
MLIRAGE : MLIR for Ampere-Architecture GPGPU
Efficiency

Xuan Nguyen
Bachelor of Computer Science, Worcester Polytechnic Institute

Abstract

As the grand scheme for distributed deep learning approaching exascale computing,
GPU vendors introduced proprietary micro-architecture for their GPUs to meet such
demand. In order to efficiently employ the full capability of such hardware novelties,
GPU vendors also ship their products with powerful, hand-tuned API frameworks
and libraries. The challenge of such approach is that they require programmers
with specialized experience to utilize them to the fullest – and since such libraries
were written in lower level abstraction to that of modern programming language
for machine learning applications, they restrained productivity with unavoidable
boilerplating routines and codes. We mitigated this problem by automating the
lowering process and codegen for GPUs – from a high-level framework, down to
low-level hardware-specific instruction using the MLIR compiler framework. In this
report, we demonstrated the process with automatic generated kernel codes for 2D
vector multiplication. Our experiment shows that with large matrix multiplication,
our pipline achieve near peak throughput that is comparable to vendor fine-tuned
codes

1 Introduction

With the advances in machine learning and deep learning research, the demand for High-
Performance Computing (particularly GPGPUs) has also increased. GPUs nowadays
come with thousands of parallel processing cores capable of rapidly solving large prob-
lems with substantial parallelism. The latest GPU architectures such as Nvidia Turing
[3], Ampere [4] consist of Tensor cores [5], [6], which can perform several mixed-precision
matrix-multiply and accumulate computations in a single operation. Usually, matrix
operations are among the commonly performed operations in the fields of HPC (High-
Performance Computing) and ML (Machine Learning), which are highly parallel in nature.
The matrix multiplication is the most common out of all the matrix operations performed,
which in generalized form is known as GEMM (General Matrix Multiply) and is repre-
sented as D = aAB + BC. The ordinary matrix multiplication AB can be performed by
setting a to one and C to an all-zeros matrix. GEMM in the field of HPC is used for
dense linear algebra [7], [8], earthquake simulation [9], and climate prediction [10]. In
ML, GEMM is used for training convolutional neural networks, long short-term memory
(LSTM) cells, and natural language processing. CUDA, a parallel computing API created
by Nvidia, enables us to execute C, C++, etc., codes on Nvidia GPUs. Having GPUs and
CUDA API is not enough; we also need a highly optimized kernel to run on these GPUs
to maximize the usage of available resources. In general, GPU vendors provide manually

1



tuned implementations such as cuBLAS [11], cuDNN [12], etc., which contain various
deep learning primitives for several different matrix layouts. The problem with these
manually tuned implementations is that they need to be tuned for every new architecture
that comes into the market, and tuning them requires people with specialization in those
domains. The process of generating efficient fine-tuned implementations of deep learning
primitives can be automated using polyhedral frameworks. The matrix operations, such
as matrix multi- plication, bias addition, etc., can be expressed as affine loop-nests, which
can be easily analyzed and transformed using polyhedral frameworks. The advantages
of automating the process of generation of an efficient kernel is to achieve portability
across hardware architectures, neural network’s composition and easy of code debugging
and interpretation. The compiler infrastructure parts that we build for optimizations,
such as tiling and unroll and jam, are common to both CPUs and GPUs. The compiler
framework we are using to build this infrastructure is MLIR (Multi-Level Intermediate
Representation) [13, 14, 15].

