MAGNEFORCE: VALIDATION OF A
MODULAR TRI-AXIAL FORCE SENSOR
FOR GAIT ANALYSIS

A Major Qualifying Project Report

Submitted By:
Brandon Lam (RBE/ME)
David Laovoravit (RBE)
Nathan Stomberg (BME)

Project Advisors:
Professor Cagdas Onal (Lead Advisor)
Professor Karen Troy (Co-Advisor)

April 27,2017

This report represents the work of one or more WPI undergraduate students submitted to the faculty as
evidence of completion of a degree requirement. WPI routinely publishes these reports on its web site
without editorial or peer review.



Acknowledgements

We would like to thank Professor Cagdas Onal and Professor Karen Troy for overseeing
and guiding us through this project. We would also like to thank Professor James Duckworth and
Joe St. Germain for their expertise and help with the circuitry of the project. We would also like
to thank Katherine Creighton and Lisa Wall for their assistance with lab materials and helping
with the procure supplies for this project. Thanks to Selim Ozel, for helping with last year’s
code, which already had a look-up table and data request. We would like to extend a special
thanks to Anand Ramakrishnan and Anany Dwivedi for their assistance in creating and

calibrating the sensors used.



Table of Contents

ACKNOWIBAGEMENTS ...ttt e bbbt I
-1 0] (o) O] 01 1=] USROS TRTOS I
LI Lo Lo o) o O TSSOSO v
LISE OF TADIES ... bbbttt b e bbbttt r e e e Vi
(€] [0 11Y: T OSSR vii
AADSTTACT ... bRttt bbbt n e IX
(@8 T o) 1 I [ (0 To [ Tod o] USSR 1
(@8 T o) ] gl = 7= Tod (o £ 11 o OSSR 4
2.1 Diabetes and the Importance of Shear FOICeS.........cccvvviiiiiiiiiie e 4
2.2 The Gait Cycle and Plantar FOICES.........ociviiiiieiice e 5
2.3 CUITENT DBVICES ....c.viieitietietieie ettt sttt b et b b et et et s b e e b e et e e s e e n e bentesbenbesbeane e 6
2.3.1 Accelerometer Based SYSIEIMS........cuciiiieieeie ettt 7
2.3.2 FOICE BaSEd SYSIEIMIS .....viiueiiiieieeie sttt sttt et e e e s beeste et e sreesreenre e 8
2.3.3 SWILCH BaSEd SYSTEIMS ...ttt bbb 9
2.3.4 V00 BASEU SYSLEMS .....eiiiiiiiieiieieie ettt ettt 10
2.3.5 MUItiple-ApProach SYSTEIMS .........coiiiiiiie e 10

2.4 Gap IN TECNNOIOGY ... .ot bbb 11
2.5 MEASUIING SNEAI FOITES ......cueiiieiieiieieite ettt ettt bbb ne s 11
2.6 Previous ProjJect ITEratiONS .........cccoiiiriiiiiiiiiii et 13
Chapter 3: PrOJECT SIFALEQY .....ooveviitiiiiiieiiieiiei ettt bbbttt nb e b eneas 14
3.1 Client Statement and Goal StatemMENT.............cooiiiiiiiiiei e 14
3.2 ODjJeCtiVes and CONSIIAINTS.........cviieieieriesiesie et sb et eneas 14
3.3 ProjJeCt APPIOACH ... .o 17
Chapter 4: DESIGN PrOCESS ......ccuiiviitiiuiiieeiieiieie sttt sttt b et b e b et e et et et nbenbesbesneeneas 18
4.1 NEEUS ANAIYSIS ...ttt e e st e e e sbe e et e e st e e e ba e nre e e e e arreereeas 18
4.1.1 Detecting Normal and Shear FOICES.........coiiiiiiiiii it 18
4.1.2 Creating @ Modular SYSIEM .........oiiiiieie e 19
4.1.3 DEVICE SATBLY.....cueiiiiieiie ettt 19

4.2 DESION AREINALIVES .....viiiie ittt et e e et e e be e sae e s beesreeereeas 19



4.2.1 3-DY-3 MOUUIE ...t s 20

4.2.2 Protrusions around the MagnetS..........cccuereiiriieiieie e 21
4.2.3 Multiple Sensors pPer IMAgNETL..........cuciriiieiee e 22

4.3 COMSOL SIMUIBLION.......iitiiiiieieiie sttt sttt esreeneeenee e 22
Chapter 5: FINAI DESIGN .....ooiiiiiiieiiieeee e bbbttt r bbb 24
5.1 EleCtrical COMPONENT.......ccuiiiiieieieitet ettt 24
5.2 Mechanical COMPONENL..........ccviiiiieie ettt e e e sreeeesneenns 27
5.3 SOftWAre COMPONENT......eciiiieeie ettt e et e sre e te e e e s teenteeneesneenrs 28
Chapter 6: MethOdOIOgY .......ccvoiiiieii et ae e nnas 31
6.1 Load Cell DESCIIPLION .....cuviiiieie ettt et nbe e sneens 31
6.2 COMSOL SIMUIBTION. .....uiitiiiiiiieieie ettt st neaneas 31
IR o] oI =T o RSSO 33
6.3.1 FOICE CalCUIALIONS ..ottt ens 33
6.3.2 NOIMaAl FOICE TESHING ....vveiiiiieiieeie ettt b et e e sreenas 33
6.3.3 SNEAr FOICE TESHING ....eeivieieiieiie ettt ettt sre et e sbeeaesreennas 34

6.4 Testing fOr MOGUIAIILY ........ccooiuiiieiicce e 35
6.5 DAtA ANAIYSIS ...ttt 36
6.5.1 NOIMAl FOICE DALA ......ocvveeieiieiieeie ettt e st sneenneeneenneeneas 36
CNAPLET 72 RESUILS ...t bbbttt sb et b e eneas 38
7.1 COMSOL RESUILS ...euveeeeeiiesieesie ettt e e esneente e e sneenneeneenneenes 38
7.2 NOIMal FOICE RESUILS ...ttt sneenns 39
7.3 SNEAI FOICE RESUITS ... .cuviieieieeie ettt te e enteenaeeneenes 40
7.4 MOQUIAITEY RESUITS ...t 42
CNAPLET 8: DISCUSSION ...ttt ettt bbb b etk bbbttt et st nbe b eneeneas 43
8.1 COMSOL IMOGEL.....c.oeviiieiircieeeeiee ettt ettt et e e e stesre e eneaneas 43
8.2 NOIMAl FOICE DalA......cueiiieiiieiieie ettt te et e sne e te e e neenteenaenneenes 43
8.3 SNEAI FOICE DALA ......cueeveeiieiieeie ettt e te e te e te et esneeste e e e s neenaeenaenneenes 44
8.4 DiSCrepanCies IN DAta.........ceciiiiiieiie ittt e bbb e enae s 45
8.5 MagneForce as a Proof-0f-COnCePL ........ccveiiiiiiiiiecec e 45
8.6 COSE ANAIYSIS. .. .eeciie ittt ettt e e et e nnae e 45
8.7 Evaluation of Project ODJECHIVES........cccuiiiieiie et 47



BL7. L SATELY ...ttt bbb bbb e b e b nreenns 47

8.7.2 SeNSOr FUNCHIONAIITY ....ovieiiiie et 47
8.7.3 ATTOrdADIIITY ..o 47
8.7.4 Galt MONITONING ...cvveeeteit ettt b et bbb 47
8.7.5 NON-INVASIVENESS .....cuieitieriieiiesieeiesieeste e te et s e e teasee st e steeseesbeenbeaseesbeesbeeseesbeenbeeneesseeneis 48
8.7.6 REIADIILY ...veevieeieie ettt a et et st e nreereens 48
Chapter 9: Recommendations and CONCIUSION ..........cceiiieiieieiie e 49
9.1 Future RECOMMENTALIONS. ......cciiieiiiete ettt bbb ane s 49
0.2 CONCIUSION. ...ttt bbb bbbt b e et e b et et nb e st s beeneanean 51
Lo 1 | (=T RSP P PRSP 53
APPENTIX A: GANTE ChaIt ... ...t esreesre e e 56
Appendix B: Magnet Protrusion CAD Model and Drawings.........cccccveveviiereeieiiene e 59
ISOMEBLIIC WIBW ...ttt bbbttt bbb bbbt et ettt b e beeneenes 59
PrOtrUSION DIAWING ..ovveivieiecie ettt ettt teete et e s raeteeseesbeebesseesraenaeeneenaeeeens 60
Protrusion EXPlOSION DIAWING .....c.ccveiieiiiieieeie sttt e e sae e sraesae e e sneeee s 61
Appendix B: 3-by-3 POSItION DIAWING .....ccveciiiiieiiiicie et 62
Appendix C: Silicone Molding INSTIUCLIONS ...........coooiiiiiiiiiiee s 63
Appendix D: FINal IMOIA DESIGN.......cciiiiiiieiieieee bbb 66
AppPendix E: COMSOL ITEIALIONS .......ccoiiiiiiiieieiesie ettt 73
Appendix F: Current COMSOL Model Parameters ...........cooeieieieneninenesisieiesese e 74
Appendix G: FOOt Area APProXIMALION ........ceiiirierierieiierii et sb e enes 76
Appendix H: Foot Pressure CalCulations............cooeiiiiiiiiiiiice s 77
Appendix I: Shear FOICe APPAIATUS.........ceiieieieieie ittt 78
Appendix J: Arduino Code for ModUIArTY TESt........ccoiiiiiiiiiice s 81
Appendix K: Code fOr JAVA GUI ......ooiiiiiie e 85
Java Code GUI display (BaCK EN) .......ccouiiiiiiiiiiiiiiisieee s 85
Java Code GUI display (Front ENG) ........ccoiiiiiiiiiiiiiiiee s 88
APPENdIX L: MATLAB COUB......ciiiieie ettt be e e e beeaneas 95
AppendiX M: OFfSet FIter COUE ........coviiii et 97
Appendix N: 3rd Iteration COMSOL Data Table.........ccccvoiiiiiiiiiiiieccie e 101



Table of Figures

Figure 1: Location of FOOt UICEIS [L0] .......coiuiieiiieiieiiiti it 2
Figure 2: System Architecture of the MagneForce DeVICE .........cccccvevveieeneeie s 3
Figure 3: Normal Gait CYCIE [17] . icveiieie ettt ns 5
Figure 4: Gait Cycle REACHION FOICES........ccueiiiiieiieiie ettt re e e nns 6
Figure 5: IDEEA Monitor and Accelerometer SENSOrs [23] ....ccovvvveiieiieieeie e 7
Figure 6: F-Scan SNOW INSEIT [26] ........coviiiieieieie i 8
Figure 7: GAITRIte Force Sensing Carpet [31].....coovoiiiriiieieieriesie st 9
Figure 8: 3-D Gait Camera SYStem [33] ......covoieiiieiiiiiieeee e 10
Figure 9: University of Auckland's Strain Gauge Specification [41] .......ccocevviiieienencieneeen 12
Figure 10: Early 3-by-3 Sensor Unit Arrangement...........cccoeeieeieiieeieeseseeseese e sre e e 20
Figure 11: Design of Protrusions Holding the Magnets ..........ccccceeeiieie e i 21
Figure 12: Sensor Arrangement CAD Model Representation ...........ccccceveevieeveiieieesesie s 22
Figure 13: Final MagneForce Module and System ArchiteCture...........ccccvveveeveiieeieese e 24
Figure 14: Schematic of Circuit Wiring (left) and Board Layout (right) in Eagle ....................... 26

Figure 15:

Unpopulated (left) and Populated (right) PCBi........ccooeieiiiiiiieiieseeie e 27

Figure 16: 3D Printed SIliCONE MOId..........ooiiiiic e 28
Figure 17: Screenshot of Java GUI IN ACHION .......ccoiiiiiiiiicieee e 30
Figure 18: Instron 5544 Uniaxial TeSting DEVICE............cuiiiiiriireic et 31
Figure 19: Simplified COMSOL Model of the Sensor Module ............ccccovveviiveieiieicceceee 32
Figure 20: Normal Force Testing (left) and FBD of Normal Force Testing (right) .........c........... 34
Figure 21: FBDs 0f Shear FOrce TESHING ......cciveiiiieiiciieie ettt sre e 35
Figure 22: Apparatus used for Shear FOrce TeSHING ........coviieiieiieiic e 35
Figure 23: 2 Modules Connected for Modularity TeStING .......ccooereriiireniiieeee e 36
Figure 24: COMSOL Model under @ 60N LA .........cccoiiiiriiiiieieseesese e 38
Figure 25: Simulated Magnetic Flux (Ecoflex 0030 Silicone) Rubber ...........ccccovieniiiiinnnnnne 38
Figure 26: Data from 1 Sensor during Normal Force Testing (Dragon Skin 30 Silicone Rubber)

....................................................................................................................................................... 39
Figure 27: Normal Force Testing Data for all 4 sensors on the module during 1 trial ................. 40
Figure 28: Shear Force Graphs in the Negative x (left) and Negative y (right) Directions. Boxes

Show when Force was Applied and REMOVE ..........cc.ooviiiiieiie e 41
Figure 29: Shear Force Data for the Negative (left) and Positive (right) x Direction .................. 41
Figure 30: Data Log of 2 Modules RUNNING 1N SEIES ........coiiiiiiiiieresiesieee e 42

***Permission is pending for the use of sourced figures***



List of Tables

Table 1: Objective Breakdown Chart ..o 15
Table 2: Project Objective Pairwise COMPAIISON .......cc.ccveiierieiieieesiesieseesie e sreesae e e essesnee e 16
Table 3: Bill of Materials for 7 Professionally Made ModUles .............ccccoveviiieieeii e, 46
Table 4: Cost Comparison of MagneForce and its COmpetitors........cccocvvvvevecceeseese e 46

Vi



Glossary

3D
ADC
CAD
Cm?
CRC
FBD
FPGA
GRFs
GUI
Hz
IDEEA
IMU
kPa
MISO
mm
MOSI
MQP
MUX

nF
OMD
Pa
PAGAS
PCB
SPI
SSH
UCT

usS
usb

Three Dimensions
Analog-to-Digital Converter
Computer Aided Design
Centimeter squared

Cyclic Redundancy Check

Free Body Diagram

Field Programmable Gate Array
Ground Reaction Forces
Graphic User Interface

Hertz

Intelligent Device for Energy Expenditure and Activity
Inertia Measurement Unit
Kilopascals (Pressure)
Master-1In, Slave-Out
Millimeter

Master-Out, Slave-In

Major Qualifying Project
Multiplexer

Newton

Nano-Farad

OptoForce 3D Force Sensor
Pascals (Pressure)

Portable and Accurate Gait Analysis System
Printed Circuit Board

Serial Peripheral Interface
Secure Shell

University of Cape Town
microtesla

United States

United States Dollars

vii



V Volts

WPI Worcester Polytechnic Institute
XOR Exclusive OR

viii



Abstract

Monitoring loading in both normal and shear directions is essential for properly treating
diabetic foot ulcers, which arise from abnormal loading on the bottoms of the feet. Current
technologies do not offer an affordable device that measures both normal and shear forces. To
address this need, a novel device was created, consisting of four magnets in silicone rubber
directly above four Hall-effect sensors. Applied forces displace the magnets and change
magnetic flux data read by the sensors, indicating the magnitude and direction of the force. The
sensor module was tested under a normal force of 200 N, and a 29.7 N force applied at 45
degrees. The z-axis data increased with normal force applied, at a rate of 4 uT/N. For shear, the
magnetic flux data for each axis trended in the same direction as the force applied on that axis.
Two modules in series achieved an update frequency of 70 Hz. Overall, this device provides a
proof-of-concept for relating displacement in magnetic fields to applied force in three

dimensions.



Chapter 1: Introduction

Diabetes is extremely prevalent in the United States, and is a disease of great concern. As
of 2014, just over 9.3% of the American population had diabetes, amounting to 29.1 million
people with this disease [1]. Diabetes is an illness that inhibits the body from using blood
glucose effectively. There are two major types of diabetes. Type 1 Diabetes, an inherited disease,
prevents the body from producing the insulin that is needed for cells to take up the blood
glucose. Type 2 Diabetes is the more common form of the disease, and is not hereditary, but is
instead acquired from lifestyle-related factors [2]. With Type 2 Diabetes, the insulin receptors on
the cells wear out, and the body no longer takes up blood glucose effectively [2].

Over time, diabetes exposes the body to high levels of blood glucose, which can have
detrimental effects on a person’s health. High blood glucose causes problems in many places
throughout the body, including the heart, brain, nerves, kidneys, and eyes [2]. One particularly
serious effect of long term Type 2 Diabetes is diabetic neuropathy, which arises from damage to
the nerves that causes patients to lose sensation in their extremities, especially their feet [3].
When experienced in the feet, the condition is known as diabetic plantar neuropathy, a harmful
effect of diabetes that can lead to ulcerations, or open sores, on the foot. In fact, about 15% of
people with diabetes end up developing foot ulcers [4] and as such the treatment of ulcers
deserves attention. Indeed, in 25% of cases, diabetic foot ulcers ultimately end in amputation of
the foot or bone removal [5]. A study by Katoulis et. al., shows that understanding the forces
acting upon the foot is necessary for treatment of foot ulcers, as well as managing pain,
preventing ulcers, and avoiding surgery [6].

In particular, shear forces on the bottom of the foot pose a significant risk of causing and
exacerbating foot ulcers in diabetes patients. Unfortunately, a proportional amount of attention
has not been given to plantar shear, with many earlier studies focusing instead on the ground
reaction forces (GRFs) through the foot. Indeed, the majority of easily accessible devices used
for the characterization of plantar forces only measure the normal forces through the foot, as
found in a 2014 review of plantar shear in diabetes patients [7]. Despite the maximum pressures
exerted by shear forces being lower in magnitude than GRFs [8], repeated exposure to shear
forces in the same area over time place patients at a high risk of plantar ulceration [9]. In that

regard, a method to observe both normal and shear forces acting on the foot is needed in order to
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evaluate, treat, and prevent diabetic ulcers.

The medical field already has devices that can measure a patient’s gait cycle, normal
forces, and even shear forces, that act upon the patient’s feet; however, these devices are either
too invasive, too bulky for a patient to carry around, too expensive for a patient to buy, or cannot
measure both normal and shear forces simultaneously. In order to monitor a patient with diabetic
neuropathy, and to understand the full range of forces on the patient’s foot, the device must be
able to measure both normal and shear forces. There is, therefore, a need for a noninvasive
device capable of both measuring shear force and normal force on the bottom of the foot.

As a result, we have developed a modular force sensing device that uses Hall Effect
sensors and magnets to relate displacements in magnetic fields to forces applied in three
dimensions. A small circuit board is populated with four Hall Effect sensors, with a magnet
suspended above each sensor in silicone rubber, which encases the whole device. The sensors are
able to determine the position of the magnet by measuring the magnetic field in three
dimensions. This allows for the normal force (the z axis, perpendicular to the surface of the
sensor) as well as the shear force (the x and y axes, on the same plane as the surface of the
sensor) to be measured when the magnet is displaced by a force. The small size of the circuit
board allows for the number of modules to be customized to the size of the shoe, covering the
areas of the foot most prone to ulcers: The bottoms of the toes, the pads of the feet, and the heels,

as seen in Figure 1 [10].

W — Bottom of
Ny toes
Pad of foot
-Heel of foot

Figure 1: Location of Foot Ulcers [10]

The sensors on the module record magnetic flux data, which changes as applied forces

displace the magnets. The data is then processed through an Arduino, after which it is sent to a



computer via the computer’s serial port. From there, the data can be post-processed using

Microsoft Excel or MATLAB as seen in Figure 2.

