
Project Number: MOW-0901

Computer Visualization of Song Lyrics

A Major Qualifying Project Report
submitted to the Faculty

of the
WORCESTER POLYTECHNIC INSTITUTE

in partial fulfillment of the requirements for the
Degree of Bachelor of Science

by

Andrew Labrecque

Jason Stasik

Date: December 17, 2009

Approved:

Professor Matthew O. Ward, Major Advisor

i

Abstract
Currently, there are several standard methods for recommending music to an individual. These
methods vary from word-of-mouth to large recommendation databases by retail websites such
as Amazon.com. This project attempts to visualize the lyrical relationships found in a large
collection of songs. We discover these relationships by examining both the structural and
contextual components of a song’s lyrics, and using those components in a broad comparison
algorithm. We gathered a set of 5605 song lyrics and associated song data in order to establish
a large network of relationships to navigate and explore. The resulting visualizations allow users
to graphically explore the collection in order to discover trends, interesting data, or simply to
find new songs to listen to. We performed user testing in order to discover the ease-of-use of
our system as well as the subjective accuracy of its recommendations.

ii

Acknowledgements
We would like to thank Professor Matthew Ward for advising this project, as well as for the
exceedingly helpful advice he has offered us over these past three terms.

We would also like to thank Jeffrey Heer for the Prefuse Visualization Toolkit, Greg Fast for the
Syllable class, Martin Dudek for the ForceDirectedLayoutMagic class, and Leonard Richardson
for the very useful BeautifulSoup HTML parser.

iii

Table of Contents
Abstract .. i

Acknowledgements ..ii

Table of Contents .. iii

Table of Figures .. vii

1 Introduction ... 1

1.1 Goals ... 1

1.2 Objectives ... 2

2 Background .. 3

2.1 Computer Visualization .. 3

2.2 Visualization Toolkits .. 4

2.3 Similarity Algorithms .. 4

2.4 Fault Tolerance ... 5

2.5 Stop Words ... 6

3 Design and Preparation ... 7

3.1 Lyrics Gathering .. 7

3.1.1 Downloading ... 7

3.1.2 Storing ... 9

3.2 Document Loading and Persistence ... 9

3.3 Document Processing and Storage .. 11

3.3.1 Stop Word List ... 11

3.3.2 Relevance Algorithms ... 12

3.3.3 Storage .. 15

3.4 Filter Specification .. 17

iv

3.4.1 Conditions and Actions ... 18

3.4.2 Structuring Filters .. 19

3.4.3 Applying Filters.. 20

3.5 Fault Tolerance ... 20

3.6 Visualization Displays ... 21

3.6.1 Force Directed Graph .. 22

3.6.2 Node Centric Graph .. 23

3.6.3 Other Visualization Types ... 24

3.6.4 Edge Weights .. 24

3.7 User Interface ... 25

3.7.1 Main Visualization Window .. 25

3.7.2 Add/Remove Documents Window ... 28

3.7.3 Filters List Window .. 29

3.7.4 Edit Filter Window .. 29

3.7.5 Document Properties Window ... 30

3.7.6 Document Comparison Window ... 30

3.7.7 Search Window ... 31

4 Architecture and Implementation ... 32

4.1 Lyrics Gathering .. 32

4.2 Starting the Application ... 33

4.3 The Visualizations ... 34

4.3.1 Common Implementation Overview .. 34

4.3.2 Global Force Directed Visualization .. 36

4.3.3 Local Node Centric Visualization ... 38

v

4.3.4 Document Word Cloud Visualization .. 39

4.3.5 Document Comparison Visualization (Connections) .. 42

4.3.6 Document Comparison Visualization (Bars) ... 43

4.4 Filters .. 44

4.4.1 Prefuse Expression Language ... 44

4.4.2 Predicates .. 45

4.4.3 Actions .. 45

4.4.4 Filter Creation ... 46

4.4.5 Filter Management ... 47

4.4.6 Filter Application ... 48

4.5 User Interface ... 48

4.5.1 Main Visualization Window .. 48

4.5.2 Filters List .. 51

4.5.3 Filter Creation Window ... 52

4.5.4 Document Properties Window ... 53

4.5.5 Document Comparison Window ... 55

4.5.6 Edge Weight Modification Window .. 58

4.5.7 Enhanced Selection Tools ... 58

5 Evaluation and Results... 60

5.1 Self Evaluation .. 60

5.1.1 Procedure .. 60

5.1.2 Results ... 61

5.2 Usability Test .. 65

5.2.1 Procedure .. 65

vi

5.2.2 Results ... 68

6 Future Work ... 75

6.1 Improving the Relevance Algorithm .. 75

6.2 Improving the User Interface ... 75

6.3 Additional Future Work .. 77

7 Conclusion ... 78

Appendix A Usability Questionnaire ... 79

Appendix B Developer’s Guide ... 82

Appendix C NSF Grants Side Project ... 84

Bibliography .. 86

vii

Table of Figures
Figure

 1: A screenshot of an early force-directed visualization with invisible edges and labels

showing the artist and title of each song represented. .. 22

Figure

 2: A screenshot of an early node-centric visualization with some nodes and their edges
selected in red. .. 23

Figure 3: A Mockup of the Main Visualization Window. .. 26

Figure 4: A Mockup of the Add/Remove Documents Window. ... 28

Figure 5: A Mockup of the Filters List Window. .. 29

Figure 6: A Mockup of the Edit Filter Window. .. 29

Figure 7: A Mockup of the Document Properties Window. ... 30

Figure

 8: A Mockup of three side-by-side Document Comparison Windows with highlighted text
indicating shared lines between all three documents being compared. 31

Figure

 9: A screenshot of the DocuCoud World Cloud visualization; larger words occur more
frequently in the song being visualized. ... 40

Figure

 10: A screenshot of the DocuCoud with random color scheme; the colors of words have
no purpose other than aesthetics... 41

Figure

 11: Two screenshots of the DocuCoud with the gradient brightness color scheme, where
frequent words – in addition to being drawn larger – are colored brighter in the chosen hue. . 41

Figure

 12: A diagram showing the DocuCompare visualization with a markup in white indicating
higher frequency words and words that appear in both documents being compared. 42

Figure

 13: A diagram showing the DocuCompare2 visualization with a markup indicating higher
frequency words and words that appear in both documents being compared. 43

Figure

 14: A screenshot of a graph with a markup showing how edges take on the lesser opacity
value of the two nodes they connect. .. 46

Figure

 15: A screenshot of the finished Main Visualization Window from the running
application. ... 48

Figure

 16: A table containing options included under each menu bar category (File, Edit, View)
in the final application. ... 49

Figure

 17: A close-up of the buttons included in the strip and of the Selection Helper, which can
be found above the visualization on the Main Window. ... 50

viii

Figure

 18: A screenshot of the Filters Sidebar docked to the side of the Main Visualization
Window. .. 51

Figure

 19: A screenshot of the Filter Creation Window specifying a simple Filter with two
conditions and two active actions. ... 52

Figure

 20: A diagram showing the three parts of a Filter condition on the user interface: field-
name, operation, and field-value. .. 53

Figure

 21: A screenshot of the Document Properties Window showing a documents attributes,
metrics, text, and Word Cloud visualization. .. 54

Figure

 22: A diagram showing the Word Cloud interactions on the Properties Window, including
expending the size of Word Cloud visualization and altering its color-scheme. 55

Figure

 23: A screenshot of the Document Comparison Window’s default view, which shows the
text of two documents side by side. ... 55

Figure

 24: A screenshot of the Document Comparison Window with Visualization 1 – scaled
words with connections – active. ... 56

Figure

 25: A screenshot of the Document Comparison Window with Visualization 2 – words
with bars – active. ... 57

Figure

 26: A screenshot of the Edge Weight Modification Window with sliders for metric
weights and the minimum display value. ... 57

Figure

 27: A screenshot of the Current Selection Window which lists of the artist and title for
every currently selected document. ... 59

Figure

 28: A screenshot of the Selection Widget Window with a slider for quickly scrolling to a
document’s place in the alphabet and arrow buttons for more precise selection. 59

Figure

 29: The rap cluster. Rap and hip-hop songs are colored red, songs with unknown genres
are colored purple, and all other songs are colored blue. ... 62

Figure

 30: Love songs. Songs with the word love in them are colored red, while songs without
love are colored yellow. .. 63

Figure

 31: Hate songs. All songs with the word hate in them appear red, while all songs without
the word hate appear yellow. ... 64

Figure

 32: Songs with love and hate. Song with just hate are colored red, songs with love and
hate are green, and songs without hate are yellow. .. 65

Figure 33: Chart showing the distribution of edge weights for comparisons under evaluation.. 70

ix

Figure

 34: Chart showing the distribution of enjoyment ratings for evaluations of all edge
weights. ... 71

Figure

 35: Chart showing the distribution of similarity ratings for evaluations of all edge
weights. ... 72

Figure

 36: Chart showing the distribution of enjoyment ratings for evaluations of edge weights
of 5 only. ... 72

Figure

 37: Chart showing the distribution of similarity ratings for evaluations of edge weights of
5 only. .. 73

Figure

 38: A screenshot of the Global Graph View of NSF abstracts with filters applied. Blue,
purple, red, yellow, and green represent abstracts from 2005, 2006, 2007, 2008, and 2009
respectively. Larger nodes indicate occurrence of the “software” search term. 84

Figure

 39: A screenshot of a Word Cloud of the most popular terms in abstracts from the year
2005. ... 85

1

1 Introduction
Accurate comparisons of songs are an area of great interest to many people today. Record
labels, retail stores, and individuals all have various reasons to want to learn how similar two
songs are to each other. For record labels and retail stores this information can be useful for
discovering interesting trends, detecting copyright infringement, and deciding what albums to
support and promote. For normal listeners, it can be used to find new music and genres to
enjoy. Additionally, music enthusiasts could find satisfaction in simply looking upon their own
personal collections in new and interesting ways, discovering connections that they were
previously unaware of.

Currently, the main method of achieving these comparisons is done with retail databases
utilizing sale histories, which tend to recommend entire albums or artists, rather than individual
songs. Another method involves analyzing MP3 data in an effort to decode a song’s rhythm,
instruments, and genre. Our intention with this project is to investigate the feasibility of making
similar types of comparisons based upon the lyrics of a song.

The first part of our project attempts to analyze songs through their lyrics. With the lyrics, we
attempt to discover two categories of information about each song – the meaning and the
structure. The meaning involves the actual words themselves and what each means. By
comparing the similarities between words in two songs, we can, to some extent, determine if
the topics of the songs are similar. The structure of a song involves how the song is presented.
Structural metrics include the number of lines per song, the number of syllables per line, the
amount of line repetition, and more.

The second part of this project is visualizing these comparisons. Fitting all of our 5605 songs
with all of their relationships on a single screen, and still having the visualization be useful, is
impossible. Our visualization restricts what songs are displayed to only show the most relevant
comparisons. In addition, we provide several capabilities such as searching, filtering, and
multiple visualization types to allow users to easily find what they are looking for. Once a user
finds the songs he is searching for, he then has additional tools for finding out to what extent
they are related and why that determination was made by our program.

1.1 Goals
The main ambition of this project was to design and implement a proof of concept application
for visualizing the relationships between items in a collection of text documents, based upon
the comparisons of certain calculated metrics. While we focused on songs and their lyrics over
the course of the project, one goal throughout was to not require the input dataset be song
lyrics in future incarnations. Theoretically, this same application could be used to compare
entire albums, court documents, or any other type of collection with only minimal alterations to
the code.

2

In addition to the goal of keeping the target collection general, the application was designed to
run smoothly and be usable on both large and small collections. This means that the data
should load quickly and interactive components should be responsive to user input regardless
of how large the collection is. Additionally, the application should take full advantage of screen
space with smaller collections.

A final goal of this project was for the application to be extensible so that it could be enhanced
and modified by future efforts without considerable rework. This goal includes allowing the
adding or changing of analysis metrics, parsing documents in new and different ways, and
accepting multiple file types with arbitrary metadata tags. Future developers should be able to
accomplish these tasks by altering—or replacing—as few source files as possible.

1.2 Objectives
In order to develop an application that would meet the goals set forth, we identified three
important objectives that we would aim to accomplish over the course of the project. The
completion of each key objective was used to gauge our progress towards the conclusion of the
project. They also served as a basis for the tasks we established and strived to finish on a
weekly basis. Rather than jumping right into the code on week one and making what could be
major mistakes, we spent an appropriate amount of time researching, creating formal design
guidelines, implementing our system, documenting our decisions, and evaluating the finished
application. As a general guide, we attempted to complete one or two of these objectives every
seven weeks.

The first objective of the project was to research and brainstorm ideas for the application we
set forth to develop. Previous work in the areas of computer visualization, document and text
processing, and information retrieval helped us to establish our ideas as we began laying out a
preliminary high level design. Identifying different alternatives, each with strengths and
weaknesses, allowed us to choose the best option and adapt as necessary during
implementation.

The second objective was to implement the prototype application using the preliminary design
as a guide. Strictly adhering to mockups and specific algorithms was not a requirement of this
objective. If an aspect of the design needed to be reworked due to unforeseen circumstances it
was redesigned prior to implementation. The purpose of this objective was to produce the best
possible prototype in the time we would have available.

The final objective consisted of two parts: to document our work and to evaluate our system.
This included identifying our original design (and its justifications), justifying any changes to the
original design made during implementation, and evaluating the resulting prototype in the
interest of guiding possible future work. Self evaluation occurred both alongside and after
development, while more formal user evaluations were conducted only after we had produced
a stable working prototype.

3

2 Background
In order to better prepare ourselves to implement a visualization program with a focus on
similarity and text processing, we found it worthwhile to research a number of related topics.
This section discusses some of the background as it applies to our work, including the concepts
of Similarity Algorithms, Computer Visualizations, Fault Tolerance, and Natural Language
Processing. While not all of the ideas we researched and presented here made it into our final
application they were all important to keep in mind along the way and ought to be
considerations for possible future work related to this project.

2.1 Computer Visualization
Computer Visualization, as it applies to this project, is the process of creating diagrams that
convey a quality, relationship, or general summary of some data, or group of data.
Visualizations should be intuitively understandable through basic visual cues such as size,
distance, color, and movement. There are many great examples of Computer Visualizations that
can be found in prior work by experts in the field. One example, the Baby Name Wizard
developed by researcher Martin Wattenberg1

There are many different areas of Computer Visualization and many different types of
Visualizations under each. Many Eyes, a site run by IBM’s Collaborative User Experience
research group, has a number of different examples of interactive information visualizations
including node-and-edge graphs, histograms, pie charts, and geographical territory maps – just
to name a few. The site’s various datasets help to illustrate the wide variety of possible
applications for Computer Visualization. Users can visualize text, census data, murder trends,
weather data, blog posts, and almost anything else imaginable. According to Wattenberg

, shows the popularity of baby names from the
1880s to the present day as an easy to read searchable chart. As the user types a name in a
search box the visualization narrows to names spelled similarly and displays the popularity of
each as a shaded area of changing size along a time axis. The visualization helps people discover
at-a-glance what could take much longer using other means. Some may argue that it has
additional value as a form of entertainment.

2

2

 and
other members of the team that worked on the site, the purpose behind the design and
implementation of Many Eyes was to reach as large an audience as possible. To this end, they
provided tools for collaboration, sharing, and feedback on customizable visualizations that
would draw upon different user-uploaded datasets .

Lots of the visualizations on Many Eyes are intended for numerical data. Because we were
focusing on the textual data of song lyrics, we were especially drawn to the Tag Cloud
visualizations on the site. This visualization displays words from “unstructured text” and “[gives]
the user an overview of the most salient terms” based on their scaling2. This is not unlike what
we see on many websites where popular tags are shown in a list scaled by frequency. We also
sought to discover similar text visualizations in addition to this. One that was particularly
interesting color-coded terms in document text based on their parts-of-speech, revealing the
grammatical structure of a sentence or paragraph and maybe even revealing quality (or lack of

4

it) in the writing3

Another type of visualization we encountered during our research was a graph-based Radial
Layout. This algorithm puts “the focus of attention [on] a single [center] node” with other
nodes “arranged on concentric rings” around it, and animates transitions between centered
nodes to “maintain orientation” for the user

. It occurred to us that a similar system could be used to color-code parts of a
song’s lyrics (chorus, bridge, verse) to view those structural qualities at-a-glance.

4

2.2 Visualization Toolkits

. We especially liked the exploratory interaction of
this visualization, allowing users move around a collection by moving between center nodes.

A Visualization Toolkit is a software bundle used for creating visualizations without needing to
agonize over low level system calls and deal with graphics libraries. Part of our research for this
project was to investigate some of the available toolkits and make an informed decision about
which to choose for use with our project. Some of the toolkits that we looked at and considered
most closely were Prefuse, VTK, and the JUNG framework.

Prefuse is an information visualization toolkit created by Jeffrey Heer5

VTK (The Visualization Toolkit) is another package with more advanced 3D graphics capabilities
and multi-language support. It provides more complex types of visualizations than some of the
other toolkits we examined and has applications in geology, biology, acoustics, and medicine.
While the core of VTK is written in C++ it has wrappers for Python, Java, and Tcl as well. Like
Prefuse, VTK is free under the BSD license.

 and made available
under the Berkeley Software Distribution license, allowing it to be redistributed with its original
copyright notice with or without modification and free of charge. Features of Prefuse include
built in data structures for tables, graphs, and trees; a query language for filters, searching, and
selection; database connectivity with SQL for data persistence; and support for automated
force directed layout. It supports a good variety of different visualization types and includes
useful examples with the source code to demonstrate some its most useful aspects. Prefuse is
written in Java.

The JUNG (Java Universal Network/Graph) framework is a toolkit with a focus on node-and-
edge graph-based visualizations. Again licensed under the BSD license, JUNG is used often in
applications for social network analysis, information visualization, and data mining. It supports
the force directed spring graph layout and has routines for clustering, decomposition, random
graph generation, statistical analysis, distance calculations, and centrality as well.

2.3 Similarity Algorithms
Calculating how related two items are and recommending items based on a user’s selection of
another item are similar concepts. In many ways this is what we set out to do with our project,
so as part of our research we examined recommendation databases. A recommendation is
usually just the item most related to the one chosen. Recommendation databases are widely
used today for a variety of reasons. Most commonly, they are used by major online retail

5

organizations, such as Amazon.com, as a way of enticing users into buying additional
merchandise. There are many different ways to implement a recommendation database
system. Systems that use recommendations from other users, Amazon.com’s item-to-item
collaborative filtering, and Pandora.com’s vector-based distance algorithm rank among some of
the most used and high profile implementations.

The simplest recommendation system does not involve an algorithm at all, but only some users
with a little motivation. In this system, users are able to recommend items themselves. This is
usually done in the form of user reviews, where an individual writes a textual appraisal of an
item and suggests items other users might enjoy as well. This type of system is often seen on
smaller websites that lack the resources required to generate, store, and process millions of
transactions; however, most major websites allow users to leave comments or review items in
order to utilize this type of system.

Amazon.com utilizes a method that they call item-to-item collaborative filtering6

Pandora.com has a massive song database called the Music Genome Project

, a
modification off of traditional collaborative filtering. This algorithm works by first creating a
similar-items table – a listing of all products and all products that are related to each product in
some way – along with a numerical value indicating how related every pair of products is.
Products are determined to be related if any customer who bought one product also bought
the other; the more people buying both products indicates a higher numerical value for the
relationship. This vast set of calculations is periodically performed offline, while the table is
stored online. With the resulting similar-items table, Amazon.com’s servers are able to
efficiently use a customer’s purchase history to look up similar items independent to the total
number of products in the database.

7

2

0
)(*∑

=

−
n

i
iii tsw

. This database
stores information, designated as genes, for every song. A gene is a characteristic of a song such
as the gender of the vocalists or the amount of distortion on a guitar in the instrumentals. Every
gene is stored in the database as a number from 0 to 5. In order to compare two songs, each
song’s genes are represented as a vector. The similarity relation between two songs is

calculated generically using the distance formula: distance(S,T) = such that S and

T are the two song vectors to be compared, si and ti represent the value of the ith gene in songs
S and T respectively, and wi is a special unique weighting applied to every gene value. When a
recommendation request is made, the system returns the songs with the lowest distances to
the requested song.

