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Abstract

On a stock exchange, trading activity has an impact on stock

prices. Market agents place limit orders, which come in the form

of bids and asks. These orders wait in the market to be executed

when another agent agrees to fulfill the transaction. We examine an

“inventory-based” quoting strategy model developed by Marco Avel-

laneda & Sasha Stoikov [1]. We expand on their work by developing a

method to calibrate the model to market data using limit order data

provided by Morgan Stanley [9]. We consider solving a least squares

problem which fits the model to the data using a sensitivity parameter

γ.
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1 Introduction

On a stock exchange, such as the New York Stock Exchange (NYSE), the

NASDAQ, or the London Stock Exchange, a trade occurs when one market

agent buys a share of a stock for a specified price and another market agent

sells a share of that same stock at the same specified price. The exchange

exists to facilitate this mechanism. Trades can be initiated in different ways.

There are two main types of orders that an agent can issue in an attempt to

initiate a stock trade, market orders and limit orders.

A market order (unlimited order) is an order to buy or sell a number of

shares of a stock immediately at the best available price. As opposed to a

market order, a limit order is defined as an order placed with a brokerage

to buy or sell a number of shares of a stock at a specified price (or better);

however the execution is not immediate and may not necessarily happen.

Limit orders are maitained by specialists who are also refered to as “dealers”

[1], and a limit order book is a record of all the unexecuted limit orders

in the market. In this paper, we will mainly focus on a model that uses

optimal quotes submission strategies in a limit order book introduced by

Marco Avellaneda & Sasha Stoikov [1].

Most basic mathematical finance models of security markets generally

assume that at any given time t one can buy or sell any number of shares of

a stock at the market price st without affecting that price. In other words,

every market agent is a price taker. This framework does not account for any
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liquidity issues, such as dealer interactions and how the prices and quantities

are determined through the mechanics of a trade. In reality, stock trading

activities have an impact on the market price of a stock.

The quantity of a stock held in hand by a dealer is called inventory. An

inventory can be liquidated by buying or selling. If a limit order is initiated

by a dealer who wants to buy, the order is set at a bid price in the market

which is usually below the mid-price. If a limit order is initiated by a seller,

the price for the stock he sets in the market is the ask price. For instance,

suppose in limit orders there are 1,000 shares of Microsoft stock at a price of

$100 per share waiting to be sold in the market and 1,500 shares at a price

of $100.5. Now a market order for buying 2,000 shares of Microsoft stock is

placed. After the first 1,000 shares at $100 are exhausted, the buyer would

have to buy another 1,000 shares at $100.5. The price per share for the entire

trade is thus $100.25. This trade has increased the market price of the stock.

In general, liquidity issues like this exsit as transactions occur. The concept

of liquidity has been modeled in many different ways in the literature (see,

Longstaff [14], Keynes [13], Engel [8], Baum [2]), and Çetin [5]).

In the paper by Marco Avellaneda & Sasha Stoikov [1], the authors pre-

sented an approach that incorporates liquidity. Avellaneda & Stoikov work in

the framework where the price per share of an asset is a given by a function

S(t, x), where x represents the size of a trade. x > 0 indicates a buyer-

initiated market order, and x < 0 indicates a seller-initiated market order[1].

On the grounds of a maximal expected utility framework, the paper suggests
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a two step procedure:

1. The dealer computes a personal reservation valuation for the stock,

given current inventory.

2. The dealer calibrates bid and ask quotes to the market’s limit order

book.

This is an“inventory-based” strategy for submitting bid and ask quotes

in a limit order book. The model introduced in Avellaneda & Stoikov [1]

involves the use of a sensitivity parameter γ. We introduce a method that

calibrates the model to order book data provided by Morgan Stanley[9] using

a least-squares fitting approach.

2 Background

2.1 Basic Mathematical Finance Concepts

We begin with some important definitions that are fundamental concepts in

mathematical finance.

Definition: (Brownian Motion) Let (Ω, F , P) be a probability space.

