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Abstract 

Monitoring loading in both normal and shear directions is essential for properly treating 

diabetic foot ulcers, which arise from abnormal loading on the bottoms of the feet. Current 

technologies do not offer an affordable device that measures both normal and shear forces. To 

address this need, a novel device was created, consisting of four magnets in silicone rubber 

directly above four Hall-effect sensors. Applied forces displace the magnets and change 

magnetic flux data read by the sensors, indicating the magnitude and direction of the force. The 

sensor module was tested under a normal force of 200 N, and a 29.7 N force applied at 45 

degrees. The z-axis data increased with normal force applied, at a rate of 4 μT/N. For shear, the 

magnetic flux data for each axis trended in the same direction as the force applied on that axis. 

Two modules in series achieved an update frequency of 70 Hz. Overall, this device provides a 

proof-of-concept for relating displacement in magnetic fields to applied force in three 

dimensions. 
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Chapter 1: Introduction 

Diabetes is extremely prevalent in the United States, and is a disease of great concern. As 

of 2014, just over 9.3% of the American population had diabetes, amounting to 29.1 million 

people with this disease [1]. Diabetes is an illness that inhibits the body from using blood 

glucose effectively. There are two major types of diabetes. Type 1 Diabetes, an inherited disease, 

prevents the body from producing the insulin that is needed for cells to take up the blood 

glucose. Type 2 Diabetes is the more common form of the disease, and is not hereditary, but is 

instead acquired from lifestyle-related factors [2]. With Type 2 Diabetes, the insulin receptors on 

the cells wear out, and the body no longer takes up blood glucose effectively [2].  

Over time, diabetes exposes the body to high levels of blood glucose, which can have 

detrimental effects on a person’s health. High blood glucose causes problems in many places 

throughout the body, including the heart, brain, nerves, kidneys, and eyes [2]. One particularly 

serious effect of long term Type 2 Diabetes is diabetic neuropathy, which arises from damage to 

the nerves that causes patients to lose sensation in their extremities, especially their feet [3]. 

When experienced in the feet, the condition is known as diabetic plantar neuropathy, a harmful 

effect of diabetes that can lead to ulcerations, or open sores, on the foot. In fact, about 15% of 

people with diabetes end up developing foot ulcers [4] and as such the treatment of ulcers 

deserves attention. Indeed, in 25% of cases, diabetic foot ulcers ultimately end in amputation of 

the foot or bone removal [5]. A study by Katoulis et. al., shows that understanding the forces 

acting upon the foot is necessary for treatment of foot ulcers, as well as managing pain, 

preventing ulcers, and avoiding surgery [6]. 

In particular, shear forces on the bottom of the foot pose a significant risk of causing and 

exacerbating foot ulcers in diabetes patients. Unfortunately, a proportional amount of attention 

has not been given to plantar shear, with many earlier studies focusing instead on the ground 

reaction forces (GRFs) through the foot. Indeed, the majority of easily accessible devices used 

for the characterization of plantar forces only measure the normal forces through the foot, as 

found in a 2014 review of plantar shear in diabetes patients  [7]. Despite the maximum pressures 

exerted by shear forces being lower in magnitude than GRFs [8], repeated exposure to shear 

forces in the same area over time place patients at a high risk of plantar ulceration [9]. In that 

regard, a method to observe both normal and shear forces acting on the foot is needed in order to 
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evaluate, treat, and prevent diabetic ulcers. 

The medical field already has devices that can measure a patient’s gait cycle, normal 

forces, and even shear forces, that act upon the patient’s feet; however, these devices are either 

too invasive, too bulky for a patient to carry around, too expensive for a patient to buy, or cannot 

measure both normal and shear forces simultaneously. In order to monitor a patient with diabetic 

neuropathy, and to understand the full range of forces on the patient’s foot, the device must be 

able to measure both normal and shear forces. There is, therefore, a need for a noninvasive 

device capable of both measuring shear force and normal force on the bottom of the foot. 

As a result, we have developed a modular force sensing device that uses Hall Effect 

sensors and magnets to relate displacements in magnetic fields to forces applied in three 

dimensions. A small circuit board is populated with four Hall Effect sensors, with a magnet 

suspended above each sensor in silicone rubber, which encases the whole device. The sensors are 

able to determine the position of the magnet by measuring the magnetic field in three 

dimensions. This allows for the normal force (the z axis, perpendicular to the surface of the 

sensor) as well as the shear force (the x and y axes, on the same plane as the surface of the 

sensor) to be measured when the magnet is displaced by a force. The small size of the circuit 

board allows for the number of modules to be customized to the size of the shoe, covering the 

areas of the foot most prone to ulcers: The bottoms of the toes, the pads of the feet, and the heels, 

as seen in Figure 1 [10]. 

 

Figure 1: Location of Foot Ulcers [10] 

 The sensors on the module record magnetic flux data, which changes as applied forces 

displace the magnets. The data is then processed through an Arduino, after which it is sent to a 
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computer via the computer’s serial port. From there, the data can be post-processed using 

Microsoft Excel or MATLAB as seen in Figure 2. 

 

Figure 2: System Architecture of the MagneForce Device 

Overall, our modular force sensing device (referred to as MagneForce) serves as a proof-

of-concept for relating displacements in magnetic field to applied force in three dimensions. This 

concept can be used in a shoe pad to measure both normal and shear forces on a patient’s foot, 

the data from which can be given to a doctor to determine if the patient is at risk for a dangerous 

diabetic foot ulcer, or to determine the best treatment option for managing or preventing diabetic 

foot ulcers. 
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Chapter 2: Background 

2.1 Diabetes and the Importance of Shear Forces 

Diabetes is a serious disease, and exists in high prevalence in the United States, [1]. With 

diabetes, the body is unable to uptake blood glucose, which is normally used as a source of fuel 

for cells. Left untreated, high levels of blood glucose can lead to a wide range of detrimental 

health effects over time. Present in nearly 50% of people with diabetes, nerve damage stands out 

as one of the most noticeable effects of high blood glucose. This nerve damage is characterized 

as diabetic neuropathy [11]. 

Diabetic neuropathy manifests itself through a variety of symptoms, all of which stem 

from nerve damage. Of the most recognizable of these symptoms is numbness in the hands and 

feet. The numbness is often accompanied by sharp pains, burning sensations, and bouts of high 

sensitivity to touch. In addition, nerve damage in the feet leads to ulcerations, sores, and 

infections [12], making plantar (foot) neuropathy particularly serious. 

With regard to ulcerations, plantar shear plays a large role in their formation and 

aggravation in diabetes patients. For one, repeated shear forces actually leads to faster 

breakdown of the skin than normal forces [13]. Plantar shear also causes callouses and 

hyperkeratosis (abnormal skin thickening), both of which have been found to greatly increase the 

likelihood of diabetic ulcer formation [14]. In the context of diabetic neuropathy, understanding 

plantar shear takes on great importance. 

Since diabetic plantar neuropathy causes mobility and coordination issues that lead to an 

atypical weight distribution, people with diabetic neuropathy are at a very high risk for 

developing foot ulcers, because of the increased exposure to plantar shear [9]. For diabetes 

patients, the importance of monitoring plantar forces is twofold. First, better understanding 

plantar pressure and shear force can help to create profiles that identify individuals that are at the 

greatest risk of foot ulcers [7]. Second, treatment of diabetic foot ulcers requires constant care 

and attention, in order to keep pressure off of the wound [15], and understanding the forces 

acting at the bottom of the foot helps with that treatment. As a result, the ability to monitor the 

pressures exerted on the foot is of great importance for the management and prevention of foot 

ulcers and wounds caused by diabetic neuropathy. 
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2.2 The Gait Cycle and Plantar Forces 

Understanding the principles of human gait is essential to understanding the devices used 

to monitor gait, as well as how plantar forces relate to diabetic ulcers. A typical human walking 

cycle is defined by two major phases, following the motion of a foot from when it touches the 

ground for one step (heel strike) until it touches the ground again for its next step. The two 

phases are the stance phase (when the foot is on the ground) and the swing phase (when the foot 

moves through the air), both of which occur between heel strikes of the same foot [16]. Figure 3 

shows a basic diagram of the normal gait cycle. 

 

Figure 3: Normal Gait Cycle [17] 

Of course, as a person walks, forces are experienced throughout the bottom of the foot as 

the pressure shifts with the person’s position to support his body weight. While the foot of the 

average, healthy person usually experiences a center of pressure vector that distributes weight 

rather evenly [18, 19], this does not hold true if a person has foot problems, plays sports, or 

experiences any deviation from normal walking on a flat surface. In other words, gait varies 

widely with illness and injury.  

Understanding the gait cycle is also important in terms of understanding the impact of 

shear forces on ulcer formation in diabetes patients. Even though the greatest maximum pressure 

on the foot is exerted by normal forces, the foot actually experiences plantar shear forces twice 

during the stance phase, exposing the foot surface much more frequently to shear forces than to 
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normal forces. This phenomenon is known as the biphasic nature of gait, which can be seen in 

Figure 4. 

 

Figure 4: Gait Cycle Reaction Forces 

In the case of patients with diabetic plantar neuropathy, abnormalities exist in the gait 

cycle that cause repeated shear forces of greater magnitude than seen above, stemming from the 

lack of sensation in the feet. The abnormal loading of the foot is what contributes to the 

increased risk of foot ulcers. A large number of devices already exist to study plantar forces for 

purposes of rehabilitation, clinical diagnosis, sports, and robotics [20]. As a result, the 

examination of current technologies will provide context and reveal the needs that we can fill 

with our device. 

2.3 Current Devices 

 Gait analysis is an extremely important aspect of monitoring one’s health. Many 

entrepreneurs and businesses have seen this need and have created devices in an attempt to fill 

that need. The devices range from technologies that fit inside the shoe to external set ups. 
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2.3.1 Accelerometer Based Systems 

IDEEA 

 The IDEEA system is a Gait analysis system developed by MiniSun to help patients with 

cerebral palsy (a neuromuscular disease) as well as with sports rehabilitation [21, 22]. The device 

is comprised of 5 accelerometers that are taped on the user’s thighs, ankles, and the chest. These 

sensors are pretty small and are not wireless as seen in Figure 5. The device measures the 

accelerations across the body and sends the data to a monitoring microcontroller that is attached 

to the hip of the user. That data from the monitor is then sent to the computer where it is 

processed in a program called ActView (GaitView) so that activity and gait can be analyzed. The 

system was shown to have a fairly high amount of reliability when being used for rehabilitation, 

[21], but unfortunately seemed to have less reliability with patients with cerebral palsy, having 

specific issues with walking velocity and stride length [22].  

 

 

Figure 5: IDEEA Monitor and Accelerometer Sensors [23] 
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2.3.2 Force Based Systems 

F-Scan 

 The F-Scan System, seen in Figure 6, is by far one of the best systems on the market. It 

uses 960 sensing elements in order to collect sensor data like pressure, force and the timing of a 

gait cycle [24]. The F-Scan is useful in many different applications and industries such as; 

analyzing foot function and gait abnormalities, monitoring foot disorders, evaluating athletic 

footwear, and identifying areas of potential ulceration [24]. There are 3 different methods that 

the F-Scan can record data in: tethered, wireless, and data-logger. These 3 modes each have their 

own scanning rate and distance associated with them: the tethered mode has a scan rate of 750 

Hz within a 100 foot radius, the wireless mode has a scan rate of 100 Hz within a 328 foot 

radius, and the data-logger mode has a scan rate of 750 Hz, onto internal data, without a distance 

limit [24]. With such a large sensor array it is able to pick up forces at many of locations that 

many other systems will not be able to. Unfortunately the system lacks durability and 

repeatability and often has a higher with regards to calibration, creep and hysteresis [25]. 

 

Figure 6: F-Scan Show Insert [26] 

 

Pedar by Novel 

 The Pedar system, developed by Danish company Novel, is a product similar to the F-Scan 

device. The Pedar system is a shoe insert that uses 85 sensor elements to detect pressures of up to 1200 

kPa. The Pedar system boasts both tethered and Bluetooth capabilities, as well as local flash memory for 

data logging [27]. While this device reliably measures plantar pressures, it does not measure shear forces, 

and costs as much as $5000 [28]. 

Smart Shoes 

 The “Smart Shoes” system is one that measures force based on the pressure changes in 
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air bladders that have been built into the shoe. The pressure changes in the silicone air bladders 

are converted into measurable voltages. A strength of this system is that it has over a 97% 

repeatability for measuring normal forces. However, the “Smart Shoes” system does not allow 

for measurements of shear force and so would not be a suitable method for diagnosing diabetic 

neuropathy [29]. 

GAITRite 

 The GAITRite system is a force sensing carpet, shown in Figure 5, for modeling the 

distance of user’s stride as well as the timing between each heel strike and toe off. A drawback to 

GAITRite is that it cannot measure the user’s foot angles during the gait cycle [30]. The carpet 

itself is 60 cm wide by 360 cm long [31], which is far too large to be practical for universal, 

everyday use. Overall, the flaws in the GAITRite system make it a non-ideal system for helping 

with diabetic neuropathy.  

 

Figure 7: GAITRite Force Sensing Carpet [31] 

2.3.3 Switch Based Systems 

PAGAS System 

 The PAGAS System relies on switches at the toe and heel of the foot in order to 

determine the gait of the user [32]. The heel strike and toe off timings are measured when only 

the respective switch is activated. When both are activated, the foot is in the stance phase, and 

when neither of the switches are activated, the leg is in swing phase. The device’s primary focus 
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is measuring the different phases of the gait cycle, because of this device cannot determine the 

forces being applied or the angles at which the heel and toe strike occur, making it insufficient 

for our application. 

2.3.4 Video Based Systems 

3-D Gait and Run3 

 Running Injury Clinic’s “3-D Gait and Run3” is a video-based motion capture device 

used to track the gait cycle [33]. Using cameras, like the system in Figure 8, and specialized 

software, “3-D Gait and run” measures rotation and flex of different parts of the body, such as 

the ankle, knee, hip, and pelvis [33]. Because Gait and run only records information using video 

data, it cannot measure the forces exerted on the feet. Operating this technology properly would 

require a fair amount of expertise and cost, as well. 

 

Figure 8: 3-D Gait Camera System [33] 

2.3.5 Multiple-Approach Systems 

Shoe-Integrated Wireless Sensor System 

 The Shoe-Integrated Wireless Sensor System includes 3 orthogonal accelerometers, 3 

orthogonal gyroscopes, 4 forces sensors, 2 bi-directional bend sensors, dynamic pressure sensors, 

and an electric field height sensor [34], all of which work together to collect a comprehensive 
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amount of data. Using sensors inside and outside the shoe, the device provides a detailed picture 

of the user’s gait cycle. The system is similar in concept to our shoe insole, incorporating many 

different sensors into a single package in the shoe to measure both the gait cycle and the forces 

applied. The system’s drawbacks, however, stem from its use of force sensitive resistors (or 

piezoresistive force sensors) which are subject to creep, high hysteresis error, and low 

repeatability for force measurements. The piezoresistive force sensors are also unable to measure 

shear forces.  

2.4 Gap in Technology 

 As discussed previously, much of the technology used in gait analysis focuses on 

measuring the stride and positions of the body as it goes through the gait cycle. While this is an 

important aspect of gait analysis, there are other aspects of the gait cycle that are often left out, 

such as the measuring of shear forces applied during the gait cycle. More often than not, devices 

only take into account the normal forces acting on the foot [35]. Yet, shear forces are important 

for detecting and preventing many foot maladies, such as ulcerations, arising during diabetic 

neuropathy [9]. Many of the devices that are capable of being used to measure and monitor 

diabetic neuropathy are either too expensive, too large, or too invasive for a patient to use in the 

comfort of his or her home easily, and none measure shear forces in a compact device. 

2.5 Measuring Shear Forces 

Although there are many gait monitoring devices, most of the devices fail to measure 

shear forces, are expensive, or do not measure shear forces in an array. Diabetic ulcers arise 

when there are high pressures inside the foot, in part due to shear forces. Patients with diabetic 

plantar neuropathy are unable to feel their feet and thus do not know how much pressure they 

could be applying to their feet, causing physical damage. In order to moderate and prevent the 

development of ulcers in people with this ailment, the ability to measure shear force within a 

person’s foot is highly important [36]. 

Currently, there are a limited number of ways to accurately measure shear forces. 

However, the current solutions are either too expensive, or have problems with creep and 

deterioration over time, needing chronic recalibration. For example, the OptoForce 3D Force 

Sensor (called OMD) [37] is able to measure both force and rotation in all three dimensions, but 
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each sensor costs over 900 dollars [38].  

Another implemented solution is the use of strain gauges [39]. At the University of 

Auckland, researchers developed a triaxial-measurement shear-test device for measuring soft 

biological tissues, see Figure 9. Although effective, their device is about 25mm in size and the 

strain gauges are attached to flexible steel beams, which could lose its accuracy over time due to 

constant bending. Strain gauges themselves also need to be recalibrated regularly as their 

stiffness increases over time [40]. For our project’s purposes, it is not ideal to have regular 

recalibration, because it makes the device less user-friendly. 

 

Figure 9: University of Auckland's Strain Gauge Specification [41] 

Another solution that has been implemented is the use of strain gauge rosettes, 

investigated at the University of Cape Town (UCT) [42]. While strain gauge rosettes can 

measure shear force, they do not provide the resolution our project needs. As such, UCT uses the 

strain gauge rosettes in four main locations instead of having them in an array. As with the 

University of Auckland’s device, the rosettes use strain gauges, which require regular 

recalibrations. 
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2.6 Previous Project Iterations 

The previous iteration of this device was made by a Major Qualifying Project (MQP) 

team at Worcester Polytechnic Institute (WPI), which investigated creating a shoe pad that is 

capable of measuring normal and shear forces with Hall Effect sensors. Their main objective was 

to be able to “measure normal forces along the foot at as many points as possible” [43]. Their 

secondary objective was to measure the “shear forces at each of the points normal force is 

measured” as well as to track the foot motion in the air to determine the gait cycle. 

This previous project did accomplish the primary task of detecting normal forces with the 

Hall Effect sensors. Using Dragon Skin 10 silicone rubber, the project team was able to measure 

the normal forces acting upon the sensors with a 5.85% hysteresis level [43]. However, their 

attempt of measuring shear forces did not produce any conclusive data, and the team was “unable 

to successfully relate pressure applied to the device to the magnetic fields” [43]. The team was 

able to achieve an update frequency of 33 Hz with a sensor density of 1 sensor per cm2. In order 

for them to test for shear and normal forces, the team also designed a calibration system. 

