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Abstract: 

 

            Most plants are capable of mounting resistance responses to various pathogen attacks.  

For a hypersensitive response (HR) to occur, a dominant or semi-dominant resistance (R) plant 

gene is required to recognize a dominant avirulence (Avr) factor of the pathogen.  Three types 

of Arabidopsis thaliana, Dijon-17 (Di-17), Dijon-3 (Di-3), and Columbia-0 (Col-0), are 

significant in understanding the genetics of Turnip crinkle virus (TCV) resistance.  It has been 

shown that three genes are needed for successful resistance to TCV in A. thaliana: the dominant 

R gene HRT, the recessive gene rrt, and a third gene, TIP.  Crosses of Di-17 and Di-3 plants, 

and crosses of Di-3 and Col-0 plants are being analyzed to determine the genotype of the F1 

progeny.  Using cleaved amplified polymorphic sequence (CAPS) markers, it is possible to 

determine the genotype of the progeny compared to the wild-type parents at the HRT and TIP 

loci.  Additionally, protein analysis tools will be employed to compare the Di-3 and Di-17 TIP 

alleles to determine if there are any significant differences in the protein. 
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Introduction: 
 
Plants and Pathogens 
 
            In the wild, plants are typically challenged by pathogen attacks caused by a variety of 

viruses, bacteria, fungi, and nematodes (Baker et al., 1997). There are close to 11,000 plant 

diseases that have been observed; of these, 120 have been attributed to fungi, 30 have been 

attributed to viruses, and 8 have been attributed to bacteria (Montesinos et al., 2002). It is 

common for plants to be resistant to many of the pathogens that they encounter.  Pathogens that 

are capable of causing disease are “the exception, not the rule” (Staskawicz, 2001).  Although 

plants are generally resistant to pathogens, approximately 13% of the world’s crop production is 

lost to disease, creating severe losses in food production (Table 1) (Montesinos et al., 2002).   

In order to resist the pathogen attacks that plants face, a system of defense responses 

necessary for survival have been developed by plants.  These defense responses can be grouped 

into two main categories: constitutive or inducible (active).  Constitutive responses are pre-

existing features of a plant that are constantly “turned on,” whereas inducible responses are 

Host/Disease Pathogen Crop loss due to pathogen 
Rice All 15% ($33 billion) loss worldwide  

between 1988-1990 

Rice-nematodes Meloidogyne spp. 10 to 50% losses in China, 1984 
Maize-southern corn leaf 

blight 

Cochliobolus heterostrophus $1 billion loss in U.S. epidemic, 1970 

Cotton All 10.5% ($4.3 billion) loss worldwide  

between 1988-1990 

Coffee All 14.8% ($2.8 billion) loss worldwide  

between 1988-1990 

All major crops All 13.3% (76.9 billion) loss worldwide  

between 1988-1990 

Table 1. Crop losses caused by plant disease. Examples of the severity of crop damage and loss due to 
pathogen infection.  (Adapted from Baker et al., 1997). 
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activated by a pathogenic challenge (Fig. 1) (Lucas, 1998).  

Most plants are capable of mounting a hypersensitive response (HR) to a pathogen 

attack, during which necrotic lesions form at the infection site. This programmed cell death is 

part of an active defense response that prevents the pathogen from systemically spreading 

throughout the plant (Matthews, 1991).  Lesions are able to form on infected leaves within 

hours or days of the initial challenge (Yi et al., 1998).   For instance, Turnip crinkle virus 

lesions are faintly visible at two days post inoculation, and clearly visible at three days post 

inoculation.  In conjunction with the lesion formation during HR, plants also generate signaling 

molecules to warn nearby cells, strengthen cell walls, and supply anti-microbial enzymes to the 

defense system (Yi et al., 1998).   

The HR is typically triggered by plant recognition of the pathogen. For this recognition 

process to occur, a dominant or semi-dominant resistance (R) gene, corresponding to a 

dominant avirulence (Avr) factor of the pathogen, must be present in the plant.  If either the 

plant or the pathogen lacks one of the resistance gene products, the plant will be unable to 

Constitutive Active 

Cell Wall 
 
Chemical 
Preformed inhibitors 
Antifungal proteins 
Antifeedants 
Enzyme inhibitors 
 
 

Cell Wall 
 
Callose                               Chemical 
Suberin                              Phytoalexins 
Lignin                                PR proteins 
Cell-wall proteins               Chitinase 
                                           Glucanase 
                                           Oxidative burst 

 
The Hypersensative Response 

Local Changes            Systemic Changes 

Fig. 1. Diagram of defense features that plants possess based on existing (constitutive) or induced 
(active) defenses. (Adapted from Lucas, 1998). 
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mount an active defense response, and will eventually become diseased (Flor, 1971). This gene-

for-gene relationship, hypothesized by Flor, holds true for many pathogen-plant interactions 

(Fig.2). Resistance (R) genes are typically very specific for the pathogen Avr that they target 

(Glazebrook, 1999).  For example, it has been shown that there is a gene-for-gene relationship 

between the avrPto gene of Pseudomonas syringae pv. tomato and the Pto gene of tomato 

plants (Martin et al., 1993).  However, there are some cases in which R gene “dual recognition” 

has been identified.  For instance, RPP8/HRT alleles recognize both oomycete parasites and a 

virus, while the tomato Mi gene provides resistance to both nematodes and aphids (Dangl and 

Jones, 2001). 

Pathogens that elicit an HR activate the systemic acquired resistance (SAR) response 

(Glazebrook, 1999).  Common features of SAR include increased levels of salicylic acid (SA), 

expression of pathogenesis-related (PR) genes, a rapid oxidative burst, cellular 

decompartmentalizaion, and strengthened plant resistance (Staskawicz et al., 1995, Glazebrook, 

1999).  It is important that the plant is able to activate SAR, as the plant is unable to store the 

necessary resistance factors to prevent pathogen attack over an extended period of time 

(Glazebrook, 1999).  

For instance, the gene nahG encodes an enzyme that degrades SA.  Accumulation of SA 

  avr  gene
Pathogenicity     
        genes     Resistance

R   gene

Pathogen Host Cell

Host Cell

Pathogenciity    
        genes Susceptibility

Pathogen

R   gene

Pathogen Host cell

Pathogenicity   
       genes Susceptibility

Pathogen Host cell

avr   gene
   Pathogenicity
           genes

Susceptibility

Host receptor Pathogen elicitor Pathogenicity functions

Fig. 2. Host-pathogen gene-for-gene specificity model. (Adapted from Lucas, 1998) 
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is often observed in plants responding to pathogenic challenge (Cohn et al., 2001).  It has been 

shown that in transgenic plants expressing the bacterial nahG gene, the plants do not 

accumulate SA after pathogen exposure and were more susceptible to all pathogens: both those 

that would normally cause a resistance response and those that would typically cause disease 

(Glazebrook, 1999, Cohn et al., 2001).  It was also found that these transgenic nahG plants did 

not express PR genes in uninoculated plants, nor did they develop SAR (Cohn et al., 2001).  

Thus, it seems that SA plays an important role in SAR (Cohn et al., 2001). 

However, it has been observed that in some cases, gene-for-gene resistance has been 

able to occur without the presence of HR cell death, and in cases in which the HR is delayed 

(Yu et al., 1998, Lam et al., 2001).  This is the case with dnd1 mutants.  When challenged with 

avirulent P. syringae pathogens, dnd1 mutants do not demonstrate an HR, although they 

demonstrate the SAR phenotype, and resistance levels similar to levels presented in wild-type 

plants (Yu et al., 1998, Glazebrook, 1999). In some cases, as noted with the resistance conferred 

by the barley mlo gene to the fungus Erysiphe graminis f.sp. hordei, the induction of visible HR 

follows other resistance factor expression (Lam et al., 2001).   

R genes encode proteins that are specific for the Avr proteins, or elicitors, that they 

target (Nimchuk et al., 2001, Ji et al., 1998). There are five classes of R genes: 1) intracellular 

protein kinases; 2) receptor-like protein kinases with an extracellular leucine-rich repeat (LRR) 

domain: 3) intracellular LRR proteins with a nucleotide binding site (NBS) and a leucine zipper 

(LZ) motif; 4) intracellular NBS-LRR proteins with some similarity to Toll and interleukin-1 

receptor (TIR) proteins (found in insects and mammals, respectfully) or a coiled-coil (CC) 

domain; and 5) LRR proteins that code for membrane-bound extracellular proteins (Fig. 3) 

(Martin, 1999, Baker et al., 1997, Dangl and Jones, 2001). The genes that potentially code for 

the LRR proteins have been sought out in many plants; the Arabidopsis genome contains 

approximately 150 sequences identified as NBS-LRR genes, whereas in a recent study it was 

found that Lycopersicon esculentum Moll (tomato) contains approximately 75 (Nimchuk et al., 

2001, Pan et al., 2000).  

LRR structures in R genes are implicated in mediating protein-protein interactions, and 

are thought to be responsible for Avr recognition specificity (Fluhr, 2001).  Evidence of this 

interaction between Avr factors and the LRR domain of the R genes has been demonstrated.  A 

single amino acid change in the LRR domain of the fungal Magnapporthe grisea rice R gene 
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was responsible for the difference between susceptible and resistant alleles (Fluhr, 2001, Bryan 

et al., 2000).  A yeast (Saccharomyces cerevisiae) two-hybrid system was subsequently used to 

demonstrate that the recombinant LRR domain of the resistant allele could interact with the Avr 

factor, whereas the susceptible allele was only capable of weak Avr factor interactions (Fluhr, 

2001, Jia et al., 2000). 