For each ω ∈ Ω, suppose there is a continuous function W (t) for t ≥ 0 that

satisfies W (0) = 0 and depends on ω. Then W (t), t ≥ 0 , is a Brownian

motion if for all 0 = t0 < t1 < · · · < tm, the increments



4

W (t1) = W (t1)−W (t0),W (t2)−W (t1), . . . ,W (tm)−W (tm−1) (1)

are independent and each of these increments is normally distributed with

E[W (ti+1)−W (ti)] = 0, (2)

V ar[W (ti+1)−W (ti)] = ti+1 − ti.[19] (3)

Definition: (Black-Scholes Model) The Black-Scholes model consists of

two assets with dynamics given by the stochastic differential equations

dB(t) = rB(t)dt, (4)

dS(t) = αS(t)dt+ σS(t)dW (t) (5)

where r is the rate of interest, α is the local mean rate of return of S, often

referred to as the drift, and σ is known as the volatility of S. [4]

Definition: (Convex Risk Measure[10]) A mapping f : X → Rd is

called a convex risk measure if f(0) is finite and if f satisfies the following

conditions for all x, y ∈ X:

• Monotonicity: If x ≤ y, then f(x) ≥ f(y).

• Translation Invariance: If m ∈ R, then f(x+m) = f(x)−m.

• Convexity: f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y), for 0 ≤ 1.
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2.2 Liquidity

In this model the mid-price path of the stock is simulated using the Black-

Scholes model [4] with constant volatility σ, and initial value St = s under

the assumptions that dealers have no opinion on the drift. The interest rate

is assumed to be 0 for simplicity, so the stock price dynamics are given by

d(St) = σd(Wt) (6)

where Wt is a standard one-dimensional Brownian Motion. Avellaneda

& Stoikov [1] choose a convex risk measure to set up a value function that

interprets the agent’s objective as

u(x, s, q, t) = max
δa,δb

Et[−exp(−γ(XT + qTST )] (7)

where δb and δa represent the differences between the mid-prices and bid-ask

prices, XT is dealer’s wealth, qT is the number of shares in the market waiting

to be bought or sold in a limit order, and ST is the mid-market price at time

t = T .

The reservation bid price rb is defined as the price where the dealer is

indifferent between his or her current portfolio and his or her current portfolio

plus one share of stock. Similarly, the reservation ask price ra is defined as

the price where the dealer is indifferent between his or her current portfolio

and his or her current portfolio minus one stock [1].
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There are two circumstances in a continuous-time setting, the finite hori-

zon and the infinite horizon. The optimizing dealer with finite horizon has

respective reservation bid and ask prices

ra(s, q, t) = s+ (1− 2q)
γσ2(T − t)

2
(8)

and

rb(s, q, t) = s+ (−1− 2q)
γσ2(T − t)

2
. (9)

The optimizing dealer with infinite horizon has the two prices

r̄a(s, q) = s+
1

γ
ln(1 +

(1− 2q)γ2σ2

2ω − γ2q2σ2
) (10)

and

r̄b(s, q) = s+
1

γ
ln(1 +

(−1− 2q)γ2σ2

2ω − γ2q2σ2
) (11)

where ω > 1
2
γ2σ2q2. Here γ is a sensitivity parameter.

The average of these two prices is refered to as the reservation (or indif-

ference) price.

r(s, q, t) =
ra + rb

2
(12)

After working through the analysis a final formula for indifference or

reservation price is derived in [1] to be

r(s, q, t) = s− qγσ2(T − t). (13)
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A q > 0 represents a long position. The reservation price r is below the

mid-price, indicating an intent to sell. Otherwise q < 0 represents a short

position, i.e. the reservation price is above the mid-price on the behalf of the

willingness to buy.

3 Our Approach

We first establish the fundamental framework for our model. We will use a

standard assumption that all trading takes place in a continuous-time set-

ting. Avellaneda & Stoikov conducted their research based on a set of sim-

ulated stock price data using the Black-Scholes model. In this paper we will

build a bid-ask spread model using real limit order data provided by Mor-

gan Stanley[9]. Using the data we will compute daily stock prices, historical

volatility, and address the sensitivity parameter γ. We will set up a least

square approach to fit in γ and solve for the optimal solution γ∗.

3.1 Order Book Data

The order book data we used was provided by Robert Ferstenberg at Morgan

Stanley[9]. The data set contains the complete posting of the top 10 bids

and the top 10 asks, including both prices and sizes (number of shares at

available at each price) for various stocks from 7/01/2003 to 12/23/2003.

