Project Code: JKM-5B06

Dynamic Partial Reconfiguration of a

Field Programmable Gate Array

A Major Qualifying Project Report
Submitted to the faculty of
Worcester Polytechnic Institute
In partial fulfillment of the requirements for the

Degree of Bachelor of Science

Submitted By:

Michael Kristan Brian Loveland Robert Sazanowicz

Sponsored by:
General Dynamics C4 Systems
77 A Street
Needham, MA 02494
Liaisons :
Brendon Chetwynd
Orlando Gerardo
Submitted To:

Prof. John McNeill

Co-Advised By: Prof. Berk Sunar

GENERAL DYNAMICS
C4 Systems




Abstract

The goal of this project was to develop a prototype of real-time partial re-configuration of a logic circuit. The
steps required for completion involved researching possible circuit algorithms, implementing desired
functionality in VHDL, and developing a proof of concept. The objective of this project was to lay a foundation
for further development in implementing a self-healing triple modular redundant AES encryption system. The
project was completed under the guidance of Brendon Chetwynd and Gerardo Orlando of General Dynamics C4

Systems.
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respective team member. This report represents a collaboration of ideas from all members as well as an equal
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team members. Rob Sazanowicz focused his work on PlanAhead development and the implementation of the
Partial Reconfiguration over JTAG designs. Brian Loveland focused his efforts on the implementation of self-
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Kristan contributed greatly to the project management aspect as well as working on the integration of
Embedded Development Kit and PlanAhead tool flows with Rob. The separation of these tasks allowed us to
specialize our work to increase productivity. However, much of the project’s success was dependant on peer
collaboration. Each team member contributed equally to this project report in all aspects including research,

practice, and writing.



Executive Summary

General Dynamics C4 Systems implements several technologies in their development of hardware encryption
systems as a US government contractor. One such technology involves the development of encryption
systems through the use of a Field Programmable Gate Array (FPGA). First developed in 1984, FPGAs represent
a growing technology of which functionality and ease of use are constantly improving. One such development
involves dynamic partial reconfiguration, the ability to reprogram a portion of the FPGA without powering
down or resetting the chip. This functionality is still considered to be academic in nature and has seen little
professional development. This ability opens the door to new applications as well the reduction of size
requirements for designs. This is concluded from the idea that larger designs can be broken into smaller, less
resource intensive partial designs and then programmed to the chip only when necessary. In addition, with
reconfigurable logic such as an FPGA, there is a possibility that it could inadvertently loose or change its
configuration. Partial reconfiguration, tied with the necessary circuitry, would allow the FPGA to identify these
issues and reconfigure itself only where the faults occur. Xilinx, the original developers of the FPGA, have

pushed development of partially reconfigurable designs.

The Xilinx Virtex Il Pro series FPGAs allow for support of partial reconfiguration through the use of an
enhanced toolset. The primary objective of this Major Qualifying Project was a proof of concept for a partially
reconfigurable design. To accomplish this, the team began development on a Memec Design XC2VP30 - FFll152
development board. The on board Virtex Il Pro FPGA supports dynamic partial reconfiguration and contains an
embedded IBM PowerPC processor to control self-reconfiguration. The secondary objective of this project is
to implement a self-healing design through the use of one of these embedded processors. The PowerPC has
the ability to control reconfiguration of the FPGA through the Internal Configuration Access Port (ICAP).
Ideally, a PR design would be able to detect a need for and control partial reconfiguration creating a self-
sustaining system. Eliminating the need for an external processor lowers costs and size requirements while
simplifying the overall design and increasing reliability by not relying on external interconnects. The third
major goal of this project is the creation of a base for future development with partial reconfiguration. One
such development includes the integration of a Triple Modular Redundant (TMR) system with partially
reconfigurable capabilities. TMR has been widely used to increase the reliability of FPGA circuits and is used to

avoid corruption due to environment hazards and side channel attacks.

In order to complete our primary objective, the development of a proof of concept for partial reconfiguration,
it was first necessary to gather the required software and hardware tools and create a design flow. A handful
of third party tutorials as well as Xilinx provided documentation was used to develop a design flow which

functioned properly with the toolset available to us. The partial reconfiguration design flow follows closely the



modular design flow most commonly used by industry professionals with the addition and modification of a
few software tools. Once the necessary research was completed to collect and learn these tools, the team
began creation of an initial PR design. This basic circuit was programmed through the use of an external PC
over the JTAG connection. Functionality of the design was simple; a single reconfigurable module which could
be implemented as either an addition or subtraction unit and a single static module which controlled the
function of 4 on board light emitting diodes (LEDs) were written in VHDL and synthesized following the
modular design flow. The design was created such that proof of reconfiguration could be tested and
monitored with the use of an oscilloscope. The team was successful in the development of a proof of concept

for partial reconfiguration.

Development of a self-reconfiguring system, the secondary objective of this project, proved to be a much more
complex task. Similarly to the primary objective, development of this system required the use of a new design
flow and toolset. The integration of PowerPC peripherals to the design required the integration of two
separate design methodologies. The PowerPC design (using the Xilinx Embedded Development Kit) would
need to be merged with the previous PR design (using Xilinx PlanAhead) to create a self reconfiguring system.
Although the completion of a self-reconfiguring system was not realized, several milestones were achieved
during development. The team was able to demonstrate the ability to program and load a PowerPC design to
the development board.  Also, the ability to write and read from an external flash component was
demonstrated. This is required because a significant amount of memory is needed to store the configuration
files handled by the PowerPC. Unfortunately, the integration of a PowerPC design and the previous PR design
was not completed as many complications prevented successful combination of the two design flows. The
team is confident however that with more time and the development of a more integrated tool flow, this

design could be accomplished.

The third and final objective of this project was to create a project base for which future students can branch
off of. This included the use of a Version Object Base (VOB), using the Rational ClearCase tool, which all
research and work material was stored on. The VOB for this project was initially created by General Dynamics
and will be made available for any future project to view and work from. In order to allow for a smooth
transition to the subsequent project, the team needed to setup a directory structure as well as make significant
documentation of steps taken throughout the process. The development of the first two objectives was
monitored and noted throughout the project so the following project(s) could minimize transition time. With
the addition of code and project notes, useful reading and tutorials used were provided as well as research

examples which were found to be helpful in understanding the Partial Reconfiguration design process.



Overall, the completion of these objectives proved to be taxing as the software available did not always
function as promised. Partial Reconfiguration is still a fairly underused practice and the tools for creating these
types of designs have not yet caught up with the hardware’s full capabilities. However, the primary goal, a
proof of concept for Dynamic Partial Reconfiguration was realized. In doing so, a basic foundation for future

projects to branch from was created, opening the doors for further advances in partial reconfiguration design.
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1: Introduction

As the protection of digital data becomes more important to society, reliable encryption systems are needed in
order to properly safeguard confidential information. It has been shown that most failures of modern
encryption systems are due to implementation failures, rather than algorithm failures, and therefore it is
critical to ensure that the implementation is not compromised. Implementing an encryption system on
reconfigurable logic such as a field programmable gate array (FPGA) is desirable for its ability to be easily
reprogrammed like a microcontroller, but allows for the performance advantages of custom digital hardware
like an application specific integrated circuit (ASIC). There is also a significantly lower cost for custom digital
hardware of an FPGA when prototyping and for production in small quantities compared to an ASIC. The
major disadvantage of FPGA devices is that they may be left vulnerable to side channel attacks or even
accidental configuration changes, due to the fact that the configuration of the digital hardware can be altered.
Fortunately, when the configuration is accidentally or maliciously changed, it is often the case that only a
portion of the design becomes unusable. Therefore, in cooperation with General Dynamics C4 Systems, this
project investigates designing a system which uses the partial reconfiguration feature of Xilinx FPGAs to repair

or update portions of a circuit without disrupting normal operating activity.

