the vertex deleted does not satisfy the
conditions stated to create a window. The window created is 222 on the border of
the framework. A 3 x 3 unit grid requires at least 5 properly placed braces to be

rigid, they will be placed in the only configuration allowed. Considering Figure 5.1,

Figure 5.1: 3 x 3 Unit Grid with Vertex (1,1) Deleted
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the vertex deleted must be sufficiently in the interior of the framework so that the 2
x 2 window created is surrounded by unit squares on all sides. This condition then
requires that the unit grid containing the 2 x 2 window must at least be a 4 x 4
unit grid. Requiring the window to be surrounded by unit squares allows braces to

be placed around the window to achieve rigidity.

5.2 Physical Model

The unit grid is a simple enough framework where a physical model will give some
indication as to rigidity and the effects of a window on the dynamics of a unit
grid. I built a model using wooden pieces to represent edges and joined the edges
together by nails to represent the freemoving vertices. The model worked very
well in giving a feeling for the framework and its rigidity, yet there were several
limitations. The vertices were loose, allowing for motion not expected from the
model developed thus far. The motion became compounded as more vertices were
added and the framework became larger and larger. Rigidity in the physical model
was defined slightly different, allowing for some movement in the model. If a unit
square completely collapsed, the model was not rigid. Any motion other than that
was caused by model inaccuracies.

Another issue was that as the model became larger and larger the vertices were
connecting more and more edges. The edges did not remain in the plane, i.e. the
surface it rested on. Edges sharing the same vertex force the model to not be in the
plane. The varying heights, though small, influenced the movement of the model.
Motions of the model in which vertices move out of the plane are again not predicted

by the theory.
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5.3 Experimentation

To determine the rigidity of a braced grid with a window we no longer use the brace

graph.
™1 ™
T2 )
T3 T3
T4 T4
C1 Co C3 Cy C1 Co C3 Cy
A B

Figure 5.2: Braced 4 x 4 Unit grid with and without a window

The two unit grids are braced exactly the same. The grid on the left is rigid, as
shown by the brace graph in Figure 5.3. The brace graphs are exactly the same for

both figures, but the figure in the right is not rigid.

(A1 T rs T4 r Ty rs3 T4
C1 Co C3 Cq &1 Co C3 C4

A B
Figure 5.3: Brace Graphs for Unit Grids A and B

5.4 The Architect’s Problem

The original problem presented was a 6 x 10 Unit Grid with a 2 x 2 window created

by deleting the vertex at (3,2). Since the brace graph cannot be used as it was to
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Figure 5.4: Nonrigid 4 x 4 Unit Grid with Window

indicate rigidity for the unit grid, the physical model provides a tool for understand-
ing the rigidity of the unit grid containing a window. According to Equation 4.1,
the 6 x 10 unit grid requires 15 properly braces to achieve rigidity. The 15 braces
are placed in such a fashion that when the vertex at (3,2) is deleted there aren’t any
braces deleted. The brace graph confirms what the physical model demonstrates.

Vertex (3,2) is deleted from Figure 5.5 creating the window shown in Figure 5.6.

(&1 T2 r3 Ty s T6
1 Co C3 Cq Cs Ce Cr Cg Cy C10

Figure 5.5: Rigid 6 x 10 Unit Grid

Notice also that the brace graphs are identical. This occurs since the edges of the
brace graph represents a brace and none of the braces were deleted. The vertices of
the brace graph represent the rows and columns of the unit grid and neither were
deleted.  Figure 5.7 shows there are areas of the unit grid that collapse. Three

braces will inhibit this collapse. Using this fact, moving through the unit grid in-
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Figure 5.6: 6 x 10 Unit Grid with Window

Figure 5.7: Deformation of the 6 x 10 Unit Grid with Window
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hibiting areas of collapse where they occur eventually rigidifies the whole unit grid.

The rigid unit grid has 18 braces. The problem of rigidifying the 6 x 10 unit grid

Figure 5.8: Rigidified 10 x 6 Unit Grid with Window

with a window is done, but is the placement or number of braces optimal?

5.5 Minimal Bracing

Are 18 braces in the 6 x 10 Unit Grid with a window the minimum number of braces
required? Deleting the brace in the square in row 3 and column 5 does not affect

the rigidity of the figure. Can more braces be deleted?

Figure 5.9: Rigidified Unit Grid containing a Window with 17 Braces

Figure 5.9 is a demonstration of a configuration for rigidity using 17 Braces.
Notice in Figure 5.10 that the brace graph is connected and the unit grid with

a window is rigid. Another case demonstrates the fact that connectivity does not
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Figure 5.10: Rigidified Unit Grid containing a Window with 17 Braces

imply rigidity in the case of a unit grid with a 2 x 2 window. As the model is tested

C1 Co C3 Cq Cs Ce Cr Cg Cy C10

Figure 5.11: Non -Rigid Framework with 17 Braces and Connected Brace Graph

with several different configurations of bracing there are many interesting things
that occur within the model. Finding the minimal bracing for this model is still the
goal of subsequent trials and the results are as follows.