2 Motivation

Several libraries already exist that include handwritten, highly optimized kernels for GPU.
CUDA libraries such as cuDNN [12], and cuBLAS [11] provides highly tuned implemen-
tations of deep learning functions/algorithms and basic linear algebra subroutines. These
libraries are optimized only for a limited set of matrix layouts, and thus, they don’t pro-
vide much flexibility. CUB [16] an NVIDIA’s library provides software components that
are reusable for CUDA programming model,’s each layer such as Warp-wide, Block-wide,
and Device-wide primitives for constructing high-performance, maintainable CUDA kernel
code. The components provide by CUB give a state-of-the-art performance. CUTLASS
[17] is a CUDA C++ template library that contains components to instantiate performant
kernels on GPUs. CUTLASS also contains support for mixed-precision computation for
Tensor cores. It is not easy for end-users to extend the CUTLASS since its codebase is
large and maintaining such a huge codebase is difficult. The performance achieved by
CUTLASS [18] for WMMA GEMM is 95/100 of the performance of cuBLAS. cuTen-
sor [19] is a CUDA library provided by NVIDIA for its GPUs, supports several Tensor
operations, for example - pointwise operations with pointwise operator fusion support.
cuBLAST a library that is a lighter version of CUBLAS, is made available by NVIDIA
for basic linear-algebra subroutines dedicated to GEMM, which provides flexibility in
supporting more data types for input and compute matrices and more matrix layouts.
Halide [20] is a DSL (embedded in the C++) compiler framework for image processing; it
is also extended for supporting Tensor cores. The problem with Halide is that it does not
support complex data types and the flexibility provided by it is limited; also, it supports
only a single combination of memory layouts of the input matrices. Due to the Tensor
comprehensions, [21] developed by Vasilache et al., and by using the polyhedral compi-
lation techniques, the Halide compiler generates CUDA kernels for a given mathematical
specification of a deep learning graph. Some of the recent works in automatic kernel gen-
eration are being done by Somashekaracharya G. Bhaskaracharya et al. [22], and Thomas
Faingnaert et al. [23]. Bhaskaracharya et al. [22] in their work used a polyhedral ap-
proach like ours to generate efficient CUDA kernels for matrix multiplication using inline
assembly instructions. On the other hand, we have used MLIR for generating efficient
CUDA kernels. They also proposed an extended approach for generating fused kernels
such as matrix multiplication plus ReLU activation or bias addition. In contrast, we have

2



generated kernels only for matmul. Faingnaert et al. [23] framed the problem of manual
code generation as a two-language problem. Faingnaert et al. [23] stated that ”efficient
kernel generation require either low-level programming, which implies low programmer
productivity, or using libraries that only offer a limited set of components.” The author
used the LLVM framework [24], and Julia programming language [25] for generating the
efficient kernels. The Julia is a dynamic and flexible program- ming language suitable for
numeric and scientific computations. The performance of Julia is comparable to tradi-
tional statically-typed languages like C and C++. The work of Faingnaert et al. [23] is
different from our work in two ways: we have used the affine dialect based on the poly-
hedral techniques and the MLIR compiler framework [13, 14, 15]; instead, their work is
based on the LLVM compiler framework and Julia programming language. The advantage
of using MLIR over LLVM is that MLIR provides multiple levels of abstractions like loop
ab- stractions, math abstractions, tensor, and vector abstractions. Also, one can define
their own operations and abstractions in MLIR suitable for the problem they are trying
to solve, which is the biggest difference from LLVM.

3 Background

3.1 The MLIR Infrastructure

Multi-Level Intermediate Representation(MLIR) [13, 14, 15] aims to build reusable, ex-
tensible compiler infrastructure and reduce the cost of building domain-specific compil-
ers. MLIR is a hybrid IR that can be used for multiple different requirements, such as:
data flow graphs (such as in TensorFlow), kernels in a form suitable for optimization
for ML ops, high-performance-computing-style loop optimizations across kernels (loop fu-
sion, loop interchange, multi-level tiling, unroll-and-jam), target-specific operations such
as accelerator-specific operations, kernels at different levels of abstractions. The MLIR
structure is made up of the following components:

• Operations: this is the basic unit of semantics in MLIR and is commonly referred to
as Op. In MLIR, everything is modeled as ops, whether it is instruction, module, or
function. They take as input zero or more values called operands and produces zero
or more values called results respectively. Figure 1 illustrates the modular concept of
MLIR. Figure 2 shows the emitted IR codes for an MLIR operation under multiple
abstractions including Tensor (native MLIR type) and MHLO (Tensorflow’s MLIR
dialect).

3



Figure 1: mlir.llvm.org

Figure 2:

• Attributes: attributes are structured compile-time static information, e.g., integer
con- stant values, string data, etc. Each op instance has an open key-value dictionary
from string names to attribute values.

• Regions and blocks: a region in MLIR is a list of blocks, and a block contains a list
of operations that may further contain regions. The blocks inside the region form
a Control Flow Graph (CFG). Each block may have successor blocks to which the
control flow may be transferred, and it ends with a terminator op.

• Dialects: a dialect is a logical grouping of operations, attributes, and types. Opera-
tions from multiple dialects can coexist at any level of the IR at any point in time.
Dialects allow extensibility and provide flexibility that helps in performing specific
optimizations and transformations. There are many dialects in the MLIR, but the
dialects we have worked with are Affine, GPU, LLVM, SCF, and Standard (std).