Advances in FPGA hardware and software design tools for the FPGA hardware allow for on the fly
reconfiguration of programmable logic. This ability allows programmers to design a chip which can be
reconfigured without disrupting operation and can be used to recover a compromised device. Partial
reconfiguration can also be used to allow larger complex designs to be implemented on devices with fewer
resources than would normally be required for a complete implementation. The most common method for
implementation of partial reconfiguration is one in which a modular design approach is used. The logic is
configured in a manner such that one module is dynamically reconfigured while another module is retained in a
static configuration for performing operations which do not change. With this approach, a portion of the chip
is continuously being reconfigured to its original condition or to a new configuration regardless if an error is
detected. Partial reconfiguration may also be implemented in conjunction with Triple Mode Redundancy
(TMR) to create a system with increased reliability. TMR utilizes a voting circuit to detect differences in output
from three identical systems. Often, this voting system is replicated three times as well, to further increase
dependability. The ultimate goal is to develop a TMR system which utilizes partial reconfiguration to repair

damaged modules in the background, offering seamless, reliable operation of a secure system.

The first step in the creation of a secure, redundant, self-reconfiguring system is the development of the partial
reconfiguration module. In order to implement a partially reconfigurable encryption algorithm, a proof of

concept of partial reconfiguration must be completed using a smaller, simpler system. The simple test system



includes the design of an arithmetic logic unit which allows the user to switch between operations causing the
operation module to be reconfigured. This setup can be tested and easily interfaced with the available 1/O
ports on the development board. Upon successful completion of a partially reconfigurable circuit, the goal is
to implement an advanced encryption algorithm with partially reconfigurable characteristics. Successful

completion of this task will allow future project teams to integrate this algorithm with a TMR system.



2: Background

This project investigates the use of several technologies, some of which are still considered fairly academic and
therefore are not standard digital logic nomenclature (specifically Partial Reconfiguration). In addition, there
are some related technologies, which will not be implemented in our project due to time constraints, however

they will be implemented in future projects based on our project, including TMR and AES.

2.1: Field Programmable Gate Arrays (FPGA)

FPGAs were invented in 1984 by Ross Freeman, co-founder of Xilinx [24]. FPGAs provide users with an
environment were the user is able to quickly develop and implement a circuit or module at low cost and fast
turnaround time. FPGAs are developed using simple circuitry that is meshed together to provide the same
complex circuitry that a traditional circuit board provides. The drawback to using an FPGA is that unlike
traditional application specific integrated circuits (ASICs), FPGA circuits have a high propagation delay and

therefore a slower processing time [11].

Despite the drawbacks to using an FPGA over a traditional circuit board, FPGAs can be used quite easily with
Triple Modular Redundancy circuits. Quick reprogramming and scrubbing techniques provide the end user
with a reliable output that allows the circuit to be automatically reprogrammed without any end user

maintenance.

2.2: Partial Reconfiguration (PR)

Partial reconfiguration is the practice of reprogramming only a portion of an FPGA. More specifically, dynamic
partial reconfiguration denotes the ability to reprogram a portion of a circuit while it is operating. This is done
without a need for the chip to power down or be reset. For the sake of brevity, dynamic partial
reconfiguration will be considered the same as partial reconfiguration in the reamainder of this report. Partial
reconfiguration can be accomplished with the aid of an external device such as a JTAG connector or can be
managed by an on-board processor. Partial reconfiguration can be implemented through the use of the Xilinx
ISE tools either stand alone or in conjunction with PlanAhead software. Dependant on design intent, partial
reconfiguration generally requires the use of a modular design flow. Modular design requires additional
procedures for synthesis and implementation and adds complexity not found when utilizing the basic design
flow. In general, modular design allows for simultaneous development of different modules which together
complete the design of an FPGA. This design procedure is most commonly used by engineering and
programming teams who must coordinate efforts to save time and money. Modular design also allows a team

to modify non-working or unstable modules without affecting those which are functioning properly. The



modular design flow consists of two phases. Phase 1 incorporates Design Entry and Synthesis in which the
team leader completes a top level design and each team member completes the design entry and synthesis for
their particular module. Phase 2 incorporates the creation of top level constraints, implementation of each

module, and final assembly.

2.2.1: Types of partial reconfiguration

There are two types of partial reconfiguration, modular and difference-based. These design procedures hold
certain advantages to each other, and each is limited in ability. Modular partial reconfiguration allows for
portions of the FPGA to be recreated or even redesigned. This is most commonly used to implement large
designs on smaller and less expensive chips. This is generally accomplished by splitting the design and
reconfiguring one module over another in order to save resources. Modular reconfiguration can also be used
to repair “broken” chip modules without affecting the operation of other areas of the chip when seamless
operation is crucial to the application. Difference-based partial reconfiguration follows a different design flow.
This approach requires the creation of a bit stream file which only includes design differences from one design
to another. The initial design is created and then the Xilinx FPGA editor can be used to design logic changes
directly on the FPGA. A partial bit stream file is then created which when loaded only makes changes based on
the difference in the two designs. This flow allows for extremely quick transitions between the two designs

but is limited in scope to what It can be used for.

2.2.2: PR example and benefits

An example of a system that could benefit from partial reconfiguration would be a basic arithmetic logic unit
(ALU). The idea would be to make the math and logic operations modular in design so that depending on the
function that is needed, the appropriate module could be inserted into the FPGA. Although this process is
essentially unnecessary for such a simple circuit, in the case of larger and more demanding circuits a smaller
FPGA could be used as opposed to one that could store all logic circuits at the same time. Creation of a simple
ALU is the first process for a proof of concept of partial reconfiguration and will lay the groundwork for

development of a more advanced encryption algorithm with partial reconfigurability.

2.3: Available Tools

2.3.1: Memec Virtex Il - Pro FF1152 Development Board

The Memec Development board used for this project includes a Xilinx XCVP30 FPGA. This board is designed for

extreme flexibility in high end applications. The development board includes two 32mb SDRAM blocks as well



as 2 integrated PowerPC processors. Xilinx 8.2i ISE software allows for programming through either Parallel or

USB to JTAG connections. [14]
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Figure 2.1 — Memec Virtex Il Pro ff1152 Dev. Board

2.3.2: Xilinx ISE 8.2i

The primary tool used to design circuits is the Xilinx ISE. ISE allows users to design circuits in both schematics
and VHDL [26]. Basic simulation can be done in Xilinx before it is sent to the board. Xilinx provides a number of

tutorials and a large number of online resources that serve as an excellent reference.
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2.3.3: Xilinx iMPACT

iMPACT is the tool that is used to program the FPGA [25]. iMPACT can be used in a direct SPI configuration or
in a boundary scan configuration. iMPACT also provides the user with the ability to erase, program, and verify
the FPGA itself or the PROM on the board. The advantage to programming the PROM is that changes are
retained after the device shuts off so that there is no need to reprogram the device after hitting the reset
button or by turning on the power. Aside from providing options for downloading to the Xilinx device, iIMPACT
also provides the capability of merging bit streams with block memory maps provided by the EDK

development.
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2.3.4: Xilinx PlanAhead 8.2.7

PlanAhead is another component of the Xilinx Design Studio. PlanAhead’s main purpose is to customize the
way circuits designed in ISE are laid out on the FPGA as well as providing timing and placement analysis to
improve circuit function [19]. By using this tool, users can group circuits and modules. The benefit of this is
that if each module is in its own area, the task of partial reconfiguration becomes much easier as only one area
is being programmed and will not affect any of the other sections. This task is known as floor planning.

