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1 Introduction

1.1 Kidneys and Dialysis

Kidneys are organs that, among other things, remove waste and excess fluid from a person’s body.

Healthy kidneys are able to remove from one’s blood substances like urea and creatinine, which

would cause illness if allowed to build up in one’s body. They also pass excess fluid along to the

bladder, which is then expelled as urine. Additionally, kidneys regulate blood pressure and the

amount of substances like sodium and potassium in one’s body. When a patient’s kidneys fail, the

patient may feel unwell, and since liquid cannot be removed from his body normally, the patient

can suffer from swelling of the ankles, excess fluid in his lungs, and hypertension. [1] [5]

Kidney dialysis is a process that performs the work of kidneys that cannot function normally. In

1943, Willem Kolff first performed dialysis, developing a mechanism to remove urea from a patient

by using cellophane as a filter, with blood on one side, and a solution called dialysate on the other.

Urea passed through the filter by diffusion and into the dialysate. [4]

During the process of modern hemodialysis, blood from the patient’s body is run through very

thin hollow fibers made of a semi-permeable membrane inside a dialyzer, shown in Figure 1 [6].

Dialysate is also run through the dialyzer outside the hollow fibers, carrying substances such as

sodium, potassium, calcium, magnesium, chloride, bicarbonate, and glucose. During this pro-

cess, the filtered toxins and excess water travel out of the blood and through the membrane, by

both diffusion and convection, and into the dialysate. The blood inside the fibers is run counter-

current to the dialysate in order to maximize the gradient of the concentration of solutes across

the membrane. The concentration of these substances is prescribed so that concentrations of these

substances in the patient’s body are as normal as possible after treatment. [4]

The pores in the membrane are large enough to allow water and waste through, but small enough

to prevent blood cells from passing through. The process itself usually lasts three to five hours,
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and is usually performed two or three times per week. [5]

Figure 1: Example dialyzer through which blood and dialysate flow (left), and hollow fibers through
which blood flows and around which dialysate flows (right)

After undergoing dialysis treatment, however, patients may experience a deficiency or an excess of

solutes like sodium in their bloodstream. A deficiency of sodium can lead to low blood pressure,

and an excess of sodium can cause fluid retention. [6]

1.2 Problem

In this report, we attempt to model the velocities and pressures of blood plasma and dialysate

in a dialyzer, as well as the concentration of blood cells, as described in [6]. We look at the

blood plasma in one hollow fiber and the dialysate flowing outside it. The hope is that knowledge

of where blood cells are concentrated can give a better understanding of where ions are not lo-
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cated. The ultimate goal is to model the flow of sodium during the process of dialysis, so that it

can eventually be determined what rate of blood flow, rate of dialysate flow, amount of liquid re-

moved, and concentration of solutes in the dialysate should be used in order to best treat a patient.

In the Section 2, we describe equations that model the velocities and pressures of blood and

dialysate. We assume flow of blood plasma and dialysate to be Stokes flow, we assume that the

pressure gradient varies only in the axial direction, and we model blood cell concentration as a

continuous scalar field. The equations modeling velocities and pressures are nondimensionalized

and solved, and the resulting velocity profiles are used in a nondimensionalized advection-diffusion

equation that is used to model the blood cell concentration within the fibers inside the dialyzer.

We found that varying the pressure in the dialysate moved the location at which the maximum

blood cell concentration was achieved, and that the maximum blood cell concentration is directly

proportional to the product of the blood cell Peclet number and the permeability of the membrane.

In the Appendix, we describe the finite-difference methods used to numerically solve diffusion and

advection-diffusion equations, namely Crank-Nicolson and Alternating Direction Implicit (ADI).

2 Model Formulation

Consider the configuration from Figure 2. For simplicity, we use Cartesian coordinates rather than

cylindrical coordinates. Blood flows in the region bounded by 0 ≤ x ≤ ld, 0 ≤ z ≤ 2rt symmetri-

cally about the line z = rt. The dialysate flows in the region bounded by 0 ≤ x ≤ ld,−2rt ≤ z ≤ 0

symmetrically about the line z = −rt. Here, ld is the length of a hollow fiber in the dialyzer, and

rt is the radius.

The velocities and pressures of the blood plasma and dialysate can be described by the Navier-

Stokes equations:

∂u1

∂x
+
∂w1

∂z
= 0, 0 ≤ z ≤ rt, (1)

ρ1(
∂u1

∂t
+ (u1 · ∇)u1) = −∂p1

∂x
+ µ1∇2u1, 0 ≤ z ≤ rt, (2)
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Figure 2: Domain of the problem, where the region 0 ≤ x ≤ ld, 0 ≤ z ≤ rt corresponds to the fiber
through which blood flows, and the region where 0 ≤ x ≤ ld,−rt ≤ z ≤ 0 corresponds to the area
outside the fiber, where the dialysate flows

ρ1(
∂w1

∂t
+ (u1 · ∇)w1) = −∂p1

∂z
+ µ1∇2w1, 0 ≤ z ≤ rt, (3)

∂u2

∂x
+
∂w2

∂z
= 0, −rt ≤ z ≤ 0, (4)

ρ2(
∂u2

∂t
+ (u2 · ∇)u2) = −∂p2

∂x
+ µ2∇2u2, −rt ≤ z ≤ 0, (5)

ρ2(
∂w2

∂t
+ (u2 · ∇)w2) = −∂p2

∂z
+ µ2∇2w2, −rt ≤ z ≤ 0. (6)

Here, µ1, ρ1, p1, u1, and w1 are the effective dynamic viscosity, effective density, pressure, x-component

of velocity, and z-component of velocity of blood, respectively. The variables µ2, ρ2, p2, u2, and w2

are the effective dynamic viscosity, effective density, pressure, x-component of velocity, and z-

component of velocity of dialysate, respectively. For simplicity, we assume that ρ1 = ρ2, µ1 = µ2,

and are constant.

These equations are subject to the boundary conditions:

∂u1

∂z
= w1 = 0, z = rt, (7)

∂u2

∂z
= w2 = 0, z = −rt, (8)

u1 = u2 = 0, z = 0, (9)
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Variable Typical value
rt 10−4m
ld 0.2 m
Ub 0.0018 m/s
µ 4 ×10−3Pa · s
D 10−9m2/s

Table 1: Typical values of rt, ld, Ub, µ,D

w1 = w2 =
k

µ

p2 − p1

lp
, z = 0. (10)

where k is the permeability of the membrane and lp is the thickness of the membrane. Addi-

tionally, the values of p1 and p2 are prescribed at the boundaries x = 0, x = ld to be the values

P11, P12, P21, P22, as shown in Figure 2.