• Functions and modules: A module is an operation with a single region containing
a single block and terminated by a dummy op that does not transfer the control
flow. On the other hand, a function is an op with a single region, with arguments
corresponding to function arguments.

4



3.1.1 Breakdown of our MLIR pipeline

• Affine Dialect: This dialect uses techniques from polyhedral compilation to make
depen- dence analysis and loop transformations efficient and reliable. We have per-
formed most of the optimizations and transformations at the level of affine dialect.
The description of some ops and their functionalities from the affine dialect that
we have used in this document can be referenced from the MLIR documentation
available at https://mlir.llvm.org/docs/Dialects/Affine/ : Affine Expressions, Affine
Maps, AffineParallelOp (affine.parallel).

• GPU Dialect: This dialect provides middle-level abstractions for launching GPU
kernels following a programming model similar to that of CUDA or OpenCL. It
provides abstractions for kernel invocations (and may eventually provide those for
device management) that are not present at the lower level (e.g., as LLVM IR intrin-
sics for GPUs). Its goal is to abstract away device- and driver-specific manipulations
to launch a GPU kernel and provide a simple path towards GPU execution from
MLIR. It may be targeted, for example, by DSLs using MLIR. The dialect uses gpu
as its canonical prefix. https://mlir.llvm.org/docs/Dialects/GPU/

• NVVM Dialect: Since we are focusing on Tensor core code generation, we use
and extend another Nvidia specific dialect known as NVVM. This dialect pro-
vides operations that are directly mapped to the NVPTX back-end in LLVM.
https://mlir.llvm.org/docs/Dialects/NVVMDialect/

• LLVM Dialect: The final stage of code generation involves lowering to LLVM IR,
from where the LLVM back-end takes control and generates the target code. To
model LLVM IR, we use this dialect called the LLVM dialect, the lowest level of
abstraction present in MLIR. https://mlir.llvm.org/docs/Dialects/LLVM/

3.2 The Ampere-Architecture Programming Model

GPUs [26] are massively parallel processors, which means many threads execute the same
function commonly referred to as kernel in parallel. Since our approach, analysis, and
experimentation are only confined to NVIDIA GPUs, we will limit our discussion to
NVIDIA GPUs, and the CUDA programming model [27]. The smallest unit of execution
is a thread organized in a thread hierarchy. The hardware groups threads into sets of
32 threads called warps. The 32 threads in the same warp execute in a SIMT (Single
Instruction Multiple Thread) manners. In other words, these threads within a warp
execute the same instruction simultaneously, possibly on different data. The threads are
logically grouped into blocks known as thread-block. The set of all thread blocks on the
GPU device is called the grid. Just like the threads, the GPU memory is also organized
hierarchically. The smallest and fastest type of memory in GPUs is the register file or
registers. Each thread in GPU typically has access to 255 registers. The threads within
a thread block have their own shared memory set, which they use for communication.
The largest capacity memory on the GPUs is global memory, but it also has the highest
latency. All threads on the device (GPU) can access the global memory, irrespective of
which thread block they belong to. Figure 3 shows the architecture model of Ampere
GPUs and figure 4 shows the micro-architectures of general GPUs that also apply to
Ampere ones.

5



Figure 3: nvidia.com

Figure 4: triton-lang.org

6



3.2.1 Tensor Cores

Tensor cores [5], [6] were first introduced in NVIDIA’s Volta architecture [28] in 2017. Ten-
sor cores are programmable matrix-multiply-and-accumulate units that provide a 4x4x4
matrix processing array which performs the operation D = A * B + C, where A, B, C
and D are 4×4 matrices. Each Tensor core performs 64 floating-point fused-multiply-add
mixed-precision operations per clock. Multiple Tensor cores are used concurrently by a
full warp of execution. A warp comprising of 32 threads provide a larger 16x16x16 matrix
operation to be processed by the Tensor cores. The Tensor cores operation are exposed by
CUDA as warp-level matrix operations in the CUDA C++ WMMA (Warp Matrix Multi-
ply Accumulate) API [29]. Only a limited set of data types are supported by tensor cores
such as TF32, FP16, FP64, INT8 for input. We can use Tensor cores through libraries such
as NVIDIA’s cuDNN [12] library that contains Tensor cores kernels. NVIDIA’s cuTEN-
SOR [19] based on CUTLASS [17] contains Tensor-Core-accelerated kernels. LLVM also
provides intrinsics which are mapped one-to-one with the functions provided by WMMA
API.