Separation of modules and implementation of bus macros is facilitated within the software as the numerous



tools required to complete these procedures are integrated into a single platform. These tasks can be
completed in Xilinx ISE tools however it is more difficult to coordinate these changes as scripting may be
required. PlanAhead also provides a useful set of design rule checks which can be used to improve designs
and provide suggestions to the designer. The integration of several features into a single piece of software
allows the designer to use a simplified set of tools which are better designed to work with each other. DRC

allows for error checking to save time further in the design flow.
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Figure 2.4 - PlanAhead Design Environment

2.3.5: Xilinx Embedded Development Kit (EDK)

The Embedded Development Kit (EDK) provides users with a way of programming and using the onboard
microprocessors that are on the development board [20]. The Vertex-ll comes with two IBM PowerPC
processors as well as the required cores for development of a MicroBlaze controller. The EDK allows for
development on either platform. Use of the Xilinx EDK will be required for any microcontroller development
related to self - reconfiguration. Although self reconfiguration may be completed through the development of

custom logic, use of the PowerPC allows for an added level of scalability for project changes. The EDK is used



to synthesize all peripherals required for operation of the PowerPC as well as the development of embedded
applications. This software operates as a separate entity but provides the possibility to export its designs in a
format readable by Xilinx ISE as well as PlanAhead. The EDK significantly raises the complexity of the design
flow and is expected to cause difficulties with the integration of different flows. A screen shot of the EDK

environment is shown below in Figure 2.5.
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Figure 2.5 - Xilinx EDK Design Environment

2.3.6: Rational ClearCase

ClearCase is a source control management and revision system that is very popular in large development
environments with multiple people contributing. With ClearCase, files are stored on a server in a repository.
Users can then check files in and out of the repository and make changes. If a user does not want to work on
the main development line and instead isolate him or herself from other check-ins a branch can be created.

Once work is done in a particular branch, those changes can be merged back into the main line, or the branch



can be abandoned. Figure 2.6 shows how ClearCase graphically shows relationships between each branch and

each checked-in element.
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ClearCase is powerful because in addition to controlling check-ins and check-outs, it will merge changes that
happen between multiple users should multiple copies of a document be checked out at the same time. The

differential viewer utility in figure 2.7. highlights changes between versions of a file within ClearCase.
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Figure 2.7 - Diff viewer showing changes between versions

2.4: Previous Work

This project draws from coursework and previous Major Qualify Projects completed with General Dynamics C4
Systems. Most notably, the project entitled “Efficient AES Implementation with Modes of Operation”
completed in March of 2002 and “A Self Healing Circuit Implementing TMR” completed in April of 2006.
Although this project does not directly deal with Triple Modular Redundancy, it is meant to lay a foundation for
future work in that area. Partial Reconfiguration and TMR can be implemented together for increased
reliability and stability of an logic system. Ultimately, the implementation of a modern encryption algorithm,
such as AES, within a TMR Partial Reconfigurable system is the goal. This project however is limited in scope to

the creation of a partially reconfigurable design.

2.5 : General Dynamics C4 Systems (GDC4S)

General Dynamics C4 Systems is a subsidiary of General Dynamics Corporation in Falls Church, Virginia. C4

Systems falls under General Dynamics Information Systems & Technology line of business. General Dynamics



C4 Systems is a leading integrator of network-centric solutions. Their leadership credentials come from
applying world-class capabilities to create high-value, low risk solutions for use on land, at or under the sea, in
the air and in space. Based in Scottsdale, Arizona, General Dynamics C4 Systems employs approximately 11,000
people worldwide and is focused on the development, design, manufacturing and integration of secure

communication, information and technology solutions [7].

General Dynamics is the sponsor of this research and has graciously provided office space, software, and
hardware in order to complete this project. Although General Dynamics is a government contractor and deals

with classified information on a daily basis, all of this work was conducted in the public domain.

2.6: Advanced Encryption Standard (AES)

Advanced Encryption Standard (AES) was adopted by the United States government on November 21, 2001 and
became effective as of May 26, 2002 [6]. AES effectively replaced the previous Data Encryption Standard (DES).
Initially designed by Joan Daemen and Vincent Rijmen, the Rijndael algorithm was chosen by the National
Institute of Standards and Technology (NIST) to be used for AES. AES has seen widespread use and is an
extremely common form of encryption among software and hardware applications. Unlike its 56 bit
predecessor DES, AES utilizes a 128 bit block structure with key sizes in 128, 192, and 256 bit forms [5]. In
perspective, the 128 bit key size AES algorithm provides over 10* more possible keys than a 56 bit key size DES
algorithm [1]. This large key size causes AES to be extremely difficult to crack when using brute force methods.
In its 4 years of existence as the government encryption standard, AES has been utilized all over the nation and
world for both government and non-governmental use. AES owes its success due to its low cost, high speed,

high security and low memory requirements.

Dating to 2006, the only successful attempt at breaking an AES system has involved side channel attacks [10].
A side channel attack is different from an attack based on a weakness in the algorithm itself and instead utilizes
leaked information from the system itself. This type of attack is often based on timing information or
transmission of leaked electromagnetic data and may require internal knowledge of the hardware system.
Timing and power monitoring attacks involve physical monitoring of data flow and power usage through a
system CPU and can be used to determine the size of the key being used for encryption. Data can also be
leaked through radio waves generated from the encryption system. This vulnerability however can be easily
safeguarded by the use of physical shielding for the device. In all cases of side channel attacks, physical access
to the system is often required and can be defeated with better computer security procedures. Advances in
hardware technology continually strengthen the security of these systems and allows AES to remain a secure

cryptographic system.


http://en.wikipedia.org/wiki/Joan_Daemen
http://en.wikipedia.org/wiki/Vincent_Rijmen

2.7: Triple Modular Redundancy (TMR)

Triple Modular Redundancy or TMR is the concept of duplicating a black box circuit three times and using the
output that appears in a majority of the black boxes. TMR was first proposed by Von Neumann in digital
circuits that have binary output and is shown in Figure 2.9. TMR systems are setup by having a black box circuit
or module (denoted M) replicated three times [21]. These outputs are then fed into a voting circuit. The voting
circuit (denoted V) compares the three outputs and determines the winning result by taking the most popular

result. The result from the circuit V is then passed along to the next device that relies on the output of M.

——=0—

" L

Figure 2.9 — Triple Modular Redundancy Description

There is one big assumption to this using a basic TMR system as described above. According to [21], the major
assumption is that the voting circuit V is perfect and will not fail. In order to mitigate the risk of the failure of
the voting circuit, the voting circuit must also be tripled and made redundant. Figure 2.10 shows a TMR system
where the voting system is also redundant. The result of each voting circuit is then uniquely fed into the next
component which is also replicated three times. The process continues throughout the entire system passing

from one module to the next.
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Figure 2.10 - Triple Modular Redundant System Description

By using a redundant system, the risk of an overall system failure is reduced because a TMR system can
withstand an individual failure of a component. If a black box circuit has a reliability of R, a TMR system’s

reliability can be shown as:



3R?-2R?® [21]

As long as the reliability has a probability of .5 or greater, the reliability of the TMR system will be greater than
the individual system as described [21]. An odd number of replications are chosen because this allows for a

majority to always occur in a vote. Having an even number of components introduces the risk of having a tie

[21].

TMR is a chosen solution for implementing a highly reliable circuit because it has been has been in widespread
use long enough to prove that it is useful. Furthermore, the use of TMR has been successfully implemented in
systems that are exposed to harsh environments and situations where circuits are very likely to fail and cannot
be maintained easily. Examples of these circuits can be found in the PANSAT satellite systems designed by
Worcester Polytechnic Institute. Given that systems in space need to work without any user intervention, a

reliable system needs to be in place to ensure that data is processed correctly.

The other argument for TMR’s use is that TMR is easy to implement. Once a module has been designed, it
simply has to be replicated three times. Even though there is a small time investment associated with building

the voting circuit, TMR designs are quick to build at least in theory.