2.4 Fault Tolerance
The concept of fault tolerance is best explained with an example. In keeping with other
examples throughout the rest of this report we will use music and song lyrics as members of
our assumed document collection.

Imagine that our corpus contains music from the artist “Dream Theater” but the user of the
application performs a search with the condition: Artist equal to “Dream Theatre” (note the

6

alternate spelling of Theater). There is no way for a program to know with certainty whether
“Dream Theater” and “Dream Theatre” are two different bands or actually two different
spellings of the same band’s name. The easiest solution is to assume they are two different
bands and leave it up to the creator of the corpus to keep fields like this consistent in spelling.
As an alternative the program could be made more accommodating by providing the option to
include very similarly spelled terms in searches involving string matching conditions. This type
of fault tolerance also comes in handy in searching through text containing words where the
first or last letter have been omitted out for effect or due to unintentional misspelling.

The Levenshtein Distance Algorithm8 is useful for providing fault tolerance in these types of
situations. This algorithm considers the number of steps needed to transform one string into
another. This number is the Levenshtein Distance.

Levenshtein Distance revolves around the operations of character insertion, deletion, and
substitution. The goal is to determine the minimum number of these operations that are
required to get from one word to another. The algorithm uses a matrix to accomplish this task
and fills it in using a very specific set of steps. Once constructed, the value in the lower right
hand corner of the matrix is assured to be the Levenshtein Distance between the two terms8

When a user performs a search, the Levenshtein Distance between the search string and each
target string can be calculated to see if any are within a certain threshold. If it is, the search can
be altered to include both the requested string and the fault-tolerant string.

.

We recognized advantages to making the above approach more interactive. If, for example, the
application finds a term with a low Levenshtein Distance to the term being searched for, it
could prompt the user to decide whether to treat the two words as the same. Storage of the
various fields and text in the system could be a way of storing these words for future searches
to be performed without the procedure. Following this system an application can effectively
“remember” when to treat two similarly spelled words as the same. It can also allow the user to
specifically tell the application if two similarly spelled bands are actually two separate groups.

A shortcoming of Levenshtein Distance may be efficiency, especially if it is calculated over and
over. For example: if a user wishes to view only documents containing a certain term in their
text, it is not desirable for the Levenshtein Distance to be calculated for every word in the text
of every document in the collection.

2.5 Stop Words
A stop word is “a word (usually one of a set of the words most frequently occurring in a
language or text) that is automatically omitted from or treated less fully in a computer-
generated concordance or index.”9 In our application, common words between many songs,
such as “I” and “and” are filtered out so that when we compare two songs, the unwanted
words are not taken into account for the calculation. An algorithm could also be used to
automate the process of finding the most common words and removing them from the data
being processed.

7

3 Design and Preparation
In the design of our system—an application for visualizing the relationships between text
documents—we often found there to be multiple ways of fulfilling certain requirements, each
with advantages and disadvantages. Sometimes the most important of these trade-offs were
easy to identify, allowing us to make decisions that carried through into the implementation
phase of our project. Other times this was not the case, and certain decisions needed to be
revised as we proceeded with our work. The main factors that we took into account in making
these decisions were the efficiency and simplicity of the alternatives.

Efficiency was a key concern for us because we had set forth a goal to have our application be
usable given a target collection with a possibly large number of documents. This opened up the
potential for the program to have a particularly large memory footprint and very long CPU-
intensive computations. We wanted our efforts to result in an application that would run on a
typical personal computer and without long loading times on startup.

Simplicity was also a key factor for us in the context of time and ease-of-implementation. Given
the seven weeks we would have available to implement our application it was clear that we
would not have the liberty to implement every optimization that was available to us. For this
reason we tried to seek a balance between the efficiency of targeted algorithms and the time it
would take to code these algorithms. Our hope was that this consideration would result in a
good proof-of-concept for an application that could be enhanced and extended by future work,
per our goal.

This section defines the basic breakdown of our application and describes the various
alternative decisions that were available to us as we designed and implemented it. The next
section, Architecture and Implementation, provides additional details on the final
implementation of the system.

3.1 Lyrics Gathering
The first task that had to be done at the start of our project was to gather a large collection of
song lyrics with which to use and test our system. In addition to song lyrics, we wanted to also
have information about each song available, such as genre or popularity. The process of lyrics
gathering can be broken down into two sections: downloading and extracting information from
the Internet and storing that data.

3.1.1 Downloading
In order to download our desired information, we required a set of artists and song titles. While
researching, we discovered the uspop2002 dataset10. This data was a list of 8764 songs from
400 different artists. While it was possible instead to perhaps crawl a lyrics website and
download the lyrics for every single song on the site, this list allowed us to achieve similar
results in much less time as we did not have to deal with the issues of automatically navigating
a large series of different web pages.

8

For additional information about songs, we immediately decided upon last.fm as it contained
exactly what we wanted. Last.fm is a large music database where users can upload information
about what songs they are currently listening to, and then see what songs or artists they end up
listening to the most. Last.fm also provides information about artists, albums, and songs. The
following is a list of song information that we originally intended to extract:

- Genre(s)
- Related songs
- Related artists
- Description of song
- Number of total track plays
- Number of unique listeners
- Link to last.fm page

Upon further reflection, we decided against storing related songs and artists, as that data
would only really be useful to our application if the recommended songs were only songs in our
dataset. Descriptions were also not included due to the fact that descriptions were generally
about the history of a particular album or the band as a whole, rather than the story behind an
individual song.

Instead of genres, last.fm used tags to categorize each song. We believed it to be fair to
assume, for our purposes, that tags and genres are the same thing. In order to assure that we
would get at least one useful genre, we chose to take the three most popular tags and use each
of these as a different genre for the song. An example of a tag that is not useful would be a
song by The Beatles being tagged with Beatles. As an alternative to last.fm, we identified
allmusic.com as a potential backup site, which keeps track of similar information based on
artists instead of individual songs. In the end, we did not end up needing to use allmusic.com.

While last.fm was being used to gather metadata about each song, we still needed the lyrics.
We looked at seven popular lyrics websites, including: lyrics.com, songlyrics.com, azlyrics.com,
elyrics.net, lyricsmode.com, last.fm, and metrolyrics.com. While evaluating the pros and cons of
each website, we eventually decided upon metrolyrics.com for its extremely large selection,
accuracy of lyrics, and ease of parsing. We also decided upon a backup website to use in case
the lyrics could not be found at metrolyrics.com. For the backup site, we decided upon
azlyrics.com for its accuracy of lyrics and ease of parsing. Any song that couldn’t be found on
last.fm, metrolyrics.com, or azlyrics.com would have to be discarded.

When deciding upon what language to use to do this, there were many options. Initially we
intended to use Java, as that was what we were both most experienced with. However, after
some research, we discovered a tool called BeautifulSoupi

i BeautifulSoup is distributed under the BSD license and can be downloaded at

 which was written in Python and
would allow us to very easily extract information from a website. Python has many additional
advantages over Java for a lightweight application like this one. Python tends to be shorter and

http://www.crummy.com/software/BeautifulSoup/

http://www.crummy.com/software/BeautifulSoup/�

9

easier to write, as well as having more advancing string-handling functions and much simpler
I/O operations.

3.1.2 Storing
After downloading this information we had to store it in a way that would later be easily read in
by our application. Because we stated in our original goals that we intended for our application
to be generic and accept any type of document with any type of metadata, we opted for an
XML format. XML would allow us to easily add or remove tags, as well as easily read tags and
what their parent tags were. The following represents a sample XML file in our format for the
song Mrs. Robinson by Simon & Garfunkel:

<document name=”Simon & Garfunkel – Mrs. Robinson”>
 <attributes>
 <title>Mrs. Robinson</title>
 <artist>Simon & Garfunkel</artist>
 <genre>classic rock</genre >
 <genre>60s</genre >
 <genre>folk</genre >
 <plays>2349059</plays>
 <listeners>342088</listeners>
 <url>http://last.fm/music/Simon%2B%2526%2BGarfunkel/_/Mrs.+Robinson</url>
 </attributes>
 <text >lyrics go here</text >
</document>

In this format, name would be whatever a user wanted to name the document. The attributes
tag represents the metadata for a document, and a user would be able to list as many as they
wanted, including duplicates such as genre. Finally, the text tag indicates the text content of the
document to be analyzed and compared. In our case, the text of songs is their lyrics.

3.2 Document Loading and Persistence
As mentioned previously, we established a system to store all of our downloaded lyrics and
song information to XML files. By using XML files we had an easy-to-use format for storing
generalized information that could also be easily read into our application with a standard Java
XML reader. Because we allowed for the use of any number of arbitrary metadata tags, we
decided to use an options file to define the current format. This options file consists of a list of
each metadata tag and what its associated data type is. We allowed strings, booleans, integers,
and floats to be specified. Our application, for instance, consisted of:

title string
artist string
genre string
genre string

10

genre string
plays integer
listeners integer
url string

Due to the fact that we parse the XML files, read in all their data, and then parse the text field
to extract the metrics data every single time our application loaded, it took considerable time
and memory to first load our application. In addition, we also had to calculate relevance values
every time the application loaded. With such long load times no one would even considering
using such an application, so we began to look into methods to reduce load time.

In order to mitigate the cost of reading XML files, we developed a new file type, which we
designated NXP (Non-XML Preprocessed file). The NXP file was a way to read in XML files which
we had already been processed in a very fast and efficient way. The NXP files had the following
format and data:

Line 1, name
Line 2, title
Line 3, artist
Lines 4-n, metadata
Line n+1, number of lines
Line n+2, number of unique lines
Line n+3, max repetitions
Line n+4, number of syllables
Line n+5, all words in the song separated by spaces
Line n+5, number of occurrences of each word on the above line separated by spaces
Line n+5-end, the text of the document

The options file defined previously allowed us to know exactly how many lines to read for
metadata tags. Since we know what to expect on each line, we can easily read in line-by-line all
of the data. This means we do not need to read or parse the XML data, which takes longer than
a normal file due to the way XML is parsed into a tree structure. We also do not need to process
the text field again, as all the data we need to calculate the metrics is stored in the NXP file. The
downside to this method is that if the stop word list changes, all files must be re-processed;
however, that does not happen often and it does not take more than 10 minutes on an average
computer to convert all of our XML files to NXP. Before NXP files, our application took
approximately 5-10 minutes to load with 5605 XML files. With NXP files, 5605 files load in
approximately 10-20 seconds.

In order to prevent the recalculation of all comparisons, which was necessary because the
calculations took approximately 6 hours to complete with all songs, we developed two
additional file types to help store this information.

The first file type was called DLT, the Document LisT. Not surprisingly, this was a list of all
documents used in the application. This was used because we wanted the user to be able to

11

store all their NXP files in one location, but still be able to have different subsets of
visualizations available without duplicate processed files.

The second file type was called REL, the RELevance Table. This stored a list of all the
relationship information for every single song listed in the associated DLT file. The first 5 lines
consist of the standard deviations of the first five metrics, while the remaining lines consist of
relationship data listed in order by document and only containing data for documents with a
lower ID than it. This means that line 6 corresponds to the first document in the related DLT file
and contains no information because it has the lowest ID. Line 8 corresponds to the third
document and contains the relevance values between it and documents one and two (but not
the value between document one and two, which is stored on line 7). Relationship data was
stored as integers, as discussed in section 4.2.1. REL and DLT files were created in pairs
automatically and they shared the same name, with only their extension differing, so that we
could easily match them together.

3.3 Document Processing and Storage
Given the large quantity of data we would be dealing with it seemed worthwhile to consider
many different systems for processing and storing processed documents in our system. As we
have outlined, important considerations for each option include its efficiency and ease-of-
implementation. However, given that the rest of our system would be built entirely around how
we processed and stored documents, it seemed necessary to place particular emphasis on
efficiency to prevent a potential bottleneck in this important part of our system.

Processing involved two steps: analyzing the lyrics of a song and calculating how relevant they
were. Extracting information from the lyrics is simple and achieved by reading every line and
word and storing final value in an object. However, an important part of gathering the list of
words in a song includes the stop word list.

3.3.1 Stop Word List
Because the input data collection could consist of any type of text document, the words we
want to eliminate will vary greatly in different circumstances. For song lyrics, we extracted the
words that we thought were the most relevant to this project from 11

i

, with some additions
tailored to songs specifically:

a
an
and
are
as
at
be
by
chorus

for
from
how
in
incomprehensible
instrumental
is
it
the
to

you
me
my
your
of
that
i'm
so
we
it's

12

with
but
do

don't
when
this

get
if
you're

However, after testing the results of using this list on our finished product, we found that most
of the songs that were being declared similar were full of words that had no real significance
associated with them. To attempt to counter this, we examined the 100 most common words
and picked the following words to add to our list:

was
will
i'll
who
that's
what

where
can
can't
they
they're
i've

too
then
than
its

3.3.2 Relevance Algorithms
We had many ideas for how to calculate the degree of similarity between two songs. In the
beginning, we envisioned having several simple algorithms that we could easily switch
between. These were algorithms included:

- The number of words that are common between two documents.
- The number of occurrences of words common between two documents.
- The number of occurrences of words common between two documents with each word

occurrence weighted by how unique that word is to the pair.
- The percentage of words in common between two documents to those that are not

common.

There were a few more algorithms that were very similar to the four above. However, when we
tested some of these out in our application with a test subset of 100-500 songs, we found the
results to be unacceptable. In general, these algorithms were too simple or too general. When
manually comparing the lyrics between a related pair, we did not believe that the two songs
were actually similar in any way most of the time. In response we went back, revised our
strategy, and came up with the idea to add structural analysis in addition to contextual. There
were several different structural qualities we could analyze given a set of lyrics, some of which
included:

- Number of lines in a document
- Number of words in a document
- Number of unique words in a document
- Number of unique lines in a document
- Number of syllables in a word
- Number of rhymes between words in a line, or lines in the whole document

13

- Scheme or pattern of rhymes that exist in a document

With this data, we also gained access to values such as syllables per line, syllables per word,
amount of word repetition, amount of line repetition, and others through a simple calculation.
Unfortunately we were forced to abandon the rhyming analysis. Though we did find an
accurate rhyming dictionaryii

Ultimately we settled on using six metrics for comparisons, with room to add additional ones
later on if we felt that it was necessary. The following is a list of the metrics we chose and what
we hoped to gain from using them:

, we found that it was missing a substantial number of words from
our entire collection of songs. Even after checking only the last word on each line for rhymes,
there were still 10,000 needed words that were missing from the dictionary.

- Total Lines, the length or tempo of a song
- Lines Per Unique Line, how often line repetition occurred
- Syllables Per Line, the complexity of words or specific syllable patterns
- Words per Unique Word, how often word repetition occurred
- Maximum Times a Line Repeats, how repetitive a song could be
- Percent Words In Common, contextual similarity

We felt that these six metrics provided a broad overview of general patterns within a song,
without providing unnecessary redundancy or complexity. The percent words in common
algorithm was chosen over others in order to provide accurate results for two similar songs of
unrelated lengths.

The next step was incorporating these metrics into our comparisons. First was percent of words
in common. This had to be handled differently, as it was not a static value in each song that
could be easily compared. The algorithm used was as follows:

int rel = 0
for each word w in song1:
 rel += Math.min(occurrences of w in song1/number of words in song1,

 occurrences of w in song2/number of words in song2)

In order to determine if two songs were significantly related, we set a minimum required rel
(short for relevance) value. Originally, our default rel value, with the original stop word list, was
25%, or 0.25. Given that there are so many words in the English language, and several words
can be used to say the same thing, we did not want to restrict ourselves to an unrealistic value
such as 50%, where nearly no connections would have occurred. After changing our stop word
list to be more rigorous, we lowered the minimum required value to 20%, in order to
accommodate for the fact that almost all relationships had a significant drop in their

ii The rhyming dictionary is called “phondic.english” and can be found at
http://www.ic.arizona.edu/ic/hammond/mhj/phondic.english

http://www.ic.arizona.edu/ic/hammond/mhj/phondic.english�

14

percentages. This eliminated many of the false relations achieved from popular words such as
“what” or “you’re” but still required sufficient enough similarity to produce reasonable results.

The other five metric algorithms were different than the above. For these each document could
be parsed and the metric value determined separately from any other document. Therefore, in
order to compare these metrics, we needed to determine how similar the values needed to be
in order to decide if they were significantly related or not. These metrics were much more likely
to be similar than the value produced by the word comparison algorithm, so we had to have
much stricter guidelines. Our goal was to set a minimum cutoff of around 70-90% similar to
determine if two songs were related for a given metric. We weren’t sure exactly how to
measure the percentage at first, but we came up with two ideas.

The first method was to use a static number, different for each metric, and then calculate
whether or not the difference between the metrics of the two songs was less than the static
number. For instance, suppose two songs have line counts of 40 and 50, and our static number
is 5; if the numbers were equal, or +/- 0*5, they would be 100% similar. If instead the numbers
were within +/- 1*5 of each other, they would be 90% similar. Since they are within +/- 2*5,
they are 80% similar. The methodology for determining this static number was difficult to pin
down at first.

The second method was to use variable numbers, based off of percentages of the higher of the
two numbers. Take the above example again. In this case, 100% similarity would be if the values
were within +/- 0.0*50. 90% similarity is achieved with +/- 0.1*50, and so on.

As we did not really know how to determine our static number, we gave the variable method a
trial first. The results were not accurate because of two main problems. First, incrementing the
multiplier in tenths provided too large an adjustment and caused too many metrics to be
labeled as similar. Second, this method did not take into account the relative value of a metric
compared to the whole collection. In a collection of 100 songs with 99 songs having 80 lines
each, and 1 song having 100 lines, the 100 line song should not necessarily be similar to the
others – in fact it is the outlier.

To combat these issues, we attempted to use the first method of static values. We decided the
standard deviation of the metric for the entire collection would be a good value to start with.
However, this, too, gave us too many false similarities, so we changed the number to one tenth
of the standard deviation. This provided the results we were looking for. By declaring any
values not within one standard deviation of each other to be irrelevant, we gained a much
more focused set of results that was still large yet very accurate. Through testing with our
application, we determined the ideal spot that we wanted to use for a minimum cutoff was
80%, or std*0.2.

For all of these metrics, we were simply using a boolean value to determine if each metric was
similar or not. We did consider multiple degrees of similarity for each metric, but in the end
decided against it. We believe that having more than one degree would cause a few problems.
First, it would complicate how we decide what to show and what to not show. With one

15

degree, we were able to easily create a function that used weighting that allowed us or the user
to determine exactly which metrics would cause a relationship to display. Multiple degrees
would add a second weighting factor to each metric which would likely cause additional
confusion to many users. In addition, determining the math for obtaining a similarly useful
display with multiple degrees would be far more complicated than what was required for a
single degree. As we settled upon 80% as our minimum, there was really nowhere to go with
multiple degrees. If we assume 80% was “medium” that would mean that 90% or 100% would
be high and 60% or 70% would be low. Since we were using one tenth of the standard deviation
– a very small value – for our percentages, a difference of 10% is not significant enough to
warrant the separation. If we were to use any values above or below our 80% threshold, it
would simply be to slightly alter the length of an edge in the visualization, and would not have
any bearing on determining whether or not two songs are similar or not. By comparing the
minor benefit of slightly more accurate edge weights to the needless complicating factors, we
chose to keep metric comparisons as a single degree.

3.3.3 Storage
There were many choices to consider in this area. The two that we weighed most heavily on
were an approach with tables of numerical relevance data and a more object-oriented
approach where each document would encapsulate only information relevant to itself. The
following subsections explain the two competing systems and the possible optimizations that
could be used for each.

When we originally began implementing this aspect of our system we went with the first
option, tables, as described below. In our minds it seemed preferable because it did not rely
upon the ordering between the list of documents and the word frequency data table being in
sync. In the object-based version if the ordering in the list of documents was somehow changed
any given document might no longer point to the correct relevance value when a comparison
was made. In the table-based version, even if the list of documents was reordered each
document itself stores an index to its row or column.