4 Pipeline Implementation

Figure 5 displays the IR lowering pipeline, from which the details for each components
will be described later in the section.

Figure 5: Generated with Apple’s Freeform

• Tensorflow IR represents the basic matrix multiplication operation in some higher
abstraction level such as MLIR-HLO [30] or TF. The IR is now lowered to affine
dialect abstraction level to perform loop optimizations.

• Tiling, also known as blocking, important from parallelism and locality viewpoint,
is performed for better data reuse and performance. The key objective of the tiling
is to maximize the ratio of computation operations to memory operations. We have
performed two-level tiling: thread-block level and warp level. The tile sizes are
chosen based on the tile-size selection model discussed in Section 5.

• Since we are generating kernels targeting GPUs, we allocate buffers in GPU’s shared
memory. After the allocation, the data is copied from GPU’s global memory into the
shared memory buffers. We have allocated the shared memory buffers only for the

7



input matrices (A and B), and this is a design choice that we have made. The thread-
block level tile size determines the shared memory buffer size for both the matrices.
The tile sizes are chosen such that the shared memory can be used maximally. The
shared memory buffers are used for lower latency and higher bandwidth.

• To take advantage of the Ampere GPU architecture, we generate Tensor cores spe-
cific operations such as wmma.load, wmma.store, wmma.mma sync, which replaces
the scalar load, store, and compute operations [31].

• The synchronization barriers are inserted in the code to ensure data is available
before the computation begins. The synchronization barriers being used in our
generated code are actually a thread-block level barrier to synchronize all threads
in a thread block after copying the input matrix tiles into the shared memory. The
number of synchronization barriers inserted is kept minimal because the barrier
causes stall, ultimately degrading performance.

• The vectorization is performed to make use of the SIMD instruction set available in
GPU architectures. For doing loop vectorization in MLIR, we have to convert mem-
refs of f16 (input matrices data type) into memrefs of a vector of f16 and transform
the loop bounds and loop bodies accordingly. We have created the vectors, each
comprising 8 elements. The vectorization is a crucial part of the solution because
it provides a 2x speedup in the performance. We know that memory is divided into
banks and successive 32-bit words assigned to successive banks. Also, each bank
can service one address per cycle. If multiple simultaneous accesses are made to
a bank, then it results in a bank conflict. As a result, the conflicting accesses are
serialized. Hence the memory access time increases, and the performance decreases.
The solution to this is shared memory padding. The padding is done to ensure
simultaneous bank accesses are reduced to the extent possible, thereby reducing
the memory bank conflicts. For padding, we have tuned a parameter known as the
padding factor, which specifies how much value the memory should be padded. Also,
we have padded the k dimension of the matrices. The optimal padding factor turns
out to be 8, which gives us the best performance. To map the parallel loop nests
to GPU compute hierarchy, we first need to identify and mark the parallel loops in
the IR. An affine.for is parallel if all its iterations can be executed in parallel, or we
can say if all its iterations are independent of each other. We mark parallel loops
as affine.parallel so that during the time of execution, there is a clear separation
between the set of instructions that can execute in parallel and the instructions
which need to be executed serially. The pass algorithm works as follows: walks over
the entire input IR and collects all those affine.for which are parallel, using a utility
that checks for all the dependencies inside the iteration space of affine.for. Then,
one by one converts all affine.for obtained in the first step to affine.parallel and keep
affine.parallel’s bounds same as bounds of affine.for. After marking the loops as
parallel, we collapse perfectly nested affine.parallel ops into a single n-dimensional
affine.parallel op where n is the sum of dimensions of all affine.parallel ops, which are
coalesced together. This process happens as follows: Collects all the affine.parallel
ops, which are perfectly nested. Collects all the affine expressions corresponding
to the lower and upper bound map of affine.parallel ops obtained in the previous
step. Collects all the lower and upper bound operands of affine.parallel ops. Creates
new lower and upper bound maps using affine expressions obtained in the previous

8



step. Creates new lower and upper bound maps using affine expressions obtained
in the last step. Creates new coalesced affine.parallel op using maps and operands
obtained in the last two steps, respectively. Finally, we colapse the parallel loop
nests helps in mapping the loops to GPU compute hierarchy since all the perfectly
nested parallel loops are now grouped into a single op.