The concentration of blood cells, b, can be modelled by the following equation:

∂b

∂t
+ u1

∂b

∂x
+ w1

∂b

∂z
= D

(
∂2b

∂x2
+
∂2b

∂z2

)
, 0 ≤ z ≤ rt, (11)

where D is the diffusion coefficient of the blood cells. Equation 11 is subject to the boundary con-

ditions of no flux along z = 0 and z = rt, a known concentration along x = 0, and a concentration

independent of x at x = ld, i.e.,

w1b−D
∂b

∂z
= 0, z = 0, z = rt,

b = f(z, t), x = 0,

∂b

∂x
= 0, x = ld.

(12)

Table 1 shows some typical values of rt, ld, Ub (an average velocity of the blood), µ, and D [6].

We apply the same scalings as in [6], where a tilde is used to denote a nondimensional variable:

x = ldx̃ , z = rtz̃ , ε =
rt
ld
, u = Ubũ , w = εUbw̃ , p =

µUb
rtε

p̃ , b = b0b̃ , t =
r2
t

D
t̃. (13)
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These scalings, applied to (1) - (6), give:

∂ũ1

∂x̃
+
∂w̃1

∂z̃
= 0, (14)

ε2Re(
∂ũ1

∂t̃
+ (ũ1 · ∇)ũ1) = −∂p̃1

∂x̃
+ ε2

∂2ũ1

∂x̃2
+
∂2ũ1

∂z̃2
, (15)

ε4Re(
∂w̃1

∂t̃
+ (ũ1 · ∇)w̃1) = −∂p̃1

∂z̃
+ ε2

(
ε2
∂2w̃1

∂x̃2
+
∂2w̃1

∂z̃2

)
, (16)

∂ũ2

∂x̃
+
∂w̃2

∂z̃
= 0, (17)

ε2Re(
∂ũ2

∂t̃
+ (ũ2 · ∇)ũ2) = −∂p̃2

∂x̃
+ ε2

∂2ũ2

∂x̃2
+
∂2ũ2

∂z̃2
, (18)

ε4Re(
∂w̃2

∂t̃
+ (ũ2 · ∇)w̃2) = −∂p̃2

∂z̃
+ ε2

(
ε2
∂2w̃2

∂x̃2
+
∂2w̃2

∂z̃2

)
, (19)

where Re =
ρUbld
µ

is the Reynolds number of the blood and dialysate flow.

The scaled boundary conditions are given by:

∂ũ1

∂z̃
= w̃1 = 0, z̃ = 1, (20)

∂ũ2

∂z̃
= w̃2 = 0, z̃ = −1, (21)

ũ1 = ũ2 = 0, z̃ = 0, (22)

w̃1 = w̃2 = K(p2 − p1), z̃ = 0, (23)

where K =
k

rtlpε2
.

Applying the scalings to (11) gives:

D

r2
t

∂b̃

∂t̃
+
Ub
ld
ũ1
∂b̃

∂x̃
+
εUb
rt
w̃1
∂b̃

∂z̃
= D

(
1

l2d

∂2b̃

∂x̃2
+

1

r2
t

∂2b̃

∂z̃2

)
, (24)
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or equivalently,

∂b̃

∂t
+ ε2 Pe ũ1

∂b̃

∂x̃
+ ε2 Pe w̃1

∂b̃

∂z̃
= ε2

∂2b̃

∂x̃2
+
∂2b̃

∂z̃2
, (25)

where Pe =
Ubld
D

is the Peclet number. The scaled boundary conditions are:

ε2 Pe w̃b̃ =
∂b̃

∂z̃
, z̃ = 0, z̃ = 1,

b̃ = f(z, t)/b0, x = 0,

∂b̃

∂x̃
= 0, x = 1.

(26)

From here on, we drop the tildes from our variables and assume that every variable is nondimen-

sional.

Since ε� 1 and Re ∼ O(1), (16) and (19) give us that

∂p1

∂z
=
∂p2

∂z
= 0, (27)

implying that pressure is a function only of x. Equations (15) and (18) also give that

−∂p1

∂x
+
∂2u1

∂z2
= −∂p2

∂x
+
∂2u2

∂z2
= 0. (28)

This, combined with the boundary conditions for u, gives:

u1 =
dp1

dx

(
z2

2
− z
)
, 0 ≤ z ≤ 1,

u2 =
dp2

dx

(
z2

2
+ z

)
, −1 ≤ z ≤ 0.

(29)

Equations (14) and (17), along with (20) and (21), give:

w1 =
d2p1

dx2

(
−z3

6
+
z2

2
− 1

3

)
, 0 ≤ z ≤ 1,

w2 =
d2p2

dx2

(
−z3

6
− z2

2
+

1

3

)
, −1 ≤ z ≤ 0.

(30)
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Applying (23) gives the equations for the pressures of the blood and dialysate as:

d2p1

dx2
= 3K(p1 − p2), 0 ≤ z ≤ 1,

d2p2

dx2
= 3K(p2 − p1), −1 ≤ z ≤ 0.

(31)

The pressures, then, are given by:

p1(x) = Ae
√

6Kx +Be
√
−6Kx + ax+ b,

p2(x) = Ae
√

6Kx +Be
√
−6Kx + ax+ b,

(32)

where the values of A,B, a, b are given by:

A = −P11e
−
√

6K − P21e
−
√

6K + P22 − P12

2(e
√

6K − e−
√

6K)
,

B = −P11e
√

6K − P21e
√

6K + P22 − P12

2(e
√

6K − e−
√

6K)
,

a =
P22 + P12 − P21 − P11

2
,

b =
P21 + P11

2
.

(33)

We can now substitute the pressures from (32) into (29) and (30) in order to find the values

of u1, u2, w1, and w2. Figure 3 shows an example of streamlines of the velocity of blood when

K = 0.01, P11 = 815, P12 = 796, P21 = 472, and P22 = 518.

The values of these velocities can then be used in Equation 11 to find a solution for the blood cell

concentration.

3 Results

Applying the velocities in Figure 3 to equation 11, we can find a steady state solution for the blood

cell concentration by solving for the concentration at each timestep until the difference between

the solution at time tn and the solution at tn+1 is within some tolerance. A solution, given an

initial concentration of 1 everywhere, and given that Pe = 9000, ε = 5 × 10−4 and K = 0.01, is

given in Figure 4.
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Figure 3: Streamlines of the velocity of blood when K = 0.01, P11 = 815, P12 = 796, P21 = 472,
and P22 = 518

Figure 5 shows the value of the maximum blood cell concentration at steady state, bmax, within

our domain, for varying values of Pe and K. This figure shows that when Pe = 0, or when K = 0,

the solution remains constant at 1, and increasing Pe or K results in an increase in bmax. Figure 6

shows the value of bmax for varying values of PeK. This figure shows that bmax is directly propor-

tional to the product of Pe and K. For all of these cases, bmax is achieved at the point x = 1, z = 0.