The variability in LRR regions of different R genes might aid gene-for-gene specificity.  

Interestingly, the LRR region of an Arabidopsis R protein, RPS5, appears to be necessary for 

signaling events after the Avr factors are perceived (Cohn et al., 2001).  Two inactive RPS5 

alleles were found to have mutations in their LRR regions (Cohn et al., 2001).  One mutant was 

found to affect the function of other R genes, suggesting that R genes may also be involved in 

signaling (Cohn et al., 2001).  Since not all R genes possess LRR domains, it is not likely that 

LRR regions are the sole factors controlling gene-for-gene specificity (Cohn et al., 2001). 

NBS-LRR R genes are the largest class of R genes (Dangl and Jones, 2001).  These 

  Cf-2, Cf-9 Xa21

N, L 6,
M, Rpp5

Rps2,
Rpm1, Prg

Resistance and defense

Meristem
size and

organ shape

Plants   Drosop hila                Mammals

Toll          IL-1R

Pelle          IRAK

LRR

NBS               Kinase

TIR               LZ

Clavata
and

Erecta

Fig. 3. Defense and development pathways of plants, insects and mammals. Genes encoding LRR-
NBS motif proteins include RPS2, PRM1, and RPP5 from Arabidopsis, Prf from tomato, N from 
tobacco, and L6 and M from flax.  The amino terminal domains of N, L6 and RPP5 have homology with 
Toll and IL-1R domains.  Pto encodes a serine-threonine kinase that shares homology to RAF, IRAK 
and Pelle kinases.  Cf-2 and Cf-9 encode large LRR domains that may act as transmembrane receptors.  Xa21 
encodes an extracellular LRR domain and an intracellular serine-threonine kinase domain. TIR: Toll-IL-1R 
homology domain; kinase: serine-threonine kinase; LZ: leucine zipper (also known as a coiled-coiled domain 
(CC)  . (Adapted from Baker et al., 1997) 
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proteins have a variable number of carboxy-terminal LRRs, and the domains are found in 

diverse proteins where they are thought to play a role in protein-protein interactions, peptide-

ligand binding, and protein-carbohydrate interaction (Dangl and Jones, 2001).  NBS-LRR 

proteins can be further divided based upon their proposed N-terminal structure: one type 

contains a domain similar to a Toll-interleukin receptor-like domain (TIR-NB-LRR), while 

others contain proposed coiled-coil domains (CC-NB-LRR) (Dangl and Jones, 2001).  Of the 

two NBS-LRR R types, approximately 60% have been identified as TIR, whereas the other 40% 

or so have been identified as CC (Dangl and Jones, 2001).  TIR domains are important to the 

function of certain R genes in both plant and animal immunity, although TIR domains are 

located at the N terminus of NBS-LRR R genes in plants, while TIR domains are located at the 

C terminus of a single-pass transmembrane receptor in animals (Fluhr, 2001). Plant NBS-LRR 

domains seem to be an important aspect of R gene specificity, as Luck et al. (2000) 

demonstrated.  After recombining LRR and TIR regions of different alleles in the L locus in 

flax, which correspond to the resistance specificities to flax rust, it was determined that the 

phenotypes of the recombined alleles were unpredictable, most likely due to the “coadaption 

between different polymorphic regions of the gene (Luck et al., 2000).”  Although the 

phenotypes were often unexpected, they could be classified into three groups: recombinants that 

conferred resistance identical to that of the LRR donor allele, resistant recombinants that 

possessed specificity unlike either parent allele, and non-resistant recombinants (Luck et al., 

2000).  Thus, it seems that specific recombination events have provided plants with the ability 

to resist the challenge of diverse pathogens. 

Serine/threonine protein kinases are another class of R genes.  This small group of 

cytoplasmic proteins contain eleven subdomains and as well as a myristylation motif at the 

amino terminus (Cohn et al., 2001). This myristylation motif, known to be important for 

subcellular protein localization, does not appear to be required for disease resistance (Cohn et 

al., 2001).  Pto encodes a serine/threonine protein kinase.  It has been shown that Pto 

phosphorylates another protein kinase, Pti1, upon Avr recognition, and that a third LRR class 

protein, Prf, is required for Pto function.  It is hypothesized that these proteins are members of a 

signal cascade triggered by Pto (Ji et al., 1998).   

The two remaining R gene classes both encode proteins that contain extracytoplasmic 

domains.  Tomato Cf proteins, which confer resistance to Cladosporium fulvum with 
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appropriate avr genes, are extracellular membrane-bound LRR proteins (Cohn et al., 2001).  Cf 

proteins are glycoproteins with extracytoplasmic regions of LRRs that are joined with a 

transmembrane region and a cytoplasmic tail (Cohn et al., 2001).  The other extracytoplasmic 

protein class contains an LRR domain, a single transmembrane region, and serine/threonine 

protein kinase domain. These proteins are known as receptor-like kinases (RLKs) (Cohn et al., 

2001). Studies have shown that the LRR regions of RLK proteins are important for ligand 

binding, whereas it is likely that the kinase domain of the RLK protein is important for the 

initiation of downstream signaling (Cohn et al., 2001). 

It appears that many Avr proteins display little to no protein homology, and many have 

no apparent function, excepting a few that are virally encoded.  Thus, it seems that the R 

proteins encoded by the plants are the receptors and the Avr proteins encoded by the pathogen 

are the ligands in the R-Avr interactions (Nimchuk et al., 2001).  It has been proposed that the 

maintenance of Avr proteins by pathogens may be due the role that the proteins play as the 

virulence factor of pathogens on susceptible plants (Nimchuk et al., 2001).  Nimchuk et al. 

(2001) further hypothesize that perhaps the host R proteins are an intricate defense system 

designed to prevent the Avr proteins from inhibiting basal and/or specific defense systems put 

forth by challenged plants.  Thus far, only one R-Avr protein interaction has been demonstrated 

in vitro (Holt et al., 2003).  This is an interesting finding, as it has been shown that R gene 

function is necessary for plant resistance.  The lack of R-Avr direct interaction can be explained 

by the guard hypothesis ( Fig. 4). 

The guard hypothesis is based upon the assumptions that there is specificity between the 

R protein and host target of the Avr protein, and that the interaction between the Avr and host 

target in the absence of the R protein would enable the pathogen to be virulent (Fig. 4) (Holt et 

al., 2003). The Pto-AvrPto relationship is a good example.  In this relationship, the guard 

hypothesis suggests that the Prf protein detects and monitors the Pto-AvrPto interaction (Holt et 

al., 2003).  If AvrPto is found to be a virulence factor, somehow targeting the Pto kinase and 

preventing its ability to activate a defense pathway, Prf might be activated during this 

interaction.  Holt et al. (2003) describe the interaction as follows: “Prf may act similar to a 

fishing pole with Pto as the bait and AvrPto as the trophy catch.” 
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Arabidopsis thaliana 
 
             Arabidopsis thaliana, commonly known as thale-cress or mouse-ear cress, is a member 

of the Brassicaceae (mustard) family.  A. thaliana has been coined the “Drosophila” of plants, 

due to the fact that it is a useful model system for plants.  

The A. thaliana genome is fairly small in size: 125Mb 

contained in five haploid chromosomes (Baker et al., 

1997, Leutwiler et al., 1984).  In 2000, the entire 

genomic sequence was completed, and all five 

chromosomes currently have detailed and broad genetic 

maps (www.arabidopsis.org, 2003).   The genome 

contains a low amount of non-coding DNA, making A. 

thaliana useful for genetic analysis.  

Additionally, A. thaliana has a rapid life cycle, 

going from seed to flower in approximately six weeks.  Since Arabidopsis plants produce many 

seeds, it is also easy to maintain a stock of seeds.  These plants are easily cross-pollinated or 

Fig. 5. Arabidopsis thaliana. This 
picture was taken of an A. thaliana 
plant approximately four weeks old. 

A B

C D

Fig. 4.  The guard hypothesis. A. A complex of cellular proteins (green), a ‘guardee’ molecule (red), 
and an NBD-LRR protein (shaded gray from the N-terminus to the NB and the LRR domains) is tar-
geted by a disease effector (orange).  B. The pathogen effector binds to its target, resulting in the disas-
sociation and activation of the NBD-LRR protein, causing disease resistance.  C. Another scenario 
where the NBD-LRR protein joins the complex only after effector binding.  D. Activation of the NBD-
LRR protein after the entire guard-effector complex is formed. (Adapted from Dangl and Jones, 2001) 
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self-pollinated, and given their small physical size (about a tenth of the size of a rice plant), 

large crops may be grown at one time for lab experiments (Baker et al., 1997, Leutwiler et al., 

1984).  The varied ecotypes of A. thaliana, comprised of over 150 wild isolates, present great 

opportunities for genetic and pathogenic studies by plant scientists (Baker et al, 1997).  

Although there are many varieties of A. thaliana, the three significant to this particular study are 

the Dijon-17 (Di-17), Dijon-3 (Di-3) and Columbia-0 (Col-0).  These plants are important 

models in understanding plant resistance, as they exhibit different responses upon Turnip 

crinkle virus (TCV) inoculation. 

There are many pathogens that are studied using the Arabidopsis thaliana plant model.  

A few examples of fungi, bacteria, and viruses that challenge Arabidopsis ecotypes are given in 

Table 2. 