• To execute the kernel on the GPU, the parallel loops need to be mapped to GPU
entities such as thread blocks, warps, and threads. We greedily map loops starting
from outermost to innermost to each GPU entity. Mapping the parallel loop means
to specify which loop is distributed over a thread block grid, distributed over a
thread block, or distributed over warps. For mapping the parallel loops, we move
from the outermost loop to the innermost loop. Each parallel loop in between is
mapped to some GPU compute hierarchy. The parallel loops at nesting level one
are mapped to the thread block grid. The parallel loops at nesting level two are
mapped to the thread block, and the ones at nesting level three are mapped to the
warps. All parallel loops which are at nesting level four or more are marked as
sequential. The mapping is done by attaching an attribute to each parallel loop.
Figure 6 demonstrates in MLIR code how we will be able to achieve the mapping
to Ampere-exclusive architecture.

Figure 6:

• In MLIR’s GPU dialect, we have an operation known as LaunchOp, which launches
a kernel on the specified grid of thread blocks. The body of the kernel is the
single region that this operation contains. The parallel loops mapped to the thread

9



block grid GPU compute hierarchy in the previous section are now converted into
a LaunchOp. There are six operands of the LaunchOp, which are grid and block
sizes. The grid and block sizes are determined using the thread-block level tile
size and warp level tile size. The body region of launch op contains six arguments
that are block identifiers and thread identifiers, along the x,y,z dimensions. The
loop induction variable, lower and upper bounds of parallel loops mapped to the
thread block, and warp in the previous section are also modified based on some
computations performed using tile sizes of both the levels and linear thread id.

• The loop unrolling provides better opportunities for instruction scheduling and regis-
ter tiling. Loop unrolling also helps reduce control overhead, and reduced instruction
count due to fewer number compare and branch instructions. The loops are unrolled
based on a loop unroll factor, which specifies that by what extent the loop has to
be unrolled. In our case, we have unrolled only the copy loops and have unrolled
them completely. After unrolling the copy loops, we delay the data copy by moving
the copy instructions after the computation instructions. The copies are delayed to
hide the latency of loads from global memory [31]. The GPU kernel outlining pass
is run now, converting all the GPU dialect’s LaunchOp into LaunchFuncOp which
launches a function as a GPU kernel on the specified grid of thread blocks. Since we
are using the LLVM backend for code generation, we now convert MLIR to LLVM
IR. Now, the LLVM backend will generate the target code. Figure 7 demonstrates
in MLIR code how we will be able to generate Ampere-specific kernel with mapped
loops.

Figure 7:

10



5 Benchmark

Loop tiling, also known as blocking, is done for better data reuse and, all state-of-the-art
implementations of GEMM perform two-level tiling. We have also performed two-level
tiling, namely thread-block tiling and, warp-level tiling also known as register tiling. In
this section, we first explain the experimental setup, and then we discuss the impact of
different levels of tiling on the performance. We have used the following symbols in the
subsequent subsections: m, n, and k constitute the problem size in dimensions. Tm, Tn,
and Tk is the thread-block level tile size for dimensions m,n, and k, respectively. Wm,
Wn, and Wk is the warp level tile size for dimensions m,n, and k, respectively.

5.1 Hardware

The experiments are done on a Lambda GPU Cloud Computing Platform with 4x NVIDIA
A100 (40GB) running on Linux instance which can be access through secure ssh from the
local network. We have used NVIDIA SMI to profile the kernel executions and gather the
details of performance metrics for analysis. The problem size chosen for multiplication is
8192x8192x8192. The input data is of type FP16, and the accumulator/output is of type
FP32. Figure 8 describes the specification of NVIDIA A100-SMX4-40GB units used in
our report. Figure 9 briefs about the services offered on Lambda GPU Cloud Computing.
We chose a cluster of 4x A100 GPUs as it is economically feasible for our scope of study
and budget. Figure 10 shows the result for our pipeling across various tile sizes.