To change the locus of the maximum, we change the pressure in the dialysate. If ∆p = P22 − P21,

Figure 7 shows the value of bmax for varying values of ∆p, and Figure 8 shows the x-coordinate

at which bmax is achieved, for varying values of ∆p. The z-coordinate at which bmax is achieved

remains at z = 0. As ∆p increases, the maximum concentration decreases, and the locus of the

maximum moves to the left.

Figure 9 shows a solution for the blood cell concentration when Pe=10000, K = 0.01, and

∆p = 450. Here, by varying the pressure in the dialysate, the maximum concentration has been
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Figure 4: Blood cell concentration given that Pe = 9000, ε = 5× 10−4 and K = 0.01

moved from x = 1 to around x = 0.3.

Figure 10 shows the difference between p1 and p2 at the x-coordinate at which bmax is achieved,

for varying values of ∆p. A typical value for ∆p is around 45. Here, we see that as ∆p increases

and moves further away from the typical value, the difference in pressure across the membrane

decreases.

4 Conclusions

We were able to find solutions for blood cell concentrations, given values of Pe, K, p11, p12, p21, p22.

We found that, holding pressures constant at typical values, bmax = aPeK, for some constant a > 0.

For typical values of the parameters, the maximum blood cell concentration occurs at the point

x = 1, z = 0. We also found that by increasing the value of ∆p in the dialysate, we can move
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Figure 5: Maximum blood cell concentration vs. Pe. Different colored lines correspond to different
values of K, ranging from 10−8 to 0.01, where lines of increasing slope correspond to higher values
of K. This shows that when Pe = 0, or when K = 0, the solution remains constant at 1, and
increasing Pe or K results in an increase in bmax.

the point at which the maximum blood cell concentration is achieved. However, control over this

locus comes at a cost. Increasing the value of ∆p results in a smaller pressure difference across

the membrane, which results in less fluid being removed from the blood. Further study would

be required to determine the best values of parameters like prsesure to best remove fluid from a

patient and control the concentrations of substances like sodium to minimize adverse health effects.
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Figure 6: Maximum blood cell concentration vs. KPe, showing that bmax = aKPe for some
constant a.

Appendices

We now describe the methods of Alternating Direction Implicit (ADI) and Crank-Nicolson, and

show how they can be used to solve the diffusion and advection-diffusion equations.

A ADI

ADI, or Alternating Direction Implicit, is a finite-difference method which can be used to solve

the advection-diffusion equation. The method involves two steps for each timestep. One step is

implicit in the x-direction and explicit in the z-direction, and one step is explicit in the x-direction

and implicit in the z-direction. For example, we approximate the solution, c(t, x, z) to the equation

∂c

∂t
+ u(z)

∂c

∂x
= α

(
∂2c

∂x2
+
∂2c

∂z2

)
, (34)

where u(z) is the solvent velocity, c is the solute concentration, and α is the diffusion coefficient.

The second term on the left hand side (LHS) of Equation 34 is the advective term, and the term
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Figure 7: Maximum blood cell concentration vs. ∆p, showing that bmax decreases and tends
towards 1 as ∆p increases.

on the right hand side (RHS) is the diffusion term. The following finite-difference approximation

is used:

Step 1:

c
n+1/2
i,j − cni,j

∆t/2
+ u(z)|j

c
n+1/2
i,j − cn+1/2

i−1,j

∆x
= α

[
c
n+1/2
i+1,j − 2c

n+1/2
i,j + c

n+1/2
i−1,j

∆x2
+
cni,j+1 − 2cni,j + cni,j−1

∆z2

]
,

(35)

Step 2:

cn+1
i,j − c

n+1/2
i,j

∆t/2
+ u(z)|j

c
n+1/2
i,j − cn+1/2

i−1,j

∆x
= α

[
c
n+1/2
i+1,j − 2c

n+1/2
i,j + c

n+1/2
i−1,j

∆x2
+
cn+1
i,j+1 − 2cn+1

i,j + cn+1
i,j−1

∆z2

]
,

(36)

where cni,j = c(tn, xi, zj), ∆t is the timestep, ∆x is the grid spacing in the x-direction, and ∆z is

the grid spacing in the z-direction. Moving all terms evaluated at time tn+1/2 = tn + ∆t/2 to the

left and all terms evaluated at time tn to the right, Step 1 becomes:

c
n+1/2
i,j

∆t/2
+u(z)|j

c
n+1/2
i,j − cn+1/2

i−1,j

∆x
−α

c
n+1/2
i+1,j − 2c

n+1/2
i,j + c

n+1/2
i−1,j

∆x2
=

cni,j
∆t/2

+α
cni,j+1 − 2cni,j + cni,j−1

∆z2
(37)
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Figure 8: x-coordinate at which bmax is achieved, for varying values of ∆p, showing that the locus
bmax can be controlled by varying the dialysate pressure.

or equivalently,

(
−u(z)|j

∆x
− α

∆x2

)
c
n+1/2
i−1,j +

(
1

∆t/2
+

2α

∆x2
+
u(z)|j

∆x

)
c
n+1/2
i,j − α

∆x2
c
n+1/2
i+1,j =

=
α

∆z2
cni,j−1 +

(
1

∆t/2
− 2α

∆z2

)
cni,j +

α

∆z2
cni,j+1

Similarly, Step 2 becomes:

cn+1
i,j

∆t/2
−α

cn+1
i,j+1 − 2cn+1

i,j + cn+1
i,j−1

∆z2
=
c
n+1/2
i,j

∆t/2
−u(z)|j

c
n+1/2
i,j − cn+1/2

i−1,j

∆x
+α

c
n+1/2
i+1,j − 2c

n+1/2
i,j + c

n+1/2
i−1,j

∆x2
(38)

or equivalently,

− α

∆z2
cn+1
i,j−1 +

(
1

∆t/2
+

2α

∆z2

)
cn+1
i,j −

α

∆z2
cn+1
i,j+1 =

(
u(z)|j

∆x
+

α

∆x2

)
c
n+1/2
i−1,j +
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Figure 9: Blood cell concentration given that Pe = 10000, ε = 5× 10−4, K = 0.01, and ∆p = 450.
The locus of the maximum blood cell concentration has been moved from x = 1 to around x = 0.3.

+

(
1

∆t/2
− 2α

∆x2
− u(z)|j

∆x

)
c
n+1/2
i,j +

α

∆x2
c
n+1/2
i+1,j

Each step is performed by solving two systems of tridiagonal equations.

The domain of 0 ≤ x ≤ L, 0 ≤ z ≤ H is divided into a uniform 2D grid, the values of which are

contained in a matrix. For example, if there are N points in the x-direction and M points in the

z-direction, then

c =



c11 c12 · · · c1N

c21 c22 · · · c2N
...