The main area for improvement from last year’s project is the measurement of shear forces. Last 

year’s team focused mainly on the measurement of normal forces and therefore did not measure 

shear forces accurately. Since our project focuses on helping people with diabetic plantar 

neuropathy, we will be focusing on acquiring both normal and shear force measurements. 

Overall, the research on existing devices and the lessons learned from the previous project both 

established the gap in technology and contributed to our design process. 

  



14 

 

Chapter 3: Project Strategy 

3.1 Client Statement and Goal Statement 

The scope of this project stems from the client statement, which was made by the project 

team after receiving the initial task from the advisors: 

Develop and test a portable, non-invasive force-sensing array to be embedded in a shoe 

pad that can reliably measure normal and shear forces on the bottom of the foot, track the 

gait cycle, and transmit the information in a meaningful way for use in clinical and 

robotic applications. 

Using this client statement as a starting point, the project group developed a focused goal 

statement to refine the scope of the project. The project goal is as follows: 

Develop and test a portable, non-invasive gait-monitoring device that reliably 

measures normal and shear forces on the bottom of the foot, to gather information 

for use in treatment and prevention of foot ulcers resulting from diabetic 

neuropathy. 

The group chose to focus the scope of the device on the monitoring of diabetic foot ulcers due to 

the serious nature of the disease. Additionally, there are a large number of applications for a 

portable gait monitoring device that effectively measures shear; choosing to focus on the 

application relating to diabetic neuropathy helped to narrow down the scope of both the research 

and the design process. 

3.2 Objectives and Constraints 

This project is building upon progress made by a previous MQP team with the same task. 

The previous group developed a pair of 3-by-3 sensor arrays in silicone rubber that reliably 

measured normal forces, but did not reliably measure shear forces. Keeping the client statement 

and the progress from the previous project in mind, our team developed the following objectives: 

The device must have improved sensor functionality over the previous project with regard to 

shear force measurements and sensor density; it must have gait monitoring capability; it must 

also be non-invasive, reliable, safe, and affordable. Table 1 shows the objective breakdown. 
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Table 1: Objective Breakdown Chart 

Objective Breakdown Chart 

Sensor 

Functionality 

Gait 

Monitoring 

Non-Invasive Reliable Safe Affordable 

Improved Sensor 

Density 

IMU to detect heel 

and toe strikes, foot 

position 

Thin 

Low Hysteresis 

Error & High 

repeatability 

Durable 

Materials 

Cost no more 

than $750 to 

build 

Reliable Normal 

Force Measurements 

 

Wireless 

Data 

comparable to 

other devices 

Low User 

Risk 
 

Reliable Shear Force 

Measurements 

 

Portable 
Low Material 

Creep 
  

 

The major area for improvement from the previous iteration of this project is the ability 

to measure shear forces. Given the necessity of reliably measuring shear forces on the sole of the 

foot to accurately treat diabetic plantar neuropathy, our group’s primary objective, after safety, is 

to ensure that the sensor array can accurately and reliably measure shear forces. A pairwise 

comparison was done to prioritize our objectives, as seen below in Table 2. 
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Table 2: Project Objective Pairwise Comparison 
Project Objective Pairwise Comparison 

 
Sensor 

Functionality 

Gait 

Monitoring 

Non-

Invasive 
Reliable Safe Affordable Totals 

Sensor 

Functionality 
 0.5 1 0.5 0 0.5 2.5 

Gait 

Monitoring 
0.5  0.5 0.5 0 0.5 2 

Non-Invasive 0 0.5  0 0 0.5 1 

Reliable 0.5 0.5 1  0 0.5 2.5 

Safe 1 1 1 1  1 5 

Affordable 0.5 0.5 0.5 0.5 0  2 

 

The objectives in each of the rows above were evaluated against the objectives in each 

column. A score of “1” means the objective is more important than that against which it is 

compared, a score of “0.5” means the objectives are equally important, and a score of 0 means 

the objective is less important. Upon evaluation of the project objectives, safety is the most 

important, followed by sensor functionality and reliability of the device. The “non-invasive” 

objective ranked last because without the capacity to accurately and reliably measure the forces 

on the foot, the size of the device is almost irrelevant. 

A number of constraints play a part in this project as well. For one, the size of the final 

product is limited by the size of the shoe that it is designed for. Additionally, the price for 

development of the project must fit within the team’s budget, which is $750. Time is also a 

constraint, as the team must complete all the research and development into the time frame of 

one school year. Finally, the device must be safe to use above all else, ruling out solutions that 

may appear easier but involve greater user risk. 
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3.3 Project Approach 

Our project is divided into three major phases: research, prototyping, and testing. The 

tasks planned throughout these phases were plotted in a Gantt chart (Appendix A). The first stage 

of our project was dedicated to researching and understanding the problem, as well as 

understanding the progress made by the previous MQP team. The second phase of our project 

involved assembling and troubleshooting the circuit board used for the sensor module. This 

phase involved assembling a 5V circuit for a 2-by-2 sensor array, and troubleshooting iterations 

with different circuit components (i.e. multiplexer and XOR gate). The building phase also 

included iterating through several versions of a mold used to encase the circuit board and 

magnets in silicone rubber. The final testing phase included designing tests to validate the sensor 

functionality. The tests were directed at showing the sensor module could serve as a proof-of-

concept for detecting normal and shear forces. This phase also included a brief review of the 

design objectives and a cost analysis in preparation for the final presentation. The following 

section describes the product design process in detail. 
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Chapter 4: Design Process 

Our goal was to create a portable, non-invasive force sensing device that reliably 

measures normal and shear forces on the bottom of the foot, to aid in the treatment and 

prevention of diabetic foot ulcers. We are aiming to address the needs brought to attention by the 

previous project, while adding innovations to increase reliability and accuracy. This chapter 

details the processes behind the design of the product, as well as the thoughts behind their 

alternate variations. 

4.1 Needs Analysis 

 Keeping the project objectives in mind, the key features of the shoe pad device were 

considered, as a way of evaluating what type of work needs to be accomplished, and also as a 

way of driving the design of the product. The three major needs discussed here are measuring 

normal and shear forces, creating a modular system, and ensuring the device is safe. 

4.1.1 Detecting Normal and Shear Forces 

 Working with the knowledge of the system created by the previous MQP group [43], it 

was clear that shear forces must be prioritized as the focus of our project in order to properly 

measure them. Normal force required attention as it also plays a part in correctly diagnosing foot 

ulcers. The device for this project will use Hall Effect sensors to measure the displacement of a 

magnetic field to detect normal and shear forces. While normal forces act perpendicular to the 

bottom of the foot, shear forces act in the same plane as the bottom of the foot. When occurring 

at the same time, the combination of forces are applied in the x-, y-, and z-planes. The 

application of these forces to a magnet will thus cause displacements in the magnetic field in 

three dimensions, which are picked up by the Hall Effect sensors. 

 Magnetic interference plays a large part in ensuring the sensors are able to send read the 

correct data values. If one of the magnets affect the sensors that are not directly below it, then it 

will interfere with the device’s ability to read multiple points of data. In order to ensure this 

would not affect the device, the minimum distance of separation between sensors and magnets 

needed to be determined. 

 The rotation of the magnet also needed to be controlled. If the magnets rotate within the 
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silicone rubber, then the consistency of the data is diminished. To address this, anti-rotation 

measures were taken during the design of the device. This is especially important so that the 

magnet does not change angles whenever force is applied to the system.  

4.1.2 Creating a Modular System 

 A modular design is desirable as it allows for greater flexibility in application. In order 

for this modular design to be achieved, the device must take up a small area and it must have a 

circuit that can support such a design.  

 A small module allows for many sensors to be placed in a single area. This would allow a 

custom design for the array of the sensors and maximize the sensor density without having to 

conform to only one size. This is extremely useful in the prototyping stage before a marketable 

device has been decided upon and allows for many different applications outside of just in a shoe 

pad. 

 An ideal circuit design allowed for all of the modules to be run in parallel as more 

sensors will be reading data at once, thus increasing the frequency rate that the device send data. 

Another ideal trait of this circuit is that it would not add many additional input/output lines to the 

total system. This is because it would allow for the maximum number of modules to be 

connected. 

4.1.3 Device Safety  

 A safe device was designed so that it can support the weight and forces that would be 

applied on the device without injuring the user or affecting the device’s ability to properly 

function. In order to do this, the circuit was encased in silicone rubber to protect both the user 

and the device. The best silicone would have a stiffness that allowed for the applied forces to 

create a displacement in the magnets without compromising the integrity of the circuitry. 

4.2 Design Alternatives 

Many designs and ideas were considered during the brainstorm of our project. While they 

may be an excellent ideas not all of them made it to the final design. In this section we discuss 

some of the alternative designs that had been discussed over the course of the project. 
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4.2.1 3-by-3 Module 

 Last year’s MQP team had developed a large 3-by-3 array, seen in Figure 10 (see 

Appendix B for more details), which would be placed at 2 different locations of the shoe pad, the 

front and the back of the foot, allowing for a total of 18 data points at any given time. These two 

locations were likely prioritized to help detect the toe off as well as the heel strike phases of the 

gait cycle. 

This sensor array comprised of both a rigid circuit board and a piece of silicone with 

magnets embedded inside. The circuit used Melexis position Hall Effect sensors 

(MLX90363EDC-ABB-000-SP) in order to detect the changes in magnetic field as the user 

applies forces to the silicone. The silicone would act as a cushion to help provide a more 

comfortable insole for the user as well as protect the circuit underneath.  

The circuit board was created using the 3.3-volt design found in the Melexis sensor 

datasheet as a reference. For the 3-by-3 array the team wired all 9 sensors in parallel allowing all 

of the sensors to gain the required 3.3 volts to operate. 

 

Figure 10: Early 3-by-3 Sensor Unit Arrangement 

The decision to decrease the array from a 3-by-3 to a 2-by-2 module was mostly guided 

by the area the array would take up. Using last year’s 3-by-3 array as a reference, we noticed that 

the size of the 3-by-3 circuit board did not maximize the amount of sensors that could potentially 

be placed in a shoe. By decreasing to a 2-by-2 module, the size of the PCB decreased 

dramatically, allowing for greater potential to at least place modules in the areas of most frequent 
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ulceration [10], see Figure 1 in Chapter 1. 

4.2.2 Protrusions around the magnets 

As previously mentioned the rotations of the magnets was going to be an issue that 

needed to be addressed. One possible solution to prevent magnet rotation is to create protrusions 

around the magnet, see Figure 11 for an image of the protrusions. These acrylic protrusions 

would be positioned along the centers of each face of the magnet, see Appendix B for more 

details. The acrylic protrusions could have holes or porosities, allowing the magnets to “grip” the 

silicone around it, and preventing the magnets from rotating within the silicone. With this design, 

the magnets’ positions are not restricted, because the movement along the magnets’ axes are not 

restrained. Since the material of these protrusions are made from acrylic, the structure would also 

not interfere with the magnetic fields being detected by the Hall Effect sensors 

.  

Figure 11: Design of Protrusions Holding the Magnets 

While testing the previous MQP’s design we found that the acrylic plates they used to 

surround the magnet in one plane was enough to keep the magnet from rotating and misaligning. 

The design of using a single plate is much more simplified than the using the multiple 

protrusions and so was the design used in the final design of the device. 
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4.2.3 Multiple Sensors per Magnet 

 Another design that was explored was allocating more sensors to each magnet. This 

design was an attempt to detect shear forces more accurately. Magnetic fields are polar in that 

they have a North and South poles. If sensors are strategically placed around the magnet on the 

circuit board, then the change in x and y axes (parallel with the circuit board) can be detected 

more easily. As the magnets leaned to one direction at least one of the Hall Effect sensors would 

detect a larger value than the others. By comparing these values we may determine the direction 

of the shear force as well as the magnitude of the force. 

 Some of the orientations can be seen in Figure 12. 1-4 sensors per magnet designs were 

considered as well as their potential orientations. A greater sensor to magnet ratio seemed to be 

superfluous and unnecessary.  

 

Figure 12: Sensor Arrangement CAD Model Representation 

Through initial testing, it was discovered that one sensor was sufficient in detecting the 

changes in magnetic flux values as long as the north and south poles were perpendicular with the 

surface of the sensor. This allowed for the best case scenario of having a 1-to-1 sensor to magnet 

ratio, thus allowing for the greatest force measurement density possible. 

4.3 COMSOL Simulation 

We used COMSOL Multiphysics version 5.2 to validate our designs by simulating both 

the physical and magnetic properties of the sensor assembly. By applying forces in the model, 

the displacement of the magnets can be simulated, and the expected magnetic field 
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measurements at the sensor locations can be recorded. In this way, the “ideal” response can be 

compared to the actual response from raw testing data. A detailed description of the numerical 

simulation we used for testing can be found in Chapter 6. 
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Chapter 5: Final Design 

 Our final design is a modular 5V circuit design with a 2-by-2 array of Hall Effect sensors 

on top, making use of a multiplexer and XOR gates to connect all 4 sensors to a single output. 

The following sections detail the decisions made to go from the alternative designs to the final 2-

by-2 modular design. The final module, along with the system architecture, are in Figure 13 

below. 

 

Figure 13: Final MagneForce Module and System Architecture 

5.1 Electrical Component 

Circuit Model 

 Found in the datasheet for the Melexis Hall Effect Sensors [44] are circuit designs for 

using either a 3.3 V or 5 V power input. The main difference between the two circuits, besides 

the input voltage, is the wiring of the capacitors. The 3.3 V circuit uses a single 100 nF capacitor 

to prevent power surges. The 5 V circuit recommends a 47 nF capacitor to prevent power surges 

as well as a 100 nF capacitor to act as a decoupling capacitor which filters the signals.  

 The 5 V circuit was chosen for the final design because of the advantage of decoupled 

signals and because 5 V is more commonly used than 3.3V for logical operations in 

microcontroller units. 

Analog Multiplexer usage 

 An analog multiplexer (MUX) (ADG704) was added to the final design of circuit board. 



25 

 

This decision was made to minimize the amount of inputs and outputs that would be required for 

the device. The MUX controls which sensor the controller gathers data from. The MUX allows 

us to send one signal for the slave select from the controller and then program which sensor it 

will activate. This is controlled through the A1 and A0 lines on the MUX. These take in a binary 

command to switch from the first to the fourth sensor. These lines can be wired up with other A1 

A0 lines from other modules as they simply allow the sensor data to be cycled from one to the 

other.  

 To increase the modularity of the circuit, the enable pin was wired to the input voltage. 

When the enable pin is powered the MUX is given power, but does not send data until the slave 

select pin is also given power. This allows for the same functionality without needing as many 

inputs and outputs to the system.  

The integration of the MUX allows the initial module to require 3 pins (A0, A1, and the 

Slave Select pin) and only one additional pin, the slave select pin, for each subsequent module. 

This is a big improvement from requiring 4 pins for each module, one from each additional Hall 

Effect sensor. 

XOR Gate 

 An XOR gate was necessary in order for the sensor signals to be properly read. This is 

because all of the Hall Effect sensors are active LOW meaning they are turned on when their 

slave select pin is not given power and turned off when they are given power, With just a MUX, 

we are only able to send a logic HIGH signal to a single sensor while the other three sensors are 

not given a signal. This resulted in 3 sensors being active at the same time.  

An XOR gate was implemented between the sensors and the MUX to reverse the sensor 

inputs that were going to the Hall Effect sensors. This is done by powering the other side of the 

XOR gate so that when a positive signal is sent from the MUX it results in a LOW signal to be 

sent to the desired sensor, while the others will be getting a HIGH signal. This results in only one 

sensor reporting data while the others remain inactive. 

Final Circuit Design 

 The final circuit was created using Eagle. This board is 29.8 mm in width and 39.0 mm in 

length. Figure 14 shows an image of the schematic used for the wiring of the circuit as well as 
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the board layout. One of the largest guiding factors in determining the size of the module was the 

distance the magnets needed to be from each other in order to prevent magnetic interference. 

Based on calculations made by previous groups (last year’s MQP team as well as MSc students 

within WPI Soft Robotics Lab working on a similar project, Anand Ramakrishnan and Anany 

Dwivedi) the magnets need a separation of at least 15 millimeters in order to avoid magnetic 

interference. 

The following package sizes were used for their respective components on the board: a 

SOIC-8 package was used for the footprint of the Melexis sensors, a modified µSOIC-10 was 

used for the MUX, a DIL14 package was used for the XOR gates and a 0805 package was used 

for the capacitors. The circuit board includes a section for an 8 pin through-hole female 

connector allowing for it to be more easily wired to the controller.  

 

Figure 14: Schematic of Circuit Wiring (left) and Board Layout (right) in Eagle 

 As mentioned previously the magnets must be at least 15mm from each other. This in 

turn means that the Hall Effect sensors must also be at least 15mm apart from each other. This 

was the main factor that contributed to the size of the circuit board. 

 Once the circuit board had been designed, Gerber files were created and sent to 

SeeedStudio, a PCB manufacturing company, and the electrical components (Melexis Hall Effect 
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sensors, MUX, XOR gates, 47 nF and 100 nF capacitors, and connector pins) were ordered from 

Digikey, a distributor of electrical components. When all the components had come together they 

were soldered onto the board, seen in Figure 15.  

 

Figure 15: Unpopulated (left) and Populated (right) PCB 

5.2 Mechanical Component 

 In order to house the magnets needed for the device, as well as to protect the device from 

external forces, Dragon Skin 30 silicone rubber is used to encase the magnets and the board. In 

this section the design and molding processes are described. 

Molding Process 

In order to create the silicone used for the module, a mold must first be created. A 3D 

printed mold was also created so that the silicone piece of the device could be molded. The 

silicone requires a multi-step process in order to be properly made. The first step creates most of 

the mold which includes a base as well as wells, or holes, in the silicone. Once this step is 

completed, the top of the mold would be removed, the magnets would be placed inside and more 

silicone would be molded on top, locking the magnet in place. The full procedure can be found 

in Appendix C.  