While we acknowledged that there would be wasted cells in these tables we did not foresee
just how large they would be and how little of them would actually be truly utilized. It did not
take us long to realize that the tables we were using would cause considerable problems down
the line. A two-dimensional array of 32 bit ints with a width and height of 5605 is 16 * 5605 *
5605 bits, or around 60 megabytes per table. The word frequency table would be average
length of word * 5605 * the total number of unique words, which was in the tens of thousands.
Considering we would have one table for word frequency and (at least) one other for relevance
storage. This would cost potentially over a gigabyte of a user’s memory.

Consider a word that only occurs in a few documents. Instead of having a large number of cells
in the frequency table denoting the many documents with no occurrences of the word, the
object-based alternative would ensure that each document only stores the words it has
occurrences of. If a requested word is not in this stored list it turns out to be very simple to just
return a value of 0 programmatically. Because we knew it would lower the memory usage of

16

our program we opted to have each document object store the frequencies of only those words
it contained, per the latter alternative. At an abstract level many aspects of the table-based
alternative also apply.

Using Tables
The first option is the table approach. In this we foresaw two types of tables. In the first table,
each document is a row and each word is a column. The value in each cell of the table is the
number of occurrences of the word from that column in the document from that row. This
value may be zero if the word has no occurrences in the document, but can never be negative.

Filling this table would be a time consuming process depending upon the number of documents
being added. The parsing algorithm would have to check every word in a document being
parsed against all of the known words in the table. If the word already existed, the value at the
corresponding location in the table would have to be incremented. If the word did not already
exist, another column would have to be added to the table. However, if the word fell within our
list of stop-words it would simply be omitted. The intersections of any newly added columns
with previously parsed documents are simply be filled with zeros following this system.

In the second table, documents are listed across both rows and columns. The value in each cell
of the table is a relevance value calculated between the document from that cell’s row and the
document from that cell’s column. There are a number of different algorithms that can be used
to calculate relevance between documents, and therefore multiple tables may be calculated
and be at hand at any time.

With every document being compared against every other document in the collection, the
process of calculating relevance values turned out to be the most time-consuming processing
step, regardless of what system we use. Due to the bi-directionality of the relevance
relationship, only half of the cells in the table would need to be calculated and filled in this
manner.

Depending on the quantity of documents in the corpus, it could take time to find a desired cell
in the word or relevancy tables, especially if the desired document or word is at the far end of a
row or column of the table being accessed. A loop that checks each position for a desired object
might suffice for small quantities of data, but the seeking time would be improved by grouping
documents in some way to narrow searching to a smaller subset of the corpus. In a proposed
algorithm for this type of operation, two lists (one for documents and one for words) would
contain objects in alphabetical order. Each document and word object would contain an
identifier to serve as an index into these tables. For a certain document or word, the algorithm
for accessing a table entry would involve searching one of these lists beginning in the proper
alphabetical group, and then using the identifier as an index for the desired row or column in
the table. This operation would require that documents and words be maintained in these lists
sorted alphabetically.

17

Using Objects
The second option is one that just stores all relevant data for documents inside objects – one
for each document – including relevance values to all other documents. All documents objects
themselves would be stored in an ordered list. A document could be assumed to have an
identifier that is simply its index in this array-like structure. Internal to each document, in
addition to any attribute data it may contain, is a list of all unique parsed words from the
document text and the number of occurrences of each unique parsed word in the document.
This could be stored with a hash table of sorts mapping tokens, as keys, to frequencies, as
values. Also as a part of this system, each document contains a list of the relevance values
between itself and every other document in the collection. This is a one dimensional array of
values, where the index of each value matches the index of a document in the global list. This
rule must be true in order to maintain the integrity of the collection.

One simple optimization to this system of document objects would be to only store relevance
values between a document itself and documents with lower indices. This is based upon the
fact that the relevance between two documents is bi-directional, meaning that if document A
has a relevance of 32 to document B, then document B also has a relevance of 32 to document
A. So, if we are seeking the relevance of document A to document B, given that B has a higher
index than A, we use the object for document B to get the value we desire, which results in the
data taking up half of the space of using a 2-dimensional array. The overall idea of how
relevance is stored is not very different from the table-based approach; the main difference is
that the table is split up and stored in separate objects for each row.

3.4 Filter Specification
Filters are important to our application for narrowing the overall visualization to some subset of
the data. They can also be used to highlight data with specifically desired attributes. Both of
these functions can help a user discover certain relationships that may not be as obvious when
every node is being displayed in an identical manner. A filter, as we refer to it, consists of a
condition and an action. The composition of these two parts is outlined in the Conditions and
Actions subsection.

When we originally began thinking about filters we tried to shy away from implementation
specific details and focus more closely on what exactly we wanted them to do and how they
would work at a high level of abstraction. We decided early on that filters would be separate
from selection. This meant that the application of filters would never select or deselect
document nodes in the visualization. Filters would be used strictly for altering the appearance
of the graph with some set of global rules. A use case for filters might entail only showing songs
in the rock genre and highlight songs by the Rolling Stones.

We initially came up with a rather inventive way of specifying and structuring complex filters.
The system – specified and demonstrated in the Structuring Filters subsection -- involved
defining and storing filter conditions in a tree-like structure where conditions at the same level
of the tree would be ORed together and descendent conditions would be ANDed together with

18

their parent conditions. In order for the actions of a filter to be applied the resulting boolean
expression would need to evaluate to true.

An alternative to structuring filters that we came up with was a more simplistic approach where
each filter itself was just a single compound condition paired with some number of actions. In
order for these actions to be applied, each of the component conditions in the compound
conditions would need to be true – as if they were ANDed together.

While the latter method had the shortcoming of not being able to specify filters with OR
operations in their conditions we decided to choose this alternative because it was more basic
to implement and use and because the same outcomes could be accomplished by making
multiple filters – as will be demonstrated below. While the other system could produce
considerably more complex results with less repetition in condition creation, we surmised that
this level of usage would be beyond the capabilities of most users.

For the exact details of our chosen implementation of filters refer to the Filters section of
Architecture and Implementation. Otherwise refer to the following subsections for greater
detail on the overall design of the filter system.

3.4.1 Conditions and Actions
Filters are made up of conditions and actions. Conditions may easily be defined by three parts:
a Field, an Operation, and a Value.

For Fields that have numerical types (such as years, relevancies, ratings, etc) the Operation can
be “less than”, “equal to”, “not equal to”, “greater than”, “less than equal to”, and “greater
than equal to”. For numerical representations the Value is a user specified integer or floating
point number. It would be possible to specify multiple values if the Operation is either “equal
to” or “not equal to” but this is by no means a necessary feature. Either way the program would
need to ensure that the number entered is valid for the type of Field being used. For example, a
floating point number would not be valid as a year—it would need to be an integer. Optionally,
floating point numbers could be truncated to integers when necessary.

For Fields that have string representations—one or more tokens separated by spaces—the
Operation can be “equal to”, “not equal to”, “contains”, or “does not contain”. Any
alphanumeric value may be valid input. It would also be helpful to provide a list of known
strings from the corpus to display for guidance in creating applicable filters, but this should be
considered an enhancement.

Actions are defined as functions and multiple actions may be possible for a given filter. They are
fairly self explanatory:

1. Apply Color sets the color of any nodes meeting a condition to a specified color.

2. Apply Shape sets the shape of any nodes meeting a condition to a specified shape
and image.

19

3. Apply Scale sets the scale of any nodes meeting a condition to a specified size.

4. Apply Visibility sets the nodes meeting a condition to be either invisible or visible.
Alternatively, this action could allow for the setting of opacity along a sliding scale for
different levels of visibility.

3.4.2 Structuring Filters
Ordered Filters
In a basic implementation each individual filter is simply a list of basic conditions (forming a
single compound condition) with one to four of the actions specified above. Complex filtering
schemes under this system are accomplished through the order in which these individual filters
get applied. This is especially important for filters with overlapping conditions and different
conflicting actions. In the user interface of the application, functionality would need to be
provided for ordering filters to obtain different results.

To help explain this configuration, suppose that a user wishes to color all of the songs by the
artist “Simon and Garfunkel”, as well as the songs by “Dream Theater” on the album
“Systematic Chaos” that have either of the titles “Constant Motion” or “The Dark Eternal
Night”, or the songs by “Dream Theater” on the album “Images and Words” that do not have
the title “Pull Me Under”. This could be accomplished with the following four filters, each of
which triggers the same color action:

 - Artist = “Simon and Garfunkel”
 - Artist = “Dream Theater”

AND Album = “Systematic Chaos”
AND Title = “Constant Motion”

 - Artist = “Dream Theater”
AND Album = “Systematic Chaos”
AND Title = “The Dark Eternal Night”

 - Artist = “Dream Theater”
AND Album = “Images and Words”
AND Title != “Pull Me Under”

Compared to the alternative that we will introduce, this system requires a greater number of
filters in order to obtain similarly complex results. Having this many filters with the same
actions effectively ORs the conditions of each together. An advantage to this system is that for
each individual filter, compound conditions can be explained by simply stating that in order for
a filter’s actions to be applied, all of its sub conditions must be satisfied.

Filter Trees
In a more robust implementation a filter condition takes the form of a tree; one to four filters
actions can be paired with a single condition constructed this way. A user can choose what
branch to add a new condition statement to, or they can create a new branch. In this tree

20

system all filter conditions at equal depth under a single parent are ORed together, while a
filter condition and its child filter are ANDed together.

The entire operation for the same example used above is accomplished with a single filter
construct under this system. The filter condition tree for this construct looks as follows:

- Artist = “Simon and Garfunkel”
- Artist = “Dream Theater”
 - Album = “Systematic Chaos”
 - Title = “Constant Motion”
 - Title = “The Dark Eternal Night”
 - Album = “Images and Words”
 - Title != “Pull Me Under”

This tree generates the following Boolean expression:

artist.equals(“Simon and Garfunkel”) ||
(artist.equals(“Dream Theater”) &&

((album.equals(“Systematic Chaos”) &&
(title.equals(“Constant Motion) ||
title.equals(“The Dark Eternal Night”))) ||

 (album.equals(“Images and Words”) &&
 !title.equals(“Pull Me Under”))))

Under this system there would be a greater learning curve associated with filters; however,
there is much less repetition in specifying complex effects such as the one in our example. If
used, special care would have to be taken to design an interface to convey the power of this
mechanism without confusing and overwhelming inexperienced users.

3.4.3 Applying Filters
Regardless of how filters are structured, the application of filters involves checking each node in
the visualization against a condition and using a function to apply the desired effect on each
node where the condition is satisfied. If two or more filters conflict and are both being applied
(trying to make a node both green and red), then the nodes are updated with the effects of the
last filter to be applied.

Depending on the efficiency of the chosen routine, we knew that filters would either get
applied after each incremental change, after all changes were complete, or after a user-made
request was made to apply them. Filtering turned out to be a rather expensive process so fewer
executions of the operation were more desirable.

3.5 Fault Tolerance
Fault tolerance is the act of accepting user input that may have mistakes present in it and
attempting to return results close to what the user may have intended. In the context of our

21

application fault tolerance applies mainly to searches and filter conditions. Our application, if
fault tolerant, should recognize the similarity between a search term like “beetles” and the
stored artist “beatles” in the collection and bring this to the user’s attention. The idea is similar
to the “Did you mean?” feature provided by Google.

Through research we discovered an interesting way of implementing fault tolerance using the
Levenshtein Distance algorithm. The proposed system would calculate the number of steps
needed to change the search term into what might be a near match and compare that value to
a threshold. If accepted by the threshold the user would be made aware of the similarity and
could then manually indicate whether to treat the two terms as equal. While this system seems
sound, we were unable to implement it due to time constraints. An algorithm similar to
Levenshtein Distance was used for matching lines repetitions, which will be explained in the
Implementation and Architecture Fault Tolerance section.

Case insensitivity was a concern that came up during the implementation of our application and
could be considered a form of fault tolerance. Because most queries in well known applications
and search engines are case insensitive we decided that this was a necessary feature. Luckily
this was fairly simple to accomplish by storing strings in all lowercase and converting search
terms to all lowercase before performing searches.

One last issue that came up was in calculating line repetition. Many songs have repeated lines
that are slightly different every time they occur. For example, in Fooling Yourself by Styx, one
line in the song goes “And you’re fooling yourself if you don’t believe it,” while later in the song
the line is “You’re fooling yourself if you don’t believe it.” As far as our application is concerned,
this is considered repetition. When analyzing line repetition in two songs, we allow for a
tolerance of a one word difference between lines. This was done by compared words not only
in the same location in each line, but also in the next and previous locations. Doing this lets us
check for line differences not only in lines of different length, but also lines of the same length
with one word changed.

3.6 Visualization Displays
The goal of computer visualization is to assist in discovering trends or other useful features in a
dataset that would not have been apparent otherwise. In order to do this, we felt it was
necessary to give the user as much customization as possible, while also making it very easy to
achieve adequate results with minimal effort. As an example, consider the fact that while it is
useful to provide zooming capabilities in certain types of programs, it is also very frustrating if
the default level of zoom is completely ineffective in most cases. It might also be equally
frustrating if the zoom feature is worthless in the context it is used in.

Many of the features of visualizations changed over time. Often, these changes were made
after an initial implementation attempt due to resource constraints or unforeseen infeasibility.
For this reason, it can be difficult in general to draw a line between a design phase and an
implementation phase for visualization development.

22

3.6.1 Force Directed Graph
Our reading and prior experience helped familiarized us with a variety of visualization types,
their strengths, and their weaknesses. As a result of this research we decided very early on to
use a graph-based visualization as the primary focus for this project. The type of graph we were
looking at, often referred to as a network diagram, is typically used for showing relationships
(edges) between items (nodes). In our intended application the individuals would be the
documents in our collection and the relationships would be the comparisons between
documents. In order to automate the task of laying out this visualization we also decided to
utilize a force-directed spring graph algorithm. The length and force of a spring would be
related to the relevance value between the two connected nodes.

Our original design and implementation of the force directed visualization was unsuccessful. It
involved connecting every node to every other node in the graph, which resulted in an
extremely large number of edges. For the 100 documents we originally tested with there were
9900 edges in total; for the 5605 documents in our full collection there would have been
31,410,420 edges! Under the force directed layout algorithm our graph took a very long time to
settle, or it would not settle at all. Not only was this impractical, it also resulted in a diagram
that was too cluttered to be of any use – even with all of the edges made invisible.

Realizing that we had missed a major flaw in our original design, we determined that the only
way to continue using this graph-based visualization was to only show edges between
documents that were significantly related. This new design would be beneficial because it
would result in a more readable graph that could be generated quicker using the force directed
layout. It also meant that users would only see the relationships that they were interested in,
which is why they would be using our application in the first place. When we implemented this
revised design we found the outcome to be far more desirable. By revising and improving our
relevance algorithm we were able to further improve the visualization’s appearance and
usefulness.

Figure 1: A screenshot of an early force-directed visualization with invisible edges and

labels showing the artist and title of each song represented.

23

For the appearance of the force directed graph we originally intended for each node to be a
small, gray circle with invisible edges connecting them. The user would have the option of
turning edges on or off when desired. Our expectation was for nodes to end up close to one
another as a result of the force directed layout. In practice – and as shown in Figure 1 – it was
difficult to determine which nodes were intended to be related to one another with the edges
turned off, so we removed this feature very early on and just made all edges visible by default.

We initially toyed with the idea of displaying the name of each document on the nodes
themselves. This can also be seen in Figure 1. The result was too difficult to read when many
nodes were clustered together, so we opted to retain the appearance of nodes as small circles
and used hover-action tooltips to show additional details about each instead.

3.6.2 Node Centric Graph
Another type of visualization that we thought would be useful for our purposes was something
along the lines of the radial graph view, which centers a specific node and arranges the
remaining nodes around it in rings. Because our revised force directed graph could only display
the connections above a certain relevance cutoff we became interested in an alternative view
that would show more of the connections off of a given document’s node. The radial graph
layout we came across during our investigations4 was the inspiration for what became the node
centric graph visualization, shown in Figure 2.

We implemented our node centric graph view very much the same as we did the force directed
visualization. In fact, the node centric view was also force directed and used the same relevance
data for edge weights. To accomplish a radial layout we only added edges off of the central
node to each other node around it. Different nodes could be centered this way by removing all
existing edges and then adding new ones off of the new target to all others.

Figure 2: A screenshot of an early node-centric visualization with some nodes

and their edges selected in red.

24

Our original node centric graph visualization displayed the entire collection of documents
around the centered node. While this was fine for our initially small test collections, it became a
problem when tested with larger datasets. This was resolved by only adding the top fifty related
nodes and edges when centering a document. This turned out to be more than enough for this
visualization to be useful without becoming too cluttered or unresponsive.

3.6.3 Other Visualization Types
In addition to the two visualization types explained above, which were generally chosen to
display more collection-wide views of multiple documents, we also chose to include two other
types of visualizations for users to explore documents and their relationships. These
visualizations are focused more on specific documents.

The first of these document specific views was a tag cloud like we had seen and researched on
Many Eyes2, used for displaying all of the unique words in a document scaled by frequency. We
wanted an interesting way of looking at a document’s contents at-a-glance and knew that the
tag cloudiii

3.6.4 Edge Weights

 would be an effective way of accomplishing this task. The second type of document
specific view we set out to create was a visualization that could aid in the comparison of two
specific documents. We actually ended up prototyping two somewhat different versions of this
during the implementation phase of our project. Other than color scheme and minor
appearance adjustments, none of these visualizations changed too drastically over the course
of the project. For additional details about these diagrams, refer to the Implementation and
Architecture chapter.

Rather than display all relationships as a static length, we opted to use edge weighting in order
to better convey how related two songs were. The closer songs are, the more similar they are.
We also wanted a way to specify weightings on each metric, plus a way to only show
relationships that were very significant. That is, we would rather show relationships that had
four or five metrics in common, since two songs having the same number of lines and nothing
else are not very similar.

There are six metrics that are either true or false. By applying a weighting to each metric, we
can get some variability in how much each metric counts, and which will result in a final edge
weight. For example, assume all the weights are set to 2; the maximum possible edge weight
would be 12. If four metrics were set to 2 and the other two set to 4, the maximum edge weight
would be 16. Using this, we can set a minimum required edge weight to only display songs that
meet certain requirements. For our project, we used the following weights:

- Total Lines: 3
- Lines Per Unique Line: 2
- Syllables Per Line: 4

iii Throughout the remainder of our report “word cloud” will refer to the tag cloud visualization type. We thought
this name was more appropriate because in our case it is not used for tags.

25

- Words per Unique Word: 3
- Maximum Times a Line Repeats: 1
- Percent Words In Common: 6

These weights were specifically chosen after extensive testing. A default value of 3 was decided
upon arbitrarily, however, as the scale of the weights did not really matter. The two line
repetition metrics are related in such a way that both of them together are not necessarily any
more important than any other single metric. Syllables per line proved to be a very interesting
metric that often said a lot about the song structure. For instance, in White Room by Cream,
every line has four syllables. Percent words in common, which is our only context-based metric
and was the basis for the whole project, is weighted doubly.

These weights provide for a maximum edge weight of 19. Our goal in setting the minimum
value was to ensure that the percent words in common metric was a requirement for displaying
the relationship. This is why it was weighted doubly, and why our minimum edge weight
requirement could not go below 14. Any value above 14 was guaranteed to have that metric. In
its final form, the minimum value was set to 16 – this was the lowest value we could set it. If it
was set any lower, too many songs would be displayed and the force-directed layout would
crash due to a recursive function call. There are ways around this, which are described in the
future works section, 6.3.

3.7 User Interface
The user interface of our application supports many types of user interactions, including
alternate views for focusing attention at different levels of granularity, filters for altering the
visualization appearance and visible content, and additional widgets for manipulating and
displaying the underlying data of the visualization in various ways.

While it would do nothing without the “meat and bones” described in the previous sections,
the outer shell of our application may be the most important aspect of the program from the
user’s perspective; for this reason considerable time was spent in designing the layout of and
connections between the various screens and components of the application.