Force Applied = Magnets Displaced

Melexis™ Hall Effect Sensors
| 11 |1 11 |

XOR Gate

Multiplexer

Arduino MEGA

Serial Port = Excel/Java

Figure 2: System Architecture of the MagneForce Device

Overall, our modular force sensing device (referred to as MagneForce) serves as a proof-
of-concept for relating displacements in magnetic field to applied force in three dimensions. This
concept can be used in a shoe pad to measure both normal and shear forces on a patient’s foot,
the data from which can be given to a doctor to determine if the patient is at risk for a dangerous
diabetic foot ulcer, or to determine the best treatment option for managing or preventing diabetic

foot ulcers.



Chapter 2: Background

2.1 Diabetes and the Importance of Shear Forces

Diabetes is a serious disease, and exists in high prevalence in the United States, [1]. With
diabetes, the body is unable to uptake blood glucose, which is normally used as a source of fuel
for cells. Left untreated, high levels of blood glucose can lead to a wide range of detrimental
health effects over time. Present in nearly 50% of people with diabetes, nerve damage stands out
as one of the most noticeable effects of high blood glucose. This nerve damage is characterized
as diabetic neuropathy [11].

Diabetic neuropathy manifests itself through a variety of symptoms, all of which stem
from nerve damage. Of the most recognizable of these symptoms is numbness in the hands and
feet. The numbness is often accompanied by sharp pains, burning sensations, and bouts of high
sensitivity to touch. In addition, nerve damage in the feet leads to ulcerations, sores, and
infections [12], making plantar (foot) neuropathy particularly serious.

With regard to ulcerations, plantar shear plays a large role in their formation and
aggravation in diabetes patients. For one, repeated shear forces actually leads to faster
breakdown of the skin than normal forces [13]. Plantar shear also causes callouses and
hyperkeratosis (abnormal skin thickening), both of which have been found to greatly increase the
likelihood of diabetic ulcer formation [14]. In the context of diabetic neuropathy, understanding

plantar shear takes on great importance.

Since diabetic plantar neuropathy causes mobility and coordination issues that lead to an
atypical weight distribution, people with diabetic neuropathy are at a very high risk for
developing foot ulcers, because of the increased exposure to plantar shear [9]. For diabetes
patients, the importance of monitoring plantar forces is twofold. First, better understanding
plantar pressure and shear force can help to create profiles that identify individuals that are at the
greatest risk of foot ulcers [7]. Second, treatment of diabetic foot ulcers requires constant care
and attention, in order to keep pressure off of the wound [15], and understanding the forces
acting at the bottom of the foot helps with that treatment. As a result, the ability to monitor the
pressures exerted on the foot is of great importance for the management and prevention of foot
ulcers and wounds caused by diabetic neuropathy.



2.2 The Gait Cycle and Plantar Forces

Understanding the principles of human gait is essential to understanding the devices used
to monitor gait, as well as how plantar forces relate to diabetic ulcers. A typical human walking
cycle is defined by two major phases, following the motion of a foot from when it touches the
ground for one step (heel strike) until it touches the ground again for its next step. The two
phases are the stance phase (when the foot is on the ground) and the swing phase (when the foot
moves through the air), both of which occur between heel strikes of the same foot [16]. Figure 3

shows a basic diagram of the normal gait cycle.

Single Support

Heelstrike Toe off Heelstrike

Figure 3: Normal Gait Cycle [17]

Of course, as a person walks, forces are experienced throughout the bottom of the foot as
the pressure shifts with the person’s position to support his body weight. While the foot of the
average, healthy person usually experiences a center of pressure vector that distributes weight
rather evenly [18, 19], this does not hold true if a person has foot problems, plays sports, or
experiences any deviation from normal walking on a flat surface. In other words, gait varies

widely with illness and injury.

Understanding the gait cycle is also important in terms of understanding the impact of
shear forces on ulcer formation in diabetes patients. Even though the greatest maximum pressure
on the foot is exerted by normal forces, the foot actually experiences plantar shear forces twice

during the stance phase, exposing the foot surface much more frequently to shear forces than to



normal forces. This phenomenon is known as the biphasic nature of gait, which can be seen in

Figure 4.
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Figure 4: Gait Cycle Reaction Forces

In the case of patients with diabetic plantar neuropathy, abnormalities exist in the gait
cycle that cause repeated shear forces of greater magnitude than seen above, stemming from the
lack of sensation in the feet. The abnormal loading of the foot is what contributes to the
increased risk of foot ulcers. A large number of devices already exist to study plantar forces for
purposes of rehabilitation, clinical diagnosis, sports, and robotics [20]. As a result, the
examination of current technologies will provide context and reveal the needs that we can fill

with our device.

2.3 Current Devices
Gait analysis is an extremely important aspect of monitoring one’s health. Many
entrepreneurs and businesses have seen this need and have created devices in an attempt to fill

that need. The devices range from technologies that fit inside the shoe to external set ups.



2.3.1 Accelerometer Based Systems
IDEEA

The IDEEA system is a Gait analysis system developed by MiniSun to help patients with
cerebral palsy (a neuromuscular disease) as well as with sports rehabilitation [21, 22]. The device
is comprised of 5 accelerometers that are taped on the user’s thighs, ankles, and the chest. These
sensors are pretty small and are not wireless as seen in Figure 5. The device measures the
accelerations across the body and sends the data to a monitoring microcontroller that is attached
to the hip of the user. That data from the monitor is then sent to the computer where it is
processed in a program called ActView (GaitView) so that activity and gait can be analyzed. The
system was shown to have a fairly high amount of reliability when being used for rehabilitation,
[21], but unfortunately seemed to have less reliability with patients with cerebral palsy, having

specific issues with walking velocity and stride length [22].

wo> ungHy gy
! s facoes

Figure 5: IDEEA Monitor and Accelerometer Sensors [23]



2.3.2 Force Based Systems
F-Scan

The F-Scan System, seen in Figure 6, is by far one of the best systems on the market. It
uses 960 sensing elements in order to collect sensor data like pressure, force and the timing of a
gait cycle [24]. The F-Scan is useful in many different applications and industries such as;
analyzing foot function and gait abnormalities, monitoring foot disorders, evaluating athletic
footwear, and identifying areas of potential ulceration [24]. There are 3 different methods that
the F-Scan can record data in: tethered, wireless, and data-logger. These 3 modes each have their
own scanning rate and distance associated with them: the tethered mode has a scan rate of 750
Hz within a 100 foot radius, the wireless mode has a scan rate of 100 Hz within a 328 foot
radius, and the data-logger mode has a scan rate of 750 Hz, onto internal data, without a distance
limit [24]. With such a large sensor array it is able to pick up forces at many of locations that
many other systems will not be able to. Unfortunately the system lacks durability and

repeatability and often has a higher with regards to calibration, creep and hysteresis [25].

)

=

Figure 6: F-Scan Show Insert [26]

Pedar by Novel

The Pedar system, developed by Danish company Novel, is a product similar to the F-Scan
device. The Pedar system is a shoe insert that uses 85 sensor elements to detect pressures of up to 1200
kPa. The Pedar system boasts both tethered and Bluetooth capabilities, as well as local flash memory for
data logging [27]. While this device reliably measures plantar pressures, it does not measure shear forces,
and costs as much as $5000 [28].

Smart Shoes

The “Smart Shoes” system is one that measures force based on the pressure changes in



air bladders that have been built into the shoe. The pressure changes in the silicone air bladders
are converted into measurable voltages. A strength of this system is that it has over a 97%

repeatability for measuring normal forces. However, the “Smart Shoes” system does not allow
for measurements of shear force and so would not be a suitable method for diagnosing diabetic

neuropathy [29].

GAITRite

The GAITRIte system is a force sensing carpet, shown in Figure 5, for modeling the
distance of user’s stride as well as the timing between each heel strike and toe off. A drawback to
GAITRIite is that it cannot measure the user’s foot angles during the gait cycle [30]. The carpet
itself is 60 cm wide by 360 cm long [31], which is far too large to be practical for universal,
everyday use. Overall, the flaws in the GAITRIite system make it a non-ideal system for helping

with diabetic neuropathy.

GAITRite.com

Figure 7: GAITRite Force Sensing Carpet [31]

2.3.3 Switch Based Systems
PAGAS System

The PAGAS System relies on switches at the toe and heel of the foot in order to
determine the gait of the user [32]. The heel strike and toe off timings are measured when only
the respective switch is activated. When both are activated, the foot is in the stance phase, and

when neither of the switches are activated, the leg is in swing phase. The device’s primary focus



is measuring the different phases of the gait cycle, because of this device cannot determine the
forces being applied or the angles at which the heel and toe strike occur, making it insufficient

for our application.

2.3.4 Video Based Systems
3-D Gait and Run3

Running Injury Clinic’s “3-D Gait and Run®’ is a video-based motion capture device
used to track the gait cycle [33]. Using cameras, like the system in Figure 8, and specialized
software, “3-D Gait and run” measures rotation and flex of different parts of the body, such as
the ankle, knee, hip, and pelvis [33]. Because Gait and run only records information using video
data, it cannot measure the forces exerted on the feet. Operating this technology properly would

require a fair amount of expertise and cost, as well.

Figure 8: 3-D Gait Camera System [33]

2.3.5 Multiple-Approach Systems
Shoe-Integrated Wireless Sensor System

The Shoe-Integrated Wireless Sensor System includes 3 orthogonal accelerometers, 3
orthogonal gyroscopes, 4 forces sensors, 2 bi-directional bend sensors, dynamic pressure sensors,

and an electric field height sensor [34], all of which work together to collect a comprehensive
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amount of data. Using sensors inside and outside the shoe, the device provides a detailed picture
of the user’s gait cycle. The system is similar in concept to our shoe insole, incorporating many
different sensors into a single package in the shoe to measure both the gait cycle and the forces
applied. The system’s drawbacks, however, stem from its use of force sensitive resistors (or
piezoresistive force sensors) which are subject to creep, high hysteresis error, and low
repeatability for force measurements. The piezoresistive force sensors are also unable to measure

shear forces.

2.4 Gap in Technology

As discussed previously, much of the technology used in gait analysis focuses on
measuring the stride and positions of the body as it goes through the gait cycle. While this is an
important aspect of gait analysis, there are other aspects of the gait cycle that are often left out,
such as the measuring of shear forces applied during the gait cycle. More often than not, devices
only take into account the normal forces acting on the foot [35]. Yet, shear forces are important
for detecting and preventing many foot maladies, such as ulcerations, arising during diabetic
neuropathy [9]. Many of the devices that are capable of being used to measure and monitor
diabetic neuropathy are either too expensive, too large, or too invasive for a patient to use in the

comfort of his or her home easily, and none measure shear forces in a compact device.

2.5 Measuring Shear Forces

Although there are many gait monitoring devices, most of the devices fail to measure
shear forces, are expensive, or do not measure shear forces in an array. Diabetic ulcers arise
when there are high pressures inside the foot, in part due to shear forces. Patients with diabetic
plantar neuropathy are unable to feel their feet and thus do not know how much pressure they
could be applying to their feet, causing physical damage. In order to moderate and prevent the
development of ulcers in people with this ailment, the ability to measure shear force within a

person’s foot is highly important [36].

Currently, there are a limited number of ways to accurately measure shear forces.
However, the current solutions are either too expensive, or have problems with creep and
deterioration over time, needing chronic recalibration. For example, the OptoForce 3D Force
Sensor (called OMD) [37] is able to measure both force and rotation in all three dimensions, but
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each sensor costs over 900 dollars [38].

Another implemented solution is the use of strain gauges [39]. At the University of
Auckland, researchers developed a triaxial-measurement shear-test device for measuring soft
biological tissues, see Figure 9. Although effective, their device is about 25mm in size and the
strain gauges are attached to flexible steel beams, which could lose its accuracy over time due to
constant bending. Strain gauges themselves also need to be recalibrated regularly as their
stiffness increases over time [40]. For our project’s purposes, it is not ideal to have regular

recalibration, because it makes the device less user-friendly.

Figure 9: University of Auckland's Strain Gauge Specification [41]

Another solution that has been implemented is the use of strain gauge rosettes,
investigated at the University of Cape Town (UCT) [42]. While strain gauge rosettes can
measure shear force, they do not provide the resolution our project needs. As such, UCT uses the
strain gauge rosettes in four main locations instead of having them in an array. As with the
University of Auckland’s device, the rosettes use strain gauges, which require regular

recalibrations.
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2.6 Previous Project Iterations

The previous iteration of this device was made by a Major Qualifying Project (MQP)
team at Worcester Polytechnic Institute (WPI), which investigated creating a shoe pad that is
capable of measuring normal and shear forces with Hall Effect sensors. Their main objective was
to be able to “measure normal forces along the foot at as many points as possible” [43]. Their
secondary objective was to measure the “shear forces at each of the points normal force is

measured” as well as to track the foot motion in the air to determine the gait cycle.

This previous project did accomplish the primary task of detecting normal forces with the
Hall Effect sensors. Using Dragon Skin 10 silicone rubber, the project team was able to measure
the normal forces acting upon the sensors with a 5.85% hysteresis level [43]. However, their
attempt of measuring shear forces did not produce any conclusive data, and the team was “unable
to successfully relate pressure applied to the device to the magnetic fields” [43]. The team was
able to achieve an update frequency of 33 Hz with a sensor density of 1 sensor per cm?. In order
for them to test for shear and normal forces, the team also designed a calibration system.

The main area for improvement from last year’s project is the measurement of shear forces. Last
year’s team focused mainly on the measurement of normal forces and therefore did not measure
shear forces accurately. Since our project focuses on helping people with diabetic plantar
neuropathy, we will be focusing on acquiring both normal and shear force measurements.
Overall, the research on existing devices and the lessons learned from the previous project both

established the gap in technology and contributed to our design process.
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Chapter 3: Project Strategy

3.1 Client Statement and Goal Statement

The scope of this project stems from the client statement, which was made by the project
team after receiving the initial task from the advisors:

Develop and test a portable, non-invasive force-sensing array to be embedded in a shoe
pad that can reliably measure normal and shear forces on the bottom of the foot, track the
gait cycle, and transmit the information in a meaningful way for use in clinical and

robotic applications.

Using this client statement as a starting point, the project group developed a focused goal

statement to refine the scope of the project. The project goal is as follows:

Develop and test a portable, non-invasive gait-monitoring device that reliably
measures normal and shear forces on the bottom of the foot, to gather information
for use in treatment and prevention of foot ulcers resulting from diabetic

neuropathy.

The group chose to focus the scope of the device on the monitoring of diabetic foot ulcers due to
the serious nature of the disease. Additionally, there are a large number of applications for a
portable gait monitoring device that effectively measures shear; choosing to focus on the
application relating to diabetic neuropathy helped to narrow down the scope of both the research

and the design process.

3.2 Objectives and Constraints

This project is building upon progress made by a previous MQP team with the same task.
The previous group developed a pair of 3-by-3 sensor arrays in silicone rubber that reliably
measured normal forces, but did not reliably measure shear forces. Keeping the client statement
and the progress from the previous project in mind, our team developed the following objectives:
The device must have improved sensor functionality over the previous project with regard to
shear force measurements and sensor density; it must have gait monitoring capability; it must

also be non-invasive, reliable, safe, and affordable. Table 1 shows the objective breakdown.
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Table 1: Objective Breakdown Chart

Sensor Gait Non-Invasive Reliable Safe Affordable
Functionality Monitoring
Improved Sensor IMU to detect heel Low Hysteresis —_— Cost no more
urable
Density and toe strikes, foot Thin Error & High ) than $750 to
. N Materials )
position repeatability build
Reliable Normal Data
Low User
Force Measurements Wireless comparable to risk
is
other devices
Reliable Shear Force
Measurements Portable Low Material
Creep

The major area for improvement from the previous iteration of this project is the ability

to measure shear forces. Given the necessity of reliably measuring shear forces on the sole of the
foot to accurately treat diabetic plantar neuropathy, our group’s primary objective, after safety, is
to ensure that the sensor array can accurately and reliably measure shear forces. A pairwise

comparison was done to prioritize our objectives, as seen below in Table 2.
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Table 2: Project Objective Pairwise Comparison

Gait

Monitoring Invasive

Sensor Non-
Reliable | Safe | Affordable | Totals

Functionality

Sensor
_ ) 0.5
Functionality

Gait
Monitoring

Non-Invasive

Reliable

Safe

Affordable

The objectives in each of the rows above were evaluated against the objectives in each
column. A score of “1” means the objective is more important than that against which it is
compared, a score of “0.5”” means the objectives are equally important, and a score of 0 means
the objective is less important. Upon evaluation of the project objectives, safety is the most
important, followed by sensor functionality and reliability of the device. The “non-invasive”
objective ranked last because without the capacity to accurately and reliably measure the forces

on the foot, the size of the device is almost irrelevant.

A number of constraints play a part in this project as well. For one, the size of the final
product is limited by the size of the shoe that it is designed for. Additionally, the price for
development of the project must fit within the team’s budget, which is $750. Time is also a
constraint, as the team must complete all the research and development into the time frame of
one school year. Finally, the device must be safe to use above all else, ruling out solutions that

may appear easier but involve greater user risk.

16



3.3 Project Approach

Our project is divided into three major phases: research, prototyping, and testing. The
tasks planned throughout these phases were plotted in a Gantt chart (Appendix A). The first stage
of our project was dedicated to researching and understanding the problem, as well as
understanding the progress made by the previous MQP team. The second phase of our project
involved assembling and troubleshooting the circuit board used for the sensor module. This
phase involved assembling a 5V circuit for a 2-by-2 sensor array, and troubleshooting iterations
with different circuit components (i.e. multiplexer and XOR gate). The building phase also
included iterating through several versions of a mold used to encase the circuit board and
magnets in silicone rubber. The final testing phase included designing tests to validate the sensor
functionality. The tests were directed at showing the sensor module could serve as a proof-of-
concept for detecting normal and shear forces. This phase also included a brief review of the
design objectives and a cost analysis in preparation for the final presentation. The following

section describes the product design process in detail.
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Chapter 4: Design Process

Our goal was to create a portable, non-invasive force sensing device that reliably
measures normal and shear forces on the bottom of the foot, to aid in the treatment and
prevention of diabetic foot ulcers. We are aiming to address the needs brought to attention by the
previous project, while adding innovations to increase reliability and accuracy. This chapter
details the processes behind the design of the product, as well as the thoughts behind their

alternate variations.

4.1 Needs Analysis

Keeping the project objectives in mind, the key features of the shoe pad device were
considered, as a way of evaluating what type of work needs to be accomplished, and also as a
way of driving the design of the product. The three major needs discussed here are measuring

normal and shear forces, creating a modular system, and ensuring the device is safe.

4.1.1 Detecting Normal and Shear Forces

Working with the knowledge of the system created by the previous MQP group [43], it
was clear that shear forces must be prioritized as the focus of our project in order to properly
measure them. Normal force required attention as it also plays a part in correctly diagnosing foot
ulcers. The device for this project will use Hall Effect sensors to measure the displacement of a
magnetic field to detect normal and shear forces. While normal forces act perpendicular to the
bottom of the foot, shear forces act in the same plane as the bottom of the foot. When occurring
at the same time, the combination of forces are applied in the x-, y-, and z-planes. The
application of these forces to a magnet will thus cause displacements in the magnetic field in

three dimensions, which are picked up by the Hall Effect sensors.

Magnetic interference plays a large part in ensuring the sensors are able to send read the
correct data values. If one of the magnets affect the sensors that are not directly below it, then it
will interfere with the device’s ability to read multiple points of data. In order to ensure this
would not affect the device, the minimum distance of separation between sensors and magnets

needed to be determined.