Final Mold Design 

The final mold design can be seen in Figure 16 (see Appendix D for more details). It was 

largely modified from the previous MQP team’s 3-by-3 mold. The spacing between the wells is 
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the same as spacing required for the magnets (15mm). A magnet embedded in a 5mm square 

acrylic plate will be placed inside the well before it is sealed back up with silicone during the 2nd 

stage of the molding process. The mold was created so that there would be at least 6mm of 

silicone between the Hall Effect sensor and the magnet. This was done to ensure that the Hall 

Effect sensors would not become over saturated when force is applied to them, as they were in 

previous iterations of the silicone. 

 

Figure 16: 3D Printed Silicone Mold 

5.3 Software Component 

The software is the third key component to this project. The software portion is divided 

into two main sections:  Reading data onto the Arduino microcontroller board, and storing and 

displaying data. 

Arduino is used to initialize and manipulate the controller and sensors in order for them 

to function properly and collect the data from the sensors as intended. Since this project is based 

on last year’s project, many properties and code sections were inherited from them.  

One such example is the CRC (Cyclic Redundancy Check) that was written by Selim 

Ozel (a PhD student in WPI Soft Robotics Lab) and was used in last year’s code. The CRC is an 

error detection code that helps prevent data corruption. CRC works by having a set number to 

divide by and the remainder is used to check if the output has the same remainder upon 
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calculation, which is all done in binary. A lookup table makes the check much faster and none of 

the calculations have to be performed in real time.  

The other section that was reused from last year’s project was the message sent and 

conversion that splits the receiving data into the three different axes, Bx, By, and Bz. The 

message itself follows the initialization and data query from Hall Effect datasheet [44]. 

Originally the code was written using a for-loop to iterate through the different slave 

select pins and the sensors as a result; however, our team decided to use a state-machine instead, 

switching between the states which corresponds to each sensor. This helped with our final 

iteration in which we moved the slave select switching into the hardware with a MUX for each 

module. Each of the four slaves routes to each of the four states. Data collection is done at this 

stage of the process and are retrieved through the MISO line. This data is then filtered using a 

bandpass filter as well as an offset filter. The processed data that enter the computer through the 

Serial line is then parsed through one of the three options. 

In one instance, the data can be retrieved from the Serial Line and be shown on the 

Arduino’s Serial Monitor. This was used mainly for debugging the code and being able to see the 

output stream. It’s simple; however it provides no functionalities other than displaying data. 

In another case, the data can be retrieved through the Serial Port and pushed through 

PuTTY. PuTTY is a terminal emulator application software that can help display and record data 

as well as other things like SSH (Secure Shell) into a network, like WPI’s CCC machine. But 

using this program to read the data coming in from the Serial Port with the same Baud Rate, the 

data can also be stored straight into a .txt document, by logging the data. We import the data 

from the .txt file into a graphing tool like Microsoft Excel or MATLAB. By graphing the logged 

data, we are able to determine the trends that are not as clearly seen in a Serial Monitor display. 

Finally, the data can be parsed from the Serial line into a Java GUI (Graphic User 

Interface) and displayed using graphical means as seen in Figure 17. In our case, we used a 

progress bar to show how the data is responding to the forces applied. 
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Figure 17: Screenshot of Java GUI in Action  
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Chapter 6: Methodology 

The purpose of testing and calibrating the sensors was to determine the viability of the 

2x2 module to serve as a proof of concept for relating displacement of embedded magnets to a 

force vector applied in three dimensions. The results were analyzed qualitatively to confirm 

trends in data that correlated to the direction and relative magnitude of the force applied. The 

normal force data was also compared to a COMSOL simulation to confirm its accuracy. 

6.1 Load Cell Description 

 Force testing was performed on an Instron 5544 electromechanical uniaxial testing device 

equipped with a 2000 Newton (N) load cell with a linearity of 0.1% (i.e., ±2 N). The Instron 

allowed for a uniform distributed force to be applied to the top face of the sensor module. An 

image of the testing device can be seen in Figure 18. 

 

Figure 18: Instron 5544 Uniaxial Testing Device 

6.2 COMSOL Simulation 

As a means of validating our designs, we used COMSOL Multiphysics version 5.2 

(Classkit License) to simulate the response of the sensor array. Using the Multiphysics model to 
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simulate both the physical deformation and magnetic fields involved with the sensor array, the 

“ideal” behavior of the sensors under various loads could be observed and compared to the actual 

raw data collected from the sensors. In general, the model steps through different loads applied 

to the magnets in the silicone rubber body, recording their physical displacement, along with the 

resulting magnetic flux values at the point where the Hall Effect sensor is located. By comparing 

the simulated magnetic flux values to the actual data given by the sensors, the accuracy of the 

device could be confirmed during calibration. 

The COMSOL model was made using the CAD tools from within the program. Because 

the program slows down when the complexity of the model increases, a simplified version of our 

final silicone mold was used, while retaining the proper spacing between the magnets and the 

sensors. As determined by the WPI Human Augmentation Lab, the magnets were kept 15 mm 

apart from each other, and suspended 6 mm above the Hall Effect sensors to help prevent data 

saturation. The early iterations of the COMSOL model design can be seen in Appendix E. The 

most recent model can be seen in Figure 19. 

 

Figure 19: Simplified COMSOL Model of the Sensor Module 

With the geometry of the sensor array created, physical and magnetic properties were 

assigned to the model for the silicone and the neodymium magnets. The hyperelastic behavior of 

the silicone was defined using a 3-parameter Ogden material model, with coefficients obtained 

from Ecoflex 0030 silicone rubber. To simulate the behavior of the array under varying forces, 

two studies were set up in the model. The first study used a parametric sweep to step through a 
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range of specified loads, while the second study plotted magnetic flux density at each of the 

same loads. A full list of material parameters and properties used in the COMSOL simulation is 

located in Appendix F. For each of the following testing protocols, an identical simulation will 

be run in COMSOL to provide results to compare against the raw data. 

6.3 Force Testing 

Different procedures were followed for normal force testing and shear force testing. The 

forces for each test were determined from weight calculations based on an overweight male of 

height 5’10” and a US size 10 shoe. In both cases, once the appropriate forces were applied, data 

was recorded using the Arduino Mega and logged by PuTTY, a data logging software. This data 

was then sent out as a text file (.txt), after which it was processed using Microsoft Excel. 

6.3.1 Force Calculations 

Taking the average height of a male in the US to be about 5’10” [45], the weight of an 

overweight individual was determined to be about 90 kg or 883 N, based on ideal body mass 

index for a male of that height [46]. The area of the bottom of a size 10 foot was estimated to be 

523.75 cm2, using the bottom of a US men’s size 10 shoe as reference [47]. The details of the 

foot area calculation can be found in Appendix G. Two different calculations were performed to 

determine the maximum normal force and shear force to apply to the sensor module. Using the 

determined body weight and foot area, the pressure on the foot due to normal force was 

calculated. This pressure was multiplied by the area of the 2-by-2 sensor module to determine the 

maximum normal force to apply. A safety factor was applied to account for non-even 

distribution of forces under the foot. The normal force determined for testing using this method 

was 200 N.  

For shear forces, the max shear force was taken to be 15% of the person’s body weight 

[48, 49], and assumed to cover 25% of the sole of the foot at one time. This information was then 

used to find the shear pressure exerted on the foot, which was used with the area of the 2-by-2 

module to calculate the maximum shear force to apply. The shear force determined for testing 

using this method was 19.56 N. The maximum force calculations can be seen in Appendix H.  

6.3.2 Normal Force Testing 

Normal force testing was performed by applying an evenly distributed normal force on 
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top of the module using the Instron 5544 Uniaxial Testing Device. This force ramped up from 0 

N to 200 N at a rate of 200 N/min. Data was collected from each of the four Hall Effect sensors, 

and the relationship between magnetic flux and applied force was observed. This test was 

performed three times, and the data was compared to a simulation run in COMSOL. Due to 

restraints on the finite element model, the COMSOL simulation was only able to run a 60 N 

normal force test using a ‘coarser’ mesh. Figure 20 shows how the normal force testing was set 

up. 

 

Figure 20: Normal Force Testing (left) and FBD of Normal Force Testing (right) 

6.3.3 Shear Force Testing 

Shear force testing was done by applying a 21 N normal force and using weights to create a 21 N 

shearing force. The weights were hung over the edge of testing area so that they would be pulling 

on the module in a perpendicular angle from the normal force. With the 21N normal force and 

horizontal force applied simultaneously, the resultant force acting upon the sensor was 29.7 N at 

a 45 degree angle. During the shear force testing, the applied force was held constant for 5 

seconds. While the applied force for shear testing was greater than the maximum force calculated 

in Section 5.3.1, it was the closest option given the limited amount of weights available for 

testing. Figure 21 show the free body diagram and setup used for shear force testing. Near the 

end of the project, arbitrary shear forces were also exerted on the sensor module to confirm the 

validity of the x-axis readings, which were incorrectly recorded during one testing session. These 

results are also included in the next chapter. 
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Figure 21: FBDs of Shear Force Testing 

 An apparatus was created to ensure that the module would only move in the desired 

direction. Figure 22 shows the apparatus (see Appendix I for more details) . This was designed 

so that the module can be placed in multiple orientations, allowing for testing in the positive and 

negative directions of the x and y axes. Due to difficulties with the COMSOL model becoming 

unstable when simulating shear forces, no COMSOL data was available for this test. 

 

Figure 22: Apparatus used for Shear Force Testing 

6.4 Testing for Modularity 

 In order to test the modular design of the MagneForce circuit, 2 modules were connected 

by wiring all of the input and output lines of the modules together, except for the slave select line 

on the MUX. This allowed for all the data to be received from all of the different sensors, which 
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would not report data unless their slave select pin was chosen. This test was run to confirm if 

multiple modules could collect data in series. An image of the experimental setup is found in 

Figure 23 and the Arduino code for the test can be found in Appendix J.  

 

Figure 23: 2 Modules Connected for Modularity Testing 

6.5 Data Analysis 

6.5.1 Normal Force Data 

Normal force data was processed first using Excel to visualize the magnetic flux data 

graphically. To do this, data was parsed from Arduino into a PC through the Serial line. The data 

was then collected from the Serial line using PuTTy, which then logged the data into a .txt file 

upon closing. From there, the .txt file was imported to Excel. This imported data was separated 

by columns using the ‘,’ as a delimiter and separated by rows using the new line character ‘\n’ 

for the delimiter. Once the data was in the Excel file, a line graph was then plotted for each axis 

of each sensor, plotting magnetic flux (in microtesla units) against applied normal force (in N). 

The trends from the graphs were compared qualitatively to the 60 N normal force simulation 

produced by the COMSOL model. A Java GUI was also developed to display the data; however, 

this program had a high input lag and could not be used in real time. A description of the 

program, along with the code, can be found in Appendix K. 

To further confirm the accuracy of the normal force data, the data were processed using a 

custom code to graph each test and run a linear regression on the data. From the linear 

regression, R-squared values for both the raw data and COMSOL model were calculated. The R-

squared values were used to compare the similarity in trends between the two data sets. The 
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MATLAB code used in this analysis can be found in Appendix L. 

6.5.2 Shear Force Data  

 Shear force data was also processed using Excel. Magnetic flux was graphed against time 

for the shear force tests, as only a single force was applied for a period of time. The trends in the 

data were observed qualitatively to determine if the direction of the shear force applied was 

represented. 

6.5.3 Data Filtering 

Due to the amount of noise in the system, a band pass filter is applied when data is 

collected by Arduino. This filter eliminates spikes that are over 2000 μT and under -2000 μT. 

These numbers are chosen because values over and under 2000 μT indicate saturation of the 

sensors, and such values are unusable. 

Data from the Z-axis showed irregular shifts in the value output. To remedy that, an 

offset filter was applied right after the band pass filter to adjust for shifts in z-axis data, see 

Appendix M. This filter offsets values that represent jumps larger in magnitude than 150 μT 

(determined manually as a value unreasonably high to represent natural progression of loading) 

and this reduced the effect of the jumps. This value used, however, will need to be tuned for each 

module, as each set of sensors behaves differently.  
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Chapter 7: Results 

This section details the results of the normal force and shear force tests performed on the 

final sensor module. These results include data from the 60 N COMSOL simulation, the 200 N 

normal force tests, and the shear force tests with the 29.7 N force applied at a 45 degree angle. 

7.1 COMSOL Results 

As mentioned in the previous chapter, the COMSOL simulation was only run up to a  

60 N normal force, as the model would crash at greater forces, as well as under shear loading. 

While unfortunate, the latest iteration provided a sufficient trend to compare to the raw data as 

well as to run a linear regression. Figure 24 shows the model under a 60 N normal force, and 

Figure 25 gives the graph of simulated magnetic flux in microtesla versus applied force. 

 
Figure 24: COMSOL Model under a 60N Load 

 

 
Figure 25: Simulated Magnetic Flux (Ecoflex 0030 Silicone) Rubber 
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As seen in the graph above, magnetic flux increases from roughly 750 μT at 0 N to 

roughly 1400 μT at 60 N of normal force. The x- and y- axes also increase to a much lesser 

degree, both from roughly 100 μT at 0 N to about 400 μT at 60 N. The red line on the graph 

indicates the linear regression on the z-axis data, and the R-squared value for the z-data is 0.995, 

indicating a strong linear trend between magnetic flux in the z-axis and the amount of force 

applied. Data from the COMSOL simulation can be found in Appendix N. 

7.2 Normal Force Results 

 For the 200 N normal force test performed on the sensor module, magnetic flux in the z-

axis also increased with increasing normal force applied. A representative graph from a single 

sensor is shown in Figure 26.  

 

Figure 26: Data from 1 Sensor during Normal Force Testing (Dragon Skin 30 Silicone Rubber) 

 As shown by the graph above, magnetic flux in the z-axis of the sensor increases from 

roughly 700 μT at 0 N of applied force to about 1500 μT at 200 N of applied normal force. The 

x- and y- axis data experienced minimal change with increasing force, with the y-axis staying 

close to 0 μT and the x-axis close to 75 μT. The red line on the above graph indicates the linear 

regression, with the calculated R-squared value being 0.971, indicating a strong linear increase in 

z-axis magnetic flux with increasing normal force. In addition, the data experiences small jumps 

of roughly 50 μT throughout. The magnetic flux response was also consistent across all four 

sensors, as seen in Figure 27. 
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Figure 27: Normal Force Testing Data for all 4 sensors on the module during 1 trial 

Across all four sensors for the same normal force trial, magnetic flux in z increased with 

increasing normal force applied, while the x and y axes remained relatively constant. 

7.3 Shear Force Results 

 For the shear tests performed with a constant 29.7 N force applied at a 45 degree angle to 

the XY-plane, there were consistent trends in magnetic flux indicating the direction of the 

applied force. Representative graphs for one sensor tested in the negative y and the negative x 

directions are shown in Figure 28 A graph for the arbitrary shear force applied in the positive x-

direction (to confirm functionality in that direction as described in Section 5.3.3) for the same 

sensor can also be found in Figure 29. 
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Figure 28: Shear Force Graphs in the Negative x (left) and Negative y (right) Directions. Boxes Show when Force was Applied 

and Removed 

 

Figure 29: Shear Force Data for the Negative (left) and Positive (right) x Direction 

The data from the shear testing shows a consistent trend in magnetic flux in the direction 

of the applied force. This is true in both the positive and negative directions along both the X- 

and Y-axis. In each direction (for the 29.7 N force), the change in magnetic flux when the shear 

force was exerted was about 100 μT in each respective axis independently. Moreover, each axis 

that does not have forces applied does not show any significant changes in terms of magnitude of 

their flux readings. For example, when the shear force was applied in the negative x-direction, 

the magnetic flux readings along the x-axis decrease by about 100 μT; the y- and z- axes stay 

relatively consistent, with minimal changes of about 10 μT occurring in the z-axis. The jumps in 

sensor data are further discussed in Chapter 8.7.2.  
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7.4 Modularity Results 

The modules were tested to see if all 8 sensors on two modules would be able to report 

data individually. These modules were wired together as previously stated in Chapter 6. When 

tested, the sensors all reported data independently of each other when they were called upon to 

do so, as illustrated in Figure 30. 

 

Figure 30: Data Log of 2 Modules Running in Series 
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Chapter 8: Discussion 

 Overall, our results indicate that our MagneForce module serves as a proof-of-concept for 

relating change in magnetic field to the magnitude and direction of force applied. This section 

discusses the biggest implications of our results as well as how the final product matched up to 

our matrix of objectives from Chapter 3. 

8.1 COMSOL Model 

 As mentioned in the previous two chapters, the COMSOL model was somewhat limited 

in that it would crash under high loads and shear forces. While working with the model, it 

became clear that as the complexity of the model increased, the simulation had greater difficulty 

running through completion. As a result, the geometry needed to be simplified, and the 

simulation needed to be run using a ‘coarser’ mesh in order to acquire a satisfactory trend. While 

these modifications reduce the accuracy of the simulation, they were necessary to create a 

functional model in the first place. Additionally, the resulting simulation was appropriate for an 

initial validation of our device. Future iterations of this project will require more time to be spent 

with the COMSOL program in order to build a more stable model in COMSOL that can simulate 

higher normal forces as well as shear forces. 

8.2 Normal Force Data 

As demonstrated by both the COMSOL simulation and the experimental normal force 

data, the magnetic flux in the z-axis increases with increasing amounts of normal force applied. 

For both the COMSOL model and the sensor data, the R-squared values were 0.995 and 0.971, 

respectively, indicating strong linear trends for both sets of z-axis data. The similarity of the R-

squared values confirms the similarity in z-axis trends between the experimental data and the 

COMSOL model. 

However, while the R-squared values are close, indicating similarity, the slopes of the z-

axis between the experimental data and the COMSOL data are not the same. The COMSOL 

simulation increases from 750 μT at 0 N to roughly 1400 μT at 60 N (~10.8 μT/N), while the 

data in Figure 26 increases from 700 μT at 0 N to roughly 1500 μT at 200 N (~ 4 μT/N). This 

difference likely results from the material properties of the COMSOL simulation. The COMSOL 

model used the mechanical properties Ecoflex 0030 silicone rubber, as the coefficients for the 
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Ogden hyperelastic model for that material were readily available. Our MagneForce module, on 

the other hand, used Dragonskin 30 silicone rubber, which is stiffer than the Ecoflex. Dragonskin 

30 was used for the product as the material properties were much more desirable; the increased 

stiffness held the magnets in place well, and did not deform too much under high loads, 

protecting the circuitry. Considering all these factors, the differences in slope are sensible, as the 

stiffer Dragonskin 30 did not deform as quickly, resulting in a slower increase in magnetic flux 

with increasing applied force. The lower stiffness of the Ecoflex 0030 also explains the higher 

magnetic flux values in the COMSOL simulation, as it would deform more under at lower 

forces, giving higher magnetic flux readings. 

