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ABSTRACT

Pollution poses a significant challenge in our modern world, with humans generating vast
amounts of plastic waste that endangers the environment and its wildlife. Currently, addressing
this issue relies heavily on human interventions, such as clean-up efforts on roads and beaches.
Unfortunately, these are typically inconsistent and unreliable. To tackle this problem, the
Trashbot Major Qualifying Project at Worcester Polytechnic Institute is developing a prototype
robot for the autonomous collection of plastic bottles and aluminum cans. This innovative project
aims to create a robot that can navigate WPI's quadrangle independently, detect litter, approach
it, collect it, and dispose of it in a designated location. The Trashbot project is a groundbreaking
initiative, marking the beginning of a multi-year interdisciplinary endeavor. In the initial phase of
the project, the team has achieved several milestones. They have enabled the robot to
autonomously navigate using a GPS module and Inertial Measurement Unit, detect trash using a
depth camera, and pass raw images to a trained object detection and classification Al model,
YOLO. Additionally, the team has designed and fabricated a 4-degree-of-freedom articulated
manipulator, implemented a path planning algorithm using a graph state model and installed a
LiDAR fixture for future enhancements.
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1. INTRODUCTION

In response to the need for effective waste management in urban environments, our team
embarked on a mission to design and construct a mobile robot capable of autonomously
detecting, collecting, and disposing of garbage. Equipped with a robotic arm, the robot was
designed to identify trash, approach it, and safely collect it. The system is illustrated below in
Figure 1. We successfully developed prototypes of key subsystems, including a
four-degree-of-freedom articulated manipulator, a robust deep learning model for detecting
aluminum cans, and a navigation algorithm for autonomous GPS navigation. The robot was able
to rotate and drive to an object it identified as garbage and retrieve said object with its robotic
arm. Despite successfully implementing the navigation algorithm, our robot's navigation
performance was inconsistent. This report details our design process, challenges, achievements,
and areas for improvement as we strive to enhance the efficiency and reliability of our mobile
garbage collection robot.

Figure 1: The TRASHBOT.



2. BACKGROUND

The field of autonomous mobile robots for waste collection plays a crucial role in
addressing the growing challenges of urban waste management and environmental sustainability.
With rapid urbanization and population growth, traditional waste collection methods are
becoming increasingly inefficient and environmentally harmful. Autonomous mobile robots offer
a promising solution by providing efficient, cost-effective, and environmentally friendly
alternatives to manual waste collection.

Our project, focused on the development of a trash-collecting mobile robot with a robot
arm, fits within the larger context of the problem area by aiming to improve the efficiency and
effectiveness of waste collection processes. By automating the waste collection process, our
robot can navigate through urban environments, identify and collect trash, and deposit it in
designated locations, reducing the need for manual labor and optimizing waste collection routes.

The field of autonomous mobile robots for waste collection is advancing rapidly, with
notable studies such as those by Satav et al. (2023) showcasing the feasibility and effectiveness
of autonomous waste collection or sorting robots in various environments. Despite these
advancements, significant gaps persist in our understanding of how to scale, enhance robustness,
and improve adaptability of these robots across diverse urban settings and waste types.

Key to the development of these robots are the analytical models and system designs that
underpin their functionality. These models often integrate sensor technologies for environment
perception, path planning algorithms for navigation, and robotic arms for manipulation tasks.
Studies by Kulshreshtha et al. (2021) offer valuable insights into the use of grippers, sensors,
intelligence models, and manipulation techniques, which can be leveraged and adapted for waste
collection robots. The current benchmark in this field is embodied by autonomous robots capable
of navigating complex environments, accurately detecting and collecting trash, and dynamically
optimizing collection routes in real time. However, these systems still face challenges related to
energy efficiency, adaptability to evolving environments, and cost-effectiveness.

In summary, while significant strides have been made in the field of autonomous mobile
robots for waste collection, there remain considerable challenges to address. Our project seeks to
contribute to this field by developing a robotic system that tackles some of these challenges,
thereby pushing the boundaries of autonomous waste collection technology.



3. DESIGN & DEVELOPMENT

Due to the complexity of this project, the design process is discussed in four subsections:
an overview of the entire system, robotic arm development, visualization & object detection, and
robot navigation.

3.1 System Overview

The core functionalities of the TRASHBOT include navigating around the Quad at WPI,
as well as detecting, collecting, and disposing of garbage in the field. The system architecture
shown below in Figure 2 discusses its specific functionalities in chronological order.

START: :
Robot publishes Robot locates Robot navigates

current GPS closest to closest

coordinate “Dropped Pin” “Dropped Pin”

Robotic Ar.m Camera locates Robot spins in
moves to object place until
using inverse Camera detects
kinematics can/bottle

center point of
object

END:
Robotic arm Robotic Arm moves to
picks up object basket and drops off
object

Figure 2: System architecture of the TRASHBOT.

Because our team’s budget was restricted to $1000 between the four of us, we made
several cost-effective decisions regarding the system’s overall design. This includes 3D printing
the robotic arm, as well as utilizing a recycled Husky A100 and a Nvidia Jetson TX2.

3.1.1 Central Vehicle System

The Clearpath Husky A100, a mobile robot previously used by the Digsafe teams, is a
robust system developed by Clearpath Robotics. It features an integrated control and power
management system, two-wheel encoders for odometry, a user-accessible fuse panel, and various
mounting options for third-party peripherals. The control and power management system
includes a control board, a two-channel multi-mode motor driver, a field-swappable battery
system, and a CAN network for potential future expansions.
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To control the Husky A100, a computing device communicates with the robot using the
Horizon Protocol. This communication is facilitated through the USB port in the user space. The
Husky A100, as shown below in Figure 3, is a versatile and reliable mobile robot system suitable
for a wide range of applications in research, industrial settings, and beyond.

Figure 3: The Husky A100.

3.1.2 Central Computer System

For the robot’s central computer, we used the Nvidia Jetson TX2 shown in Figure 4. We
chose the TX2 because it has ample processing power and pins for our diverse applications.

Additionally, its compatibility with Ubuntu 18.04 and ROS Melodic further aligns with our
system requirements.

Figure 4: Nvidia Jetson TX2.

The Nvidia Jetson TX2 documentation can be found in Appendices A and B. The J21
connector in Appendix A refers to the pinout section of the TX2. The pins are used to control
multiple systems including the arm, limit switches, and the IMU. The J17 connector in APpendix
B refers to the serial UART connection interface. Serial devices such as the chassis, camera, and
GPS module connect to a USB hub which connects to the serial USB port of the TX2.
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3.1.3 ROS Architecture

ROS, or Robot Operating System, is an open-source framework for developing robotic
software. It provides a set of libraries and tools that help developers create complex and robust
robot applications. ROS is not an actual operating system but rather a middleware layer that runs
on top of a traditional operating system (such as Linux) and provides services like hardware
abstraction, device drivers, communication between processes, and package management. It is
designed to be distributed and modular, allowing developers to create individual software
components called nodes that communicate with each other over a network. This modular
approach makes it easier to develop, test, and maintain complex robotic systems.

In terms of our project, the NVIDIA Jetson TX2 requires ROS Melodic and Ubuntu
18.04 primarily for compatibility reasons. ROS Melodic is one of the officially supported
versions of ROS for Ubuntu 18.04, so utilizing this release of ROS ensures stronger support for
Python 3, updated versions of core libraries, and improvements to the build system. Additionally,
the Jetson TX2 is designed to perform optimally with Ubuntu 18.04 due to its driver and
software compatibility. Both ROS Melodic and Ubuntu 18.04 are Long-Term Support (LTS)
versions, ensuring a stable and supported development environment. Furthermore, both ROS
Melodic and Ubuntu 18.04 have large and active online communities, which can be beneficial
for finding tutorials and sharing knowledge with other developers using similar setups. Overall,
using ROS Melodic and Ubuntu 18.04 with the NVIDIA Jetson TX2 provides a reliable
environment for developing robotic applications.

