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Abstract

This project models the behavior of steady gravity waves in the atmosphere over terrain using Long's
Equation. We examine the derivation and assumptions behind the equation and determine how its solution
depends on its parameters and the height of the terrain. We solved the equation both analytically using
perturbation methods and numerically using the finite difference method with a sponge layer to prevent

unrealistic wave reflection at the boundary.
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Executive Summary

In this project, we model the behavior of steady gravity waves in the atmosphere over terrain using Long's
Equation, examining how the characteristics of the flow depends on the values of the parameters of the
equation and the height of terrain. Long's Equation is derived from the Navier Stokes equations with the
assumption that the fluid is steady, inviscid, incompressible, and stratified and where the flow far

upstream is some fixed horizontal speed.

To get an analytic sense of how the equation behaves, the perturbation method was used, which confirms
that the solution can be approximated as a wave added to a second wave whose amplitude increases as
one moves away from the origin. A MATLAB program was then written to solve the equation
numerically. This was done using the finite difference method, and the system of equations produced was

solved by fixed point iteration using LU decomposition to solve the linear part of the equation.

To prevent the solution from “bouncing off”” the edge, a sponge layer was introduced to dampen the wave.
This sponge layer works by introducing a layer of points such that each point multiplied by a small
number is equal to the point nearer to the boundary, with the boundary itself set to zero. This gives the

equation some wiggle room, preventing reflections.



1. Introduction

Gravity waves are a phenomenon of much theoretical and practical interest. In general, gravity
waves exist whenever there is a fluid where oscillations in the fluid are countered by the restoring force of
gravity. An familiar example of gravity waves are the waves that form on the surface of the ocean, but in
this paper we instead study the internal gravity waves which form within the atmosphere, and even more

specifically, the steady (unchanging) waves which are formed as air flows over uneven terrain.

As air flows across the ground, its flow is disturbed by the terrain and streamlines bend
accordingly. If the density of the air was constant everywhere the flow would flow around smoothly, but
because the atmosphere is stratified (with the air getting less dense as you move upward) this perturbation

causes waves.

These waves are of practical importance for several reasons. Besides the immediate fact that these
waves of flow can cause weather balloons and things of that sort to bounce around (Nappo 203) these
waves increase in amplitude until they reach the tropopause, (the place where the troposphere meets the
stratosphere in the atmosphere) where the waves “break” causing turbulent effects. This turbulence causes
trouble for airplanes, and additionally it causes energy in the atmosphere to be transferred up in the
atmosphere which introduces factors that need to be taken into consideration by numerical weather

models.

In order to study this phenomenon, Long's Equation was used, a nonlinear equation which
considers the two dimensional steady-state case where the fluid is assumed to be inviscid, incompressible,
and stratified. In this paper the derivation of Long's Equation from the relevant Navier-Stokes Equations
is examined and then solutions to the equation are found using perturbation methods and the finite

difference method.



2. Background

2.1 Navier Stokes Equations

The Navier-Stokes equations are nonlinear partial differential equations that describe the flow of fluids, It
is an equation that is useful in many different fields, from meteorology to astronomy, although in certain
cases a better model can be constructed by considering the molecular nature of fluids. The nonlinearity of
these equations cause chaotic solutions which manifest themselves as turbulence, a not terribly well

understood phenomenon for which equations need to be solved numerically.

The Navier Stokes equations concem themselves with vector functions which describe the pressure,
density, and velocity of a fluid at a given point in space and time. Fairly useful to this is the idea of the
substantive derivative. Often, one wishes to consider the rate of change of some quantity not at a specific
point, but with respect to some bit of the fluid. This can be derived by having the path of some fluid
described by the function X,(t) and the quantity of that bit of fluid being fO(t). When one applies the chain

rule for multivalued functions, one gets the substantive derivative.