Turnip Crinkle Virus 
 

Carmoviruses are single-component, icosahedral, positive-sense genome RNA viruses. 

The genome is a little more than 4kb, making these RNA viruses some of the smallest known to 

Disease Pathogen 
Fungal diseases 

   Downy mildew 

   Dark leaf spot 

   Powdery mildew 

   Leaf mold and leaf spot 

 

 

   Peronospora parasitica 

   Alternaria brassicae 

   Erysiphe cruciferarum; E. cichoracearum 

   Cladosporium sp. 

Bacterial diseases 

   Black rot on cruicifers 

   Bacterial speck on cruicifers 

 

   Xanthomonas campestris pv. Campestris 

   Pseudomonas syringae pv. Maculicula; P. syringae    

                  pv. tomato 

Viral diseases 

   Mild stunting  

   Mild stunting and desiccation 

   Vein clearing and chlorotic spots 

 

   Tobacco mosaic virus 

   Turnip crinkle virus 

   Cauliflower mosaic virus 

Table 2. Arabidopsis pathosystems. Examples of fungal, bacterial and viral diseases, and the pathogens 
that cause them.  (Adapted from Baker et al., 1997) 
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infect eucaryotic hosts (Morris and Hacker, 1994).  

Members of the carmovirus family include Carnation 

mottle virus (CarMV), Melon necrotic spot virus 

(MNSV), Cowpea mottle virus (CMeV), Saguaro 

cactus virus (SCV), and Turnip crinkle virus (TCV) 

(Fig. 6) (Morris and Hacker, 1994).  The carmoviruses 

can be found throughout the world, and are generally 

known to cause mild asymptomatic infections on a 

relatively small number of natural hosts (Morris and 

Hacker, 1994).  The transmission vector for many of 

the carmoviruses are beetles, although irrigation water 

and soil have also been sited as possible viral carriers.  Turnip crinkle virus has been associated 

with beetles as its viral vector, despite the lack of widespread infection in the wild.  TCV is 

different from the other carmoviruses in that it has the ability to infect a wide range of 

experimental hosts, including Arabidopsis and Brassica (ie. mustard, cabbage, broccoli, 

cauliflower, kale, etc.) species.  In the aforementioned species, it is possible to detect an 

accumulation of up to 0.5% of the fresh weight of plant tissue, making these hosts extremely 

important for TCV experimentation (Morris and Hacker, 1994). 

The genome of Turnip crinkle virus contains 4,054 nucleotides.  There are five proteins 

encoded in the TCV genome: proteins p28 and p88 are involved in viral replication,  proteins  

p8 and p9 facilitate cell-to-cell movement, and  protein p38, is the 38-kD capsid protein (Fig. 7) 

(Carrington et al., 1989, Zhao et al., 2000). The carmoviruses consist of a T=3 icosahedral 

capsid containing 180 subunits of the 38kD coat protein.  The coat protein contains three 

distinct domains: R (internal N-terminal), S (shell), and P (projecting C-terminal) (Carrington et 

al., 1987, Morris and Hacker, 1994).  R is a basic domain that extends into the virion particle, 

possibly interacting with the viral RNA, and is linked to the S domain by a connecting arm 

(Carrington et al., 1987, Morris and Hacker, 1994).  The virion shell is made up of the S 

domain, which is attached to P by way of a hinge.  P extends from the virion surface, projecting 

the carboxy-terminus (Morris and Hacker, 1994). 

Of the carmoviruses, TCV is the only one that has been shown to support the replication 

of small subviral RNAs with a helper virus in the challenged plant.  These small subviral RNAs 

Fig. 6. Structural representation of 
TCV.  This is a drawing of the 
icosahedral capsid containing 180 
subunits of the 38kD protein.  (From 
http://www.tulane.edu/~dmsander/
WWW/335/335Structure.html, 2003) 
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can be placed into one of three categories: satellite RNAs, defective-interfering RNA, and 

chimeric RNA (Morris and Hacker, 1994).  Satellite RNAs, RNAs D and F, are nonviral in 

origin.  These small subviral RNAs do not appear to affect viral function or virulence.  

Defective-interfering RNA (RNA G) appears to come from the TCV sequence itself.  RNA G 

has the ability to intensify viral symptoms, although it also affects the replication ability of the 

helper virus.  The chimeric RNA (RNA C) is created from both viral and nonviral sequences.  

Research has suggested that RNA D and the TCV genome recombines by way of a template 

switch mediated by the viral RNA polymerase.  Analysis has shown that the 3’ half of RNA C 

greatly resembles the 3’ end of the TCV genome, while the 5’ half is almost identical to RNA 

D.  RNA C, like RNA G, is capable of intensifying the symptoms brought on by TCV infection, 

although it does not seem to interfere with the helper virus replication activity (Morris and 

Hacker, 1994). 

 

Arabidopsis and Turnip Crinkle Virus 
 

Many ecotypes of Arabidopsis are susceptible to TCV, but in 1992, it was shown that 

Dijon-0 (Di-0) was resistant (Simon et al., 1992).  Two isolates of the Di-0 line, Di-3 and Di-

17, were later identified as useful ecotypes for research in plant-pathogen studies (Dempsey et 

al., 1993).  Col-0  and Di-3 plants are completely susceptible to TCV infection.  Challenge by 

TCV does not induce an HR, and although PR genes are expressed, they appear much later and 

p28 p88

 p8

 p9

CP

 p8

 p9

TCV

1.7 kb 
sgRNA

CP1.45 kb 
sgRNA

Fig. 7. Genomic organization of TCV.  The open reading frames (ORFs) are denoted. (Adapted from 
Morris and Hacker, 1994) 
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to a lesser extent than in resistant plants.  Col-0 and Di-3 plants become systemically infected, 

showing severe crinkling and stunting, and are dead within three weeks.  Conversely, Di-17 

plants are capable of expressing an HR in response to TCV challenge.  Di-17 plants developed 

necrotic lesions on the inoculated leaves, and PR genes are found to be present in both 

uninoculated and inoculated leaves (Dempsey et al., 1993).  Furthermore, Di-17 plants typically 

display no further symptoms of viral infection. 

The resistance ability of these three ectotypes of Arabidopsis plants is determined by 

three genes that have been suspected or 

proven to act in a gene-for-gene resistance 

manner to TCV: the dominant R gene, HRT 

(Hypersensitive response to TCV), a recessive 

gene, rrt (regulation of resistance to TCV), 

and TIP (TCV interacting protein).  The three 

ecotypes, Di-17, Di-3 and Col-0, have 

different combinations of these genes, thereby 

causing the plants to have different resistance 

responses (Table 3). 

            The dominant R gene to TCV is HRT.  

The HRT gene, located on Chromosome 5, encodes a 105 kD protein that includes a leucine 

zipper in the N-terminus, an NBS, and a LRR at the C-terminus.  HRT is required for TCV 

resistance and formation of the HR, although it is incapable of conferring total resistance to the 

plant (Cooley et al., 2000).  Progeny of crosses between resistant and susceptible plants were 

studied by Kachroo and colleagues.  All of the HRT- plants developed systemic infections, but 

some HRT+ plants were also susceptible to infection (Kachroo et al., 2000).  If HRT was the 

only gene necessary to confer TCV resistance to Arabidopsis plants, then all of the HRT+ plants 

should have remained resistant.  Statistical analysis of the resistant and susceptible progeny 

further suggested the requirement for a recessive gene.  This genes was called rrt (regulation of 

resistance to TCV). 

Although the structure and function of the rrt gene have not been determined, two 

different mechanisms have been proposed by which rrt might function to confer resistance to 

TCV infection.  The rrt allele in Di-17 plants might encode a protein that cannot suppress an 

Di-17 Di-3 Col-0 

HRT No HRT No HRT 

rrt rrt? RRT 

TIP TIP* TIP 

Table 3. Resistance genes of Arabidopsis 
thaliana species.  * denotes a variation in the 
gene when compared to the genetic sequences of 
Di-17 and Col-0 TIP. 
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active resistance pathway, or the rrt allele might encode a protein that has the ability to interact 

with HRT in some manner, be it directly or indirectly (Kachroo et al., 2000). 

The third gene, TIP, is known to interact with the TCV coat protein and is hypothesized 

to trigger the HR.  Mutants in the N terminus of the TCV CP do not induce HR and do produce 

systemic disease on plants that are resistant to the wild-type virus (Zhao et al., 2000, Ren et al., 

2000).  These same mutations have been shown to abolish interaction with TIP (Ren et al., 

2000).  These results suggest that TIP is a significant component in the resistance response.  It 

has been suggested that TIP has a function similar to that of the tomato Pto R gene.  Like Pto, 

TIP may function in a concerted manner with HRT to confer resistance to TCV (Ren et al., 

2000).  To study the specificity of resistance responses to TCV, a TCV virus has been created 

with a mutation in the amino terminus of the coat protein.  This mutation, in which an aspartic 

acid is replaced by an asparagine at the fourth position (D4N) by site-directed mutagenesis, 

results in a virus that no longer elicits the HR and active defense response from Di-17 plants 

(Zhao et al., 2000). 

It is also necessary to study the differences between the TIP genes of the plants.  There 

are nucleotide differences that could account for changes at the protein level.  Perhaps the 

nucleotides code for amino acids that could cause structural changes or charge differences that 

alter interaction dynamics to account for the different HR responses demonstrated by A. 

thaliana plants. 