When comparing the two other axes (X and Y), the readings from the actual test differs 

from the simulated COMSOL values. In the simulation, readings from both X and Y trends 

upwards. This is not the case for the actual reading, however. The data trend of the sensor 

module is more constant without much deviation. These differences are likely due to the 

limitations of the COMSOL simulation, as it often had difficulty modeling the hyperelastic 

behavior of silicone rubber. However, the x- and y- data from the normal force experiments 

remained relatively constant, indicating that little to no shearing occurred for an applied normal 

force, as expected. 

8.3 Shear Force Data 

Looking at data produced through the shear force test, there is a consistent relationship 

between the changes in the magnetic flux in X and Y axes and the forces applied in the same 

directions. The changes in the positive and negative X and Y position are as expected. As the 

force is applied to the positive X, the magnetic flux reading in the X direction increases, as force 

is then applied in the opposite direction, the magnetic flux reading decreases and shifts the other 

way. Furthermore, the magnetic flux does not change for axes in which force is not applied. The 

normal force was applied from the beginning of the experiment to create a frictional force, thus a 

change in Z should not be observed. This holds true with the results of our test. Overall, these 

results show that the magnetic flux data can be related to the direction of the force applied, which 

can be used to detect shear forces. 
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8.4 Discrepancies in Data 

 Across all experimental data, small jumps in the data collected were observed, ranging 

from ~10 µT to ~50 µT. Because the size of the jumps were consistent in magnitude, the band-

pass filter we coded worked for adjusting most of the data jumps. The jumps in data could 

possibly be occurring as a result of the soldering connections on our circuit board; applied force 

could be causing components to shift slightly, resulting in the jumps in data. Alternatively, the 

error could be occurring during the communication over the computer’s serial port; the code used 

to read and parse through the sensor data may not be optimally reading data from the sensors. 

8.5 MagneForce as a Proof-of-Concept 

8.5.1 Functionality 

 We were able to improve upon the previous iteration of this device by ensuring it would 

function properly and be able to detect normal and shear forces. This is greatly due to ensuring 

there would be no magnetic interference created by the other magnets in the module. Though this 

became the limiting factor in determining the size of our module, it was necessary in order to get 

accurate data for both normal and shear forces up to 200 N and 21 N respectively. By spacing the 

sensors 15 mm apart from each other and placing the magnets directly above the sensors, 

interference and crosstalk between the sensors was successfully avoided. 

8.5.2 Modularity 

 The final size of the module is 36mm x 46.6 x 17.4 mm. This size allows for many 

different modules to be placed in a single shoe pad allowing for customization based on the shoe 

size. The modular concept was also proven when all 8 sensors were producing data when 2 

modules were wired together. This allows the system to be adaptive to any size that may be 

required for the patient. 

8.6 Cost Analysis 

 It was determined that 7 modules can fit inside a size 10 shoe. From this value we can 

determine the amount of parts required for a shoe pad made of our MagneForce modules. The 

following table outlines the parts needed for 7 modules, as well as their quantity and cost. The 

total cost for assembling this shoe pad comes out to be $164.03. 
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Table 3: Bill of Materials for 7 Professionally Made Modules 

7 Professionally Made Modules 

Quantity Description Cost 

10 PCBs $9.99 

28 Hall Effect Sensors $105.84 

28 47nF Caps. 7.34 

28 100nF Caps. 1.85 

7 XOR Gates 2.73 

7 Multiplexers $19.67 

7 8 pin header $6.58 

 Dragon Skin 30 $10.03 

   

 Total: 164.03 

 

The cost of parts for the MagneForce sensor is $164.03 per shoe pad. This cost is 

significantly cheaper than the price of our competitors, which can be seen in the following table:  

 

Table 4: Cost Comparison of MagneForce and its Competitors 

Product Description Price Shear Force? 

MagneForce 7 modules in a shoe 

pad 

$164.03 Yes 

Tekscan F-Scan Resistive force 

sensors in a shoe pad 

~$4,000 No 

Pedar System Force sensors in a 

shoe pad 

~$5,000 No 

 

Tekscan’s F-Scan System costs roughly $4000 USD [28], and the Pedar System by Novel 

costs $5000 [28]. While our price does not include labor cost or profit margins, after scaling for 

bulk manufacturing, we expect that the price of the proposed system will still be an order of 

magnitude lower than existing commercial systems. Additionally, existing systems only measure 
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normal forces while the MagneForce sensor can measure both normal and shear forces. This 

gives the product an edge over the competitors in both price and functionality. 

8.7 Evaluation of Project Objectives 

 The 6 most important project objectives we were looking to accomplish were: safety, 

sensor functionality, affordability, gait monitoring, non-invasiveness, and reliability. 

8.7.1 Safety 
Safety was rated as the most important objective. Our device is extremely safe as it is 

encased in silicone, providing the circuitry protection from the user and the user protection from 

the circuitry. Because of this, this objective has been properly accomplished.  

8.7.2 Sensor Functionality 
One of the next most important objectives was to have sensor functionality. Given our 

results, our sensors can be used to determine the normal force applied based on the magnetic 

field of the magnet, as well as the direction of shear forces. Given these two factors as well as the 

fact that the sensors are modular and can be combined, this objective has also been met.  

We also achieved a refresh rate of 70 Hz for a single module, along with a spatial density 

of 1 sensor per 15 mm2. The refresh rate is higher than the rate achieved during last year’s 

project iteration (33 Hz), but an even higher refresh rate will be useful in future iterations for 

better data collection. The spatial density also has room for improvement. While the sensor 

density is currently limited by the minimum distance to avoid magnetic cross-talk, using weaker 

or smaller magnets could solve this issue. 

8.7.3 Affordability 
The objective of affordability was also met. Given our cost analysis in the previous 

section, our device is quite affordable, especially when compared to the competitors’ prices, 

meeting our objective of affordability.  

8.7.4 Gait Monitoring 
The objective of gait monitoring was not met. Time constraints and time spent 

troubleshooting the module functionality prevented us from successfully integrating an IMU into 

the device. Bluetooth communication was also not achieved, as proving the ability of the device 

to relate displacement in magnetic field to applied force was of higher priority. 
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8.7.5 Non-invasiveness 
As for non-invasiveness, this objective was met in part. In its current state, the sensor 

module is rather thick, and a shoe would need to be modified or custom-made in order to house 

the modules. However, future iterations can reduce the size to make it more accommodating.  

8.7.6 Reliability 
The goal of reliability was also not fully realized, as time constraints on the project 

limited the amount of experiments that could be run. As a result, the body of results was not 

large enough to determine reliability of sensors over a large number of cycles. 
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Chapter 9: Recommendations and Conclusion 

9.1 Future Recommendations  

 While the MagneForce module currently serves as a proof of concept for relating 

displacement of magnetic fields to applied forces in three dimensions, there is still potential for 

improvement to make the device a more complete product. Improvements can be made to the 

module itself, and gait monitoring features can be added to increase the device’s versatility. 

9.1.1 Module Improvements 

 As with any device, modifications can always be made to improve upon the module. Five 

of the major improvements are as such: refining the circuit design to accommodate for a more 

dynamic change in force, reducing the signal noise, reducing the thickness of the modules, and 

testing reliability over time with a large number of cycles. 

 Currently, the modules cannot handle highly dynamic forces. That is, rapidly changing 

forces at high magnitudes (such as with running or tripping) are liable to be filtered out. For 

example, if a person were to stomp on the module, the device would likely filter out the stomp 

because it created a data spike close to a saturation value. Modifying the device to better handle 

these types of forces would make the product much more robust. This could potentially be 

accomplished through improving the filtering run through the software, or improving the circuit 

design to limit noise so that the filter does not need to be as sensitive. 

As just previously mentioned, noise in the data collected by the sensors is an area with 

potential for improvement. While the signal noise was greatly reduced from bypassing the 

breadboard, high spikes in the data still appeared that needed to be filtered out. The greatest 

source of the signal noise is probably the inconsistency that is inherent with hand-soldered 

circuits. Because all of the circuit components were soldered on manually, inconsistencies 

occurred with wires and components coming loose, introducing noise. Having the circuits 

professionally assembled would likely solve this issue, and vastly improve the consistency of the 

circuit construction. 

Additionally, the current module is a bit too thick to be added as an insole, and the sole of 

the shoe would have to be carved out in order for the modules to fit. If improvements can be 

made to reduce the module’s thickness, but still keep the encasement of the PCB in silicone to a 



50 

 

size that can be fit comfortably inside a regular shoe, this would improve the module’s ease of 

use. This modification may be difficult given that moving the magnets too close to the sensors 

would cause more saturated readings, but this could be remedied by using weaker magnets. 

 In order to prove that the current modules would be suitable for frequent use, reliability 

over time must be tested. The device would benefit from testing that it can withstand strains over 

a large number of cycles and over a long period of time. In addition, the consistency of the data 

over many cycles needs to be confirmed as well, to ensure that the readings remain accurate over 

an extended period of time. Using a dynamic load cell that can cycle through a test multiple 

times could be useful, and the hysteresis of the measured data could be observed. 

9.1.2 Added Features 

 Aside from improving the circuit module itself, there are other features to add to the 

device that would make it more complete as a product. The first such feature is a program to 

graph or visualize collected data in real time. The current method of data collection involves 

logging the data and graphing it manually in Excel. This approach is inefficient, and 

unnecessarily complicates the process of collecting data and troubleshooting the device. Having 

a program to display a graph of the force data collected would not only improve how the force 

sensors are tested, but would also provide a platform for clinicians and patients to view the data 

in the future. Later generations of the product could also have a user-friendly app, which could 

allow patients to view their own data while also allowing them to share it with their doctor. 

Having an app that can be integrated to monitor what is going on in real-time would greatly 

improve both functionality of the device as well as the ease of use for the user. 

 Another useful feature to add would be an IMU, to monitor the position and movement of 

the patient’s foot and leg throughout the gait cycle. While the sensor module itself would work to 

detect normal and shear forces, adding an IMU would give it the functionality of a complete gait 

monitoring device. 

9.1.3 Future Regulatory Considerations 

Since future iterations of this device will likely be used to aid in diagnosis and treatment 

of diabetic ulcers, it is probable that the MagneForce product will need to be classified as a 

medical device. Medical device classification requires a variety of standards to be met, both in 

fabrication of the device as well as in testing and clinical trials. Here we discuss a few of these 
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potential considerations. 

 First, because the sensor module is non-invasive (external to the skin) and thereby poses 

minimal health risk to the patient, yet more complicated than simpler devices (like bandages), 

future iterations of the device would likely be classified as an FDA Class 2 medical device [50]. 

By virtue of being a Class 2 device, our product would be subject to FDA evaluation, and would 

be subject to FDA regulations for proper use following that evaluation. 

 Additionally, the medical device classification requires that standards be met regarding 

biocompatibility and safety to the patient. The biggest standard to meet with regard to 

biocompatibility is ISO standard 10993, which governs evaluation of medical device 

biocompatibility [51]. This standard covers an extensive range of device types and 

considerations for both internal and external products. Specifically, ISO 10993 includes an 

assessment to identify and mitigate potential biocompatibility risks. This assessment would 

include a literature review of related devices, a review of clinical experience of similar devices, 

and a review of results on animal testing of similar devices. 

 Again, biocompatibility and safety should be of the highest importance for future product 

iterations. Another standard we can use to ensure patient safety is ASTM F720-13, which details 

protocols for materials testing on guinea pigs for contact allergens [52]. While silicone rubber is 

generally regarded as safe for contact with skin, performing tests on guinea pigs with samples of 

the Dragonskin 30 will confirm if prolonged contact with the silicone would cause any adverse 

reactions with the skin. Overall, end user safety is a subject that cannot be overlooked in future 

project iterations. 

9.2 Conclusion 

Overall, the MagneForce module currently serves as a proof-of-concept for relating 

displacements in magnetic fields to applied forces in three dimensions. Using this concept, the 

sensor module can be used to measure both normal and shear forces. With the proper 

modifications and improvements, MagneForce can be integrated into a shoe pad to measure the 

forces on the bottom of the foot, helping diabetes patients prevent and manage foot ulcers. As a 

whole, this device has great potential to become a successful household or clinical product. 
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Appendix A: Gantt Chart 
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Appendix B: Magnet Protrusion CAD Model and Drawings 

Isometric View 
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Protrusion Drawing 
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Protrusion Explosion Drawing 
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Appendix B: 3-by-3 Position Drawing 

 

  



63 

 

Appendix C: Silicone Molding Instructions 

The silicone molding in this procedure is done in the WPI Soft Robotics Lab in Higgins 

Labs. Silicone is very sticky, so gloves are preferable. However, the silicone is not harmful to 

skin, so if you do get some on you it is not the end of the world. 

1. A rigid mold (probably 3D printed) is needed for setting and baking the silicone. Make sure 

to have this beforehand. Make sure that the sensor is secured into the mold. 

2. Find a cup or container in which to mix the silicone, along with the proper bottles of silicone 

mix (the yellow and blue bottles of Ecoflex 0030 for this example). Find the scale for 

weighing the silicone mixture. 

 

FIGURE A: THE ECOFLEX 0030 MIX 

 

FIGURE B: EXAMPLE OF MIXING CUP 

3. Place the cup on the scale and tare it. Mix equal parts of the blue and yellow components of 
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the Ecoflex 0030 silicone in the cup. (A different ratio is required for different types of 

silicone, like Dragon skin). For purposes of a single magnet and sensor, 5g of each should be 

enough. Always mix a little more than is actually needed to account for air bubbles. 

4. Once weighed, mix the two parts together using a mixing stick. Mix thoroughly to remove as 

many air bubbles as possible. 

5. After mixing, place the container of silicone in the vacuum chamber on the lab bench. Secure 

the top and make sure the valves are opened into the chamber. Turn on the vacuum switch on 

the wall. For this amount of Ecoflex, leave in the chamber for 2 to 3 minutes. 

6. When the mixture is done in the vacuum chamber, use the second valve on the cap to 

equalize the air pressure before removing the cap. To prepare for setting the silicone, place 

down paper towels where you will be working! The others in the lab will give you a hard 

time if you make a mess. Silicone is very messy. 

7. Before moving on make sure that there are no air bubbles in the silicone! Any air bubbles 

in the mold will ruin the integrity of the silicone once it is baked. 

8. Find a clamp, and clamp down the mold/sensor assembly. Place on top of the paper towels. 

Carefully pour the silicone into the mold. Be patient and wait for the silicone to settle. As 

you pour, air bubbles will rise to the top, so make sure to pour more than is necessary – 

the only way to remove air bubbles is through volumetric displacement. Don’t worry if 

the silicone overflows – it is easy to cut off excess afterward 

 

FIGURE C: CLAMPING THE MOLD AND POURING THE SILICONE 

9. Place the mold into the oven on the bench. The oven technically has three stages to set. For 
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this silicone, only the first stage is needed. Set the temperature for the first stage at 60 C, 

and the other two stages to 0C (off). Set the rate of heating to 40 C/minute. Bake the 

silicone in the oven for 20 minutes. 

10. After the time is up, remove the mold from the oven, and break the mold off, revealing the 

final silicone. Trim off excess silicone as necessary. 
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Appendix D: Final Mold Design 
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Appendix E: COMSOL Iterations 

Iteration 1: Simple 1-Magnet COMSOL Model 

  

Iteration 2: Complicated 2-by-2 COMSOL Model 
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Appendix F: Current COMSOL Model Parameters 

Global Parameters 

 

Neodymium Parameters 

 

Silicone Parameters 

 

Hyperelastic Model: Ogden Model 

(Parameters refer to global parameters) 
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Appendix G: Foot Area Approximation 

The area of the bottom of a size 10 insole was approximated using a grid of 1 cm2 squares. The 

total was 523.75 cm2.  

 

  



77 

 

Appendix H: Foot Pressure Calculations 

Variables/Helpful Information: 

● Average US male height: 

○ 5’9” - 5’10” [45] 

● US shoe size for male height 5’9” - 5’10”: 

○ Size  9 - 10 [47] 

○ Because a Size 10 shoe is readily available to us, this is what we chose 

○ Approximate Area under US men’s size 10 foot: 523.75cm2 = 0.052375m2 

● People with diabetic neuropathy are likely to be overweight/obese 

○ As a design constraint, will cut off weight measurements just before obese classification 

○ Max weight for this height before considered ‘obese’ = ~200lbs ~90kg ~ 883N [46] 

● Max shear force  = ~15% of body weight (normal, anterior-posterior) 

● Safety factor = ~25% of body weight 

 

Calculations: 

Average Max Pressure on a foot (during stance phase): 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑀𝑎𝑥 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 = 𝑀𝑎𝑥 𝑊𝑒𝑖𝑔ℎ𝑡 ÷ 𝐴𝑒𝑎 𝑜𝑓 𝑆𝑖𝑧𝑒 10 𝑓𝑜𝑜𝑡 

= 883𝑁 ÷ 0.052375𝑚2 = 16.86𝑘𝑃𝑎 

Size of one circuit module:  

𝐴𝑟𝑒𝑎 = 𝐿𝑒𝑛𝑔𝑡ℎ ∗ 𝑊𝑖𝑑𝑡ℎ 

= 29.8𝑚𝑚 ∗ 39𝑚𝑚 = 0.0011622𝑚2 

Max normal force to apply to one module during testing: 

𝑀𝑎𝑥 𝑁𝑜𝑟𝑚𝑎𝑙 𝐹𝑜𝑟𝑐𝑒𝑒 = 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑀𝑎𝑥 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑑𝑢𝑖𝑛𝑔 𝑆𝑡𝑎𝑛𝑐𝑒 𝑃ℎ𝑎𝑠𝑒 ∗ 𝐴𝑟𝑒𝑎 𝑜𝑓 𝑎 𝑀𝑜𝑑𝑢𝑙𝑒 

= 16859𝑃𝑎 ∗ 0.0011622𝑚2 = 19.59𝑁 

Average Shear Pressure (assuming 25% of sole is covered): 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑆ℎ𝑒𝑎𝑟 𝐹𝑜𝑟𝑐𝑒 = 𝑆𝑎𝑓𝑒𝑡𝑦 𝐹𝑎𝑐𝑡𝑜𝑟 ∗ 𝐵𝑜𝑑𝑦 𝑊𝑒𝑖𝑔ℎ𝑡 

= 0.25 ∗ 883𝑁 = 220.75𝑁 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑆ℎ𝑒𝑎𝑟 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 = 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑆ℎ𝑒𝑎𝑟 𝐹𝑜𝑟𝑐𝑒 ÷ 25% 𝐴𝑟𝑒𝑎 𝑜𝑓 𝑎 𝑆𝑖𝑧𝑒 10 𝑆ℎ𝑜𝑤 

= 220.75𝑁 ÷ (0.25 ∗ 0.052375𝑚2) = 16.86𝑘𝑃𝑎 

Max shear force to apply to one module: 

𝑀𝑎𝑥 𝑆ℎ𝑒𝑎𝑟 𝐹𝑜𝑟𝑐𝑒 = 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑆𝑒𝑎𝑟 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 (𝑤𝑖𝑡ℎ 25% 𝑜𝑓 𝑠𝑜𝑙𝑒 𝑐𝑜𝑣𝑒𝑟𝑒𝑑) ∗ 𝐴𝑟𝑒𝑎 𝑜𝑓 𝑎 𝑀𝑜𝑑𝑢𝑙𝑒 

= 16859𝑃𝑎 ∗ 0.0011622𝑚2 = 19.59𝑁  
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Appendix I: Shear Force Apparatus 
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Appendix J: Arduino Code for Modularity Test 

/* THE XOR GATE MAKES HIGH ON AND LOW OFF FOR SENSORS 
 Code to get data from MLX90363 sensor. 
 