... · · · ...

cM1 cM2 · · · cMN


(39)

If we impose the boundary conditions:
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Figure 10: Difference between p1 and p2 at the x-coordinate at which bmax is achieved, for varying
values of ∆p. A typical value for ∆p is 45. As ∆p increases and moves further away from the
typical value, the difference in pressure across the membrane decreases.

cx = 0 x = 0, 1

cz = 0 z = 0, 1

(40)

we use image points to calculate derivatives at the boundaries:

ci2 − ci0
2∆x

= 0⇒ ci2 = ci0

ci,N+1 − ci,N−1

2∆x
= 0⇒ ci,N+1 = ci,N−1

c0j − c2j
2∆z

= 0⇒ c0j = c2j

cM−1,j − cM+1,j

2∆z
= 0⇒ cM−1,j = cM+1,j

(41)
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We can now use the approximations:

∂2ci1
∂x2

=
2ci2 − 2ci1

∆x2

∂2ciN
∂x2

=
2ci,N−1 − 2ciN

∆x2

∂ci1
∂x

=
ci1 − ci0

2∆x
∂2c1j
∂z2

=
2c2j − 2c1j

∆z2

∂2cMj

∂z2
=

2cM−1,j − 2cMj

∆z2

(42)

To take derivatives in the x-direction at time n, the rows of c are concatenated, and the matrices

D2
x and Dx are multiplied by the resulting vector, cn, to obtain the second and first derivatives in

x, respectively. The first derivative is found using upwinding. [2]

D2
x · cn =



−2 2

1 −2 1

. . .

1 −2 1

2 −2

−2 2

. . .

2 −2





c11

c12

...

c1N−1

c1N

c21

...

cMN



(43)



18

Dx · cn =



1 −1

−1 1

. . .

−1 1

1 −1

1 −1

. . .

−1 1





c11

c12

...

c1N−1

c1N

c21

...

cMN



(44)

To take derivatives in the z-direction at time n, the columns of c are concatenated, and the matrix

D2
z is multiplied by the resulting vector, cn′, to obtain the second derivative in z.

D2
z · cn′ =



−2 2

1 −2 1

. . .

1 −2 1

2 −2

−2 2

. . .

2 −2





c11

c21

...

cM−1 1

cM1

c12

...

cMN



(45)

U is a diagonal matrix containing, in the appropriate locations, the values of u(z) from equation

(34). If a vector v is of the form of cn, the operation v′ denotes permutation of v’s entries into the

form of cn′. If a vector v is of the form of cn′, the operation v′ denotes permutation of v’s entries

into the form of cn. U ′ is a matrix whose entries on the diagonal have been permuted so that the

vector containing the diagonal elements are of the form of cn′. Steps 1 and 2 of the ADI method

are performed by solving the following equations [2]:
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(I + U
∆t

2
Dx −

α∆t

2
D2
x)c

n+1/2 = cn +
α∆t

2
(D2

zc
n′)′ (46)

(I − α∆t

2
D2
z)c

n+1′ = cn+1/2′ +
α∆t

2
(D2

xc
n+1/2)′ − ∆t

2
U ′(Dxc

n+1/2)′ (47)

B Crank Nicolson

Crank-Nicolson is a finite-difference scheme that can be used to solve the advection-diffusion

equation. For example, to approximate the solution, c(t, x, z) to Equation 34, the following finite-

difference approximation is used, using upwinding for the advective term:

cn+1
ij − cnij

∆t
+
u(z)|j

2
(
cn+1
ij − cn+1

i−1j

∆x
+
cnij − cni−1j

∆x
) =

α

2
(
cn+1
i+1j − 2cn+1

ij + cn+1
i−1j

∆x2
+

cn+1
ij+1 − 2cn+1

ij + cn+1
ij−1

∆z2
+
cni+1j − 2cnij + cni−1j

∆x2
+
cnij+1 − 2cnij + cnij−1

∆z2
)

(48)

Equivalently,

cn+1
ij +

u(z)|j∆t
2

cn+1
ij − cn+1

i−1j

∆x
− α∆t

2
(
cn+1
i+1j − 2cn+1

ij + cn+1
i−1j

∆x2
+
cn+1
ij+1 − 2cn+1

ij + cn+1
ij−1

∆z2
) =

cnij −
u(z)|j∆t

2

cnij − cni−1j

∆x
+
α∆t

2
(
cni+1j − 2cnij + cni−1j

∆x2
+
cnij+1 − 2cnij + cnij−1

∆z2
)

(49)

where cni,j = c(tn, zi, xj), ∆t is the timestep, ∆x is the grid spacing in the x-direction, and ∆z is

the grid spacing in the z-direction. The domain of 0 ≤ x ≤ L, 0 ≤ z ≤ H is divided into a uniform

2D grid, the values of which are contained in a matrix. For example, if there are N points in the

x-direction and M points in the z-direction, then

c =



c11 c12 · · · c1N

c21 c22 · · · c2N
...

... · · · ...

cM1 cM2 · · · cMN


(50)

To take derivatives at time n, the rows of c are concatenated, and the matrices D2
x, Dx, and D2

z
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are multiplied by the resulting vector, cn, to obtain the second and first derivatives in x, and the

second derivative in z, respectively. The boundary conditions and use of image points are identical

to those used in the previous section.

D2
x · cn =



−2 2

1 −2 1

. . .

1 −2 1

2 −2

−2 2

. . .

2 −2





c11

c12

...

c1N−1

c1N

c21

...

cMN



(51)

Dx · cn =



1 −1

−1 1

. . .

−1 1

1 −1

1 −1

. . .

−1 1





c11

c12

...

c1N−1

c1N

c21

...

cMN



(52)
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D2
z · cn =



−2 0 · · · 0 2 · · ·

0 −2 0 · · · 0 2 · · ·
. . .

1 0 · · · 0 −2 0 · · · 0 1 · · ·
. . .

· · · 2 0 · · · 0 −2





c11

c12

...

c1N−1

c1N

c21

...

cMN



(53)

U is a diagonal matrix containing, in the appropriate locations, the values of u(z) from equation

(34). The Crank-Nicolson method is performed by solving the following equation [2]:

(I + U
∆t

2
Dx −

α∆t

2
(D2

x +D2
y))c

n+1 = (I − U∆t

2
Dx +

α∆t

2
(D2

x +D2
y))c

n (54)

C 1D Diffusion

We now test both the Crank-Nicolson and ADI methods on the 1D and 2D diffusion and advection-

diffusion equations. We solve for the analytical solutions of these equations using separation of

variables and compare them with our numerical solutions. We show that as ∆t goes to zero, the

truncation error goes to zero in a way that is consistent with the method used.