Figure 8: nvidia.com

11



Figure 9:

5.2 Result

Figure 10:

PEAK performance represents what fine-tuned codes using vendor libraries (cuBLAS)
can achieve, our result show that our pipelines seems to lag behind the cuBLAS by
quite a large margin. However, as the problems size scales larger, we can see that our
implementation offers comparable performance to that of cuBLAS. To help explain this
performance residual, we theorized that the as the synchronization transformation are
inserted in the code to ensure that all the threads finish copying data and computation
for a given iteration before the next iteration begins, since some threads take more time
to complete than others; as a result, remaining threads have to wait at the barrier for
completion, and the amount of time spent in waiting is known as stall barrier cycles. This
created a overhead for small problem size, reducing throughput. Next, we suspect that

12



a large of time is spent on data movement between the memory hierchachy of Ampere
architecture for smaller problem set, between tile-blocks and memory regions, leading to
low Tensor (FP) functional unit utilization. The data movement happens in this way:
Global memory → L2 cache → L1 cache → registers. Since the tiling helps in data reuse,
the better the data reuse, the better the performance. As a result, some threads spend
more time copying data. In comparison, others spend less time doing computation, due to
which a large amount of time is spent waiting on the barrier for all threads to complete.
For second-level tiling, also known as register tiling, is to distribute a thread block tile
over the appropriate number of warps. While moving the data from shared memory into
registers, the warp level tile size plays a key role; hence the padding along with appropriate
warp level tile size is must for reducing the bank conflicts. However, this reduces number
of registers available also limits the number of warps/threads that can be issues/executed.

5.3 Limitation and Future Work

Due to the lacking verbosity of NVIDIA SMI, many of our theories on the performance
residual can not be thoroughly examined and confirmed. As Lambda Cloud can only
provide us with an instance of 4x A100 GPUs due to high demand for the server, we can
not evaluate our pipeline on a different Ampere system that are available such as A6000,
A4500, A100-80GB, etc. Plus, we provide for the automatic kernel generation for matrix
multiplication is restricted only to the GPUs comprising Tensor cores. In the future, this
work can be extended to make this solution work for the GPUs not having tensor cores and
also for the GPUs made available by hardware vendors other than NVIDIA. Our solution
tackles the problem of automatic code generation only for matrix multiplication, and it
can be further extended for problems such as automatic generation of fused kernels for
matrix multiplication plus pointwise operations such as bias addition, ReLU activation,
and convolution.

6 Reference

1 Alex Zinenko, Nicolas Vasilache, Stephan Herhut, Mahesh Ravishankar, Geof- frey
Martin-Noble. Codegen Dialect Overview.. https://llvm.discourse.group/t/ codegen-
dialect-overview/2723.

2 NVIDIA Corporation, CUDA C Programming Guide, 2011.

3 NVIDIA Corporation, Turing architecture, https://images.nvidia.com/aem-dam/
en-zz/Solutions/design-visualization/technologies/turing-architecture/ NVIDIA-Turing-
Architecture-Whitepaper.pdf.

4 NVIDIA Corporation, Ampere architecture, https://www.nvidia.com/en-in/ data-
center/ampere-architecture/.

5 Jeremy Appleyard and Scott Yokim. “Programming Tensor Cores in CUDA 9,”
2017, https://devblogs.nvidia.com/programming-tensor-cores-cuda-9/.

6 V. Mehta, “Getting started with Tensor Cores in HPC,” 2019, NVIDIA GPU Tech-
nology Conference.

13



7 Ahmad Abdelfattah, Stanimire Tomov, and Jack Dongarra. Towards Half-Precision
Com- putation for Complex Matrices: A Case Study for Mixed Precision Solvers
on GPUs. In 2019 IEEE/ACM 10th Workshop on Latest Advances in Scalable
Algorithms for Large- Scale Systems (ScalA), pages 17–24, 2019.

8 Azzam Haidar, Stanimire Tomov, Jack Dongarra, and Nicholas J. Higham. Har-
nessing GPU Tensor Cores for Fast FP16 Arithmetic to Speed up Mixed-Precision
Iterative Re- finement Solvers. In SC18: International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis, pages 603–613, 2018.

9 Tsuyoshi Ichimura, Kohei Fujita, Takuma Yamaguchi, Akira Naruse, Jack C. Wells,
Thomas C. Schulthess, Tjerk P. Straatsma, Christopher J. Zimmer, Maxime Mar-
tinasso, Kengo Nakajima, Muneo Hori, and Lalith Maddegedara. A Fast Scal-
able Implicit Solver for Nonlinear Time-Evolution Earthquake City Problem on
Low-Ordered Unstructured Finite Elements with Artificial Intelligence and Trans-
precision Computing. In SC18: Interna- tional Conference for High Performance
Computing, Networking, Storage and Analysis, pages 627–637, 2018.