 This piece of code gets xyz magnetic flux magnitudes from the 
 sensor. It uses a function to compute CRCs. 
 
 Arduino Mega is used as the master device and a single MLX90363 
 sensor is used as the slave. 
 
 Written by Selim Ozel, 08.14.2015 
 Edited and Modified by David Laovoravit, 4.23.2017 
*/ 
 
#include <SPI.h>        //Include SPI Library 
#include <TimerOne.h>   //Include TimeOne Library 
 
#define NUMBER 0 
 
//Define and initialize CRC array, 256 bytes 
char CRCArray[] = {    //used to check correct data transfer 
 0x00, 0x2F, 0x5E, 0x71, 0xBC, 0x93, 0xE2, 0xCD, 0x57, 0x78, 0x09, 0x26, 
 0xEB, 0xC4, 0xB5, 0x9A, 0xAE, 0x81, 0xF0, 0xDF, 0x12, 0x3D, 0x4C, 0x63, 
 0xF9, 0xD6, 0xA7, 0x88, 0x45, 0x6A, 0x1B, 0x34, 0x73, 0x5C, 0x2D, 0x02, 
 0xCF, 0xE0, 0x91, 0xBE, 0x24, 0x0B, 0x7A, 0x55, 0x98, 0xB7, 0xC6, 0xE9, 
 0xDD, 0xF2, 0x83, 0xAC, 0x61, 0x4E, 0x3F, 0x10, 0x8A, 0xA5, 0xD4, 0xFB, 
 0x36, 0x19, 0x68, 0x47, 0xE6, 0xC9, 0xB8, 0x97, 0x5A, 0x75, 0x04, 0x2B, 
 0xB1, 0x9E, 0xEF, 0xC0, 0x0D, 0x22, 0x53, 0x7C, 0x48, 0x67, 0x16, 0x39, 
 0xF4, 0xDB, 0xAA, 0x85, 0x1F, 0x30, 0x41, 0x6E, 0xA3, 0x8C, 0xFD, 0xD2, 
 0x95, 0xBA, 0xCB, 0xE4, 0x29, 0x06, 0x77, 0x58, 0xC2, 0xED, 0x9C, 0xB3, 
 0x7E, 0x51, 0x20, 0x0F, 0x3B, 0x14, 0x65, 0x4A, 0x87, 0xA8, 0xD9, 0xF6, 
 0x6C, 0x43, 0x32, 0x1D, 0xD0, 0xFF, 0x8E, 0xA1, 0xE3, 0xCC, 0xBD, 0x92, 
 0x5F, 0x70, 0x01, 0x2E, 0xB4, 0x9B, 0xEA, 0xC5, 0x08, 0x27, 0x56, 0x79, 
 0x4D, 0x62, 0x13, 0x3C, 0xF1, 0xDE, 0xAF, 0x80, 0x1A, 0x35, 0x44, 0x6B, 
 0xA6, 0x89, 0xF8, 0xD7, 0x90, 0xBF, 0xCE, 0xE1, 0x2C, 0x03, 0x72, 0x5D, 
 0xC7, 0xE8, 0x99, 0xB6, 0x7B, 0x54, 0x25, 0x0A, 0x3E, 0x11, 0x60, 0x4F, 
 0x82, 0xAD, 0xDC, 0xF3, 0x69, 0x46, 0x37, 0x18, 0xD5, 0xFA, 0x8B, 0xA4, 
 0x05, 0x2A, 0x5B, 0x74, 0xB9, 0x96, 0xE7, 0xC8, 0x52, 0x7D, 0x0C, 0x23, 
 0xEE, 0xC1, 0xB0, 0x9F, 0xAB, 0x84, 0xF5, 0xDA, 0x17, 0x38, 0x49, 0x66, 
 0xFC, 0xD3, 0xA2, 0x8D, 0x40, 0x6F, 0x1E, 0x31, 0x76, 0x59, 0x28, 0x07, 
 0xCA, 0xE5, 0x94, 0xBB, 0x21, 0x0E, 0x7F, 0x50, 0x9D, 0xB2, 0xC3, 0xEC, 
 0xD8, 0xF7, 0x86, 0xA9, 0x64, 0x4B, 0x3A, 0x15, 0x8F, 0xA0, 0xD1, 0xFE, 
 0x33, 0x1C, 0x6D, 0x42 
}; 
int PinSS;   //Pin declaration for Arudino Mega 2500 
int PinSS1 = 53;           //Set Slave Select Pin at 53 
int PinSS2 = 42;  //check to change 
int PinMOSI = 51;          //Set Master Out, Slave In Pin at 51 
int PinMISO = 50;          //Set Master In, Slave Out Pin at 50 
int PinSCK = 52;           //Set Clock Pin at 52 
int PinEN = 22;           //Set Slave Select Pin at 8 
int PinA0 = 24;           //Set Slave Select Pin at 9 
int PinA1 = 26;           //Set Slave Select Pin at 10 
int currentState = 1; 
 
int switchNum = 1; 
bool pass = true;  // Buffers to read/write MLX90363 
uint8_t readBuffer[8] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 

0x00};                                                     //declare Read Buffers, as an array comprising of 8 8 bit integers 
uint8_t writeBuffer[8] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 

0x00};                                                    //declare Write Buffers, as an array comprising of 8 8 bit integers 
 
// Bx,By,Bz variables 
int16_t Bx = 

0;                                                                                                               //declaring Bx 

variable as a 16 bit integer and set starting value at 0 
int16_t By = 

0;                                                                                                               //declaring By 

variable as a 16 bit integer and set starting value at 0 
int16_t Bz = 

0;                                                                                                               //declaring Bz 

variable as a 16 bit integer and set starting value at 0 
 
// Error bits, CRC, virtual gain and rolling counter variables 
uint8_t errorBits = 

0;                                                                                                        //declaring error Bits 

as an 8 bit integer and set starting value at 0 
uint8_t rollingCounter = 

0;                                                                                                   //declaring Rolling Counter 

as an 8 bit integer and set starting value at 0 
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uint8_t CRC = 

0;                                                                                                              //declaring 

Cyclic Redundancy Check as an 8 bit integer and set starting value at 0 
 
// CRC function 
uint8_t ComputeCRC(uint8_t Byte0, uint8_t Byte1, uint8_t Byte2, uint8_t Byte3, uint8_t Byte4, uint8_t Byte5, uint8_t Byte6) { 

//Parse each byte into the CRC, pulling out of the CRC array 
 uint8_t CRC = 0xFF; 
 CRC = CRCArray[CRC ^ 

Byte0];                                                                                                //Parsing Byte through an 

XOR gate to crate a CRC 
 CRC = CRCArray[CRC ^ Byte1]; 
 CRC = CRCArray[CRC ^ Byte2]; 
 CRC = CRCArray[CRC ^ Byte3]; 
 CRC = CRCArray[CRC ^ Byte4]; 
 CRC = CRCArray[CRC ^ Byte5]; 
 CRC = CRCArray[CRC ^ Byte6]; 
 CRC = 

~CRC;                                                                                                                 //Flipping 

the Bits gets out the input that is wanted 
 return CRC; 
} 
int fullCircle=0; 
// Sets the send message flag 
int sendMessage = 

0;                                                                                                          //Set a flag for 

message initialze to 0 (false) 
void SendFlag()                                                                                                               //A 

helper method for setting messenger flag to true 
{ 
 sendMessage = 

1;                                                                                                            //Set a flag to 

1(true) 
} 
 

 

void setup()     //The setup before starting the looping program 
{     // Mark comm pins as output or input 
 pinMode (PinMOSI, OUTPUT);     //Set MOSI pin as an output 
 pinMode (PinMISO, INPUT);      //Set MISO pin as an input 
 pinMode (PinSCK, OUTPUT);     //Set Clock pin as output 
 pinMode (PinSS2,OUTPUT);       // Make the MLX90363 sensor the active slave device 
 pinMode (PinSS1, OUTPUT);     //Set Slave Select pin as an output 
 pinMode (PinEN, OUTPUT); 
 pinMode (PinA0, OUTPUT); 
 pinMode (PinA1, OUTPUT); 
 digitalWrite(PinSS1, LOW);    //Turn off the Slave Select 
 digitalWrite(PinSS2,LOW); 
 digitalWrite(PinEN, LOW);    //Turn off the Slave Select1 
 digitalWrite(PinA0, LOW);     //Turn off the Slave Select2 
 digitalWrite(PinA1, LOW);     //Turn off the Slave Select3 
 PinSS=PinSS1;   
 
// Begin serial Comm 
 Serial.begin(9600);         //Set the baudrate to 9600 
 
 // Required SPI configeration to communicate with MLX90363 
 // Details of SPI settings can be found in "Getting Started 
 // Guide" [GSG], under "SPI bus protocol". 
 SPI.begin();  
//Initialize SPI and set SCK,MOSI,SS to outputs and SCK and MOSI asl low and SS as high 
 SPI.setBitOrder(MSBFIRST);   //Set protocol to transmit Most significant bit first 
 SPI.setClockDivider(SPI_CLOCK_DIV32);   //Set the clock to be 1/32 the frequency of the system clock 
 SPI.setDataMode(SPI_MODE1); 
//SPI_MODE1 =   Clock Polarity: 0 | Clock Phase: 1 | Output Edge: Rising | Data Capture: Falling 
 
 // Setup Timer for sending/receiving data 
 Timer1.initialize(500);//30000  //Initialize frequency of interrupt to 0.03 seconds 
 Timer1.attachInterrupt(SendFlag);    //trip flag every 0.03 seconds 
} 
int counter = 0; 
void loop()       
{ 
 if (sendMessage) { //If the timer interupt trips (0.03 seconds) collect data from sensor 
//int ReadPin = 0; 
   switch (switchNum) {  //switch case for each sensor in the module 
     case 1: 
       fullCircle=0;//if it has gone through all 4 sensors 
       currentState = 1; 
       digitalWrite(PinA0,LOW);// Sensor 00 (sensor 1) 
       digitalWrite(PinA1,LOW); 
       if (counter >= NUMBER+1) {//used for adjusting how many times each sensor is run for each run through 
         pass=false; 
         switchNum++; 
         counter = 0; 
       } 
       else { 
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         counter++; 
         pass=true; 
       } 
       break; 
     case 2: 
       currentState = 2; 
       digitalWrite(PinA0,LOW); // Sensor 01 (sensor 2) 
       digitalWrite(PinA1,HIGH); 
       if (counter >= NUMBER) {//used for adjusting how many times each sensor is run for each run through 
         switchNum ++; 
         counter = 0; 
       } 
       else { 
         counter++; 
       } 
       break; 
     case 3: 
       currentState = 3;   
       digitalWrite(PinA0,HIGH);// Sensor 10 (sensor 3) 
       digitalWrite(PinA1,LOW); 
       if (counter >= NUMBER) {//used for adjusting how many times each sensor is run for each run through 
         switchNum ++; 
         counter = 0; 
       } 
       else { 
         counter++; 
       } 
       break; 
     case 4:  
       currentState = 4; 
       digitalWrite(PinA0,HIGH);// Sensor 11 (sensor 4) 
       digitalWrite(PinA1,HIGH); 
       if (counter >= NUMBER+1) {//used for adjusting how many times each sensor is run for each run through 
         switchNum = 1; 
         counter = 0; 
         pass=true; 
         if(PinSS==PinSS1){ //used to switch between the two modules 
           PinSS=PinSS2; 
         } 
         else if(PinSS==PinSS2){ 
           PinSS=PinSS1; 
         } 
         else{ 
           Serial.println("Error with Slave Toggle"); 
         } 
       } 
       else { 
         pass=false; 
         counter++; 
       } 
       fullCircle=1; 
       break; 
     default: 
       Serial.println("Error with switch case"); 
   } 
 
   // Create a GET1 message. Format of messages are explained in both DataSheet 
   // [DS] and GSG. 
   writeBuffer[0] = 0x00;  
//this is a set up step to have the sensor be a GET1 See DataSheet 
   writeBuffer[1] = 0x00; 
   writeBuffer[2] = 0xFF; // Timeout value is set as 65 ms 
   writeBuffer[3] = 0xFF; // Timeout value is set as 65 ms 
   writeBuffer[4] = 0x00; 
   writeBuffer[5] = 0x00; 
   writeBuffer[6] = 0x93; // Marker is set as 2 to get XYZ measurement. OP Code for GET1 message: 19 in Decimal. 
   writeBuffer[7] = ComputeCRC(0x00, 0x00, 0xFF, 0xFF, 0x00, 0x00, 0x93); // CRC 
 
// Transfer the content of writeBuffer to MLX90363. 
   noInterrupts(); 
   digitalWrite(PinEN, HIGH);  
   digitalWrite(PinSS, HIGH);  
//PinSS1,PinSS2, PinSS3 pull the Slave Select High turning it on 
   delay(10);  //delay 1 microseconds as a propagation delay to prevent errors 
   digitalWrite(PinA0,LOW); 
   digitalWrite(PinA1,LOW); 
   for (int i = 0; i < 8; i++) {  //send and receive through SPI to the sensors 
     readBuffer[i] = SPI.transfer(writeBuffer[i]);  //for loop to send out the array 
   } 
                                                                                                                              
   digitalWrite(PinSS, LOW); //PinSS1,PinSS2, PinSS3  //pull the Slave Select Low turning it off 
   delay(10); 
   interrupts();  
 

   // Read most significant bits and add the least significant bits. 
   // Do this for Bx, By and Bz. Convert unsigned readBuffer data to 
   // signed data !Ghetto Style -if statements-!. 
   Bx = (readBuffer[1] & 0x3F) << 8; 
   Bx += readBuffer[0]; 
   if (Bx >= 8192) { 
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     Bx -= 16384; 
   } 
   By = (readBuffer[3] & 0x3F) << 8; 
   By += readBuffer[2]; 
   if (By >= 8192) { 
     By -= 16384; 
   } 
   Bz = (readBuffer[5] & 0x3F) << 8; 
   Bz += readBuffer[4]; 
   if (Bz >= 8192) { 
     Bz -= 16384; 
   } 
   // Extract error bits E0 and E1, CRC and rolling counter. 
   errorBits = readBuffer[0] >> 6; 
   CRC = readBuffer[7]; 
   rollingCounter = readBuffer[6] & 0x3F; 
 
   // Print results to serial port. Only print them if previous 
   // data is read by the other end. ie: Matlab in my Laptop. 
  // if (counter == 0) { //counter == 3) { 
     if(!pass){ 
     if(PinSS==PinSS1){ 
       Serial.print("PinSS1: "); 
     } 
     else if(PinSS==PinSS2){ 
       Serial.print("PinSS2: "); 
     }     
     Serial.print("N" + String(currentState) + "," + String(Bx) + "," + String(By) + "," + String(Bz)+","); 
      
     if(fullCircle==1){ 
     Serial.println(""); 
     } 
     } 
   sendMessage = 0; 
 } 
} 
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Appendix K: Code for JAVA GUI 

Java Code GUI display (Back End) 
//Original Code for Tiger Tank Serial Communication by Henry Poon 12.25.2010 
//Edited and Repurposed by David Laovoravit 4.23.2017 
 
package Communicator;; 
 
import gnu.io.*; 
import java.awt.Color; 
import java.io.IOException; 
import java.io.InputStream; 
import java.io.OutputStream; 
import java.util.Enumeration; 
import java.util.HashMap; 
import java.util.TooManyListenersException; 
import java.lang.*; 
 
public class Communicator implements SerialPortEventListener 
{ 
   StringBuilder inBuff = new StringBuilder();//use this instead 
   String buffer= ""; 
   int state=0; 
   int start=0; 
   //passed from main GUI 
   GUI window = null; 
 
   //for containing the ports that will be found 
   private Enumeration ports = null; 
   //map the port names to CommPortIdentifiers 
   private HashMap portMap = new HashMap(); 
 
   //this is the object that contains the opened port 
   private CommPortIdentifier selectedPortIdentifier = null; 
   private SerialPort serialPort = null; 
 
   //input and output streams for sending and receiving data 
   private InputStream input = null; 
   private OutputStream output = null; 
 
   //enabling and disabling buttons 
   private boolean bConnected = false; 
 
   //the timeout value for connecting with the port 
   final static int TIMEOUT = 2000; 
 
   //some ascii values for for certain things 
   final static int SPACE_ASCII = 32; 
   final static int DASH_ASCII = 45; 
   final static int NEW_LINE_ASCII = 10; 
   final static int COMMA_ASCII = 44; 
 
   //a string for recording what goes on in the program 
   //this string is written to the GUI 
   String logText = ""; 
 
   public Communicator(GUI window){ 
       this.window = window; 
   } 
 
   //search for all the serial ports 
   //pre: none 
   //post: adds all the found ports to a combo box on the GUI 
   public void searchForPorts(){ 
       ports = CommPortIdentifier.getPortIdentifiers(); 
 
       while (ports.hasMoreElements()){ 
           CommPortIdentifier curPort = (CommPortIdentifier)ports.nextElement(); 
 