Figure 5.12 along with the brace graph is very interesting. The brace in row 5
column 5 was removed. First examine the brace graph, the edge connecting 75 and
cg is disconnected from the rest of the graph. Figure 5.12 also shows a non-rigid
model notice that part of the model that is rigid. There is a rigid 4 x 8 rectangle that
remains rigid in the model while a row and a column completely collapse. The sub-

section that is rigid has 12 braces among its rows and columns. The row and column
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Figure 5.12: Non-Rigid Framework with 16 Braces and Disconnected Brace Graph

that comletely collapse are joined by an edge in the brace graph and disconnected
from the rest. This leads to the possibility that the rigid rectangle may be rigid
on its own, but looking at column 7 among the rigid rectangle shows there is no

brace. Figure 5.13 shows that though the rectangle is rigid among the model it is

Figure 5.13: 4 x 8 SubSection of Figure 2.7

not rigid itself. A brace added to the collapsed column would create rigidity. Thus
the sub-section would be rigid with 13 braces. This shows that it may be possible
to create a rigid element of the framework which may be used to work from to find
a minimal bracing. Notice again that there is a disconnected element of the brace
graph in Figure 5.14 and that element corresponds to the part of the model that is
completely collapsed. This model also has a rigid sub-section. The sub-section that

occurs among this model is rigid on its own. The sub-section has 11 properly placed
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C1 Co C3 Cq Cs Ce C7 Cg Cg C10

Figure 5.14: Non-Rigid Framework with 16 Braces and Disconnected Brace Graph

braces that rigidify it.

Figure 5.15: Rigid Sub-Section with 11 Braces

A rigid model now exists. The model is minimally braced since if one brace was
removed it is no longer rigid. From here a larger minimally rigid model may be

created. Another configuration creates an interesting model.

5.6 Minimal Framework

Let us first study a 4z4 unit grid with a 222 window in the 4x4 unit grid case. Begin
by overbracing the model with placing braces in every unit square available. The
result is that every unit square surrounding the window is braced.

The removal of any brace within a unit square that shares an edge with the
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Figure 5.16: Non-Rigid Framework with 16 Braces and Disconnected Brace Graph

Figure 5.17: Overbraced 4 x 4 Unit Grid with Window
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window results in a deformation. This implies that the unit squares sharing an edge
with the window must be made rigid either by a brace or as a unit square apart of
a larger rigid sub-section. The only unit squares left to remove a brace from are the
corner unit squares. Removing all but one of the corner unit square braces results

in rigidity, removing all of the corner unit square braces results in a deformation.

Figure 5.18: Minimally Braced Rigid 4 x 4 Framework and Nonrigid 4 x 4 Framework

Figure 5.18 shows the minimally rigid 4 x 4 unit grid with a window. The 4 x 4
unit grid with a window requires 9 braces. In Figure 5.15, the framework is a 4 x 6
unit grid with a window that requires 11 braces. The pattern that is developing is
that for an h x k unit grid with a 2 x 2 window contained entirely in the interior of
the framework, the framework requires at least h + k + 1 properly placed braces.
The proof of this statement is constructive.

Begin with the 4 x 4 unit grid with a window contained entirely in the interior
of the 4 x 4 unit grid. Place braces in every unit square that shares an edge with
the window and in one corner unit square as well. This unit grid is minimally rigid
since the removal of a single brace results in a deformation. The number of braces
for this framework is equal to the dimensions added plus 1.

A larger unit grid requires adding subsequent rows and columns. For each row or
column added there is only one brace required to maintain rigidity. Using Axiom 6,

attach two edges to the rigid unit grid with a window where one edge is a brace.
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The framework remains rigid. The framework is not quite a unit grid but it is a
rigid framework. This framework requires only adding two edges joined by a vertex
to fill out the row or column, once this is achieved another row or column may be
created by beginning with the brace and the edge. The process can be continued
indefinitely and the formula holds, that for and h x k unit grid containing a 2 x 2
window requires h + k + 1 properly placed braces.

This is optimal because given an hxk unit grid with a 222 window,
Vi=((h+1)(k+1)—1
Vertical and Horizontal Edges = (2hk +h + k) — 4
braces=h+k+1

therefore
|E| = ((2hk+h+k)—4)+h+k+1
satisfies the degrees of freedom equation,

Bl =2[V] =3,
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Chapter 6

An Algebraic Solution

6.1 Program

Numerical computation will find the null space of the rigidity matrix for the unit grid
with a window. (The program is attached.) The solution space will be 3-dimensional
if the unit grid with a window is rigid. To rule out isometries of the plane, we may
pin an edge. An edge is pinned if its given initial velocity is zero. In the program
the rigidity matrix included three rows where the elements corresponding to the
coordinates of the vertex in the upper left corner and the x coordinate of the vertex
below the corner were ones. This forced the first three entries of the velocity vector

to be zero.