Crank-Nicolson was used to solve the 1D diffusion equation

∂c

∂t
= α

∂2c

∂x2
for 0 ≤ x ≤ 1, (55)

with Neumann boundary conditions

∂c

∂x
= 0 on x = 0, 1. (56)

To verify the numerical solutions of this equation, we compared the L2 norm of the analytical and
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numerical solutions over time. To find the analytical solution, we applied separation of variables:

c(t, x) = T (t)X(x) (57)

T ′X = αTX ′′ (58)

T ′

T
= α

X ′′

X
= −λ (59)

This gives two separate equations,

T ′ + λT = 0 (60)

αX ′′ + λX = 0 (61)

For simplicity, assume α = 1. Equation becomes:

X(x) = a cos(x
√
λ) + b sin(x

√
λ) (62)

Applying the boundary conditions, we find:

b = 0 (63)

λ = (nπ)2, n = 1, 2, ... (64)

(65)

A solution to (55) is:

c(t, x) = ae−(nπ)2t cos(nπx) (66)

Setting α to 1, and given the initial conditions of c(0, x) = cos(nπx), the L2 norm of the analytical

solution is

|c(t, x)|2 =

√∫ 1

0

c2(t, x)dx =

√
1

2
e−(nπ)2t (67)
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Figure 11: Comparison of numerical and analytical solutions of 1D diffusion equation using Crank-
Nicolson, where dots are numerical solutions and solid lines are analytical solutions. The fact that
the dots lie on the solid line suggests that the numerical and analytical solutions are in agreement.

Figure 11 shows a comparison of the numerical and analytical solutions. The fact that the dots lie

on the solid line suggests that the numerical and analytical solutions are in agreement. In order

to verify this, though, we look at the truncation error of the solution. If c(x, t) is the numerical

solution and u(x, t) is the analytical soltuion, Figure 12 shows the value of − log10 ||c|2 − |u|2|.

Because the method used is O(h2) +O(∆t2), we expect a truncation error of the form

K
(nπ)6(∆t)3

3!
(68)

In this case, we have set n = 2 and ∆t = 0.01, and the figure shows that the value of our trunca-

tion error is within that error. Figure 13 shows that same value at time t = 1 for varying values

of ∆t, and demonstrates that the error goes to zero as ∆t goes to zero. Since the method is

O(∆t2) + O(h2), the global error at time t = 1 is O(∆t) + O(h2/∆t). If h2/∆t is small, which is

true when ∆t is large, then the global error is linear in ∆t, which is consistent with Figure 13.
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Figure 12: Truncation error for 1D diffusion equation using Crank-Nicolson, where ∆t = 0.01.
The truncation error is within expected values of the error for this method.

Figure 13: Truncation error for 1D diffusion equation using Crank-Nicolson at time t = 1. The
error goes to zero as ∆t goes to zero in a way that is consistent with this method.
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D 2D Diffusion

Crank-Nicolson and ADI were used to solve the 2D diffusion equation

∂c

∂t
= α

(
∂2c

∂x2
+
∂2c

∂y2

)
for 0 ≤ x ≤ 1, 0 ≤ z ≤ 1, (69)

with Neumann boundary conditions

∂c

∂x
= 0 on x = 0, 1,

∂c

∂z
= 0 on z = 0, 1.

(70)

To verify the numerical solutions of this equation, we compared the L2 norm of the analytical and

numerical solutions over time. To find the analytical solution, we apply separation of variables:

c(t, x, z) = T (t)φ(x, z) (71)

T ′φ = αT∇2φ (72)

T ′

T
= α
∇2φ

φ
= −λ (73)

(74)

This gives two separate equations,

T ′ + λT = 0 (75)

α∇2φ+ λφ = 0 (76)
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Applying separation of variables again to Equation 76:

φ(x, z) = X(x)Z(z) (77)

αX ′′Z + αXZ ′′ + λXZ = 0 (78)

αX ′′

X
+
αZ ′′

Z
+ λ = 0 (79)

−αZ ′′ − λZ
Z

=
αX ′′

X
= −k (80)

This gives two separate equations,

αX ′′ + kX = 0 (81)

αZ ′′ + (λ− k)z = 0 (82)

For simplicity, assume α = 1. Equation 81 becomes:

X(x) = a cos(x
√
k) + b sin(x

√
k) (83)

Applying the boundary conditions, we find:

b = 0 (84)

k = (nπ)2, n = 1, 2, ... (85)

Equation 82 becomes:

Z(z) = p cos(z
√
λ− k) + q sin(z

√
λ− k) (86)

Applying the boundary conditions, we find:

q = 0 (87)

λ− k = (mπ)2,m = 1, 2, ... (88)

λ = (nπ)2 + (mπ)2
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A solution to Equation 69 is:

c(t, x, z) = Ae−((nπ)2+(mπ)2)t cos(nπx) cos(mπz) (90)

Setting α to 1, and given the initial conditions of c(x, 0) = cos(2πx) cos(πy), the L2 norm of the

analytical solution is

|c(t, x, z)|2 =

√∫ 1

0

∫ 1

0

c2(t, x, z)dxdz =
1

2
e−5πt (91)

Figure 14 shows a comparison of the numerical and analytical solutions using Crank-Nicolson and

ADI. The fact that the dots lie on the solid line suggests that the numerical and analytical solutions

are in agreement. In order to verify this, though, we look at the truncation error of the solution. If

c(x, z, t) is the numerical solution and u(x, z, t) is the analytical solution, Figure 15 shows the value

of − log10 ||c|2 − |u|2| for Crank-Nicolson and ADI. Because the method used is O(h2) + O(∆t2),

we expect a truncation error of the form

K
((nπ)2 + (mπ)2)3(∆t)3

3!
(92)

In this case, we have set n = 2, m = 1, and ∆t = 0.01, and the figure shows that the value of our

truncation error is within that error. Figure 16 shows that same value at time t = 1 for varying

values of ∆t, and demonstrates that the error goes to zero as ∆t goes to zero. Since the method

is O(∆t2) + O(h2), the global error at time t = 1 is O(∆t) + O(h2/∆t). If h2/∆t is small, which

is true when ∆t is large, then the global error is linear in ∆t, which is consistent with Figure 16.

E 1D Advection-Diffusion

Crank-Nicolson was used to solve the 1D advection-diffusion equation,

∂c

∂t
+ U

∂c

∂x
= α

∂2c

∂x2
for 0 ≤ x ≤ 1, (93)

with Neumann boundary conditions
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Figure 14: Comparison of numerical and analytical solutions of 2D diffusion equation using Crank-
Nicolson and ADI, where dots are numerical solutions and solid lines are analytical solutions. The
fact that the dots lie on the solid line suggests that the numerical and analytical solutions are in
agreement.

Figure 15: Truncation error for 2D diffusion equation using Crank-Nicolson and ADI, where ∆t =
0.01. The truncation error is within expected values of the error for these methods.
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Figure 16: Truncation error for 2D diffusion equation using Crank-Nicolson and ADI at time t = 1.
The error goes to zero as ∆t goes to zero in a way that is consistent with these methods.