           //get only serial ports 
           if (curPort.getPortType() == CommPortIdentifier.PORT_SERIAL){ 
               window.cboxPorts.addItem(curPort.getName()); 
               portMap.put(curPort.getName(), curPort); 
           } 
       } 
   } 
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   //connect to the selected port in the combo box 
   //pre: ports are already found by using the searchForPorts method 
   //post: the connected comm port is stored in commPort, otherwise, 
   //an exception is generated 
   public void connect(){ 
       //window.ChangeBarData1(1000);////testing 
       String selectedPort = (String)window.cboxPorts.getSelectedItem(); 
       selectedPortIdentifier = (CommPortIdentifier)portMap.get(selectedPort); 
 
       CommPort commPort = null; 
 
       try{ 
           //the method below returns an object of typ; e CommPort 
           commPort = selectedPortIdentifier.open("MQP Demo", TIMEOUT); 
           //the CommPort object can be casted to a SerialPort object 
           serialPort = (SerialPort)commPort; 
 
           //for controlling GUI elements 
           setConnected(true); 
 
           //logging 
           logText = selectedPort + " opened successfully."; 
           window.txtLog.setForeground(Color.black); 
           window.txtLog.append(logText + "\n"); 
 
           //CODE ON SETTING BAUD RATE ETC OMITTED 
           //XBEE PAIR ASSUMED TO HAVE SAME SETTINGS ALREADY 
 
           //enables the controls on the GUI if a successful connection is made 
          // window.keybindingController.toggleControls(); 
       } 
       catch (PortInUseException e){ 
           logText = selectedPort + " is in use. (" + e.toString() + ")"; 
            
           window.txtLog.setForeground(Color.RED); 
           window.txtLog.append(logText + "\n"); 
       } 
       catch (Exception e){ 
           logText = "Failed to open " + selectedPort + "(" + e.toString() + ")"; 
           window.txtLog.append(logText + "\n"); 
           window.txtLog.setForeground(Color.RED); 
       } 
   } 
 
   //open the input and output streams 
   //pre: an open port 
   //post: initialized intput and output streams for use to communicate data 
   public boolean initIOStream() 
   { 
       //return value for whather opening the streams is successful or not 
       boolean successful = false; 
 
       try { 
           // 
           input = serialPort.getInputStream(); 
           output = serialPort.getOutputStream(); 
           //writeData(0, 0); 
            
           successful = true; 
           return successful; 
       } 
       catch (IOException e) { 
           logText = "I/O Streams failed to open. (" + e.toString() + ")"; 
           window.txtLog.setForeground(Color.red); 
           window.txtLog.append(logText + "\n"); 
           return successful; 
       } 
   } 
 
   //starts the event listener that knows whenever data is available to be read 
   //pre: an open serial port 
   //post: an event listener for the serial port that knows when data is recieved 
   public void initListener(){ 
       try{ 
           serialPort.addEventListener(this); 
           serialPort.notifyOnDataAvailable(true); 
       } 
       catch (TooManyListenersException e){ 
           logText = "Too many listeners. (" + e.toString() + ")"; 
           window.txtLog.setForeground(Color.red); 
           window.txtLog.append(logText + "\n"); 
       } 
   } 
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   //disconnect the serial port 
   //pre: an open serial port 
   //post: closed serial port 
   public void disconnect(){ 
       //close the serial port 
       try{ 
           //writeData(0, 0); 
 
           serialPort.removeEventListener(); 
           serialPort.close(); 
           input.close(); 
           output.close(); 
           setConnected(false); 
         //  window.keybindingController.toggleControls(); 
 
           logText = "Disconnected."; 
           window.txtLog.setForeground(Color.red); 
           window.txtLog.append(logText + "\n"); 
       } 
       catch (Exception e){ 
           logText = "Failed to close " + serialPort.getName() + "(" + e.toString() + ")"; 
           window.txtLog.setForeground(Color.red); 
           window.txtLog.append(logText + "\n"); 
       } 
   } 
 
   final public boolean getConnected(){ 
       return bConnected; 
   } 
 
   public void setConnected(boolean bConnected){ 
       this.bConnected = bConnected; 
   } 
 
   //what happens when data is received 
   //pre: serial event is triggered 
   //post: processing on the data it reads 
   public void serialEvent(SerialPortEvent evt) { 
        
       if (evt.getEventType() == SerialPortEvent.DATA_AVAILABLE){ 
           try{ 
               byte singleData = (byte)input.read(); 
               if (singleData == NEW_LINE_ASCII){ 
                   start++; 
               } 
               if(start>3){//skip first 3 cycles for error clear 
               if (singleData != NEW_LINE_ASCII){ 
                   logText = new String(new byte[] {singleData}); 
                   window.txtLog.append(logText); 
                   if (singleData != COMMA_ASCII){//parse in data until delimiter 
                       inBuff.append(logText); //then pushes data out and clear buffer 
                       buffer=inBuff.toString(); 
                   } 
                   else{ 
                        
                        if(!buffer.isEmpty()&&!buffer.equals("")){ 
                               int tempOut=0; 
                               buffer=inBuff.toString(); 
                               if(!(state==0||state==4||state==8||state==12||state==16)){ 
                                tempOut= Integer.parseInt(buffer);//convert the string to an int 
                               } 
                               switch (state){//0,4,8,12 --> is sensor numbers so screen out 
                                   case 1: window.ChangeBarData1(tempOut); 
                                       break; 
                                   case 2: window.ChangeBarData2(tempOut); 
                                       break; 
                                   case 3: window.ChangeBarData3(tempOut); 
                                       break; 
                                   case 5: window.ChangeBarData4(tempOut); 
                                       break; 
                                   case 6: window.ChangeBarData5(tempOut); 
                                       break; 
                                   case 7: window.ChangeBarData6(tempOut); 
                                       break; 
                                   case 9: window.ChangeBarData7(tempOut); 
                                       break; 
                                   case 10: window.ChangeBarData8(tempOut); 
                                       break; 
                                   case 11: window.ChangeBarData9(tempOut); 
                                       break; 
                                   case 13: window.ChangeBarData10(tempOut); 
                                       break; 
                                   case 14: window.ChangeBarData11(tempOut); 
                                       break; 
                                   case 15: window.ChangeBarData12(tempOut); 
                                       break; 
                                   default: 
                                       inBuff.delete(0,inBuff.length()); 
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                                       buffer=inBuff.toString(); 
                               } 
                           } 
                           state++; 
                           inBuff.delete(0,inBuff.length());//clear string buffer 
                       } 
                   } 
                   else{ 
                       window.txtLog.append("\n"); 
                       state=0;//reset to sensor 1 
                   } 
               } 
           } 
           catch (Exception e) 
           { 
               logText = "Failed to read data. (" + e.toString() + ")"; 
               window.txtLog.setForeground(Color.red); 
               window.txtLog.append(logText + "\n"); 
               inBuff.delete(0,inBuff.length()); 
               buffer=inBuff.toString(); 
           } 
       } 
   } 
} 
 

Java Code GUI display (Front End) 

 
/* 
* GUI.java 
* 
* Original Code for Tiger Tank Serial Communication by Henry Poon 12.25.2010 
* Edited and Repurposed by David Laovoravit 4.23.2017 
 
*/ 
 
package Communicator;; 
 
import java.awt.Color; 
 
public class GUI extends javax.swing.JFrame { 
   //Communicator object 
   Communicator communicator = null; 
   //KeybindingController object 
//   KeybindingController keybindingController = null; 
 
   /** Creates new form GUI */ 
   public GUI() { 
       initComponents(); 
       createObjects(); 
       communicator.searchForPorts(); 
      // keybindingController.toggleControls(); 
      // keybindingController.bindKeys(); 
   } 
 
   private void createObjects(){ 
       communicator = new Communicator(this); 
       //keybindingController = new KeybindingController(this); 
   } 
 
   /** This method is called from within the constructor to 
    * initialize the form. 
    * WARNING: Do NOT modify this code. The content of this method is 
    * always regenerated by the Form Editor. 
    */ 
   @SuppressWarnings("unchecked") 
   // <editor-fold defaultstate="collapsed" desc="Generated Code">                           
   private void initComponents() { 
 
       jScrollPane1 = new javax.swing.JScrollPane(); 
       jTextArea1 = new javax.swing.JTextArea(); 
       jLabel1 = new javax.swing.JLabel(); 
       jLabel2 = new javax.swing.JLabel(); 
       cboxPorts = new javax.swing.JComboBox(); 
       jLabel5 = new javax.swing.JLabel(); 
       btnConnect = new javax.swing.JButton(); 
       btnDisconnect = new javax.swing.JButton(); 
       jLabel6 = new javax.swing.JLabel(); 
       jLabel13 = new javax.swing.JLabel(); 
       jScrollPane2 = new javax.swing.JScrollPane(); 
       txtLog = new javax.swing.JTextArea(); 
       jLabel14 = new javax.swing.JLabel(); 
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       jProgressBar2 = new javax.swing.JProgressBar(); 
       jProgressBar3 = new javax.swing.JProgressBar(); 
       jLabel15 = new javax.swing.JLabel(); 
       jLabel16 = new javax.swing.JLabel(); 
       jLabel3 = new javax.swing.JLabel(); 
       jLabel4 = new javax.swing.JLabel(); 
       jLabel17 = new javax.swing.JLabel(); 
       jProgressBar4 = new javax.swing.JProgressBar(); 
       jProgressBar5 = new javax.swing.JProgressBar(); 
       jProgressBar6 = new javax.swing.JProgressBar(); 
       jLabel18 = new javax.swing.JLabel(); 
       jLabel19 = new javax.swing.JLabel(); 
       jLabel20 = new javax.swing.JLabel(); 
       jProgressBar7 = new javax.swing.JProgressBar(); 
       jProgressBar8 = new javax.swing.JProgressBar(); 
       jProgressBar9 = new javax.swing.JProgressBar(); 
       jLabel22 = new javax.swing.JLabel(); 
       jLabel23 = new javax.swing.JLabel(); 
       jLabel24 = new javax.swing.JLabel(); 
       jProgressBar10 = new javax.swing.JProgressBar(); 
       jProgressBar11 = new javax.swing.JProgressBar(); 
       jProgressBar12 = new javax.swing.JProgressBar(); 
       jLabel27 = new javax.swing.JLabel(); 
       jLabel28 = new javax.swing.JLabel(); 
       jLabel29 = new javax.swing.JLabel(); 
       jProgressBar1 = new javax.swing.JProgressBar(); 
       jLabel10 = new javax.swing.JLabel(); 
       jLabel11 = new javax.swing.JLabel(); 
       jLabel12 = new javax.swing.JLabel(); 
 
       jTextArea1.setColumns(20); 
       jTextArea1.setRows(5); 
       jScrollPane1.setViewportView(jTextArea1); 
 
       setDefaultCloseOperation(javax.swing.WindowConstants.EXIT_ON_CLOSE); 
       setTitle("MQP- Demo"); 
 
       jLabel1.setFont(new java.awt.Font("Tahoma", 1, 14)); // NOI18N 
       jLabel1.setText("MQP-Demo"); 
 
       jLabel2.setFont(new java.awt.Font("Tahoma", 1, 11)); // NOI18N 
       jLabel2.setText("Sensor 1"); 
 
       jLabel5.setFont(new java.awt.Font("Tahoma", 1, 11)); // NOI18N 
       jLabel5.setText("Select COM Port"); 
 
       btnConnect.setText("Connect"); 
       btnConnect.addActionListener(new java.awt.event.ActionListener() { 
           public void actionPerformed(java.awt.event.ActionEvent evt) { 
               btnConnectActionPerformed(evt); 
           } 
       }); 
 
       btnDisconnect.setText("Disconnect"); 
       btnDisconnect.addActionListener(new java.awt.event.ActionListener() { 
           public void actionPerformed(java.awt.event.ActionEvent evt) { 
               btnDisconnectActionPerformed(evt); 
           } 
       }); 
 
       jLabel6.setFont(new java.awt.Font("Tahoma", 1, 11)); // NOI18N 
       jLabel6.setText("Sensor 3"); 
 
       jLabel13.setFont(new java.awt.Font("Tahoma", 1, 11)); // NOI18N 
       jLabel13.setText("Log"); 
 
       txtLog.setEditable(false); 
       txtLog.setColumns(20); 
       txtLog.setLineWrap(true); 
       txtLog.setRows(5); 
       txtLog.setFocusable(false); 
       jScrollPane2.setViewportView(txtLog); 
 
       jLabel14.setFont(new java.awt.Font("Tahoma", 1, 11)); // NOI18N 
       jLabel14.setText("X"); 
 
       jProgressBar2.setMaximum(1500); 
       jProgressBar2.setMinimum(-500); 
 
       jProgressBar3.setMaximum(1500); 
       jProgressBar3.setMinimum(-500); 
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       jLabel15.setFont(new java.awt.Font("Tahoma", 1, 11)); // NOI18N 
       jLabel15.setText("Y"); 
 
       jLabel16.setFont(new java.awt.Font("Tahoma", 1, 11)); // NOI18N 
       jLabel16.setText("Z"); 
 
       jLabel3.setFont(new java.awt.Font("Tahoma", 1, 11)); // NOI18N 
       jLabel3.setText("Sensor 2"); 
 
       jLabel4.setFont(new java.awt.Font("Tahoma", 1, 11)); // NOI18N 
       jLabel4.setText(" -

500                                                                                     0                                        

                                                                                                                                 

                                                                    1500"); 
 
       jLabel17.setFont(new java.awt.Font("Tahoma", 1, 11)); // NOI18N 
       jLabel17.setText("Sensor 4"); 
 
       jProgressBar4.setMaximum(1500); 
       jProgressBar4.setMinimum(-500); 
       jProgressBar4.setCursor(new java.awt.Cursor(java.awt.Cursor.DEFAULT_CURSOR)); 
 
       jProgressBar5.setMaximum(1500); 
       jProgressBar5.setMinimum(-500); 
 
       jProgressBar6.setMaximum(1500); 
       jProgressBar6.setMinimum(-500); 
 
       jLabel18.setFont(new java.awt.Font("Tahoma", 1, 11)); // NOI18N 
       jLabel18.setText("X"); 
 
       jLabel19.setFont(new java.awt.Font("Tahoma", 1, 11)); // NOI18N 
       jLabel19.setText("Y"); 
 
       jLabel20.setFont(new java.awt.Font("Tahoma", 1, 11)); // NOI18N 
       jLabel20.setText("Z"); 
 
       jProgressBar7.setMaximum(1500); 
       jProgressBar7.setMinimum(-500); 
 
       jProgressBar8.setMaximum(1500); 
       jProgressBar8.setMinimum(-500); 
 
       jProgressBar9.setMaximum(1500); 
       jProgressBar9.setMinimum(-500); 
 
       jLabel22.setFont(new java.awt.Font("Tahoma", 1, 11)); // NOI18N 
       jLabel22.setText("X"); 
 
       jLabel23.setFont(new java.awt.Font("Tahoma", 1, 11)); // NOI18N 
       jLabel23.setText("Y"); 
 
       jLabel24.setFont(new java.awt.Font("Tahoma", 1, 11)); // NOI18N 
       jLabel24.setText("Z"); 
 
       jProgressBar10.setMaximum(1500); 
       jProgressBar10.setMinimum(-500); 
 
       jProgressBar11.setMaximum(1500); 
       jProgressBar11.setMinimum(-500); 
 
       jProgressBar12.setMaximum(1500); 
       jProgressBar12.setMinimum(-500); 
 
       jLabel27.setFont(new java.awt.Font("Tahoma", 1, 11)); // NOI18N 
       jLabel27.setText("X"); 
 
       jLabel28.setFont(new java.awt.Font("Tahoma", 1, 11)); // NOI18N 
       jLabel28.setText("Y"); 
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       jLabel29.setFont(new java.awt.Font("Tahoma", 1, 11)); // NOI18N 
       jLabel29.setText("Z"); 
 
       jProgressBar1.setMaximum(1500); 
       jProgressBar1.setMinimum(-500); 
       jProgressBar1.setToolTipText(""); 
 
       jLabel10.setFont(new java.awt.Font("Tahoma", 1, 11)); // NOI18N 
       jLabel10.setText(" -

500                                                                                     0                                        

                                                                                                                                 

                                                                    1500"); 
 
       jLabel11.setFont(new java.awt.Font("Tahoma", 1, 11)); // NOI18N 
       jLabel11.setText(" -

500                                                                                     0                                        

                                                                                                                                 

                                                                    1500"); 
 
       jLabel12.setFont(new java.awt.Font("Tahoma", 1, 11)); // NOI18N 
       jLabel12.setText(" -