6.2 Numerical Computation Results

The program will now give a definitive answer regarding the rigidity of the figures re-
viewed thus far. The programs given in the appendix worked together to numerically
support the findings presented. The RigidityMatrix program found the nullspace for

a unit grid with an edge pinned not containing a window. The program used both
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the UnitGrid and bracegraphmatrix programs. The RigidityMatrixWindow found
the nullspace of a unit grid with a pinned edge containing a window using the same

support programs.
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Chapter 7

Open Problems

1. How must a unit grid be braced that contains more than one 222 window?

e Given a unit grid unbraced can the same ideas of bracing a unit grid with

one 2z2 window be applied to a unit grid containing several windows?

2. The brace graph is the solution for finding how the unit grid must be braced
for rigidity. Can it be modified to indicate the bracing for rigidifying a unit

grid containing a window or several windows?

3. Is there a way to find an optimal configuration without computing the nullspace

of the rigidity matrix of the unit grid with a window?
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Appendix A

Programs

A.1 Unit Grid.m Program

These are the programs that numerically supported the conclusions.

0001 function [V,xcoordinate,ycoordinate,deletedvertex] = Unit_Grid(rows, columns)
0002

0003 %  Creating the coordinates for a unit grid.

0004 7,  The coordinates of the lower left corner are always (0,0).

0005 7  Following the initial position the user must then indicate

0006 %  the size of the unit grid they wish to work with.

0007

0008 %A = input(’enter the coordinates of the lower left hand corner of the unit gri
0009 A = [0 0];

0010 % rows = input(’How many rows do you want the unit grid to have? 7);

0011 % columns = input(’How many columns do you want the unit grid to have? )
0012 rows;

0013 columns;

0014

0015 xcoordinate = input(’what is the x coordinate of the deleted vertex? )
0016 while (xcoordinate<=1|columns-1<=xcoordinate)

0017 disp(’X coordinate of deleted vertex must be greater than one and at least
0018 xcoordinate = input(’what is the x coordinate of the deleted vertex? )5
0019 end

0020

0021 ycoordinate = input(’what is the y coordinate of the deleted vertex? DF
0022 while (ycoordinate<=1|rows-1<ycoordinate)
0023 disp(’Y coordinate of deleted vertex must be greater than one and at least
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0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041
0042
0043
0044
0045
0046
0047
0048
0049
0050
0051
0052
0053
0054
0055
0056
0057
0058
0059
0060
0061
0062
0063
0064
0065
0066

end

ycoordinate = input(’what is the x coordinate of the deleted vertex? )5

% ycoordinate = input(’What is the y coordinate of the deleted vertex? ’);

% while (ycoordinate<=1|rows-1<=ycoordinate)
yA disp(’Y coordinate of deleted vertex must be greater than one and at leas
yA ycoordinate = input(’what is the y coordinate of the deleted vertex? ”)
% end
h = rows + 1; Y number of rows in matrix
k = columns + 1; ¥ number of columns in matrix
V= zeros(h,2x*k) ; % This is going to be the matrix of the embedding
%  for the unit grid.
Ycoords = zeros(h,1); % This is going to be the
%» matrix of the y coordinates
% of the ordered pair for each vertex
Xcoords = zeros(h,k); %  this matrix will hold the x coordinates of the
%  ordered pair for each vertex.
for m = 1:h %  this ’for’ loop creates the y coordinate
% matrix
Ycoords(m,1) = h-m; %  this gives the y coordinate
% of the top row of the
% unit grid
m=m+ 1;
end
for n = 1:k % This loop inserts the Ycoords matrix
/»  the even numbered columns of unit grid
%»  embedding matrix.
V(:,2%n) = Ycoords; % Here the Ycoords matrix becomes
%  the column of V
n = n+l;
end
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0067

0068

0069 for i = 1:k 7 Creating the matrix of X coordinates

0070 Xcoords(:,i) = A(1,1) + (i-1); 7% making the columns of the Xcoords matrix
0071

0072 i =1+ 1;

0073 end

0074

0075 for j = 1:k % Inserting the x coordinates from Xcoords into

0076 % the matrix V

0077 V(:,(2*%j) - 1) = Xcoords(:,j);
0078

0079 jo= g +1;

0080 end

0081 V(rows- ycoordinate + 1, 2*xcoordinate + 1) = 110*rows;
0082 V(rows - ycoordinate + 1, 2*xcoordinate + 2) = 115*rows;
0083