3.2 Robotic Arm Design

According to the system architecture discussed in section 3.1, the robotic arm’s core
functionalities include:
e Moving its end effector to a given point
e Gripping the object located at said point
e Releasing the object at a specified drop point

These actions were achieved by designing and 3D printing several iterations of the
system, wiring its actuators to the Jetson TX2, and calculating the arm’s inverse kinematics.

3.2.1 CAD Design

To save time and additional expenses, our team decided to develop the project’s robotic
arm based on smaller scale open-source CAD (Computer-Aided Design) designs online. We
determined the arm should have 4 DOF (Degrees of Freedom); including 5 DOF would add
unnecessary weight and redundancy, but only incorporating 3 DOF would not allow the arm to
reach pieces of garbage in different orientations. We also decided to include limit switches so the
arm could “home” itself before it retrieves an object. With these requirements in mind, we
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identified a CAD design shown below in Figure 5. With its associated Youtube video detailing its
development process, we were able to locate its initial Fusion 360 files and modify them
accordingly (3D Printed 6DoF Arduino Robot Arm, 2019).

Figure 5: Reference CAD design (3D Printed 6DoF Arduino Robot Arm, 2019).

Considering that the arm would be resting on the Husky, its links needed to be long
enough so the end effector could reach the garbage on the ground in front of the robot. This
involved scaling the reference design by approximately 250%. Due to this drastic size difference,
it was necessary to modify several areas of the arm in order to complete our initial CAD design.
We split the design into four sections: Base, Link 2, Link 3, and Gripper. The table shown in
Appendix C compares the sections from the reference CAD to the sections from our initial
design. It also discusses the modifications made and the reasoning behind them.

The robotic arm’s final CAD design is shown below in Figure 6. In order to collaborate
more fluidly, our team switched from editing our CAD design in Fusion 360 to Onshape. The
table shown in Appendix D compares the sections from the initial CAD to the sections from our
final design. It also discusses the modifications made and the reasoning behind them.
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Figure 6: The final CAD design for the robotic arm.

3.2.2 Material Choices

To stay within our team budget, we completely 3D printed the robotic arm to create a
light and cost-effective design. All of the linkages and pulleys were initially printed with generic
PLA filament, but we reprinted them with Bambu PLA Tough filament. We made this decision
because PLA Tough is more likely to deform under stress, rather than crack/break like generic
PLA. The arm’s gripper is mostly printed from Bambu PLA Tough, but some of its pieces were
replaced with Bambu PA6-CF. This ensured that the gripper would not break if the arm
experienced failures and made an impact on the ground. Lastly, we concluded that instead of
buying several iterations of gearbelts, we could save money and time by 3D printing them. Most
of them were printed with TPU filament, as it provides flexibility and high shore hardness. The
torque required to control the second joint of the arm is much higher compared to the other
joints, so we 3D printed its gear belt with a combination of TPU and PETG filament. As
illustrated below in Figure X, the flexible TPU was used for the teeth, and the spine was
constructed out of PETG to maintain its shape under stress.

Figure X: Gearbelt for the robotic arm’s second joint.
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3.2.3 Electrical Design

Motors and Motor Drivers

For the robotic arm system, we used a multitude of stepper motors. We chose the
NEMA-17 stepper size because it is extremely common and sites like Stepper Online had several
motors of this size with varying features. The motors and their gearboxes were chosen based on
static analyses discussed in section 4.1.1. The data sheets for each of these motors can be seen in
Appendix E. The motor specifications for the robotic arm’s joints are as follows:

Joint 1: 48 mm motor without a gearbox
Joint 2: 60 mm motor with a gearbox
Joint 3: 38 mm motor with a gearbox
Joint 4: 48 mm motor without a gearbox

We chose to use the DM542T stepper drivers to control the motors. The DM542T drivers
provided a smooth signal to the steppers without microstepping. We chose not to micro-step as it
could potentially reduce our motor output torque. Unfortunately, these drivers require 5V logic,
but the Jetson TX2 only requires 3.3V logic. In order to address this, we needed to convert the
logic voltage from the drivers to a tolerable logic voltage for the Jetson TX2.

Logic Voltage Conversion Solutions

We pursued several solutions to the differing logic voltage problem, including utilizing
bi-directional level shifter boards by Adafruit. Then, we attempted to create our own
unidirectional level shifters to increase the voltage of our system. One of the boards and its
corresponding schematic is shown below in Figures 7 and 8.

FiHR s i sd [T 1 1 R s I Ll H TR DAL
Figure 7: Unidirectional level shifter board.
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| Stepper Driver Pin
( (ENA, DIR, or PUL)

Jetson 3.3V Pin

Figure 8: Unidirectional level shifter schematic.

The final circuit we designed consisted of a transistor that allowed us to enable and
disable a 5V circuit for each of the inputs to the driver. The transistor was placed in between the
negative connection of each input and the ground. This allowed us to deactivate the circuit by
cutting off the ground when the base pin of the transistor was low. The base pin was engaged and
disengaged by the 3.3V logic from the TX2. The schematic is shown below in Figure 9.
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Figure 9: Transistor circuit schematic.
Gripper Circuitry

The gripper utilizes a 28BYJ-48 stepper motor and a ULN2003 driver shown below in
Figure 10. The driver is controlled by an ESP32 board, connected to the Jetson through serial.
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Figure 10: 28BYJ-48 stepper motor and ULN2003 driver.

We chose the 28BYJ-48 because of its small form factor, which allowed us to place it
directly on the gripper mechanism. Because the driver was meant to be used with the Arduino
Stepper library, it was difficult to wire it directly to the Jetson TX2. We chose to mitigate this
problem by including an ESP32 board. We determined that the ESP32 could function in this
system because the motion of the gripper requires little computational power. Once we
connected the ESP32 to the USB hub on the Jetson TX2, we could communicate between the
processors and actuate the gripper.

Electrical Schematic

Figure 11 below is an electrical schematic of the robotic arm. It includes the connections
between the Jetson TX2, the joint limit switches, the joint stepper motors, and the joint stepper
motor drivers. The full page view of this schematic is shown in Appendix F.
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Figure 11: Electrical schematic of the robotic arm.
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Motor Control Software

To control the motors, we developed a Python stepper motor library. By default, the
library assumes a Counter Clockwise (CCW) positive pulse increment. However, users have the
option to invert the motor direction, considering Clockwise (CW) as the positive pulse
increment. This feature was implemented to accommodate situations where certain twists were
defined opposite to the axis of rotation of a motor. This inversion allowed for alignment with
twists and preferred joint axis configurations.

Moreover, our library incorporated considerations for the minimum pulse width
necessary to set direction, movement steps, and enable motors as required by our stepper drivers.
To control the GPIO pins on the Nvidia Jetson TX2, we utilized the Jetson.GPIO library.
However, it is important to note that specific UDEV rules must be configured to allow all users
to read and write to the memory-mapped devices when using this library.

Finally, we employed the following equation to map angles to pulses, taking into account
the gear reductions for each joint:

pulse count = round((® / step angle) * gear reduction)

This mapping ensured accurate and precise movement control of the robotic arm. We rounded
the value since we could only have a discrete number of steps.

3.2.4 Robotic Arm Inverse Kinematics

In order to control the arm’s movement based on a given point, we calculated its inverse
kinematics. Before completing this, it was necessary to find the transformation matrix from the
camera frame to the reference frame on the robotic arm. It was also key to include the additional
height difference created by the Husky in the translation portion of the matrix. This
transformation is visually demonstrated in Figure 12.

Figure 12: The camera frame and the reference frame on the robotic arm.
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The camera transformation matrix is as follows:
np.array([[ ©,-0.4667, ©.9135, ©.122497],

[-1, o, e, 9.032445],
[ ©,-0.9135,-0.4067, ©.416466],
[ o, o, e, 11D

Initial Solution

Our team initially decided to calculate the arm’s inverse kinematics using the
Newton-Raphson method. We solved for the home configuration and the joint twists shown
below in Figure 13. We intended to use functions derived from a code library accompanying the
textbook Modern Robotics: Mechanics, Planning, and Control (Lynch & Park, 2017).
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Figure 13: Joint twists and home configuration of the robotic arm.