The rotation of the magnet also needed to be controlled. If the magnets rotate within the
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silicone rubber, then the consistency of the data is diminished. To address this, anti-rotation
measures were taken during the design of the device. This is especially important so that the

magnet does not change angles whenever force is applied to the system.

4.1.2 Creating a Modular System

A modular design is desirable as it allows for greater flexibility in application. In order
for this modular design to be achieved, the device must take up a small area and it must have a
circuit that can support such a design.

A small module allows for many sensors to be placed in a single area. This would allow a
custom design for the array of the sensors and maximize the sensor density without having to
conform to only one size. This is extremely useful in the prototyping stage before a marketable
device has been decided upon and allows for many different applications outside of just in a shoe

pad.

An ideal circuit design allowed for all of the modules to be run in parallel as more
sensors will be reading data at once, thus increasing the frequency rate that the device send data.
Another ideal trait of this circuit is that it would not add many additional input/output lines to the
total system. This is because it would allow for the maximum number of modules to be

connected.

4.1.3 Device Safety

A safe device was designed so that it can support the weight and forces that would be
applied on the device without injuring the user or affecting the device’s ability to properly
function. In order to do this, the circuit was encased in silicone rubber to protect both the user
and the device. The best silicone would have a stiffness that allowed for the applied forces to
create a displacement in the magnets without compromising the integrity of the circuitry.

4.2 Design Alternatives

Many designs and ideas were considered during the brainstorm of our project. While they
may be an excellent ideas not all of them made it to the final design. In this section we discuss

some of the alternative designs that had been discussed over the course of the project.
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4.2.1 3-by-3 Module

Last year’s MQP team had developed a large 3-by-3 array, seen in Figure 10 (see
Appendix B for more details), which would be placed at 2 different locations of the shoe pad, the
front and the back of the foot, allowing for a total of 18 data points at any given time. These two
locations were likely prioritized to help detect the toe off as well as the heel strike phases of the

gait cycle.

This sensor array comprised of both a rigid circuit board and a piece of silicone with
magnets embedded inside. The circuit used Melexis position Hall Effect sensors
(MLX90363EDC-ABB-000-SP) in order to detect the changes in magnetic field as the user
applies forces to the silicone. The silicone would act as a cushion to help provide a more

comfortable insole for the user as well as protect the circuit underneath.

The circuit board was created using the 3.3-volt design found in the Melexis sensor
datasheet as a reference. For the 3-by-3 array the team wired all 9 sensors in parallel allowing all

of the sensors to gain the required 3.3 volts to operate.

&

Figure 10: Early 3-by-3 Sensor Unit Arrangement

The decision to decrease the array from a 3-by-3 to a 2-by-2 module was mostly guided
by the area the array would take up. Using last year’s 3-by-3 array as a reference, we noticed that
the size of the 3-by-3 circuit board did not maximize the amount of sensors that could potentially
be placed in a shoe. By decreasing to a 2-by-2 module, the size of the PCB decreased

dramatically, allowing for greater potential to at least place modules in the areas of most frequent
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ulceration [10], see Figure 1 in Chapter 1.
4.2.2 Protrusions around the magnets

As previously mentioned the rotations of the magnets was going to be an issue that
needed to be addressed. One possible solution to prevent magnet rotation is to create protrusions
around the magnet, see Figure 11 for an image of the protrusions. These acrylic protrusions
would be positioned along the centers of each face of the magnet, see Appendix B for more
details. The acrylic protrusions could have holes or porosities, allowing the magnets to “grip” the
silicone around it, and preventing the magnets from rotating within the silicone. With this design,
the magnets’ positions are not restricted, because the movement along the magnets’ axes are not
restrained. Since the material of these protrusions are made from acrylic, the structure would also
not interfere with the magnetic fields being detected by the Hall Effect sensors

Figure 11: Design of Protrusions Holding the Magnets

While testing the previous MQP’s design we found that the acrylic plates they used to
surround the magnet in one plane was enough to keep the magnet from rotating and misaligning.
The design of using a single plate is much more simplified than the using the multiple

protrusions and so was the design used in the final design of the device.
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4.2.3 Multiple Sensors per Magnet

Another design that was explored was allocating more sensors to each magnet. This
design was an attempt to detect shear forces more accurately. Magnetic fields are polar in that
they have a North and South poles. If sensors are strategically placed around the magnet on the
circuit board, then the change in x and y axes (parallel with the circuit board) can be detected
more easily. As the magnets leaned to one direction at least one of the Hall Effect sensors would
detect a larger value than the others. By comparing these values we may determine the direction

of the shear force as well as the magnitude of the force.

Some of the orientations can be seen in Figure 12. 1-4 sensors per magnet designs were
considered as well as their potential orientations. A greater sensor to magnet ratio seemed to be

superfluous and unnecessary.

Figure 12: Sensor Arrangement CAD Model Representation

Through initial testing, it was discovered that one sensor was sufficient in detecting the
changes in magnetic flux values as long as the north and south poles were perpendicular with the
surface of the sensor. This allowed for the best case scenario of having a 1-to-1 sensor to magnet

ratio, thus allowing for the greatest force measurement density possible.

4.3 COMSOL Simulation

We used COMSOL Multiphysics version 5.2 to validate our designs by simulating both
the physical and magnetic properties of the sensor assembly. By applying forces in the model,

the displacement of the magnets can be simulated, and the expected magnetic field
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measurements at the sensor locations can be recorded. In this way, the “ideal” response can be
compared to the actual response from raw testing data. A detailed description of the numerical

simulation we used for testing can be found in Chapter 6.
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Chapter 5: Final Design

Our final design is a modular 5V circuit design with a 2-by-2 array of Hall Effect sensors
on top, making use of a multiplexer and XOR gates to connect all 4 sensors to a single output.
The following sections detail the decisions made to go from the alternative designs to the final 2-
by-2 modular design. The final module, along with the system architecture, are in Figure 13

below.

Force Applied = Magnets Displaced
I | I |

Melexis™ Hall Effect Sensors
1 Il Il Il |

N N 7O 7
XOR Gate
N1 Z
Multiplexer
|
Arduino MEGA
|
Serial Port = Excel/Java

Figure 13: Final MagneForce Module and System Architecture
5.1 Electrical Component

Circuit Model

Found in the datasheet for the Melexis Hall Effect Sensors [44] are circuit designs for
using either a 3.3 V or 5 V power input. The main difference between the two circuits, besides
the input voltage, is the wiring of the capacitors. The 3.3 V circuit uses a single 100 nF capacitor
to prevent power surges. The 5V circuit recommends a 47 nF capacitor to prevent power surges

as well as a 100 nF capacitor to act as a decoupling capacitor which filters the signals.

The 5V circuit was chosen for the final design because of the advantage of decoupled
signals and because 5 V is more commonly used than 3.3V for logical operations in

microcontroller units.

Analog Multiplexer usage
An analog multiplexer (MUX) (ADG704) was added to the final design of circuit board.
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This decision was made to minimize the amount of inputs and outputs that would be required for
the device. The MUX controls which sensor the controller gathers data from. The MUX allows
us to send one signal for the slave select from the controller and then program which sensor it
will activate. This is controlled through the A1 and AO lines on the MUX. These take in a binary
command to switch from the first to the fourth sensor. These lines can be wired up with other Al
AO0 lines from other modules as they simply allow the sensor data to be cycled from one to the

other.

To increase the modularity of the circuit, the enable pin was wired to the input voltage.
When the enable pin is powered the MUX is given power, but does not send data until the slave
select pin is also given power. This allows for the same functionality without needing as many

inputs and outputs to the system.

The integration of the MUX allows the initial module to require 3 pins (A0, Al, and the
Slave Select pin) and only one additional pin, the slave select pin, for each subsequent module.
This is a big improvement from requiring 4 pins for each module, one from each additional Hall
Effect sensor.

XOR Gate

An XOR gate was necessary in order for the sensor signals to be properly read. This is
because all of the Hall Effect sensors are active LOW meaning they are turned on when their
slave select pin is not given power and turned off when they are given power, With just a MUX,
we are only able to send a logic HIGH signal to a single sensor while the other three sensors are

not given a signal. This resulted in 3 sensors being active at the same time.

An XOR gate was implemented between the sensors and the MUX to reverse the sensor
inputs that were going to the Hall Effect sensors. This is done by powering the other side of the
XOR gate so that when a positive signal is sent from the MUX it results in a LOW signal to be
sent to the desired sensor, while the others will be getting a HIGH signal. This results in only one

sensor reporting data while the others remain inactive.

Final Circuit Design
The final circuit was created using Eagle. This board is 29.8 mm in width and 39.0 mm in

length. Figure 14 shows an image of the schematic used for the wiring of the circuit as well as
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the board layout. One of the largest guiding factors in determining the size of the module was the
distance the magnets needed to be from each other in order to prevent magnetic interference.
Based on calculations made by previous groups (last year’s MQP team as well as MSc students
within WPI Soft Robotics Lab working on a similar project, Anand Ramakrishnan and Anany
Dwivedi) the magnets need a separation of at least 15 millimeters in order to avoid magnetic

interference.

The following package sizes were used for their respective components on the board: a
SOIC-8 package was used for the footprint of the Melexis sensors, a modified uSOIC-10 was
used for the MUX, a DIL14 package was used for the XOR gates and a 0805 package was used
for the capacitors. The circuit board includes a section for an 8 pin through-hole female

connector allowing for it to be more easily wired to the controller.
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Figure 14: Schematic of Circuit Wiring (left) and Board Layout (right) in Eagle

As mentioned previously the magnets must be at least 15mm from each other. This in
turn means that the Hall Effect sensors must also be at least 15mm apart from each other. This

was the main factor that contributed to the size of the circuit board.

Once the circuit board had been designed, Gerber files were created and sent to

SeeedStudio, a PCB manufacturing company, and the electrical components (Melexis Hall Effect
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sensors, MUX, XOR gates, 47 nF and 100 nF capacitors, and connector pins) were ordered from
Digikey, a distributor of electrical components. When all the components had come together they

were soldered onto the board, seen in Figure 15.
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Figure 15: Unpopulated (left) and Populated (right) PCB

5.2 Mechanical Component
In order to house the magnets needed for the device, as well as to protect the device from
external forces, Dragon Skin 30 silicone rubber is used to encase the magnets and the board. In

this section the design and molding processes are described.

Molding Process

In order to create the silicone used for the module, a mold must first be created. A 3D
printed mold was also created so that the silicone piece of the device could be molded. The
silicone requires a multi-step process in order to be properly made. The first step creates most of
the mold which includes a base as well as wells, or holes, in the silicone. Once this step is
completed, the top of the mold would be removed, the magnets would be placed inside and more
silicone would be molded on top, locking the magnet in place. The full procedure can be found

in Appendix C.

Final Mold Design
The final mold design can be seen in Figure 16 (see Appendix D for more details). It was
largely modified from the previous MQP team’s 3-by-3 mold. The spacing between the wells is
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the same as spacing required for the magnets (15mm). A magnet embedded in a 5mm square
acrylic plate will be placed inside the well before it is sealed back up with silicone during the 2nd
stage of the molding process. The mold was created so that there would be at least 6mm of
silicone between the Hall Effect sensor and the magnet. This was done to ensure that the Hall
Effect sensors would not become over saturated when force is applied to them, as they were in

previous iterations of the silicone.

Figure 16: 3D Printed Silicone Mold

5.3 Software Component
The software is the third key component to this project. The software portion is divided
into two main sections: Reading data onto the Arduino microcontroller board, and storing and

displaying data.

Arduino is used to initialize and manipulate the controller and sensors in order for them
to function properly and collect the data from the sensors as intended. Since this project is based

on last year’s project, many properties and code sections were inherited from them.

One such example is the CRC (Cyclic Redundancy Check) that was written by Selim
Ozel (a PhD student in WPI Soft Robotics Lab) and was used in last year’s code. The CRC is an
error detection code that helps prevent data corruption. CRC works by having a set number to

divide by and the remainder is used to check if the output has the same remainder upon
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calculation, which is all done in binary. A lookup table makes the check much faster and none of

the calculations have to be performed in real time.

The other section that was reused from last year’s project was the message sent and
conversion that splits the receiving data into the three different axes, Bx, By, and Bz. The

message itself follows the initialization and data query from Hall Effect datasheet [44].

Originally the code was written using a for-loop to iterate through the different slave
select pins and the sensors as a result; however, our team decided to use a state-machine instead,
switching between the states which corresponds to each sensor. This helped with our final
iteration in which we moved the slave select switching into the hardware with a MUX for each
module. Each of the four slaves routes to each of the four states. Data collection is done at this
stage of the process and are retrieved through the MISO line. This data is then filtered using a
bandpass filter as well as an offset filter. The processed data that enter the computer through the
Serial line is then parsed through one of the three options.

In one instance, the data can be retrieved from the Serial Line and be shown on the
Arduino’s Serial Monitor. This was used mainly for debugging the code and being able to see the

output stream. It’s simple; however it provides no functionalities other than displaying data.

In another case, the data can be retrieved through the Serial Port and pushed through
PUTTY. PUTTY is a terminal emulator application software that can help display and record data
as well as other things like SSH (Secure Shell) into a network, like WPI’s CCC machine. But
using this program to read the data coming in from the Serial Port with the same Baud Rate, the
data can also be stored straight into a .txt document, by logging the data. We import the data
from the .txt file into a graphing tool like Microsoft Excel or MATLAB. By graphing the logged
data, we are able to determine the trends that are not as clearly seen in a Serial Monitor display.

Finally, the data can be parsed from the Serial line into a Java GUI (Graphic User
Interface) and displayed using graphical means as seen in Figure 17. In our case, we used a

progress bar to show how the data is responding to the forces applied.
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Figure 17: Screenshot of Java GUI in Action
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Chapter 6: Methodology

The purpose of testing and calibrating the sensors was to determine the viability of the
2x2 module to serve as a proof of concept for relating displacement of embedded magnets to a
force vector applied in three dimensions. The results were analyzed qualitatively to confirm
trends in data that correlated to the direction and relative magnitude of the force applied. The
normal force data was also compared to a COMSOL simulation to confirm its accuracy.

6.1 Load Cell Description

Force testing was performed on an Instron 5544 electromechanical uniaxial testing device
equipped with a 2000 Newton (N) load cell with a linearity of 0.1% (i.e., £2 N). The Instron
allowed for a uniform distributed force to be applied to the top face of the sensor module. An

image of the testing device can be seen in Figure 18.

Figure 18: Instron 5544 Uniaxial Testing Device

6.2 COMSOL Simulation

As a means of validating our designs, we used COMSOL Multiphysics version 5.2

(Classkit License) to simulate the response of the sensor array. Using the Multiphysics model to
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simulate both the physical deformation and magnetic fields involved with the sensor array, the
“ideal” behavior of the sensors under various loads could be observed and compared to the actual
raw data collected from the sensors. In general, the model steps through different loads applied
to the magnets in the silicone rubber body, recording their physical displacement, along with the
resulting magnetic flux values at the point where the Hall Effect sensor is located. By comparing
the simulated magnetic flux values to the actual data given by the sensors, the accuracy of the

device could be confirmed during calibration.

The COMSOL model was made using the CAD tools from within the program. Because
the program slows down when the complexity of the model increases, a simplified version of our
final silicone mold was used, while retaining the proper spacing between the magnets and the
sensors. As determined by the WPI Human Augmentation Lab, the magnets were kept 15 mm
apart from each other, and suspended 6 mm above the Hall Effect sensors to help prevent data
saturation. The early iterations of the COMSOL model design can be seen in Appendix E. The
most recent model can be seen in Figure 19.

Figure 19: Simplified COMSOL Model of the Sensor Module

With the geometry of the sensor array created, physical and magnetic properties were
assigned to the model for the silicone and the neodymium magnets. The hyperelastic behavior of
the silicone was defined using a 3-parameter Ogden material model, with coefficients obtained
from Ecoflex 0030 silicone rubber. To simulate the behavior of the array under varying forces,

two studies were set up in the model. The first study used a parametric sweep to step through a
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range of specified loads, while the second study plotted magnetic flux density at each of the
same loads. A full list of material parameters and properties used in the COMSOL simulation is
located in Appendix F. For each of the following testing protocols, an identical simulation will
be run in COMSOL to provide results to compare against the raw data.

6.3 Force Testing

Different procedures were followed for normal force testing and shear force testing. The
forces for each test were determined from weight calculations based on an overweight male of
height 5°10” and a US size 10 shoe. In both cases, once the appropriate forces were applied, data
was recorded using the Arduino Mega and logged by PuTTY, a data logging software. This data

was then sent out as a text file (.txt), after which it was processed using Microsoft Excel.

6.3.1 Force Calculations

Taking the average height of a male in the US to be about 5’10 [45], the weight of an
overweight individual was determined to be about 90 kg or 883 N, based on ideal body mass
index for a male of that height [46]. The area of the bottom of a size 10 foot was estimated to be
523.75 cm?, using the bottom of a US men’s size 10 shoe as reference [47]. The details of the
foot area calculation can be found in Appendix G. Two different calculations were performed to
determine the maximum normal force and shear force to apply to the sensor module. Using the
determined body weight and foot area, the pressure on the foot due to normal force was
calculated. This pressure was multiplied by the area of the 2-by-2 sensor module to determine the
maximum normal force to apply. A safety factor was applied to account for non-even
distribution of forces under the foot. The normal force determined for testing using this method
was 200 N.

For shear forces, the max shear force was taken to be 15% of the person’s body weight
[48, 49], and assumed to cover 25% of the sole of the foot at one time. This information was then
used to find the shear pressure exerted on the foot, which was used with the area of the 2-by-2
module to calculate the maximum shear force to apply. The shear force determined for testing

using this method was 19.56 N. The maximum force calculations can be seen in Appendix H.

6.3.2 Normal Force Testing

Normal force testing was performed by applying an evenly distributed normal force on
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top of the module using the Instron 5544 Uniaxial Testing Device. This force ramped up from 0
N to 200 N at a rate of 200 N/min. Data was collected from each of the four Hall Effect sensors,
and the relationship between magnetic flux and applied force was observed. This test was
performed three times, and the data was compared to a simulation run in COMSOL. Due to
restraints on the finite element model, the COMSOL simulation was only able to runa 60 N

normal force test using a ‘coarser’ mesh. Figure 20 shows how the normal force testing was set

up.

‘ Instron: 200N Normal Force

Sensor Module

Figure 20: Normal Force Testing (left) and FBD of Normal Force Testing (right)

6.3.3 Shear Force Testing

Shear force testing was done by applying a 21 N normal force and using weights to create a 21 N
shearing force. The weights were hung over the edge of testing area so that they would be pulling
on the module in a perpendicular angle from the normal force. With the 21N normal force and
horizontal force applied simultaneously, the resultant force acting upon the sensor was 29.7 N at
a 45 degree angle. During the shear force testing, the applied force was held constant for 5
seconds. While the applied force for shear testing was greater than the maximum force calculated
in Section 5.3.1, it was the closest option given the limited amount of weights available for
testing. Figure 21 show the free body diagram and setup used for shear force testing. Near the
end of the project, arbitrary shear forces were also exerted on the sensor module to confirm the
validity of the x-axis readings, which were incorrectly recorded during one testing session. These
results are also included in the next chapter.
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21N Normal
Force

21N

Sensors shear in
this direction at
~21N

An apparatus was created to ensure that the module would only move in the desired
direction. Figure 22 shows the apparatus (see Appendix | for more details) . This was designed

so that the module can be placed in multiple orientations, allowing for testing in the positive and

21N Force from
Weights

Figure 21: FBDs of Shear Force Testing

21N

negative directions of the x and y axes. Due to difficulties with the COMSOL model becoming

unstable when simulating shear forces, no COMSOL data was available for this test.