∂c

∂x
= 0 on x = 0, 1. (94)

To verify the numerical solutions of this equation, we compared the L2 norm of the analytical and

numerical solutions over time. To find the analytical solution, we apply separation of variables:

c(t, x) = T (t)X(x) (95)

T ′φ+ UTX ′ = αTX ′′ (96)

T ′

T
+ U

X ′

X
= α

X ′′

X
(97)

T ′

T
=
αX ′′ − UX ′

X
= −λ (98)



30

This gives two separate equations,

T ′ + λT = 0 (99)

αX ′′ − UX ′ + λX = 0 (100)

For simplicity, assume α = U = 1. Equation 119 becomes:

X(x) = aex/2 cos(x
√
λ− 1/4) + bex/2 sin(x

√
λ− 1/4) (101)

Applying the boundary conditions, we find:

λ = (nπ)2 +
1

4
, n = 1, 2, ... (102)

a = −2bnπ (103)

A solution to Equation 93 is:

c(t, x) = be−((nπ)2+ 1
4
)t(−2nex/2 cos(nπx) + ex/2 sin(nπx)) (104)

Setting α and U to 1, and given the initial conditions of c(x, 0) = −4πex/2 cos(2πx)+ex/2 sin(2πx),

the L2 norm of the analytical solution is

|c(t, x)|2 =

√∫ 1

0

c2(t, x)dx =

√
256eπ4 + 80eπ2 − 256π4 − 80π2

2(1 + 16π2)
e−((nπ)2+1/4)t (105)

Figure 17 shows a comparison of the numerical and analytical solutions. The fact that the dots lie

on the solid line suggests that the numerical and analytical solutions are in agreement. In order

to verify this, though, we look at the truncation error of the solution. If c(x, t) is the numerical

solution and u(x, t) is the analytical soltuion, Figure 18 shows the value of − log10 ||c|2 − |u|2|.

Because the method used is O(h) +O(∆t), we expect a truncation error of the form

K
((nπ)2 + 1/4)2(∆t)2

2!
(106)
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Figure 17: Comparison of numerical and analytical solutions of 1D advection-diffusion equation
using Crank-Nicolson, where dots are numerical solutions and solid lines are analytical solutions.
The fact that the dots lie on the solid line suggests that the numerical and analytical solutions are
in agreement.

In this case, we have set n = 2 and ∆t = 0.01, and the figure shows that the value of our truncation

error is within that error. Figure 19 shows that same value at time t = 1 for varying values of ∆t.

Since the method is O(∆t) + O(h), the global error at time t = 1 is O(1) + O(h/∆t). If h/∆t is

small, which is true when ∆t is large, then the global error should be roughly constant, which is

consistent with Figure 19.

F 2D Advection-Diffusion

Crank-Nicolson and ADI were used to solve the 2D advection-diffusion equation,

∂c

∂t
+ u

∂c

∂x
= α

(
∂2c

∂x2
+
∂2c

∂z2

)
for 0 ≤ x ≤ 1, 0 ≤ z ≤ 1, (107)

with Neumann boundary conditions
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Figure 18: Truncation error for 1D advection-diffusion equation using Crank-Nicolson, where ∆t =
0.01. The truncation error is within expected values of the error for this method.

Figure 19: Truncation error for 1D advection-diffusion equation using Crank-Nicolson at time
t = 1. The error goes to zero as ∆t goes to zero in a way that is consistent with this method.
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∂c

∂x
= 0 on x = 0, 1,

∂c

∂z
= 0 on z = 0, 1.

(108)

To verify the numerical solutions of this equation, we compared the L2 norm of the analytical

and numerical solutions over time. In order to find the analytical solution, we apply separation of

variables:

c(x, z, t) = T (t)φ(x, z) (109)

T ′φ+ UT
∂φ

∂x
= αT∇2φ (110)

T ′

T
+ U

∂φ
∂x

φ
= α
∇2φ

φ
(111)

T ′

T
=
α∇2φ− U ∂φ

∂x

φ
= −λ (112)

This gives two separate equations,

T ′ + λT = 0 (113)

α∇2φ− U ∂φ
∂x

+ λφ = 0 (114)

Applying separation of variables again to Equation 114:

φ(x, z) = X(x)Z(z) (115)

αX ′′Z + αXZ ′′ − UX ′Z + λXZ = 0 (116)

αX ′′

X
+
αZ ′′

Z
− UX ′

X
+ λ = 0 (117)

−αZ ′′ − λZ
Z

=
αX ′′ − UX ′

X
= −k (118)

This gives two separate equations,

αX ′′ − UX ′ + kX = 0 (119)

αZ ′′ + (λ− k)z = 0 (120)



34

For simplicity, assume α = U = 1. Equation 119 becomes:

X(x) = aex/2 cos(x
√
k − 1/4) + bex/2 sin(x

√
k − 1/4) (121)

Applying the boundary conditions, we find:

k = (nπ)2 +
1

4
, n = 1, 2, ... (122)

a = −2bnπ (123)

Equation 120 becomes:

Z(z) = p cos(z
√
λ− k) + q sin(z

√
λ− k) (124)

Applying the boundary conditions, we find:

z = p cos(z
√
λ− k) (125)

λ− k = (mπ)2,m = 1, 2, ... (126)

λ = (nπ)2 + (mπ)2 +
1

4

A solution to Equation 107 is:

c(x, z, t) = e−((nπ)2+(mπ)2+ 1
4
)t(−2bnex/2 cos(nπx) + bex/2 sin(nπx)) cos(mπz) (128)

Setting α and U to 1, and given the initial conditions of

c(x, z, 0) = (−4πex/2 cos(2πx) + ex/2 sin(2πx)) cos(2πz), (129)

the L2 norm of the analytical solution is

|c(t, x, z)|2 =

√∫ 1

0

∫ 1

0

c2(t, x, z)dxdz =

√
256eπ4 + 80eπ2 − 256π4 − 80π2

4(1 + 16π2)
e−((nπ)2+(mπ)2+1/4)t

(130)

Figure 20 shows a comparison of the numerical and analytical solutions using Crank-Nicolson and
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Figure 20: Comparison of numerical and analytical solutions of 2D advection-diffusion equation
using Crank-Nicolson and ADI, where dots are numerical solutions and solid lines are analytical
solutions. The fact that the dots lie on the solid line suggests that the numerical and analytical
solutions are in agreement.

ADI. The fact that the dots lie on the solid line suggests that the numerical and analytical solutions

are in agreement. In order to verify this, though, we look at the truncation error of the solution.