Unfortunately, we could not use the IKinSpace() function from the code library because it
needed the desired orientation of the end effector as an input. Because we only had the desired
position of the end effector, we decided to solve the inverse kinematics with a different approach.

Successful Solution

Upon further exploration on different approaches to solve inverse kinematics, we
discovered that the geometric decoupling method is the most successful for our project. By
separating the problem into smaller sub-problems, geometric decoupling allowed us to efficiently
compute the joint angles needed to reach the desired end effector position. Since joint 4 controls
the rotation of the gripper, it relates to the orientation of the detected object. Therefore, we only
calculated angles 01, 62, 83 for their respective joints based on the object’s position. The
procedure of this solution is addressed below.
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1) Set the arm to its home configuration. Assign labels to the joints and their c
links, as shown in Figure 14.
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Figure 14: Home configuration and joint label of the robotic arm.

2) Calculate 01:
Joint 1 is calculated using atan2 using the following equations:

r = (xc2 + ycz)

cos(®1) = == = D

81 = atan2(+ /1 — D°, D)

orresponding

It returns a positive angle and a negative angle with the same absolute value. We
determine which value is correct based on the detected object’s Y coordinate: if yc < 0, then

01 is positive; otherwise, 01 is negative.
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3) Calculate 62:

Figure 15: Joint 2 illustration.

As shown in Figure 15 above, joint 2 is calculated using the Law of Cosines and the
following equations:

— Llx
c—dl)

a = tan(;

a = L2

b =\ — L)+ Zc — d1)°

¢ = 30} + (132)°

2 2 2
= arccos atb —c Law of Cosines
2ab

If Zc is below Z0, Z¢c — d1 will return a negative value.

4) Calculate 63:

Figure 16: Joint 3 illustration.
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As shown in Figure 16 above, joint 3 is calculated using atan2, the Law of Cosines, and
the following equations:

2 2 2
Yy = arccos(a?#_c) [Law of Cosines]

¢ = atan2(L3x, L3z)
03 =mt—vy— ¢

After we successfully calculated the joint angles needed to reach a given point, we
utilized the JointTrajectory() function from the Modern Robotics package. This function allowed
us to set the number of points in the discrete representation of the trajectory, as well as the time
scaling method. JointTrajectory() successfully returned a trajectory as an N x n matrix, where
each row is an n-vector of joint variables at an instant in time.

3.3 Visualization & Object Detection

In this section, we discuss how we've incorporated advanced visualization and object
detection methods into our project. By using the YOLOvV5 model with a depth camera, we are
able to accurately detect objects and extract their 3D coordinates. The depth camera we selected
utilizes Stereo Vision technology, which offers improved performance in various lighting
conditions, and is not affected by the sunlight when performing outdoors. The integration of
these technologies supports our goal to develop a system that can handle complex tasks in
changing environments.

3.3.1 Choice of Camera

Consumer-grade depth cameras have found widespread use in robotics, unmanned
vehicles, and deep-learning-based intelligent systems. Originally developed for home
entertainment and gaming, cameras like Microsoft's Kinect V1 have become popular in robotics
and computer vision due to their lightweight design, affordability, high frame rates, and
reasonable resolution (Heinemann et al., 2022). While the original Kinect (2010) used structured
light (SL) technology, other technologies like Time-of-Flight (ToF) and stereo vision (SV) have
become prevalent in-depth camera systems.

ToF cameras emit pulses of infrared light and measure the time it takes for the light to
return from the target to the sensor to estimate depth. This technology is used in cameras like
Microsoft's Azure Kinect and Kinect V2. The uncertainty of depth measurements typically scales
linearly for ToF, providing better measurements for longer ranges (Heinemann et al., 2022). On
the other hand, SL cameras, first introduced in the first generation of Kinect, emit an irregular
pattern of infrared light, with depth information calculated from the distortion of this projected
pattern. SV technology, which uses triangulation to determine depth from two images captured
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from different viewpoints, is also popular. Active SV systems project an additional infrared
pattern on the scene to create artificial features for depth calculation (Heinemann et al., 2022).
While SL and ToF technologies struggle under direct light and are thus not reliable in outdoor
environments, SV systems are known for their higher reliability under varying conditions in
robotics and computer vision applications, despite only sometimes being as precise as SL.

For our project, which required a camera robust and adaptive to varying light conditions
for outdoor use, we chose to focus on systems with Stereo Vision. Heinemann's research
indicated that the Intel RealSense D455 had the best performance and documentation, with the
Intel RealSense D435 being the second-best option and the Oak-D Pro as the fourth-best option.
Our team sought to balance our priorities between documentation and performance. Therefore,
our main contenders were the Oak-D S2, Oak-D Pro, and the Intel RealSense D435f.

We also conducted an additional comparison between the Oak-D Pro and the RealSense
D435 provided by Luxonis. Figure 17 shows the reference image used for comparison, while
Figures 18 and 19 show the performance using inactive laser dot projection (infrared light) and
active laser dot projection (infrared light). We found the output of both cameras satisfactory;
however, once again, the documentation of the RealSense cameras stood out as superior.

Figure 17: Reference image for comparing Intel RealSense D435i and the Oak-D Pro
(RealSenseTM Comparison, 2023).
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RealSense D435i OAK-D Pro

Figure 18: Laser dot projector disabled: Passive Stereo (RealSenseTM Comparison, 2023).

RealSense D435i OAK-D Pro

e e R « s

Figure 19: Laser dot projector enabled: Active Stereo (RealSenseTM Comparison, 2023).

As a result, we chose the Intel Realsense 435f, shown in Figure 20, which incorporates a 750nm
near-infrared filter for simple out-of-the-box integration.

Figure 20: Intel RealSense D435f.
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3.3.2 YOLO Training & Data Collection — Generalize YOLO

Figure 21: Custom dataset collected for training YOLO.

To train our deep learning model, YOLO, we gathered a custom dataset specifically
tailored to our needs (Figure 21). YOLO, which stands for "You Only Look Once," is a
state-of-the-art object detection system that extracts contextual information from images to
precisely locate objects within them. To ensure our model's generalization capability, we focused
on collecting images of aluminum cans in various orientations and placed on different surfaces.
We omitted plastic transparent PET bottles since YOLO had difficulty locating the images in the
scene. Initially, we captured images using our smartphones. However, recognizing the
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importance of training our model with images taken from the robot's mounted camera height, we
switched to using images captured from this perspective. This adjustment aimed to account for
any distortions introduced by the camera lens, ensuring the model would be more accurate in
real-world scenarios. Our dataset was divided into two subsets: 80% for training the model and
20% for testing its performance. This division allows us to evaluate how well the model
generalizes to unseen data, helping us gauge its effectiveness and reliability in practical
applications.

3.3.3 Object Detection

Because we developed our system within the ROS environment, we utilized a ROS
wrapper for Intel RealSense devices. The realsense2-camera ROS package was used to manage
camera streams and to extract depth information efficiently.

While testing the Intel RealSense SDK on our laptop, we noticed that the depth frame and
the RGB color frame did not match; the camera had a larger FOV(field of view) on its depth
frame than the color frame. This is because the 2D color picture is generated through a separate
RGB module, and it is using two stereo visions to calculate the depth frame. In order to ensure
that each pixel in the color image corresponds to a direct depth point, we needed to align the
depth image to the color image by mapping the depth to the smaller color FOC size. The exact
overlay of the depth on color images is essential for getting the accurate distance between the
detected object and the camera. We used realsense2-camera ROS package to align depth images
to rgb images and publish the aligned depth frame to the rostopic
“/camera/camera/aligned depth to color/image raw”. Furthermore, we generated a point cloud
database on the aligned depth image, which enabled us to complete future point cloud
processing.