Figure 22: Apparatus used for Shear Force Testing

6.4 Testing for Modularity

In order to test the modular design of the MagneForce circuit, 2 modules were connected
by wiring all of the input and output lines of the modules together, except for the slave select line
on the MUX. This allowed for all the data to be received from all of the different sensors, which
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would not report data unless their slave select pin was chosen. This test was run to confirm if
multiple modules could collect data in series. An image of the experimental setup is found in

Figure 23 and the Arduino code for the test can be found in Appendix J.

Figure 23: 2 Modules Connected for Modularity Testing

6.5 Data Analysis

6.5.1 Normal Force Data

Normal force data was processed first using Excel to visualize the magnetic flux data
graphically. To do this, data was parsed from Arduino into a PC through the Serial line. The data
was then collected from the Serial line using PuTTy, which then logged the data into a .txt file
upon closing. From there, the .txt file was imported to Excel. This imported data was separated
by columns using the °,” as a delimiter and separated by rows using the new line character ‘\n’
for the delimiter. Once the data was in the Excel file, a line graph was then plotted for each axis
of each sensor, plotting magnetic flux (in microtesla units) against applied normal force (in N).
The trends from the graphs were compared qualitatively to the 60 N normal force simulation
produced by the COMSOL model. A Java GUI was also developed to display the data; however,
this program had a high input lag and could not be used in real time. A description of the

program, along with the code, can be found in Appendix K.

To further confirm the accuracy of the normal force data, the data were processed using a
custom code to graph each test and run a linear regression on the data. From the linear
regression, R-squared values for both the raw data and COMSOL model were calculated. The R-

squared values were used to compare the similarity in trends between the two data sets. The
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MATLAB code used in this analysis can be found in Appendix L.

6.5.2 Shear Force Data

Shear force data was also processed using Excel. Magnetic flux was graphed against time
for the shear force tests, as only a single force was applied for a period of time. The trends in the
data were observed qualitatively to determine if the direction of the shear force applied was

represented.
6.5.3 Data Filtering

Due to the amount of noise in the system, a band pass filter is applied when data is
collected by Arduino. This filter eliminates spikes that are over 2000 pT and under -2000 pT.
These numbers are chosen because values over and under 2000 uT indicate saturation of the

sensors, and such values are unusable.

Data from the Z-axis showed irregular shifts in the value output. To remedy that, an
offset filter was applied right after the band pass filter to adjust for shifts in z-axis data, see
Appendix M. This filter offsets values that represent jumps larger in magnitude than 150 uT
(determined manually as a value unreasonably high to represent natural progression of loading)
and this reduced the effect of the jumps. This value used, however, will need to be tuned for each

module, as each set of sensors behaves differently.
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Chapter 7: Results

This section details the results of the normal force and shear force tests performed on the

final sensor module. These results include data from the 60 N COMSOL simulation, the 200 N

normal force tests, and the shear force tests with the 29.7 N force applied at a 45 degree angle.

7.1 COMSOL Results

As mentioned in the previous chapter, the COMSOL simulation was only run up to a
60 N normal force, as the model would crash at greater forces, as well as under shear loading.
While unfortunate, the latest iteration provided a sufficient trend to compare to the raw data as
well as to run a linear regression. Figure 24 shows the model under a 60 N normal force, and
Figure 25 gives the graph of simulated magnetic flux in microtesla versus applied force.

Figure 24: COMSOL Model under a 60N Load
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Figure 25: Simulated Magnetic Flux (Ecoflex 0030 Silicone) Rubber
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As seen in the graph above, magnetic flux increases from roughly 750 uT at O N to
roughly 1400 uT at 60 N of normal force. The x- and y- axes also increase to a much lesser
degree, both from roughly 100 uT at O N to about 400 uT at 60 N. The red line on the graph
indicates the linear regression on the z-axis data, and the R-squared value for the z-data is 0.995,
indicating a strong linear trend between magnetic flux in the z-axis and the amount of force

applied. Data from the COMSOL simulation can be found in Appendix N.

7.2 Normal Force Results
For the 200 N normal force test performed on the sensor module, magnetic flux in the z-
axis also increased with increasing normal force applied. A representative graph from a single

sensor is shown in Figure 26.
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Figure 26: Data from 1 Sensor during Normal Force Testing (Dragon Skin 30 Silicone Rubber)

As shown by the graph above, magnetic flux in the z-axis of the sensor increases from
roughly 700 uT at O N of applied force to about 1500 uT at 200 N of applied normal force. The
X- and y- axis data experienced minimal change with increasing force, with the y-axis staying
close to O uT and the x-axis close to 75 uT. The red line on the above graph indicates the linear
regression, with the calculated R-squared value being 0.971, indicating a strong linear increase in
z-axis magnetic flux with increasing normal force. In addition, the data experiences small jumps
of roughly 50 uT throughout. The magnetic flux response was also consistent across all four

sensors, as seen in Figure 27.
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Figure 27: Normal Force Testing Data for all 4 sensors on the module during 1 trial

Across all four sensors for the same normal force trial, magnetic flux in z increased with

increasing normal force applied, while the x and y axes remained relatively constant.

7.3 Shear Force Results

For the shear tests performed with a constant 29.7 N force applied at a 45 degree angle to

the XY-plane, there were consistent trends in magnetic flux indicating the direction of the

applied force. Representative graphs for one sensor tested in the negative y and the negative x

directions are shown in Figure 28 A graph for the arbitrary shear force applied in the positive x-

direction (to confirm functionality in that direction as described in Section 5.3.3) for the same
sensor can also be found in Figure 29.
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Figure 28: Shear Force Graphs in the Negative x (left) and Negative y (right) Directions. Boxes Show when Force was Applied
and Removed
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Figure 29: Shear Force Data for the Negative (left) and Positive (right) x Direction

The data from the shear testing shows a consistent trend in magnetic flux in the direction

of the applied force. This is true in both the positive and negative directions along both the X-

and Y-axis. In each direction (for the 29.7 N force), the change in magnetic flux when the shear

force was exerted was about 100 uT in each respective axis independently. Moreover, each axis

that does not have forces applied does not show any significant changes in terms of magnitude of

their flux readings. For example, when the shear force was applied in the negative x-direction,

the magnetic flux readings along the x-axis decrease by about 100 uT; the y- and z- axes stay

relatively consistent, with minimal changes of about 10 uT occurring in the z-axis. The jumps in

sensor data are further discussed in Chapter 8.7.2.
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7.4 Modularity Results

The modules were tested to see if all 8 sensors on two modules would be able to report
data individually. These modules were wired together as previously stated in Chapter 6. When
tested, the sensors all reported data independently of each other when they were called upon to

do so, as illustrated in Figure 30.
@ COM3 (Arduino/Genuino Mega or Mega 2560)

Module 1. — PinSSi: N1,-28,-12,~96,FinSS1: N2,~-16,~-14,-102,PinSS1: N3,-20,-15,-76,PinSS1: N§,~-17,-16,-95,

PAnSS2:) W1, ~7444,~157,349,P1nSS2: N2,~7680,-156,272,PinSS2: N3, ~16,~159,256,P1inS5S2: N4,~-2048,-31,341,
////////’////' PAnSSi: N1,-17,-14,-127,PinSS1: N2,-32,4832,-98,PinSS1: N3,~14,-15,-75,PinSS1: N4,-7,-16,-128,
Module 2:

PinSS2: N1,-7454,-149,343,Pin5S2: N2,-7673,-160,256,PinS52: N3,1,-156,263,Pin3S2: N§,-2046,-29,339,
PinSS1: W1,-16,-8,-108,P4nS51: N2,-27,-3,-70,P4inSS1: N3,-8,-13,-99,PinSS1: N4,-24,-15,-100,

PAinSS2: N1,-7448,-141,341,P4in332: N2,-7677,-159,267,P4inS32: N3, 1,-154,256,P4in3S2: N§,-20,-29,346,
PinSS1: M1,-20,-12,-92,P4inSS1: N2,-32,-13,-60,PinSS1: N3,-23,-13,-60,PinSS1: N4,-15,-16,-90,
PinSS2: N1,-7440,-141,337,P1n882: N2,-7677,-155,264,PinS82: N3,6,-1€0,264,P4inSS82: N¢,-2039,-29, 346,
PinSS1: N1,-26,-15,-126,PinSS1: N2,-14,-13,-102,P4inSS1: N3, -2,-1,-67,PinSS1: N¢,-16,-14,-124,
PinSS2: N1,-7447,-140,341,P1in882: N2,-7663,-157,260,PinSS2: N3, 8,-183,266,P1inS82: N¢,-2042,-32,381,
PinSS1: N1,-31,-32,-127,PinSS1: N2,-19,-23,-102,PinSS1: N3,-2,-1S5,-100,P1inSS1: N¢,-19,-14,-128,
PinSS2: N1,-74%56,-141,342,P1nS852: N2,-7677,-160,266, FinSS2: N3,1,-159,256,PinSS2: N4,-2048,-23,342,

Figure 30: Data Log of 2 Modules Running in Series
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Chapter 8: Discussion

Overall, our results indicate that our MagneForce module serves as a proof-of-concept for
relating change in magnetic field to the magnitude and direction of force applied. This section
discusses the biggest implications of our results as well as how the final product matched up to

our matrix of objectives from Chapter 3.

8.1 COMSOL Model

As mentioned in the previous two chapters, the COMSOL model was somewhat limited
in that it would crash under high loads and shear forces. While working with the model, it
became clear that as the complexity of the model increased, the simulation had greater difficulty
running through completion. As a result, the geometry needed to be simplified, and the
simulation needed to be run using a ‘coarser’ mesh in order to acquire a satisfactory trend. While
these modifications reduce the accuracy of the simulation, they were necessary to create a
functional model in the first place. Additionally, the resulting simulation was appropriate for an
initial validation of our device. Future iterations of this project will require more time to be spent
with the COMSOL program in order to build a more stable model in COMSOL that can simulate

higher normal forces as well as shear forces.

8.2 Normal Force Data

As demonstrated by both the COMSOL simulation and the experimental normal force
data, the magnetic flux in the z-axis increases with increasing amounts of normal force applied.
For both the COMSOL model and the sensor data, the R-squared values were 0.995 and 0.971,
respectively, indicating strong linear trends for both sets of z-axis data. The similarity of the R-
squared values confirms the similarity in z-axis trends between the experimental data and the
COMSOL model.

However, while the R-squared values are close, indicating similarity, the slopes of the z-
axis between the experimental data and the COMSOL data are not the same. The COMSOL
simulation increases from 750 uT at 0 N to roughly 1400 uT at 60 N (~10.8 uT/N), while the
data in Figure 26 increases from 700 uT at O N to roughly 1500 uT at 200 N (~ 4 uT/N). This
difference likely results from the material properties of the COMSOL simulation. The COMSOL

model used the mechanical properties Ecoflex 0030 silicone rubber, as the coefficients for the
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Ogden hyperelastic model for that material were readily available. Our MagneForce module, on
the other hand, used Dragonskin 30 silicone rubber, which is stiffer than the Ecoflex. Dragonskin
30 was used for the product as the material properties were much more desirable; the increased
stiffness held the magnets in place well, and did not deform too much under high loads,
protecting the circuitry. Considering all these factors, the differences in slope are sensible, as the
stiffer Dragonskin 30 did not deform as quickly, resulting in a slower increase in magnetic flux
with increasing applied force. The lower stiffness of the Ecoflex 0030 also explains the higher
magnetic flux values in the COMSOL simulation, as it would deform more under at lower

forces, giving higher magnetic flux readings.

When comparing the two other axes (X and Y), the readings from the actual test differs
from the simulated COMSOL values. In the simulation, readings from both X and Y trends
upwards. This is not the case for the actual reading, however. The data trend of the sensor
module is more constant without much deviation. These differences are likely due to the
limitations of the COMSOL simulation, as it often had difficulty modeling the hyperelastic
behavior of silicone rubber. However, the x- and y- data from the normal force experiments
remained relatively constant, indicating that little to no shearing occurred for an applied normal

force, as expected.

8.3 Shear Force Data

Looking at data produced through the shear force test, there is a consistent relationship
between the changes in the magnetic flux in X and Y axes and the forces applied in the same
directions. The changes in the positive and negative X and Y position are as expected. As the
force is applied to the positive X, the magnetic flux reading in the X direction increases, as force
is then applied in the opposite direction, the magnetic flux reading decreases and shifts the other
way. Furthermore, the magnetic flux does not change for axes in which force is not applied. The
normal force was applied from the beginning of the experiment to create a frictional force, thus a
change in Z should not be observed. This holds true with the results of our test. Overall, these
results show that the magnetic flux data can be related to the direction of the force applied, which
can be used to detect shear forces.
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8.4 Discrepancies in Data

Across all experimental data, small jumps in the data collected were observed, ranging
from ~10 pT to ~50 uT. Because the size of the jumps were consistent in magnitude, the band-
pass filter we coded worked for adjusting most of the data jumps. The jumps in data could
possibly be occurring as a result of the soldering connections on our circuit board; applied force
could be causing components to shift slightly, resulting in the jumps in data. Alternatively, the
error could be occurring during the communication over the computer’s serial port; the code used

to read and parse through the sensor data may not be optimally reading data from the sensors.

8.5 MagneForce as a Proof-of-Concept
8.5.1 Functionality

We were able to improve upon the previous iteration of this device by ensuring it would
function properly and be able to detect normal and shear forces. This is greatly due to ensuring
there would be no magnetic interference created by the other magnets in the module. Though this
became the limiting factor in determining the size of our module, it was necessary in order to get
accurate data for both normal and shear forces up to 200 N and 21 N respectively. By spacing the
sensors 15 mm apart from each other and placing the magnets directly above the sensors,
interference and crosstalk between the sensors was successfully avoided.
8.5.2 Modularity

The final size of the module is 36mm x 46.6 x 17.4 mm. This size allows for many
different modules to be placed in a single shoe pad allowing for customization based on the shoe
size. The modular concept was also proven when all 8 sensors were producing data when 2
modules were wired together. This allows the system to be adaptive to any size that may be

required for the patient.

8.6 Cost Analysis

It was determined that 7 modules can fit inside a size 10 shoe. From this value we can
determine the amount of parts required for a shoe pad made of our MagneForce modules. The
following table outlines the parts needed for 7 modules, as well as their quantity and cost. The

total cost for assembling this shoe pad comes out to be $164.03.
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Table 3: Bill of Materials for 7 Professionally Made Modules
7 Professionally Made Modules

Quantity Description Cost
10 PCBs $9.99
28 Hall Effect Sensors $105.84
28 47nF Caps. 7.34
28 100nF Caps. 1.85
7 XOR Gates 2.73
7 Multiplexers $19.67
7 8 pin header $6.58
Dragon Skin 30 $10.03
Total: 164.03

The cost of parts for the MagneForce sensor is $164.03 per shoe pad. This cost is

significantly cheaper than the price of our competitors, which can be seen in the following table:

Table 4: Cost Comparison of MagneForce and its Competitors

Product Description Price Shear Force?
MagneForce 7 modules in a shoe $164.03 Yes
pad
Tekscan F-Scan Resistive force ~$4,000 No
sensors in a shoe pad
Pedar System Force sensors in a ~$5,000 No
shoe pad

Tekscan’s F-Scan System costs roughly $4000 USD [28], and the Pedar System by Novel
costs $5000 [28]. While our price does not include labor cost or profit margins, after scaling for
bulk manufacturing, we expect that the price of the proposed system will still be an order of

magnitude lower than existing commercial systems. Additionally, existing systems only measure
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normal forces while the MagneForce sensor can measure both normal and shear forces. This

gives the product an edge over the competitors in both price and functionality.

8.7 Evaluation of Project Objectives

The 6 most important project objectives we were looking to accomplish were: safety,
sensor functionality, affordability, gait monitoring, non-invasiveness, and reliability.

8.7.1 Safety
Safety was rated as the most important objective. Our device is extremely safe as it is

encased in silicone, providing the circuitry protection from the user and the user protection from

the circuitry. Because of this, this objective has been properly accomplished.

8.7.2 Sensor Functionality
One of the next most important objectives was to have sensor functionality. Given our

results, our sensors can be used to determine the normal force applied based on the magnetic
field of the magnet, as well as the direction of shear forces. Given these two factors as well as the
fact that the sensors are modular and can be combined, this objective has also been met.

We also achieved a refresh rate of 70 Hz for a single module, along with a spatial density
of 1 sensor per 15 mm?. The refresh rate is higher than the rate achieved during last year’s
project iteration (33 Hz), but an even higher refresh rate will be useful in future iterations for
better data collection. The spatial density also has room for improvement. While the sensor
density is currently limited by the minimum distance to avoid magnetic cross-talk, using weaker

or smaller magnets could solve this issue.

8.7.3 Affordability
The objective of affordability was also met. Given our cost analysis in the previous

section, our device is quite affordable, especially when compared to the competitors’ prices,
meeting our objective of affordability.
8.7.4 Gait Monitoring

The objective of gait monitoring was not met. Time constraints and time spent
troubleshooting the module functionality prevented us from successfully integrating an IMU into
the device. Bluetooth communication was also not achieved, as proving the ability of the device

to relate displacement in magnetic field to applied force was of higher priority.
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8.7.5 Non-invasiveness
As for non-invasiveness, this objective was met in part. In its current state, the sensor

module is rather thick, and a shoe would need to be modified or custom-made in order to house

the modules. However, future iterations can reduce the size to make it more accommodating.

8.7.6 Reliability
The goal of reliability was also not fully realized, as time constraints on the project

limited the amount of experiments that could be run. As a result, the body of results was not

large enough to determine reliability of sensors over a large number of cycles.

48



Chapter 9: Recommendations and Conclusion

9.1 Future Recommendations

While the MagneForce module currently serves as a proof of concept for relating
displacement of magnetic fields to applied forces in three dimensions, there is still potential for
improvement to make the device a more complete product. Improvements can be made to the
module itself, and gait monitoring features can be added to increase the device’s versatility.
9.1.1 Module Improvements

As with any device, modifications can always be made to improve upon the module. Five
of the major improvements are as such: refining the circuit design to accommodate for a more
dynamic change in force, reducing the signal noise, reducing the thickness of the modules, and

testing reliability over time with a large number of cycles.

Currently, the modules cannot handle highly dynamic forces. That is, rapidly changing
forces at high magnitudes (such as with running or tripping) are liable to be filtered out. For
example, if a person were to stomp on the module, the device would likely filter out the stomp
because it created a data spike close to a saturation value. Modifying the device to better handle
these types of forces would make the product much more robust. This could potentially be
accomplished through improving the filtering run through the software, or improving the circuit

design to limit noise so that the filter does not need to be as sensitive.

As just previously mentioned, noise in the data collected by the sensors is an area with
potential for improvement. While the signal noise was greatly reduced from bypassing the
breadboard, high spikes in the data still appeared that needed to be filtered out. The greatest
source of the signal noise is probably the inconsistency that is inherent with hand-soldered
circuits. Because all of the circuit components were soldered on manually, inconsistencies
occurred with wires and components coming loose, introducing noise. Having the circuits
professionally assembled would likely solve this issue, and vastly improve the consistency of the

circuit construction.

Additionally, the current module is a bit too thick to be added as an insole, and the sole of
the shoe would have to be carved out in order for the modules to fit. If improvements can be

made to reduce the module’s thickness, but still keep the encasement of the PCB in silicone to a

49



size that can be fit comfortably inside a regular shoe, this would improve the module’s ease of
use. This modification may be difficult given that moving the magnets too close to the sensors
would cause more saturated readings, but this could be remedied by using weaker magnets.