If c(x, z, t) is the numerical solution and u(x, z, t) is the analytical solution, Figures 21 shows the

value of − log10 ||c|2−|u|2| for Crank-Nicolson and ADI. Because the method used is O(h)+O(∆t),

we expect a truncation error of the form

K
((nπ)2 + (mπ)2 + 1/4)2(∆t)2

2!
(131)

In this case, we have set n = 2, m = 1, and ∆t = 0.01, and the figure shows that the value of our

truncation error is within that error. Figure 22 shows that same value at time t = 1 for varying

values of ∆t. Since the method is O(∆t) +O(h), the global error at time t = 1 is O(1) +O(h/∆t).

If h/∆t is small, which is true when ∆t is large, then the global error should be roughly constant,

which is consistent with Figure 22.
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Figure 21: Truncation error for 2D advection-diffusion equation using Crank-Nicolson and ADI,
where ∆t = 0.01. The truncation error is within expected values of the error for these methods.

Figure 22: Truncation error for 2D advection-diffusion equation using Crank-Nicolson and ADI
at time t = 1. The error goes to zero as ∆t goes to zero in a way that is consistent with these
methods.
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G MATLAB code

The file solveB.m finds a solution for the blood cell concentration given an initial condition, K,

Pe, ε,∆t, and h.

% solveB.m

% Returns solution for blood cell concentration

function [bfinal, t, avgConc, flag, p1, p2] = case1(b0, params, tols)

K = params(1);

epsilon = params(2);

Pe = params(3);

dp = params(4);

l_d = 0.2;

D = 10^-9;

U_b = D*Pe/l_d;

dt = tols(1);

endtime = tols(2);

h = tols(3);

ncols = 1/h+1; nrows = 1/h+1;

[u1 w1 p1 p2] = getVelPress(K,h,dp);

avgConc = [];

u = matToVect(u1(1:nrows,:));

w = matToVect(w1(1:nrows,:));

uMat = diag(u);

wMat = diag(w);

solutionV = b0;

D2z = zeros(ncols*nrows);

Dz = D2z;

Dx = D2z;

% Matrix to take first derivative in z-direction

temp = zeros(nrows);

for j = 1:nrows

for k = 1:nrows
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if j-k == 1

temp(j,k) = 1/(2*h);

elseif k-j == 1

temp(j,k) = -1/(2*h);

end

end

end

Dz = kron(temp,eye(ncols));

for j = 1:ncols

Dz(j,:) = zeros(1,ncols*nrows);

Dz(j,j) = epsilon^2*U_b*l_d/D*w(j);

end

for j = ncols*nrows-ncols+1:ncols*nrows

Dz(j,:) = zeros(1,ncols*nrows);

Dz(j,j) = epsilon^2*U_b*l_d/D*w(j);

end

for j = 1:ncols:ncols*nrows

Dz(j,:) = zeros(1,ncols*nrows);

end

% Matrix to take second derivative in z-direction

temp = zeros(nrows);

for j = 1:nrows

for k = 1:nrows

if j==k

temp(j,k) = -2/h^2;

elseif abs(j-k) == 1

temp(j,k) = 1/h^2;

end

end

end

D2z = kron(temp,eye(ncols));

for j = 1:ncols

D2z(j,:) = zeros(1,ncols*nrows);

D2z(j,j) = (-2+2*h*epsilon^2*U_b*l_d/D*w(j))/h^2;

D2z(j,j+ncols) = 2/h^2;

end

for j = ncols*nrows-ncols+1:ncols*nrows

D2z(j,:) = zeros(1,ncols*nrows);

D2z(j,j) = (-2-2*h*epsilon^2*U_b*l_d/D*w(j))/h^2;

D2z(j,j-ncols) = 2/h^2;

end

for j = 1:ncols:ncols*nrows

D2z(j,:) = zeros(1,ncols*nrows);

end
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% Matrix to take first derivative in x-direction

temp = zeros(ncols);

for j = 2:ncols-1

for k = 1:ncols

if j-k==1

temp(j,k) = -1;

elseif j==k

temp(j,k) = 1;

end

end

end

Dx = kron(eye(nrows),temp);

Dx = Dx ./ (2*h);

% Matrix to take second derivative in x-direction

temp = zeros(ncols);

for j = 2:ncols-1

for k = 1:ncols

if j == k

temp(j,k) = -2;

elseif abs(j-k) == 1

temp(j,k) = 1;

end

end

end

temp(ncols,ncols-1) = 2;

temp(ncols,ncols) = -2;

D2x = kron(eye(nrows),temp);

D2x = D2x ./ h^2;

[X,Y] = meshgrid(0:h:1,1:-h:0);

for t = dt:dt:endtime

avgConc = [avgConc mean(solutionV)];

I = eye(nrows*ncols);

a = (I + dt/2*epsilon^2*U_b*l_d/D*uMat*Dx...

+ dt/2*epsilon^2*U_b*l_d/D*wMat*Dz - dt/2*D2x - dt/2*D2z);

b = (I - dt/2*epsilon^2*U_b*l_d/D*uMat*Dx...

- dt/2*epsilon^2*U_b*l_d/D*wMat*Dz + dt/2*D2x + dt/2*D2z)*solutionV;

tempMat = vectToMat(solutionV-a\b,nrows,ncols);

if sqrt(trapz(0:h:1-h,trapz(0:h:1,tempMat(1:nrows,1:ncols-1).^2))) < dt^4
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break

end

solutionV = a\b;

end

if t == endtime

flag = 1;

elseif min(solutionV) < 0

flag = 2;

elseif max(solutionV) > 1e3

flag = 3;

else

flag = 0;

end

bfinal = solutionV;

end

The file getVelPress.m gives the velocity of blood and the pressure of blood and dialysate, given

K,h, and ∆p.

% getVelPress.m

% Returns velocity of blood and pressures of blood and dialysate

function [u1 w1 p1 p2] = getVelocities(K,h,dp)

% Set values of pressures at x = 0, x = 1

p11 = 815;

p12 = 796;

p21 = 472;

p22 = 472+dp;

A = -1/2*(p11*exp(-6^(1/2)*K^(1/2))-p21*exp(-6^(1/2)*K^(1/2))...

+p22-p12)/(exp(6^(1/2)*K^(1/2))-exp(-6^(1/2)*K^(1/2)));

B = 1/2*(p22+exp(6^(1/2)*K^(1/2))*p11-exp(6^(1/2)*K^(1/2))...

*p21-p12)/(exp(6^(1/2)*K^(1/2))-exp(-6^(1/2)*K^(1/2)));

a = 1/2*p22+1/2*p12-1/2*p21-1/2*p11;

b = 1/2*p21+1/2*p11;

x = 0:h:1;

z = -1:h:1;
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% Solve for pressures of blood and dialysate

p1 = A*exp(sqrt(6*K).*x)+B*exp(-sqrt(6*K).*x)+a.*x+b;

p2 = a.*x+b-A*exp(sqrt(6*K).*x)-B*exp(-sqrt(6*K).*x);

u1 = zeros(length(z),length(x));

w1 = u1;

% Solve for velocities of blood

for i = 1:length(z)

for j = 1:length(x)

x2 = h*(j-1);

z2 = 1-h*(i-1);

u1(i,j) = (A*sqrt(6*K)*exp(sqrt(6*K)*x2)...