Once we received a stable stream of ROS images through the depth camera, it was
necessary to perform object detection through the YOLO v5 algorithm. For our purposes, the
following software dependencies needed to be addressed:

e Framework Requirements: YOLO v5 requires PyTorch and Torchvision for its operation.
Based on the limitations imposed by our current JetPack version, the most advanced
compatible versions are PyTorch 1.8.0 and Torchvision 0.9.0. Due to the limitation of
PyTorch and Torchvision versions, we chose the release version v5.0 of YOLO v5.

e Python Version Compatibility: Our system initially had Python 3.7 installed; however, the
v5.0 release version of YOLO v5 runs most stable on Python 3.6. To resolve this, we
utilized a Conda environment that allows the installation of the required Python version
without affecting the system-wide installation.
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In order to combine YOLO v5 with the ROS environment, we utilized a package called
ROS-CV _bridge to convert between ROS image messages and OpenCV image messages. This
conversion enabled the application of the YOLO v5 algorithm for image processing and object
detection.

Using the YOLO v5 algorithm, a bounding box was placed around each detected target
object in the image. From this, the X and Y coordinates of the center of the bounding box were
extracted, representing the central point of the object within the image frame. Once we extracted
the 2D coordinate of the object in the image frame, we proceeded to use camera intrinsic
parameters to map the 2D coordinates to the 3D coordinates based on the camera's coordinate
frame.

3.3.4 Coordinate Extraction

Using the depth data and the (x, y) coordinates from the image frame, we calculated the
3D coordinates of the object in the camera coordinate system. This transformation relies on the
camera's intrinsic parameters, which include the focal lengths (fx, fy) and the optical center
(cx, cy) of the camera.

Z = depthdata

_ (x—cx)xZ
X = T

_ -oyxz
Y fy

The equations above project 2D image points onto 3D space based on the recorded depth
and the intrinsic parameters of the camera. Once we retrieved the 3D coordinate of the detected
object, we published it as a PoseStamped message data through ROS publisher. This allowed for
the further usage of the position data in the inverse kinematics calculation and enabled the future
addition of orientation data of the detected object.

3.3.5 RANSAC Point Cloud Processing

For our orientation calculation of this project, we utilized the RANSAC (random sample
consensus) method to perform a cylinder fit for the camera’s point cloud data. However, due to
limitations in the current segmentation method, which lacks robustness and responsiveness, we
didn’t include RANSAC in our final iteration. That being said, extracting the object’s orientation
remains a significant area of interest for potential future teams to enhance or redevelop our initial
attempts with RANSAC segmentation. The progress we made regarding this method is discussed
below.
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To reduce computational load and enhance the effectiveness of the segmentation process,
we implemented a filter based on the distance between the point and the XYZ coordinate of the
detected object. We only kept the points that were within a 20 cm radius from the detected
object’s XYZ coordinates. Then, we computed the surface normals for each point in the filtered
point cloud, which were used in the subsequent plane and cylindrical segmentation process.
Utilizing the RANSAC algorithm, a plane model—the floor and ground—was identified and
segmented. The inliers represented the planar surface, while the points that did not belong to the
plane were set as outliers. In our case, we wanted to perform a further cylindrical segmentation
for the outliers to retrieve the orientation of the detected aluminum can.

The result of the cylindrical segmentation returned a XYZ coordinate of a point on the
centerline of the cylinder, and a direction vector along the centerline of the cylinder in the
camera frame. Since the orientation aspect of the detected object is only associated with the
turning angle of the gripper, we only needed to retrieve the angle between the Z axis of the
camera and the direction vector. We extracted the x and z aspect of the direction vector, then
used atan2 to calculate the angle that could be used in future inverse kinematics calculations.

3.4 Husky Kinematics
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Figure 22: Differential drive kinematic model (Han, Choi, & Lee, 2008).

Our odometry was based on the odometry model for a differential drive robot. A
differential drive robot is a type of mobile robot that moves by rotating its wheels at different
speeds. This differential motion allows the robot to change its direction and move forward or
backward. The key feature of a differential drive robot is its ability to turn in place by rotating its
wheels in opposite directions. The kinematic model for a differential drive robot is illustrated
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above in Figure 22. The robot's position and orientation are described by its x and y coordinates
and its heading angle theta. Its linear velocity and angular velocity determine the robot's motion.
These velocities are related to the wheel speeds of the robot's left and right wheels.

3.4.1 Husky Modifications

Released in 2010, the Husky A100 is the predecessor of the Husky A200, making it
outdated and lacking current software packages. Consequently, we had to rely on the packages
available on Clearpath Robotics' GitHub for the Husky A200. We modified several of these
packages because the Husky A100 is incredibly different from the Husky A200. For example,
the A200 uses a form of skid steering where all four wheels are powered. Comparatively, the
A100 uses a 6-wheel drive train chassis. The inner wheels on each side of the A100 are slightly
lower than the outer wheels, causing the robot to operate more similarly to a differential drive
robot than a skid steering robot. Additionally, other than the physical size differences of the
wheels, the two Huskies have entirely different encoders and speed controllers.

To address these discrepancies , we created new packages for the Husky A100's motion.
We developed a ROS package named "motion," consisting of two nodes: "odometry" and
"kinematics." The odometry node updates the robot's state using data from the encoders and
IMU, while the kinematics node handles rotation and linear movement. Despite these changes,
challenges remained.

3.4.2 IMU

To improve our heading information, we purchased an IMU, shown in Figure 23 below.
Specifically, we opted for the 9DOF Adafruit BNOOSS5, which offers a yaw angle accuracy of
approximately 1 degree. The IMU communicates with the Jetson TX2 using I2C. We utilized a
ROS library that creates a publisher for this sensor, which allowed us to publish heading data.
The Odometry node subscribes to this topic and updates the robot’s heading information within
the limits of [-m, 0] to [0, ). The Github repository for this ROS library can be found here:

https://github.com/BytesRobotics/bno055

Figure 23: The BNOO055 9-DOF IMU.
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Connecting the IMU to the Jetson TX2
Table 1 below displays the pin connections between the IMU and the Jetson TX2.

Table 1: Connecting between IMU and Jetson TX2.

IMU Pins Their Corresponding
Jetson TX2 Pins

GND 6

3.3V 1

SCL 28

SDA 27

3.4.3 Movement Function

For the Husky’s movement function, we employed a straightforward approach known as
turn-drive. This method involves the robot first rotating in the direction of the desired point of
travel, then driving the corresponding distance to reach that point.

3.5 Navigation

Our mission was to design and construct a mobile robot that can detect, collect, and
dispose of garbage on WPI’s Quad. To navigate autonomously in an outdoor environment, we
favored using a GPS module for localization and navigation.

3.5.1 Choice of GPS Module

GPS (Global Positioning System) plays a crucial role in outdoor navigation for mobile
robots due to its ability to provide accurate and real-time location information. This information
is essential for the robot to know its position on Earth's surface, allowing it to plan its path
effectively and navigate to its destination. GPS also enables the robot to avoid obstacles and
hazardous areas by providing precise location data. Additionally, GPS data can be used to create
maps of the robot's environment, aiding in navigation and exploration tasks. Overall, GPS
enhances the robustness and efficiency of outdoor navigation for mobile robots, making it an
indispensable tool for autonomous operation in outdoor environments.