Although wild-type TCV is capable of eliciting an HR from Di-17 plants, the plants 

inoculated with the mutant D4N-TCV become systemically infected (Fig. 8).  Di-3 plants 

display neither an HR nor resistance to wild-type TCV, however suprisingly, inoculation with 

the D4N mutant confers an HR (Fig. 8).  In this case, the HR appears later, well after systemic 

disease symptoms are visible.  Thus, the Di-3 plants are not resistant to D4N, though they 

appear capable of recognizing the D4N virus and initiating a partial resistance response.  The 

Col-0 genotype does not mount an HR nor is it capable of resistance to wild-type TCV.  

Unpublished data has shown that although Col-0 develop necrosis and crinkling of infected 

leaves upon challenge with D4N, younger leaves appear to be healthy, and the severity of the 

symptoms of the virus seem to wane over time.  Additionally, no clear lesions appeared on the 

Col-0 plants (Fig. 8).   

It was unexpected to see the development of an HR when Di-3 plants were inoculated 
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with D4N.  Di-3 plants are known to lack the R gene, HRT (Klessig, personal communication).  

Thus, the formation of an HR must be due to the action of another HR-inducing protein/protein 

interaction.  In order to identify a genetic locus responsible for conferring the HR on Di-3 

plants, we propose to cross them with Di-17 plants that do not respond to HR.  Additionally, 

since the rrt status of Di-3 plants is unknown, we will be able to determine its status in the F2 of 

the Di-3 X Di-17 cross by analyzing responses to wild-type TCV. We also propose to cross 

Col-0 X Di-3 plants.  This cross will be important to determine and compare the importance for 

Fig. 8. D4N inoculated Arabidopsis thaliana.  A. Inoculated Di-3 plant, showing systemic infection 
with apparent necrosis and leaf crinkling.  B.  Inoculated Di-17 plant, with less severe necrosis.  C.  In-
oculated Col-0 plant demonstrating necrotic and crinkled old leaves, with apparently healthy new leaves.  
D.  Mock inoculated Col-0 plant, demonstrating a healthy phenotype.   
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the dominant and recessive alleles of the rrt gene.  It will also help to determine the status of the 

rrt gene in Di-3 plants.  Potentially, rrt will be required to get full resistance to D4N.  In these 

crosses we can determine phenotype upon inoculation with D4N and the genotype at the HRT 

and TIP loci.  Since rrt has not been mapped, we will not be able to follow the genotype at this 

locus. 

 

Analysis of the F1 and F2 Generations 

Given the information that we have about the parent plants, we are able to make some 

predictions as to their phenotype upon inoculation with D4N. For Di-17 and Col-0, we can 

determine that 75% of the F1 generation and 37.5% of the F2 generation will form lesions.  

For crosses of Di-17 and Di-3, then the following can be predicted. 

1)  IF either version of TIP is effective AND Di-3 is homozygous for the D4N 

resistance gene, then: 

* The F1 generation will be genetically uniform. 

* 75% of the F2 population will form lesions. 

2)  IF either version of TIP is effective AND Di-3 is heterozygous for its resistance 

F1 H* H*  F2 H* h* 
h* H*h* H*h*  H* H*H* H*h* 
h* H*h* H*h*  h* H*h* h*h* 

F1 H*T h*T   
H*T H*H*TT H*h*TT   
h*T H*h*TT h*h*TT   
     
F2 H*T H*T h*T h*T 
H*T H*H*TT H*H*TT H*h*TT H*h*TT 
H*T H*H*TT H*H*TT H*h*TT H*h*TT 
h*T H*h*TT H*h*TT h*h*TT h*h*TT 
h*T H*h*TT H*h*TT h*h*TT h*h*TT 

 
Key:  For the following Punnet squares: H = HRT; T = TIP; and * = HRT gene for D4N. 
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gene, then: 

* The F2 population will be mixed. 

* 1/2 of the F1s will give no lesion formers in F2. 

* 1/2 of the F1s will give 75% lesion formers in F2. 

3)  IF the Di-3 version of TIP is required AND Di-3 is homozygous for the D4N 

resistance gene, then: 

* 56% of the F2 population will form lesions. 

4)  IF the Di-3 version of TIP is required AND Di-3 is heterozygous for the D4N 

resistance gene, then: 

* 50% of the F1 generation will form lesions. 

* Of the F1 plants that form lesions, 56% of the F2 generation will also form 

                  lesions. 

Since inoculation of the F1 generation would prevent the plants ability to reproduce, it is 

necessary to use our genotypic and phenotypic knowledge of the F2 plants as the basis for our 

F1 H* h*  F2 H* h* 
h* H*h* h*h*  H* H*H* H*h* 
h* H*h* h*h*  h* H*h* h*h* 

F1 H*T h*T  F2 H* h* 
H*t H*H*Tt H*h*Tt  H* H*H* H*h* 
h*t H*h*Tt h*h*Tt  h* H*h* h*h* 

F1 H*T h*T   
h*t H*h*Tt h*h*Tt   
h*t H*h*Tt h*h*Tt   
     
F2 H*T h*T H*t h*t 
H*T H*H*TT H*h*TT H*H*Tt H*h*Tt 
h*T H*h*TT h*h*TT H*h*Tt h*h*Tt 
H*t H*H*Tt H*h*Tt H*H*tt H*h*tt 
h*t H*h*Tt h*h*Tt H*h*tt h*h*tt 
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understanding of Arabidopsis-TCV interactions.  However, it is important to genetically screen 

F1 plants to identify successful crosses in order to accurately determine the genetic-phenotypic 

relationships in the F2 plants. 
 

Results and Discussion: 

 

CAPS Analysis: An Important Genetic Tool 
 

Previously determined genetic markers can be used to identify the parental and 

successive generation genotypes.  The two markers used in this experiment are specific for the 

HRT and TIP loci.  Cleaved amplified polymorphic sequence (CAPS) analysis involves 

amplifying a region in or near a gene of interest.  To view the genotype variations, restriction 

enzymes have been selected which differentially digest the amplified DNA fragment, providing 

a mechanism to compare the genotypes.   

To determine the genotype of A. thaliana plants in relation to the HRT gene in CAPS 

analysis, we implemented the use of primers for another gene, DFR, which is very closely 

linked to HRT (Dempsey et al., 1997, Cooley et al., 2000).  Because these genes are so closely 

linked, there is little chance that following DFR will result in miss-assigning the genotype at 

HRT due to the crossing over of genes on Chromosome 5.  It was important to determine the 

genotypes of the wild-type parents in order to establish a standard with which to compare the 

crossed progeny.  Genomic DNA was extracted from Di-17, Di-3, and Col-0 plant tissue, and 

CAPS analysis was performed.   

Using the DFR primers, genomic DNA from all 

three ecotypes was amplified.  The amplified band for each 

parental genotype is 1,200 bp in size.  Two different 

enzymes must be used for genotype analysis in this 

particular CAPS analysis. A BsaA I restriction digest is 

capable of providing a comparison between Di-3 and Col-0 

or Di-3 and Di-17.  As in Fig. 9, the 1,200 bp Col-0 and Di-

17 bands in Lane 1 and Lane 5, respectively, are cut by the 

enzyme BsaA I into two smaller bands of sizes 550 bp and 

650 bp (Lanes 2 and 6, respectively). However, the 1,200 bp 

   Fig. 9. CAPS analysis of WT  
   plants using BsaA I. Odd lanes  
   are uncut, even lanes are digested   
   with BsaA I. 
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Di-3 band in Lane 3 is cut into three smaller bands by BsaA I in Lane 4.  These bands 

correspond to ~250 bp, ~300 bp, and 650 bp segments.   

Given that these results make it impossible to distinguish between the Col-0 and Di-17 

plants, it was necessary to use another enzyme.  The second 

enzyme, Dde I, provides this important genotypic 

distinction (Fig. 10).  Lanes 1, 3 and 5 show the uncut 1,200 

bp Col-0, Di-3 and Di-17 bands, respectively.  In Lanes 2 

and 4, it is possible to see that the large DNA segment was 

cut into a smaller, 800 bp band by Dde I.  However, Di-17 is 

not digested by Dde I, as shown in Lane 6.  These results 

demonstrate that the three genotypes can be distinguished 

using two enzymes. 

            It is important to perform a similar CAPS analysis 

for the TIP gene.  While the TIP genes for each line of A. 

thaliana had previously been cloned, it was still necessary 

to develop CAPS markers for the TIP gene. Specific primers were selected to amplify a 

segment of the TIP gene that would allow for the determination of each genotype by CAPS 

analysis. A segment of the gene which contained a nucleotide change was selected, as it was 

possible to identify an enzyme that would selectively restrict only one genomic sequence at that 

point.   The sequence analysis revealed an Xmn I restriction site in the Di-17 and Col-0 TIP 

genes that was absent in the Di-3 TIP 

gene (unpublished data).  

              As the use of TIP sequences for 

CAPS analysis had not previously been 

done, it was necessary to optimize 

conditions for successful amplification 

using these primers.  Initially, conditions 

similar to those used for HRT 

amplification were used, but these 

showed little, if any, amplification.  

Adjustments were made to several 

   Fig. 10. CAPS analysis of WT   
   plants using Dde I. Odd lanes are  
   uncut, even lanes are digested with  
   Dde I. 

Fig. 11. Amplification of TIP using the CAP3 
PCR program.  The band is ~1.3 kB in size. 
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parameters, including the relative concentration of the genomic DNA and the number of 

elongation cycles for the PCR program.  These parameter changes let to significant 

improvements in the amplification process (Fig. 11).  However, there was still some difficulty 

in resolving the product bands of 500 bp and 600 bp after cleavage with the restriction enzyme 

Xmn I (Fig. 12). 