2.8: TMR, AES, and PR Together

The basic foundation of this project as well as future projects involves the coordination of Partial
Reconfiguration with Triple Modular Redundancy design methodologies. Ideally, these two technologies could
be used to implement a stable, self healing AES implementation as well as any other useful encryption
algorithm. Through use of an internal or external microprocessor, the system could be designed such that
when the TMR voting circuit detects an error, the FPGA will partially scrub itself without interrupting the flow
of data. This could eliminate encryption errors altogether as well as any downtime or need for human

interference. The ideal result would be a completely self sustained system with extraordinarily high reliability.

Although TMR could be realized without the implementation of PR, system downtime would be required in
order to scrub the circuit. In some cases, downtime may be an extremely undesirable circumstance. For
example, if a non — PR, TMR design begins abnormal operation, the voting circuit would detect the bad output
and discontinue use of that circuit. The entire design could then be realized to either scrub entirely at a certain
time interval through use of the internal configuration port or set for scrubbing via user 1/O. If a PR design
were realized, the system would then only need to scrub the “broken” logic when necessary. This would
eliminate the need for user 1/O or a regular scrubbing interval. Although, both of these features could still be

implemented if desired.



Partial Reconfiguration brings these new advantages to encryption implementation with the use of an FPGA.
Increased reliability and the implementation of a self — sustaining system are further evidence that hardware

encryption techniques are further evolving for any algorithm type.



3: Design Requirements

The basic design requirements for the initial working prototype are a direct result of thorough background
research and identification of a basic project. The requirements serve as an abstract methodology that lays a
foundation for proceeding forward. Initially, modular design flow had to be investigated, along with its
relation to partial reconfiguration. Next, the design of the test circuit and the ways which self-partial
configuration will be implemented had to be identified. Finally, the overall design flow for synthesis and

implementation is investigated.

3.1: Modular Design Flow

Creation of a partially reconfigurable circuit within the Xilinx ISE development environment requires the
designer to use a modular design flow [17]. Modular design is often used when a project requires multiple team
members to implement a design. More importantly, it permits for development of several pieces of a design
simultaneously, saving time, and avoiding problems associated with more complicated circuits [15]. Separate
modules can be designed, repaired, and implemented separately. This allows the designer to change one
module without affecting another and creating a chain of unwanted dependency problems. The required

modular design flow is described below. Steps diagrammed in parallel can be completed simultaneously [17].

1. Top Level Design and Synthesis

2. Module Design [ Synthesis
Top Level Budgeting
Active Module Implementation

Assembly

o voa W

Device Download

Figure 3.1 — Modular Design Flow

This design flow must be followed in order to successfully complete a modular design. Basic steps must also
be followed during each design phase for a successful design. The lead designer must create the top level
design as well as initial budgeting and assembly steps. A top level design provides the input and output
requirements for each module as well as allows the designer to move ahead with timing, location, and physical
area constraints for the final design [9]. This can greatly reduce the amount of time required for a start to

finish design.



3.2: Modular Partial Reconfiguration Flow

Similarly to the modular design requirements previously described, partial reconfiguration also requires
designers to utilize a specific modular design flow. This modular partial reconfiguration flow is very similar to
the modular design flow described above with some added design requirements. These added requirements

are detailed below [4].

e Arearange constraints for reconfigurable modules must be applied

e Bus macros are required communication across reconfigurable modules

¢ Implementation must occur for each version of a reconfigurable module

e Assembly must occur for each combination of reconfigurable and static modules

e Full and partial bit files must be created for device download

When creating a partially reconfigurable design, it is necessary to assign specific area constraints to any
reconfigurable modules. This is done in order to differentiate which area of the FPGA will be rewritten by a
partial bit file [4]. This task is traditionally completed with the aid of Xilinx Floorplanner. However, the Xilinx
PlanAhead software has integrated floor planning, macro placement, module implementation, and assembly
into a single GUI. The difficulty in creating a partially reconfigurable design is greatly reduced by the
integration of these tasks into a single tool. PlanAhead replaces the use of Floorplanner, Pace, Constraints
Editor, and FPGA Editor, as well as provides a GUI for NGDBuild, Map, and Par commands [13]. The PlanAhead
software allows the user to avoid using multiple programs while scripting the more complicated assembly and

implementation stages.

3.3: Test Circuit Overview

3.3.1: Preliminary Requirements

Currently, partial reconfiguration is mostly limited to academic use and is only beginning to gain entrance in
commercial applications. Xilinx ISE 8.2i does not officially support the partial reconfiguration design flow.
However, there exists an early access toolset through Xilinx’s protected website
http://www.xilinx.com/support/prealounge/protected/. Because partial reconfiguration is a relatively unused
practice, there exists little documentation on successful designs. In order to minimize errors and simplify
troubleshooting, a preliminary test circuit should be designed for partial reconfiguration implementation. The
test circuit must be able to limit complexity, provide 1/O for testing, and be reconfigurable in nature. The
development board provides eight DIP switches, eight output LEDS, and four push button switches which are

ideal for basic testing. The design should include at least one reconfigurable and static module, both of which


http://www.xilinx.com/support/prealounge/protected/

should provide output to the user and be independent of each other. For example, a static module with
constant output to an LED would allow the user to test for errors while a separate module is reconfigured. The
reconfigurable module would only need to provide different operations depending on which version is
downloaded to the board. Adder and subtractor modules are ideal for this as they can utilize the same 1/0

ports and complete recognizable operations for the user.

3.3.2: Programming Methods

Once the initial design is completed, there exist several methods of programming the full and partial bit files to
the FPGA. The simplest involves programming over the JTAG chain like any standard (not using partial
reconfiguration) design. Initially, a full design is loaded which includes any one version of the reconfigurable
module. When a change is required, a new partial bit file is then downloaded which only changes the
reconfigurable module while leaving the remaining modules operation uninterrupted. This method should be

used for initial programming and testing as it reduces the complexity of the project.

Unfortunately, partial reconfiguration over JTAG is not feasible in a final product as it requires both a full
computer and a specialized JTAG tool. Although almost all Xilinx FPGAs support partial reconfiguration, we
need to develop a system where the FPGA can reload its own configuration, either from external memory or
from data within the bit stream itself. Therefore, we will use the ICAP (internal configuration access port) port,
which is available on Virtex series devices. Although it may be possible to perform a JTAG scrub using the
platform flash, controlled reconfiguration is preferred. This allows for several configurations to be loaded,

rather than simply scrubbing the circuit with the already existing configuration.

To accomplish this, it is necessary to develop an embedded system within the FPGA itself and use the ICAP to
reconfigure it with pre-stored configuration files. There are two directions that may be taken, either using
custom logic or through the use of a microprocessor system. The microprocessor has the distinct advantage of
the fact that Xilinx provides the custom logic necessary to interface with the ICAP, so working with it is done at
a high level using the C programming language. The disadvantage of the microprocessor system is the added
complexity and system overhead that may not be necessary for this design. However, the microprocessor also
allows the design to be far more scalable to larger reconfiguration designs than the custom logic design, and
allows for a simple interface to many additional peripherals (such as SDRAM, Flash and RS-232) without
requiring the time to write the VHDL for the custom logic implementations. In addition, the Virtex-Il Pro device
includes two hardware core 32-bit PowerPC microprocessors built in. Therefore, the processor itself does not

require any FPGA resources; only the interface peripherals will use FPGA resources.



In addition to the choice between custom logic and microprocessor control for the ICAP, a decision must be
made on where to store the partial reconfiguration bit files. The two primary choices are within the FPGA bit
stream itself, or in external flash memory. The Memec Virtex Il - Pro XC2VP30 - FF1152 development board
includes a P160 Communications Module 2 add-on. This additional module includes 4 MB of flash memory and
can be used to store the partial bit files. Use of the FPGA bit stream is much simpler, as it does not require
programming the on-board flash memory or the expansion module. Additionally, it will work on any board
using this FPGA. However, there is a distinct disadvantage to using the FPGA bit stream - in that it uses up the
FPGA’s resources. This eliminates one of partial reconfigurations major design advantages of implementing
large configurations on less capable FPGA’s. However, the 4 MB flash memory provided with the P160 module
is able to hold at least 2 complete FPGA configurations (and many smaller partial configuration modules). The
flash memory can also be used for storage of the code for the microprocessor. This further reduces the FPGA
resource requirements because the only code required in the bit stream is a boot-loader to load the code out

of flash memory.