0084 vertexcounter
0085 deletedcolumn
0086 endsearch = O;
0087 if endsearch == 0

0088 for j = 1:size(V,2)

0089 if endsearch ==

0090 for i = 1:size(V,1)

0091 if endsearch ==

0092 vertexcounter = vertexcounter + 1;

0093 if V(i,j) == (110*rows)

0094 endsearch = 1;

0095 deletedcolumn = j;

0096 end

0097 end

0098 end

0099 end

0100 end

0101 end

0102

0103

0104 edgedifference = (rows+1)*((deletedcolumn - 1)/2);

0105 deletedvertex = vertexcounter - edgedifference;

0106

0107 %disp(’THE FOLLOWING IS A MATRIX OF THE ORDERED PAIRS OF THE UNIT GRID SPECIFIE
0108 %disp(V);

0109

0;
0;
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A.2 Brace Graph Matrix.m Progam

0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036
0037
0038

function [M,r,c,Incident]=brace_graph matrix

Yoo oo oo oo ToTo oo o ToTo o To o o o o o o o o o o o o o o oo To o ToToToToTo oo oo o o o o o o o o o o o o o To T ToToTo oo oo oo

b
o
h
b
o
o
h
b
b
b
2
2
b
b
b
b
b
b
b
b
b
b
2
h
b
h
2
b
b
b
b
2
b
h

Setting up to Solve R*v = 0 yA
__________________________________________ A
b

INPUT b
————— /
1.) the rows and columns of the unit grid %

2.) the locations of the braces yA

-the braces are asked from the top left corner down yA

and then proceeding to the next column down through A

exhausting the squares of the unit grid. /A

OUPUT b
————— b
M The matrix of the bracing for the given unit grid, where}

a one denotes a brace in the row and column it lies and %
a zero denotes there isn’t a brace in the row and column}

it lies. yA

-This output can be inputed using yA

brace_graph matrix.m or can be used from a yA

workspace. yA

the number of rows of the unit grid. A

c : the number of columns of the unit grid. /A

b

b

DESCRIPTION T
——————————— %
This code takes the outputs of brace_graph matrix.m and yA
Unit_Grid.m and finds the Rigidity Matrix and null space for yA

the given unit grid and its bracing. pA

It starts by finding the rigidity matrix for the Vertical, yA
Horizontal, and Brace edges then combining them for the full A

Rididity Matrix. The Rigidity Matrix also has three rows on thej
bottom containing a one to represent the coordinate that will bej,
pinned. This decrease the null space by three dimensions since
the 3 rigid motions can no longer occur with a pinned edge. yA

Yoo 1o 6o s ToTo o o o ToTo o o o To o o o ToToTo o o ToToTo o o To T o o o To o o o ToTo o o o To T o o o To T o o To T o o o To T o o o To o o o To T o o o o

0039 r

0040
0041

input (’How many rows?’);
input (’How many columns?’);
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0042
0043
0044
0045
0046
0047
0048
0049
0050
0051
0052
0053
0054
0055
0056
0057
0058
0059
0060
0061
0062
0063
0064
0065
0066
0067
0068
0069

X = zeros(r,1);
M = zeros(r,c);
for j = 1:c % inputting the location of the braces.
for i = 1:r
X(i,1) = input(’Is there a brace in row i and column 17; 1=yes, O=no
i=1+1;
end
M(:,3) = X(:,1);
j=i+y
end
M;
Incident = zeros(sum(sum(M)),r+c);

IncidentRows = zeros(sum(sum(M)),r);
IncidentColumns = zeros(sum(sum(M)),c);
counter = 0;

for j = 1:c
for i = 1:r
if M(i,3)>0
counter = counter + 1;
IncidentRows (counter,r-(i-1)) = 1;
IncidentColumns (counter,j) = 1;
end
end
end
Incident = [IncidentRows IncidentColumns];
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A.3 Rigidity Matrix.m Program

0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041

function [RigidityMatrix,NullSpace,VertexPinning] = Rigidity Matrix(M)

Yoo oo oo oo ToTo oo o ToTo o To o o o o o o o o o o o o o o oo To o ToToToToTo oo oo o o o o o o o o o o o o o To T ToToTo oo oo oo