This section describes the early design and layout of the graphical user interface (GUI) of our
application and how each piece of this interface was initially perceived to connect together. It is
important to note that all of this is a “first draft” created long before implementation and
testing of the software. This is mostly just a general vision and guideline that we followed and is
described here mainly for any comparisons that can be made to the final implementation. The
Architecture and Implementation section will explain any major alterations to this initial design.

3.7.1 Main Visualization Window
When the application first starts the Main Visualization Window is displayed. The key purpose
of the Main Window is to display the force-directed document visualization. In addition, all
other functions of the application are accessible through buttons on this initial interface and

26

options available under drop-down menus. Figure 3 shows the initial mockup of the Main
Visualization Window.

The visualization is given as much space as possible. A narrow drop-down menu bar takes up
around 20 pixels at the top of the Main Window. Below this is a toolbar with shortcut-buttons
to common tasks; it has a maximum height of around 30 pixels. The exact dimensions of these
features are not really as important as the general rule of keeping them as thin and readable as
possible.

At the bottom of the Main Window there is a Message Area; this takes around 50 pixels from
the height of the visualization space. It could also be possible for some of these components to
be arranged on the sides of the Main Window to free up additional vertical space back to the
visualization panel.

Message Area
The purpose of the Message Area is to update the user on the status of various tasks performed
by the application without the need for intrusive dialog boxes. For example: when a user loads
new documents into the corpus, the progress of parsing and processing the data is denoted by
a stream of messages indicating the success or failure to load each. The panel is scrollable so
that information does not get lost if multiple messages appear at the same time.

It may be that there are no significant status messages to send to the user (especially if
individual document loading is omitted in the implementation). The message area can be used
to show context-sensitive help messages to the user if this is the case.

Mouse: Selecting and Deselecting Nodes in the Visualization
To edit the selection of nodes in the visualization we use a system where clicking a node once
selects it and clicking again (on a selected node) deselects it. A selection helper under the Edit
Menu allows the selection of documents from a list or some custom widget as well, which can
be useful if the visualization is packed with many tiny nodes.

Figure 3: A Mockup of the Main Visualization Window.

27

Mouse: Zooming and Panning the Visualization
To zoom in and out on the visualization the user can either select the appropriate option in the
View Dropdown Menu or right click and move in or out to zoom. To pan the visualization the
user can left click on an empty location to move the view window of the visualization to center
on that point.

Button: Add Document(s)
This button opens the Add/Remove Documents Window. See the appropriate subsection below
for further details.

Button: Filters
This button opens the Filters List Window. See the appropriate subsection below for further
details.

Button: Recommendations
This button opens the Recommendations Window. See the appropriate subsection below for
further details.

Button: Compare
This button opens a Compare Documents Window for two of the documents selected. The
purpose of the Compare Window is to show the text of each document with shared words
highlighted in the same color. See below for further details.

Button: Properties
This button opens a Document Properties Window for each currently selected Document node.
The purpose of the Properties Window is to display metadata for a selected document. See the
appropriate subsection below for further details.

Button: Search
This button opens the Search Window, which allows users to focus their attention around a set
of selected nodes. See the appropriate subsection below for further details.

Menu Bar
Rather than specifically naming the exact contents of each menu category it seems better to
describe the rules used for assigning items to each category, along with some likely examples
for each.

• The File Menu is used for actions that change the running state of the application in
some way or involve saving and loading data. Some examples of these types of
interaction are “Exit”, “Export Image”, “Export Text”, or “Add Documents”.

• The Edit Menu is used for actions that edit data already present in the application
(without requiring additional file input), that manipulate selection, or that set certain
preferences. Some examples of these types of interactions are “Clear Selection”, “Select
All”, “Edit Edge Weights”, or “Edit Color Scheme”.

28

• The View Menu is used for actions that alter the user’s view of the visualization in some
way or display information without enabling any kind of editing. Some example
interactions in this category are “Zoom”, “Filter”, “View Properties”, and “View
Comparison”.

• The Options Menu is different from the others. Currently selected options have a check
mark next to them. If the user wants to change the current visualization type or the
current relevance algorithm used, they can simply pick another one. The location of the
check mark is changed as a result and the visualization is updated.

3.7.2 Add/Remove Documents Window
The Add/Remove Documents Window is displayed, or would have been had we implemented it,
when the user presses the Add Document(s) button or when the user selects a similar option
under the File Menu on the Main Visualization Window. It displays two lists, one for documents
that should be added to the active collection, or corpus, and another for documents that should
be removed. A Mockup of this interface is shown in Figure 4.

Pressing the Add Document from XML File button opens a file browser through which the user
can search for and load XML files. Loaded XML files are displayed in the list of documents to be
added.

Pressing the Remove Document from Corpus button opens a list of the documents currently in
the corpus. Selecting documents in this list adds them to the list of documents to be removed.

Pressing the Apply button makes the application perform all requested additions and then
removals and then clears both lists. Closing the Add/Remove Documents Window discards any
documents in either list and any pending additions and removals are not applied.

No changes to the corpus occur until the Apply button is pressed. This is essentially a “refresh”
button. The user can add documents or remove documents in this interface, but until they hit
Apply no changes are visible in any other parts of the application.

Figure 4: A Mockup of the Add/Remove Documents Window.

29

3.7.3 Filters List Window
The Filters List Window is displayed when the user presses the Filters button or when the user
selects an option under the View Menu on the Main Visualization Window. Figure 5 shows a
Mockup of this interface element.

The Filters List Window displays a roster of available filters with check boxes next to each to
indicate whether or not it is active. Filters can be selected in this view as well. Pressing the Edit
button with a filter selected opens an Edit Filter Window for that filter. Pressing the Add button
opens an Edit Filter Window for a new filter.

3.7.4 Edit Filter Window
The Edit Filters Window is displayed when the user presses the Edit or Add Filter buttons in the
Filter List Window or the Add Filter option under the Edit Menu on the Main Visualization
Window. Figure 6 shows a Mockup of this window.

Figure 6: A Mockup of the Edit Filter Window.

Figure 5: A Mockup of the Filters List Window.

30

The Edit Filter Window contains three fields for specifying the condition of the filter. Some of
these fields are drop down menus to limit the user to only specifying one of a number of valid
options. Other fields allow the user to type values such as strings, integers, or floating point
numbers such as for a search query.

The window also contains four possible actions that can be applied using check boxes and
customized in different ways. The Choose Color button opens a simple color picker dialog. The
Choose Shape button has a similar function. Scaling is applied with a slider, and visibility with
radio buttons or a slider as well for a range of opacity values.

An optional, although very useful, addition is to have a preview of what a node will look like if
the filter is applied to it.

3.7.5 Document Properties Window
The Document Properties Window is displayed when the user presses the Properties button or
when the user selects an option under the View Menu on the Main Visualization Window. One
Document Properties Window opens for each document Node selected in the Visualization
View. A Mockup of what a Properties Window looks like is shown in Figure 7.

This Window consists of two text areas. One displays the formatted metadata for the
document. The other displays document text. Either or both text areas may be scrollable to
allow reading of a long document’s text or a long list of metadata.

The Display Document Visualization button switches the Document Properties Window to
display a word cloud for the particular selected Document. This is the type of button that
remains visually “pressed in” to convey the ability to toggle between these two views (on when
pressed in, off when not).

3.7.6 Document Comparison Window
The Compare Window is displayed when the user presses the Compare button or when the
user selects the option under the View Menu on the Main Visualization Window. One Compare
Window opens for each document Node selected in the Visualization View. This is shown in
Figure 8.

Figure 7: A Mockup of the Document Properties Window.

31

This Window consists of a text box showing the text of a document, highlighted for comparison.
A word that appears in each Compare Window is highlighted in the same color in the Compare
Windows of the other documents it appears in.

Due to the constraints of screen size and resolution, only a finite number of Compare Window
can be open at a time. These windows are opened side-by-side to facilitate ease of comparison
between documents. If more than the allowed number of documents are selected when the
comparison is requested, a dialog asks the user to choose which of the selected document
Nodes to compare from a list of those selected.

3.7.7 Search Window
The search window allows the user to search for a document using a specific field, much like
filters. This window is opened either with a button on the UI or through the View menu bar.

The window consists of several text boxes, similar to an advanced search system commonly
found in a search engine. Every column for metadata has its own text box allowing the user to
search based on the terms entered in each box. The application obtains search parameters
from every text box that has been filled in by the user. When the search completes, all nodes
that match the search are selected.

Figure 8: A Mockup of three side-by-side Document Comparison Windows with highlighted text indicating
shared lines between all three documents being compared.

32

4 Architecture and Implementation
The main goals of our implementation, aside from the application working as intended, were
usability and efficiency. Using our previous designs as a guide, we were able to implement most
things as originally envisioned. Many components were heavily optimized yet still functioned
the same way.

This section defines implementation-specific details on each component of our application. This
includes in-depth discussion about data structures, libraries, algorithms, optimizations, and
similar topics.

4.1 Lyrics Gathering
As mentioned in the design section, our lyrics gatherer was written in Python using
BeautifulSoup for assistance. Speed was not an issue for this application, so using
BeautifulSoup, which is not particularly fast, was good because it allowed very simple
navigating and searching of a web page. This was also a standalone application, separate from
the main visualization system, though in the future it would be possible to link them together to
allow users to automatically add songs they want.

The code has four basic components. For every song listed in the input file (a list of songs and
their artists), all four steps repeat. The first step is the last.fm check. If the song exists on
last.fm, the statistics (listeners, plays, genres…) are extracted. BeautifulSoup makes this easy,
allowing function calls such as:

 soup = BeautifulSoup(urllib2.urlopen(‘www.last.fm/music/’ + artist + ‘/_/’ + song))
 tempStats = soup.find(“p”, {“class” : “stats”}).contents[0]

This code downloads the last.fm page for the song, creates a BeautifulSoup object, finds the tag
<p class=”stats”> in the HTML document (which is the only <p> tag with that class), and extracts
the contents. After some minor whitespace cleaning, we get the number of plays and unique
listeners. If the song does not exist on last.fm, the rest of the steps are skipped and the next
song is processed.

The second step is to download the lyrics from metrolyrics.com. This works the same way as
getting the stats from last.fm, however much more cleaning is required. Additionally, some
text, such as [SOLO] or (chorus), is removed to make data cleaning later on easier. However, it
is possible metrolyrics.com is missing the current song, the lyrics of the song are missing, or the
song’s lyrics are licensed and metrolyrics.com is not allowed to display them, which leads to the
third step.

If for some reason the lyrics cannot be downloaded, the backup site, azlyrics.com, is called. This
goes through the same exact process as getting the lyrics from metrolyrics.com. If the lyrics
cannot be found, the song is skipped and the next song is processed.

33

The last step is outputting the data to an XML file. This step only occurs if both the statistics and
lyrics are successfully downloaded. The text is output to a file where the name is ‘artist –
song.xml’ in the format previously described in the design section. After the file is written, the
next song is processed until there are no songs left in the input file.

4.2 Starting the Application
When the main application first loads, a special launcher screen appears to the user. This
screen allows the user to select which set of songs they want to load. From here, the
application can progress two different ways.

If the chosen song collection has never been given to the application before, every song must
be processed and compared to every other song before the visualization can be generated. The
first step in accomplishing this is to create an object for every song in the list. Every object also
requires an ID number in order to access the song later in the application – the IDs correspond
to the order in which the songs are read. If an NXP file exists for the song, the NXP file is used
and the already-processed values are just copied over to the new object. Since NXP files can
exist without a relevance table and are independent of relevance calculations, checking for it
can help speed up load time for collections without REL files. If only the XML file exists, the
available information is stored in the object for processing later.

Next comes the processing of the lyrics for each song. If NXP files were used instead of XML,
this step is skipped. Here is where all of the metric information for a song is extracted. First,
lines are read as a whole. For the line count metric, it simply adds 1 to the total for any line that
isn’t just whitespace. Line repetition is determined by storing unique lines in an array. Every
time a new line is read, it is checked with all the previously stored lines in the array according to
the algorithm defined in section 3.6 Fault Tolerance and added to the array if it is not already
existent. The maximum number of times each line repeats is stored and used to determine
number of unique lines and the maximum number of times a single line is repeated. Next, each
word in the line is read individually. The number of syllables in each word is added to a running
total and stored after all words have been added. The words themselves are then stored
according to whether or not they are in the stop word list, and here total words and number of
unique words in the song are computed. After all songs are completed, the standard deviation
for each metric is calculated.

After processing, the relevance values must be calculated. This is the most time-intensive step,
since the algorithm runs n2/2 times where n is the total number of songs in the collection. Each
of the six metrics are calculated exactly as described in section 3.2.2 Relevance Algorithms. The
resulting relevance value is stored as a short, where each metric occupies a different bit using
bitwise operations. Shorts were chosen instead of bytes to easily allow for the expansion of
more than 8 metrics while still taking much less space than ints. Initially the relevance result is
set to 0, and there are global constants for each metric. The value for these constants follow a
2n enumeration, where n is from 0 to 5. For example, take syllables per line, the third metric. If
this metric is determined to be significantly related between the two songs, the following code
is called:

34

result = (short) (result | Global.METRIC3);

Assuming no other metrics were significantly related, this is the same as calling 0 | 4, or 0 | 100
in binary, which equals 4, or 100 in binary. Alternatively, assume the first two metrics were
significantly related, and the result originally set to 3 (20 + 21). Then, the bitwise operation
would be 3 | 4, or 11 | 100 in binary, which equals 7, or 111 in binary. Since the constants
follow a 2n pattern, every metric occupies a different bit. Later, when determining whether or
not the two songs have that metric in common, the following code can be used:

 if (result & Global.METRIC3) {
 …
 }

This format allows six values to be stored in a single one- or two-digit number, which is
especially useful for keeping the file size down when creating the REL file. This value is stored in
the song object whose ID is higher, such that every document stores the relevance value
between it and all documents with a lower ID than it. When the relevance calculations finish,
the NXP files for the input data are written as well as the REL and DLT files.

If the chosen song collection has already been processed by the application, the loading process
is simple. The files have already been processed and the relevance table already calculated. So,
the NXP files are read according to the list in the DLT file and stored as if they had just finished
the processing step, and then the REL file is read and stored as if they had just finished the
relevance calculation step. From here, the data is passed off to the visualization portion of the
application, as described in the next section.

4.3 The Visualizations
This section discusses the implementation details of the various visualizations our application
provides. The visualizations include the Global force directed layout, the Local node centric
layout, the document specific Word Cloud, and the two types of Comparison Visualizations. All
visualizations are graphs with nodes and sometimes edges, even if they do not appear so. In the
architecture of our system, all visualizations extends the Prefuse Display class; this allows us to
easily construct a visualization instance and add it as a component to a Java Swing container as
if it was a JPanel or a JFrame.

4.3.1 Common Implementation Overview
Creating a Visualization
There are a number of steps that must be carried out before the visualization is ready to be
displayed. The first step is to build the Graph object, consisting of nodes and edges. The
structure of the Graph and the algorithm for building it is specific to the type of the
visualization being constructed, but nodes and edges are always created using the Graph class’s
addNode() and addEdge() methods. In addition to defining a structure of nodes and edges, a
Graph can store certain data about these objects in a table. It is important to have certain
metadata in the Node tables of the Global and Local visualizations for use by Filter Predicates,

35

as described in section 4.4. To define a field of data for a Node, the field must first be declared
in the Graph via the addColumn(ColumnName, Class) method; ColumnName is a key for getting
and setting data stored in that specific column; Class is the type—int, float, double, String—of
data being stored in that specific column. Methods for getting and setting fields for all of Java’s
built in types are provided by Prefuse given a Node or Edge object.

Once the Graph is fully built up and filled with any necessary data it needs to be added to a
Visualization instance. We always use the default constructor for Visualization and then add the
Graph with add(GraphName, Graph). For each of our Visualizations there is only one Graph.

After the Visualization has a Graph additional Actions for layout and appearance can be
specified using the putAction(ActionName, Action) method. Finally, the visualization itself gets
added to the Display instance and the visualization gets painted to the screen, assuming it is
placed in a visible container.

Common Visualization Interactions
Java Prefuse provides certain built-in interactions to Displays that we found very useful. These
are known as ControlListeners and are added to a visualization Display via the
addControlListener(ControlListener) method. All visualizations use the PanControl, the
ZoomControl, and the ZoomToFitControl. The PanControl allows the user to left click on the
empty background of a Display and slide the view left, right, up, and down as long the button is
kept held down. Similarly, the ZoomControl allows the user to right click on the empty
background of a Display and move the view in and out by moving the mouse forwards and
backwards with the button held down. Finally, the ZoomToFitControl allows the user to right
click and release on the empty background of a Display to perform an automatic zoom and pan
that centers and fits the entire graph on the screen. Although the exact button mappings may
not be the same, these are interactions that we identified in our original design. Other types of
ControlListeners are utilized in some visualizations as well.

Global Color Schemes
All of the visualizations in our program utilize a global color scheme system. Global is a class
filled with public static data fields and functions used for constants that need to be accessed at
many places in our code. The color scheme system implemented in the Global class works as
follows.

The Global class has a colors field, which is just an array of integers. At the start of the
application the programmer can call the Global.setScheme(scheme) method in which scheme is
the value of a constant representing the desired color scheme. Calling this method populates
the Global.colors array with the values of the requested color scheme. To access a color we use
the Global.colors array with a color field constant as the index.

For example, Global.setScheme(Global.COLOR_DEFAULT) populates the colors array with the
color values for the default color scheme. Global.colors[Global.TEXT] gets the Text color of the
current scheme out of the array. If a color scheme is changed, the changes are not applied until
a redraw function is explicitly called.

36

Edge Weights
As described before, our application computes edge weight values that range from 0 to 19.
However, a small conversion occurs to convert this calculated edge weight into what is used by
the visualization. The edge weight is first multiplied by five, which we determined to be a good
size that shows songs not too far apart and not too close together so that you cannot tell the
difference between edge weights. Then, the value is inverted such that an edge weight of 19 is
set to 0, and an edge weight of 0 is set to 95. Finally, a base value of 5 is added to all values.

In order to skip this calculation every time the visualization needed to be remade, a shortcut
was implemented. At the start of the application, an array of size 64 is created, which is the
maximum number of possible metric combinations, 26. In each element of the array, the
adjusted edge weight is stored for that relevance value. For instance, the 13th element of the
array contains the adjusted edge weight for any relationship that has metrics 4, 2, and 1 (8 + 4 +
1) set to true and all others false. According to the adjustment calculation, the value stored
here, taking into account their respective weights 3, 4 and 3, is 5 + 5•19 - 5•10 = 50.

4.3.2 Global Force Directed Visualization
The Global Force Directed visualization was the focus of our project. It shows documents in the
collection as nodes and the relations between documents as edges of differing length. We have
discussed previously how this visualization has changed with time; in the beginning it displayed
all of the documents in the collection and all of the relations between those documents; in the
final implementation it only displays the most relevant documents and edges in the collection.
This means that documents that are not significantly similar to any other documents do not get
shown in the visualization.

The GlobalGraphView utilizes a force-directed layout algorithm to arrange nodes and edges on
the screen. While nodes naturally repel one another, an edge keeps two nodes tethered
together. The weight of an edge determines its length.

When an instance of GlobalGraphView is constructed it is passed the Corpus object containing
all of the documents in the collection. Certain columns are always added to the visualization’s
graph. These include a unique id, a field of the name of a document, a stroke color value for
selection control, a text field for filters over a documents text, and a label field for hover-action
tooltip control. A field for edge weights is also added to the graph, although only edges utilize
this column.

Because our application is designed and implemented with future changes in mind, additional
node attributes such as metadata cannot be hard-coded into the graph and must be added
dynamically. The Corpus object that the GlobalGraphView obtains as a parameter through its
constructor can be polled for the quantity, names, and types of the document attributes it
contains using the getAttributes(), getAttributeName(index), and getAttributeClass(index)
methods, respectively. Using these we iterate over each attribute and create a new column
appropriate for each piece of metadata that will be added. While the values of these attributes

37

are stored in the Corpus already, they must be added to the graph for our filters to have access
to them.

A second graph, the purpose of which will be explained later, gets created following this same
process. We will refer to this second graph as the inverse of the first.