3.4: Process Overview

3.4.1: Design and Synthesis

Modular partial reconfiguration requires the user to follow a specific design flow. This flow is similar to the
more common modular flow but has added requirements for partial reconfiguration. The earliest step for PR
design involves HDL design and synthesis. The designer may use his or her preferred design method and

synthesis tool for this task.

Design and synthesis involves several added requirements. When coding at the top level it is necessary that all
logic be constrained to “black boxes”. This means that the top level must only include 1/O logic, “black boxed”
modules, and bus macro instantiations. Creating a “black box” module in VHDL means that the designer
neglects to include the source VHDL for the module during top level synthesis. This step is important for the
following initial budgeting stage. Each module must be synthesized separately in its own project and each
reconfigurable module must use the same number of input and output ports. Reconfigurable modules must
pass all I/O data through bus macros, ensuring that no data paths are lost during reconfiguration. Before
synthesis, it is necessary that the designer include Bus Macro sources, and remember to not include any other
module source. Finally the designer must ensure that the synthesis tool does not add 1/O buffers during
module synthesis and that hierarchy is preserved at all levels. Completion of this step produces top level and

module net lists which will be used in subsequent steps.



3.4.2: Budgeting and Constraints

The following steps can created with a number of different tools. Xilinx ISE provides command line tools and
scripts which can be used to complete the following steps. However, Xilinx PlanAhead integrates many of
these tools into a single GUI interface. Once a new project is created in PlanAhead it is only necessary to
import the top level net lists as well as all static and one reconfigurable net list to begin initial budgeting.
PlanAhead must also be configured to utilize the PR functionality. This can be done by entering the console
command:

hdi::param set —name project.enablePR —bvalue yes

Constraints may be added manually via a text editor or graphically in PlanAhead. There are several items which
must be remembered when budgeting a partially reconfigurable design. These steps are outlined below and

our required for successful PR implementation.

1)  All static logic must be confined to a single base p_block with no range defined
2) PRregions must be confined to separate p_blocks and assigned a range
3) PR p_blocks must be rectangular and include the following constraints:
a) Mode = Reconfig
b) Min_xand Min_y coordinates must be positioned on an even slice
¢) Max_xand Max_y coordinates must be positioned on an odd slice
d) BRAM ranges must also be assigned
4) Bus macros must be placed across PR region boundaries
5) 1/O ports must be mapped to desired pins
6) DRC checks may be run to uncover planning errors

7) Floor-planned net list must be exported to a new (empty) directory.

Following these requirements will allow the designer to advance to the implementation stage of the design.
Note that these steps only budget for an initial design. To budget subsequent reconfigurable designs, the user
most only update the net list of the reconfigurable module they wish to change and export again to a new

directory. The remaining design steps must then be carried out for each design.

3.4.3: Implementation and Assembly

The remaining design steps can be completed by running the “Run Partial Reconfig” tool in PlanAhead. The
user is provided with the option of generating a batch file to complete all remaining steps or the user may run
through each step graphically. When running the “build all” command it is not possible to provide separate

parameters inside of PlanAhead, instead the designer must edit the batch file manually. This process is



generally faster and requires less input. However, more complex designs may require significant changes, in
which case the graphical interface may be more suited for the task. As the implementation and assembly steps
are run, PlanAhead creates a directory structure. Full and partial bit files for each design are provided and the
designer can then download the files to their development board and proceed with testing. It is important to
remember that these steps must be run for each version of a reconfigurable module to create all desired

partial bit files.

3.4.4: Download and Testing

Successful completion of the previous steps results in the creation of full and partial bit files. Any full bit file
can be downloaded to the Xilinx FPGA as the initial design. Similarly, any of the reconfigurable versions can be
downloaded at any time. The number of bit files and file sizes is entirely dependant on the design. For an
initial proof of concept, significant testing will be required to ensure no glitches occur. Functionality can then
be observed by the user depending on the type of circuit created. As an initial proof of concept, it is important

to implement a design which can be easily tested and repaired.



4: Implementation - Basic Circuit

4.1: Software Requirements

Creation of a partially reconfigurable circuit requires that the designer follow a set of strict guidelines for
modular design. Proper synthesis of the design also requires that the software be properly configured for the
partial reconfiguration design flow. Due to the intricacies of software variations, it is important to note that
this design was created using Xilinx ISE 8.2i with Service Pack 1 and Early Access PR tools installed. Following
synthesis, implementation of the design was completed using PlanAhead version 8.2.7 with Partial
Reconfiguration tools enabled. While it is certainly possible to implement this design using other software

versions, changes in design approach would be inevitable.

4.2: HDL Design and Synthesis

4.2.1: Design Overview

The partial reconfiguration design flow requires that the designer implement any static design separately than
any reconfigurable portion. This can be done by separating logic into modules and using a top down approach
for design. For this design, only two versions of the PR module and a single static module were created. Itis
possible however to implement several static modules and PR modules as well as multiple versions of each PR
module. The top level design and each module must be created in a separate project and synthesized
separately. Note that in this design 4 bus macros were used to ease routing from the reconfigurable module to
1/O ports. This will be further explained later. This creates a separate net list for each module which will be
used later during budgeting and implementation. VHDL code for the top level and subsequent modules are

available in Appendix A. A basic overview of this design is shown below.

| | | |
Version 1 Version 2 LED Clock Input BM Output BM

Adder Subtractor PRM Input PRM Output

Display Converter

Figure 4.1 - Top Level Design Hierarchy



4.2.2 Design Intent

This partially reconfigurable design was developed as a proof of concept. The intent of this design was to
create a partially reconfigurable circuit which is easily tested and would limit design problems. A design was
chosen which would utilize only one reconfigurable and static module. A basic ALU would provide an easily
testable design which could be written in a partially reconfigurable manner. In the interest of time the design
was limited to only two operations, addition and subtraction. Each operation would be contained within its
own reconfigurable module and a partial bit file would be loaded to the board to switch between the two. For
testing purposes, a static module would control otherwise unused LEDs to test for errors during
reconfiguration. Overall, this would require creation of four separate Xilinx ISE projects. The top level, static

module, and PR modules would each require their own synthesis.

4.2.3: Top Level

As mentioned previously, HDL design at the top level must follow a strict set of guidelines for proper synthesis.
The partial reconfiguration design flow requires that no logic be implemented at the top level. This means that
all designs must be contained within “black box” modules. Black box modules are created simply by not
including the source VHDL in the top level project. The entity declaration remains and when synthesized Xilinx
creates an empty module with the correct number of inputs and outputs. The module itself must then be
loaded into its own separate project and synthesized there along with any lower level logic. The basic circuit
designed for initial testing includes a single static module and reconfigurable module. Top level modules must
include bus macro sources for proper synthesis. Bus macros are included as a static routing method for
reconfigurable modules. They ensure that when a reconfigurable module changes, 1/O logic can be properly
routed to and from the PR module. Any communication flowing in and out of a PR module, with the exception
of clocking 1/O must be routed through a bus macro. In the top level design, the bus macro can be instantiated
and included like a normal entity. Signals are then required to connect bus macros to top level and module

level I/O. As with any non reconfigurable design, all top level I/O must also be declared in the top level VHDL.