In order to prove that the current modules would be suitable for frequent use, reliability
over time must be tested. The device would benefit from testing that it can withstand strains over
a large number of cycles and over a long period of time. In addition, the consistency of the data
over many cycles needs to be confirmed as well, to ensure that the readings remain accurate over
an extended period of time. Using a dynamic load cell that can cycle through a test multiple
times could be useful, and the hysteresis of the measured data could be observed.

9.1.2 Added Features

Aside from improving the circuit module itself, there are other features to add to the
device that would make it more complete as a product. The first such feature is a program to
graph or visualize collected data in real time. The current method of data collection involves
logging the data and graphing it manually in Excel. This approach is inefficient, and
unnecessarily complicates the process of collecting data and troubleshooting the device. Having
a program to display a graph of the force data collected would not only improve how the force
sensors are tested, but would also provide a platform for clinicians and patients to view the data
in the future. Later generations of the product could also have a user-friendly app, which could
allow patients to view their own data while also allowing them to share it with their doctor.
Having an app that can be integrated to monitor what is going on in real-time would greatly

improve both functionality of the device as well as the ease of use for the user.

Another useful feature to add would be an IMU, to monitor the position and movement of
the patient’s foot and leg throughout the gait cycle. While the sensor module itself would work to
detect normal and shear forces, adding an IMU would give it the functionality of a complete gait

monitoring device.

9.1.3 Future Regulatory Considerations

Since future iterations of this device will likely be used to aid in diagnosis and treatment
of diabetic ulcers, it is probable that the MagneForce product will need to be classified as a
medical device. Medical device classification requires a variety of standards to be met, both in

fabrication of the device as well as in testing and clinical trials. Here we discuss a few of these
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potential considerations.

First, because the sensor module is non-invasive (external to the skin) and thereby poses
minimal health risk to the patient, yet more complicated than simpler devices (like bandages),
future iterations of the device would likely be classified as an FDA Class 2 medical device [50].
By virtue of being a Class 2 device, our product would be subject to FDA evaluation, and would

be subject to FDA regulations for proper use following that evaluation.

Additionally, the medical device classification requires that standards be met regarding
biocompatibility and safety to the patient. The biggest standard to meet with regard to
biocompatibility is ISO standard 10993, which governs evaluation of medical device
biocompatibility [51]. This standard covers an extensive range of device types and
considerations for both internal and external products. Specifically, ISO 10993 includes an
assessment to identify and mitigate potential biocompatibility risks. This assessment would
include a literature review of related devices, a review of clinical experience of similar devices,

and a review of results on animal testing of similar devices.

Again, biocompatibility and safety should be of the highest importance for future product
iterations. Another standard we can use to ensure patient safety is ASTM F720-13, which details
protocols for materials testing on guinea pigs for contact allergens [52]. While silicone rubber is
generally regarded as safe for contact with skin, performing tests on guinea pigs with samples of
the Dragonskin 30 will confirm if prolonged contact with the silicone would cause any adverse
reactions with the skin. Overall, end user safety is a subject that cannot be overlooked in future

project iterations.

9.2 Conclusion

Overall, the MagneForce module currently serves as a proof-of-concept for relating
displacements in magnetic fields to applied forces in three dimensions. Using this concept, the
sensor module can be used to measure both normal and shear forces. With the proper
modifications and improvements, MagneForce can be integrated into a shoe pad to measure the
forces on the bottom of the foot, helping diabetes patients prevent and manage foot ulcers. As a

whole, this device has great potential to become a successful household or clinical product.
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Appendix B: Magnet Protrusion CAD Model and Drawings

Isometric View
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Protrusion Drawing
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Protrusion Explosion Drawing
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Appendix B: 3-by-3 Position Drawing
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Appendix C: Silicone Molding Instructions

The silicone molding in this procedure is done in the WPI Soft Robotics Lab in Higgins
Labs. Silicone is very sticky, so gloves are preferable. However, the silicone is not harmful to

skin, so if you do get some on you it is not the end of the world.

1. Arrigid mold (probably 3D printed) is needed for setting and baking the silicone. Make sure
to have this beforehand. Make sure that the sensor is secured into the mold.

2. Find a cup or container in which to mix the silicone, along with the proper bottles of silicone
mix (the yellow and blue bottles of Ecoflex 0030 for this example). Find the scale for

weighing the silicone mixture.

FIGURE A: THE ECOFLEX 0030 MIX

FIGURE B: EXAMPLE OF MIXING CUP

3. Place the cup on the scale and tare it. Mix equal parts of the blue and yellow components of
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the Ecoflex 0030 silicone in the cup. (A different ratio is required for different types of
silicone, like Dragon skin). For purposes of a single magnet and sensor, 5g of each should be
enough. Always mix a little more than is actually needed to account for air bubbles.

4. Once weighed, mix the two parts together using a mixing stick. Mix thoroughly to remove as
many air bubbles as possible.

5. After mixing, place the container of silicone in the vacuum chamber on the lab bench. Secure
the top and make sure the valves are opened into the chamber. Turn on the vacuum switch on
the wall. For this amount of Ecoflex, leave in the chamber for 2 to 3 minutes.

6. When the mixture is done in the vacuum chamber, use the second valve on the cap to
equalize the air pressure before removing the cap. To prepare for setting the silicone, place
down paper towels where you will be working! The others in the lab will give you a hard
time if you make a mess. Silicone is very messy.

7. Before moving on make sure that there are no air bubbles in the silicone! Any air bubbles
in the mold will ruin the integrity of the silicone once it is baked.

8. Find a clamp, and clamp down the mold/sensor assembly. Place on top of the paper towels.
Carefully pour the silicone into the mold. Be patient and wait for the silicone to settle. As
you pour, air bubbles will rise to the top, so make sure to pour more than is necessary —
the only way to remove air bubbles is through volumetric displacement. Don’t worry if

the silicone overflows — it is easy to cut off excess afterward

FIGURE C: CLAMPING THE MOLD AND POURING THE SILICONE

9. Place the mold into the oven on the bench. The oven technically has three stages to set. For
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this silicone, only the first stage is needed. Set the temperature for the first stage at 60 C,
and the other two stages to 0C (off). Set the rate of heating to 40 C/minute. Bake the
silicone in the oven for 20 minutes.

10. After the time is up, remove the mold from the oven, and break the mold off, revealing the

final silicone. Trim off excess silicone as necessary.
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Appendix D: Final Mold Design
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Appendix E:

COMSOL Iterations

Iteration 1: Simple 1-Magnet COMSOL Model
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Appendix F: Current COMSOL Model Parameters

Global Parameters

* Parameters

Marme Expression Yalue Description
Mul 5.6E5[Pa) 5.6E5 Pa Og-strain 1
Mu2 1562[Pal 1562 Pa Og-strain 2
Mu3 -5, 2E5[Pa) 5.2E5Pa Og-strain 3
Alpl 1.26 1.26 Og-parl
Alpz 5.1 5.1 Og-par2
Alp3 0.64 0.64 Og-par3
k 1SES[Pa] 1.5E10 Pa Bulk Modulus Slicone
load oM oM
Flue 1.48[T] 1.48T
theta pifa 1.0472

Neodymium Parameters

Property Mame  Value Lini Property grol
[ Relative permeability L 1.05 1 Basic
[V Density rho cholT[1).. kgfm?  Basic
(¥ Poisson's ratio ni 0.24 1 Basic
[ | Young's modulus E 1.6*10~... Pa Basic

Silicone Parameters

Property arme Stalue Uit Property gre
[ Density rha rho{T[1/... kajm® | Basic
[+  Relative permeahility mur 1 1 Basic
dL dL (ALt Basic
CTE CTE CTE(T[1]... 1/K Basic
Thermal conductivity k KITLLED... WiilmeK) | Basic
Coefficient of thermal expansion | alpha {alphalT[... 1K Biasic
Heak capacity st constant pressu_., | Cp CITMLK)... 3(kaK) |Basic
o m TO(TL1fE... m3fs Basic
Young's modulus E 1Z25E6[Pa) Pa Young's moc
Poisson's ratio nu nulT[1fK]) 1 Young's moc
Bulk rodulus K 1.569[Pa]  Mim? Baulk. modubu:
Shear modulus G i T[ 1k Mim3 Bulk, manchidus

Hyperelastic Model: Ogden Model

(Parameters refer to global parameters)
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» Hyperelastic Material

Material model:

| Ogden "i
[T Wearly incompressible material

Ogden parameters

~p_Shear modulus (Pa) Alpha parsmeter |
1 [Mul |Alp1 [
2 Mg | lpz

3 (M3 | Alp3
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Appendix G: Foot Area Approximation

The area of the bottom of a size 10 insole was approximated using a grid of 1 cm? squares. The
total was 523.75 cm?,
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Appendix H: Foot Pressure Calculations

Variables/Helpful Information:

e Average US male height:
o 5’97-5’10"[45]
e US shoe size for male height 5°9” - 5710
o Size 9-10[47]
o Because a Size 10 shoe is readily available to us, this is what we chose
o Approximate Area under US men’s size 10 foot: 523.75¢cm? = 0.052375m?
e People with diabetic neuropathy are likely to be overweight/obese
o Asadesign constraint, will cut off weight measurements just before obese classification
o Max weight for this height before considered ‘obese’ = ~2001bs ~90kg ~ 883N [46]
e Max shear force = ~15% of body weight (normal, anterior-posterior)
e Safety factor = ~25% of body weight

Calculations:
Average Max Pressure on a foot (during stance phase):
Average Max Pressure = Max Weight + Aea of Size 10 foot

= 883N + 0.052375m? = 16.86kPa

Size of one circuit module:
Area = Length = Width

= 29.8mm * 39mm = 0.0011622m?

Max normal force to apply to one module during testing:
Max Normal Forcee = Average Max Pressure duing Stance Phase * Area of a Module

= 16859Pa x 0.0011622m? = 19.59N

Average Shear Pressure (assuming 25% of sole is covered):
Average Shear Force = Safety Factor x Body Weight
= 0.25 x 883N = 220.75N
Average Shear Pressure = Average Shear Force = 25% Area of a Size 10 Show

= 220.75N =+ (0.25 = 0.052375m?) = 16.86kPa

Max shear force to apply to one module:
Max Shear Force = Average Sear Pressure (with 25% of sole covered) * Area of a Module

= 16859Pa * 0.0011622m? = 19.59N
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Appendix I: Shear Force Apparatus
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Appendix J: Arduino Code for Modularity Test

/* THE XOR GATE MAKES HIGH ON AND LOW OFF FOR SENSORS
Code to get data from MLX90363 sensor.

This piece of code gets xyz magnetic flux magnitudes from the

sensor. It uses a function to compute CRCs.

Arduino Mega is used as the master device and a single MLX90363

sensor 1s used as the slave.

Written by Selim Ozel, 08.14.2015
Edited and Modified by David Laovoravit, 4.23.2017
*/

#include <SPI.h>
#include <TimerOne.h>

//Include SPI Library
//Include TimeOne Library

#define NUMBER 0

//Define and initialize CRC array, 256 bytes
char CRCArrayl[] = {

//used to check correct data transfer

0x00, O0x2F, O0x5E, 0x71, 0xBC, 0x93, 0xE2, 0xCD, 0x57, 0x78, 0x09,
0xEB, 0xC4, 0xB5, 0x9A, OxAE, 0x81, OxFO, OxDF, 0Ox12, 0x3D, 0x4C,
0xF9, 0xD6, 0xA7, 0x88, 0x45, Ox6A, 0x1B, 0x34, 0x73, 0x5C, 0x2D,
0xCF, O0xEO0, 0x91, 0xBE, 0x24, 0x0B, 0x7A, 0x55, 0x98, 0xB7, 0xC6,
0xDD, OxF2, 0x83, OxAC, Ox6l, Ox4E, Ox3F, 0x10, Ox8A, OxA5, 0xD4,
0x36, 0x19, 0x68, 0x47, 0xE6, 0xC9, 0xB8, 0x97, 0x5A, 0x75, 0x04,
0xBl, O0x9E, OxEF, 0xCO, 0xOD, 0Ox22, 0x53, 0x7C, 0x48, 0x67, 0xl16,
0OxF4, 0xDB, OxAA, 0x85, Oxl1lF, 0x30, O0x41l, Ox6E, OxA3, 0x8C, OxFD,
0x95, O0xBA, 0xCB, OxE4, 0x29, 0x06, 0x77, 0x58, 0xC2, OxED, 0x9C,
0x7E, 0x51, 0x20, 0xOF, 0x3B, O0x14, 0x65, 0x4A, 0x87, O0xA8, 0xD9,
0x6C, 0x43, 0x32, 0x1D, 0xDO, OxFF, Ox8E, OxAl, OxE3, 0xCC, OxBD,
0x5F, 0x70, 0x01, Ox2E, OxB4, 0x9B, OxEA, 0xC5, 0x08, 0x27, 0x56,
0x4D, 0x62, 0x13, 0x3C, O0xFl, OxDE, OxAF, 0x80, 0OxlA, 0x35, 0x44,
0OxA6, 0x89, OxF8, 0xD7, 0x90, OxBF, OxCE, OxEl, O0x2C, 0x03, 0x72,
0xC7, OxE8, 0x99, 0xB6, 0x7B, 0x54, 0x25, O0x0A, Ox3E, O0x1ll, 0x60,
0x82, OxAD, 0xDC, 0xF3, 0x69, 0x46, 0x37, 0x18, 0xD5, OxFA, 0x8B,
0x05, O0x2A, 0x5B, 0x74, 0xB9, 0x96, OxE7, 0xC8, 0x52, 0x7D, 0x0C,
0xEE, 0xCl, O0xBO, Ox9F, OxAB, 0x84, OxF5, OxDA, 0x17, 0x38, 0x49,
0xFC, 0xD3, 0xA2, 0x8D, 0x40, Ox6F, OxlE, 0x31, 0x76, 0x59, 0x28,
0xCaA, OxE5, 0x94, 0xBB, 0x21, 0x0E, 0x7F, 0x50, 0x9D, 0xB2, 0xC3,
0xD8, O0xF7, 0x86, O0xA9, Ox64, 0x4B, O0x3A, 0x1l5, O0x8F, O0xAO0, 0xD1,

0x33, 0x1C, O0x6D, 0x42
bi
int Pinss;
int PinSSl = 53;
int PinSS2 = 42;
int PinMOSI = 51;
int PinMISO = 50;
int PinSCK = 52;
int PinEN = 22;
int PinAQ0 = 24;
int PinAl = 26;
int currentState = 1;

//set Slave Select Pin at 53
//check to change

//Set Clock Pin at 52

//set Slave Select Pin at 8
//Set Slave Select Pin at 9
//set Slave Select Pin at 10

int switchNum = 1;

//Set Master Out, Slave In Pin at 51
//Set Master In, Slave Out Pin at 50

//declare Read Buffers,

0x00, 0x00,

bool pass = true; // Buffers to read/write MLX90363
uint8_t readBuffer([8] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00};

uint8_t writeBuffer(8] = {0x00, 0x00, 0x00, 0x00, 0x00,

0x00};

// Bx,By,Bz variables

intlé_t Bx =

0;

variable as a 16 bit integer and set starting value at 0
intlé t By =

0;

variable as a 16 bit integer and set starting value at 0
intlé t Bz =

0;

variable as a 16 bit integer and set starting value at 0

//declare Write Buffers,

// Error bits, CRC, virtual gain and rolling counter variables

uint8_t errorBits =

0;

as an 8 bit integer and set starting value at 0
uint8_t rollingCounter =

0;

as an 8 bit integer and set starting value at 0

0x26,
0x63,
0x02,
0xE9,
0xFB,
0x2B,
0x39,
0xD2,
0xB3,
0xF6,
0x92,
0x79,
0x6B,
0x5D,
0x4F,
0xA4,
0x23,
0x66,
0x07,
0xEC,
0xFE,

//Pin declaration for Arudino Mega 2500

as an array comprising of 8 8 bit integers

as an array comprising of 8 8 bit integers

//declaring Bx
//declaring By

//declaring Bz

//declaring error Bits

//declaring Rolling Counter
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uint8_t CRC =
0;
Cyclic Redundancy Check as an 8 bit integer and set starting value at 0

// CRC function

//declaring

uint8_t ComputeCRC(uint8_ t ByteO, uint8_ t Bytel, uint8_t Byte2, uint8_t Byte3, uint8_t Byted4, uint8_t Byte5, uint8_t Byte6) {

//Parse each byte into the CRC, pulling out of the CRC array
uint8_t CRC = OxFF;

CRC = CRCArray[CRC "
Byte0];

XOR gate to crate a CRC

CRC = CRCArray[CRC ~ Bytel
CRC = CRCArray|[CRC "~ Byte2

]
[ 17

CRC = CRCArray[CRC " Byte3];

CRC = CRCArray[CRC ~ Byte4]
[ ]
[ ]

CRC = CRCArray[CRC " Byte5];
CRC = CRCArray[CRC " Byte6
CRC =

~CRC;

the Bits gets out the input that is wanted
return CRC;

}

int fullCircle=0;

// Sets the send message flag

int sendMessage =

0;

message initialze to 0 (false)

void SendFlag()

helper method for setting messenger flag to true

{

sendMessage =
1;

1 (true)

}

void setup () //The setup before starting the looping program
{ // Mark comm pins as output or input
pinMode (PinMOSI, OUTPUT); //Set MOSI pin as an output

pinMode (PinMISO, INPUT); //Set MISO pin as an input

pinMode (PinSCK, OUTPUT) ; //Set Clock pin as output

pinMode (PinSS2,0UTPUT) ; // Make the MLX90363 sensor the active slave device
pinMode (PinSSl, OUTPUT); //Set Slave Select pin as an output

pinMode (PinEN, OUTPUT);
pinMode (PinAO, OUTPUT);
pinMode (PinAl, OUTPUT);
digitalWrite (PinSS1, LOW);
digitalWrite (PinSS2,LOW) ;
digitalWrite (PinEN, LOW); //Turn off the Slave Selectl
digitalWrite (PinAO, LOW); //Turn off the Slave Select2
digitalWrite (PinAl, LOW); //Turn off the Slave Select3
PinSS=PinSSl;

//Turn off the Slave Select

// Begin serial Comm

Serial.begin (9600); //Set the baudrate to 9600

// Required SPI configeration to communicate with MLX90363

// Details of SPI settings can be found in "Getting Started

// Guide" [GSG], under "SPI bus protocol".