 
Crossing Experiments 
 
            Crosses of both Di-3 and Di-17 plants, and Col-0 and Di-3 were performed, and seeds 

were collected and dried.  The F1 generations of both crosses were grown up, and CAPS 

analysis for HRT was performed on tissue samples taken from both types of plants (Fig. 13).  

This demonstrated that all crosses were successful since the F1 contained one HRT locus from 

each parent.  The plants that were identified as crosses at the HRT locus were grown up for 

seed.  At this point,  F2  seeds from fifteen successful crosses of Di-3 and Di-17 and seven 

successful crosses of Col-0 and Di-3 have been harvested.  These can be used to analyze the 

genotype and phenotype to D4N inoculation. 
 

Initial Plant Experiments: The Soil Factor 
 
            During the course of analyzing  F2  progeny, the plants developed an unexpected range 

of symptoms.  Plants that should have been susceptible to the viral species were not becoming 

necrotic and crinkled: they demonstrated purpling and severe growth variation (Fig. 14).  

Purpling usually occurs in a nutrient-deficient environment, and is typically identifiable by a 

 
 
 
Fig. 12. Restriction digest of TIP.  First lane for 
each number is uncut, the second lane for each 
number is digested with Xmn I.  After restriction 
digest, the product bands remain unresolved.  In an 
attempt to clarify these results, various parameters 
were modified.  However, changes in the 
concentrations of the digestion reaction, time for the 
reaction and levels of sample loaded on the gel did 
not significantly alter these results.  
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dark purple color that appears to travel up the stem and bolt towards the tip of the leaf.  

Eventually, the entire leaf becomes a dark purple color, and the growth process of the plant 

slows down.  This purpling was unexpected since the plants had been fertilized since the first 

watering, and the soil was not autoclaved.  Autoclaving soil is often used to prevent bacterial 

and fungal growth, although some nutrients are destroyed in the process. Furthermore, some 

plants appeared to have stunted growth, whereas other plants in the same flat appeared to be 

abnormally large, with thick stems.  The soil had significant nutrient heterogeneity with most 

Fig. 13.  CAPS analysis of F1 generations at 
the HRT locus.  Numbers at the top of the 
figures correspond to different plant samples.  
Samples were digested with BsaA I.  The 
second lane for each sample is the digested 
lane.  Note the four bands in the digested 
lanes, corresponding to each of the bands seen 
in the parental digestion.  Top: Di-17 X Di-3.  
For Di-17, digested bands are 550 and 650 bp.  
For Di-3, digested bands are 250, 300 and 650 
bp.  The 650 bp bands co-migrate, which is 
why only four total bands are observed.  Left:  
Col-0 X Di-3.  For Col-0, digested bands are 
550 and 650 bp.  For Di-3, digested bands are 
250, 300 and 650 bp (as before).   
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regions being deficient. Furthermore, 

previous growth experiments, performed in 

the same manner, but with a different lot of 

soil, had not proven to contain plants with 

these symptoms.  

            Eventually, it was determined that 

the only factor in the experiment that had 

been changed, and remained consistent 

amongst the plants, was the lot of soil that 

was being used.  Plants rely on nutrients in 

soil for their health and well-being.  

Although nutrients are often supplemented 

later, as with fertilizers, it is still important 

for the soil to contain these essential 

nutrients for the initial stages of plant 

growth.  Soil manufacturers mix soil and 

nutrients in order to optimize plant growth and health. This process is imperfect, and the 

nutrients can vary between lots.   

            Although the brand and mixture of the soil that was used had been implemented in 

growth experiments before, the lot was different.  Soil (used and unused), water, and tissue 

samples were sent out to an analytical laboratory, Micro-Macro International, for nutrient 

identification.  It was determined that the levels of some of the nutrients in the soil and plant 

tissue were well outside of the normal range (Table 4 and Table 5).       

            Elements such as magnesium, calcium, chloride, and potassium are important for 

maintaining ion balance in plants.  Copper, iron, zinc, and manganese are essential for electron 

transport and serve as catalysts for enzymes. Consistent levels of elements promote a 

constructive growth environment, and plants are moderately capable of adjusting to excess 

metal-element levels.  Plants can use selective ion uptake and decreased permeability of 

membranes to control uptake of elements contained in high levels in the soil.  However, plants 

are unable to adapt well to decreased levels of nutrients in the soil.  Nutrient deficiency can 

result in necrosis or death of a portion of a leaf, in addition to the purpling displayed on older 

Fig. 14. Plants demonstrating purpling and 
chlorosis. 
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leaves due to anthocyanin accumulation (Jones, 1998).  These symptoms are severe, and are 

capable of preventing accurate identification of viral infection responses in A. thaliana.      

Nitrogen is an important nutrient for plants.  It can be found in both organic and 

inorganic compounds in plants, including amino acids, nucleic acids, chlorophyll, purine bases 

and alkaloids.  In soil, nitrogen is usually found in the nitrate (N03
-) anion, or in the ammonium 

(NH4
+) cation.  Although NO2

- may also be present in the soil, elevated levels (<5 ppm) are 

toxic to plants (Jones, 1998).  Soil analysis revealed that the nitrate levels in the soil were 

severely deficient in unused media; the level was nearly 1/8th of the lower end of the normal 

range for soil.  As would be expected, used media contained undetectable levels of nitrate.   

Nitrogen plays a key role in plant metabolism.  Plants lacking sufficient nitrogen tend to 

mature slower and are weaker than their healthy counterparts.  In addition, the leaves of these 

plants tend to be lighter in color (Jones, 1998).  These problems are significant from a virology 

standpoint in that it is likely that the resistance system of the plant would not be matured, and 

would be difficult to identify.  A main determinant of infection of A. thaliana plants by TCV is 

Media Analysis Unused Media Used Media  
 Sample (ppm) Sample (ppm) Normal Ranges (ppm) 

Nitrate (N03
-) 5.84 0.00 40-200 

Ammonium (NH4
+) 5.88 0.77 0-30 

Phosphorus (P) 47.43 11.12 5-30 
Potassium (K) 92.27 32.81 40-200 
Calcium (Ca) 76.16 23.47 40-200 
Magnesium (Mg) 25.26 6.19 28-80 
Iron (Fe) 1.03 0.06 0.30-3.00 
Maganese (Mn) 0.23 0.00 0.10-3.00 
Boron (B) 0.14 0.05 0.05-0.5 
Copper (Cu) 0.02 0.01 0.01-0.30 
Zinc (Zn) 2.01 0.41 0.10-0.30 
Molybdenum (Mo) 0.01 0.00 0.01-0.10 
Sodium (Na) 36.60 34.90 No data 
Aluminum (Al) 0.40 0.06 No data 

Table 4. Media analysis.  Results of the media (soil) analysis performed by Micro-Macro International.  
Values highlighted in red indicate results lying outside of the normal range. 
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necrosis.  However, if the plant leaves are not healthy to begin with, it is difficult to distinguish 

symptoms of viral infection from the background symptoms of plant malnutrition.    

Levels of magnesium were also deficient in both the unused and used soil samples.  

These samples were found to contain only 90% and 22% of the lower ranges of normal values, 

respectively.  However, magnesium levels were normal in the plant tissue.  This further 

illustrates the remarkable ability of organisms to adapt to less than ideal circumstances. 

Magnesium is contained in chlorophyll, and serves as an enzyme cofactor in many 

phosphorylation reactions.  Plants deficient in magnesium display chlorosis and yellowed 

leaves (Jones, 1998), similar to the effects of TCV infection.  Since tissue levels of magnesium 

were normal, this is not likely to have been a problem for our plants. 

Phosphorus can be found in plants in many forms: adenosine triphosphate (ATP), RNA, 

DNA, and phytin, to name a few.  In the soil, phosphorus is available to plants in both inorganic 

and organic form.  Dihydrogen phosphate (H2PO4
-) and monohydrogen phosphate (HPO4

-) are 

two common anion forms in the soil.  Additionally, aluminum, iron, and calcium phosphate are 

the major inorganic sources of phosphorus (Jones, 1998).  

Soil sampling revealed that unused soil contained greater than 150% of the upper limit 

for the suggested amount of phosphorus.   Phosphorus levels in used soil were within the 

Tissue Analysis % Low        Medium         High Sufficiency Ranges 
Nitrogen (N) Not available Not available 1.50-4.60 
Phosphorus (P) 0.56 X 0.11-0.67 
Potassium (K) 2.12 X 0.11-0.69 
Calcium (Ca) 2.09 X 0.30-2.6 
Magnesium (Mg) 0.27 X 0.11-1.90 
Sulfur (S) Not available Not available Not available 
Iron (Fe) 45.44 X 30-250 
Manganese (Mn) 77.08 X 30-300 
Boron (B) 48.42 X 14-175 
Copper (Cu) 2.98    X 5-28 
Zinc (Zn) 140.32                                            X       25-100 
Molybdenum 0.46 X 0.2-5.0 

Table 5. Tissue analysis.  Nutrient analysis of plant tissue performed by Micro-Macro International.  
Values highlighted in red indicate nutrient levels that lie outside of the sufficiency range for plant tissue. 
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normal range.  Tissue analysis results corresponded to the used soil data, providing information 

that the phosphorus concentration in the plant itself remained within the normal range for tissue.  

However, the levels of phosphorus in the tissue were close to the upper limit of normal ranges.  