Once the structure of the document is defined we can begin adding nodes and edges. To do this
we must first identify only those nodes connected to edges that are above the global value. The
algorithm we use for this process is shown below (in pseudo-code):

 for every document i in corpus {
 for every other document j in corpus {
 if edge weight between i and j <= threshold value {
 if i is not already added {
 add node for i
 save mapping between i’s index in the corpus and i’s node id
 }
 if j is not already added {
 add node for j
 save mapping between j’s index in the corpus and j’s node id
 if j was added to inverse graph {
 remove i from the inverse graph
 remove i from the inverse graph mapping
 }
 }
 create an edge between node with i's id and node with j’s id
 }
 }
 if i was never added {
 add node for i to the inverse graph
 save mapping between i’s index in the corpus and i’s node id in the inverse graph
 }
 }

To check every relevance relation in the corpus we use two for-loops, one nested inside the
other. The first for-loop traverses every document in the collection. The second for-loop
traverses every other document in the collection up to the current document of the first for
loop. This cuts the number of comparisons in half, which can be done due to the fact that the
relevance between A and B is the same as the relevance between B and A.

The Corpus method getRelevanceBetween(docIndex1, docIndex2) gets the relevance value,
which is converted to an edge weight, and then compared to the global minimum display
cutoff. The highest relevance values translate to the lowest edge weight values for the shortest
edges in the visualization. If the weight between two documents is less than the threshold, both
of the nodes are added and an edge gets created between them.

38

Following this reasoning so far, documents could be added twice. For this reason we store
which documents have already been added by saving an entry in a mapping Hashtable.
Basically, if a document has a mapping, a node already exists and a new one need not be
added. The mappings themselves pair a corpus document index to a visualization document
node id and are useful for selecting documents between the corpus and the visualization.

At the end of the outer for-loop is a condition that checks whether the current document was
ever added at any point to the visualization based on the relevance values that were examined.
If the document never was added to the graph, a node is created in the inverse graph
mentioned earlier. The inverse graph exists for search functionality, which applies predicates to
graphs in order to make selections. By searching both the visible graph and invisible inverse
graph we can select and view any document in the collection, even if it does not show in the
visualization.

The pseudo-code does not show it, but each time a new node is added for a document, all of
the metadata from the document also gets entered into columns in the node table. At the
completion of this algorithm, both graphs should be fully populated. The first graph can then be
added to a new Visualization instance (which gets added to the display). The second is only
saved to a local field; it never gets displayed.

Setting up the visualization’s force directed layout is a simple matter of instantiating a new
object of the layout’s class and adding it in an ActionList to the visualization. Calling
visualization.run(“layout”) executes the layout algorithm.

GlobalGraphView uses a number of control listeners in addition to the typical Zoom-,
ZoomToFit-, and Pan- Controls that get added to all of our visualizations. The ToolTipControl is
used to display hover-action tooltips for node and edge information. A custom SelectionControl
is used to handle selection and deselection of nodes and edges in the visualization. A
DragControl is used to grab and drag nodes in the visualization, which can be useful if many
nodes are clustered on top of one another. Finally, a ControlAdapter for mouse events is added
to trigger context sensitive help text and recognize right clicks on nodes for centering the Local
View.

4.3.3 Local Node Centric Visualization
The Node Centric Visualization displays the local “neighborhood” of a specific document in the
collection. While a node that displays in the Global Force Directed Visualization is only
connected to nodes that are within a certain threshold of closeness, the Local Node Centric
Visualization displays a number of the closest documents to a specific document. The node of
the document being examined is in the center and the radial distance outward to another
document’s node is indicative of how similar it is to the center. The number of outer nodes that
get added is defined by a constant in the NodeCentricGraphView class. Although this number
could just as easily be dynamic and user-defined, we found a default value to be more than
sufficient for most cases.

39

The steps of graph creation for NodeCentricGraphView are considerably simpler than those of
the GlobalGraphView. First we obtain all of the documents from the Corpus that gets passed
through the constructor. Next, we add each document that is not the intended center to a list
of sortable objects along with a relevance value. Using the Collections.sort(ArrayList) method
automatically performs an efficient sort on the list. Following this, we iterate over a set number
of the top nodes from the list, adding a node and an edge to the center for each. Because the
NodeCentricGraphView is filterable alongside the GLobalGraphView, each node is also
populated with attribute information and metadata from the document it represents.

Adding the graph to the new Visualization instance and running the force-directed layout
automatically arranges all nodes around the center node based on their edge weights. To
prevent the graph from drifting off the screen, the center node is set to have a static position as
well.

All of the controls listeners utilized in GlobalGraphView are also used in this Visualization.
Rather than switching visualizations, the right click ControlAdapter generates a new
NodeCentricGraphView for the document whose node was clicked on.

Some experimentation with the NodeCentricGraph view eventually brought the constant
number of radial nodes down to a value of fifty. When we were working with earlier smaller
collections we would display all nodes in this Visualization, but with the full 5605 of our full
corpus we began encountering exceptions due to very deep recursive calls in the force directed
layout function. We realized around this point that the any document past the first twenty most
related are not very related at all and eventually settled upon our final value as a compromise
between the interesting appearance of many nodes and the useful function of displaying the
local “neighborhood” of a particular document.

4.3.4 Document Word Cloud Visualization
As we identified in our original design, the Word Cloud visualization is a diagram that shows all
of the unique words from the text of a document, scaling those words to a size relative to their
frequency in the document and arranging them so that they are all visible.

Our Word Cloud visualization, called DocuCloud, utilizes the same force-directed layout used by
the Global and Local visualizations. The difference in this usage of the algorithm is that there
are no edges in the Word Cloud’s graph. Without any connections, all of the nodes repel one
another, causing the words being displayed to spread apart. Like the previous two
visualizations, this can result in an “exploding” animation as the entire diagram expands
outwards from a single center point.

When an instance of a DocuCloud is created, the constructor gets passed the document object
the Word Cloud will represent. The getTokenSet() function implemented by the Doc class
returns the Set of all unique words in that document.

To generate the graph we iterate over all of the words in the TokenSet, creating a new Node for
each. In each node we store the token string and its in-document frequency. The frequency

40

value determines the scale of the word. To apply this scale we use the setSize(size) function.
The scale value passed as an argument to this method is always ten times the frequency value.

As each Node is added to the graph, its frequency is checked against global minimum and global
maximum field values. If the frequency of the just-added word is a new minimum or maximum
it replaces the current one. These values are used to calculate the brightness value of each
word in the gradient color scheme (explained below).

Once the above steps are completed the Word Cloud is generated by adding the Graph to the
Visualization instance for the DocuCloud and by then adding that Visualization to the Display.
As mentioned earlier, the same ForceDirectedLayout is utilized to perform the arrangement. In
order for the words to be visible a LabelRenderer is added; this class takes the contents of the
“token” column for each node and displays that string instead of the default circular node. The
end result looks similar to what is seen in Figure 9.

Instead of displaying all words in the document in the default gray shown in Figure 9 we
implemented two alternative color schemes. The first of these is randomized and paints all of
the words different colors. A private method in the DocuCloud class is used to generate these
random color values using the HSBA (hue, saturation, brightness, and alpha) color model. In the
randomColor() function only the hue is randomized. Saturation, brightness, and alpha are all
fixed at 0.9, 0.85, and 0.75 respectively. The saturation and brightness were chosen to make
the colors show well against the black background of our default global color scheme. The
slightly transparent alpha value allows words to be seen through each other if they end up on
top of one another. The outcome of the random color scheme is shown in Figure 10.

Figure 9: A screenshot of the DocuCoud World Cloud visualization; larger words occur
more frequently in the song being visualized.

41

While the random color scheme has some appeal, it is more of a novelty. Our alternative color
scheme provides redundancy for the word scaling. The brighter the word, the larger the word,
the more frequently it occurs in the document being visualized. Similar to the randomized
scheme, a private function is used to generate the color value for a word based on two
parameters: brightness and hue. The brightness argument is the ratio of the current word
frequency over the maximum word frequency gathered during Graph creation. The hue
argument is specified by the user through the user interface. The saturation and alpha values
are fixed at 1.0 and 0.75, respectively. The result of this color scheme makes frequent words
brightest and infrequent words darkest. The result can be seen in Figure 11; notice how the hue
can be altered.

.

We feel that the Word Cloud visualization provides a useful at-a-glance indication of the most
frequent terms in a document. At one point we felt that this visualization would also be an
adequate way of comparing two documents side by side but this turned out not to be true.

Figure 11: Two screenshots of the DocuCoud with the gradient brightness color scheme, where frequent words – in addition to
being drawn larger – are colored brighter in the chosen hue.

Figure 10: A screenshot of the DocuCoud with random color scheme; the colors of
words have no purpose other than aesthetics.

42

4.3.5 Document Comparison Visualization (Connections)
In order to address the shortcoming of the Word Cloud visualization as a tool for comparing
two documents we set about implementing a visualization type that would perform this task.
This type of visualization was not in our original design and was really implemented based on
an idea.

The DocuCompare visualization shows two stacks of words. Each stack contains the unique
words from one of two documents being compared. The words in a stack are scaled and
ordered based on their frequency in the document they originate from, placing the most
frequent words at the top and scaling them largest. Any words that appear in both documents
are connected with a line.

Each word in this visualization is a Node. Each line in this visualization is an Edge connecting
two Nodes. This is a static visualization so no layout algorithm is run and all component Nodes
are placed programmatically.

To construct the Graph for this visualization we add a Node for each of the words from one
document in descending order of frequency, and then do the same for the other document.
When Nodes are being added for the second document a search is run against the Nodes added
for the first document to identify and add Edges for words that appear in both. Resizing each
Node by frequency and displaying labels to display the words on the visualization are both
accomplished in the same manner as in the Word Cloud visualization.

Figure 12: A diagram showing the DocuCompare visualization with a markup in white
indicating higher frequency words and words that appear in both documents being

compared.

43

After the Graph is added to the visualization, words can be arranged into two stacks by getting
the VisualItem for each Node and using the setX(double x) and setY(double y) methods to
perform manual positioning. The x position is fixed for each stack; words in the left are always
placed at negative 4000 on the x axis and words in the right stack are always placed at positive
4000. The y position of a given Node is always offset from the y position of the previously
placed Node by a value 100 times the frequency of the previous term. This relates vertical
spacing of Nodes to their scaling values so that words of different sizes never overlap. This
process, and an example of this visualization, is shown in Figure 12.

This visualization is effective for immediately seeing what words appear across both documents
that are being compared. It also gives an indication of how frequently a word is in one
document compared to the other. For example, “see” appears in both the left and right
documents shown in Figure 12, but the word is much more frequent in the left document than
it is in the right.

4.3.6 Document Comparison Visualization (Bars)
Later in the implementation of this project we added an alternative to the original comparison
visualization, which could become difficult to read for documents of very different lengths.

This newer comparison visualization, DocuCompare2, lists all of the words from both
documents being compared in a single stack, sorted alphabetically. Another change to the
arrangement and appearance of these Nodes is that they are not scaled by frequency so they
can be evenly spaced. As before, the words themselves are displayed as labels on Nodes using
the LabelRenderer.

Figure 13: A diagram showing the DocuCompare2 visualization with a markup indicating higher

frequency words and words that appear in both documents being compared.

44

To indicate frequency and whether or not a word is shared between both documents we use
horizontal bars that originate from each word in the stack. The length of a bar is indicative of
the frequency for the word it extrudes from. The side of the stack that a bar extrudes from tells
which document the word occurs in. If a word has bars on both ends that means it appears in
both documents. The resulting visualization is shown in Figure 13.

Bars are rendered as Edges that connect the Node of the word to an invisible Node placed
programmatically at the same y Position but with an x offset that is 30 times the frequency
value. To make the bars clearer, the Edges are given a thicker stroke width than the default by
getting the VisualItem for the Edge from the visualization and using the setStroke(stroke)
method.

4.4 Filters
The implementation of filters in our text visualization application has been built largely around
the existing Prefuse Expression Language, Predicated Actions, and ActionLists. This
infrastructure, provided by the Prefuse toolkit, allows lists of Actions (with conditions, or
Predicates) to be attached to a given Prefuse Visualization under a single ActionList. Each
ActionList added to the Visualization gets associated with a String token that can be used to run
the ActionList or remove it at any time.

Given the underlying list organization of Prefuse Actions, it seemed appropriate to use this
same structure for building filters. For this reason, we implemented the “simpler” alternative
for filters described in the Design and Preparation section. In this system every filter would be a
member of a list, with the ordering of the list denoting the order in which filters get applied.

Filters pair a condition (either singular or compound) and one to four of the previously
described action functions, which include Apply Color, Apply Shape, Apply Scale, and Apply
Visibility. Our application uses a Filter class that extends the Prefuse ActionList, acting as a
wrapper that provides fields for the name and description of a filter (which our user interface
displays). Because Filter extends ActionList, it inherits the add(Action) method and can be
added to a visualization as described above.

4.4.1 Prefuse Expression Language
The Prefuse Expression Language is a database-like query language provided by the Prefuse
toolkit. It can be used to obtain nodes and edges that match a certain criteria. A good reference
of functions provided by the Prefuse Expression Language can be found in the Prefuse API
Reference entry for the ExpressionParser class. What follows are the basic statements that we
have used for implementing the conditions in our filter system.

For all field types:
 Field equals value “[field name] = [field value]”
 Field does not equal value “NOT ([field name] = [field value])”

For numerical field types:

45

 Field greater than value “[field name] > [field value]”
 Field greater than or equal to value “[field name] >= [field value]”
 Field less than value “[field name] < [field value]”
 Field less than equal to value “[field name] <= [field value]”

For string field types:
 Field contains value “NOT ([field name = REPLACE([field name], [field value], ‘_’))”
 Field does not contain value “([field name = REPLACE([field name], [field value], ‘_’)”

For queries that deal with numerical types the field value should be either an integer or a
floating point number. For queries that deal with string types the field value is any alpha-
numeric string enclosed in single quotes. Field names are not enclosed in quotes.

More complex queries can be obtained by concatenating any of the queries above with an
“AND” statement between them. For example, “title = ‘let it be’ AND plays = 8845” returns only
those nodes with the title “let it be” and 8845 plays. While the Prefuse Expression language also
provides an “OR” operator, we do not provide compound filters with it in our filter system. The
same result can be accomplished by creating separate filters with identical Actions.

4.4.2 Predicates
Unparsed Prefuse Expression Language queries are Java Strings. To use these queries as
conditions for applying actions, the query must be converted into a Predicate. We accomplish
this by using the Prefuse ExpressionParser class, which provides a static function parse(String)
and a return value of the type Expression. This Expression can be cast as a Predicate and passed
to any Action type constructor as a condition. We will refer to Actions that get constructed with
Predicates as Predicated Actions.

Predicates can also be used in another way. Prefuse, like a database, stores information in
tables; depending on the table, each row can be either a node or an edge. If we have access to
either table we can use the get(Predicate) method to obtain an iterator of all of the row
numbers that match the query. This is not the way the filter system applies filter actions, but
other parts of the system (such as node selection) utilize this functionality.

4.4.3 Actions
To implement the action functions we described above, we utilized some of the Action
subclasses provided by Prefuse. The aptly named ColorAction applies a color to any applicable
nodes, allowing the programmer to specify what part of the node (stroke or fill) to affect. We
decided to have filters only affect the fill color of a node, leaving the stroke color as an indicator
of node and edge selection.

To change the shape of a node we used a ShapeAction, which takes as input one of the built in
Prefuse shape constants (cross, diamond, star, hexagon, rectangle, and triangles for each of the
four compass directions).

46

A similar SizeAction class exists for changing the scale of applicable nodes, given a numerical
value.

While a VisibilityAction does exist for toggling visibility of a node on and off, Prefuse does not
have a built in Action for applying opacity to a node. Because this functionality is far more
robust than just switching visibility on and off, we decided to write our own Action subclass,
extending the existing ColorAction to create our own custom VisAction. The VisAction stores an
opacity value, or alpha, when it gets created. Any applicable items in the visualization will get
passed to the process(VisualItem) method, which we overwrote to fetch the existing color of
the node, change the alpha component of that color’s numerical representation, and then
apply the changed color to the node fill color.

Related to this, we also established a scheme for reflecting node visibility to adjacent edges. For
each edge in the visualization we obtain the fill color of the two connected nodes. Next we
extract the alpha value of the two colors and apply the lesser of the two alpha values to the
edge being operated on. The result, shown in Figure 14, ensures that only edges connecting
two visible nodes can be seen.

4.4.4 Filter Creation
As far as the user is concerned, filter creation is really more of a matter related to the user
interface. This aspect of filter creation is therefore explained in the User Interface subsection.
What the user may not know is how their input on the Filter Creation Screen translates into a
complete Filter object in our system.

Figure 14: A screenshot of a graph with a markup showing how edges take on the lesser
opacity value of the two nodes they connect.

47

Filter creation is handled by a class called FilterFactory. In this class the getFilter() method grabs
the filter specifications from the GUI and constructs a Filter object according to the following
procedure.

First, raw unparsed query Strings are constructed. Before this Queries are broken down into
zero or more QueryBlocks. A QueryBlock is representative of one of the basic statements
described earlier. Creating query Strings from these blocks is a simple matter of inserting the
user specified data in the place of bracketed text for “[field name]” and “[field value]”. The text
for each query block is appended to the next using “AND” statements. If there are no
QueryBlocks available, the Query is just “TRUE” and will match all of the nodes in the graph.

Once a single query String is built up from all of the existing QueryBlocks, it is passed to the
ExpressionParser’s parse(String) method. The resulting Predicate is saved in a variable local to
the getFilter() function.

The next step of filter creation is to construct the actions that will get applied to nodes
matching the condition. Zero to four of the Action subclasses previously described can be used,
but not duplicates of the same Action type. Each kind of Action is constructed by drawing data
for options like color or opacity from the current state of the GUI. The locally saved Predicate is
also added to each Action object, either through its constructor or a setPredicate(Predicate)
function. When an action is properly constructed it gets added to the Filter being produced via
the add(Action) function inherited from ActionList. Once all actions are built and added the
Filter object is ready and can be returned. To summarize:

1. Build the raw query String
2. Get a Predicate by parsing query String with ExpressionParser
3. Create Actions and add the Predicate to each
4. Add each Action to the Filter object
5. Return the completed Filter object

4.4.5 Filter Management
As in filter creation, filter management is largely a user interface issue and will be discussed in
that context in the appropriate section. It is worth noting here that the orderable filter list seen
by the user is an accurate representation of how Filter objects are stored in the inner-workings
of the application: using an ordered list of Filter objects with indices. The order of filters as
shown to the user is always an accurate reflection of the order of filters in the internal data
structure.

Order matters with filters because they can have overlapping conditions. For example, consider
two filters, one of which colors songs containing the word “love” red and another that colors
songs by the artist “Dave Matthews” yellow. If the “love” filter gets applied first, any songs
containing love that also are by Dave Matthews will be yellow. If the “Dave Matthews” filter
gets applied first, any such songs will be red. The order of filters can be important for obtaining

48

the proper final result. As a rule, the last filter down the list will overwrite any previous filter
effects.

4.4.6 Filter Application
In Prefuse, ActionLists and individual Actions can get applied to a visualization with the
add(Action-Name, Action) method. Because ActionList inherits from the base Action class,
ActionLists can also be added along with our own custom Filter objects.

When the user triggers the application of filters to the visualization, all of the currently selected
filters are gathered up in the filter list and added, in their current ArrayList order, to a single
ActionList. That ActionList then gets added to the visualization via the add(Action-Name,
Action) method and is run by calling run(Action-Name).

4.5 User Interface
The user interface for the application we developed for this project is based largely on the
designs and interactions described in the Design and Preparation section. There are, however, a
number of key differences in the GUI, including the omission, alteration, and addition of certain
features. The purpose of this section is to reveal the layout and design of the actual application
GUI and to justify changes to the original design guidelines as appropriate.

4.5.1 Main Visualization Window
The Main Visualization Window is the first screen that the user will see after launching our
application and choosing a collection of documents to visualize. It is still primarily used to
display the force directed document visualization that our project revolves around. It also
provides a number of options and tools for aiding in interacting with the visualization. Figure 15
shows a screenshot of what this screen looks like in our final application.