SPI.begin();

//Initialize SPI and set SCK,MOSI,SS to outputs and SCK and MOSI asl low and SS as high
SPI.setBitOrder (MSBFIRST) ; //Set protocol to transmit Most significant bit first

SPI.setClockDivider (SPI_CLOCK_DIV32); //Set the clock to be 1/32 the frequency of the system clock

SPI.setDataMode (SPI_MODEL) ;
//SPI_MODEl = Clock Polarity: 0 | Clock Phase: 1 | Output Edge: Rising | Data Capture: Falling

// Setup Timer for sending/receiving data
Timerl.initialize (500);//30000 //Initialize frequency of interrupt to 0.03 seconds
Timerl.attachInterrupt (SendFlag) ; //trip flag every 0.03 seconds
}
int counter = 0;
void loop ()
{
if (sendMessage) { //If the timer interupt trips (0.03 seconds) collect data from sensor
//int ReadPin = 0;
switch (switchNum) {
case 1:
fullCircle=0;//if it has gone through all 4 sensors
currentState = 1;
digitalWrite (PinAO,LOW);// Sensor 00 (sensor 1)
digitalWrite (PinAl, LOW) ;

//switch case for each sensor in the module

//Parsing Byte through an

//Flipping

//set a flag for

//A

//Set a flag to

if (counter >= NUMBER+1l) {//used for adjusting how many times each sensor is run for each run through

pass=false;

switchNum++;

counter = 0;
}

else {
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counter++;
pass=true;

}
break;
case 2:

currentState = 2;

digitalWrite (PinAO,LOW); // Sensor 0l (sensor 2)

digitalWrite (PinAl,HIGH) ;

if (counter >= NUMBER) {//used for adjusting how many times each sensor is run for each run through
switchNum ++;

counter
}

else {

-0;

counter++;

}
break;
case 3:

currentState = 3;

digitalWrite (PinAQO,HIGH);// Sensor 10 (sensor 3)

digitalWrite (PinAl,LOW) ;

if (counter >= NUMBER) {//used for adjusting how many times each sensor is run for each run through
switchNum ++;

counter
}

else {

-0;

counter++;

}
break;
case 4:

currentState = 4;

digitalWrite (PinAO,HIGH);// Sensor 11 (sensor 4)

digitalWrite (PinAl,HIGH) ;

if (counter >= NUMBER+1l) {//used for adjusting how many times each sensor is run for each run through
switchNum = 1;

counter

pass=true;
if (PinSS==PinSS1){ //used to switch between the two modules

Pinss=

}

PinSS2;

else 1f(PinSS==PinSS2) {

Pinss=

}

else(

Pinssl;

Serial.println("Error with Slave Toggle");

}
}

else {

pass=false;
counter++;

}

fullCircle=1;

break;
default:

Serial.println("Error with switch case");

// Create a GET1 message. Format of messages are explained in both DataSheet
// [DS] and GSG.

writeBuffer[0]

= 0x00;

//this is a set up step to have the sensor be a GET1l See DataSheet

writeBuffer[1]
writeBuffer[2
writeBuffer[3
writeBuffer[4
writeBuffer[5
writeBuffer[6
writeBuffer[7

]
]
1
]
]
1

= 0x00;

= OxFF; // Timeout value is set as 65 ms

= OxFF; // Timeout value is set as 65 ms

= 0x00;

= 0x00;

= 0x93; // Marker is set as 2 to get XYZ measurement. OP Code for GETl message: 19 in Decimal.
= ComputeCRC (0x00, 0x00, OxFF, OxFF, 0x00, 0x00, 0x93); // CRC

// Transfer the content of writeBuffer to MLX90363.

nolnterrupts ()

digitalWrite (PinEN, HIGH);
digitalWrite (PinSS, HIGH);

//PinSs1,Pinss2,

PinSS3 pull the Slave Select High turning it on

delay(10); //delay 1 microseconds as a propagation delay to prevent errors
digitalWrite (PinAQO,LOW) ;
digitalWrite (PinAl, LOW) ;
for (int i = 0; i < 8; i++) { //send and receive through SPI to the sensors

readBuffer[i

}

] = SPI.transfer (writeBuffer[i]); //for loop to send out the array

digitalWrite (PinSS, LOW); //PinSS1,PinSS2, PinSS3 //pull the Slave Select Low turning it off

delay(10);
interrupts();

// Read most significant bits and add the least significant bits.
// Do this for Bx, By and Bz. Convert unsigned readBuffer data to

// signed data

!Ghetto Style -if statements-!.

Bx = (readBuffer([1l] & 0x3F) << 8;
Bx += readBuffer([0];
if (Bx >= 8192) {
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}
}

Bx -= 16384;
}
By = (readBuffer|
By += readBuffer|
if (By >= 8192) {
By -= 16384;

3] & O0x3F) << 8;
21;
}
Bz = (readBuffer[5] & 0x3F) << 8;
Bz += readBuffer([4];
if (Bz >= 8192) {

Bz -= 16384;
}
// Extract error bits EO and E1, CRC and rolling counter.
errorBits = readBuffer([0] >> 6;
CRC = readBuffer([7];

rollingCounter = readBuffer[6] & O0x3F;

// Print results to serial port. Only print them if previous
// data is read by the other end. ie: Matlab in my Laptop.

// if (counter == 0) { //counter == 3) {
if (!pass) {
if (PinSS==PinSsS1) {
Serial.print ("PinSS1l: ");

}

else if (PinSS==PinSS2) {
Serial.print ("PinSS2: ");

}

Serial.print ("N" + String(currentState) + "," + String(Bx)

if (fullCircle==1) {
Serial.println("");
}
}

sendMessage = 0;

o,

"

+ String (By)

o,

"

+ String(Bz)+",");
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Appendix K: Code for JAVA GUI
Java Code GUI display (Back End)

//Original Code for Tiger Tank Serial Communication by Henry Poon 12.25.2010
//Edited and Repurposed by David Laovoravit 4.23.2017

package Communicator;;

import gnu.io.*;

import java.awt.Color;

import java.io.IOException;

import java.io.InputStream;

import java.io.OutputStream;

import java.util.Enumeration;

import java.util.HashMap;

import java.util.TooManyListenersException;
import java.lang.*;

public class Communicator implements SerialPortEventListener
{
StringBuilder inBuff = new StringBuilder();//use this instead
String buffer= "";
int state=0;
int start=0;
//passed from main GUI
GUI window = null;

//for containing the ports that will be found
private Enumeration ports = null;

//map the port names to CommPortIdentifiers
private HashMap portMap = new HashMap();

//this is the object that contains the opened port
private CommPortIdentifier selectedPortIdentifier = null;
private SerialPort serialPort = null;

//input and output streams for sending and receiving data
private InputStream input = null;
private OutputStream output = null;

//enabling and disabling buttons
private boolean bConnected = false;

//the timeout value for connecting with the port
final static int TIMEOUT = 2000;

//some ascii values for for certain things
final static int SPACE_ASCII = 32;

final static int DASH_ASCII = 45;

final static int NEW_LINE_ASCII = 10;
final static int COMMA ASCII = 44;

//a string for recording what goes on in the program
//this string is written to the GUI
String logText = "";

public Communicator (GUI window) {
this.window = window;

}

//search for all the serial ports
//pre: none
//post: adds all the found ports to a combo box on the GUI
public void searchForPorts () {
ports = CommPortIdentifier.getPortIdentifiers();

while (ports.hasMoreElements()) {
CommPortIdentifier curPort = (CommPortIdentifier)ports.nextElement();

//get only serial ports

if (curPort.getPortType() == CommPortIdentifier.PORT_SERIAL) {
window.cboxPorts.addItem(curPort.getName()) ;
portMap.put (curPort.getName (), curPort);



//connect to the selected port in the combo box

//pre: ports are already found by using the searchForPorts method

//post: the connected comm port is stored in commPort, otherwise,

//an exception is generated

public void connect () {
//window.ChangeBarDatal (1000);////testing
String selectedPort = (String)window.cboxPorts.getSelectedItem() ;
selectedPortlIdentifier = (CommPortIdentifier)portMap.get (selectedPort);

CommPort commPort = null;

try{
//the method below returns an object of typ; e CommPort
commPort = selectedPortIdentifier.open ("MQP Demo", TIMEOUT) ;
//the CommPort object can be casted to a SerialPort object
serialPort = (SerialPort)commPort;

//for controlling GUI elements
setConnected (true);

//logging

logText = selectedPort + " opened successfully.";
window.txtLog.setForeground(Color.black) ;
window.txtLog.append (logText + "\n");

//CODE ON SETTING BAUD RATE ETC OMITTED
//XBEE PAIR ASSUMED TO HAVE SAME SETTINGS ALREADY

//enables the controls on the GUI if a successful connection is made
// window.keybindingController.toggleControls () ;

}

catch (PortInUseException e) {
logText = selectedPort + " is in use. (" + e.toString() +

o,

window.txtLog.setForeground (Color.RED) ;
window.txtLog.append (logText + "\n");
}
catch (Exception e){
logText = "Failed to open " + selectedPort + " (" + e.toString() +
window.txtLog.append (logText + "\n");
window.txtLog.setForeground (Color.RED) ;

wyn;

//open the input and output streams

//pre: an open port

//post: initialized intput and output streams for use to communicate data
public boolean initIOStream()

{

//return value for whather opening the streams is successful or not
boolean successful = false;

try {
//
input = serialPort.getInputStream();
output = serialPort.getOutputStream() ;
//writeData (0, 0);

successful = true;
return successful;

}

catch (IOException e) {
logText = "I/O Streams failed to open. (" + e.toString() +
window.txtLog.setForeground (Color.red) ;
window.txtLog.append (logText + "\n");
return successful;

myn

//starts the event listener that knows whenever data is available to be read
//pre: an open serial port
//post: an event listener for the serial port that knows when data is recieved
public void initListener () {
try{
serialPort.addEventListener (this);
serialPort.notifyOnDataAvailable (true) ;
}
catch (TooManyListenersException e) {
logText = "Too many listeners. (" + e.toString() +
window.txtLog.setForeground (Color.red);
window.txtLog.append (logText + "\n");

wyw
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//disconnect the serial port
//pre: an open serial port
//post: closed serial port
public void disconnect () {
//close the serial port
tryf{
//writeData (0, 0);

serialPort.removeEventListener();
serialPort.close();
input.close();
output.close();
setConnected (false) ;
// window.keybindingController.toggleControls () ;

logText = "Disconnected.";
window.txtLog.setForeground (Color.red);
window.txtLog.append (logText + "\n");
}
catch (Exception e){
logText = "Failed to close " + serialPort.getName() + " (" + e.toString() + ™)";
window.txtLog.setForeground (Color.red) ;
window.txtLog.append (logText + "\n");

final public boolean getConnected() {
return bConnected;

}

public void setConnected (boolean bConnected) {
this.bConnected = bConnected;

}

//what happens when data is received

//pre: serial event is triggered

//post: processing on the data it reads
public void serialEvent (SerialPortEvent evt) {

if (evt.getEventType() == SerialPortEvent.DATA AVAILABLE) {
try{
byte singleData = (byte)input.read();
if (singleData == NEW_LINE ASCII) {
start++;

}
if (start>3){//skip first 3 cycles for error clear
if (singleData != NEW_LINE_ASCII) {
logText = new String(new byte[] {singleData});
window.txtLog.append (logText) ;
if (singleData != COMMA_ ASCII){//parse in data until delimiter
inBuff.append(logText); //then pushes data out and clear buffer
buffer=inBuff.toString();
}

else(

if (!buffer.isEmpty () &&!buffer.equals ("")) {

int tempOut=0;

buffer=inBuff.toString();

if (! (state==0| |state==4]||state==8]| |state==12]| |state==16)) {
tempOut= Integer.parselnt (buffer);//convert the string to an
}

switch (state){//0,4,8,12 --> is sensor numbers so screen out

case 1l: window.ChangeBarDatal (tempOut) ;

break;

case 2: window.ChangeBarData2 (tempOut) ;
break;

case 3: window.ChangeBarData3 (tempOut) ;
break;

case 5: window.ChangeBarData4 (tempOut) ;
break;

case 6: window.ChangeBarDatab (tempOut) ;
break;

case 7: window.ChangeBarData6 (tempOut) ;
break;

case 9: window.ChangeBarData7 (tempOut) ;
break;

case 10: window.ChangeBarData8 (tempOut) ;
break;

case 11: window.ChangeBarData9 (tempOut) ;
break;

case 13: window.ChangeBarDatalO (tempOut) ;
break;

case 14: window.ChangeBarDatall (tempOut) ;
break;

case 15: window.ChangeBarDatal2 (tempOut) ;
break;

default:

inBuff.delete (0, inBuff.length());



buffer=inBuff.toString();

}
state++;
inBuff.delete (0, inBuff.length());//clear string buffer
}
}
else{
window.txtLog.append ("\n") ;
state=0;//reset to sensor 1

}

}

catch (Exception e)

{
logText = "Failed to read data. (" + e.toString() + ")";
window.txtLog.setForeground (Color.red);
window.txtLog.append (logText + "\n");
inBuff.delete (0, inBuff.length());
buffer=inBuff.toString();

Java Code GUI display (Front End)

/*
* GUI.java
*

* Original Code for Tiger Tank Serial Communication by Henry Poon 12.25.2010
* Edited and Repurposed by David Laovoravit 4.23.2017

*/
package Communicator;;
import java.awt.Color;

public class GUI extends javax.swing.JFrame {
//Communicator object
Communicator communicator = null;
//KeybindingController object

// KeybindingController keybindingController = null;

/** Creates new form GUI */

public GUI() {
initComponents () ;
createObjects () ;
communicator.searchForPorts();
// keybindingController.toggleControls() ;
// keybindingController.bindKeys () ;

private void createObjects () {
communicator = new Communicator (this);
//keybindingController = new KeybindingController (this);

/** This method is called from within the constructor to
* initialize the form.
* WARNING: Do NOT modify this code. The content of this method is
* always regenerated by the Form Editor.
*/
@SuppressWarnings ("unchecked")
// <editor-fold defaultstate="collapsed" desc="Generated Code">
private void initComponents() {

jScrollPanel = new javax.swing.JScrollPane();
jTextAreal = new javax.swing.JTextArea();
jLabell = new javax.swing.JLabel();

jLabel2 = new javax.swing.JLabel();

cboxPorts = new javax.swing.JComboBox () ;
jLabel5 = new javax.swing.JLabel();
btnConnect = new javax.swing.JButton();
btnDisconnect = new javax.swing.JButton();
jLabel6 = new javax.swing.JLabel();

jLabell3 = new javax.swing.JLabel () ;
jScrollPane2 = new javax.swing.JScrollPane();
txtLog = new javax.swing.JTextArea();
jLabell4 = new javax.swing.JLabel () ;
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jProgressBar2 = new javax.swing.JProgressBar();
jProgressBar3 = new javax.swing.JProgressBar();
jLabell5 = new javax.swing.JLabel ();
jLabell6 = new javax.swing.JLabel();
jLabel3 = new javax.swing.JLabel();
jLabel4 = new javax.swing.JLabel();
jLabell7 = new javax.swing.JLabel();
jProgressBar4 = new javax.swing.JProgressBar();
jProgressBar5 = new Jjavax.swing.JProgressBar();
jProgressBar6 = new Jjavax.swing.JProgressBar();
jLabell8 = new javax.swing.JLabel();
jLabell9 = new javax.swing.JLabel ();
jLabel20 = new javax.swing.JLabel();
jProgressBar7 = new Jjavax.swing.JProgressBar();
jProgressBar8 = new Jjavax.swing.JProgressBar();
jProgressBar9 = new Jjavax.swing.JProgressBar();
jLabel22 = new javax.swing.JLabel();
jLabel23 = new javax.swing.JLabel ();
jLabel24 = new javax.swing.JLabel();
jProgressBarl0 = new javax.swing.JProgressBar();
jProgressBarll = new javax.swing.JProgressBar () ;
jProgressBarl2 = new javax.swing.JProgressBar () ;
jLabel27 = new javax.swing.JLabel();
jLabel28 = new javax.swing.JLabel ();
jLabel29 = new javax.swing.JLabel ();
jProgressBarl = new Jjavax.swing.JProgressBar();
jLabell0 = new javax.swing.JLabel ();
jLabelll = new javax.swing.JLabel();
jLabell2 = new javax.swing.JLabel();

jTextAreal.setColumns (20);
jTextAreal.setRows (5);
jScrollPanel.setViewportView(jTextAreal);

setDefaultCloseOperation (javax.swing.WindowConstants.EXIT ON_CLOSE) ;
setTitle ("MQP- Demo") ;

jLabell.setFont (new java.awt.Font ("Tahoma", 1, 14)); // NOI18N
jLabell.setText ("MQP-Demo") ;

jlLabel2.setFont (new java.awt.Font ("Tahoma", 1, 11)); // NOI18N
jLabel2.setText ("Sensor 1");

jLabel5.setFont (new java.awt.Font ("Tahoma", 1, 11)); // NOI18N
jLabel5.setText ("Select COM Port");

btnConnect.setText ("Connect") ;
btnConnect.addActionListener (new java.awt.event.ActionListener() {
public void actionPerformed(java.awt.event.ActionEvent evt) {
btnConnectActionPerformed (evt) ;
}
I N

btnDisconnect.setText ("Disconnect");
btnDisconnect.addActionListener (new java.awt.event.ActionListener ()
public void actionPerformed(java.awt.event.ActionEvent evt) {
btnDisconnectActionPerformed (evt) ;
}
b

jLabel6.setFont (new java.awt.Font ("Tahoma", 1, 11)); // NOI18N
jLabel6.setText ("Sensor 3");

jLabell3.setFont (new java.awt.Font ("Tahoma", 1, 11)); // NOI18N
jLabell3.setText ("Log");

txtLog.setEditable (false);
txtLog.setColumns (20) ;
txtLog.setLineWrap (true);
txtLog.setRows (5) ;
txtLog.setFocusable (false) ;
jScrollPane2.setViewportView (txtLog) ;

jLabelld.setFont (new java.awt.Font ("Tahoma", 1, 11)); // NOI18N
jLabell4.setText ("X");

jProgressBar2.setMaximum (1500) ;
jProgressBar2.setMinimum (-500) ;

jProgressBar3.setMaximum (1500) ;
jProgressBar3.setMinimum (-500) ;

{
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jLabell5.setFont (new java.awt.Font ("Tahoma", 1, 11)); // NOI18N
jLabell5.setText ("Y");

jLabell6.setFont (new java.awt.Font ("Tahoma", 1, 11)); // NOI18N
jLabell6.setText ("2");

jLabel3.setFont (new java.awt.Font ("Tahoma", 1, 11)); // NOI18N
jLabel3.setText ("Sensor 2");

jLabel4.setFont (new java.awt.Font ("Tahoma", 1, 11)); // NOI18N
jLabeld4.setText (" -

1500");

jLabell7.setFont (new java.awt.Font ("Tahoma", 1, 11)); // NOI18N
jLabell7.setText ("Sensor 4");

jProgressBar4.setMaximum (1500) ;
jProgressBar4.setMinimum(-500) ;
jProgressBar4.setCursor (new java.awt.Cursor (java.awt.Cursor.DEFAULT CURSOR)) ;

jProgressBar5.setMaximum (1500) ;
jProgressBar5.setMinimum (-500) ;

jProgressBar6.setMaximum (1500) ;
jProgressBar6.setMinimum (-500) ;

jLabell8.setFont (new java.awt.Font ("Tahoma", 1, 11)); // NOI18N
jLabell8.setText ("X");

jLabell9.setFont (new java.awt.Font ("Tahoma", 1, 11)); // NOI18N
jLabell9.setText ("Y");

jLabel20.setFont (new java.awt.Font ("Tahoma", 1, 11)); // NOI18N
jLabel20.setText ("2");

jProgressBar7.setMaximum (1500) ;
jProgressBar7.setMinimum (-500) ;

jProgressBar8.setMaximum (1500) ;
jProgressBar8.setMinimum (-500) ;

jProgressBar9.setMaximum(1500) ;
jProgressBar9.setMinimum (-500) ;

jLabel22.setFont (new java.awt.Font("Tahoma", 1, 11)); // NOI18N
jLabel22.setText ("X");

jLabel23.setFont (new java.awt.Font ("Tahoma", 1, 11)); // NOI18N
jLabel23.setText ("Y");

jLabel24.setFont (new java.awt.Font ("Tahoma", 1, 11)); // NOI18N
jLabel24.setText ("2");

jProgressBarl0.setMaximum (1500) ;
jProgressBarl0.setMinimum(-500) ;

jProgressBarll.setMaximum(1500) ;
jProgressBarll.setMinimum (-500) ;

jProgressBarl2.setMaximum (1500) ;
jProgressBarl2.setMinimum (-500) ;

jLabel27.setFont (new java.awt.Font ("Tahoma", 1, 11)); // NOI18N
jLabel27.setText ("X");

jLabel28.setFont (new java.awt.Font ("Tahoma", 1, 11)); // NOI18N
jLabel28.setText ("Y");



jLabel29.setFont (new java.awt.Font ("Tahoma", 1, 11)); // NOI18N
jLabel29.setText ("2");

jProgressBarl.setMaximum (1500) ;
jProgressBarl.setMinimum(-500) ;
jProgressBarl.setToolTipText ("");

jLabell0.setFont (new java.awt.Font ("Tahoma", 1, 11)); // NOI18N
jLabell0.setText (" -
500 0