Given that plant tolerances differ amongst species, it is possible that the high levels of 

phosphorus in the soil could affect the A. thaliana plants.  Increased levels of phosphorus prove 

to be detrimental to plants.  Excess phosphorus can affect the levels of nutrients such as iron 

and zinc.  It has also been suggested that high levels of phosphorus could interfere with plant 

metabolism (Jones, 1998).  It is possible that “pockets” of concentrated phosphorus were 

contained in the soil, causing the abnormal overgrowth of plants, appearing sporadically in 

various pots in the flats. 

Copper plays many roles in plants: it is integral to plastocyanin, it functions as a link in 

the photosystem I/photosystem II electron transport system, it plays a role in nitrogen fixation, 

etc.  Copper is usually found in the soil in low molecular weight proteins, although the cupric 

ion (Cu2+) is present in small quantities (Jones, 1998).  Plants lacking sufficient copper 

demonstrate symptoms such as stunted growth and necrosis (Jones, 1998), again making the 

presence of copper essential for the plant-virus experiments.  Although the results showed that 

copper levels in both the used and unused media fell within the typical range, the levels were at 

the low end.  Tissue analysis further revealed that the level of copper in the plant was lower 

than normal, which would further account for the necrosis seen on the plants. 

Zinc was also found to be in excess in the soil samples: with a six fold higher level in 

usused soil, and almost 1.5 times excess in used soil.  As would be predicted from the large 

decrease in zinc levels in soil, sampled plant tissue contained 40% more zinc than in normal 

tissue.  In planta, zinc is involved with carbonic anhydrase activity.  In soil, zinc is found in 

cationic form (Zn2+) and in organic complexes.  An excess of zinc can affect plants that are 

sensitive to iron.  When high levels of zinc are present, chlorosis is observable (Jones, 1998).   

These results correspond to the symptoms of purpling and necrosis demonstrated in 

plants grown in this soil.  As previously mentioned, some symptoms of TCV are similar, if not 

identical, to those demonstrated by nutrient excess and deficiency.  Therefore, it was impossible 

to accurately determine the effects of TCV inoculation on A. thaliana plants.  However, the soil 

problem was eventually rectified by supplying the plants with an appropriate fertilizer that 

provided the plants with the correct levels of nitrogen, until a new lot of soil was obtained. 
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TIP: Differences in the Alleles 
 
            As previously discussed, TIP is of interest since it interacts directly with the coat protein 

of TCV.  It is possible that the differences between TIP and TIP* are in part responsible for the 

differing responses to D4N-TCV.  As a preliminary analysis, the two TIP sequences were 

compared in silica.  The eight nucleotide changes between the two TIP sequences result in only 

five amino acid changes in the protein (Appendix A) (Fig. 15).  These amino acid differences 

could potentially create a significant change or changes in the protein, including protein 

structure and overall protein charge.  There are many on-line programs available to test these 

possibilities.  These programs are capable of converting nucleic acid sequences (DNA) to 

amino acid sequences (protein), calculating the predicted secondary structure of proteins from 

the amino acid sequences, calculating protein hydrophobicity, etc. 

            The amino acid changes are all found between the middle and carboxy terminal end of 

the protein.  This is interesting since the N-terminal region of the protein has been shown to 

have significant homology to members of the NAC protein family.  Some of these NAC 

proteins (i.e. NAM, CUC2, NAP) have been implicated in plant growth processes, including 

 

               an uncharged, polar threonine → a nonpolar isoleucine  237 

 an uncharged, polar, aromatic tyrosine → a positively charged, polar histidine  290 

                          a basic charged lysine → a basic charged arginine  339 

       a positively charged, polar arginine → an uncharged, polar threonine  340 

                       an uncharged, polar serine → a nonpolar glycine  448 

       Di-17 Di-3 Amino  
Acid 

 

Fig. 15. Amino acid changes in TIP. 
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separating cotyledons, generating floral organs, and cell expansion and division (Ren et al., 

2000).  However, it is obvious that TIP plays a role in plant resistance.  Other NAC proteins, 

GRAB1 and GRAB2, also demonstrate direct interaction with a plant virus.   

            GRAB proteins were originally isolated by their interaction with the Wheat dwarf 

Fig. 16. GRAB and TIP amino acid sequence alignment.  Highlighted residues (yellow) denote a 
consensus in the protein sequences. * denotes a single, fully conserved residue.  : denotes conservation 
of a strong group.  . denotes conservation of weak groups.  Note the high incidence of consensus 
residues in the  N-terminal regions of the proteins. (from CLUSTALW alignment program, Biology 
WorkBench v. 3.2, 2003) 
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geminivirus (WDV) protein RepA.  Geminiviridae are a family of plant viruses whose genome 

is composed of one or two 2.6-3.0 kb circular single-stranded DNA molecules.  WDV has one 

of the smallest genomes of the geminiviridae (2750 nucleotides), and is found to replicate its 

DNA in the nucleus of infected plants.  These Geminivirus Rep A-binding proteins, or GRAB 

proteins, were found to contain a NAC domain.  This domain, located in the N-terminal region 

of GRAB is both necessary and sufficient to interact with the RepA protein of WDV (Xie et al., 

1999).  Fig. 16 shows a sequence alignment between GRAB1, GRAB2, and the TIP proteins.  

From the sequence alignments, it is possible to see that there is a great deal of amino acid 

homology at the N-terminal regions of the four sequences.  Further alignments, provided in 

Appendix B, also show the amino terminal similarities between TIP and other NAC domain 

Fig. 17. NAC consensus domain. A. Partial GRAB and TIP sequence alignments with the five 
conserved blocks (N1-N5) highlighted.  These motifs are conserved amongst the NAC family proteins 
(Xie et al., 1999). B. Organization of the consensus domains in NAC family proteins.  The five 
conserved motifs and distribution of residue charge are illustrated for the TIP protein (adapted from Xie 
et al., 1999) 
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family proteins.  However, each NAC protein contains a unique C-terminal domain, and the 

overall net charge in this region is highly negative in most NAC proteins.  This is due to the fact 

that 15-20% of the C-terminal residues are negatively charged aspartic or glutamic acids (Fig. 

17) (Xie et al., 1999).  However, TIP has an extended C-terminal domain which is largely 

positive, although the middle section of TIP, which corresponds to the C-terminal domain of the 

GRAB proteins, is negatively charged.  Since both the GRAB and TIP genes are implicated in 

plant resistance to viruses, it is highly probably that the NAC domain is significant for the  

protein-protein interactions.  Furthermore, it is also likely that the N-terminal NAC domain is 

involved in signaling activity given the roles in plant development that many of the NAC family 

proteins play.   

TIP has been implicated in having a role in transcription activation.  A yeast two-hybrid 

assay (Fig. 18) was performed using a DNA binding domain-TIP  (DBD-TIP) fusion protein 

vector, in the absence of a complementing activation domain vector.  The DBD-TIP protein was 

capable of activating the expression of the reporter gene in yeast, providing evidence that TIP 
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Fig. 18. Yeast two-hybrid assay. A. Diagram of a typical yeast two-hybrid assay.  Two vectors are cre-
ated, each with a different protein (X or Y) fused to either a DNA binding domain (DBD) or an activat-
ing domain.  If the two proteins interact, a transcriptional promoter is activated and the reporter gene is 
expressed.  B. TIP-hybrid assay.  TIP fused to a DBD was capable of activating reporter gene expression 
without the addition of an activating domain vector, demonstrating that TIP contains a domain capable 
of transcriptional activation (Ren et al., 2000). 
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not only contains an activation domain, but that TIP is also a transcriptional activator (Ren et 

al., 2000). GRAB proteins have also been identified as putative transcriptional activators.  Both 

GRAB1 and GRAB2 contain glutamine-rich C-terminal domains, implying that the proteins 

have a role in transcriptional regulation (Xie et al., 1999).   

            It is interesting to discover that the amino acid changes in the TIP genes appear in the C-

terminal region, since the N-terminal region bears the most sequence homology to NAC 

proteins.  Given that these proteins are likely to be involved in signaling cascades due to their 

roles in plant development, it would be natural to predict that the N-terminal region is involved 

in this signaling activity.  Since the N-terminal regions of the TIP genes are the same, only the 

amino acid changes in the C-terminal area could be involved in altering resistance responses. 

            It is possible to predict the secondary structure of a protein using its amino acid 

Fig. 19. Joint prediction alignment.  The predicted secondary structure of the TIP proteins is depicted 
above.  C corresponds to coils, E corresponds to beta-strands, and H corresponds to alpha-helices.  
Areas in bold (white, un-shaded areas) denote a lack of consensus between the two sequences.  Four 
such areas were predicted by the JOI prediction program (from PELE-protein structure prediction, 
Biology WorkBench v. 3.2, 2003) 
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sequence.  Both TIP sequences were subjected to various secondary structure predictions 

(Appendix C), one of these being a joint prediction, or a best fit prediction using a combination 

of seven separate predictions (Fig. 19). 

            There are four areas of interest in the secondary structure joint prediction depicted in 

Fig. 19.  Three of the areas of difference in the secondary structure involve putative changes 

from beta-strands to coils, whereas the remaining area postulates a putative alpha-helix, a coil, 

and a beta-strand.  Although it is possible that the areas of single amino acid changes are 

capable of altering the protein enough to cause differences between the resistance functions of 

the TIP proteins, it is more likely that the larger amino acid difference has a greater role.   