Trading updates were extracted by Professor Marcel Y. Blais and restored

in two types of matrices, one consisting of prices and the other consisting of
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Notations
tp trade price
tt trade time
ts trade size
bapx the xth best ask price
basx corresponding size to the xth best ask price
bbpx the xth best bid price
bbsx corresponding size to the xth best bid price

Table 1: Order Book Data Notation

sizes, they have the form as illustrated in table

Time quotes
t1 bp1 bp2 bp3 bp4 bp5 bp6 bp7 bp8 bp9 bp10
t2 bp1 bp2 bp3 bp4 bp5 bp6 bp7 bp8 bp9 bp10
t3 bp1 bp2 bp3 bp4 bp5 bp6 bp7 bp8 bp9 bp10
t4 bp1 bp2 bp3 bp4 bp5 bp6 bp7 bp8 bp9 bp10
t5 bp1 bp2 bp3 bp4 bp5 bp6 bp7 bp8 bp9 bp10
... · · ·

Table 2: Price matrix P

With these matirces data processing is convenient and easy to handle.

For example, if at time ti, the ti
th row in the size matrix Q of a stock S

contains negative entries, this indicates a negative number of shares waiting

to be bought. This row thus represents a set of bid quotes, and each element

in this row represents the size of a best bid. The ti
th row in the price matrix

P gives the top 10 best bid prices corresponding to these sizes. Similarly, if

the ti
th row in Q contains positive entries, then the corresponding row in P

gives the top 10 ask prices. We use the current top 10 best bid prices and

top 10 best ask prices to build the limit order book from this data set.
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Time quotes
t1 bs1 bs2 bs3 bs4 bs5 bs6 bs7 bs8 bs9 bs10
t2 bs1 bs2 bs3 bs4 bs5 bs6 bs7 bs8 bs9 bs10
t3 bs1 bs2 bs3 bs4 bs5 bs6 bs7 bs8 bs9 bs10
t4 bs1 bs2 bs3 bs4 bs5 bs6 bs7 bs8 bs9 bs10
t5 bs1 bs2 bs3 bs4 bs5 bs6 bs7 bs8 bs9 bs10
... · · ·

Table 3: Size matrix Q

3.2 Limit Orders

A market order (unlimited order) is an order to buy or sell a number of shares

of a stock immediately at the best available price. A limit order is defined as

an order placed with a brokerage to buy or sell a number of shares of a stock

at a specified price (or better); however the execution is not immediate and

may not necessarily happen. Limit orders are maitained by specialists who

are also refered to as “dealers” [1], and a limit order book is a record of all

the unexecuted limit orders in the market.

The current shape of the limit order book determines the priority of

limit order execution if a large market order arrives. For instance, suppose

a seller wants to sell Q shares of a stock in the market. According to the

distances between the bid pirce and the mid-pirce, limit orders with the

highest bid prices will be automatically executed. As the highest bid quotes

get exhausted the dealer would have to move on to the second highest bid

quotes, as this trading procedure goes on, the price that the trades occur

at decreases. As a result, an impact on the market price occurs since the
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transaction take place at a price lower than the mid-price.

Consider a more general case. Suppose there are QB =

[
qB1 . . . qBn

]
aggregate bids at prices PB =

[
PB1 . . . PBn

]
at time t0. If a seller comes

to market at time t0 and sells K shares, then the first qB1 shares will be

executed at a price of PB1 . The seller will then sell qB2 shares at a price of

PB2 , and continue moving on to the next highest price until he has sold all

K shares. Thus the average price per share for this trade is given by

P ∗
B =

∑n−1
i=1 qiPi +QnPn∑n−1

i=1 qi +Qn

(14)

where n = inf{k :
∑k−1

i=1 qi ≤ K <
∑k

i=1 qi} and Qn = K −
∑n−1

i=1 qi. [3]

The further away from the mid-price a limit order is, the less likely it is

that the limit order will be executed. Limit orders, whether they are bids

or asks, are more likely to be executed if the bid or ask price is close to the

mid-price.