The first Navier Stokes equation is derived by applying this concept to Newton's Second Law of motion F
= ma. The forces acting on afluid consist of forces due to pressure and viscosity, which functions of the

various properties of the fluid, and external forces. From this, one gets:



p(g—‘;+v~v):—Vp+V-T+F

With p being density, p being pressure, v being velocity, T being the tensions in the fluid (sans pressure)
and F being external forces. Tension is a complicated tensor containing several unknowns, so for many

applications it is assumed that the fluid is Newtonian, and thus the equation is (with 11 being a constant)

p(g—‘;+v-v)=—Vp+uV2V+F

This, however, is only three equations (when you expand into the three dimensions of velocity) with five
unknowns. Another equation can be derived from conservation of mass. The amount of mass in same
volume ) changes at the rate equal to how much fluid flows in minus how much flows out, which can be

written

d fp— .
E;[ pdx= 0{) pv-ndS

Moving the derivative into the integral on the left side and applying the divergence theorem to the right,

you get:

Since the function is zero for any arbitrary shape, we can conclude:



g—€+v.(pv)=g—€+v-Vp+pVV=0

This equation can be further simplified (and give us a fifth equation) by assuming that the fluid is
incompressible. That is, the density of any particular bit of fluid is constant, so the substantive derivative

is zero. Thus

(ST v
at+vaO

Putting this into the equation we got from conservation of momentum (and then dividing by density

cannot be zero) we get the conveniently simple equation:
V-v=0

We now have enough equations to in principle be able to solve for the values of pressure, density, and

velocity in the fluid, provided that we also have the values for initial and boundary conditions.



2.2 Derivation of Long's Equation

(Based largely on class notes from Professor Humi.)
Long's equation describes stratified steady flow of inviscid incompressible fluid in the presence of

gravity.

As we have already shown from the Navier Stokes equation, (and dropping out the viscosity term) we

have the equations

V-v=0 (1)
p(aa—‘Z+(\7-V)\7)=—Vp—pg

ou
Because the flow is steady (not changng over time) we can drop the ot term, and we will also divide

both sides by p to get:
- _ -1
(v-V) V—va—g 2)

Additionally, we have the constraint that the density of the fluid does not change with respect to time either so
dp/dt is zero. But because of conservation of mass we have that Dp/Dt the substantial derivative with respect to

time is also zero, which lets us arrive at:
(v-V)p=0 (3

We now nondimensionalize these equations and break (2) into two equations for each of the components of

V (which are u and w respectively) and get:



U
Using the new units X=LXx Z=—2 u=U,u0 w=
8 N, 0 LN

o
OZ
Do

Equations 1 and 3 remain the same and equation 2 becomes

Bp(UUX+WUZ):—pX (2a)

Bo(uw,+ww,)=—*(p,+p) (2b)

NoUq u= U,

Where B=
g NoL

with p being the Boussinesq parameter which controls stratification and p

being the long wave parameter which controls dispersive effects.

In light of equation (1) we can introduce a function v such that

L .l 4
0z

o0X
Using this, equation (3) becomes J{\/,p}=0 where J{f,g}=f,9,—f,9,

This is useful because it turns out that whenever J{f,g} = 0, f can be expressed as a function of g (or vica versa)

for the following reason:

ifg=G(f),thenJ|f, g}zg—i‘g—fg—;—g—;%—fg—;:o and similarly vica versa.