% Setting up to Solve Rxv = 0

it b
b b
%  INPUT o
% ----- %
yA M o The matrix of the bracing for the given unit grid, wherej,
yA a one denotes a brace in the row and column it lies and %
yA a zero denotes there isn’t a brace in the row and columnj
yA it lies. yA
yA -This output can be inputed using pA
yA brace_graph matrix.m or can be used from a yA
% workspace. %
o b
%  OUPUT o
W - %
yA RigidityMatrix : This is the rigidity matrix of the given yA
yA unit grid and its bracing. yA
yA Nullspace : The solution to R*v = 0. pA
yA VertexPinning : Gives the location of the vertices pinned. Y%
o b
b b
%  DESCRIPTION o
% —mmmm———e- %
yA This code takes the outputs of brace_graph matrix.m and yA
yA Unit_Grid.m and finds the Rigidity Matrix and null space for b
yA the given unit grid and its bracing. yA
yA It starts by finding the rigidity matrix for the Vertical, yA
yA Horizontal, and Brace edges then combining them for the full pA
yA Rididity Matrix. The Rigidity Matrix also has three rows on the
yA bottom containing a one to represent the coorinate that will be %
yA pinned. This decrease the null space by three dimensions since %
yA the 3 rigid motions can no longer occur with a pinned edge. yA

Yoo oo To o ToToToToToToToTo oo 1o 1o o o fo o o o o o o o o o T o To T ToToToTo oo o oo oo oo o o o o o o o o T To T To T To T T o o oo o

if (nargin==0)
[M,r,c]=brace_graph matrix;
else

size(M,1);
size(M,2);

o R
I
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0042 end

0043 % [V,xcoordinate,ycoordinate] = Unit Grid(r,c);

0044 xcoordinate = 0;

0045 ycoordinate = 0;

0046 vertices = (r+1)*(c+1); %number of vertices in Unit Grid

0047 NumberVerticalEdges = (c+1)*r; % number of vertical edges

0048 Vertical = zeros(NumberVerticalEdges,2*vertices); %Rigidity Matrix of vertical
0049 VerticalSubMatrix = zeros(r,2*x(r+1));

0050

0051 i = 1;

0052

0053 for i = 1:r

0054 VerticalSubMatrix(i,2xi-1) = 0; % sets up sub matrix for rigidity
0055 VerticalSubMatrix(i,2*i) = 1; % matrix of vertical edges

0056 VerticalSubMatrix(i,2*xi+1) = 0;

0057 VerticalSubMatrix(i,2*i+2) = -1;

0058 i= i+1;

0059 end

0060 i = 1;

0061 for i = 1:(c+1)

0062 Vertical (r*(i-1) +1:r*i, (2x(r+1))*(i-1) + 1:2%(r+1)*i) = VerticalSubMatrix;
0063 end

0064

0065 VerticalEdges = ones(r,c+l); % sets up to delete any vertical edges
0066 if xcoordinate >0 % if a vertex is deleted

0067 VerticalEdges(r - (ycoordinate-1),xcoordinate + 1 )=0;

0068 VerticalEdges(r - ycoordinate, xcoordinate + 1) = 0;

0069 end

0070

0071 i = 1;

0072 j = 1;

0073 counter = 1
0074 for j = 1:c
1=

0075 for i 1:r

0076 if VerticalEdges(i,j) < 1
0077 Vertical(counter, :)=0;
0078 counter = counter + 1;
0079 else

0080 counter = counter + 1;
0081 end

0082 i=1i+1;

0083 end

0084 j=3+1;
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0085 end

0086

0087 NumberHorizontalEdges = cx(r+1);

0088 Horizontal = zeros(NumberHorizontalEdges,2*vertices);

0089

0090 1 = 1;

0091 j = 1;

0092 for i = 1:(r+1)*c % sets up Rigidity matrix for
0093 Horizontal (i,2*i-1) = -1; % horizontal edges.
0094 Horizontal(i,2*i) = 0;

0095 Horizontal (i,2*r + 2*%i + 1) = 1;

0096 Horizontal(i,2*r + 2%i + 2) = 0;

0097 i = i+1;

0098 end

0099

0100 HorizontalEdges = ones(r+l,c); % sets up to delete any horizontal
0101 if xcoordinate>0 % edges if necessary
0102 HorizontalEdges (r-ycoordinate+1,xcoordinate) = 0;

0103 HorizontalEdges(r-ycoordinate+1,xcoordinate + 1) = 0;
0104 end

0105

0106 counter = 1;

0107 i = 1;

0108 j = 1;

0109 for j = 1:c

0110 for i = 1:r+1

0111 if HorizontalEdges(i,j) < 1

0112 Horizontal (counter, :)=0;

0113 counter = counter + 1;

0114 else

0115 counter = counter + 1;

0116 end

0117 i=1i+1;

0118 end

0119 jo= g+ 1;

0120 end

0121

0122

0123 BraceEdges = sum(sum(M));  ’number of braces in Unit Grid

0124 BraceSubMatrixA = zeros(r,2*r);
0125 BraceSubMatrixB = zeros(r,2*r);
0126 i = 1;

0127 for i = 1:r
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0128 BraceSubMatrixA(i,2*i-1) = -1; % sets up sub matrix for rigidity
0129 BraceSubMatrixA(i,2*i) = 1; %» matrix of all possible brace
0130 BraceSubMatrixB(i,2*i-1) = 1; % edges