 Figure 15: A screenshot of the finished Main Visualization Window from the running application.

49

The general layout of this screen is basically what we originally envisioned it to be. It consists
most prominently of the current visualization’s Display panel above which are various controls
and menu options and below which is a thin area for text messages.

The size of the Main Visualization Window is actually somewhat larger than we had originally
planned. Early prototypes of the application used a window size of 800 by 600 pixels, and while
this space was adequate for viewing the visualization, the number of buttons we would end up
positioning in the strip above the Display panel caused us to increase the width. For this reason
the dimensions of the Main Window ended up being about 1030 by 750 pixels (including the
window border decoration of the shell). The menu bar at the top of the screen takes up 20
pixels of height and the button strip below this has a height of 60 pixels. This leaves 600 pixels
for the visualization and 32 for the message area at the base of the frame.

The Main Window (and any other window for that matter) is simply a class that extends
JFrame. In the architecture of our application each of our visualization classes extends the
Display class of Prefuse, which itself is a JComponent. This means that an instance of a
visualization can be added, resized, and positioned within a JFrame container using just the
standard add(component), setSize(width, height), setLocation(x, y), and setBounds(x, y, width
height) methods all components and containers seem to share. Other than the Prefuse
visualizations Displays, the GUI of the application has been made up entirely of Swing standard
components.

Menu Bar
The menu bar at the top of the Main Window is a custom JMenuBar. The structuring of the
menu items into each drop-down category was guided by the rules identified in our original
design. We also included separators to group similar or related tasks within each category.
Figure 16 shows the menu items included under File, Edit, and View. The Options category was
removed during development and integrated with View.

File Exit: Closes the application

Edit

Selection Widget:
Echo Selection:

Select All:
Clear Selection:

Edge Weights:

Opens a tool for selecting specific documents
Duplicates current selection to other visualization
Selects all nodes in the current visualization
Clears the current selection
Opens a tool for editing edge weight properties

View
Filters:

Global Graph:
Local Graph:

Toggles whether the Filter panel is active
Checked if the Global visualization is active
Checked if the Local visualization is active

The number of items included in these menus is somewhat small because we tried to shy away
from hiding features under menus and use easily accessible buttons whenever possible.

Button Strip and Selection Helper

Figure 16: A table containing options included under each menu bar category (File, Edit, View) in the final application.

50

The buttons above the visualization display are, for the most part, the original set that we
planned on including with some additions. The key differences are the removal of the Add
Document button, the addition of the arrow button (a shortcut to the echo selection function)
and visualization buttons, and the incorporation of the search GUI (renamed selection helper)
in the upper right of the Main Window. Figure 17 shows these components.

The omission of the Add Document button is based simply on the fact that in our current
implementation, document addition and removal is not available. The adding and removing of
documents was not one of the most important features and there was more to it than we had
originally anticipated. Since relevance values were calculated using the standard deviation of a
metric for the entire collection, adding or removing documents would alter that value and
additional design would have had to go into making a system that would display accurate
relevance values upon adding or removing a node.

The Echo Selection button was an addition later in the implementation of the application. It
takes all of the documents that are currently selected in the active visualization and matches
their selection in the other. The two visualizations that this operation can be performed
between are the Global and Local displays. To convey this, the button is positioned between
the two for switching visualizations and the arrow always points away from the currently active
visualization. Similar to Echo Selection, the inclusion of the Global and Local visualization
buttons was made later in development of the application. We found ourselves switching active
visualizations so often that it seemed worthwhile for there to be a single-click alternative to the
items present under the View menu.

The integrated Selection Helper was an earlier alteration to the design. Rather than having a
separate widget for performing searches for documents (as we had originally planned in our
design) we decided it would be better to include this functionality in a more easy-to-access
location that would prevent having to switch windows. We considered the difference between
the “ctrl-f” search features of web browsers when making this decision. Microsoft Internet
Explorer (7 and earlier) opens a separate dialog for searching pages. Browsers such as Google
Chrome and Mozilla Firefox have a search box attached to the browser window itself. We found
the latter method to be more desirable than the first.

The evolution of Search to Selection Helper followed naturally from this streamlining. Predicting
that users would typically be using Search to find documents that they would immediately want
to select, we took out the middle step. The Selection Helper is essentially a Search tool that

Figure 17: A close-up of the buttons included in the strip and of the Selection Helper, which can be found above the visualization on the
Main Window.

51

selects documents matching the provided “attribute-equals-value” criteria. The uses for the
Select All, Select Visible, and Widget buttons are explained in a later subsection detailing
Enhanced Selection Tools.

Buttons in the Visualization Display
Because our visualization classes all inherit the functionality of the Swing JComponent object,
we can place Swing GUI components such as buttons and labels directly alongside the
visualization being drawn. While it was not our desire to clutter the view of the visualization,
some functions that are strongly related to a given visualization have been incorporated into
the Display panels using reduced size JButtons. These tasks include exporting the contents of
the display as an image, viewing a pop-out list of the current selection, and controls for
visualization animation.

Message Area: A Help Bar
We originally intended to use space below the visualization as a console for status messages on
document loading and parsing. With the omission of these features the Message Area went
unused until we decided to use it as a context-sensitive Help Bar. This implementation of this
feature is covered in a later subsection.

4.5.2 Filters List
The Filters List Sidebar shows all of the Filters that have been created by the user and can be
used to create additional filters, manage existing filters, and apply a selection of filters to the
currently active visualization. Figure 18 shows a screenshot of the Filters Sidebar on the Main
Window.

When the Filters Sidebar is shown it takes 300 pixels away from the width of the visualization
panel. GUI elements within the visualization panel itself are shifted 300 pixels to the right to

Figure 18: A screenshot of the Filters Sidebar docked to the side of the Main Visualization Window.

52

accommodate the Filters List. Our original design described the Filters List as a separate window
instead of an integrated Sidebar. Other than our decision to incorporate the list into the Main
Window its functionality is consistent with our design.

The underlying representation of the Filter List as a Java ArrayList of Filter objects is discussed
primarily in the Filter implementation section. An important function of the Filters List GUI is to
always display the same ordering as the internal data structure and to provide the capability to
reorder the list.

Filters are listed by their name and description in a Scrollable JList Swing component. The list
model displayed by this JList contains the ArrayList of Filter objects. Clicking Filters on the GUI
list selects them. Multiple selections are possible by holding shift or ctrl. Selected filters can be
moved up, moved down, or deleted using insertion and removal functions. When the user
indicates to apply filters, the list model is polled for all selected Filter objects using the
getSelectedIndices() method, and an ArrayList of Filter objects is returned to the FilterManager
class for adding and running in the associated visualization. In Figure 18 only the last Filter,
selected in blue, would be applied. As explained in the implementation of Filters section, all of
the Filter objects are compiled into one single ActionList before being run.

4.5.3 Filter Creation Window
Filter creation opens a separate window with components designed to specify the condition
and actions of a Filter. This interface was carefully constructed in an attempt to make the
seemingly complex multi-step process of filter creation as intuitive as possible.

 Figure 19: A screenshot of the Filter Creation Window specifying a simple Filter with two conditions and two active actions.

53

Figure 19 shows a screenshot of the Filter Creation Window specifying a filter that finds all
songs by the Beatles with greater than 2000 listeners and colors those nodes yellow with
roughly fifty percent opacity.

The two main parts of this window are the conditions panel at the top and the action panels
below that. The action panels consist of objects for selecting the details of an action (such as
the JColorChooser component, used for color specification) and a check box beside each action
type indicating whether that action is active in the Filter being created. Checking a box enables
the controls underneath and un-checking disables them. The difference is visible in the Change
Size and Change Visibility panels in Figure 19. JSliders are used for sliding scales such as size and
visibility. A drop-down selection box is used for choosing one of the built in Prefuse shapes.

The panel for specifying conditions allows up to five individual condition statements to be
specified for a Filter. In order for the selected actions to be applied to any nodes, all of the
conditions specified must met. The plus and minus buttons are used for adding new conditions
and removing specific conditions, respectively. When a condition is added it is placed below all
existing ones and the plus button is shifted down one space. When a condition is removed, all
conditions below it (and the plus button) are shifted up one space.

Each individual condition line specifies an “if [field-name] [operation] [field-value]” statement.
For example, the following (Figure 20) condition line in the GUI specifies the statement: “if
artist equals beatles” where “artist” is the field-name, “equals” is the operation, and “beatles”
is the field-value. Field-name is specified in a drop-down menu of available document
attributes. Operation is specified in a second drop-down menu of operations appropriate for
the type of the chosen field-name. Field-value is user specified and entered in a JTextField.

When the user is finished specifying both the condition and actions of the Filter they are
creating they can click the Create Filter button. As a result the Filter Creation Window is hidden,
the underlying Filter object is created (per the method described in the Filter implementation
section), and a representation of that Filter is added to the Filter List in the Sidebar. If the field-
value is invalid for the type of the chosen field-name (contains alphabetical characters when
the type should be a number) the Filter will not be created.

4.5.4 Document Properties Window
The purpose of the Document Properties Window as described in our Design and Preparation
section is still an accurate description of what it is in our finished application. It is used primarily
to show document metadata, document text, and a document-only visualization. A screenshot
of the finished Document Properties Window is shown in Figure 21.

Figure 20: A diagram showing the three parts of a Filter condition on the user interface: field-name, operation, and field-value.

54

The window consists of two Scrollable JEditorPane components. The right pane is the longer of
the two and is used to display the text of the document being shown. By adding the JEditorPane
to a JScrollPane we automatically obtain a scrollbar if the text is too long to be displayed all at
once. The left side of the window consists of a second JEditorPane that shows the metadata of
the document. For songs this includes the Title, Artist, Genre, number of Plays, and number of
Listeners. We also found it useful to display the raw metrics calculated for each document here
as well as a link to the song’s last.fm page. All of this data is formatted for display with tabs and
added to the JEditorPane. Both JEditorPanes are set to be static using the setEditable(Boolean)
method.

Underneath the metadata pane is a small document-only visualization display. The visualization
used here is the Word Cloud, which arranges each word that occurs in the document and scales
the word occurring to its frequency in the document. Information on our implementation of the
Word Cloud visualization can be found in the Visualization Display subsection. However, a few
interactions with this display are facilitated through controls at the bottom of the Document
Properties Window. First, the Word Cloud can be expanded to fill the entire Window allowing a
closer view of the visualization. Second, the Word Cloud can be displayed in either random
color or color by frequency mode. In the latter case the hue of the Word Cloud display is
specifiable using the JSlider at the bottom left of the Window. Figure 22 shows some of these
interactions.

Additional details on our implementation of the Word Cloud visualization is given in the
Visualization Displays subsection of Architecture and Implementation.

Figure 21: A screenshot of the Document Properties Window showing a documents attributes, metrics, text, and Word Cloud visualization.

55

4.5.5 Document Comparison Window
The separate and synchronized Document Comparison Windows of our original design were
scrapped during implementation in favor of a single Document Comparison Window meant to
display just the comparison between two given documents. It is shown in Figure 23 and simply
consists of two Scrollable JEditorPane displays, one for each document being compared.

Figure 23: A screenshot of the Document Comparison Window’s default view, which shows the

text of two documents side by side.

Figure 22: A diagram showing the Word Cloud interactions on the Properties Window, including expending the size of
Word Cloud visualization and altering its color-scheme.

56

We had originally hoped to implement a feature in the comparison view that would allow the
user to highlight shared and similar words in both of the document text areas. Multiple words
could be highlighted in different colors between the two panels or all occurrences of a single
word could be highlighted on mouse click or hover actions. While this feature never was
implemented, we still feel that it would be a useful way of comparing words in context.

The two comparison visualizations that we implemented show what words occur in which of
the two documents being compared. They also both show the relative frequency of each word
in each document. There are two versions of the comparison visualization. The first version we
came up with was a layout of two columns of unique words, one for each document. Words
that occur most often in a document appear higher and larger in the stack. Words that appear
in both documents are connected with edges. Figure 24 shows an example comparison using
this visualization.

We felt that this comparison visualization was a good way of viewing shared words and to
compare the frequency of shared words across two documents. However with two documents
of vastly different length one column would tend to hang lower than another; this could make it
difficult and tedious to view in certain circumstances. To solve this we implemented a second
comparison visualization that lists words alphabetically in one single column. Frequency and
occurrence of a word in a song is indicated by the length of and side of the column a bar is
shown on. If a word occurs in both documents, bars will occur on both sides. Figure 25 shows
an example comparison using this visualization.

Figure 24: A screenshot of the Document Comparison Window with Visualization 1 – scaled words
with connections – active.

57

Additional details on the implementation of both comparison visualizations are discussed in the
Visualization Displays subsection of Architecture and Implementation. Unlike the Word Cloud
visualization in the Properties Window, interactions with these displays are limited to panning
and zooming. The Comparison Window simply provides functionality for toggling between the
visualization view and the side-by-side lyrics view and choosing between the two types of
comparison visualizations.

Figure 26: A screenshot of the Edge Weight Modification Window with sliders for metric

weights and the minimum display value.

Figure 25: A screenshot of the Document Comparison Window with Visualization 2 – words with
bars – active.

58

4.5.6 Edge Weight Modification Window
The Edge Weight Modification Window is a view we introduced during the development of the
application to facilitate experimentation with the metrics algorithm used to determine the
weights of edges. It provides sliders to adjust the importance of each specific metric and an
additional slider to specify an edge weight threshold value. The threshold is simply the value
required for an edge to be added between the nodes of two documents. This window is not
intended for an end-user in its current form because adjusting the edge weights can have
certain consequences, including having too many (or too few) nodes and edges in the
visualization. Nonetheless, Figure 26 shows a screenshot of this window.

4.5.7 Enhanced Selection Tools
Initially the application we developed had two different methods for selecting nodes. First, the
user could simply click on a node to select it (clicking again to deselect). The selection of a node
was shown with a colored stroke, or outline, around the node. A second method of selecting
nodes was through the Selection Helper. Using this, the user could easily select a node with a
specific title or all nodes corresponding to a specific artist.

Consider, however, that both the Global (force-directed) and Local (node-centric) visualizations
show only a subset of documents in a given collection. The global view filters out all nodes that
have no connecting edge weights above the currently set threshold. The local view shows only
the fifty closest nodes to the central node. This creates a problem: how is the user supposed to
view properties of and compare these hidden invisible documents?

Later in the development of the application we added some features to help clarify what nodes
a user currently has selected and where they are. The first of these features is a count of the
total number of selected nodes with a breakdown of how many of them are visible and how
many of them are not. This summary information can be seen in both Figure 15 and Figure 18.

The second enhanced selection tool is a list of all selected documents, accessed via a Current
Selection button near the top border of the main visualization display. This list reveals the
names of all invisible selected documents, something that was not possible previously. It also
provides functionality for selecting documents, opening Properties and Comparison Windows,
and centering documents in the local view. Figure 27 is a screenshot of the Current Selection
Window. By default the list for the global view is opened on the left side of the screen while the
list for the local is opened on the right.

The final selection tool we added to the application was the Selection Widget. This separate
window provided a way of browsing through every document in the collection in alphabetical
order. A JSlider allows users to quickly jump to the neighborhood of a document. Arrow buttons
below the JSlider allow users to select a particular document with a higher level of granularity.
In the example shown in Figure 28 a user scrolls until he sees the artist he is looking for and
then uses the arrow buttons to focus in on a particular song. From there the user can add the
selected document to the selection (whether or not it is visible in the current visualization) or
center the document in the local view.

59

These additional indicators and controls are meant to give the user a greater awareness and
control over document selection.

Figure 28: A screenshot of the Selection Widget Window with a slider for quickly scrolling to a document’s
place in the alphabet and arrow buttons for more precise selection.

Figure 27: A screenshot of the Current Selection Window which lists of the artist and title for
every currently selected document.

60

5 Evaluation and Results
Our work during the implementation phase of this project resulted in an application with some
clearly visible results. Very often we were impressed with the intricate designs and formations
that the force directed layout algorithm yielded, but the true goal of this project was to make
more than just “pretty pictures”. For this reason, in evaluating our application and our decisions
in making it, we sought to answer two major questions.

The first question is in regards to our calculated metrics and the means we used them to arrive
at the edge weights that display similarity:

1. Are the results displayed by the application indicative of what users believe is similar
among the text documents in the collection?

The second question has to do with the usability of our program and is really a Human
Computer Interaction concern:

2. Does the application have a practical use as a professional or entertaining tool and is it
appealing and intuitive to use?

To answer these questions we used two primary methods. The first of these evaluation
techniques was a self assessment of our work as we proceeded with implementation. Using the
various tools of the application itself, including the comparison views and word cloud
renderings, we spent time trying to determine the accuracy of similar songs, as well as
identifying trends and interesting information. The second evaluation technique was a more
traditional and rigorous usability test that we administered to willing participants. It targeted
areas such as the effectiveness of the interface, interactions with the visualizations, and users’
perceptions of what they saw while using the application.

5.1 Self Evaluation

5.1.1 Procedure
Similarity Algorithm
Discovering the similarity between two songs is one of the main purposes of this application,
and so we spent a lot of time trying to identify how accurate it was. This was a continuous
process that occurred the entire time throughout development and shows itself in some of
Design and Implementation sections in the guise of alterations and new features.

On a more final viewpoint, as the application neared completion we often would spend time
looking at the lyrics of related songs and trying to identify why they were classified as related
and if they really were. Key components to look out for here were essentially our metrics –
number of lines, length of lines, etc. We also extensively used the comparison visualizations in
order to view the words required to make the relationship form.

61

Trends and Interesting Data
There were many interesting visualizations we were able to create, and they were achieved
mostly by making a large amount of filters and selectively applying subsets of them. Using
filters that matched certain criteria, it was easy to color and size nodes with desired attributes.
By looking at the visualization as a whole with attributes color-coded, identifying interesting
sets was as simple as identifying colored clusters.

5.1.2 Results
Similarity Algorithm
There is much difficulty in determining if relationships are accurate or not; however, we tried as
best we could. We did discover several trends within these relationships. Generally, the
structural metrics worked well. Oftentimes related songs would have a very similar number of
lines, lines were approximately the same length, and if one song had a lot of repetition so did
the other. We felt that the structural metrics were a good indication of the structural
relationship between songs, but we also felt that there could have been more metrics with
more depth. Rhyming is an example that we wanted to use but could not. Others include the
verse, bridge, and chorus structure (similar to a rhyme scheme structure) or the amount verse,
bridge, and chorus repetition as a whole.

There were a number of problems when analyzing the words within songs. As a whole, we felt
that our algorithm performed moderately well. When examining two songs, it seemed that
about half of the time the words were significantly related. That means that half of the time we
would see words like “river” or “kittens” a lot in each song, but the other half we would see
words such as “go” or “about” often. Even for words such as “love” there is an ambiguity, since
there are so many things the artist could be writing about that they love. And while “go” and
“about” have meanings, they too are often ambiguous without context. If a song is about
“rivers” or “kittens”, there is not as much ambiguity; still, it is possible those words are used in
similes or metaphors. So, despite two songs being similar on the outside, they could have
completely different underlying meanings.

There are many different aspects of this project that we could be changed in order to achieve
better results that we discovered during this evaluation. First, more songs would have allowed
us to place stricter requirements on determining whether two songs were significantly related.
There might not have been more songs in the visualization, but they would have been more
similar as a whole on average. If there were as many as 15,000 songs in the collection, it would
not be too far out to consider requiring all six metrics to be related as well as boosting the
percentage of words in common requirement up to 30%.

Other methods of achieving greater similarities that we identified lied mostly in the relevance
algorithm. There are many non-structural components to lyrics that are more than simply
words in common. Phrases, and what words mean in the context of which they are used, is a
huge part of this. In addition to this, alternate or general meanings through the use of a
thesaurus also would have helped. By using these tools it may have been possible to better
analyze what a song means, at least on the outside. A Roget’s Thesaurus could theoretically be

62

used to analyze every word and place it in its appropriate category of language, and then it
would be possible to relate songs based upon their dominant categories. One issue we
identified with this method is that currently the only version of Roget’s Thesaurus in the public
domain is from 191112. While it may produce reasonable results, it is hard to say without
actually testing it. Since nearly all of our songs are from the last 20-30 years, and most being
within 10 years, it is also hard to identify how many words, such as modern slang, would not
appear in the thesaurus as well as how meanings and slang words occur.