The remaining two equations can be similarly transformed into:

PV VoV W)=

uzp(_\//z‘//xx_"pxsz):_pz/B_p/ﬁ

Which can be combined to get

[p(»vzwzx—wxwzzﬂz—[uZp(—wzwxxwxwxan:‘Z”—(‘———>=—




Flipping signs this becomes

Py —Pu Py P
(P Px) P

[p(WZWZX_WXWZZ)]Z+[u2p(WXWXZ_WZWXX)]X:

And deriving out:

PV VsV D WV VW 4DV VWV VW) )=

This can be broken down into a series of expressions using J by:

pz(Wszx_WXWZz)+u2px(WxWXZ_WZWxx) =
DLW o~ LW )40, (W W IEV W) =By VoD =W, P, and swapping terms

o (1,2 2.2 o0 (L, 2 2,20 4,1, ,2 2,02
pza_X{E(Wz_l‘l WX)}+an_Z{E(WZ_H Wx)}_j{Emivz_“ Wx)lp}
and

O =W W) A (W W =W W )) =

OV W gt W oW o=V o W o= W W )AL (W o Wt W W= W oW =W oW ) =
PV W =W W )P (W W =W oW ) = By cancellation

PW (W4 PV o), AW, (W= PV ), = o W+ W V)

pl= (O—&)—& together to get:

B B

and lastly that — J{ Z

5P

J{%(Wiwz\/fi'p),phpj{szﬂuz\lfxx,W}=—J{z/l3,p}

10



Because J is linear, you can move the right hand side over and combine to get:
2 1, ,2, 2,2
PV o+ W o, WIS (WA W) +21 B, p]=0

But now we take into account that p = p(y) (and thus  0,=p, W, and p =Py W, which allows us to

get:
pf{\lfzz+u2\hx,\lf}+pwj{%(wi+u2\lfi)+z/l3,\lf}=0

Pulling 1/B out of the left J and dividing both sides of the equation by p, we get:

2 P B, 2 2,2 _
JIW+u \/fxx,\lf}+B—g/{5(\I/z+u V3)+2z,¥}=0

Bp

We now let introduce the non-dimensionalized Brunt-Vaisala frequency N?(\/ )= and combine the

two J's together:
J Wt BV =N 2+ E (W2 2], ) =0

Now, because of the above proved theorem regarding J{f, g} = 0 we know that there exists some function G such

that

Vot BV - N 2+ B (w2 12y ) =G ()

To determine G, we make the assumption that XILr_nw V(x,z)=z (which means physically that “infinitely

far away” the stream is horizontal and at speed 1) which means that “at infinity”

N W)Y +E)=G W)

11



And combining those two equations, we get:
VT WXX—NZ(W)[z—w+g(\/f§+u2w§— 1)]=0 which is the Long's Equation

Frequently however, (and in this MQP in particular) it is useful to consider the slightly different equation gotten

by considering the perturbation from the steady streamn =1y —z

Using that definition the new equation
Noe=0C Mt K (N =@ N3) = N*(W) (Bn,—n)=0

where Q 2=

N*(W)B
2

2.3 Boundary conditions

We have already used to derive Long's Equation the boundary value \J/(— ,Z)=2Z . On the right hand side

this is generally balanced out by /(% ,Z)=Z even though physically this cannot be guaranteed to be the
case because Long's Equation contains no terms that dissipate energy. Because infinite domains are not
computationally doable, this is generally modeled using a finite domain, which we compensate for using sponge
layers, which shall be described in the section on numerical methods.

The standard boundary condition for Long's Equation is that over some terrain defined by the function ¢ f(x)

W(x,ef(x))=0

Which physically means that there is no wind along the ground. In principle, 0 could be replaced by any other

constant to get something with the same physical meaning, but zero is a nice number so it is generally used.

For the perturbation model, this becomes

12



nix,ef(x)=W(x,ef(x))—&f(x)=—ef(x)

However, for very small values of € (¢ << 1), we can see that it is approximated such that

n(x,0)~—&f(x)

This approximation is highly useful because it means that a rectangular domain can be used allowing for,

allowing for the various solution methods that follow.