500                                                                                     0                           1500"); 
 
       javax.swing.GroupLayout layout = new javax.swing.GroupLayout(getContentPane()); 
       getContentPane().setLayout(layout); 
       layout.setHorizontalGroup( 
           layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING) 
           .addGroup(layout.createSequentialGroup() 
               .addGroup(layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING) 
                   .addGroup(layout.createSequentialGroup() 
                       .addContainerGap() 
                       .addGroup(layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING) 
                           .addGroup(layout.createSequentialGroup() 
                               .addGap(16, 16, 16) 
                               .addGroup(layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING) 
                                   .addGroup(layout.createSequentialGroup() 
                                       .addGroup(layout.createParallelGroup(javax.swing.GroupLayout.Alignment.TRAILING) 
                                           .addComponent(jLabel15) 
                                           .addComponent(jLabel14) 
                                           .addComponent(jLabel16, javax.swing.GroupLayout.PREFERRED_SIZE, 7, 

javax.swing.GroupLayout.PREFERRED_SIZE)) 
                                       .addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement.RELATED) 
                                       .addGroup(layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING) 
                                           .addGroup(javax.swing.GroupLayout.Alignment.TRAILING, layout.createSequentialGroup() 
                                               .addGap(0, 0, Short.MAX_VALUE) 
                                               .addComponent(jProgressBar1, javax.swing.GroupLayout.PREFERRED_SIZE, 967, 

javax.swing.GroupLayout.PREFERRED_SIZE)) 
                                           .addComponent(jProgressBar3, javax.swing.GroupLayout.DEFAULT_SIZE, 

javax.swing.GroupLayout.DEFAULT_SIZE, Short.MAX_VALUE) 
                                           .addComponent(jProgressBar2, javax.swing.GroupLayout.DEFAULT_SIZE, 

javax.swing.GroupLayout.DEFAULT_SIZE, Short.MAX_VALUE)) 
                                       .addGap(28, 28, 28)) 
                                   .addGroup(layout.createSequentialGroup() 
                                       .addGroup(layout.createParallelGroup(javax.swing.GroupLayout.Alignment.TRAILING) 
                                           .addComponent(jLabel20, javax.swing.GroupLayout.PREFERRED_SIZE, 7, 

javax.swing.GroupLayout.PREFERRED_SIZE) 
                                           .addComponent(jLabel19) 
                                           .addComponent(jLabel18)) 
                                       .addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement.RELATED) 
                                       .addGroup(layout.createParallelGroup(javax.swing.GroupLayout.Alignment.TRAILING, false) 
                                           .addComponent(jProgressBar5, javax.swing.GroupLayout.Alignment.LEADING, 

javax.swing.GroupLayout.DEFAULT_SIZE, 969, Short.MAX_VALUE) 
                                           .addComponent(jProgressBar4, javax.swing.GroupLayout.Alignment.LEADING, 

javax.swing.GroupLayout.DEFAULT_SIZE, javax.swing.GroupLayout.DEFAULT_SIZE, Short.MAX_VALUE) 
                                           .addComponent(jProgressBar6, javax.swing.GroupLayout.DEFAULT_SIZE, 

javax.swing.GroupLayout.DEFAULT_SIZE, Short.MAX_VALUE)) 
                                       .addGap(0, 0, Short.MAX_VALUE)))) 
                           .addGroup(layout.createSequentialGroup() 
                               .addGroup(layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING) 
                                   .addGroup(layout.createSequentialGroup() 
                                       .addGap(15, 15, 15) 
                                       .addGroup(layout.createParallelGroup(javax.swing.GroupLayout.Alignment.TRAILING) 
                                           .addComponent(jLabel22) 
                                           .addComponent(jLabel24) 
                                           .addComponent(jLabel23, javax.swing.GroupLayout.PREFERRED_SIZE, 7, 

javax.swing.GroupLayout.PREFERRED_SIZE)) 
                                       .addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement.RELATED) 
                                       .addGroup(layout.createParallelGroup(javax.swing.GroupLayout.Alignment.TRAILING, false) 
                                           .addComponent(jProgressBar8, javax.swing.GroupLayout.Alignment.LEADING, 

javax.swing.GroupLayout.DEFAULT_SIZE, 970, Short.MAX_VALUE) 
                                           .addComponent(jProgressBar7, javax.swing.GroupLayout.Alignment.LEADING, 

javax.swing.GroupLayout.DEFAULT_SIZE, javax.swing.GroupLayout.DEFAULT_SIZE, Short.MAX_VALUE) 
                                           .addComponent(jProgressBar9, javax.swing.GroupLayout.DEFAULT_SIZE, 

javax.swing.GroupLayout.DEFAULT_SIZE, Short.MAX_VALUE))) 
                                   .addComponent(jLabel1) 
                                   .addGroup(layout.createSequentialGroup() 
                                       .addGap(10, 10, 10) 
                                       .addGroup(layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING) 
                                           .addComponent(jScrollPane2, javax.swing.GroupLayout.PREFERRED_SIZE, 833, 

javax.swing.GroupLayout.PREFERRED_SIZE) 
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                                           .addComponent(jLabel13))) 
                                   .addComponent(jLabel3) 
                                   .addComponent(jLabel2) 
                                   .addComponent(jLabel5) 
                                   .addGroup(layout.createSequentialGroup() 
                                       .addComponent(cboxPorts, javax.swing.GroupLayout.PREFERRED_SIZE, 69, 

javax.swing.GroupLayout.PREFERRED_SIZE) 
                                       .addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement.RELATED) 
                                       .addComponent(btnConnect) 
                                       .addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement.RELATED) 
                                       .addComponent(btnDisconnect))) 
                               .addGap(14, 14, 14)))) 
                   .addComponent(jLabel4, javax.swing.GroupLayout.Alignment.TRAILING, javax.swing.GroupLayout.DEFAULT_SIZE, 

javax.swing.GroupLayout.DEFAULT_SIZE, Short.MAX_VALUE) 
                   .addGroup(layout.createSequentialGroup() 
                       .addGroup(layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING) 
                           .addGroup(layout.createSequentialGroup() 
                               .addContainerGap() 
                               .addComponent(jLabel17)) 
                           .addGroup(layout.createSequentialGroup() 
                               .addContainerGap() 
                               .addComponent(jLabel6)) 
                           .addGroup(layout.createSequentialGroup() 
                               .addGap(25, 25, 25) 
                               .addGroup(layout.createParallelGroup(javax.swing.GroupLayout.Alignment.TRAILING) 
                                   .addComponent(jLabel27, javax.swing.GroupLayout.PREFERRED_SIZE, 7, 

javax.swing.GroupLayout.PREFERRED_SIZE) 
                                   .addComponent(jLabel28, javax.swing.GroupLayout.PREFERRED_SIZE, 7, 

javax.swing.GroupLayout.PREFERRED_SIZE) 
                                   .addComponent(jLabel29)) 
                               .addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement.RELATED) 
                               .addGroup(layout.createParallelGroup(javax.swing.GroupLayout.Alignment.TRAILING, false) 
                                   .addComponent(jProgressBar11, javax.swing.GroupLayout.Alignment.LEADING, 

javax.swing.GroupLayout.DEFAULT_SIZE, 972, Short.MAX_VALUE) 
                                   .addComponent(jProgressBar10, javax.swing.GroupLayout.Alignment.LEADING, 

javax.swing.GroupLayout.DEFAULT_SIZE, javax.swing.GroupLayout.DEFAULT_SIZE, Short.MAX_VALUE) 
                                   .addComponent(jProgressBar12, javax.swing.GroupLayout.DEFAULT_SIZE, 

javax.swing.GroupLayout.DEFAULT_SIZE, Short.MAX_VALUE)))) 
                       .addGap(0, 0, Short.MAX_VALUE)) 
                   .addComponent(jLabel10, javax.swing.GroupLayout.Alignment.TRAILING, javax.swing.GroupLayout.DEFAULT_SIZE, 

javax.swing.GroupLayout.DEFAULT_SIZE, Short.MAX_VALUE) 
                   .addComponent(jLabel11, javax.swing.GroupLayout.DEFAULT_SIZE, javax.swing.GroupLayout.DEFAULT_SIZE, 

Short.MAX_VALUE) 
                   .addComponent(jLabel12, javax.swing.GroupLayout.Alignment.TRAILING, javax.swing.GroupLayout.DEFAULT_SIZE, 

javax.swing.GroupLayout.DEFAULT_SIZE, Short.MAX_VALUE)) 
               .addGap(38, 38, 38)) 
       ); 
       layout.setVerticalGroup( 
           layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING) 
           .addGroup(layout.createSequentialGroup() 
               .addContainerGap() 
               .addComponent(jLabel1) 
               .addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement.RELATED) 
               .addComponent(jLabel5) 
               .addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement.RELATED) 
               .addGroup(layout.createParallelGroup(javax.swing.GroupLayout.Alignment.BASELINE) 
                   .addComponent(cboxPorts, javax.swing.GroupLayout.PREFERRED_SIZE, javax.swing.GroupLayout.DEFAULT_SIZE, 

javax.swing.GroupLayout.PREFERRED_SIZE) 
                   .addComponent(btnConnect) 
                   .addComponent(btnDisconnect)) 
               .addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement.RELATED) 
               .addComponent(jLabel2) 
               .addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement.RELATED) 
               .addGroup(layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING) 
                   .addComponent(jLabel14) 
                   .addComponent(jProgressBar1, javax.swing.GroupLayout.PREFERRED_SIZE, javax.swing.GroupLayout.DEFAULT_SIZE, 

javax.swing.GroupLayout.PREFERRED_SIZE)) 
               .addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement.RELATED) 
               .addGroup(layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING) 
                   .addComponent(jProgressBar2, javax.swing.GroupLayout.PREFERRED_SIZE, javax.swing.GroupLayout.DEFAULT_SIZE, 

javax.swing.GroupLayout.PREFERRED_SIZE) 
                   .addComponent(jLabel15)) 
               .addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement.RELATED) 
               .addGroup(layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING) 
                   .addComponent(jProgressBar3, javax.swing.GroupLayout.PREFERRED_SIZE, javax.swing.GroupLayout.DEFAULT_SIZE, 

javax.swing.GroupLayout.PREFERRED_SIZE) 
                   .addComponent(jLabel16)) 
               .addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement.RELATED) 
               .addComponent(jLabel4) 
               .addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement.RELATED) 
               .addComponent(jLabel3) 
               .addGap(18, 18, 18) 
               .addGroup(layout.createParallelGroup(javax.swing.GroupLayout.Alignment.TRAILING) 
                   .addComponent(jProgressBar4, javax.swing.GroupLayout.PREFERRED_SIZE, javax.swing.GroupLayout.DEFAULT_SIZE, 

javax.swing.GroupLayout.PREFERRED_SIZE) 
                   .addComponent(jLabel18)) 
               .addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement.RELATED, javax.swing.GroupLayout.DEFAULT_SIZE, 

Short.MAX_VALUE) 
               .addGroup(layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING) 
                   .addComponent(jProgressBar5, javax.swing.GroupLayout.Alignment.TRAILING, 

javax.swing.GroupLayout.PREFERRED_SIZE, javax.swing.GroupLayout.DEFAULT_SIZE, javax.swing.GroupLayout.PREFERRED_SIZE) 
                   .addComponent(jLabel19, javax.swing.GroupLayout.Alignment.TRAILING)) 
               .addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement.RELATED) 
               .addGroup(layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING) 
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                   .addComponent(jProgressBar6, javax.swing.GroupLayout.Alignment.TRAILING, 

javax.swing.GroupLayout.PREFERRED_SIZE, javax.swing.GroupLayout.DEFAULT_SIZE, javax.swing.GroupLayout.PREFERRED_SIZE) 
                   .addComponent(jLabel20, javax.swing.GroupLayout.Alignment.TRAILING)) 
               .addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement.UNRELATED) 
               .addComponent(jLabel10) 
               .addGap(1, 1, 1) 
               .addComponent(jLabel6) 
               .addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement.RELATED) 
               .addGroup(layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING) 
                   .addComponent(jLabel22) 
                   .addComponent(jProgressBar7, javax.swing.GroupLayout.PREFERRED_SIZE, javax.swing.GroupLayout.DEFAULT_SIZE, 

javax.swing.GroupLayout.PREFERRED_SIZE)) 
               .addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement.RELATED) 
               .addGroup(layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING) 
                   .addComponent(jLabel23) 
                   .addComponent(jProgressBar8, javax.swing.GroupLayout.PREFERRED_SIZE, javax.swing.GroupLayout.DEFAULT_SIZE, 

javax.swing.GroupLayout.PREFERRED_SIZE)) 
               .addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement.RELATED) 
               .addGroup(layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING) 
                   .addComponent(jProgressBar9, javax.swing.GroupLayout.PREFERRED_SIZE, javax.swing.GroupLayout.DEFAULT_SIZE, 

javax.swing.GroupLayout.PREFERRED_SIZE) 
                   .addComponent(jLabel24)) 
               .addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement.RELATED) 
               .addComponent(jLabel11) 
               .addGap(1, 1, 1) 
               .addComponent(jLabel17) 
               .addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement.RELATED) 
               .addGroup(layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING) 
                   .addComponent(jLabel27, javax.swing.GroupLayout.Alignment.TRAILING) 
                   .addComponent(jProgressBar10, javax.swing.GroupLayout.Alignment.TRAILING, 

javax.swing.GroupLayout.PREFERRED_SIZE, javax.swing.GroupLayout.DEFAULT_SIZE, javax.swing.GroupLayout.PREFERRED_SIZE)) 
               .addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement.RELATED) 
               .addGroup(layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING) 
                   .addComponent(jLabel28, javax.swing.GroupLayout.Alignment.TRAILING) 
                   .addComponent(jProgressBar11, javax.swing.GroupLayout.Alignment.TRAILING, 

javax.swing.GroupLayout.PREFERRED_SIZE, javax.swing.GroupLayout.DEFAULT_SIZE, javax.swing.GroupLayout.PREFERRED_SIZE)) 
               .addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement.RELATED) 
               .addGroup(layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING) 
                   .addComponent(jProgressBar12, javax.swing.GroupLayout.Alignment.TRAILING, 

javax.swing.GroupLayout.PREFERRED_SIZE, javax.swing.GroupLayout.DEFAULT_SIZE, javax.swing.GroupLayout.PREFERRED_SIZE) 
                   .addComponent(jLabel29, javax.swing.GroupLayout.Alignment.TRAILING)) 
               .addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement.RELATED) 
               .addComponent(jLabel12) 
               .addGap(2, 2, 2) 
               .addComponent(jLabel13) 
               .addGap(5, 5, 5) 
               .addComponent(jScrollPane2, javax.swing.GroupLayout.PREFERRED_SIZE, 266, javax.swing.GroupLayout.PREFERRED_SIZE) 
               .addGap(10, 10, 10)) 
       ); 
 
       getAccessibleContext().setAccessibleName("MQP Demo"); 
 
       pack(); 
   }// </editor-fold>                         
 
   private void btnConnectActionPerformed(java.awt.event.ActionEvent evt) {                                            
       communicator.connect(); 
       if (communicator.getConnected() == true) 
       { 
           if (communicator.initIOStream() == true) 
           { 
               communicator.initListener(); 
           } 
       } 
   }                                           
 
   private void btnDisconnectActionPerformed(java.awt.event.ActionEvent evt) {                                               
       communicator.disconnect(); 
   }                                              
//output the data 
   public void ChangeBarData1 (int input){ 
       jProgressBar1.setValue(input); 
   } 
   public void ChangeBarData2 (int input){ 
       jProgressBar2.setValue(input); 
   } 
   public void ChangeBarData3 (int input){ 
       jProgressBar3.setValue(input); 
   } 
   public void ChangeBarData4 (int input){ 
       jProgressBar4.setValue(input); 
   } 
   public void ChangeBarData5 (int input){ 
       jProgressBar5.setValue(input); 
   } 
   public void ChangeBarData6 (int input){ 
       jProgressBar6.setValue(input); 
   } 
   public void ChangeBarData7 (int input){ 
       jProgressBar7.setValue(input); 
   } 
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   public void ChangeBarData8 (int input){ 
       jProgressBar8.setValue(input); 
   } 
   public void ChangeBarData9 (int input){ 
       jProgressBar9.setValue(input); 
   } 
   public void ChangeBarData10 (int input){ 
       jProgressBar10.setValue(input); 
   } 
   public void ChangeBarData11 (int input){ 
       jProgressBar11.setValue(input); 
   } 
   public void ChangeBarData12 (int input){ 
       jProgressBar12.setValue(input); 
   } 
   public static void main(String args[]) { 
       java.awt.EventQueue.invokeLater(new Runnable() { 
           public void run() { 
               new GUI().setVisible(true); 
           } 
       }); 
   } 
   // Variables declaration - do not modify                      
   public javax.swing.JButton btnConnect; 
   public javax.swing.JButton btnDisconnect; 
   public javax.swing.JComboBox cboxPorts; 
   private javax.swing.JLabel jLabel1; 
   private javax.swing.JLabel jLabel10; 
   private javax.swing.JLabel jLabel11; 
   private javax.swing.JLabel jLabel12; 
   private javax.swing.JLabel jLabel13; 
   private javax.swing.JLabel jLabel14; 
   private javax.swing.JLabel jLabel15; 
   private javax.swing.JLabel jLabel16; 
   private javax.swing.JLabel jLabel17; 
   private javax.swing.JLabel jLabel18; 
   private javax.swing.JLabel jLabel19; 
   private javax.swing.JLabel jLabel2; 
   private javax.swing.JLabel jLabel20; 
   private javax.swing.JLabel jLabel22; 
   private javax.swing.JLabel jLabel23; 
   private javax.swing.JLabel jLabel24; 
   private javax.swing.JLabel jLabel27; 
   private javax.swing.JLabel jLabel28; 
   private javax.swing.JLabel jLabel29; 
   private javax.swing.JLabel jLabel3; 
   private javax.swing.JLabel jLabel4; 
   private javax.swing.JLabel jLabel5; 
   private javax.swing.JLabel jLabel6; 
   private javax.swing.JProgressBar jProgressBar1; 
   private javax.swing.JProgressBar jProgressBar10; 
   private javax.swing.JProgressBar jProgressBar11; 
   private javax.swing.JProgressBar jProgressBar12; 
   private javax.swing.JProgressBar jProgressBar2; 
   private javax.swing.JProgressBar jProgressBar3; 
   private javax.swing.JProgressBar jProgressBar4; 
   private javax.swing.JProgressBar jProgressBar5; 
   private javax.swing.JProgressBar jProgressBar6; 
   private javax.swing.JProgressBar jProgressBar7; 
   private javax.swing.JProgressBar jProgressBar8; 
   private javax.swing.JProgressBar jProgressBar9; 
   private javax.swing.JScrollPane jScrollPane1; 
   private javax.swing.JScrollPane jScrollPane2; 
   private javax.swing.JTextArea jTextArea1; 
   public javax.swing.JTextArea txtLog; 
   // End of variables declaration                    
} 
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Appendix L: MATLAB Code 

%% Graphing for MQP 
clc; clear all; close all; 

 
% Load data to graph 
normData = xlsread('200N_normalforce_abstract.csv'); 
COMData = xlsread('COMSOL_60Nnormal_abstract.csv'); 
XshearData = xlsread('29.7N_-xshear_abstract.csv'); 
YshearData = xlsread('29.7N_-yshear_abstract.csv'); 

 
% Normal Force Data 
NormxForce = normData(:,4); 
NormxAxis = normData(:,1); 
NormyAxis = normData(:,2); 
NormzAxis = normData(:,3); 

 

% COMSOL Normal Force Data 
COMxForce = COMData(:,4); 
COMxAxis = COMData(:,1); 
COMyAxis = COMData(:,2); 
COMzAxis = COMData(:,3); 

 
% Shear in X Data 
XshearTime = XshearData(:,4); 
XshearxAxis = XshearData(:,1); 
XshearyAxis = XshearData(:,2); 
XshearzAxis = XshearData(:,3); 
 