Once coding at the top level is complete, synthesis may begin. Any compatible synthesis tool may be used,
however this design was synthesized using Xilinx XST. However, before synthesis can begin there are a few
options which must be changed. Figure 4.2 displays the Xilinx synthesize process properties window. For
synthesis at the top level you must be sure that Keep Hierarchy is set to Yes. To change this option, select the
advanced view. Furthermore, under the Xilinx Specific Options tab check to make sure that Add I/O Buffers is

enabled for the top level. These changes are necessary to implement and merge the final assembly.
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Figure 4.2 - XST Process Properties

4.2.4: Module Level

Module level design can be begin concurrently with top level design or top level initial budgeting. This process
is for the most part independent of the others with the exception of a matching entity declaration required in
the top level. There are a few things to remember when proceeding with module design for a PR circuit. Static
modules synthesis only requires that hierarchy be preserved as with the top level. Unlike the top level though,
static and PR module synthesis require that /O Buffers not be added during synthesis. Design of the PR
modules also requires the designer to follow a basic design convention. All versions of a PR module must
include the same number of inputs and outputs as well as use the same entity name and filename. Each PR
module version should be saved in a different directory in order to differentiate between them. Module level

design is generally basic and only requires the designer follow the previous guidelines.

This design utilizes reconfigurable modules which operate with addition and subtraction behavior. The code
for these designs is very basic and does not include a carry. Each module includes two — four bit switch inputs
and a single four bit LED output. No clocking logic is used inside the reconfigurable modules. The static
module behaves as an LED driver to the remaining four board LEDs. A clock converter is included within the
static module and is used to blink one LED at 2 Hz and another at 20 KHz. The remaining two LEDS are tied to

logic high for continuous operation.



4.2.5: Bus Macros

Possibly the most important design requirement is the addition of bus macros for inter-module
communication. As stated in the top level design section, bus macros are required for all /O communication
through a reconfigurable module. This includes information passed to other reconfigurable and static
modules, as well as board I/O. Bus macros are provided by Xilinx and are FPGA model dependant. Four bit
macros are available for download in the XAPP 290 application notes [23]. For this design, we chose to use
eight bit bus macros provided in the Early Access PR Lounge [27]. Access to this lounge is currently restricted
and you must contact Xilinx directly and apply for access. Bus macros are unidirectional and dependant on
placement. This means that whether they act as an input or output to your reconfigurable module depends on
the direction and which side of the module they are placed on. For the Virtex Il Pro, bus macros are available in
only right-to-left and left-to-right configurations. For example, a right-to-left macro placed on the right side of
a reconfigurable module acts as an input, while a left-to-right macro would act as an output. In addition to bus
macro direction, Xilinx provides asynchronous and synchronous versions as well as wide and narrow types. For
this project, simplicity was desired and an asynchronous narrow bus macro was chosen. A total of four macros

were used for this design, providing an input and output macro on each side of the reconfigurable module.

4.3: Implementation with PlanAhead

4.3.1: Project Creation

Upon completion of the HDL Design and Synthesis, Xilinx ISE creates several net list (.ngc) files. Several
options for the designer remain to continue with the implementation phase of the project. Xilinx ISE provides
all of the tools necessary for implementation of a PR design. However, these tools are divided into several GUI
programs and command line scripts. Alternatively, Xilinx PlanAhead software can be used as a single
integrated GUI for these tools. For this design, PlanAhead is used to complete the project implementation.
Before importing the net lists into PlanAhead, it is beneficial to organize your directory structure of previously
generated files. There may be a need to revert back to Xilinx ISE to make changes to the project and may not
want to allow other programs to make changes to those files. The first step is to create a new directory for the
PlanAhead project. When a new project is created, the software prompts the user to point to a location of
synthesized net lists. It is acceptable to point to the original files since PlanAhead creates copies in its own
directory folder when files are imported. For the first design, it is necessary to locate the top level net list,
static module net lists, and only a single reconfigurable module net list. PlanAhead will then prompt to import
a user constraints file (.ucf). This step can be avoided if you wish to create all constraints through PlanAhead.
The remaining step for project creation is to enable Partial Reconfiguration in PlanAhead. This can be done

using the command provided earlier in section 3.4.2.



4.3.2: Budgeting and Constraints

Initial budgeting, floor planning, and creation of constraints can be completed within PlanAhead. The first step
is to assign all logic modules to physical blocks. To do this, begin with all static modules. Highlight and select
New pblock. All static logic modules can be assigned to a single pblock. In this case it is referred to as
pblock_base. No further floor planning is required for the static logic modules. Following the assignment of
static modules, the reconfigurable modules are added to their own pblock as well. This step is completed
instead by selecting the Draw pblock command. Then, a point is selected on the package view and dragged
out forming a rectangle which will be designated as the reconfigurable module region. This rectangle can be as
large the whole design or as small as a single slice. It must however be large enough to fit the reconfigurable
design within it, and small enough to allow space for static logic to be routed as well. Placement of the module
can not be completed automatically by the PlanAhead software. For simple designs, a number of floor plans

may be suitable. An example of an acceptable pblock size is shown in Figure 4.3. Note that this pblock is much

larger than required for such a simple module design.
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PlanAhead has a built in requirement that only allows pblocks to be drawn in rectangular form. However, the
user will also have to determine correct placement of the rectangle. Currently, PlanAhead requires that the

minimum x and y values (upper left corner) of the module be placed on even numbered slices, while the
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Ly BRI



maximum x and y values (lower right corner) be placed on an odd numbered slice. This can be easily set by
selecting the reconfigurable pblock, selecting rectangles in the properties window and changing the listed
locations manually. Finally, select the attributes tab and add DEFINE MODE = RECONFIG to the list. This is

required for proper creation of the bit files later on.

Once the pblocks are correctly defined, the bus macros need to be placed on the floor plan. This particular
design utilizes four different bus macros. Each bus macro was designated in synthesis by its direction and input
| output type. Inputbusleft and outputbusleft need to be placed on the left side of the reconfigurable module,
while inputbusright and outputbusright must be placed on the right side. When creating a design with bus
macros it is important to note which side the bus macro should be placed because they are unidirectional and
the type denotes whether they will function as an input or output. Naming the bus macro according to their
location and type can be very helpful when floor planning. To place the bus macros, switch to Site Constraint
Mode and collapse the top level primitives folder. Alternatively one can run a search for type PR bus macros.
Select the macro and drag it into the device view. It must be placed so it straddles the PR region boundary.
This occurs when the mouse is hovered over the lower left corner of a slice directly to the left of the boundary.

Proper bus macro placement is displayed in Figure 4.4 with each bus macro highlighted differently.
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Figure 4.4 - Bus Macro Placement (Various Colors)
Once placement is completed, the last remaining step involves assignment of ports to 1/O pins on the FPGA.

Port assignment is entirely dependant on the development board and requirements of the design and can be



completed manually by adding the locations to a user constraints (.ucf) file or within PlanAhead. The

constraints added for this design are provided below.

NET "'CLOCK" LOC = AH17; NET "IN1[0]" LOC = G22;
NET "IN1[1]" LOC = H22; NET "IN1[2]" LOC = G21;
NET "IN1[3]" LOC = H21; NET "IN2[0]" LOC = G20;
NET "IN2[1]" LOC = G19; NET "IN2[2]" LOC = H19;
NET "IN2[3]" LOC = G18; NET "LED1" LOC = E31;

NET “LED2" LOC = E32; NET "'LED3" LOC = F31;

NET “LED4"™ LOC = F30; NET "OUTPUT[0]" LOC = E1;
NET "OUTPUT[1]" LOC = E2; NET "OUTPUT[2]" LOC = E3;

NET "OUTPUT[3]" LOC = E4;

To enter these constraints in PlanAhead, simply open the package view, and drag and drop the ports from the
Physical Hierarchy menu into the desired pins. PlanAhead will create the constraints file and add these values
automatically. The final remaining step in the budgeting phase involves running design rule checks. Design
rule checks are provided by PlanAhead to counteract any basic floor planning mistakes. Because the process
involves so many steps, design rule checks can be very helpful to eliminate common errors. For this design, a
common error was found when running design rule checks. This was due to the fact that we utilized
asynchronous bus macros. Xilinx suggests that synchronous bus macros are used to eliminate any timing
issues related to 1/O from reconfigurable modules. For this basic circuit, timing issues are not of a concern and
the errors produced by the DRC tool can be ignored. Note that if any other errors occur, it may be necessary to

resolve them before moving on to the Partial Re-config Tool steps.