10 Vishal Mehta. “Getting started with Tensor Cores in HPC,” 2019, NVIDIA GPU
Tech- nology Conference.

11 NVIDIA Corporation, “cuBLAS” 2019, https://docs.nvidia.com/cuda/cublas/ in-
dex.html.

12 NVIDIA Corporation, “cuDNN”, https://docs.nvidia.com/deeplearning/cudnn/ in-
dex.html.

13 Chris Lattner, Mehdi Amini, Uday Bondhugula, Albert Cohen, Andy Davis, Jacques
A. Pienaar, River Riddle, Tatiana Shpeisman, Nicolas Vasilache, and Oleksandr
Zinenko. MLIR: A Compiler Infrastructure for the End of Moore’s Law. CoRR,
abs/2002.11054, 2020.

14 Chris Lattner and Jacques Pienaar. MLIR Primer: A Compiler Infrastructure for
the End of Moore’s Law, Compilers for Machine Learning Workshop, CGO 2019.

15 Chris Lattner, Mehdi Amini, Uday Bondhugula, Albert Cohen, Andy Davis, Jacques
Pien- aar, River Riddle, Tatiana Shpeisman, Nicolas Vasilache, and Oleksandr Zi-
nenko. Mlir: Scaling compiler infrastructure for domain specific computation. In
2021 IEEE/ACM In- ternational Symposium on Code Generation and Optimization
(CGO), pages 2–14, 2021.

16 NVIDIA Corporation, CUB, https://docs.nvidia.com/cuda/cub/index.html.

17 NVIDIA Corporation, “CUDA templates for linear algebra subroutines,” 2019, vol.
21, no.5, pp. 313–348, 1992. https://github.com/NVIDIA/cutlass.

18 NVIDIA Corporation, CUTLASS performance, https://github.com/NVIDIA/cutlass
performance.

19 NVIDIA Corporation, “cuTENSOR: A high-performance CUDA library for Tensor
prim- itives,” 2019, https://docs.nvidia.com/cuda/cutensor/index.html.

14



20 Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris, Fredo Du-
rand, and Saman Amarasinghe. Halide: A Language and Compiler for Optimizing
Paral- lelism, Locality, and Recomputation in Image Processing Pipelines. SIG-
PLAN Not., 48(6):519–530, June 2013.

21 Nicolas Vasilache, Oleksandr Zinenko, Theodoros Theodoridis, Priya Goyal, Zachary
De- Vito, William S. Moses, Sven Verdoolaege, Andrew Adams, and Albert Cohen.
Tensor Comprehensions: Framework-Agnostic High-Performance Machine Learning
Abstractions, Facebook AI Research Technical Report. February 13, 2018.

22 Somashekaracharya G. Bhaskaracharya, Julien Demouth, and Vinod Grover. Auto-
matic Kernel Generation for Volta Tensor Cores. CoRR, abs/2006.12645, 2020.

23 Thomas Faingnaert, Tim Besard, and B. D. Sutter. Flexible Performant GEMM
Kernels on GPUs. ArXiv, abs/2009.12263, 2020.

24 LLVM Foundation, The LLVM Compiler Infrastructure. https://llvm.org/.

25 The Julia language, 2021. https://julialang.org/.

26 John Nickolls and William J. Dally. The GPU Computing Era. IEEE Micro,
30(2):56-69, 2010.

27 NVIDIA Corporation, https://docs.nvidia.com/ cuda/pdf/CUDACProgrammingGuide.pdf.

28 NVIDIA Corporation, Volta architecture, https://images.nvidia.com/content/ volta-
architecture/pdf/volta-architecture-whitepaper.pdf.

29 NVIDIA Corporation, “CUDA Toolkit Documentation,” 2019, https: //docs.nvidia.com/cuda/parallel-
thread-execution/index.html warp-level-matrix-fragment-mma-884.

30 Google Brain Team, Tensorflow/MLIR-HLO, https://github.com/tensorflow/ mlir-
hlo.

31 Navdeep Kumar Katel, M.Tech. Research Thesis. Automatic Code Generation for
GPU Tensor Cores using MLIR.

15