13



3. Solutions to Long's Equation

3.1 Analytic Solution to Linear Long's Equation using Separation of

Variables

For the parameters B = 0, a = 1, the perturbation formulation of Long's Equation becomes the following

linear partial differential equation:
Vn+N°n=0

Rather than consider the complicated case of non-rectangular boundaries, we will consider merely the

simpler case where we know the f

n(0,z)=0
n(x,0)=—e&f(x)

8_’7(3' Z):O
0X

90 (x,b)=0
0z

By letting N(X,Z)=@(x)y (Z) you get the following equations and boundary conditions:

@''—Ap=0

V' +(A+N*) =0
¢(0)=0

¢'(a)=0

14



By considering the various cases that A can take on, we ultimately arrive at:

. 2
A=—w;

:Zn—l
" 2a

@,(X)=B,sin(w,x)

n

The differential equation for ¢ can be written in one of two ways:

VNP2 Y =0
V(Wi Ny =0

Which solution you get depends on whether N is bigger or smaller than W,

Let v,=yN>—w?

V,=A,cos(v,z)+B,sin(v,z) for w,<N

V,=A,cosh(v,z)+B,sin(v,z) for w,>N

Thus, if we let k be the largest n such that W,<N we get the general solution

n(x, z):i (sin(w, x)(A, cos(v,z)+B sin(v, z)))

n=1

+Y (sin(w,x)(A,cosh(v,z)+B,sinh(v,z))

An and Bn can be solved for using Fourier series, but I will not do that here because it's not so interesting.

15



We can interpret this solution as having a wavelike solution for the first “couple” frequencies and then a
Laplace-like solution for the rest of the series. Thus, the degree to which waves appear in the equation

depends on how big k is. For reasonable cases, the non-wave terms of the series can be ignored.

The simple case of asking whether waves appear at all can be solved for simply by determining whether

W, <N | Through a fairly trivial bit of algebra, this condition turns out to be the case if and only if

n
a>—— . So for instance, for N = 10"(-2), the width of the space being solved for needs to be larger

2N
than approximately 15.7 in order for waves to appear, although making the graph even larger is necessary

to get “interesting” results.

16



3.2 Perturbation Method

The perturbed Long's equation, after some algebra, becomes
Mot N+ N*N—a® (nZ+p*ng+2n,)=0

We can represent 1) as a perturbation approximation in the following way:
n=n’+a’n*+...

Plugging these two equations together, we get

no+a’n. +..+u(nl +a’n. +.)+N(n"+a’nt)—a*(n°,)+...+u(n° ) +...+2n° +...)

Moot M Mot N* NP +a% (N5 + K2 M+ N2 = (02 +142(0°)°+21°,)+...=0
From which we get two equations

Mozt Myt N*N°=0

nL,+ 1N +N>nt =27+ 12 (nd)*+2n?

For the particular case of j1 = 1, we have already solved in the previous section. Using that solution, the

second equation becomes a linear partial differential equation. The equation

d,n,+0 N +N°n,=(6,n,F +(8,n,)°+2n,

17



Can be made easier to solve by considering the simpler case for /1, having only a wave of one

particular frequency such that

ny(x,z)=cos(wx+vz)

Using this, the equation for 1; becomes

d,n,+0,.n+N°n,=(w’+v?sin*(wx+vz)+2 cos(wx +vz)

To get a particular solution for this, we do something similar to a traveling wave solution:

Try n(x,z)=f(wx+vZz) where for brevity we let WX+VvzZ=u

Thus, (W?+V)f"" +N*f=(w?+v?) sin’(u)+2cos(u)

However we note that, as we showed in the first equation, w2+ vi=N>?

N2f''+N*f=N’sin’*(u)+2cos(u)

Using maple to solve this equation, we get the particular solution:

_ 3usin(u)+N*cos®(u)+3cos(u)+N?
3N?

f(u)

Or in other words

(kx+mz)sin(kx+mz)+cos(kx+mz) +cosz(l<x+mz)+1
N? 3

ny(x,z)=

18



To get the general solution for /; we add to that the general solution to the homogeneous solution

solved for elsewhere, and then solve for the boundary conditions.