4.3.3: Partial Re-config Tool

The most important and useful part of the PlanAhead software is its ability to eliminate complicated scripting
and command line use. The Partial Re-config Tool provides the user with a GUI of the remaining
implementation and assembly stages. However, before this tool is run it is necessary to complete one more
step. Select File > Export Floorplan, select a new, empty directory and select OK. This step creates the
required directory structure for the Partial Reconfig Tool. Make sure that you export to a new or empty folder
or the directory structure created will be incorrect. Once this is completed, the Partial Re-config Tool can be
started. The tool provides two options, Run place & Route, or Generate Script Files. The first option allows
each step to be run separately and provides a GUI for additional parameters to be added to each stage. The
second stage creates a single batch file which once run completes all steps without any required interaction
from the user. This step is fastest and recommended if no changes are required to the design. If this step is

chosen, make sure that when the tool is initially run, the partially reconfigurable block is highlighted. This



causes that block to default as the reconfigurable block within the tool. If this is not done, the tool will not
function correctly. If the first option is chosen, it is important to note that a bug within the PlanAhead 8.2.7

environment requires that the final assembly step be ran as generate script file. This bug was fixed in version
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Figure 4.5 - Partial Reconfig GUI

An important requirement of the Partial Re-config tool is that each step is dependant on the steps previous to
it. For instance, if the static implementation step is ran again, the following PR implementation and Assembly
steps must also be completed a second time. Once the assembly stage is completed successfully, the bit files
are generated and stored in the merges directory of the exported floor plan. These bit files are labeled
according to the PR module implemented and can be downloaded to the development board. To initiate other
PR versions, another PlanAhead project must be created. Then, import the net lists as before with a different
reconfigurable module. The remaining budgeting and constraints steps can be completed by importing the

user constraints file generated from the previous project. The Partial Reconfig tool can be run again following



the same steps as before. Be sure to choose a separate directory for floor plan export once again. Another set
of bit files is created and the desired bit files can also be loaded onto the board. In order to distinguish the
difference in bit files it is necessary to rename then in a manner that describes their behavior. =~ Once

implementation and assembly of each PR module is completed, programming the FPGA can begin.
4.4: Programming

4.4.1: Configuration over JTAG

To begin testing the design, the initial static_full.bit file was downloaded to the development board through
the JTAG chain. JTAG is the simplest programming procedure completed through the Xilinx iMPACT software.
However, JTAG programming requires a separate computer or board to load the files through the JTAG chain.
JTAG is ideal in testing environments as it has no requirement of programming logic or added complexity.
Operation “in - field” does not always allow for the use of an external programming device. Several options
for this type of programming exist and will be explained later. To begin downloading, Xilinx Impact is run and
the JTAG chain is initialized. This is done assuming the development board is properly connected to the PC via
a USB or parallel Xilinx platform cable. Impact then examines the JTAG chain and locates the on board FPGA.
Following JTAG initialization, the desired full bit file was selected and programmed to the FPGA. Note that any
of the full bit files created may be downloaded initially, it is up to the designer which version is considered to
be the initial setup. Partial bit files are then downloaded to the board in the same manner. When a partial bit
file is selected to load, it is not necessary to power down the board or to re-initialize the JTAG chain. The FPGA

will continue to operate non reconfigurable regions while the new partial bit file is loaded.

4.5: Creation of a PR AES Implementation

4.5.1: Design Overview

Similarly to the basic design described in section 4.2, a more complicated AES implementation can also be
implemented through use of the ISE PR and PlanAhead tool flows. The previously mentioned circuit includes
very limited 1/O as well as a very small amount of reconfigurable logic. This meant that implementation of PR
would involve minimum complexity. The AES implementation however is much more complex and will require
significant changes in the design steps followed. The basic design is very small, so small in fact that the
dominant size requirement in floor planning was the minimum number of slices to accommodate bus macro
placement and to pass DRC checks. This meant the reconfigurable module would be a minimum of two slices
wide and 4 slices high. The AES implementation however utilizes over 30% of available slices on the Virtex Il Pro

and would require a much larger reconfigurable module. To begin implementation, the design needed to be



modified for PR compatibility. The top level design would include two AES implementations and a switching
circuit between the two. To keep complexity of the design at a minimum, this switching circuit would be
designed to accept user input from an available push button switch. The user would be able to select one

instance for use, while choosing to reconfigure the other via the JTAG port.

4.5.2: Limitations

It should be noted that the AES implementation involves an extremely large amount of 1/O. It includes a 256 bit
key input, a 128 bit data input and output, a 1 bit key load input, a 2 bit key size input, a 1 bit data load input, and
a 1 bit data done output. Currently, AES implementation on the FF1152 dev board is not feasible without the
use of a high speed serial or other interface which would be used to load and accept these numerous inputs
and outputs. Instead, shifting registers can be used to limit the 1/0 to a much smaller number which can then
be connected to available pins. This would still not allow for full testing but instead would allow for proof of
concept with the basic PR implementation. The implementation can still be exported and floor planned in

PlanAhead as well as developed into partial bit files.

4.5.3: Steps Required

The steps required for implementation of a PR AES design are very similar to those followed in section 4.2.
First, a top level design must be created which includes only black box instantiations and bus macros for
communication across reconfigurable modules. Due to size limitations, the AES implementation will only be
able to be replicated twice on the chip. The shift registers used for 1/O limiting and the switching circuit need
to be created in a modular fashion and synthesized separately. Similarly to the early design, all modules must
be synthesized in their own directory without 1/O buffers and with hierarchy. The synthesized net lists can then
be imported into PlanAhead and floor planning can begin. Note that the pblocks created for each
reconfigurable module must be large enough to accommodate the code. This can be checked by selecting the
general properties box and comparing the required and available statistics for slices and other attributes.
Because a single AES implementation requires around 30% of the chip, each reconfigurable module will be quite
large. Currently, PR design is also limited to placement only in different vertical columns. Although
reconfigurable modules do not need to be the entire height of the FPGA, they cannot overlap or share vertical
columns. With the exception of additional size and placement requirements, the steps involved in

implementing the AES design in PlanAhead are the same as detailed for the basic PR design.

4.5.4: Feasibility

With the large size of this particular AES implementation, it is apparent that a TMR system with PR will not be
feasible on this particular FPGA. The process however could certainly be realized with either a smaller AES

implementation or larger FPGA. The development of the basic proof of concept leads us with reason to believe



that a PR AES implementation is entirely possible and could be utilized with a TMR system. Due to the
apparent size restrictions and testing limitations, further development of this PR AES implementation was

abandoned in order to focus on the self reconfiguration design described in section 5.

4.6: Testing and Results - Basic Circuit

4.6.1: Overview

Completion of the basic PR design requires that testing be completed to ensure proper configuration. This
basic testing is required for two phases. First, the design can be tested through configuration over JTAG. This
is the simpler of the two approaches and allows for the initial testing of the PR implementation. Once initial
testing is completed, the self-reconfiguring design can be loaded and tested. In the initial design, several
features were added in order to allow for testing. The LED display module was created for the sole purpose of
visible testing the functionality of partial reconfiguration. This module uses four on board LEDs. The output to

these LEDs can be monitored by the eye as well as more closely through the use of an oscilloscope.