0131 BraceSubMatrixB(i,2*i) = -1;

0132 %Brace(i,2*r + 2xi + 3) = 1;

0133 %Brace(i,2*r + 2%i + 4) = -1;

0134 i = i+1;

0135 end

0136

0137 Brace = zeros(r*c,2*vertices);

0138 i = 1;

0139

0140 for i = 1:c

0141 Brace(r*(i-1) + 1:r*i, (2*r + 2)*(i-1) + 1:(2*r + 2)*(i-1) + 2*r) = BraceSubl
0142 Brace(r*(i-1) + 1l:r*i,(2%r + 5) + (i-1)*(2*r+2):4*xr + 4 + (i-1)*(2*%r+2)) =]
0143 i=1i+1;

0144 end

0145

0146 counter = 1; % finds and deletes brace edges that are not present
0147 i = 1; % in the unit grid.

0148 j = 1;

0149 for j = 1l:c

0150 for i = 1:r

0151 if M(i,j) < 1

0152 Brace(counter,:) = 0;

0153 counter = counter + 1;

0154 else

0155 counter = counter + 1;

0156 end

0157 i=1i+1;

0158 end

0159 =3+ 1;

0160 end

0161

0162 BraceCheck = zeros(1l,2%vertices);
0163 DeletedRow = zeros(1l,2*vertices);
0164 counter = 0;

0165 1 = 1;

0166 while i <= size(Brace,1)

0167 BraceCheck(1,:) = Brace(i,:);
0168 if BraceCheck == DeletedRow;
0169 Brace(i,:) = [];

0170 i=1i-1;
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0171
0172
0173
0174
0175
0176
0177
0178
0179
0180
0181
0182
0183
0184
0185

end
i=1+1,;
end

RigidityMatrix = [Vertical; Horizontal; Brace];
ExtraZeros = zeros((2*vertices) - size(RigidityMatrix,1)-4,2xvertices);
VertexPinning = zeros(3,2*vertices);

VertexPinning(1,1) = 1; % adds rows to pin an edge the upper left
VertexPinning(2,2) = 1; % vertical edge.
VertexPinning(3,3) = 1;

WVertexPinning(4,4) = 1;
RigidityMatrix = [RigidityMatrix; ExtraZeros;VertexPinning];

NullSpace = null(RigidityMatrix,’r’);
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A.4 Rigidity Matrix Window.m Program

0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041

function [NullSpace,M] = Rigidity MatrixWindow (M)
Yoo 1o 6 To s ToTo o o o ToToTo o o To o o o Jo ToTo o o ToToTo o o To o o o o To o o o To T o o o To o o o o To T o o To T o o o To o o o Jo To o o o To T o o o o

%  Setting up to Solve Rxv = 0 yA
it b
b To
%  INPUT o
% ----- %
yA M o The matrix of the bracing for the given unit grid, wherej,
yA a one denotes a brace in the row and column it lies and %
yA a zero denotes there isn’t a brace in the row and columnj
yA it lies. yA
yA -This output can be inputed using pA
yA brace_graph matrix.m or can be used from a yA
% workspace. %
o To
%  OUPUT o
W - %
yA Nullspace : The solution to R*v = 0. yA
yA M The Bracing of the Unit Grid yA
b b
o To
%  DESCRIPTION "
A %
yA This code takes the outputs of brace_graph matrix.m and yA
yA Unit Grid.m and finds the Rigidity Matrix and null space for yA
yA the given unit grid and its bracing. yA
yA It starts by finding the rigidity matrix for the Vertical, yA
% Horizontal, and Brace edges then combining them for the full %
yA Rididity Matrix. The Rigidity Matrix also has three rows on thej,
yA bottom containing a one to represent the coordinate that will bej,
yA pinned. This decreases the null space by three dimensions since %
yA the 3 rigid motions can no longer occur with a pinned edge. yA

Yoo 1o 6 To s ToTo o To o ToTo o o o To o o o Jo ToTo o o ToToTo o o To o o o o To o o o To T o o o To T o o o ToTo o o To T o o o To o o o Jo To o o o To o o o o o

if (nargin==0)
[M,r,c]l=brace_graph matrix;

else

end

(eI
Il

size(M,1);
size(M,2);

[V,xcoordinate,ycoordinate,deletedvertex] = Unit Grid(r,c);
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0042
0043
0044
0045
0046
0047
0048
0049
0050
0051
0052
0053
0054
0055
0056
0057
0058
0059
0060
0061
0062
0063
0064
0065
0066
0067
0068
0069
0070
0071
0072
0073
0074
0075
0076
0077
0078
0079
0080
0081
0082
0083
0084