Ticker bbs1 bbs2 bbs3 bbs4 bbs5 Time
nts 23660 20000 20405 7900 20404 162455
Ticker bas1 bas2 bas3 bas4 bas5 Time
nts 12970 9973 16104 32100 7900 19450

Table 4: Sample Size Data

Take the above two tables for example, at time t0 with a highest bid price

of 965.5. There are 23,660 shares available at this bid price in limit orders

in the market. If a seller places a market order for 50,000 shares, the highest
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Ticker bbp1 bbp2 bbp3 bbp4 bbp5 Time
nts 965.5 961 960.5 955 954.5 950
Ticker bap1 bap2 bap3 bap4 bap5 Time
nts 980 980.5 982 983 984 990.5

Table 5: Sample Price Data

bid quotes with price 965.5 will be used up so the seller would have to move

on to the 20,000 shares available at the second highest bid price of 961. This

process is repeated until the market order is filled. The actual stock price

per share si for the entire trade is

s50000 =
23660 ∗ 965.5 + 20000 ∗ 961 + (50000− 23660− 20000) ∗ 960.5

50000

= 963.066

After this trade occurs the bid quotes information in the order book is

updated to

Ticker bbs1 bbs2 bbs3 bbs4 bbs5 Time
nts 23660 20000 20405 7900 20404 162455
Ticker bas1 bas2 bas3 bas4 bas5 Time
nts 50000 14065 32100 7900 0 19450

Table 6: Updated Sample Size Data

Since this trade was initiated by a market agent who placed a market
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Ticker bbp1 bbp2 bbp3 bbp4 bbp5 Time
nts 963.066 960.5 955 954.5 0 162455
Ticker bap1 bap2 bap3 bap4 bap5 Time
nts 980 980.5 982 983 984 19450

Table 7: Updated Sample Price Data

order to sell shares of the stock, this type of trade is called a seller-initiated

trade.

3.3 Model Description

In our model, t represents the current time, and τ represents how far back in

time we look at historical data.. For any stock S, the model goes back for a

period of time τ starting from the tth day. Information from the size matrix

Q and the price matrix P is used to evaluate historical volatility σ using

σadn =

∑
(Rt −Rt)

2

n− 1
. (15)

where Rt represents the daily return given by

Rt =
st − st−1

st−1

. (16)

For example, if a dealer picks the 60th day after an original start date t,

our model computes the average volatility σ over the 30 business days1 prior

to day t. The most recent update of best bids and best asks will be used

1Business days here represent the days when trading behavior happens, excluding non-
trade days such as weekends and holidays.
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as the limit order book for that business day. The mid-point of the bid-ask

spread is the daily stock price. As discussed in the previous section, when a

market order for Q shares comes into the market a corresponding stock price

per share sQ can be calculated using (14).

4 Sensitivity Analysis

As a sensitivity parameter γ can be adjusted to amplify or to decrease the

impact triggered by liquidity. Three figures of a stock reservation prices

and mid-prices over the same time interval with different γ are provided.

From Figures 1, 2, and 3 we can see that even a small change in γ results

in significant a jump in reservation price. Our goal is to find an optimal γ

which could better calibrate Marco Avellaneda & Sasha Stoikov’s [1] model

to the limit order book data.

As defined in [1] the value function is

v(x, s, q, t) = −e−γxe−γqse
γ2q2σ2(T−t)

2 . (17)

We start with the case q = 0. This gives us

v(x, s, 0, t) = Et[−e−γx] = −e−γx (18)

We then take the first and second derivatives of the value function to get

for x > 0
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Figure 1: Indifference prices on sample stock price data when γ = 0.0001

∂v

∂γ
= xe−γx > 0 (19)

and

∂2v

∂γ2
= −x2e−γx < 0 (20)

The first derivative of (18) with respect to γ is positive, and we see that the

second derivative with respect to γ is negative regardless of x. This indicates

that the value function curve is increasing and is concave-down in γ. As for
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Figure 2: Indifference prices on sample stock price data when γ = 0.00005

the first derivative, if x > 0, then the function v is increasing; if x < 0, then

v is decreasing. This means that v exhibits a diminishing sensitivity to γ as

γ increases. Next we examine the sensitivity of v to γ in the general case

q 6= 0.
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Figure 3: Indifference prices on sample stock price data when γ = 0.005

∂v

∂γ
=

∂v

∂γ
− e−γxe−γqse

γ2q2σ2(T−t)
2

=
∂v

∂γ
− e−γ(x+qs)e

γ2q2σ2(T−t)
2

= −(−(x+ qs)e−γ(x+qs)e
γ2q2σ2(T−t)