For outdoor navigation, our team decided between using the NEO-6M or the ZED-F9P.
The NEO-6M and the ZED-F9P are both GPS modules, but they differ in terms of features and
capabilities. The NEO-6M is a basic and cost-effective GPS module suitable for simple
navigation applications. It provides standard GPS functionalities, including accurate positioning
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and time information. One of its main advantages is its low cost, making it a popular choice for
applications where budget is a concern. However, the NEO-6M has limitations in terms of
accuracy and update rate compared to more advanced GPS modules. It may struggle in
environments with poor satellite visibility, such as urban canyons or dense foliage, leading to
reduced performance in such conditions. On the other hand, the ZED-F9P is a high-precision
GPS module known for its exceptional accuracy and reliability. It supports multiple satellite
systems, including GPS, GLONASS, Galileo, and BeiDou, which allows for faster and more
reliable positioning, especially in challenging environments. The ZED-FIP also offers features
such as RTK (Real-Time Kinematic) support, further enhancing its accuracy and making it
suitable for applications requiring precise positionings. However, the main drawback of the
ZED-FOP is its higher cost compared to the NEO-6M, which may be prohibitive for some
projects.

Our team favored the ZED-F9P (Figure 24) to achieve accurate positioning, but it was
not in our allotted budget. To combat this, we got creative and emailed several companies who
could potentially sponsor our project. We received a response from Sparkfun Electronics offering
to send a variety of its products, including navigation modules. As a result, our team acquired the
ZED-F9P from SparkFun Electronics without charge.

Figure 24: The ZED-F9P from Sparkfun Electronics.

3.5.2 RTK Correction

Real-time Kinematics (RTK) is a GPS technique that enhances the precision of position
data derived from satellite-based positioning systems. By comparing the signals received from
our GPS unit to that of a fixed base station, RTK corrects for factors that can degrade the GPS
signals, such as atmospheric disturbances and satellite orbit errors. This correction significantly
reduces positional errors, enabling our system to achieve an accuracy of approximately 3 cm. To
implement this high-precision positioning, we subscribed to the Massachusetts CORS
(MACORS) network. MACORS provides RTK correction data from its fixed base stations,
which is essential for achieving the enhanced accuracy needed for our application. The
difference between GPS data before and after RTK correction implementation is displayed below
in Figure 25.
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Figure 25: GPS data before (left) and after (right) the implementation of RTK correction (What is
GPS RTK?).

3.5.3 Dropped Pins

Our team used smartphones to collect GPS coordinates around the quad, marking
locations with Google Maps' dropped pins. We recorded each point's latitude and longitude,
storing them in a CSV file. The GPS points are illustrated in Figure 26 below.

wmov 99 9 9 9 QDroppedpin

Dropped!pin

Dropped pin
Dropped pin
The Quad S
Dropped pin
Dropped pin
Dropped pin Dropped pin

9 Dropped pin

Dropped pin
Dropped pin

Dropped pin

999 9 9 9 99 wbroppedpin

Figure 26: GPS points (Latitude, Longitude) around the quad for navigation.

The accuracy of dropped pins in Google Maps can vary based on several factors, such as
the strength of the device's GPS signal, the environment (e.g., urban canyons or open areas), and
the quality of the GPS receiver. Typically, under ideal conditions, dropped pins can be accurate
to within a few meters. However, in challenging environments with limited GPS visibility,
accuracy may decrease, leading to slightly less precise pin placements. Overall, dropped pins in
Google Maps offer a reliable estimation of location, though they may not always be exact,
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particularly in areas with poor GPS reception. To improve our navigation accuracy, we
supplemented our data collection with GPS module readings. Due to a lack of resources, we
updated a small number of points.

3.5.4 Algorithm Discussion

We developed a navigation algorithm that utilizes geometric formulas and triangular
proofs. The procedure of this solution is addressed below.

Set a fixed point (F) inside of the WPI Quad.
Drive the robot 1 meter directly east to reach a point (Z) with a purely longitudinal offset.
The robot determines the closest “Dropped Pin” (Y) from point (Z).
Use the Haversine formula, referenced in Appendix G, to calculate the following
distances illustrated in Figure 27:

o The fixed point (F) to the offset point (Z)

o The offset point (Z) to the desired point (Y)

o The fixed point (F) to the desired point (Y)

=

Figure 27: Initial triangular solution for the geometric algorithm.

5. These distances create a purple SSS triangle. Calculate angle A and angle C using the
Law of Cosines formula shown below:

a’=b%+c?- 2bc cosA
b?=a’+c?- 2ac cosB
c’=a’+b”- 2ab cosC A C

6. Calculate the turning angle: t = 180 (degrees) - angle C
7. The robot turns t degrees and drives straight until it reaches point (Y).
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8. The robot begins to rotate in place.
a. If the camera recognizes an object on the ground as a piece of garbage, the robot
stops rotating and navigates to the object.
b. If the camera does not recognize an object, the robot makes a complete 360
degree rotation in place.
9. (Continuation of 8b) The robot determines the desired point (E).
10. Use the Haversine formula to calculate the following distances illustrated in Figure 28:
o a: The fixed point (F) to the current point (Y)
o b: The current point (Z) to the desired point (Y)
o c¢: The fixed point (F) to the desired point (Y)

Figure 28: General triangular solution for the geometric algorithm.

11. These distances create a blue SSS triangle. Calculate angle A and angle C using the Law
of Cosines formula mentioned above.

12. Calculate the new turning angle: t = 180 (degrees) - current angle C - previous angle A

13. Repeat steps 7-12 until the camera recognizes an object as a piece of garbage or the robot
traverses every “Dropped Pin” on the Quad.

34



4. SYSTEM TESTING & VALIDATION

Testing every aspect of our designs mentioned in the previous section was fundamental to
the success of this project. This involved executing successive trials on the robotic arm to ensure
that its end effector reached a given point, testing the accuracy of the measurements retrieved
from the visualization model, and validating the robot navigation algorithms by driving the robot
around the Quad.

4.1 Robotic Arm Testing

Once our team had a complete design of the robotic arm constructed, we ran various tests
on the system to ensure that the arm can approach, grip, relocate, and drop an object at given
points. These tests include static analyses on the motors controlling the joints, electrical
assessments on level shifters, and repeatedly executing the entire system.

4.1.1 Static Analyses

In order to ensure that each motor is strong enough to control its respective link, we
performed static analyses on all four links. The first and fourth link had a fairly limited load
imposed on them, as gravity had no effect on them. Because of this, we were able to use the
basic 48mm NEMA 17’s for these links. Links 2 and 3 had much more significant loads on them
due to gravity, so we needed to perform calculations to find proper motors. Figures 29 and 30
below contain the COM of the mass on each of the two motors.
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Figure 29: COM of the mass on the motor actuating link 3.
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Figure 30: COM of the mass on the motor actuating link 2.

The calculations to determine the torque requirement and provided torque for each motor
is displayed below. The motor used for link 3 is 38mm with a gearbox and the motor used for
link 2 is 60 mm with a gearbox.

Torque Requirement Calculations for Motor Actuating Link 3:
m = 1.3581247 kg

a = 9.81m/s

r = 0.05947534 m

F = ma

T = Fr

T = 0.79240204657 N/m

Torque Provided from Motor Actuating Link 3:

T without Gear Ratios = 0.39 N/m

Ratio of Gearbox = 5.18:1

Ratio of Pulleys = 5:1

Torque with Gearing Ratios = 10.101 N/m

The torque provided from the motor actuating link 3 is approximately 12.75 times more
than the torque required to lift the arm. This proves the arm can account for its own weight as it
retrieves objects.

Torque Requirement Calcu for Motor Actuating Link 2:
m = 2.02462927 kg

a = 9.81m/s
r = 0.33903086 m
F = ma
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T = Fr
T = 6.7336997834 N/m

Torque Provided from Motor Actuating Link 2 with Gear Ratio:
T without gear ratios = 0.65N/m

Ratio of Gearbox = 5.18:1

Ratio of Pulleys = 5:1

Torque with Gearing Ratios = 16.835 N/m

The torque provided is at least 2.5 times more than the torque necessary to lift the arm.
This, again, allows the arm to account for its own weight as it retrieves objects.