%xcoordinate = O;
hycoordinate = 0;

vertices = (r+1)*(c+1); %number of vertices in Unit Grid
NumberVerticalEdges = (c+1)x*r; J» number of vertical edges

Vertical = zeros(NumberVerticalEdges,2*vertices); 7 Rigidity Matrix of
VerticalSubMatrix = zeros(r,2*(r+1)); % vertical edges
i=1;

for i = 1:r

VerticalSubMatrix(i,2*i-1)
VerticalSubMatrix(i,2*i) =
VerticalSubMatrix (i, 2*i+1)
VerticalSubMatrix (i, 2*i+2)
i= i+1;

0; % sets up the submatrix that makes
; % up the rigidity matrix for the
0; % vertical edges of a unit grid
_1;

([ |

end
i=1;
for i = 1:(c+1)
Vertical (rx(i-1) +1:r*i, (2%(r+1))*(i-1) + 1:2x(r+1)*i)...
= VerticalSubMatrix;
end

VerticalEdges = ones(r,c+1);
if xcoordinate >0

VerticalEdges(r - (ycoordinate-1),xcoordinate + 1 )=0;
VerticalEdges(r - ycoordinate, xcoordinate + 1) = 0;
end
i=1; % makes the rows zeors for the edges associated
% with the deleted vertex
j=1
counter = 1;
for j = 1:c
for i = 1:r
if VerticalEdges(i,j) < 1
Vertical(counter, :)=0;
counter = counter + 1;
else
counter = counter + 1;
end
i=1i+1;
end
IR T
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0085
0086
0087
0088
0089
0090
0091
0092
0093
0094
0095
0096
0097
0098
0099
0100
0101
0102
0103
0104
0105
0106
0107
0108
0109
0110
0111
0112
0113
0114
0115
0116
0117
0118
0119
0120
0121
0122
0123
0124
0125
0126
0127

end

VerticalCheck = zeros(l,2*vertices);

DeletedRow = zeros(l,2*vertices);
counter = 0;

i=1;

while i <= size(Vertical,1l)

% deletes the rows associated with

VerticalCheck(1l,:) = Vertical(i,:); 7% the deleted vertical edges.

if VerticalCheck == DeletedRow;
Vertical(i,:) = [I1;
i=1-1;
end
i=1i+1;
end
NumberHorizontalEdges = cx(r+1);

Horizontal =

i=1;

j=1

for i = 1:(r+1)*c
Horizontal(i,2*i-1) = -1;
Horizontal(i,2*i) = 0;
Horizontal (i,2*r + 2*%i + 1) = 1;
Horizontal (i,2*r + 2*%i + 2) = 0;
i = i+1;

end

HorizontalEdges = ones(r+1,c);

if xcoordinate>0

zeros (NumberHorizontalEdges,2*vertices) ;

% sets up the rigidity matrix for
% horizontal edges of the unit grid

HorizontalEdges(r-ycoordinate+1l,xcoordinate) = 0;
HorizontalEdges(r-ycoordinate+1,xcoordinate + 1) = 0;
end
counter = 1;

i=1;
j=1;
for j = 1:c
for i = 1:r+1
if HorizontalEdges(i,j) < 1
Horizontal (counter, :)=0;
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0128 counter = counter + 1;
0129 else

0130 counter
0131 end

0132 i=1+1;
0133 end

0134 jo=3 o+ 1;
0135 end

0136

0137

0138 HorizontalCheck = zeros(l,2*vertices); 7, deletes the rows of zeros
0139 DeletedRow = zeros(1,2*vertices);

0140 counter = 0;

counter + 1;

0141 i = 1;

0142 while i <= size(Horizontal,1)

0143 HorizontalCheck(1l,:) = Horizontal(i,:);
0144 if HorizontalCheck == DeletedRow;

0145 Horizontal(i,:) = [];

0146 i=1i-1;

0147 end

0148 i=1i+1;

0149 end

0150

0151

0152

0153 BraceEdges = sum(sum(M));  ’number of braces in Unit Grid

0154 BraceSubMatrixA = zeros(r,2x*r);
0155 BraceSubMatrixB = zeros(r,2*r);

0156 i = 1;

0157 for i = 1:r

0158 BraceSubMatrixA(i,2*i-1) = -1; % sets up submatrix that makes up
0159 BraceSubMatrixA(i,2*i) = 1; % the rigidity matrix for the brace
0160 BraceSubMatrixB(i,2*i-1) = 1; % edges if every possible brace
0161 BraceSubMatrixB(i,2*i) = -1; % was placed

0162 %Brace(i,2*r + 2*xi + 3) = 1;