2 + γq2σ2(T − t)e−γ(x+qs)e
γ2q2σ2(T−t)

2 )

= −e−γxe−γqse
γ2q2σ2(T−t)

2 ((γq2σ2(T − t)− x− sq)
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Plugging in the value function (21)

v(x, s, q, t) = −e−γxe−γqse
γ2q2σ2(T−t)

2 . (21)

we get the first derivative of v with respect to γ

∂v

∂γ
= v(x, s, q, t)(γq2σ2(T − t)− x− sq) (22)

Consider the following binomial with respect to q

γσ2(T − t)q2 − sq − x. (23)

From (21) we see that all three terms e−γx, e−γqs, e
γ2q2σ2(T−t)

2 in v are

positive since they have exponential form. The value function is negative

due to the negative sign on the right-hand side of equation (21). If we want

(22) to be positive then we need to set (23) to be negative.

When using (21), changes in γ can lead to a dramatic impact on the

computation of reservation prices. We can use the limit order book data

provided by Morgan Staley to calibrate the model to the market by fitting

the data over γ as an independent variable.
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5 Estimation of γ Using A Least-Squares Ap-

proach

When an agent comes to the market and initiates trades through market

orders the market is affected. Trades waiting to happen in the limit order

book might occur at a price that is higher or lower than the mid-price,

which is considered to be the mid-market price (or stock price) in this paper.

Therefore when the current best bids/asks are exhausted, the dealers would

have to continue on buying/selling at a lower/higher price than the first

best bids/asks [3]. Accordingly, the stock price might increase or decrease

in response to this impact. In order to choose a meaningful value for the

sensitivity parameter γ, we want to choose a γ so that transactions will not

result in a drastic jump on the reservation prices chart.

The best ask prices and best bid prices regularly update to form the limit

order book as time goes on. The order book data is built on the order of

seconds. To simplify the data mining we rebuild the data on a daily basis.

The terminal time T is the end of the last business day. We then use the

limit order book to compute a sequence of reservation prices rt with fixed

timestamp t, which is tth business day, and terminal time T using

rt = st − qγσ2(T − t) (24)

where q represents the number of shares traded, and it is an independent
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variable. A trade is initiated by a seller or buyer through a market order.

As discussed before, for σ we use historical volatility. In this case st is stock

price at time t which we assumed to be the midpoint of the bid-ask spread.

For any fixed time t, we have a number of best bids and best asks. If we plot

all quotes’ prices in one chart over the inventory q, they result in a regression

line is shown in Figure 4.

Figure 4: Regression

To find the best fit for the order book data to the Avellaneda & Stoikov

[1] model , we use a least-squares fit to find γ∗. Our objective is to solve the
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following optimization problem,

min
γ

∑
(si − rq(qi))2 (25)

where si is the stock price per share at a given inventory qi. The summation

is over all data pairs (si, qi) in the limit order book.

Our objective becomes

min
γ

∑
(si − rq(qi))2 = min

γ

∑
(si − st + qiγσ(T − t))2. (26)

This corresponds to

min
γ

∑
(si − rq(qi))2 = min

γ

∑
((si − st+ qiγσ(T − t))2)

= min
γ

∑
((si − st)2 + (qiσ(T − t))2γ2 − 2(st − si)qiσ(T − t)γ)

= min
γ

∑
((qi)σ ∗ (T − t)2γ2 − 2(st − si)qiσ(T − t)γ + (si − st)2)

Since this is a quadratic least-squares problem, the first order conditions

are necessary and sufficient for a minimizer [17]. Our analysis gives the

optimal value of γ as

γ∗ =

∑
(st − si)qiσ(T − t)∑

(qiσ(T − t))2
(27)
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6 Numerical Results

We tested our model using the data provided by Morgan Stanley [9]. For each

row, the value in the first column is the timestamp t. The other columns

contain the top 10 bids or top 10 asks. If there are less than 10 quotes

updated at time t then the rest of the column entries are filled with zeros.

The order book data contains all updates on a basis of seconds. As in reality

stock trading is concluded everyday, our model uses the data on a daily basis.

As mentioned before we take the mid-points of the closing updates (i.e. the

bid-ask spread) at the end of each day to be our daily stock prices.