% Shear in Y Data 
YshearTime = YshearData(:,4); 
YshearxAxis = YshearData(:,1); 
YshearyAxis = YshearData(:,2); 
YshearzAxis = YshearData(:,3); 

 
% Normal Force Graph 
fig1 = figure; 
plot(NormxForce,NormzAxis,'k'); 
hold on 
grid off 
plot(NormxForce,NormxAxis,'g'); 
hold on 
plot(NormxForce,NormyAxis,'b'); 
fit1 = fitlm(NormxForce,NormzAxis); 
rsq1 = fit1.Rsquared.Ordinary; 
title('Magnetic Flux, 200N Normal Force'); 
xlabel('Applied Normal Force (N)'); 
ylabel('Magnetic Flux (\muT)'); 
legend('Z-Axis','X-Axis','Y-Axis'); 
textstring1 = sprintf('R^2 = %0.3f',rsq1); 
text (80,1400,textstring1); 
hold off 

 
% COMSOL Graph 
fig2 = figure; 
plot(COMxForce,COMzAxis,'k'); 
hold on  
plot(COMxForce,COMxAxis,'g'); 
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hold on 
plot(COMxForce,COMyAxis,'b'); 
fit2 = fitlm(COMxForce,COMzAxis); 
rsq2 = fit2.Rsquared.Ordinary; 
title('Simulated Magnetic Flux, 60N Normal Force'); 
xlabel('Applied Normal Force (N)'); 
ylabel('Magnetic Flux (\muT)'); 
legend('Z-Axis','X-Axis','Y-Axis'); 
textstring2 = sprintf('R^2 = %0.3f',rsq2); 
text (20,1250,textstring2); 
hold off 

 
% Shear in x Graph 
fig3 = figure; 
plot(XshearTime,XshearzAxis,'k'); 
hold on 
plot(XshearTime,XshearxAxis,'g'); 
hold on 
plot(XshearTime,XshearyAxis,'b'); 
title('Shear in -X-Axis, 29.7N'); 
xlabel('Time (s)'); 
ylabel('Magnetic Flux (\muT)'); 
legend('Z-Axis','X-Axis','Y-Axis'); 
hold off 

 
%Shear in y Graph 
fig4 = figure; 
plot(YshearTime,YshearzAxis,'k'); 
hold on 
plot(YshearTime,YshearxAxis,'g'); 
hold on 
plot(YshearTime,YshearyAxis,'b'); 
title('Shear in -Y-Axis, 29.7N'); 
xlabel('Time (s)'); 
ylabel('Magnetic Flux (\muT)'); 
legend('Z-Axis','X-Axis','Y-Axis'); 
hold off 
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Appendix M: Offset Filter Code 

/* THE XOR GATE MAKES HIGH ON AND LOW OFF FOR SENSORS 
 Code to get data from MLX90363 sensor. 
 
 This piece of code gets xyz magnetic flux magnitudes from the 
 sensor. It uses a function to compute CRCs. 
 
 Arduino Uno is used as the master device and a single MLX90363 
 sensor is used as the slave. 
 
 Written by Selim Ozel, 08.14.2015 
 Edited and Modified by David Laovoravit, 4.23.2017 
*/ 
 
#include <SPI.h>       //Include SPI Library 
#include <TimerOne.h>  //Include TimeOne Library 
 
#define NUMBER 0 
#define MAXNUMTOFILTER 2000 
#define MINNUMTOFILTER -2000 
 
#define NUMOFSENSOR 4 
 
#define LOWERBOUNDCHECK 150 
int offsetData[NUMOFSENSOR];// = 0; 
int previousZ[NUMOFSENSOR]; 
int firstRunCount =0; 
//boolean firstFlag = true; 
//Define and initialize CRC array, 256 bytes 
char CRCArray[] = {//used to check correct data transfer 
 0x00, 0x2F, 0x5E, 0x71, 0xBC, 0x93, 0xE2, 0xCD, 0x57, 0x78, 0x09, 0x26, 
 0xEB, 0xC4, 0xB5, 0x9A, 0xAE, 0x81, 0xF0, 0xDF, 0x12, 0x3D, 0x4C, 0x63, 
 0xF9, 0xD6, 0xA7, 0x88, 0x45, 0x6A, 0x1B, 0x34, 0x73, 0x5C, 0x2D, 0x02, 
 0xCF, 0xE0, 0x91, 0xBE, 0x24, 0x0B, 0x7A, 0x55, 0x98, 0xB7, 0xC6, 0xE9, 
 0xDD, 0xF2, 0x83, 0xAC, 0x61, 0x4E, 0x3F, 0x10, 0x8A, 0xA5, 0xD4, 0xFB, 
 0x36, 0x19, 0x68, 0x47, 0xE6, 0xC9, 0xB8, 0x97, 0x5A, 0x75, 0x04, 0x2B, 
 0xB1, 0x9E, 0xEF, 0xC0, 0x0D, 0x22, 0x53, 0x7C, 0x48, 0x67, 0x16, 0x39, 
 0xF4, 0xDB, 0xAA, 0x85, 0x1F, 0x30, 0x41, 0x6E, 0xA3, 0x8C, 0xFD, 0xD2, 
 0x95, 0xBA, 0xCB, 0xE4, 0x29, 0x06, 0x77, 0x58, 0xC2, 0xED, 0x9C, 0xB3, 
 0x7E, 0x51, 0x20, 0x0F, 0x3B, 0x14, 0x65, 0x4A, 0x87, 0xA8, 0xD9, 0xF6, 
 0x6C, 0x43, 0x32, 0x1D, 0xD0, 0xFF, 0x8E, 0xA1, 0xE3, 0xCC, 0xBD, 0x92, 
 0x5F, 0x70, 0x01, 0x2E, 0xB4, 0x9B, 0xEA, 0xC5, 0x08, 0x27, 0x56, 0x79, 
 0x4D, 0x62, 0x13, 0x3C, 0xF1, 0xDE, 0xAF, 0x80, 0x1A, 0x35, 0x44, 0x6B, 
 0xA6, 0x89, 0xF8, 0xD7, 0x90, 0xBF, 0xCE, 0xE1, 0x2C, 0x03, 0x72, 0x5D, 
 0xC7, 0xE8, 0x99, 0xB6, 0x7B, 0x54, 0x25, 0x0A, 0x3E, 0x11, 0x60, 0x4F, 
 0x82, 0xAD, 0xDC, 0xF3, 0x69, 0x46, 0x37, 0x18, 0xD5, 0xFA, 0x8B, 0xA4, 
 0x05, 0x2A, 0x5B, 0x74, 0xB9, 0x96, 0xE7, 0xC8, 0x52, 0x7D, 0x0C, 0x23, 
 0xEE, 0xC1, 0xB0, 0x9F, 0xAB, 0x84, 0xF5, 0xDA, 0x17, 0x38, 0x49, 0x66, 
 0xFC, 0xD3, 0xA2, 0x8D, 0x40, 0x6F, 0x1E, 0x31, 0x76, 0x59, 0x28, 0x07, 
 0xCA, 0xE5, 0x94, 0xBB, 0x21, 0x0E, 0x7F, 0x50, 0x9D, 0xB2, 0xC3, 0xEC, 
 0xD8, 0xF7, 0x86, 0xA9, 0x64, 0x4B, 0x3A, 0x15, 0x8F, 0xA0, 0xD1, 0xFE, 
 0x33, 0x1C, 0x6D, 0x42 
}; 
 
//Pin declaration for Arudino Mega 2500 
int PinSS = 53; //Set Slave Select Pin at 53 
int PinMOSI = 51;//Set Master Out, Slave In Pin at 51 
int PinMISO = 50;//Set Master In, Slave Out Pin at 50 
int PinSCK = 52;//Set Clock Pin at 52 
int PinEN = 22; //Set Slave Select Pin at 8 
int PinA0 = 26; //Set Slave Select Pin at 9 
int PinA1 = 24; //Set Slave Select Pin at 10 
int currentState = 1; 
 
int switchNum = 1; 
 
// Buffers to read/write MLX90363 
uint8_t readBuffer[8] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 

0x00};                                                     //declare Read Buffers, as an array comprising of 8 8 bit integers 
uint8_t writeBuffer[8] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 

0x00};                                                    //declare Write Buffers, as an array comprising of 8 8 bit integers 
 
// Bx,By,Bz variables 
int16_t Bx = 

0;                                                                                                               //declaring Bx 

variable as a 16 bit integer and set starting value at 0 
int16_t By = 

0;                                                                                                               //declaring By 

variable as a 16 bit integer and set starting value at 0 
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int16_t Bz = 

0;                                                                                                               //declaring Bz 

variable as a 16 bit integer and set starting value at 0 
 
// Error bits, CRC, virtual gain and rolling counter variables 
uint8_t errorBits = 

0;                                                                                                        //declaring error Bits 

as an 8 bit integer and set starting value at 0 
uint8_t rollingCounter = 

0;                                                                                                   //declaring Rolling Counter 

as an 8 bit integer and set starting value at 0 
uint8_t CRC = 

0;                                                                                                              //declaring 

Cyclic Redundancy Check as an 8 bit integer and set starting value at 0 
 
// CRC function 
uint8_t ComputeCRC(uint8_t Byte0, uint8_t Byte1, uint8_t Byte2, uint8_t Byte3, uint8_t Byte4, uint8_t Byte5, uint8_t Byte6) { 

//Parse each byte into the CRC, pulling out of the CRC array 
 uint8_t CRC = 0xFF; 
 CRC = CRCArray[CRC ^ Byte0]; //Parsing Byte through an XOR gate to crate a CRC 
 CRC = CRCArray[CRC ^ Byte1]; 
 CRC = CRCArray[CRC ^ Byte2]; 
 CRC = CRCArray[CRC ^ Byte3]; 
 CRC = CRCArray[CRC ^ Byte4]; 
 CRC = CRCArray[CRC ^ Byte5]; 
 CRC = CRCArray[CRC ^ Byte6]; 
 CRC = ~CRC;   //Flipping the Bits gets out the input that is wanted 
 return CRC; 
} 
int fullCircle=0; 
// Sets the send message flag 
int sendMessage = 0;  //Set a flag for message initialze to 0 (false) 
void SendFlag()//A helper method for setting messenger flag to true 
{ 
 sendMessage = 1;//Set a flag to 1(true) 
} 
 

 

void setup() //The setup before starting the looping program 
{ 
 // Mark comm pins as output or input 
 pinMode (PinMOSI, OUTPUT);//Set MOSI pin as an output 
 pinMode (PinMISO, INPUT);//Set MISO pin as an input 
 pinMode (PinSCK, OUTPUT);//Set Clock pin as out put 
 
 // Make the MLX90363 sensor the active slave device 
 pinMode (PinSS, OUTPUT); //Set Slave Select pin as an output 
 pinMode (PinEN, OUTPUT); 
 pinMode (PinA0, OUTPUT); 
 pinMode (PinA1, OUTPUT); 
 digitalWrite(PinSS, LOW); //Turn off the Slave Select 
 digitalWrite(PinEN, HIGH);//Turn off the Slave Select1 
 digitalWrite(PinA0, LOW); //Turn off the Slave Select2 
 digitalWrite(PinA1, LOW); //Turn off the Slave Select3 
 
 // Begin serial Comm 
 Serial.begin(9600); //Set the baudrate to 9600 
 
 // Required SPI configeration to communicate with MLX90363 
 // Details of SPI settings can be found in "Getting Started 
 // Guide" [GSG], under "SPI bus protocol". 
 SPI.begin();  
//Initialize SPI and set SCK,MOSI,SS to outputs and SCK and MOSI asl low and SS as high 
 SPI.setBitOrder(MSBFIRST); //Set protocal to transmit Most significant bit first 
 SPI.setClockDivider(SPI_CLOCK_DIV32); 
//Set the clock to be 1/32 the frequency of the system clock 
 SPI.setDataMode(SPI_MODE1); 
//SPI_MODE1 =   Clock Polarity: 0 | Clock Phase: 1 | Output Edge: Rising | Data Capture: Falling 
 
 // Setup Timer for sending/receiving data 
 Timer1.initialize(500);//30000 //1000 ////change this to 3000 if you want to run in with JAVA//////Initialize frequency of 

interrupt to 0.03 seconds 
 Timer1.attachInterrupt(SendFlag); //trip flag every 0.03 seconds 
} 
int counter = 0; 
void loop()      // 
 
{ 
 if (sendMessage) { //If the timer interupt trips (0.03 seconds) collect data from sensor 
   //int ReadPin = 0; 
   switch (switchNum) {//switching between each sensor on the module 
     case 1: 
       fullCircle=0; 
       currentState = 1; 
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       digitalWrite(PinA0,LOW); 
       digitalWrite(PinA1,LOW); 
       //ReadPin = PinSS; 
       if (counter >= NUMBER) {//used for adjusting how many times each sensor is run for each run through 
         switchNum ++; 
         counter = 0; 
       } 
       else { 
         counter++; 
       } 
       break; 
     case 2: 
       currentState = 2; 
       digitalWrite(PinA0,LOW); 
       digitalWrite(PinA1,HIGH); 
       //ReadPin = PinSS1; 
       if (counter >= NUMBER) {//used for adjusting how many times each sensor is run for each run through 
         switchNum ++; 
         counter = 0; 
       } 
       else { 
         counter++; 
       } 
       break; 
     case 3: 
       currentState = 3; 
       digitalWrite(PinA0,HIGH); 
       digitalWrite(PinA1,LOW); 
       //ReadPin = PinSS3; 
       if (counter >= NUMBER) {//used for adjusting how many times each sensor is run for each run through 
         switchNum ++; 
         counter = 0; 
       } 
       else { 
         counter++; 
       } 
       break; 
     case 4: 
       currentState = 4; 
       digitalWrite(PinA0,HIGH); 
       digitalWrite(PinA1,HIGH); 
       //ReadPin = PinSS2; 
       if (counter >= NUMBER) {//used for adjusting how many times each sensor is run for each run through 
         switchNum = 1; 
         counter = 0; 
       } 
       else { 
         counter++; 
       } 
       fullCircle=1; 
       break; 
     default: 
       Serial.println("Error"); 
   } 
 
   // Create a GET1 message. Format of messages are explained in both DataSheet 
   // [DS] and GSG. 
   writeBuffer[0] = 0x00; //this is a set up step to have the sensor be a GET1 See DataSheet 
   writeBuffer[1] = 0x00; 
   writeBuffer[2] = 0xFF; // Timeout value is set as 65 ms 
   writeBuffer[3] = 0xFF; // Timeout value is set as 65 ms 
   writeBuffer[4] = 0x00; 
   writeBuffer[5] = 0x00; 
   writeBuffer[6] = 0x93; // Marker is set as 2 to get XYZ measurement. OP Code for GET1 message: 19 in Decimal. 
   writeBuffer[7] = ComputeCRC(0x00, 0x00, 0xFF, 0xFF, 0x00, 0x00, 0x93); // CRC 
 

   // Transfer the content of writeBuffer to MLX90363. 
   noInterrupts(); 
   digitalWrite(PinEN, HIGH);  
   digitalWrite(PinSS, HIGH); //PinSS1,PinSS2, PinSS3 pull the Slave Select Low turning it on 
   delay(10);   
//delay 1 microseconds as a propagation delay to prevent errors 
   digitalWrite(PinA0,LOW); 
   digitalWrite(PinA1,LOW); 
   for (int i = 0; i < 8; i++) { //send and recived through SPI to the sensors 
     readBuffer[i] = SPI.transfer(writeBuffer[i]); //for loop to send out the array 
   } 
                                                                                //delay 15 microseconds as a propagation delay to 

prevent errors 
   digitalWrite(PinSS, LOW); //PinSS1,PinSS2, PinSS3 pull the Slave Select High turning it off 
  // digitalWrite(PinEN, LOW);  
   delay(10); 
   interrupts();  
 

   // Read most significant bits and add the least significant bits. 
   // Do this for Bx, By and Bz. Convert unsigned readBuffer data to 
   // signed data !Ghetto Style -if statements-!. 
   String StringBx = ""; 
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   String StringBy = ""; 
   String StringBz = ""; 
 
   Bx = (readBuffer[1] & 0x3F) << 8; 
   Bx += readBuffer[0]; 
   if (Bx >= 8192) { 
     Bx -= 16384; 
   } 
   if(Bx<=MAXNUMTOFILTER && Bx >= MINNUMTOFILTER){ 
     StringBx= (String)Bx; 
   } 
   By = (readBuffer[3] & 0x3F) << 8; 
   By += readBuffer[2]; 
   if (By >= 8192) { 
     By -= 16384; 
   } 
   if(By<=MAXNUMTOFILTER && By >= MINNUMTOFILTER){//band pass filter 
     StringBy= (String)By; 
   } 
   Bz = (readBuffer[5] & 0x3F) << 8; 
   Bz += readBuffer[4]; 
   if (Bz >= 8192) { 
     Bz -= 16384; 
   } 
   if(Bz<=MAXNUMTOFILTER && Bz >= MINNUMTOFILTER){//band pass filter 
     if(firstRunCount<NUMOFSENSOR*4){//offset filter 
       previousZ[currentState-1]=Bz; 
       offsetData[currentState-1]=0; 
       firstRunCount++; 
     } 
     if(abs(previousZ[currentState -1]-Bz)>LOWERBOUNDCHECK){ 
       offsetData[currentState-1] = offsetData[currentState-1]+(previousZ[currentState -1]-Bz); 
     } 
     previousZ[currentState -1]=Bz; 
     Bz = Bz+offsetData[currentState-1];//offset data is made for general need. x[3] y[3] z[3]. if two modules x[3][3] 
 
     StringBz= (String)Bz; 
   } 
 
   // Extract error bits E0 and E1, CRC and rolling counter. 
   errorBits = readBuffer[0] >> 6; 
   CRC = readBuffer[7]; 
   rollingCounter = readBuffer[6] & 0x3F; 
    
   // Print results to serial port. Only print them if previous 
   // data is read by the other end. ie: Matlab in my Laptop. 
     Serial.print("N" + String(currentState) + "," + StringBx + "," + StringBy + "," + StringBz+","); 
 
     if(fullCircle==1){ 
     Serial.println(""); 
     } 
   sendMessage = 0; 
 } 
 
} 
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Appendix N: 3rd Iteration COMSOL Data Table 

Magnetic Flux Values vs. Simulated Force Applied 

 