            It is significant that the differences between the Di-3 and Di-17 TIP proteins all fall 

within the last half of the protein.  Ren et al. (2000) presented preliminary evidence that the 100 

C-terminal  amino acids of TIP are responsible for the interactions with TCV CP.  Though only 

one amino acid is different in this region, it is distinctly possible that the more N-terminal 

changes result in secondary structure changes that significantly impact the structure and 

environment of the very C-terminal end.  Thus, the differences in response to TCV-D4N could 

in part be explained by differences in TIP protein structures.  

            In order to minimize the interactions between hydrophobic amino acids and water, 

proteins will often fold so as to place the hydropobhic residues in the interior of the protein, and 

the hydrophilic residues on the surface of the protein.  Therefore, it is possible to predict the 

amino acids that lie on the surface of a protein.  Many hydrophobicity scales have been 

constructed by experimental techniques that involve the observation of peptides in polar and 

apolar solvents (Molecular Toolkit, 2003). 

Hydrophobicity plots are generated by analyzing a protein using a moving “window” 

that scans through the amino acid sequence.  The window is set to a specific number of amino 

acids, and proceeds to “move” down the protein sequence, calculating a value at each position 

that it goes through.  These values are calculated using the mean value of the amino acids 

within the window from a hydrophobicity scale.  This value is then plotted, and a graphical 

representation of the protein is generated.  Areas of the graph that lie above the midpoint score 

are predicted to be hydrophobic, whereas the areas that lie below the midpoint score are 

predicted to be hydrophilic (Molecular Toolkit, 2003).  Since there are many different 

hydrophobicity scales, there are many different plots that can be generated.  A variety of these 
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plots and a corresponding table of hydrophobic values for each scale can be found in Appendix 

D.   

Fig. 20 shows a hydrophobicity plot constructed using the Kyte-Doolittle scale.  The 

two TIP proteins are represented by different colored lines: Di-3 in red, and Di-17 in blue.  

Where the proteins are identical, the line is purple.  There are three areas of interest (the 

encircled regions).  Each of these regions corresponds to amino acid variances in the protein 

sequence.  There are distinguishable value changes between positions 200 and 250, suggesting 

that the hydrophobicity changes could alter protein folding or interaction.  The Di-17 TIP 

residues in this area are found to be slightly more hydrophilic, whereas the Di-3 TIP residues 

are predicted to be more hydrophobic.  The hydrophobicity changes, while clear, are hardly 

dramatic.  However, given that TIP has been identified as having a role in protein-protein 

Fig. 20. Kyte-Doolittle hydrophobicity plot.  A hydrophobicity plot created using the Kyte-Doolittle 
hydrophobicity scale.  The three encircled regions contain areas that differ between the two TIP proteins.  
Values above zero indicate hydrophobic regions, whereas values below zero indicate hydrophilic regions 
(from ProtScale Tool, 2003) 
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interaction, it is possible that this change in hydrophobicity could be a factor in resistance 

ablility.  A much smaller and less apparent difference between the plots is present between 

positions 300 and 350.  Since there seems to be little change in this region, it is less likely that 

this region is involved in any phenotypic differences of the proteins.  Finally, the third region of 

dissimilarity lies at the very end of the plot, just before position 450.  Again, there is little 

change in the plot, suggesting a small hydrophobicity difference between the proteins. The 

other hydrophobicity plots, generated with different hydrophobicity programs, also show this 

general trend (Appendix D).   

 
Conclusions: 
 
            The complexity of plant-pathogen interactions is both intriguing and bewildering.  

Although it is a small piece of the larger plant resistance pathway, determining the genetics of 

A. thaliana resistance to TCV challenge is important for understanding how many plant-virus 

interactions occur.  The key to A. thaliana resistance may lie in the recognition of TCV CP by 

TIP.   

            A correlation between genotype and phenotype of A. thaliana plants will be essential to 

understanding the role of TIP and resistance genes HRT and rrt.  We have laid the groundwork 

for future experiments by producing an optimized CAPS analysis for the HRT locus, by creating 

and analyzing an F1 generation of Di-3 X Di-17 and Col-0 X Di-3 plants, and by predicting the 

outcome caused by nucleotide changes in the Di-3 TIP gene at the molecular level of the 

protein. 

            Future research should be focused on determining correlations between phenotype and 

genotype in the F2 generations. To do this, large quantities of Di-3 X Di-17 and Col-0 X Di-3 

plants should be inoculated with D4N or WT TCV, and their resistance response should be 

compared to their genotype.  Genotypic analysis can be performed using CAPS analysis at both 

the HRT and TIP loci.  Furthermore, it would be advantageous to identify the affect of the 

nucleotide differences between the two TIP genes, and perhaps correlate the differences to the 

resistance response of the plants. 
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Methods and Materials: 

 

Plant Growth Conditions: 
 
            Arabidopsis plants were grown in Pro-Mix ‘BX’ soil in a growth chamber kept at 23 

degrees Celcius, with 14 hours of daylight.  The plants were fertilized at each watering with 

Miracle-Gro Professional Excel water-soluble fertilizer (13-2-13 +6 Ca +3 Mg Plug Special), as 

directed. 

 

Crossing Experiments: 
 
            Plants were crossed by exposing the pistil in one immature bud by removing the sepals, 

petals, and stamens.  A stamen from a flowering plant was used to pollinate the exposed pistil.  

After pollination, the pistil was wrapped in saran wrap until the seed pods had formed.  Pods 

were collected as they dried.  The pods were placed in Eppendorf tubes, and allowed to dry 

until they opened naturally. These seeds were then sealed in Eppendorf tubes. 

 

Plant DNA Maxiprep:   
 
            Between 0.5 g and 0.75 g of leaves were ground in a mortar and pestle with liquid 

nitrogen until a fine, grey-green powder was obtained.  Next, 15 mL EB (100 mM Tris pH 8, 50 

mM EDTA pH 8, 500 mM NaCl, and 10 mM b- mercaptoethanol) was added and the mortar 

was placed in a 65° C water bath until the mixture had melted.  The solution was then 

transferred to a test tube and 1 mL of 20% SDS was added.  The test tube was vortexed for 1 

minute, and then placed in a 65° C water bath for 10 minutes.  Then, 5 mL of 5M potassium 

acetate was added to the solution.  The test tube was vortexed and placed on ice for 20 minutes.  

The tubes were centrifuged at 17000 rpm for 20 minutes.  The supernatent was poured through 

a microcloth or cheesecloth filter into a fresh tube containing 10 mL isopropanol.  The solution 

was placed at -20° C for approximately 2 hours.  The test tube was then centrifuged at 15000 

rpm for 15 minutes.  The supernatent was removed from the centrifuge tube, and the pellet was 

allowed to dry for 10 minutes.  Next, 0.7 mL of 50 mM tris and 10mM EDTA were added to 

the centrifuge tube.  The solution was transferred to an Eppendorf tube and microfuged for 1 

minute at full speed.  Then, 50 µL 3M NaOAc and 100 µL 1% CTAB was added.  The tube was 
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then centrifuged for 1 minute at full speed.  The supernatent was removed and the remaining 

pellet was washed with 70% EtOH.  The pellet was redissolved in 400 µL TE.  Next, the DNA 

was precipitated with 50 µL 3M NaOAc and 1 µL EtOH.  The Eppendorf tube was microfuged 

for 1 minute at full speed.  The supernatent was removed and 400 µL TE buffer was added to 

the Eppendorf tube.  The pellet was resuspended and 50 µL 3M NaOAc was added and the 

solution was vortexed.  Next, 1 µL EtOH was added and the Eppendorf tube was vortexed.  The 

sample was placed at –20° C overnight.  The next day, the sample was microfuged for 5 

minutes full speed.  The supernatent was removed and the Eppendorf tube was placed upside-

down to dry.  The pellet was resuspended in 300 µL TE and placed on ice.  The sample was 

stored at -20° C. 

 

Modified Baumbusch DNA Miniprep: 
 
            Two small leaf samples were ground with a pestle attached to a power drill. Then, 700 

µL pre-warmed EB (200 mM Tris-HCl pH  7.5-8, 250 mM NaCl, 25 mM EDTA, and 0.5% 

SDS) was added.  Samples were incubated at 65° C for 15 minutes, mixing at 5 minutes.  Next, 

220 µL 3M KoAc was added, the sample was vortexed, and placed on ice for 20 minutes.  The 

sample was centrifuged on full for 10 minutes, and the supernatent was removed to a new 

Eppendorf tube.  Then, 550 µL isopropanol was added.  The sample was placed at room 

temperature for 1 hour, mixing occasionally.  Next, the sample was centrifuged on full for 5 

minutes.  The supernatent was removed and the pellet was dried for approximately 10 minutes.  

The pellet was then dissolved in 100 µL TE buffer, and 2 µL RNase A was added.  The sample 

was incubated at 37° C for 15 minutes.  Then, 10 µL 3M NaOAc was added, and the sample 

was vortexed.  Next, 200 µL 100% EtOH was added, and the sample was vortexed.  The sample 

was placed at –20° C for 10 minutes.  The samples were centrifuged on full for 10 minutes, and 

then washed with 80% EtOH.  The samples were again centrifuged, and rinsed.  The 

supernatent was removed, and the pellet was resuspended in 20 µL dH20.  The samples were 

stored at -20° C. 