Figure 5: Mid-point stock price over 100 days
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We run the model for the stock with ticker “adn”, on the ti
th business day

after 07/01/2003, and we look backwards for 100 days to get the historical

stock price chart, shown in Figure 5. Then based on this information we can

compute the historical volatility of “adn” using the daily data.

By separating the price matrix P into two matrices Pa and Pb with posi-

tive ask updates and negative bid updates separately, and applying the algo-

rithm discussed in the previous section, we can calculate the stock price per

share for a market order. If q > 0 then we should use the ask matrix Pa, Pb

otherwise. Tables 8 and 9 give stock prices per share calculated for a set of

different order sizes q.

Stock qa1 qa2 qa3 qa4 qa5
adn 250000 375000 425000 525000 0
Stock pa1 pa2 pa3 pa4 pa5
adn 83.0000 83.3333 83.5294 84.0000 0

Table 8: Price per share for asks at different order size q

Stock qb1 qb2 qb3 qb4 qb5
adn -75000 -125000 0 0 0
stock pb1 pb2 pb3 pb4 pb5
adn 79.0000 78.6000 0 0 0

Table 9: Price per share for bids at different order size q

After obtaining stock prices st, limit order book data (si, qi), and histor-

ical volatilities σ, an optimal γ∗ can be computed using (27). We apply the

Avellaneda & Stoikov [1] model with these results for stock “adn” to obtain

the simulation depicted in Figure 7.



23

Figure 6: Price per share at different order size chart

The first day of the data set is 07/01/2003. We choose the 120th business

day after 07/01/2003 and set the range for historical data to be 100 days

backwards. This is the timeframe used in our computations for each stock.

Then we run the estimation using 200 stocks. Figure 8 and Figure 9 depict

the distribution of the optimal γ∗ values, while Figure 10 and figure 11 depict

the distribution of the optimal γ∗ without the outliers.
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Figure 7: Numerical Experiment Plot



25

Figure 8: Histogram of γ∗ with outliers

Statistics for γ∗ in table 10.

γ∗ min max mean median std range
-0.0132 0.0178 0.0023 0.0023 0.009903 0.031

Table 10: Statistics for γ∗



26

Figure 9: Scatter plot of γ∗ with outliers

7 Conclusion

This paper concentrates on liquidity modeling with order book data based

on the theory introduced by Avellaneda & Stoikov [1]. We utilized a least-

squares approach to calibrate the model given by Avellaneda & Stoikov [1]

to limit order book data through a sensitivity parameter γ. Our results give

a method for choosing the values for γ when implementing the Avellaneda

& Stoikov [1] model.
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Figure 10: Histogram of γ∗ without outliers

A Appendix

A.1 Order Book Data

The Morgan Stanley Data set includes data for 2184 commodities that trade

on several different exchanges, including NYSE, AMEX, the London Stock

Exchange, and Nasdaq. The data set includes standard tick data and order

book data for July 1, 2003 - December 12,2003. In total the data set is

approximately 12 gigabytes[3].
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Figure 11: Scatter plot of γ∗ without outliers

A.2 Matlab Code

The following function computes the timestamp on daily bases,

function [t,n,day] = time()

q=load(’orderbookdatasizematrix.dat’); % order size

p=load(’orderbookdatapricematrix.dat’); % order price

[m,l]=size(q); % m: days; l: shares

timestamp=zeros(m,1);

n=0; % index: number of days

t=zeros(); % time point
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day=zeros(); % business days matrix

for k=1:m-1

timestamp(k)=q(k+1)-q(k); % timestamp, jump indicates a day

if (timestamp(k)>(1.0e+004)*3) % sort out jumps

n=n+1; % number of days

t(n)=k-3; % go back for about 35 sec

end

end

for i=1:n

day(i,1)=i;

end

Computing for stock price per share

function [s_a,s_b,sa_i,sb_i,qa,qb,a1,a2,b1,b2]=share(t)

q=load(’orderbookdatasizematrix.dat’); % order size

p=load(’orderbookdatapricematrix.dat’); % order price

[m0,n]=size(q);pa=[];pb=[];qa=[];qb=[];m=t;

for i=1:m

for j=2:n

if (q(i,2)>0)

pa1(i,1:n-1)=p(i,2:n);

qa1(i,1:n-1)=q(i,2:n);

elseif (q(i,2)<0)

pb1(i,1:n-1)=p(i,2:n);
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qb1(i,1:n-1)=q(i,2:n);

end

end

end

pa=pa1(find(sum(pa1’)),:);

qa=qa1(find(sum(qa1’)),:);

pb=pb1(find(sum(pb1’)),:);

qb=qb1(find(sum(qb1’)),:);