1500");

jLabelll.setFont (new java.awt.Font ("Tahoma", 1, 11)); // NOI18N
jLabelll.setText (" -
500 0

1500");

jlabell2.setFont (new java.awt.Font ("Tahoma", 1, 11)); // NOI18N
jLabell2.setText (" -
500 0 1500");

javax.swing.GroupLayout layout = new javax.swing.GroupLayout (getContentPane());
getContentPane () .setLayout (layout) ;
layout.setHorizontalGroup (
layout.createParallelGroup (javax.swing.GroupLayout.Alignment.LEADING)
.addGroup (layout.createSequentialGroup ()
.addGroup (layout.createParallelGroup (javax.swing.GroupLayout.Alignment.LEADING)
.addGroup (layout.createSequentialGroup ()
.addContainerGap ()
.addGroup (layout.createParallelGroup (javax.swing.GroupLayout.Alignment.LEADING)
.addGroup (layout.createSequentialGroup ()
.addGap (16, 16, 16)
.addGroup (layout.createParallelGroup (javax.swing.GroupLayout.Alignment.LEADING)
.addGroup (layout.createSequentialGroup ()
.addGroup (layout.createParallelGroup (javax.swing.GroupLayout.Alignment.TRAILING)
.addComponent (jLabell5
.addComponent (jLabell4
.addComponent (jLabell6, javax.swing.GroupLayout.PREFERRED SIZE, 7,
javax.swing.GroupLayout.PREFERRED SIZE))
.addPreferredGap (javax.swing.LayoutStyle.ComponentPlacement.RELATED)
.addGroup (layout.createParallelGroup (javax.swing.GroupLayout.Alignment .LEADING)
.addGroup (javax.swing.GroupLayout.Alignment.TRAILING, layout.createSequentialGroup ()
.addGap (0, 0, Short.MAX VALUE)
.addComponent (jProgressBarl, javax.swing.GroupLayout.PREFERRED SIZE, 967,
javax.swing.GroupLayout.PREFERRED SIZE))
.addComponent (jProgressBar3, javax.swing.GroupLayout.DEFAULT SIZE,
javax.swing.GroupLayout.DEFAULT SIZE, Short.MAX VALUE)
.addComponent (jProgressBar2, javax.swing.GroupLayout.DEFAULT SIZE,
javax.swing.GroupLayout.DEFAULT SIZE, Short.MAX VALUE))
.addGap (28, 28, 28))
.addGroup (layout.createSequentialGroup ()
.addGroup (layout.createParallelGroup (javax.swing.GroupLayout.Alignment.TRAILING)
.addComponent (jLabel20, javax.swing.GroupLayout.PREFERRED SIZE, 7,
javax.swing.GroupLayout.PREFERRED SIZE)
.addComponent (jLabell9
.addComponent (jLabell8))
.addPreferredGap (javax.swing.LayoutStyle.ComponentPlacement.RELATED)
.addGroup (layout.createParallelGroup (javax.swing.GroupLayout.Alignment.TRAILING, false)
.addComponent (jProgressBar5, javax.swing.GroupLayout.Alignment.LEADING,
javax.swing.GroupLayout.DEFAULT SIZE, 969, Short.MAX VALUE)
.addComponent (jProgressBar4, javax.swing.GroupLayout.Alignment.LEADING,
javax.swing.GroupLayout.DEFAULT SIZE, javax.swing.GroupLayout.DEFAULT SIZE, Short.MAX VALUE)
.addComponent (jProgressBar6, javax.swing.GroupLayout.DEFAULT SIZE,
javax.swing.GroupLayout.DEFAULT SIZE, Short.MAX VALUE))
.addGap (0, 0, Short.MAX VALUE))))
.addGroup (layout.createSequentialGroup ()
.addGroup (layout.createParallelGroup (javax.swing.GroupLayout.Alignment.LEADING)
.addGroup (layout.createSequentialGroup ()
.addGap (15, 15, 15)
.addGroup (layout.createParallelGroup (javax.swing.GroupLayout.Alignment.TRAILING)
.addComponent (jLabel22)
.addComponent (jLabel24)
.addComponent (jLabel23, javax.swing.GroupLayout.PREFERRED SIZE, 7,
javax.swing.GroupLayout.PREFERRED SIZE))
.addPreferredGap (javax.swing.LayoutStyle.ComponentPlacement .RELATED)
.addGroup (layout.createParallelGroup (javax.swing.GroupLayout.Alignment.TRAILING, false)
.addComponent (jProgressBar8, javax.swing.GroupLayout.Alignment.LEADING,
javax.swing.GroupLayout.DEFAULT SIZE, 970, Short.MAX VALUE)
.addComponent (jProgressBar7, javax.swing.GroupLayout.Alignment.LEADING,
javax.swing.GroupLayout.DEFAULT SIZE, javax.swing.GroupLayout.DEFAULT SIZE, Short.MAX VALUE)
.addComponent (jProgressBar9, javax.swing.GroupLayout.DEFAULT SIZE,
javax.swing.GroupLayout.DEFAULT SIZE, Short.MAX VALUE)))
.addComponent (jLabell
.addGroup (layout.createSequentialGroup ()
.addGap (10, 10, 10)
.addGroup (layout.createParallelGroup (javax.swing.GroupLayout.Alignment .LEADING)
.addComponent (jScrollPane2, javax.swing.GroupLayout.PREFERRED SIZE, 833,
javax.swing.GroupLayout.PREFERRED SIZE)
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.addComponent (jLabell3)))
.addComponent (jLabel3
.addComponent (jLabel2)
.addComponent (jLabel5
.addGroup (layout.createSequentialGroup ()
.addComponent (cboxPorts, javax.swing.GroupLayout.PREFERRED SIZE, 69,
javax.swing.GroupLayout.PREFERRED SIZE)
.addPreferredGap (javax.swing.LayoutStyle.ComponentPlacement.RELATED)
.addComponent (btnConnect)
.addPreferredGap (javax.swing.LayoutStyle.ComponentPlacement.RELATED)
.addComponent (btnDisconnect)))
.addGap (14, 14, 14))))
.addComponent (jLabel4, javax.swing.GroupLayout.Alignment.TRAILING, javax.swing.GroupLayout.DEFAULT_ SIZE,
javax.swing.GroupLayout.DEFAULT SIZE, Short.MAX VALUE)
.addGroup (layout.createSequentialGroup ()
.addGroup (layout.createParallelGroup (javax.swing.GroupLayout.Alignment.LEADING)
.addGroup (layout.createSequentialGroup ()
.addContainerGap ()
.addComponent (jLabell7))
.addGroup (layout.createSequentialGroup ()
.addContainerGap ()
.addComponent (jLabel6))
.addGroup (layout.createSequentialGroup ()
.addGap (25, 25, 25)
.addGroup (layout.createParallelGroup (javax.swing.GroupLayout.Alignment.TRAILING)
.addComponent (jLabel27, javax.swing.GroupLayout.PREFERRED SIZE, 7,
javax.swing.GroupLayout.PREFERRED SIZE)
.addComponent (jLabel28, javax.swing.GroupLayout.PREFERRED SIZE, 7,
javax.swing.GroupLayout.PREFERRED SIZE)
.addComponent (jLabel29))
.addPreferredGap (javax.swing.LayoutStyle.ComponentPlacement.RELATED)
.addGroup (layout.createParallelGroup (javax.swing.GroupLayout.Alignment.TRAILING, false)
.addComponent (jProgressBarll, javax.swing.GroupLayout.Alignment.LEADING,
javax.swing.GroupLayout.DEFAULT SIZE, 972, Short.MAX VALUE)
.addComponent (jProgressBarl0, javax.swing.GroupLayout.Alignment.LEADING,
javax.swing.GroupLayout.DEFAULT SIZE, javax.swing.GroupLayout.DEFAULT SIZE, Short.MAX VALUE)
.addComponent (jProgressBarl2, javax.swing.GroupLayout.DEFAULT SIZE,
javax.swing.GroupLayout.DEFAULT SIZE, Short.MAX VALUE))))
.addGap (0, 0, Short.MAX VALUE))
.addComponent (jLabell0, javax.swing.GroupLayout.Alignment.TRAILING, javax.swing.GroupLayout.DEFAULT SIZE,
javax.swing.GroupLayout.DEFAULT SIZE, Short.MAX VALUE)
.addComponent (jLabelll, javax.swing.GroupLayout.DEFAULT SIZE, javax.swing.GroupLayout.DEFAULT_ SIZE,
Short.MAX_ VALUE)
.addComponent (jLabell2, javax.swing.GroupLayout.Alignment.TRAILING, javax.swing.GroupLayout.DEFAULT SIZE,
javax.swing.GroupLayout.DEFAULT SIZE, Short.MAX VALUE))
.addGap (38, 38, 38))
)i
layout.setVerticalGroup (
layout.createParallelGroup (javax.swing.GroupLayout.Alignment.LEADING)
.addGroup (layout.createSequentialGroup ()
.addContainerGap ()
.addComponent (jLabell)
.addPreferredGap (javax.swing.LayoutStyle.ComponentPlacement.RELATED)
.addComponent (jLabel5
.addPreferredGap (javax.swing.LayoutStyle.ComponentPlacement.RELATED)
.addGroup (layout.createParallelGroup (javax.swing.GroupLayout.Alignment .BASELINE)
.addComponent (cboxPorts, javax.swing.GroupLayout.PREFERRED SIZE, javax.swing.GroupLayout.DEFAULT SIZE,
javax.swing.GroupLayout.PREFERRED SIZE)
.addComponent (btnConnect)
.addComponent (btnDisconnect) )
.addPreferredGap (javax.swing.LayoutStyle.ComponentPlacement.RELATED)
.addComponent (jLabel2)
.addPreferredGap (javax.swing.LayoutStyle.ComponentPlacement .RELATED)
.addGroup (layout.createParallelGroup (javax.swing.GroupLayout.Alignment.LEADING)
.addComponent (jLabell4)
.addComponent (jProgressBarl, javax.swing.GroupLayout.PREFERRED SIZE, javax.swing.GroupLayout.DEFAULT_ SIZE,
javax.swing.GroupLayout.PREFERRED SIZE))
.addPreferredGap (javax.swing.LayoutStyle.ComponentPlacement.RELATED)
.addGroup (layout.createParallelGroup (javax.swing.GroupLayout.Alignment.LEADING)
.addComponent (jProgressBar2, javax.swing.GroupLayout.PREFERRED SIZE, javax.swing.GroupLayout.DEFAULT_ SIZE,
javax.swing.GroupLayout.PREFERRED SIZE)
.addComponent (jLabell5))
.addPreferredGap (javax.swing.LayoutStyle.ComponentPlacement .RELATED)
.addGroup (layout.createParallelGroup (javax.swing.GroupLayout.Alignment .LEADING)
.addComponent (jProgressBar3, javax.swing.GroupLayout.PREFERRED SIZE, javax.swing.GroupLayout.DEFAULT_ SIZE,
javax.swing.GroupLayout.PREFERRED SIZE)
.addComponent (jLabell6))
.addPreferredGap (javax.swing.LayoutStyle.ComponentPlacement.RELATED)
.addComponent (jLabel4)
.addPreferredGap (javax.swing.LayoutStyle.ComponentPlacement .RELATED)
.addComponent (jLabel3
.addGap (18, 18, 18)
.addGroup (layout.createParallelGroup (javax.swing.GroupLayout.Alignment.TRAILING)
.addComponent (jProgressBar4, javax.swing.GroupLayout.PREFERRED SIZE, javax.swing.GroupLayout.DEFAULT_SIZE,
javax.swing.GroupLayout.PREFERRED SIZE)
.addComponent (jLabell8))
.addPreferredGap (javax.swing.LayoutStyle.ComponentPlacement .RELATED, javax.swing.GroupLayout.DEFAULT_SIZE,
Short.MAX VALUE)
.addGroup (layout.createParallelGroup (javax.swing.GroupLayout.Alignment.LEADING)
.addComponent (jProgressBar5, javax.swing.GroupLayout.Alignment.TRAILING,
javax.swing.GroupLayout.PREFERRED SIZE, javax.swing.GroupLayout.DEFAULT_ SIZE, javax.swing.GroupLayout.PREFERRED SIZE)
.addComponent (jLabell9, javax.swing.GroupLayout.Alignment.TRAILING)
.addPreferredGap (javax.swing.LayoutStyle.ComponentPlacement .RELATED)
.addGroup (layout.createParallelGroup (javax.swing.GroupLayout.Alignment.LEADING)
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.addComponent (jProgressBar6, javax.swing.GroupLayout.Alignment.TRAILING,

javax.swing.GroupLayout.PREFERRED SIZE, javax.swing.GroupLayout.DEFAULT_SIZE, javax.swing.GroupLayout.PREFERRED_ SIZE)

.addComponent(ELabelZO, javax.swing.GroupLayout.Alignment.TRAILING)
.addPreferredGap (javax.swing.LayoutStyle.ComponentPlacement .UNRELATED)
.addComponent (jLabell0)
.addGap (1, 1, 1)
.addComponent (jLabel6
.addPreferredGap (javax.swing.LayoutStyle.ComponentPlacement.RELATED)
.addGroup (layout.createParallelGroup (javax.swing.GroupLayout.Alignment.LEADING)
.addComponent (jLabel22)
.addComponent (jProgressBar7, javax.swing.GroupLayout.PREFERRED SIZE, javax.swing.GroupLayout.DEFAULT_ SIZE,

javax.swing.GroupLayout.PREFERRED SIZE))

.addPreferredGap (javax.swing.LayoutStyle.ComponentPlacement .RELATED)
.addGroup (layout.createParallelGroup (javax.swing.GroupLayout.Alignment.LEADING)
.addComponent (jLabel23
.addComponent (jProgressBar8, javax.swing.GroupLayout.PREFERRED SIZE, javax.swing.GroupLayout.DEFAULT_ SIZE,

javax.swing.GroupLayout.PREFERRED SIZE))

.addPreferredGap (javax.swing.LayoutStyle.ComponentPlacement .RELATED)
.addGroup (layout.createParallelGroup (javax.swing.GroupLayout.Alignment .LEADING)
.addComponent (jProgressBar9, javax.swing.GroupLayout.PREFERRED SIZE, javax.swing.GroupLayout.DEFAULT_ SIZE,

javax.swing.GroupLayout.PREFERRED SIZE)

.addComponent (jLabel24))

.addPreferredGap (javax.swing.LayoutStyle.ComponentPlacement .RELATED)

.addComponent (jLabelll)

.addGap (1, 1, 1)

.addComponent (jLabell?7

.addPreferredGap (javax.swing.LayoutStyle.ComponentPlacement .RELATED)

.addGroup (layout.createParallelGroup (javax.swing.GroupLayout.Alignment.LEADING)
.addComponent (jLabel27, javax.swing.GroupLayout.Alignment.TRAILING)
.addComponent (jProgressBarl0, javax.swing.GroupLayout.Alignment.TRAILING,

javax.swing.GroupLayout.PREFERRED SIZE, javax.swing.GroupLayout.DEFAULT_ SIZE, javax.swing.GroupLayout.PREFERRED SIZE))

.addPreferredGap (javax.swing.LayoutStyle.ComponentPlacement.RELATED)

.addGroup (layout.createParallelGroup (javax.swing.GroupLayout.Alignment .LEADING)
.addComponent (jLabel28, javax.swing.GroupLayout.Alignment.TRAILING)
.addComponent (jProgressBarll, javax.swing.GroupLayout.Alignment.TRAILING,

javax.swing.GroupLayout.PREFERRED SIZE, javax.swing.GroupLayout.DEFAULT SIZE, javax.swing.GroupLayout.PREFERRED SIZE))

.addPreferredGap (javax.swing.LayoutStyle.ComponentPlacement .RELATED)
.addGroup (layout.createParallelGroup (javax.swing.GroupLayout.Alignment .LEADING)
.addComponent (jProgressBarl2, javax.swing.GroupLayout.Alignment.TRAILING,

javax.swing.GroupLayout.PREFERRED SIZE, javax.swing.GroupLayout.DEFAULT_ SIZE, javax.swing.GroupLayout.PREFERRED SIZE)

.addComponent (jLabel29, javax.swing.GroupLayout.Alignment.TRAILING)
.addPreferredGap (javax.swing.LayoutStyle.ComponentPlacement.RELATED)
.addComponent (jLabell2)
.addGap (2, 2, 2)
.addComponent (jLabell3
.addGap (5, 5, 5)
.addComponent (jScrollPane2, javax.swing.GroupLayout.PREFERRED SIZE, 266, javax.swing.GroupLayout.PREFERRED SIZE)
.addGap (10, 10, 10))
)i

getAccessibleContext () .setAccessibleName ("MQP Demo") ;

pack () 7

}// </editor-fold>

private void btnConnectActionPerformed(java.awt.event.ActionEvent evt) {

communicator.connect () ;
if (communicator.getConnected() == true)
{
if (communicator.initIOStream() == true)
{
communicator.initListener();

}

private void btnDisconnectActionPerformed(java.awt.event.ActionEvent evt) {

communicator.disconnect () ;

}
//output the data
public void ChangeBarDatal (int input) {

}

jProgressBarl.setValue (input) ;

public void ChangeBarData2 (int input) {

}

jProgressBar2.setValue (input) ;

public void ChangeBarData3 (int input) {

}

jProgressBar3.setValue (input) ;

public void ChangeBarData4 (int input) {

}

jProgressBar4.setValue (input) ;

public void ChangeBarData5 (int input) {

}

jProgressBar5.setValue (input) ;

public void ChangeBarData6 (int input) {

}

jProgressBar6.setValue (input) ;

public void ChangeBarData7 (int input) {

}

jProgressBar7.setValue (input) ;
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public void ChangeBarData8 (int input) {
jProgressBar8.setValue (input) ;

}

public void ChangeBarData9 (int input) {
jProgressBar9.setValue (input) ;

}

public void ChangeBarDatalO (int input) {
jProgressBarl0.setValue (input) ;

}

public void ChangeBarDatall (int input) {
jProgressBarll.setValue (input) ;

}

public void ChangeBarDatal2 (int input) {
jProgressBarl2.setValue (input) ;

}

public static void main(String args([]) {
java.awt.EventQueue.invokelater (new Runnable ()
public void run() {
new GUI().setVisible (true);

1N
}

}

// Variables
public javax.
public javax.
public javax.

private
private
private
private
private
private
private
private
private
private
private
private
private
private
private
private
private
private
private
private
private
private
private
private
private
private
private
private
private
private
private
private
private
private
private
private
private
private

javax.
javax.

javax.
javax.
javax.
javax.
javax.
javax.
javax.
javax.
javax.
javax.
javax.
javax.
javax.
javax.
javax.
javax.
javax.
javax.
javax.
javax.
javax.
javax.
javax.
javax.
javax.
javax.
javax.
javax.
javax.
javax.
javax.
javax.
javax.
javax.
javax.
javax.

declaration - do not modify
swing.JButton btnConnect;
swing.JButton btnDisconnect;
swing.JComboBox cboxPorts;

swing.
swing.
swing.
swing.
swing.
swing.
swing.
swing.
swing.
swing.
swing.
swing.
swing.
swing.
swing.
swing.
swing.
swing.
swing.
swing.
swing.
swing.
swing.
swing.
swing.
swing.
swing.
swing.
swing.
swing.
swing.
swing.
swing.
swing.
swing.
swing.
swing.
swing.