 

RNA Maxiprep from Plants: 
 
            The leaf sample (~1 g of tissue) was ground into a fine powder in a mortar and pestle in 
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the presence of liquid nitrogen.  Tissue was resuspended in 5 mL GTC buffer (4 M guanidinium 

thiocyanate, 25 mM sodium citrate pH 7, 0.5% sarkosyl, and, just before use, 0.1 M b- 

mercaptoethanol), and vortexed.  Then, 0.5 mL 2M NaOAc pH 4 was added, the sample was 

vortexed, and phenol/chloroform extracted (5 mL).  The sample was then centrifuged at 7000 

rpm for 10 minutes.  The aqueous phase was removed to a new tube, and the phenol/chloroform 

extraction was repeated.  Again, the aqueous phase was removed to a new tube, and 5 mL 

isopropanol was added.  The sample was iced for 10 minutes to overnight.  Next, the sample 

was centrifuged at 7000 rpm for 10 minutes.  The pellet was retained, and 1.5 mL LiCl was 

used to resuspend the pellet.  The solution was transferred to an Eppendorf tube, and 

centrifuged for 5 minutes at maximum speed.  The supernatent was removed, and the pellet was 

resuspended in 750 µL resuspension buffer (0.5% SDS, 10 mM Tris pH 7.5, and 1 mM EDTA).  

The sample was phenol/chloroform extracted (500 µL) twice.  The aqueous phase was saved, 

and 100 µL 1M NaOAc pH 5 and 600 µL isopropanol were added to the solution.  The sample 

was placed at -20° C for at least 30 minutes.  The pellet was then resuspended in 100-300 µL 

depc treated water. 

 

Primers: 

 

            DFR Primers: 

             For analysis of the genotype at the HRT locus, DFR primers were used.  The primers 

designed for this are as follows: AGATCCTGAGGTGAGTTTTTC and 

TGTTACATGGCTTCATACCA.  For analysis of the genotype at the TIP locus, the following 

p r i m e r s  w e r e  d e s i g n e d :  A G A C C G T A A G A T C A A A T C A G G  a n d 

TTATGCGACTAGAGTGCAGAC 
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PCR Programs: 

 

            CAP2: 

            1)        94° C              4 minutes 

            2)        94° C              30 seconds 

            3)        50° C              1 minute 

            4)        72° C              45 seconds 

5)        Go to step 2    40 times. 

6)        50° C              1 minute 

7)        72° C              10 minutes 

8)        4° C                24 hours 

 

CAP3: 

1)       95° C              3 minutes 

2)       50° C              1 minute 

3)       75° C              2 minutes 

4)       94° C              1 minute 

5)       Go to step 2    35 times. 

6)       50° C              1 minute 

7)       75° C              10 minutes 

8)       4° C                24 hours 

 

 

Restriction Digest: 
 
            All digests were performed with appropriate DNA:enzyme concentrations at 37° C for 

at least 1.5 hours. 
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Appendix A: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A-1.  Nucleotide sequence alignment 
A-2.  TIP protein alignment 
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A-1. Nucleic acid sequence alignment 
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(Adapted from Hammond, 2001) 
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A-2. TIP Protein Alignment 
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Appendix B: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

B-1.  NAC family protein sequence alignments 
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B-1.  NAC family protein sequence alignments 
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            Green             : NAC protein (-TIP) residue homology 
            Yellow             : NAC protein (+TIP) residue homology 
                 *                 : Fully conserved residue 
                 :                 : Conservation of strong groups 
                 .                 : Conservation of weak groups 
                
                  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
CLUSTALW alignment program, Biology WorkBench v.3.2, accessed March 2003, http://
workbench.sdsc.edu. 
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Appendix C: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
C-1.  BPS prediction alignment 
C-2.  D_R prediction alignment 
C-3.  GGR prediction alignment 
C-4.  GOR prediction alignment 
C-5.  H_K prediction alignment 
C-6.  JOI prediction alignment 
C-7.  K_S prediction alignment 
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C-1.  BPS prediction alignment 
 
 
 

 
 
 
 
 
 
SDSC Biology Workbench v.3.2 (Accessed March 2003) PELE-protein prediction program. http://
workbench.sdsc.edu.  
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C-2.  D_R prediction alignment 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
SDSC Biology Workbench v.3.2 (Accessed March 2003) PELE-protein prediction program. http://
workbench.sdsc.edu.  
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C-3.  GGR prediction alignment 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
SDSC Biology Workbench v.3.2 (Accessed March 2003) PELE-protein prediction program. http://
workbench.sdsc.edu.  
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C-4.  GOR prediction alignment 
 
 
 
 
 

 
 
 
 
 
SDSC Biology Workbench v.3.2 (Accessed March 2003) PELE-protein prediction program. http://
workbench.sdsc.edu.  
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C-5. H_K prediction alignment 
 
 
 
 

 
 
 
 
 
 
 
 
SDSC Biology Workbench v.3.2 (Accessed March 2003) PELE-protein prediction program. http://
workbench.sdsc.edu.  
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C-6.  JOI prediction alignment 
 
 
 
 

 
 
 
 
 
 
SDSC Biology Workbench v.3.2 (Accessed March 2003) PELE-protein prediction program. http://
workbench.sdsc.edu.  
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C-7.  K_S prediction alignment 
 
 
 

 
 
 
 
 
 
 
SDSC Biology Workbench v.3.2 (Accessed March 2003) PELE-protein prediction program. http://
workbench.sdsc.edu.  
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Appendix D: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
D-1.    Table of hydrophobicity scales 
D-2.    Abraham & Lee hydrophobicity overlay 
D-3.    Bull & Breese hydrophilicity overlay 
D-4.    Guy hydrophilicity overlay 
D-5.    Miyazawa et al. hydrophobicity overlay 
D-6.    Roseman hydrophobicity overlay 
D-7.    Sweet et al. hydrophobicity overlay 
D-8.    Welling et al. hydrophobicity overlay 
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D-1.  Table of hydrophobicity scales 
 
 
 
 
 
 
 
 

    Scale                 

Amino Acid   
Abraham & 

Leo 
Bull & 
Breese Chothia Guy 

Kyte & 
Doolittle 

Miyazawa et 
al. Roseman Sweet et al. Welling et al. 

Alanine   0.440 0.610 0.380 0.100 1.800 5.330 0.390 -0.400 1.150 
Arginine   -2.420 0.690 0.010 1.910 -4.500 4.180 -3.950 -0.590 0.580 
Asparagine   -1.320 0.890 0.120 0.480 -3.500 3.710 -1.190 -0.920 -0.770 
Aspartic Acid   -0.310 0.610 0.150 0.780 -3.500 3.590 -3.810 -1.310 0.650 
Cysteine   0.580 0.360 0.500 -1.420 2.500 7.930 0.250 0.170 -1.200 
Glutamine   -0.710 0.970 0.070 0.950 -3.500 3.870 -1.300 -0.910 -0.110 
Glutamic Acid   -0.340 0.510 0.180 0.830 -3.500 3.650 -2.910 -1.220 -0.710 
Glyceine   0.000 0.810 0.360 0.330 -0.400 4.480 0.000 -0.670 -1.840 
Histidine   -0.010 0.690 0.170 -0.500 -3.200 5.100 -0.640 -0.640 3.120 
Isoleucine   2.460 -1.450 0.600 -1.130 4.500 8.830 1.820 1.250 -2.920 
Leucine   2.460 -1.650 0.450 -1.180 3.800 8.470 1.820 1.220 0.750 
Lysine   -2.450 0.460 0.030 1.400 -3.900 2.950 -2.770 -0.670 2.060 
Methionine   1.100 -0.660 0.400 -1.590 1.900 8.950 0.960 1.020 -3.850 
Phenylalanine   2.540 -1.520 0.500 -2.120 2.800 9.030 2.270 1.920 -1.410 
Proline   1.290 -0.170 0.180 0.730 -1.600 3.870 0.990 -0.490 -0.530 
Serine   -0.840 0.420 0.220 0.520 -0.800 4.090 -1.240 -0.550 -0.260 
Threonine   -0.410 0.290 0.230 0.070 -0.700 4.490 -1.000 -0.280 -0.450 
Tryptophan   2.560 -1.200 0.270 -0.510 -0.900 7.660 2.130 0.500 -1.140 
Tyrosine   1.630 -1.430 0.150 -0.210 -1.300 5.890 1.470 1.670 0.130 
Valine   1.730 -0.750 0.540 -1.270 4.200 7.630 1.300 0.910 -0.130 
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D-2.  Abraham & Lee hydrophobicity overlay 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
Abraham, D.J. and Leo, A.J. (1987) Proteins: Structure, Function and Genetics 2: 130-152. 
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D-3.  Bull & Breese hydrophilicity overlay 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
Bull, H.B. and Breese, K. (1974) Arch. Biochem. Biophys. 161: 665-670.
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D-4. Guy hydrophilicity overlay 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
Guy, H.R. (1985) Biophys J. 47: 61-70
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D-5.  Miyazawa et al. hydrophobicity overlay 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
Miyazawa, S. and Jernigen. R.L. (1985) Macromolecules 18: 534-552.
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D-6.  Roseman hydrophobicity overlay 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
Roseman, M.A. (1988) J. Mol. Biol. 200: 513-522.
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D-7.  Sweet et al. hydrophobicity overlay 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
Sweet, R.M. and Eisenberg, D. (1983) J. Mol. Biol. 171: 479-488.
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D-8.  Welling et al. hydrophilicity overlay 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
Welling, G.W., Weijer, W.J., Van der Zee, R., and Welling-Wester, S. (1985) FEBS Lett. 188: 215-
218. 
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