-B*sqrt(6*K)*exp(-sqrt(6*K)*x2)+a)*(z2^2/2-z2);

w1(i,j) = (A*6*K*exp(sqrt(6*K)*x2)...

+ B*6*K*exp(-sqrt(6*K)*x2))*(-z2^3/6+z2^2/2-1/3);

end

end

end

The files varyKPe.m and varyDp.m find solutions for blood cell concentration while varying the

values of Pe, K, and ∆p.

% varyKPe.m

% Finds solution for blood cell concentration

% for varying values of K, Pe

clear;

h = 1/15;

ncols = 1/h+1; nrows = 1/h+1;

b0 = zeros(ncols*nrows,1);

% Set initial conditions

count = 1;

z = 1;

for j = 1:nrows

x = 0;

for k = 1:ncols

b0(count) = 1;

count = count + 1;
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x = x + h;

end

z = z - h;

end

dp = 518-472;

k0 = 1e-8;

dk = 1e-3;

k1 = 1e-2;

Pe0 = 1;

dPe = 1000;

Pe1 = 30000;

epsilon = 5e-4;

dt = 0.01;

tfinal = 100;

% Find solution for blood cell concentration

% for varying values of K and Pe

for kloop = k0:dk:k1

for Peloop = Pe0:dPe:Pe1

params = [kloop epsilon Peloop dp];

tols = [dt tfinal h];

[bfinal t avgConc flag] = solveB(b0, params, tols);

max(bfinal)

savefile = [’Case1K’ num2str(kloop) ’Pe’ num2str(Peloop) ’.mat’];

save(savefile, ’bfinal’, ’t’, ’avgConc’, ’flag’);

end

end

*************************************************

% varyDp.m

% Finds solution for blood cell concentration for varying values of Dp

clear

h = 1/15;

ncols = 1/h+1; nrows = 1/h+1;

b0 = zeros(ncols*nrows,1);

% Set initial conditions

count = 1;

z = 1;

for j = 1:nrows
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x = 0;

for k = 1:ncols

b0(count) = 1;

count = count + 1;

x = x + h;

end

z = z - h;

end

k = 0.01;

Pe = 10000;

epsilon = 5e-4;

dt = 0.01;

tfinal = 100;

% Find solution for blood cell concentration

% for varying values of Dp

for dploop = 10:10:500

params = [k epsilon Pe dploop];

tols = [dt tfinal h];

[bfinal t avgConc flag p1 p2] = solveB(b0, params, tols);

max(bfinal)

savefile = [’Case2dp’ num2str(dploop) ’.mat’];

save(savefile, ’bfinal’, ’t’, ’avgConc’, ’flag’, ’p1’, ’p2’);

end

The files analyzeVaryKPe.m and analyzeVaryDp.m read the files generated by varyKPe.m and

varyDp.m and generate the plots in Section 3.

% analyzeVaryKPe.m

nrows = 16;

ncols = 16;

k0 = 1e-8;

dk = 1e-3;

k1 = 1e-2;

Pe0 = 1;

dPe = 1000;

Pe1 = 30000;
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% Read files and plot bmax for varying values of Pe

count = 1;

for kloop = k0:dk:k1

colors = [

0 0 1.0000;

0 0.5000 0;

1.0000 0 0;

0 0.7500 0.7500;

0.7500 0 0.7500;

0.7500 0.7500 0;

0.2500 0.2500 0.2500;

0 0 1.0000;

0 0.5000 0;

1.0000 0 0;

0 0.7500 0.7500;

0.7500 0 0.7500;

0.7500 0.7500 0;

0.2500 0.2500 0.2500];

for Peloop = Pe0:dPe:Pe1

loadfile = [’Case1K’ num2str(kloop) ’Pe’ num2str(Peloop) ’.mat’];

load(loadfile);

figure(1)

hold on

plot(Peloop,max(bfinal),’.’,’MarkerEdgeColor’,colors(count,:));

xlabel(’Pe’);

ylabel(’b_m_a_x’)

end

count = count + 1;

end

The file diff2DADI.m finds a solution to the 2D diffusion equation using the method of ADI.

% diff2D_ADI.m

% Solves the 2D diffusion equation using ADI

clear

dt = 0.01;

L = 1; H = 1;

h = 1/15;

N = L/h+1; M = H/h+1;

m = 1; n = 2;
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endtime = 1;

alpha = 1;

c = zeros(M*N,1);

% Set initial conditions

count = 1;

y = H;

for j = 1:M

x = 0;

for k = 1:N

c(count) = cos(n*pi*x/L)*cos(m*pi*y/H);

count = count + 1;

x = x + h;

end

y = y - h;

end

newC = vectToMat(c,M,N);

% Matrix to take second derivative in x-direction

temp = zeros(N);

for j = 1:N

for k = 1:N

if j == k

temp(j,k) = -2/(h^2);

elseif abs(j-k) == 1

temp(j,k) = 1/(h^2);

end

end

end

temp(1,2) = 2/(h^2);

temp(N,N-1) = 2/(h^2);

D2x = kron(eye(M),temp);

% Matrix to take second derivative in z-direction

temp = zeros(M);

for j = 1:M

for k = 1:M

if j == k

temp(j,k) = -2/(h^2);

elseif abs(j-k) == 1

temp(j,k) = 1/(h^2);

end

end

end
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temp(1,2) = 2/(h^2);

temp(M,M-1) = 2/(h^2);

D2y = kron(eye(N),temp);

amps = zeros(length(0:dt:endtime),1);

amps_0 = 0.5;

trunc = amps;

times2 = 0:0.001:endtime;

decay = (m^2+n^2)*pi^2;

exact = amps_0*exp(-decay.*times2);

% Find L^2 norm of solution, truncation error, and solution

% at the next timestep

count = 1;

for time = 0:dt:endtime

amps(count) = sqrt(trapz(0:h:L,trapz(0:h:H,newC.^2)));

trunc(count) = log10(abs(0.5*exp(-decay*time)...

- sqrt(trapz(0:h:L,trapz(0:h:H,newC.^2))) ));

I = eye(M*N);

mat1 = permutation(c,M,N,1);

mat2 = mat1’;

cperm = mat1*c;

ctemp = (I-alpha*dt/2*D2x)\( c+alpha*dt/2*mat2*D2y*mat1*c );

ctempperm = mat1*ctemp;

c = (I-alpha*dt/2*D2y)\(ctempperm +alpha*dt/2*mat1*D2x*mat2*ctempperm);

c = mat2*c;

newC = vectToMat(c,M,N);

count = count + 1;

end
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