Trends and Interesting Data
The most interesting thing our application was able to do is cluster rap songs together. While
genres such as pop and rock had no specific layout, nearly every rap song was only related to
other rap songs, forming a small subsection of the graph almost entirely of songs in the rap or
hip-hop genre. Figure 29 shows a visualization with the cluster clearly visible by coloring nodes
based on their genres. This pattern emerges for several different reasons. First, the lyrics in
most of the songs in this group tend to be filled with profanities and racial slurs. This often
ensures that the words in common metric is always applicable. In addition, these songs tend to

Figure 29: The rap cluster. Rap and hip-hop songs are colored red, songs with unknown genres are colored purple, and all other songs are
colored blue.

63

have a high line count as well as a much higher average syllables per line compared to the rest
of the songs in the collection.

The visualization was also explored for other patterns in the metadata; however, nothing else
gave very good results visually. Other genres were examined, but no specific patterns emerged.
This could possibly be due to the fact that a large majority of the songs in the collection are
from the pop or rock genres. It may be that if other genres had a more respectable
representation, there would have been clusters for country songs, or reggae songs, or ska songs
as well. Another piece of metadata looked at was the number of unique listeners and the total
number of plays, based upon last.fm’s collected information. Filters were created to attempt to
find clusters of songs with very high numbers of plays or listeners, which may have given insight
into what words are often found in popular songs. Additionally, low values were examined to
find out what words are found in unpopular songs. However, nothing of interest was found in
these examinations.

We then moved on to looking at word distribution in songs. It is possible to do this with nearly
every word. For the sake of brevity, we examined the most popular word, excluding stop words,

Figure 30: Love songs. Songs with the word love in them are colored red, while songs without love are colored yellow.

64

which was “love”. Figure 30 shows what the visualization looks like when comparing songs with
the word love in them to songs without that word. It is clear that the word love appears at least
once in approximately half of all the visible songs, which is quite astounding. There are also
some small clusters that appear scattered throughout the entire visualization that are no doubt
caused by that word being in common. An interesting follow-up to this would be to add love to
the stop words list and see how radically different the visualization becomes.

In addition to looking at all of the love songs, it seemed reasonable to also examine the word
“hate”, the result of which can be seen in Figure 31. This visualization is radically different from
its love counterpart, with hardly any songs containing the word hate. However, it is easy to see
that approximately half of all songs containing the word hate appear in the rap cluster. To give
the rap genre a little credit though (they’re not all about hatred), Figure 32 shows the same
visualization but this time songs with both love and hate colored green. About half of the songs
in the rap cluster change from red to green.

Figure 31: Hate songs. All songs with the word hate in them appear red, while all songs without the word hate appear yellow.

65

These kinds of comparisons could be done with nearly any set of words should a user be so
inclined and have plenty of spare time. Given a larger collection of songs from more varied
genres, interested researchers could almost certainly use this application to discover plenty of
trends and interesting data hidden in the collection.

5.2 Usability Test

5.2.1 Procedure
Test Objectives
Our usability test had a number of key objectives. The first objective was to determine whether
a user’s assessment of documents similarity was in any way consistent with what our
application reported. While our algorithms may be effective for grouping similar documents by
the rules we have set forth, if those rules result in similarity relations that a majority of users
strongly disagree with or cannot relate with, it may be sensible to change the system.

Figure 32: Songs with love and hate. Song with just hate are colored red, songs with love and hate are green, and songs without hate are
yellow.

66

The second objective of our usability test was to understand how users exercise the application
when they are given the freedom to experiment with it. Observations from this kind of
“sandbox” period of evaluation would help us come to certain conclusions regarding how
appealing this kind of application may be to a more mass audience. It might have also
highlighted difficulties or frustrations encountered by new users that could be addressed with
minor alterations to the user interface.

The third objective of our usability test was to assess whether users would understand what
was being displayed to them by the application after following a brief series of instructions. To
this end, it was also important to note whether users could grasp how the sequence of steps
led to the outcome.

The final objective of our usability test was to determine how easily users could find the
answers to some general questions about documents in the collection. This would require them
to utilize what they may have learned from the rest of their time with the application to guide
themselves to where they could find the answer.

Logistics
Initially, we planned to administer the usability test to our friends and family during the days of
Thanksgiving break, Wednesday November 25th to Sunday November 30th. We targeted this
audience because they had already shown an interest in our work by providing us with a set of
song lyrics to bolster the original list we began with. Our hope was that the inclusion of
recognizable songs would make our target users more receptive to what they would be testing.
Thanksgiving break was the most ideal time for accessing this target audience. Following
Thanksgiving break we also conducted an additional survey consisting just of the song-listening
portion of our evaluation.

The overall geographical location of the test was not as important as the immediate
environment. We decided that it would be most effective for the test to be performed on a
reasonably current machine with a monitor and screen resolution large enough to
accommodate the main window of the application, which is 1024 pixels wide by 740 pixels high.
A quiet and comfortable workspace was also desirable, with a desk or a table set up so that any
necessary instructions would be easily viewable when placed before the user. We also set forth
the significance of the computer screen itself only displaying the running application, except
when a web browser may be necessary for the listening portion. This restriction would prevent
other factors from interfering with the experience of using the program.

Methods
Considering the fact that we had a stable and working prototype and a manageable number of
subjects, we decided to adhere closely to the guidelines of a formal usability test. We foresaw
three major parts to the test, the first and last consisting of a questionnaire and the middle
consisting of both guided and self guided walkthroughs of the application. We decided that
during any phase it would be appropriate for the test administrator to answer clarifying
questions posed by the user, make observations of user actions, and pose impromptu questions
to the user for clarification purposes.

67

Test Script
Usability testing followed the script below. The test administrator was equipped with an
observation sheet as a guide for usability testing. This sheet contained brief instructions for the
test administrator (like those below) as well as space for observational note taking. The detailed
steps of each step of the evaluation are outlined below:

1. Explain the purpose of the project as a whole. For example: “I’m a member of a team
from WPI working on a computer program that is meant to compare songs based on
their lyrics and display those comparisons in a visual way.” This ensures that the user
understands the purpose of the program and the educational context in which it is being
developed.

2. Explain the purpose of the test. For example: “This test is meant to evaluate our
program. We are interested in learning how intuitive it is to pick up and use and how
useful it is for the tasks it was designed to help accomplish. Your participation is entirely
voluntary and anonymous. You may end your participation at any time. Also, all
questions we ask, on the survey or verbally, are optional.” This is meant to clarify the
use of the study to evaluate the program and not the user. It also speaks some of the
important consent-related issues required by WPI’s Institutional Review Board.

3. Hand out the test sheet with pre-test questions. Ask the user to fill them out. A copy of
this handout can be found in Appendix A. The questions ask the user about their prior
computer experience as well as their taste in music, meant to provide a context to some
of the observations and responses that follow.

4. Give the user some time to experiment with the application without any goals or
objectives. Answer questions about the interface, the visualizations, or the project that
come up. Observe how comfortable the user is with the application initially and over
time. Allow the user to choose when to continue. The first few minutes with the
application should reveal crucial information on how easy the program is to learn how
to use.

5. Ask the user to perform specific tasks with the application. These tasks will include
creating and applying a specific filter and finding a song and centering it in the local
view. If the user has trouble accomplishing these tasks initially, provide minor assistance
first, and then additional assistance as necessary. The idea is that these kinds of tasks
should be easy to accomplish through the help features on the interface itself. Make any
observations about what seems to be causing difficulty, and clarify any such issues with
the user as necessary.

6. Ask the user to answer various questions based on song similarities. This will include
finding and copying down relevance values and common words for a specific pair of
songs and then determining which of two songs are most related to a single source node
via their edge weight. The user may be asked to question their initial instincts and find

68

evidence for their choices. The point of this portion is to convey the difference between
reliable concrete values reported by the program, and the less reliable dynamic layout.

7. Ask the user to indicate a song they enjoy listening to in the collection and then select
any two closely related songs. Having the user listen to a related song and afterwards
indicate whether they liked it or agree with the suggested similarity relation should help
us evaluate our relevance algorithm impartially. There will be a space for these three
songs with scales for rating them on the handout. The test administrator may find it
easier to take control of the computer to locate these songs in the application and
online for listening purposes.

8. Ask the user to answer the follow-up questions. A copy of this handout is included in
Appendix A. The follow up questions ask the user what they have learned about the
application during the test, how usable they felt the application was, and whether they
would be interested in using such an application in the future. There is also a space for
additional comments provided.

Questionnaires
Appendix A contains the questionnaire handout we gave to users during the usability test. We
chose to use a combination of multiple choice, numerical scales (from one to five), and open
answer questions where they were most applicable. We made sure to align positive and
negative answers on the same sides of the page for every question and provided clear
boundaries for question responses to speed the process of entering the data into a spreadsheet
program. Analysis and compilation of this data led to the results explained in the following
section.

5.2.2 Results
Our initial group of volunteers consisted of eleven individuals who were observed using the
application and asked to perform an evaluation of similar songs. Altogether there were thirty
seven such evaluations. A second group of participants were asked to perform the evaluation.
There were ten individuals in this second group performing twenty seven evaluations
altogether. They were not observed using the program because while we had learned enough
through observing the initial group in terms of usability, we still required more numerical data
to evaluate our relevance algorithm.

Observations
By observing users as they followed our instructions and requests, we gained valuable insight
into the good and bad aspects of our design, mostly GUI-related, which we had not originally
realized. The first thing users had to adapt to was the mouse controls. The mouse controls
nearly all interactions with the visualization itself, and each button performs more than one
function. Many users quickly adapted to this, as like any new application. Still, the adaption was
usually not perfect and some parts of controlling of the mouse confused people more than
other parts. The left click features of panning and selecting were features almost nobody had
trouble with, but right click features like zooming and centering nodes in the local view often

69

caused trouble. Users tended to left click on a node when they meant to right click, or would
entirely forget that right clicking allowed them to zoom in or out. These users would look at the
visualization from very far away and try to differentiate nodes that were only two pixels wide,
while other times they would have the visualization zoomed in very close and attempt to pan to
find new nodes rather than zooming out and easily locating the desired node. Perhaps this is
due to most applications that standard users are familiar with do not have right click
functionality, aside from context-based menus. It is possible that if we had instead used a
context-based menu, perhaps with choices such as “Zoom In”, “Zoom Out”, “Zoom To Fit”, and
“Center Node Locally,” that came up every time a user right clicked, they would have had an
easier time learning.

The local view was another feature that users seemed to like and take advantage of, but had
some trouble using. The main trouble here was caused by the global view and figuring out how
to center a node in the local view. Despite telling the user how to accomplish this, none seemed
to be able to learn. Almost every user, at some point, tried to center a node by selecting it in
the global view then clicking the local button, rather than right clicking the node. It seemed
they thought that if only one node was selected and they switched to local view, it should
automatically update. While this would be possible, it would have to be done with a pop-up
menu that asked a user whether or not they wanted to center it, and it would not work if more
than one node was selected. In fact, this confusion was a primary reason that we did not
automatically center it; alas, it seems to have not worked in our favor.

There was less trouble with filters and searching, although there were still a few problems.
With filters, about half of the users didn’t realize you had to both select the filter and click the
apply button to get it to appear. They did not seem to realize that you could create multiple
filters and only have certain ones active a time, since we only asked them to create a single one.
For searching, many users requested that the search should be case insensitive and it should
match partial queries, such as “beat” matching “beatles”. Only one user had trouble
differentiating between the functionality of filters versus selections. Another user lamented
over the fact that when searching for a song, the visualization did not automatically zoom and
center the song. These are features we intended to have but did not implement as only basic
searching was a top priority. However, if the application is to be used by the general public,
these features would have to be updated.

Users seemed to have little trouble with the properties and comparison windows. When asking
them for information about songs or words in common, no one had any difficulty. One thing in
particular caused a lot of problems for users, though. When asking them to determine which of
two songs was more similar to a third song, hardly anyone was able to answer correctly. The
problem was that there are no metrics on the comparison windows, and rightly so there should
be. Users alternatively attempted to try and manually compare how many words were in
common or manually look at the metrics in the properties windows and try to compare them to
no avail. Although the question could have been answered by using the local view and
comparing distances – which only two users did – or by using the tooltips that appear over
edges, there is no reason the compare window shouldn’t have all the comparison information.

70

Numerical Results
The numerical results from our user study fall into two categories: ratings of song similarity and
exit-survey results. The first category of numerical results helped to indicate how successful our
relevance algorithm was in the minds of users and listeners. The second category was more of
an indication of the effectiveness of our user interface.

For song similarity users were asked to select a song in our collection and then listen to one or
two related songs reported by the application. After listening to each related song the user
would indicate on a scale from one to five an assessment of (1) whether they enjoyed listening
to it and (2) whether they felt it was similar to the song they chose originally. A value of one
would indicate minimal enjoyment or perceived similarity. A value of five would indicate the
positive end of the spectrum.

For each possible similarity relation we also reported the edge weight value. These edge
weights ranged from very similar, with a value of five, to moderately similar, with a value of
thirty, with increments of five in between. The histogram in Figure 33 shows the distribution of
edge weights under scrutiny. It can be seen that the mode edge weight value was 20, at the
upper middle end of the spectrum, but we also encountered a number of very high similarity
relations with values of 5 and 10. If we were to perform this test again in the future we would
try to target more comparisons with high similarity (and lower edge weights).

The histograms in Figure 34 and Figure 35 show the distributions of ratings for enjoyment and
similarity evaluations of the sixty-four songs our participants listened to. The mode rating for
enjoyment was in the middle of the five point scale at 3 with a consistent average and median.
We can see that exactly 26 of the songs listened to were moderately liked by the listener. The

Figure 33: Chart showing the distribution of edge weights for comparisons under evaluation.

71

rest of the distribution is actually very symmetric, falling off on both sides of 3. Almost an equal
number of songs were highly enjoyed and highly disliked by listeners with counts of 7 and 6
respectively.

We have thought about what a score 3 really means in terms of listener enjoyment. In the end
we are classifying this result as a neutral stance indicating neither extreme like or dislike of a
song. We could say that a 3 is the cutoff for a song that you would listen to on the radio (while a
2 might be on the border of making you change the station). Given that the distribution is
symmetric (even slightly skewed towards the positive end) and has a standard deviation of
about 1, we can surmise that our application seems to make good suggestions in terms of
enjoyment a little more than half of the time. We see these as fairly favorable results, but the
“enjoyment” factor is highly subjective.

Evaluations of similarity were less approving of our algorithm. The mode rating score was 2
with an equal median and a mean of 2.5. We can clearly see a skew towards the lower ratings
in the histogram with a value of 1 being the second most frequent response. Overall, 37 of the
songs listened to were indicated by users to have lower than average similarity to whatever
song was chosen at the beginning. 16 of the songs were indicated to have higher than average
similarity. While more data might be necessary to be certain, we can already begin to see a
pattern emerging in this evaluation that suggests some problems with our similarity algorithm.
There is some subjectivity in what users “feel” similarity between two songs to be, but we a
confident this collection of ratings more directly addresses the question of whether or not our
algorithm is effective more so than the enjoyment ratings. For the purposes of an application
for a general audience, similarity should be something that users can see, hear, and agree with.
In our Future Works, we propose an experiment related to this idea that could improve our
results in the eyes of our users.

Figure 34: Chart showing the distribution of enjoyment ratings for evaluations of all edge weights.

72

There may be an inherent problem with exploratoring the ratings of similarity and enjoyment
across songs with vastly differing edge weight values. To some extent, edge weights higher than
10 or 15 really do not suggest a very significant relation in terms of our calculated metrics.
While the number of data points in each subcategory of edge weights is not enough to hold up
to deep statistical inspection, the change in distribution indicates somewhat more favorable
results. These results are included only under this disclaimer. The histograms in Figure 36 and
Figure 37 show the same data limited to only comparisons with edge weights of 5.

Figure 36: Chart showing the distribution of enjoyment ratings for evaluations of edge weights of 5 only.

Figure 35: Chart showing the distribution of similarity ratings for evaluations of all edge weights.

73

We can see that the distributions are different with this focus. The graph showing song
enjoyment by listeners is skewed further towards the higher values, and no one indicated a
rating of 1. Most of the enjoyment ratings fell at 3 and 4, which we consider to be favorable
scores. Also under this alternate focus, the histogram showing similarity ratings shows less of a
negative outcome. While still slightly skewed towards the lower ratings with a mode value of 2,
there are a greater percentage of higher ratings in this set of ratings than with all edge weights
included.

Again, while there are not enough data points to make any serious conclusions, these
alternative histograms may suggest additional testing be performed to target only higher
similarity relations. This could be problematic with our current collection, but with a larger set
of data, stricter cutoffs for edge weights could be used to limit visible relations to only the most
similar pairs. It would be interesting to see if re evaluation under these circumstances yields
better results.

The second category of numerical results includes the data compiled by user responses to our
exit survey. We do take these responses with a grain of salt because they do not seem to
coincide with the troubles and frustrations we observed during testing. Regardless, user
response to the program was fairly positive and responses seemed to suggest that users were
both confident and willing to do more in the future.

Our first question asked users to evaluate whether they thought they had completed all tasks
adequately during the walkthrough and to indicate if they had help along the way. 9 users
made it through with help. 2 were able to accomplish objectives independently. No users gave
up.

Figure 37: Chart showing the distribution of similarity ratings for evaluations of edge weights of 5 only.

74

When asked how confident users felt about being able to perform a task with the application
after all they had learned and experience, 9 users indicated a high level of confidence and 2
were neutral.

Evaluation of how easy the application was to use and learn were mostly neutral with 7 middle
ratings and 4 one step above. No one found the application very easy to use, but no one found
it very difficult as well.

When users were asked if they thought menus and buttons on the interface were logically
organized 5 responded neutrally, 3 responded positively, and 2 responded very positively.
Oddly enough, there did not seem to be any definite correlation between this question and the
one on overall ease of use, like we would have expected.

We were pleased to see that users liked using the program overall and would be looking to use
a similar program in the future. We are somewhat afraid that these questions may have been
biased in some way, but we do appreciate the positive reinforcement nonetheless.

One final response that was interesting in the exit survey was which of the two comparison
visualizations users preferred. The choice of the “Words with Bars” version of the visualization
was almost unanimous, which coincided with our predictions. This particular visualization was
made because of usability problems we experienced using the original one. We are pleased that
our newer implementation was well received.

Overall our numerical results were mixed, indicating positive results with room for
improvement. We believe that future work, as described in the following section, will only
improve the program, our algorithms, and the resulting visualizations.

75

6 Future Work
In this section we express a number of key areas for future work related to this project. While
our results may have been somewhat mixed, we are confident in the future effectiveness of the
application we have developed as a platform for future projects in the area of comparison
based visualizations – especially with comparisons of different types of text documents.

What follows are summaries of what we feel needs to be addressed to improve upon the
specific application we have developed for visualizing comparisons between member
documents in a collection of songs. We also provide some instructions on how one could begin
working with the code base in a brief developer’s guide.

6.1 Improving the Relevance Algorithm
The area of this project that could benefit most from future work is the relevance algorithm
that we used. There is much that we intended to do, but did not have time for in the end,
including learning about and applying more advanced techniques in the area of natural
language processing. There are many other aspects of the algorithm design that can be
improved and added as well.

Many suggestions for future works have been discussed previously in this report, mostly in
section 5.1.2. Suggested structural metric additions include rhyming, rhyme scheme,
verse/chorus scheme, and verse/chorus repetition features. Suggested contextual metric
additions and changes include analyzing word phrases, word meanings in context, and using
Roget’s thesaurus to categorize words.

6.2 Improving the User Interface
By observing users working with our application, we have identified a number of bugs and
feature requests that could enhance the effectiveness of the user interface. Some of these
future “tasks” were unintended mistakes we missed during testing while others were decisions
or features we executed differently than most users expected.