19



3.3 Numerical Solution

Although analytical analysis of the equations is of use, ultimately for more complicated forms of the
equation numerical methods are ideal. Our preliminary examinations were using the proprietary

COMSOL Multiphysics, but ultimately our own code was written up.

The code uses the finite difference method; that is, by considering a finite domain and then considering
discrete points along this domain and using finite differences between these points to create a series of

equations that approximate the perturbation formulation of Long's Equation and a bottom boundary

&
condition given by letting the terrain be equal to —( 1+ X2) 32 (for £ =0.1 or 0.25). From this, by the
approximation given earlier, we set that nix, 0):7_&; .
’ (1+x°)

As was noted earlier, the natural boundary value conditions involve infinite domains which is not
particularly amicable to numerical methods. To convert the boundary value conditions into the finite
domain, they are turned into n(-L,z)=0 n(L,z)=0 and the third boundary value condition

n(x,L)=0 for the top side. (L =25.) However, to naively use these boundary value conditions can
produce unrealistic results, first because in physical reality the equation does not go horizontal so quickly,
but also because such a boundary value condition can allow waves to reflect off the edges greatly

changing the result of the equation. To account for this, a sponge layer was used.

In a sponge layer, a gap is made between the part of the equations which satisfies Long's Equation and the
boundary such that as you move from the interior to the boundary each point is the previous point

multiplied by some number between 0 and 1 (for our program, 0.85). For the program, this layer was 20

20



points thick. The boundary itself is still set to the value of 0, but because the value of the equation at the
beginning of the sponge layer is multiplied by .85 twenty times (to get roughly 4%) which allows for the
waves to be slightly off from exactly zero at the edge. This has the effect of “dampening” any reflections

that may occur in the solution.

To solve the system of equations produced by the finite difference method, each of these equations are
formulated of the form f(x) = 0 where x is the vector of all points on the grid. The function f is broken
into a linear part J (represented in the program as a matrix) and a nonlinear part F such that J(x) + F(x) =
0. Through simple algebra, this equation becomes X =/ “'F(x) .Thus, we can see that the problem of
solving the equation turns out to be equivalent to finding a fixed point of the function J F (x)

Fortunately, fixed point iteration converges in few steps (with initial guess of x = 0).

The computation is not completely speedy however because the matrix J is fairly large, with the 501x251
grid used in the results below giving a 125751x125751 matrix. (125751 = 501 * 251.) Naively attempting

to invert J would be rather inefficient, so instead an LU decomposition is calculated before the iteration

and then is used to solve for J in each step. Because J is sparse, (specifically, each equation in the system
considers at most five points on the grid) the conjugate gradient method may have been faster, but

attempting to implement the method ran into difficulties so the idea was scrapped due to time constraints.

21



3.4 Results of Numerical Solution

LONG EQ: NX =501, NZ =251, ¢=0.10. N =1, B=10"-2), u=0.1
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LONG EQ: NX =501, NZ =251, £=0.25, N = 1, B=10"(-2), p=0.1
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Note that even though the graph appears similar, increasing the height of the terrain from 0.1 to 0.25 has

increased the amplitude of the wave significantly from 0.08 to 0.25 as can be seen by looking at the scales

of the respective graphs.
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LONG EQ: NX =501, NZ = 251, £=0.10, N = 1, B=10~(-2), p=0.3
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3.5 Conclusions

With everything analyzed, various conclusions can be made. Examining the results of the numerical
analysis, it can be seen that a change in the height of the terrain (at least in so far as the terrain is small
enough that the approximation used remains accurate) has the primary effect of increasing the amplitude
of the waves while not changing much else. Additionally, it can be see that an increase in |1 causes the
waves to spread out over the terrain. This makes sense since for the extreme case of 1 = 0, all terms
involving x drop out entirely. An increase in B, in line with the results of the perturbation analysis, causes

the waves to increase in amplitude as one moves away from the mountain (in particular upwards.)
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