4.1.2 Electrical Testing

As previously mentioned in section 3.2.3, we attempted several solutions to convert the
logic voltage from the drivers to a tolerable logic voltage for the Jetson TX2. After wiring each
of our solutions into the robotic arm’s electrical system, we repeatedly ran every joint motor to
determine whether they were receiving enough power to actuate. When we reached testing
failures, we utilized an oscilloscope to determine the voltage being received from the Jetson
TX2.

4.1.3 Inverse Kinematics Testing

To determine whether the robotic arm was able to reach a given point, we simply engaged
in iterative system testing. First, we placed a can at a random point in the robotic arm’s
workspace. The camera recognized the can and retrieved its X,Y,Z world coordinates. The
coordinates were multiplied by the transformation matrix discussed in section 3.2.6, then
inputted into the geometric decoupling method. Once the method outputted the joint angles
needed to reach this point, we commanded the motors to actuate. We performed this process
repeatedly to address slight offsets that occur during real-life use of the arm.

4.2 Visualization Testing

In this section, we focus on testing the visualization capabilities of our system to ensure
that the object detection and coordinate extraction functionalities are accurate and reliable. We
aimed to validate the integration of the YOLOvVS model with our depth camera setup, assessing
how well the system can identify and locate objects.
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4.2.1 Inference Testing Validating YOLO

We conducted inference testing to validate the performance of the YOLO model. This
involved running the trained model on a test dataset to evaluate its detection capabilities. The test
dataset 1s 20% of our collected data, so our overall confidence value can be described as the
mean value of the confidence value of all detected cans in our test dataset.

4.2.2 Accuracy Measurement of Extracted Point

To evaluate the precision and accuracy of our detection algorithm, we positioned the
target object at a fixed point and continuously ran the algorithm for 30 seconds. The precision is
described by the standard deviation of the extracted point. Then, we measured the object’s
position with a measuring tape and compared these measurements to the positions detected by
the algorithm. This process was repeated three times, and the accuracy is described by the mean
of the difference between measured value and the output of the detection and point extraction
algorithm.

4.3 Kinematic Testing

To validate our differential kinematic model implementation, we conducted three tests.
Firstly, we marked a meter in distance using painter's tape and noted the Husky's starting position
on the tape. Then, we commanded the robot to drive a specific distance and compared the actual
distance traveled to the desired distance. This test was repeated for distances of 1m, 0.5m, and
0.25m, with multiple trials conducted for each distance to ensure consistency. Secondly, we
tested the rotation capabilities of the robot. Using a protractor, we marked angles relative to the
robot's starting heading and commanded the robot to rotate to these angles. We tested angles of
/4, n/2, -n/4, -n/2, and w, running three trials for each angle to validate the accuracy of our
model in predicting rotational motion. The final test was a combination of the first and second
tests: commanding the robot to rotate and then drive a certain distance. These tests were crucial
to confirm that the Husky's encoders were accurately calculating the robot's heading and
position. We were particularly concerned about the accuracy of the encoders and conducted these
tests to ensure that our kinematic model was correctly interpreting the encoder data.

4.4 Navigation Testing

To validate our navigation algorithm, we conducted a crucial test at the Gompei statue on the
Quad. We initiated several nodes to commence navigation, including the IMU, Odometry,
Kinematics, GPS, and Navigator nodes. The Navigator node assumes responsibility for all
navigation tasks, including issuing commands to the Husky's kinematics node. It accesses the
CSV file mentioned earlier to generate a map and subscribes to the ROS topic /gps coordinate to
update the node's current position for further calculations.
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In our test, the Husky rotated to the specified angle as defined by our algorithm (refer to
section 3.5.3). We repeated this test multiple times to assess its accuracy. Our evaluation focused
on whether the Husky rotated to the correct heading and traveled the expected distance. To
ensure consistency, we started each test from a relatively similar point to determine the
trajectory.
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5. RESULTS & DISCUSSION

The results of the project’s subsystems — object visualization, robotic arm joint
trajectories, robot kinematics and robot navigation — are detailed below. The entire system in
action can be seen here: https://youtu.be/9 974heO810. The github repository can be found here:
https://github.com/terracris/trashbot.

5.1 Visualization Results

The subsection 5.1.1 includes the result for object recognition from the testing dataset as
well as our inference testing result when running the object recognition algorithm. The result for
3d position extraction compared with our measured distance are detailed in the 5.1.2 subsection.

5.1.1 Object Recognition Results

Lo F1-Confidence Curve

— can
= all classes 0.96 at 0.702

0.8

0.6

F1

0.4 1

0.2

0.0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Confidence

Figure 31: F1-Confidence curve of our trained weight.

Based on the feedback from our object recognition training, on average, the model has an
96% precision at a confidence threshold of 0.702 for all classes (see Figure 31). Furthermore, in
our evaluation of the YOLOvS5 model during inference testing, we achieved a high confidence
level of 0.90, indicating strong reliability in the model's predictions. This indicated that the
model consistently identified and classified objects with great certainty. However, we noticed
that when testing indoors, the object detection algorithm constantly detected the wheel of a cart
at a can (see Figure 32), with confidence level > 0.85. We concluded that this was because we
collected all of our training data for object detection in an outdoor environment, thus it could not
handle a complicated indoor background.
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Figure 32: Camera detects the wheel as a can.

5.1.2 Point Extraction Results

Furthermore, our point extraction algorithm was precise and accurate, with errors less

than 1 cm in all XYZ directions. However, it is important to note that since we used a measuring
tape to retrieve the distance between the detected object and the camera, there was a potential for

measurement errors to occur.

Table 2 displays the recorded values for two test positions, the X Y Z values are
measured from the base position of the robot. The test images received for positions 1 and 2 from

the camera can be seen in Figures 33 and 34, respectively.

Table 2: Point extraction X Y Z values.

Point Extraction
Result for Position 1

Measured Value
for Position 1

Point Extraction
Result for Position 2

Measured Value
for Position 2

X value 0.6184 m 0.623 m 0.5689 0.574 m
Y value -0.1031 m -0.112 m 0.2579 0251 m
Z value 0.0502 m 0.055 m 0.0523 0.055m
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Figure 33: Camera feed for test position 1.

Figure 34: Camera feed for test position 2.
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5.2 Robotic Arm Results

Ultimately, the robotic arm was able to successfully navigate to a given point, grip an
object, relocate it, and release it at a drop-off point. Figure 31 below exemplifies the operational
capabilities of the robotic arm.

Figure 35: The robotic arm in operation.

5.2.1 Motor & Workspace Results

After extensive static analyses and testing on the motors and gears belts, the arm was able
to hold its own weight when it was fully extended outward. We defined a realistic workspace for
the arm by giving each joint angular limits based on the arm’s home configuration. This was to
ensure that the arm did not collide with the GPS antenna mount or the LIDAR mount on the
Husky. The following Table 3 displays the negative and positive limit angles for each joint on the
arm.

Table 3: Joint limit angles.

Joint Number | Negative Limit Angle (Degrees) | Positive Limit Angle (Degrees)
1 -90 60

2 -10 115

3 =75 75

4 -40 90
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5.2.2 Joint Trajectory Calculation Results

The results of our inverse kinematics testing are illustrated in the following figures.
Figure 36 displays the point received from the camera in meters. This point is then transformed
using the matrix defined in section 3.2.4, resulting in the coordinates trans X, trans_y, and
trans_z in meters, which represent the position defined by the base of the robot arm.
Subsequently, these coordinates are input into our inverse kinematics solution, also outlined in
section 3.2.4, yielding the angles shown in Figure 37. To enhance clarity, the joint angles have
been converted to degrees for the figures; however, it is important to note that our trajectory
planning function requires angles to be in radians. The trajectory is shown in Figure 38. The
same process is repeated for the second test position in Figures 39, 40 and 41.

X: ©.13551392547021798 y: ©0.13290658134452954 z: 0.602

trans_x: ©.6183708933671798 trans -0.10306892547021798 trans_z: 0.05022243794177228

Figure 36: Point received from camera transformed to the robot base frame in meters.