There were a number of simple bugs that our users encountered that we never ran into
ourselves. For example, our decision to make all text inputs case insensitive did not apply to
filter inputs, which confused many users when they did a query for “Beatles” and obtained no
results. Additionally, a bug with the Selection Widget made the Center function have no affect
whenever the application was showing the Local visualization. Also, in terms of the Local
visualization, whenever the center operation is performed the graph zooms out so that
repeated centering without manual panning or zooming results in a smaller and smaller image.

One problem with the implementation of our feature to change edge weights is that instead of
clearing the existing visualization and re-adding nodes, the program creates an all new
visualization on top of the previous one. This is not ideal. Changing edge weights in this way

76

also prevents Filters from working because the FilterManager still points to the original instance
of the visualization.

An unusual user interface bug in the Filter Creation Window prevents the downward arrows
from being shown on combo boxes. This is most likely an issue related to the Java Swing
framework and the refreshing of components in a JPanel.

A number of users suggested possible features for the application that would make it easier to
use overall. Some of our users felt comfortable pointing out these kinds of shortcomings, which
we welcomed and encouraged. By observing other users we were able to infer certain features
that would improve the overall experience as well.

One of the most requested features we encountered during testing was for the Selection
Helper search bar to have the option for performing a “contains” search. This would be useful
for searching for selecting all document nodes with the word “kittens” in their title. Another
possible enhancement to search would be to search for both title and artist at the same time.

Many users had trouble with the interaction of right clicking a node to launch the Local View
with that node centered. Users felt that if they selected a node in the Global View and pressed
the Local View button in the toolbar that node should be centered. This could be done, but
could be problematic when multiple nodes are selected.

While a context sensitive help bar currently indicates the use of the right click function, most
users did not take note of these tips and messages at all. One user suggested that more
traditional tooltips might be more noticeable, or a context-sensitive menu listing all possible
actions upon a right click.

Some users found the information on comparison metrics in the Document Properties Window
interesting and useful to look at. Many pointed out that this information could be helpful if also
shown on the Comparison Window.

While users seemed to be able to understand how to use filters in the application, many would
have liked for them to be automatically applied after being created. To make this enhancement
possible, there would need to be an enhanced tool for enabling and disabling filters. Currently
filters are enabled and disabled by holding the ctrl button and clicking them in a list with the
mouse.

Some users were observed creating filters with no actions. A simple solution to prevent this
mistake would be to alert users that their filter has no visible affect, or prevent creation of
filters with no actions entirely.

Additional suggested features were minor and included requests for traditional scroll bars for
panning and buttons for zooming in and out. Many users would have liked full screen support
and changeable color schemes as well.

77

6.3 Additional Future Work
Aside from future works in updating the relevance algorithm and more user interaction
features, the addition that would benefit this project the most is an enhanced collection. More
songs would allow stricter requirements on determining which songs are relevant, which could
improve results dramatically. While we have 5605 songs right now, we would have liked to have
somewhere around 20,000.

In addition to simply having more songs, there are three related issues. The first is obtaining
accurate lyrics for each song. An algorithm that could be used to assist in this is described in the
paper “Multiple Lyrics Alignment: Automatic Retrieval of Song Lyrics.”13

In order to accommodate so many songs, it would be necessary to change the layout algorithm
as well. The force directed layout we use has recursive function calls which, when there are so
many nodes and edges, loops countless times and causes the java stack to run out of memory.
Some other layout algorithms we looked at to counter this were non-recursive force directed
layouts and multi-dimensional scaling.

 The second is having a
diverse set of songs. Most of the songs in our collection are from the pop and rock genres. It
would be interesting to see how the visualization changes with larger representations for
genres such as country or heavy metal. The third and final issue is the inclusion of additional
metadata, most importantly the year of a particular song. Having the years for songs in the
collection as a filterable attribute would provide a mechanism for examining shifts in song
structure and content over time.

One final piece of future work that we want to propose is an experiment suggested by our
advisor to try and adapt the results of our program to reflect what our potential users would
appear to expect. Given time, we would survey a large sampling of individuals, asking them to
rank pairs of songs by their perceived similarity. In the event that the survey group agrees on an
ordering scheme for certain songs, the application’s similarity metrics could be altered in an
attempt to replicate the results as closely as possible. It would be interesting to note whether
the outcome of this exercise would be more or less favorable than what we currently have.

78

7 Conclusion
Our project investigates the feasibility of comparing songs based solely upon the contents and
structure of each song’s lyrics. We use these comparisons in order to create a visualization that
users can interact with to try and discover interesting patterns and trends within the data.
Additionally, users can locate songs that they enjoy listening to and use the application as a
recommendation service.

The visualizations produced by the application can certainly be interesting to researchers
looking for patterns within the data. Going by the examples discussed in 5.1.2, it is possible to
surmise that there are a higher percentage of rap songs about hate than pop songs. Clearly, this
is not definitive and a more formal study would have to be conducted to draw such a
conclusion; nonetheless, this tool provides potential researchers with the power of
visualizations – looking at data graphically to easily discover clusters and trends. Unfortunately,
our 5605 songs are mostly inadequate for researching needs. A larger sample size from a wider
variety of genres and artists, along with additional details about songs such as year, would
provide a much more reliable foundation to make claims upon.

As a recommendation system, we had mixed results. When users were polled, the amount they
liked songs recommended to them was slightly above average, while they felt the songs
recommended to them were not very similar to each other. However, the goal of a
recommendation system is not necessarily to recommend songs that are similar but to
recommend songs that a user will enjoy. In this regard, we were successful to some extent. It is
possible that with an updated similarity algorithm and a larger collection of songs, the quality of
recommendations could greatly increase. No recommendation system is perfect and that we
were not below average means this method of procedurally generating recommendations
should not be ruled out. Some current recommendation systems, such as Pandora.com, rely on
humans to manually input large amounts of information about each song in order to generate
the recommendations. If this process could be automated, businesses could potentially save
large amounts of money.

We believe that there is much to learn through analyzing our project’s methodology and
implementation. Our application provides a strong foundation in comparing and visualizing text
documents. Through future work, this application could be greatly improved as both a research
tool and a recommendation service.

79

Appendix A Usability Questionnaire
Thank you for helping us with our project by volunteering to take part in this brief usability
test. Your feedback is important to us. Before we begin please answer the following
introductory questions.

1) Please rate your prior computer experience on the following scale.

1 2 3 4 5
(low) (high)

2) Please list any genres of music you like listening to (list as many as apply).

3) Please list any genres you specifically do not like (list as many as apply).

We are now ready to begin. The questions on the following pages will be used later on during
the evaluation of the program.

80

1) Write the title and artist of a song you enjoy listening to or have heard of that you were able to find in the
application.

Title: Artist:

2) Write the title and artist of the first related song that you will be listening to in the blank below. Rate how
much you liked listening to the song and how similar your think it is to the song in 1.

Title: Artist: Edge weight:
 (We can help you find this value)

1 2 3 4 5
(disliked) (liked)

1 2 3 4 5
(not similar) (similar)

3) Write the title and artist of the second related song that you will be listening to in the blank below. Rate how
much you liked listening to the song and how similar you think it is to the song in 1.

Title: Artist: Edge weight:
(We can help you find this value)

1 2 3 4 5
(disliked) (liked)

1 2 3 4 5
(not similar) (similar)

4) Write the title and artist of a second song you enjoy listening to or have heard of that you were able to find in
the application.

Title: Artist:

5) Write the title and artist of the first related song that you will be listening to in the blank below. Rate how
much you liked listening to the song and how similar your think it is to the song in 1.

Title: Artist: Edge weight:
(We can help you find this value)

1 2 3 4 5
(disliked) (liked)

1 2 3 4 5
(not similar) (similar)

6) Write the title and artist of the second related song that you will be listening to in the blank below. Rate how
much you liked listening to the song and how similar you think it is to the song in 1.

Title: Artist Edge weight:
(We can help you find this value)

1 2 3 4 5
(disliked) (liked)

1 2 3 4 5
(not similar) (similar)

81

Before you go we would like to hear any feedback or opinions you have on your experience
with our program. Your answers to these questions may help us steer future work related to
this project.

1) Were you able to complete all tasks during the walkthrough?

A B C E
(No) (No, even with help) (Yes, with help) (Yes)

2) Please rate your confidence in being able to locate and view the properties of Come Together by Aerosmith in
the program without any aid.

1 2 3 4 5
(not confident) (confident)

3) Which comparison visualization did you find easiest to read and understand? Let us know if you would like to
see them again before making a decision.

A B
(Scaled words with connecting edges) (Words with bars)

4) Compared to other software I have worked with I found this program to be…
1 2 3 4 5
(very difficult to use) (very easy to use)

5) Please rate how strongly you agree or disagree with the statement in quotes.
“The menus and buttons in the program were logically organized and made it easy to find desired
functionality.”

1 2 3 4 5
(disagree strongly) (agree strongly)

6) Please rate how strongly you agree or disagree with the statement in quotes.
“The name for each menu items and button made its function and purpose self explanatory.”

1 2 3 4 5
(disagree strongly) (agree strongly)

7) Overall, did you like using this program?

No Yes

8) In the future would you use a program like this either for fun or for discovering new music?

No Yes

Thank you for your feedback and participation. Feel free to use the space below for any
additional comments you may have.

82

Appendix B Developer’s Guide
This developer guide assumes that you are working with our application’s code base and
attempting to get your own custom data into the program. This custom data can consist of song
lyrics, court proceedings, or any other type of text document collection. You could even use a
collection of tagged items, with a tab delimited list of tags taking the place of a document’s
text. As long as you specify your collection in a consistent file format it should be relatively easy
to obtain visible results in a short time.

Read Files
The first step to this process is to create your own DocFileReader class by implementing the
provided DocFileReader interface. Because we expected our file format to change at some
point during the course of the project, we used an interface to allow straightforward switching
between file input algorithms. When implementing your own DocFileReader, override the
fileToDoc(Path) method, which should produce a Doc object from the file specified by Path.
Keep any assumptions about the file format within this class to keep file input separate from
the rest of the implementation.

In your DocFileReader make sure to also implement the inherited getAttributes() and
getAttributeClasses() methods. These should return the names of attributes in a Doc object
produced by the fileToDoc(Path) method, as well as the class types for each respective
attribute. This is how we handle dynamic attributes in our Doc object class, and how we load
these attributes into our visualizations.

We encourage you to examine DocFileReader1 and DocFileReader2 for example
implementations of the interface. DocFileReader1 reads an XML file format. DocFileReader2
reads a flat text file. You may actually find DocFileReader1 to be adequate for your purposes in
the event you use a format similar to our own – just be sure to specific the attributes and
attribute types in an options file, the location of which should be specified when constructing
the DocFileReader1 object in Main.

Parse Files
The second step is to implement a text-parsing routine by altering the TextParser class. In
particular, focus your attention on the parseString(Doc) method, which – given a Doc object –
calculates base metrics and compiles unique words and frequencies from the document’s text.
This class may actually be adequate for most purposes in its current state, especially if you are
just starting out and want to obtain visible results quickly. If you prefer a different set of
metrics, however, this is the class you will want to copy and change. Note that stop words –
words that you do not want included in frequency counts – should be specified in an options
file, which gets passed to the TextParser when it is constructed.

Calculate Relevance
The RelevanceCalc interface is used to specify a class that can be used to compute the
relevance values in a collection, or corpus, of documents. Expect the calculateBetween(Corpus,
Doc1, Doc2) method to be called for every pair of Doc objects in the specified Corpus. When

83

called, calculateBetween(Corpus, Doc1, Doc2) should use the metrics determined by TextParser
to produce a value for the similarity relation between Doc1 and Doc2. RelCalc is an example
implementation of the RelevanceCalc interface. Note that because the relevance between Doc1
and Doc2 is commutative (calculateBetween(Doc1, Doc2) = calculateBetween(Doc2, Doc1)) only
half of the calculations are actually performed when the program is executed.

See What Happens
When you have made the above additions and modifications, change all instantiations of our
implementations of these interfaces to your own in the Main class. We recommend testing with
a small set of documents to begin with (less than 500) because the program can take some time
to perform all preprocessing before showing the visualization. You may or may not need to
disable the code that outputs processed data to fast-loading files, depending on what other
changes you made to the system.

With any luck you should be able to see some visible results. You will probably have to alter
certain values such as edge weight cutoffs and metric weights to obtain the exact outcome you
may be looking for, but this should serve as an adequate starting point. If you only change the
parts of the system that we have outlined above, all of the tools for evaluating and exploring
comparisons should still function. Good luck!

84

Appendix C NSF Grants Side Project
Approaching the end of the implementation phase of our project, our advisor asked us if we
could try to adapt our project to a different input collection. The goal of this side project would
be to generate word clouds of popular terms in the abstracts of National Science Foundation
(NSF) grants for the past five years.

The data we were provided was accessed through a website that allowed exporting of the
abstracts in XML format. The resulting XML consisted of a single file, however, so the first step
was to split the data into single XML files for each abstract. Data like year, primary investigator,
institution, and grant amount were read in as document attributes; the abstracts themselves
were used as a document’s text. Overall we were very pleased with how simple it was to adapt
our input schema to a different set of data in our existing implementation. The steps explained
in the previous appendix are based upon this very process.

Once we had read in the abstracts we were then able to obtain visible results, although their
worth was questionable. Considering that our previous work had resulted in metrics such as
number of syllables, line and word repetitions, and number of lines – which were very specific
to song lyrics – we decided to base similarities for our Global Force Directed View only on the
percentage of words two abstracts had in common. Figure 38 shows an example of the Global
Graph View visualization coloring abstracts by year and increasing the size of abstracts with the
search term “software” in their text.

Our existing functionality allowed us to produce word clouds for individual abstracts via the
Document Properties Window; however, the deliverables for this work would have to be word

Figure 38: A screenshot of the Global Graph View of NSF abstracts with filters applied. Blue, purple, red, yellow, and green represent
abstracts from 2005, 2006, 2007, 2008, and 2009 respectively. Larger nodes indicate occurrence of the “software” search term.

85

clouds for abstracts of a particular year. To accomplish this we implemented a new Word Cloud
class which would take as input an ArrayList of documents. The Word Cloud class would then
determine the overall frequencies of the unique words across all documents and produce the
visualization as normal. An alternate Main class was also created to add functionality for
launching Word Clouds by year without altering the work we had done previously (because
year was not a valid attribute for a song). Figure 39 shows an example word cloud.

The resulting Word Cloud visualizations were highly cluttered. The most popular terms were
often unimportant ones like “impact” and “research” which appeared in virtually all abstracts.
To eliminate extra words we created an updated stop word file that would eliminate a wider
range of words than were being removed for songs. Additionally, because the resulting Word
Cloud was still filled with unwanted words, we added functionality for selecting terms in the
visualization and exporting them to a file that could be appended to the stop word list. This
manual process took some time but was a way of eliminating only the undesired words.

The results of this side project were mixed. It was difficult to create useful Word Clouds in the
time available due to the challenge of creating accurate stop word lists. We did, however, learn
a number of things from this brief departure. The first is that our program is adaptable in the
way it can read in new document collections. The second is that the difference between types
of text documents can be very drastic and can require a complete rethinking of relevance
measures and stop word lists. Third and finally we believe we can establish that with some
additional work our program has the potential for use outside of our chosen area of focus.

Figure 39: A screenshot of a Word Cloud of the most popular terms in abstracts from the year 2005.

86

Bibliography

1 Wattenberg M. (2005). Baby Names, Visualization, and Social Data Analysis. Proceedings of the
IEEE Symposium on Information Visualization. October, Minneapolis, p1-7.

2 Viégas F, Wattenberg M, Ham F, Kriss J, & McKeon M. (2007). Many Eyes: A Site for
Visualization at Internet Scale. IEEE Transactions on Visualization and Computer Graphics. Vol
13, Issue 6, p1121-1128.

3 Weber W. (2007). Text Visualization – What Colors Tell About a Text. Proceedings of the
Information Visualization Conference. Sacramento, July, p352-362.

4 Yee K, Fisher D, Dhamija R, and Heast M. (2001). Animated Exploration of Dynamic Graphcs
with Radial Layout. Proceedings of the IEEE Symposium on Information Visualization. October,
San Diego, p43-50.

5 Heer J, Card S, Landay J. (2005). Prefuse: a Toolkit for Interactive Information Visualization.
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. April, Portland,
p421-430.

6 Linden G, Smith B, and York J. (2003). Amazon Recommendations: Item-to-Item Collaborative
Filtering. IEEE Internet Computing. Vol 7, Issue 1, p76-80.

7 Glaser W, Westergren T, Stearns J, and Kraft J. (2006). Patent No. 7003515. United States.

8 Navarro, G (2001). A Guided Tour to Approximate String Matching. ACM Computing Surveys.
Vol 33, Issue 1, p32-88.

9 “Stop Word.” Oxford English Dictionary. 2nd ed. 1989.

10 Berenzeig A, Logan B, Ellis D P W, and Whitman B. (2003). A large-scale evaluation of acoustic
and subjective music similarity measures. Proceedings International Conference on Music
Information Retrieval (ISMIR). Vol 28, Issue 2, p63-76.

11 Fox C. (1989/1990). A Stop List for General Text. ACM SIGIR Forum. Vol. 24, Issue 1-2, p19-35.

12 Jamasz M, and Szpankowicz S. (2001). Roget’s Thesaurus: A Lexical Resource to Treasure.
Proceedings of the NAACL Workshop WordNet and Other Lexical Resources workshop.
Pittsburgh, June, p186-188.

13 Knees P, Schedl M, and Widmer G. (2005). Multiple Lyrics Alignment: Automatic Retrieval of
Song Lyrics. Proceedings International Conference on Music Information Retrieval (ISMIR).
September, London, p564-569.

	1 Introduction
	1.1 Goals
	1.2 Objectives

	2 Background
	2.1 Computer Visualization
	2.2 Visualization Toolkits
	2.3 Similarity Algorithms
	2.4 Fault Tolerance
	2.5 Stop Words

	3 Design and Preparation
	3.1 Lyrics Gathering
	3.1.1 Downloading
	3.1.2 Storing

	3.2 Document Loading and Persistence
	3.3 Document Processing and Storage
	3.3.1 Stop Word List
	3.3.2 Relevance Algorithms
	3.3.3 Storage

	3.4 Filter Specification
	3.4.1 Conditions and Actions
	3.4.2 Structuring Filters
	3.4.3 Applying Filters

	3.5 Fault Tolerance
	3.6 Visualization Displays
	3.6.1 Force Directed Graph
	3.6.2 Node Centric Graph
	3.6.3 Other Visualization Types
	3.6.4 Edge Weights

	3.7 User Interface
	3.7.1 Main Visualization Window
	3.7.2 Add/Remove Documents Window
	3.7.3 Filters List Window
	3.7.4 Edit Filter Window
	3.7.5 Document Properties Window
	3.7.6 Document Comparison Window
	3.7.7 Search Window

	4 Architecture and Implementation
	4.1 Lyrics Gathering
	4.2 Starting the Application
	4.3 The Visualizations
	4.3.1 Common Implementation Overview
	4.3.2 Global Force Directed Visualization
	4.3.3 Local Node Centric Visualization
	4.3.4 Document Word Cloud Visualization
	4.3.5 Document Comparison Visualization (Connections)
	4.3.6 Document Comparison Visualization (Bars)

	4.4 Filters
	4.4.1 Prefuse Expression Language
	4.4.2 Predicates
	4.4.3 Actions
	4.4.4 Filter Creation
	4.4.5 Filter Management
	4.4.6 Filter Application

	4.5 User Interface
	4.5.1 Main Visualization Window
	4.5.2 Filters List
	4.5.3 Filter Creation Window
	4.5.4 Document Properties Window
	4.5.5 Document Comparison Window
	4.5.6 Edge Weight Modification Window
	4.5.7 Enhanced Selection Tools

	5 Evaluation and Results
	5.1 Self Evaluation
	5.1.1 Procedure
	5.1.2 Results

	5.2 Usability Test
	5.2.1 Procedure
	5.2.2 Results

	6 Future Work
	6.1 Improving the Relevance Algorithm
	6.2 Improving the User Interface
	6.3 Additional Future Work

	7 Conclusion