0163 %Brace(i,2*%r + 2%i + 4) = -1;

0164 i = i+1;

0165 end

0166

0167 Brace = zeros(r*c,2*vertices);

0168 1 = 1;

0169

0170 for i = 1:c
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0171
0172
0173
0174
0175
0176
0177
0178
0179
0180
0181
0182
0183
0184
0185
0186
0187
0188
0189
0190
0191
0192
0193
0194
0195
0196
0197
0198
0199
0200
0201
0202
0203
0204
0205
0206
0207
0208
0209
0210
0211
0212
0213

Brace(r*x(i-1) + 1:r*i,(2*%r + 2)*(i-1) + 1:(2*r + 2)*(i-1) + 2*r)...
= BraceSubMatrixA;
Brace(r*(i-1) + 1l:r*i,(2*%r + 5) + (i-1)*(2xr+2):4*r + 4 +...
(i-1)*(2xr+2)) = BraceSubMatrixB;
i=1+1;
end
counter = 1;

i=1;
j=1
for j = 1:c % makes the rows of the brace edges
for i = 1:r % that do not exist zero.
if M(i,j) < 1
Brace(counter,:) = 0;
counter = counter + 1;
else
counter = counter + 1;
end
i=1i+1;
end
j=3+1
end
BraceCheck = zeros(1l,2*vertices);
DeletedRow = zeros(l,2*vertices);
counter = 0;
i=1;
while i <= size(Brace,1)
BraceCheck(1,:) = Brace(i,:); % deletes the rows of zeros
if BraceCheck == DeletedRow;
Brace(i,:) = [];
i=1i-1;
end
i=1i+1;
end
RigidityMatrix = [Vertical; Horizontal; Bracel; 7 add zero to make a
% square matrix
ExtraZeros = zeros((2*vertices) - size(RigidityMatrix,1)-4,2*vertices);

VertexPinning = zeros(3,2+*vertices);

VertexPinning(1,1) = 1; % pin vertices to get rid of rigid
VertexPinning(2,2) = % motions from the solution space
VertexPinning(3,3) =

[
[EEGTNY
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0214 YVertexPinning(4,4) = 1;

0215 RigidityMatrix = [RigidityMatrix; ExtraZeros;VertexPinning];
0216 1 = 1;

0217 for i = 1:2

0218 RigidityMatrix(:,2xdeletedvertex - 1) = [];

0219 i=1i+1;

0220 end

0221

0222 NullSpace = null(RigidityMatrix,’r’);

0223 NullSpace = NullSpace’; % solution
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Glossary

Adjacent

Bipartite Graph
Brace
Brace Graph

Cell
Column
Connected Graph

Deformation

Degrees of Freedom

Disconnected Graph

Edge
Edges of the Path
embedding

endpoints

Sharing an edge, 3

A graph that has a partition of its vertex set
into two sets so that every edge in the edge set
has one endpoint in each set, 1

An edge of length v/2 that joins opposite ver-
tices of a unit square framework thus making
the unit square into a rigid unit square., 15
A bipartite graph that encodes the bracing of
a unit grid., 16

, 16
, 16
A graph that is not disconnected., 2

A motion where the distance between at
least one pair of vertices in the vertex set is
changed., 5

Dimension of the space of infinitesimal mo-
tions., 11

if the vertex set can be partitioned into two
nonempty sets A and B so that no edge has
one endpoint in A and the other endpoint in
B., 2

A line segment joining two vertices and a rigid
framework of unit length., 1

The edges joining successive vertices in the se-
quence, 3

A function p from a vertex set into m-space;
p:V — R™. 2

The vertices that are joined by an edge., 1
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Framework

General Position

Graph

Implied Edge

Infinitesimal Deformation
Infinitesimal Motion
Infinitesimal Rigid Motion
Infinitesimal Rigidity
Internal Degrees of Freedom

length of the path
Motion

path

Rigid Framework
Rigid Motion

Rigidity Matrix
Row

Unit Grid

Velocity Vector
Vertex

Window

A graph {V, E'} combined with an embedding,
2

No two points are equal and no three lie on a
line., 9

A graph G consists of a finite set V(G) of
points (vertices) and a finite set E(G) of edges
and an assignment of an unordered pairs of
elements of V(G) to each edge e E(G) called
the endpoints of e., 1

An edge where its associated linear equation
is a linear combination of equations associated
with other edges., 11

The difference in dimensions between the
space of infinitesimal motions and infinitesi-
mal rigid motions., 11

Number of edges of the path., 3

An indexed family of functions., 4

A sequence between vertices., 2

Framework whose motions are only rigid mo-
tions and admits no deformations., 5

A motion that preserves all the distances be-
tween any pair of vertices in the vertex set.,

5
12
.16
14

, D
A point., 1

, 25
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