-12.301852131242198 degre
112.35634452768454 degree
-20.366829177661145 degre

trajectory angles: [[ ©. 0.
-9.82222561 0.20299291 -0.03679652]
[-0.108735391 ©0.98049407 -0.17773411]
[-©.19248221 1.75799523 -0.31867171]
[-0.21470782 1.96098815 -0.35546823]]

-0.22543006070333863 y: 0.1511359326171 0.556

Z:
070333865 tr

585
7500

6
0.56893060162045987 trans_y: 0.2578

joint 1 : 24.38281225272502 degre
joint 2 : 111.7520687232751 ngr
joint 3 : -19.78561363323018 degre

trajectory angles: [[ ©. 8.
0.04405215 ©0.20190118 -0.03574644]
©.21278018 0.97522077 -0.17266205]
©.38150821 1.74854037 -0.30957766]
©.42556035 1.95044155 -0.3453241 ]]

Figure 41: Joint trajectory associated with testing point 2 in radians.
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5.2.3 Logic Voltage Conversion Results

As previously mentioned in section 3.2.3, we attempted several solutions to convert the
logic voltage from the drivers to a tolerable logic voltage for the Jetson TX2. While testing the
bi-directional level shifter boards by Adafruit, we noticed other channels activating randomly.
Due to this, it became incredibly difficult to consistently control the stepper motors, so the
boards were deemed as unreliable. The handmade unidirectional level shifters returned more
promising results, but they were not optimal. On occasion, the boards would create spastic
signals that led to incorrect direction switching and less smooth motion. Finally, the last solution
involving the basic transistor circuits was implemented. This approach created proper pulse
width modulation signals to consistently control our stepper drivers. The simple design of the
successful solution made it easy to understand, implement, and verify.

5.3 Kinematic Results

Using the encoders on the Husky A100 with the packages designed for the Husky A200
posed a significant challenge due to inaccuracies. While linear motion was relatively adequate
with an error of about 2-3 centimeters, rotation based on encoder values proved to be a major
challenge. The Husky A200, which features four-wheel drive (4WD), provided values through its
Joint State publisher that were not suitable for our robot's differential drive system. While testing
and validating our differential drive kinematic model, we learned that the joint state publisher did
not provide us with the most accurate information to track our rotation. As a result, we had to
purchase the BNOO055. We chose this IMU because of its simplicity and it provided us with
9-DOF. Once we added the IMU to our system, our heading had an accuracy of up to 1 degree.

5.4 Navigation Results

Our navigation algorithm exhibited inconsistencies, particularly in instances where we
expected the robot to rotate 45 degrees but it rotated 60 degrees instead. This discrepancy often
led to the robot approaching walls within the quad. Moreover, we observed that the robot tended
to travel a greater distance than calculated. We attribute these discrepancies to errors in the data
points collected using smartphones. While we collected some points near our test area using the
GPS module, we acknowledged the need to increase our tolerance for point identification.

To address these issues, we propose incorporating geofencing into our navigation
algorithm. Geofencing is a virtual perimeter for a real-world geographic area, which can be
dynamically generated or predefined. We suggest adding a parameter for geofencing to the GPS
coordinates class, specifying a fence or radial boundary for a point. This addition would require
creating a new message type for the Husky to receive coordinates to travel, as well as
dynamically setting a tolerance for available points.
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Additionally, we recognize the need for significant iteration to enhance the robustness of
our navigation. One proposed improvement is to integrate a digital compass to obtain a more
absolute heading. This would allow us to account for magnetic declination and use the bearing
angle, which is the angle between two GPS coordinates concerning true north, to determine the
required robot rotation. While our IMU includes a magnetometer, its results were not accurate
enough due to testing inside the RBE MQP Lab (UH 150), known to be a Faraday cage. We
suggest testing the magnetometer outdoors for better performance.

We encourage other teams to explore these algorithms further, particularly the SSS

triangle method and the bearing angle algorithm, to improve navigation accuracy and
consistency.
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6. RECOMMENDATIONS

Although we successfully designed and implemented a mobile robot that can detect,
collect, and dispose of garbage on WPI’s Quad, there are still several areas of development in
this project. If future teams are interested in continuing this MQP, we have compiled
recommendations regarding current and future installments of the TRASHBOT to aid them in
their engineering process.

6.1 Robotic Arm

6.1.1 HTD Belts

We recommend switching from 3D printed pulleys and belts to HTD (High Torque Drive)
pulleys and belts due to their superior strength, durability, and precision. HTD belts are made
from materials like neoprene or rubber with fiberglass reinforcement, specifically engineered to
withstand high torque and maintain durability under stress. This ensures they can handle the
demanding movements of robotic arms more effectively than 3D-printed parts, which may lack
the necessary strength. Additionallyy, HTD components are manufactured to precise
specifications, guaranteeing accurate motion transmission crucial for robotic arm precision. In
contrast, 3D-printed parts may have inconsistencies that lead to inaccuracies in movement. HTD
belts also offer superior wear resistance, maintaining consistent performance over time compared
to 3D-printed belts, which may wear out more quickly, especially under high loads. While 3D
printing can be cost-effective for prototyping, the long-term cost and availability of replacement
parts may be higher compared to standardized HTD components, making HTD pulleys and belts
the preferred choice for the overall functionality and reliability of a robotic arm. If further design
modifications are made to the arm, it is imperative that one prints belts to prototype, then
proceeds to purchase HTD belts and their respective pulleys.

6.1.2 Adaptive Gripper

We strongly recommend replacing the motor currently controlling the gripper with a
more powerful alternative. The end effector would be able to gain a stronger grip on objects,
which would greatly decrease the likelihood of said objects slipping out of the gripper as the arm
moves to its drop-off point.

In addition to replacing the motor on the arm’s gripper, we also recommend redesigning
the gripper entirely. The current gripper was designed to only hold cylindrical items like bottles
or cans. If future teams decide to incorporate different kinds of garbage into the collecting
system, we recommend designing or purchasing a 3-Finger Adaptive Gripper. According to
Robotiq, this gripper “is the best option for maximum versatility and flexibility. It picks up any
object of any shape” https://robotig.com/products/3-finger-adaptive-robot-gripper. The following

Figure 42 compares the current gripper to the 3-Finger Adaptive Gripper.
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Figure 42: The current gripper and a potential iteration of the future gripper.

6.1.3 Utilize an Arduino Driver

We recommend transitioning away from using the Jetson as the primary driver for the
robotic arm. While the Jetson has limited USB ports, you can expand connectivity by using USB
hubs to add additional devices. By connecting an Arduino Uno or Mega to the Jetson via USB
and utilizing it as the driver for the stepper motors, you can simplify wiring and reduce the
margin for error in your system architecture. Although we initially used the Jetson to maintain a
consistent programming language (Python), leverage ROS, and utilize Python's threading library
for concurrency, we encountered challenges with GPIO pin management onboard the Jetson,
particularly when conducting basic arm tests.

Using an Arduino for motor control allows for a form of pseudo-parallelism. This
approach involves allocating fixed time slots for each joint to advance, ensuring smooth
movement. For instance, when commanding joint 1, joint 2, and joint 3 to move simultaneously,
the system cycles through each joint, pulsing the respective stepper motor until it reaches the
desired position. Alternatively, each joint can be assigned dedicated CPU time on the Arduino,
allowing each joint to move as many pulse counts as possible within its time slot before the next
joint moves. This sequential movement mimics the scheduling of processes in operating systems,
ensuring efficient and controlled motion of the robotic arm.

6.2 Point Cloud Processing and Grasping Mechanism

For this project, we already have a basic segmentation method through RANSAC. However, it is
not very robust and constantly fails to segment out the aluminum can from the background. For
future teams, it is recommended to add adaptive thresholding techniques for the RANSAC
algorithm, or develop other point cloud processing techniques to segment out the detected object
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more efficiently especially if the future teams decided to add more trash type to collect.
Furthermore, future teams are encouraged to develop grasp detection algorithms that use the
point cloud data to analyze the optimal way to orient the gripper. This approach would enable the
robotic system to dynamically determine the most effective gripping strategy based on the shape,
size, and orientation of objects, providing a more efficient and secure grasp based on current or
potential iteration of the future gripper.