JLabel jLabell;

JLabel jLabellO;

JLabel jLabelll;

JLabel jLabell2;

JLabel jLabell3;

JLabel jLabell4;

JLabel jLabell5;

JLabel jLabell6;

JLabel jLabell?;

JLabel jLabell8;

JLabel jLabell9;

JLabel jLabel2;

JLabel jLabel20;

JLabel jLabel22;

JLabel jLabel23;

JLabel jLabel24;

JLabel jLabel27;

JLabel jLabel28;

JLabel jLabel29;

JLabel jLabel3;

JLabel jLabel4;

JLabel jLabel5;

JLabel jLabel6;
JProgressBar jProgressBarl;
JProgressBar jProgressBarlO;
JProgressBar jProgressBarll;
JProgressBar jProgressBarl2;
JProgressBar jProgressBar2;
JProgressBar jProgressBar3;
JProgressBar jProgressBaré;
JProgressBar jProgressBar5;
JProgressBar jProgressBar6;
JProgressBar jProgressBar7;
JProgressBar jProgressBar8;
JProgressBar jProgressBar9;
JScrollPane jScrollPanel;
JScrollPane jScrollPane2;
JTextArea jTextAreal;

public javax.swing.JTextArea txtLog;
// End of variables declaration

{
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Appendix L: MATLAB Code

%% Graphing for MQP
clc; clear all; close all;

% Load data to graph

normData = xlsread('200N_normalforce_ abstract.csv');
COMData = xlsread('COMSOL_60Nnormal_ abstract.csv');
XshearData = xlsread('29.7N_-xshear abstract.csv');
YshearData = xlsread('29.7N_-yshear abstract.csv');

% Normal Force Data
NormxForce = normData(:,4);
NormxAxis = normData(:,1);
NormyAxis = normData(:,2);
NormzAxis = normData(:,3);

% COMSOL Normal Force Data
COMxForce = COMData(:,4);
COMxAxis = COMData(:,1);
COMyAxis = COMData(:,2);
COMzAxis = COMData(:,3);

% Shear in X Data

XshearTime = XshearData(:,4);
XshearxAxis = XshearData(:,1);
XshearyAxis = XshearData(:,2);
XshearzAxis = XshearData(:,3);

% Shear in Y Data

YshearTime = YshearData(:,4);
YshearxAxis YshearData(:,1);
YshearyAxis YshearData(:,2);
YshearzAxis = YshearData(:,3);

% Normal Force Graph

figl = figure;

plot (NormxForce,NormzAxis, 'k') ;

hold on

grid off

plot (NormxForce,NormxAxis, 'g') ;

hold on

plot (NormxForce,NormyAxis, 'b') ;

fitl = fitlm(NormxForce,NormzAxis) ;

rsql = fitl.Rsquared.Ordinary;

title ('Magnetic Flux, 200N Normal Force');
xlabel ('Applied Normal Force (N)');

ylabel ('Magnetic Flux (\muT)');
legend('Z-Axis', 'X-Axis','Y-Axis');
textstringl = sprintf('R*2 = %0.3f',rsql);
text (80,1400, textstringl) ;

hold off

% COMSOL Graph

fig2 = figure;

plot (COMxForce,COMzAxis, 'k"') ;
hold on

plot (COMxForce,COMxAxis, 'qg') ;
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hold on

plot (COMxForce,COMyAxis, 'b') ;

fit2 = fitlm(COMxForce,COMzAxis) ;

rsq2 = fit2.Rsquared.Ordinary;
title('Simulated Magnetic Flux, 60N Normal Force');
xlabel ('Applied Normal Force (N)');

ylabel ('Magnetic Flux (\muT)');
legend('Z-Axis', 'X-Axis','Y-Axis');
textstring2 = sprintf('R*2 = %0.3f',rsq2);
text (20,1250, textstring?) ;

hold off

% Shear in x Graph

fig3 = figure;

plot (XshearTime,XshearzAxis, 'k"');
hold on

plot (XshearTime,XshearxAxis,'qg');
hold on

plot (XshearTime,XshearyAxis,'b');
title('Shear in -X-Axis, 29.7N');
xlabel ('Time (s)');

ylabel ('Magnetic Flux (\muT)');
legend('Z-Axis', 'X-Axis','Y-Axis');
hold off

%Shear in y Graph

fig4 = figure;

plot (Y¥YshearTime,Y¥shearzAxis, 'k');
hold on

plot (Y¥YshearTime,Y¥shearxAxis,'qg');
hold on

plot (Y¥YshearTime,Y¥shearyAxis,'b');
title('Shear in -Y-Axis, 29.7N');
xlabel ('Time (s)'):;

ylabel ('Magnetic Flux (\muT)');
legend('Z-Axis', 'X-Axis','Y-Axis');
hold off
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Appendix M: Offset Filter Code

/* THE XOR GATE MAKES HIGH ON AND LOW OFF FOR SENSORS
Code to get data from MLX90363 sensor.

This piece of code gets xyz magnetic flux magnitudes from the
sensor. It uses a function to compute CRCs.

Arduino Uno is used as the master device and a single MLX90363
sensor 1s used as the slave.

Written by Selim Ozel, 08.14.2015
Edited and Modified by David Laovoravit,
*/

4.23.2017

#include <SPI.h>
#include <TimerOne.h>

//Include SPI Library
//Include TimeOne Library

#define NUMBER 0

#define MAXNUMTOFILTER 2000
#define MINNUMTOFILTER -2000
#define NUMOFSENSOR 4

#define LOWERBOUNDCHECK 150

int offsetData[NUMOFSENSOR];// = 0;
int previousZ[NUMOFSENSOR];

int firstRunCount =0;

//boolean firstFlag = true;
//Define and initialize CRC array,

char CRCArray[] = {//used to check correct
0x00, O0x2F, 0x5E, 0x71, 0xBC, 0x93, O0xE2,
0xEB, 0xC4, 0xB5, 0x9A, OxAE, 0x81, OxFO,
0xF9, 0xD6, O0xA7, 0x88, 0x45, O0x6A, O0x1B,
0xCF, O0xE0, 0x91, 0xBE, 0x24, 0x0B, O0x7A,
0xDD, O0xF2, 0x83, OxAC, 0Ox6l, Ox4E, O0Ox3F,
0x36, 0x19, 0x68, 0x47, 0xE6, 0xC9, O0xBS§,
0xBl, 0x9E, OxEF, 0xCO, 0x0D, 0x22, 0x53,
0OxF4, O0xDB, OxAA, 0x85, Ox1lF, 0x30, 0x41,
0x95, O0xBA, 0xCB, 0xE4, 0x29, 0x06, 0x77,
0x7E, 0x51, 0x20, 0xOF, 0x3B, 0x14, 0x65,
0x6C, 0x43, 0x32, 0x1D, 0xDO, OxFF, Ox8E,
0x5F, 0x70, 0x01, O0x2E, 0xB4, 0x9B, OxEA,
0x4D, 0x62, 0x13, 0x3C, 0xFl, OxDE, OxAF,
0xA6, 0x89, 0xF8, 0xD7, 0x90, 0xBF, O0xCE,
0xC7, 0xE8, 0x99, 0xB6, 0x7B, 0x54, 0x25,
0x82, 0xAD, 0xDC, 0xF3, 0x69, 0x46, 0x37,
0x05, 0x2A, 0x5B, 0x74, 0xB9, 0x96, OxE7,
0xEE, 0xCl, 0xBO, 0x9F, OxAB, 0x84, OxF5,
0xFC, 0xD3, 0xA2, 0x8D, 0x40, O0x6F, Ox1lE,
0xCA, 0xE5, 0x94, 0xBB, 0x21, 0x0E, O0x7F,
0xD8, 0xF7, 0x86, 0xA9, 0x64, 0x4B, O0x3A,

0x33, 0x1C, Ox6D, 0x42

bi

256 bytes

data transfer
0xCD, 0x57, 0x78,
0xDF, 0x12, 0x3D,
0x34, 0x73, 0x5C,
0x55, 0x98, 0xB7,
0x10, Ox8A, O0OxA5,
0x97, 0x5A, 0x75,
0x7C, 0x48, 0x67,
0x6E, O0xA3, 0x8C,
0x58, 0xC2, OxED,
0x4A, 0x87, O0xA8,
0xAl, OxE3, 0xCC,
0xC5, 0x08, 0x27,
0x80, 0x1A, 0x35,
0xE1l, 0x2C, 0x03,
0x0A, 0x3E, 0x11,
0x18, 0xD5, OxFA,
0xC8, 0x52, 0x7D,
0xDA, 0x17, 0x38,
0x31, 0x76, 0x59,
0x50, 0x9D, 0xB2,
0x15, 0x8F, O0xAOQ,

0x09,
0x4cC,
0x2D,
0xC6,
0xD4,
0x04,
0x16,
0xFD,
0x9c,
0xD9,
0xBD,
0x56,
0x44,
0x72,
0x60,
0x8B,
0x0C,
0x49,
0x28,
0xC3,
0xD1,

0x26,
0x63,
0x02,
0xE9,
0xFB,
0x2B,
0x39,
0xD2,
0xB3,
0xF6,
0x92,
0x79,
0x6B,
0x5D,
0x4F,
0xA4,
0x23,
0x66,
0x07,
0xEC,
0xFE,

//Pin declaration for Arudino Mega 2500

int PinSS = 53; //Set Slave Select Pin at 53

PinMOSI = 51;//Set Master Out, Slave In Pin at 51
PinMISO = 50;//Set Master In, Slave Out Pin at 50
PinSCK = 52;//Set Clock Pin at 52

PinEN = 22; //Set Slave Select Pin at 8

PinAQ = 26; //Set Slave Select Pin at 9

PinAl = 24; //Set Slave Select Pin at 10
currentState = 1;

switchNum = 1;

// Buffers to read/write MLX90363
uint8_t readBuffer[8] = {0x00, 0x00,
0x00};

uint8 t writeBuffer([8] =
0x00};

0x00, 0x00, 0x00, 0x00, 0x00,
//declare Read Buffers,
0x00, 0x00,

//declare Write Buffers,

{0x00, 0x00, 0x00, 0x00, 0x00,

// Bx,By,Bz variables

intlé_t Bx =

0;

variable as a 16 bit integer and set starting value at 0
intlé_t By =

0;

variable as a 16 bit integer and set starting value at 0

as an array comprising of 8 8 bit integers

as an array comprising of 8 8 bit integers

//declaring Bx

//declaring By
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intle_t
0;

// Error bits,

uint8_t
0;
as an 8
uint8_t
0;
as an 8
uint8_t
0;

Bz =

errorBits

CRC,

variable as a 16 bit integer and set

virtual gain and

bit integer and set starting value at 0
rollingCounter =

bit integer and set starting value at 0

CRC =

starting value at 0

rolling counter variables

Cyclic Redundancy Check as an 8 bit integer and set starting value at 0

// CRC function
uint8_ t ComputeCRC(uint8_t Byte0, uint8_t Bytel, uint8_t Byte2, uint8_t Byte3, uint8_t Byte4, uint8_ t Byte5, uint8_t Byte6) {
//Parse each byte into the CRC, pulling out of the CRC array
CRC = OxFF;

CRC = CRCArray[CRC "
CRC = CRCArray|[CRC *
CRC = CRCArray|[CRC *
CRC = CRCArray[CRC "

uint8_t

CRC = C

CRC = CRCArray|[CRC *
CRC = CRCArray[CRC "
CRC; //Flipping the Bits gets out the input that is wanted

CRC = ~
return
}

int full

[

[

[
RCArray[CRC *

[

[

CRC;

Circle=0;

Byte0]
Bytel]
Byte2];
Byte3];
]
]

;

Byted];
Byte5];

Byte6];

// Sets the send message flag
int sendMessage =
void SendFlag()//A helper method for setting messenger flag to true

{

0;

//Set a flag for message initialze to 0

sendMessage = 1;//Set a flag to 1 (true)

}

void setup() //The

{

// Mark
pinMode
pinMode
pinMode

// Make
pinMode
pinMode
pinMode
pinMode

comm pins
(PinMOSI,
(PinMISO,

setup before starting the looping program

as output or input
OUTPUT) ; //Set MOSI pin as an output
INPUT);//Set MISO pin as an input
(PinSCK, OUTPUT);//Set Clock pin as out put

the MLX90363 sensor the active slave device

(Pinss, OUTPUT) ;

(PinEN, OUTPUT) ;
(PinAO, OUTPUT);
(PinAl, OUTPUT);
digitalWrite (PinSS,
digitalWrite (PinEN,
digitalWrite (PinAO,
digitalWrite (PinAl,

LOW); //Turn
HIGH);//Turn
LOW) ; //Turn
LOW) ; //Turn

// Begin serial Comm
Serial.begin(9600) ;

off the Slave
off the Slave
off the Slave
off the Slave

//Set the baudrate to 9600

//Set Slave Select pin as an output

Select

Selectl
Select2
Select3

// Required SPI configeration to communicate with MLX90363
// Details of SPI settings can be found in "Getting Started
// Guide" [GSG],
SPI.begin();
//Initialize SPI and set SCK,MOSI,SS to outputs and SCK and MOSI asl low and SS as high

SPI.setBitOrder (MSBFIRST) ;

under "SPI bus protocol".

SPI.setClockDivider (SPI_CLOCK_DIV32);
//Set the clock to be 1/32 the frequency of the system clock
SPI.setDataMode (SPI_MODE1) ;

//SPI_MODEl =  Clock Polarity: 0

Clock Phase:

// Setup Timer for sending/receiving data
Timerl.initialize(500);//30000 //1000 ////change this to 3000 if you want to run in with JAVA//////Initialize frequency of
interrupt to 0.03 seconds

Timerl.attachInterrupt (SendFlag) ;

}

int counter = 0;

void loop ()

{

if (sendMessage)

//int

ReadPin =

/7

//trip flag every 0.03 seconds

1

{ //1If the timer interupt trips

0;

switch (switchNum)

case 1:
fullCircle=0;

currentState =

//Parsing Byte through an XOR gate to crate a CRC

(false)

//Set protocal to transmit Most significant bit first

| Output Edge: Rising | Data Capture:

(0.03 seconds)

collect data from sensor

{//switching between each sensor on the module

1;

Falling

//declaring Bz

//declaring error Bits

//declaring Rolling Counter

//declaring
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digitalWrite (PinAO, LOW) ;
digitalWrite (PinAl, LOW) ;
//ReadPin = PinSS;
if (counter >= NUMBER) {//used for adjusting how many times each sensor is run for each run through
switchNum ++;
counter = 0;
}
else {
counter++;
}
break;
case 2:
currentState = 2;
digitalWrite (PinAO,LOW) ;
digitalWrite (PinAl,HIGH) ;
//ReadPin = PinSS1;
if (counter >= NUMBER) {//used for adjusting how many times each sensor is run for each run through
switchNum ++;
counter = 0;
}
else {
counter++;
}
break;
case 3:
currentState = 3;
digitalWrite (PinAQO,HIGH) ;
digitalWrite (PinAl, LOW) ;
//ReadPin = PinSS3;
if (counter >= NUMBER) {//used for adjusting how many times each sensor is run for each run through
switchNum ++;
counter = 0;
}
else {
counter++;
}
break;
case 4:
currentState = 4;
digitalWrite (PinAO,HIGH) ;
digitalWrite (PinAl,HIGH) ;
//ReadPin = PinSS2;
if (counter >= NUMBER) {//used for adjusting how many times each sensor is run for each run through
switchNum = 1;
counter = 0;
}
else {
counter++;
}
fullCircle=1;
break;
default:
Serial.println("Error");

// Create a GET1 message. Format of messages are explained in both DataSheet
// [DS] and GSG.

writeBuffer[0] = 0x00; //this is a set up step to have the sensor be a GET1l See DataSheet

writeBuffer([1l] = 0x00;

writeBuffer([2] = 0xFF; // Timeout value is set as 65 ms

writeBuffer([3] = OxFF; // Timeout value is set as 65 ms

writeBuffer[4] = 0x00;

writeBuffer([5] = 0x00;

writeBuffer([6] = 0x93; // Marker is set as 2 to get XYZ measurement. OP Code for GET1 message: 19 in Decimal.
writeBuffer([7] = ComputeCRC (0x00, 0x00, OxFF, O0xFF, 0x00, 0x00, 0x93); // CRC

// Transfer the content of writeBuffer to MLX90363.
nolnterrupts();
digitalWrite (PinEN, HIGH);
digitalWrite (PinSS, HIGH); //PinSS1,PinSS2, PinSS3 pull the Slave Select Low turning it on
delay(10);
//delay 1 microseconds as a propagation delay to prevent errors
digitalWrite (PinAO, LOW) ;
digitalWrite (PinAl, LOW) ;
for (int i = 0; 1 < 8; i++) { //send and recived through SPI to the sensors
readBuffer[i] = SPI.transfer (writeBuffer[i]); //for loop to send out the array

//delay 15 microseconds as a propagation delay to
prevent errors
digitalWrite (PinSS, LOW); //PinSS1,PinSS2, PinSS3 pull the Slave Select High turning it off
// digitalWrite (PinEN, LOW);
delay(10);
interrupts();

// Read most significant bits and add the least significant bits.
// Do this for Bx, By and Bz. Convert unsigned readBuffer data to
// signed data !Ghetto Style -if statements-!.

String StringBx = "";
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String StringBy = "";
String StringBz = "";

Bx = (readBuffer[l] & 0x3F) << 8;

Bx += readBuffer([0];

if (Bx >= 8192) {
Bx -= 16384;

}

if (Bk<=MAXNUMTOFILTER && Bx >= MINNUMTOFILTER) {
StringBx= (String)Bx;

}

By = (readBuffer|

By += readBuffer|

if (By >= 8192) {
By -= 16384;

}

] & 0x3F) << 8;

3
2];

if (By<=MAXNUMTOFILTER && By >= MINNUMTOFILTER) {//band pass filter

StringBy= (String)By;
}
Bz = (readBuffer([5] & 0x3F) << 8;
Bz += readBuffer(4];
if (Bz >= 8192) {
Bz -= 16384;
}

if (Bz<=MAXNUMTOFILTER && Bz >= MINNUMTOFILTER) {//band pass filter

if (firstRunCount<NUMOFSENSOR*4) {//offset filter
previousZ[currentState-1]=Bz;
offsetData[currentState-1]1=0;
firstRunCount++;

}

if (abs (previousZ[currentState -1]-Bz)>LOWERBOUNDCHECK) {

offsetData[currentState-1] = offsetData[currentState-1]+ (previousZ[currentState -1]-Bz);

}

previousZ[currentState -1]=Bz;

Bz = Bz+offsetData[currentState-1];//offset data is made for general need. x[3]

StringBz= (String)Bz;

// Extract error bits EO and E1, CRC and rolling counter.
errorBits = readBuffer[0] >> 6;

CRC = readBuffer[7];

rollingCounter = readBuffer[6] & Ox3F;

// Print results to serial port. Only print them if previous
// data is read by the other end. ie: Matlab in my Laptop.

Serial.print ("N" + String(currentState) + "," + StringBx + "," + StringBy + "," + StringBz+",");

if (fullCircle==1) {
Serial.println("");
}

sendMessage = 0;

if two modules x[3][3]
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Appendix N: 3rd Iteration COMSOL Data Table

Magnetic Flux Values vs. Simulated Force Applied

X (mT) Y (mT) Z (mT) Force (N)
0.159 0.113 0.764 0
0.183 0.144 0.85 10
0.213 0.18 0.943 20
0.248 0.222 1.044 30
0.292 0.272 1.154 40
0.349 0.334 1.273 50
0.435 0.414 1.402 60
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