[a1,a2]=size(pa);[b1,b2]=size(pb);

% s_a is the matrix of stock price per share for ask quotes, given qa as

% inventory, s_b is similarly defined.

for j=1:a2

s_a(j)=(pa(a1,1:j)*qa(a1,1:j)’)/sum(qa(a1,1:j));

end

for j=1:b2

s_b(j)=(pb(b1,1:j)*qb(b1,1:j)’)/sum(qb(b1,1:j));

end

% last update of asks and bids by the end of the day

for j=1:a2

s_a(j)=(pa(a1,1:j)*qa(a1,1:j)’)/sum(qa(a1,1:j));

if qa(a1,j)~=0

ai(j)=1;

elseif qa(a1,j)==0
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ai(j)=0;

end

sa_i(j)=s_a(j)*ai(j);

end

for j=1:b2

s_b(j)=(pb(b1,1:j)*qb(b1,1:j)’)/sum(qb(b1,1:j));

if qb(b1,j)~=0

bi(j)=1;

elseif qb(b1,j)==0

bi(j)=0;

end

sb_i(j)=s_b(j)*bi(j);

end

This function gives us the historical data within selected range, evaluated

with bid-ask spread

function [stock] = stock(t)

%% with the closing moment of each day, use the most recent updates to

%% compute for stock prices (mid-points), the last entry of stock matrix is

%% considered the stock price for the day.

q=load(’orderbookdatasizematrix.dat’); % order size

p=load(’orderbookdatapricematrix.dat’); % order price

[m0,n]=size(q);m=t;

pa=zeros(); % ask prices
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pb=zeros(); % bid prices

stock=zeros(); % stock prices

for i=1:m % choose the most recent asks/bids

if (q(i,2)<0) % order size negative indicating bids

pb=p(i,2:11); % update bid prices at time i

pa=pa; % hold ask prices

elseif (q(i,2)>0) % order size positive indicating asks

pa=p(i,2:11); % update ask prices at time i

pb=pb; % hold bid prices

end

stock(i)=(pa(1)+pb(1))/2;

if (i==1) % eliminate 0 point, i.e. initial stock price

stock(i)=pa(1)+pb(1);

end

end

The following code takes previous σ, historical stock prices st, the most

recent update ask price per share sa and bid price per share sb, then evaluates

sensitivity parameter γ.

function [sigma,s_t,stp,s_a,s_b,gamma] = st(I,P)

% I-user’s pick of starting day; P-user’s pick of the

length of business days, i.e. how many days user wants to go back

[t,n,day] = testtime();

stp=0;
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for i=1:n

[stock] = teststock(t(i));

[m1,m2] = size(stock);

s_t1(i) = stock(m1,m2);

end

for j=1:P

dret(j)=(s_t1(day(I-P+j))-s_t1(day(I-P+j-1)))/s_t1(day(I-P+j-1));

s_t(j)=s_t1(day(I-P+j-1));

end

[n1,n2] = size(s_t);

stp = s_t(n1,n2); % stock price on day I

sigma=std(dret);

[s_a,s_b,sa_i,sb_i,qa,qb,a1,a2,b1,b2]=testshare(t(I));

% compute for gamma

gamma=0;

for l=1:a2

gamma0a(l)=((stp-s_a(l))*qa(a1,l)*sigma*(n-T));

gamma1a(l)=(qa(a1,l)*sigma*(n-T));

end

gamma1a2=0;

gamma1a2=gamma1a*gamma1a’;

for l=1:b2

gamma0b(l)=((stp-s_b(l))*qb(b1,l)*sigma*(n-T));
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gamma1b(l)=(qb(b1,l)*sigma*(n-T));

end

gamma1b2=0;

gamma1b2=gamma1b*gamma1b’;

gamma=(sum(gamma0a)+sum(gamma0b))/(gamma1a2+gamma1b2);
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