6.3 Navigation

In section 5.4, we proposed enhancing our navigation system by integrating additional
sensors. Our first recommendation is to conduct outdoor testing of the IMU's magnetometer to
ascertain if it can provide accurate azimuth magnetic compass readings. If this test yields
favorable results, there would be no need to acquire an additional sensor. However, if the test
indicates that the IMU's magnetometer is insufficient, we propose replacing the onboard IMU
with a high-precision magnetometer or digital compass. This upgrade would provide the Husky
with an absolute heading relative to magnetic north. Utilizing a database containing magnetic
declination, we can estimate or calculate the robot's heading in relation to true north. This
information enables us to use bearing angles to determine the necessary angle for the robot to
rotate to reach a specified point. Furthermore, to enhance the robustness of our algorithm, we
recommend implementing geofencing, as discussed in section 5.4. This entails conducting
multiple tests to determine an appropriate fencing radius, ensuring the algorithm's effectiveness
in various scenarios.

6.4 LiDAR

One of the many systems we wanted to implement on the robot is obstacle avoidance
with the SICK MRS1104c LiDAR. As displayed in previous figures, the LiDAR has already
been mounted on the Husky. If the robot is utilized in dynamically changing environments in the
future, some type of obstacle avoidance must be implemented. The robot needs to avoid people
and objects it encounters on its given path. A recommended method to achieve this would be
using the LiDAR to collect a point cloud that saves a map of its surroundings, and rapidly uses a
fast motion planning algorithm such as RRT* (Rapidly-exploring Random Trees) to find a path
around the obstacle.

6.5 New Chassis and Computer

We recommend any team following our work to search for a new chassis. The Husky
A100 is extremely outdated and comes with significant setbacks when implementing it in ROS.
Such setbacks include the lack of a given URDF file, incorrect kinematics based on the newer
Husky A200, and inaccurate encoders. We feel that the addition of a new chassis, whether
purchased or made, would significantly improve the overall quality of the project.
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Alongside the many setbacks of the outdated Husky A100, the Nvidia Jetson TX2 is also
unsupported and old. The TX2, although a powerful processor, only works with Nvidia Jetpack
OS 4.6.4. The Jetpack 4.6.4 OS only works with Ubuntu 18.04, meaning we can only use ROS
Melodic with the robot. Both Ubuntu 18.04 and ROS Melodic are generally unsupported, which
makes debugging difficult. This problem also contributes to the numerous problems we faced
when trying to implement newer ROS packages made for ROS Noetic or newer. As a team, we
would recommend that the TX2 be replaced with a newer Nvidia Jetson module. The newer
modules are far more powerful and reliable than the deprecated Nvidia Jetson TX2.
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APPENDIX A: J21 Connector on the Jetson

Default | Signal | o, | Signal | n e
voltage voltage
3.3V Supply 1 5.0V Supply
I2C1 SDA 33V (3|4 5.0V Supply
1I2C1SCL 33V |5 Ground
3.3V
GPIO or 1.8V 7(8| 3.3V UARTTXD
Ground 9 (10| 3.3V UART RXD
3.3V
GPIO 3.3V [11]12 or 1.8V GPIO
3.3V
GPIO or 1.8V 13|14 Ground
3.3V
GPIO 3.3V |15(|16 or 1.8V GPIO
3.3V
3.3V Supply 17(18 or 1.8V GPIO
3.3V
GPIO or 1.8V 19|20 Ground
3.3V
GPIO or 1.8V 21|22| 3.3V GPIO
3.3V 3.3V
GPIO or 1.8V 23|24 or 1.8V GPIO
Ground 25|26 Not Used
I2C0 SDA 3.3V (27|28 3.3V 12C0 SCL
3.3V
GPIO or 1.8V 29|30 Ground
3.3V
GPIO 3.3V [31|32 or 1.8V GPIO
Defautt | S19nal | pj, | Signal | poc
voltage voltage
3.3V
GPIO or 1.8V 33|34 Ground
3.3V
GPIO or 1.8V 35(36| 3.3V GPIO
3.3V
GPIO 3.3V |37|38 or 1.8V GPIO
3.3V
Ground 3940 or 1.8V GPIO
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APPENDIX B: J17 Connector on the Jetson

Default oignal | pj, | Signal oo
voltage voltage
GPIO 33V |[1]2 3.3V Supply
Not Used 3 ‘ 81'8\’
upply
CANO RX 3.3V 56 - GPIO
CANOTX 33V |7|8| 5.0V Supply
GPIO 3.3V 9 |10 Ground
12C2
Ground 1112 1.8V CLK
12C2
GPIO 3.3V |13(14| 1.8V SDA
WDT
CAN1 RX 3.3V |15(16 RESET
ouT
12C3
CAN1 TX 3.3v (17|18 1.8V CLK
Default S'gnal | p;, | Signal 5 0
voltage voltage
' 12C3
GPIO 3.3V |19|20f 1.8V DAT
Ground 21(22| 1.8V GPIO
1251
12S1 CLK 1.8V (23|24 1.8V SDOUT
1251 1251
SDIN 1.8V (25|26 1.8V LRCLK
DSPK
OUT CLK 18V |[27|28 Ground
DSPK
OUT DAT 1.8V (2930 Not Used
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APPENDIX C: Our Initial CAD Design and Modifications from
Reference Arm CAD Design

Our Initial CAD Design

Modifications from Reference
Arm CAD Design

Base

e Scaled by 250%

e Increased base tube
width for structural
integrity

Link 2

e Scaled by 250%
e Added removable center
piece to extend the link
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Link 3

Scaled by 250%
Redesigned the motor
mount to properly hold
the stepper in place
Redesigned to be able to
detach into two pieces if
adjustments needed to be
made

Redesigned the
gripper-end of the link so
a lazy susan bearing
could be attached

Gripper

Completely redesigned
gripper — original gripper
would not be strong
enough to retrieve and
relocate objects
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APPENDIX D: Our Final CAD Design and Modifications from Initial

CAD Design

Our Final CAD Design

Modifications from Initial CAD
Design

Lower Base

S

e® Redesigned base plate and
added screw holes so the arm
could be attached directly to
the Husky’s top plate

e Added limit switch position

Upper Base

e Added several supports for
the stepper motor controlling
joint 2 — stepper kept
overheating and melting the
PLA before adding supports

e Added two tensioner pulleys
to increase the number of
gearbelt teeth making contact
with the gear teeth

e Added limit switch position
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Link 2

e Added limit switch position
e Reinforced area around the

stepper motor controlling
joint 3 so no overheating
takes place

Link 3

Redesigned the motor mount
to hold a stronger motor in
place

Reinforced the connection
between the two pieces
Hollowed out the second
piece to make the arm lighter
and easier to manipulate
Added extension by the
gripper-end of the link so it
could hit the limit switch
placed on the gripper
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Gripper

Added limit switch position
Reinforced areas that
originally had thin,
perpendicular pieces
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APPENDIX E: Data Sheets for the Robotic Arm’s Joint Motors
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APPENDIX F: Electrical Schematic of the Robotic Arm
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APPENDIX G: Haversine Formula

@1, @ are the latitude of point 1 and latitude of point 2
A1, 47 are the longitude of point 1 and longitude of point 2
6) 1 —cos(0)

S
hav(f) = sin (2 5

d=2r arcsin(vfrhav(tpg — 1)+ (1 —hav(p; — @2) —hav(p; + ¢2)) - hav(Xy — }\l})

_ - +
= 2rarcsin , [sin® [ 2 + (1 - sin? 20 (2T - sin’
2f F2 cof A2 — A
=2rarcsin(\/sin'(w—2%) +cos¢,91-cost,92-31nz( 2 5 1))
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