The goal of a partially reconfigurable design is to change a portion of the hardware without affecting the
performance of remaining architecture. With this intent in mind, the LED display module was created as a
static, non reconfigurable module. The reconfigurable module implemented functioned as an addition or
subtraction module. This module utilized an eight input DIP switch as well as four output LEDS separate from
those used in the LED display module. If partial reconfiguration is successful, the reconfigurable module can be

scrubbed, erased, and rewritten all without interruption to the LED operation.

4.6.2: Bit Stream Differences

As described in the implementation section, Xilinx ISE and PlanAhead were used to generate a number of bit
files for this PR design. For initial testing, five bit files are of main concern. These files have been renamed to
describe their functionality.  Adder_full.bit, Adder blank.bit, Adder_partial.bit, Subtractor_full.bit, and
Subtractor_partial.bit are all required for initial testing. The full bit files include all static logic as well as the
reconfigurable logic for which they are named. Adder_full is the full design with the addition logic as the initial
reconfigurable module while Subtractor_full includes the subtraction logic. Adder_blank is the partial bit file
with no logic included. When this file is loaded, no addition or subtraction logic should take place as the
reconfigurable module is essentially erased. Adder_partial and Subtractor_partial are the two partial bit files
for this design. They can be used to revert from one type of reconfigurable module to the other. Proper

design will allow for these files to be loaded without disruption to the remaining static logic.



4.6.3: Desired Functionality — Configuration over JTAG

A successful implementation will result in specific expected outputs from the development board. Initially, as
either of the full bit files is loaded, LED1 will operate at 2Hz, LED2 at 20 KHz, and LED3-4 at a constant on
configuration. LED5-8 will be dedicated to the logic operation determined by the loaded bit file. The adder and
subtractor both operate assuming DIP1-4 and DIP5-8 as two 4 bit inputs. The resulting arithmetic operation is
output to LED5-8 with the carry bit discarded. All eight LEDs will provide the necessary output for testing both
visible and with the use of an oscilloscope. As the partially reconfigurable module is scrubbed, erased, or
modified, the four LEDS corresponding to the static display module should see no change in operation. An
oscilloscope can be used to trigger on the falling edge of the output to ensure no lapse in operation takes
place. The functionality of the reconfigurable module itself can be tested simply by moving the DIP switches
and observing the outputs to LED5-8. Correct operation of the module can be confirmed if the two inputs are
successfully added or subtracted from one another. Furthermore, when the blank bit file is loaded, no logic

operation should take place and the corresponding LED5-8 should show no output values.

4.6.4: Results — Configuration over JTAG

Initial tests began with the loading of the Adder full bit file. Operation of the hardware at this time was
observed to be successful as the logic operations were correctly output to the proper LEDs and the static LED
display module appeared to be operating correctly. The oscilloscope was used to verify the rate at which the
LEDS were operating. To ensure that the results were conclusive, the Adder Full bit file was loaded and
reloaded several more times, each with the same operation results. An oscilloscope reading of the 2Hz and
20KHz signals is shown in Figures 4.7 and 4.8. Similarly, a reading of the solid LED signal in both on and off
configurations is shown in Figures 4.9 and 4.10. Note that the LEDs operate on inverted logic. This means that

when they LED is in an on state, the logic reading is low and in an off state the logic reading is high.

Telk [ILE 12. 5msrs (%] Acgs A= 0.000 voc 'IEREEI.EEEDD SIs zncgs A= 0.000 voc
I s : " ftu1High : ftu1High
I . 2w 1.4 236 Y
i d o H ;
............. 1 atrreq 't cw1Freq
: 1 20kHz 1 2Hz
b ] uiRise o s ] ol Rise
1 115ns [ : : : : I : : : : 1 1.79ms
] Low res [ : : : : I : : : : 1 Low res
[ : : : : I : : : : 41 Pariod [ : : : : I : : : : 41 Pariod
E3AnAnnnnaaanaanaanaaaacE HanaanaanAanaaaanaanaae [ LU L B3 nh Ao GaRG AR ARG ARG e SHACAAaRG AR AREaREaRaaRE: (L1 L 111]
[ ""'hi"z'u]is"cﬁi'.'r 1.48 Y [ ""'hi'siiuhis"cﬁi'.'r 15

Figure 4.6 - 2Hz LED Figure 4.7 - 20KHz LED



Tek giiie: 50ks /s sample  EYH 3 0.000 vyDc TeKRun: 50ks/s  sample I 3 0.000 vyDc
L1 | i |

o=
1 tu1High [ : : : : I : : : : 1 w1 High
] 2.36 ¥ E3RonfonnnBarnaBoannAE0amE HonasoanAEnanaanaaaaanc [ LY
41 Freg o] g prag
{4.167kHz [ : : 5 1 : : : 13.448kHz
++] Low res : i i btk } } e LOW res
1 1Rise bR ] w1 Rise
1 2.06ms [ : : : : I : : : : 1 3. 1ms
Eoo : : S : : o Low signal Eoo : : S : : o Low signal
s . : : : T g g : : 1th1 Period [ : : : : I : : : : 11 Period
] 240pn% o : : : . : : . : ] 290ps
LoD Lewres oL Lewes
[y UM Emshis 2av [y SUM T Ems Chi s -20my
Figure 4.8 - Solid LED in Off State Figure 4.9 - Solid LED in ON State

The next step involved scrubbing the reconfigurable module by loading the Adder_Partial bit file onto the
FPGA. This would essentially reload the adder logic already loaded onto the board. When this operation took
place, the static LEDs were unaffected. The oscilloscope was set to trigger on the falling edge of one of the
static LEDS. Essentially, if any of loss of signal occurred the oscilloscope would catch it and pause the display
for viewing. As the module was scrubbed, no visible effects occurred to the static displays. The oscilloscope
was then used to monitor the output of the LEDs tied to the reconfigurable module. These in fact showed a

slight change due to the quick scrubbing of the circuit.

The next step involved “erasing” the reconfigurable module by loading the Adder blank bit file. When this
occurred the same steps were taken to monitor the static display LEDs with the same result. However, the
behavior of the LEDs tied to the reconfigurable module had now changed significantly as expected. Because
the module was “erased” the output LEDs tied to it were all turned off. This demonstrated that the module
was reconfigured properly. In order to test this with the oscilloscope, channel 2 was set to monitor one of the
LEDs which would change state when reconfiguration occurred. Because the state of the LED would be
changing from ON to OFF, the trigger was set to the rising edge. This would cause the oscilloscope to hold its
value when the change occurred allowing us to view channel 1 at that exact point. Channel 1 would be
connected to what should be an unaffected LED in order to ensure no change occurs. Figure 4.1 shows the
20KHz LED signal during reconfiguration. Note the point at which the edge rises on channel 2. There is no
unexpected signal change at this point in Channel 1. Figure 4.12 shows the same approach taken, this time with
a non oscillating LED signal on Channel 1. Once again, there is no unexpected signal change during

reconfiguration.
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The final reconfiguration step required was to load the Subtractor_partial bit file onto the FPGA. This would

rewrite the reconfigurable module to utilize the designed subtraction logic. Once again, the oscilloscope was

used to monitor the behavior of the static LEDs with the same result. This time, the reconfigurable module

was once again configured properly as the LEDs tied to the reconfigurable module changed behavior. They

now represented the output of a subtraction operation from the two 4 bit inputs. To conclude testing, these

steps were taken again with the Subtractor_full bit file loaded. Results continued to be conclusive as no

glitches were visible during reconfiguration.



5: Self-Partial Reconfiguration Implementation

Although dynamic partial reconfiguration opens the door for several new possibilities in FPGA design, external
control of the reconfiguration process limits the usefulness of partially reconfigurable designs. The proof of
concept for partial reconfiguration over JTAG demonstrated that dynamic partial reconfiguration is possible.
There is still quite a bit to be desired in terms of usefulness in a final application. A design which could control

self reconfiguration would eliminate the need for extra hardware reducing size and cost.

5.1: Overview

5.1.1: Advantages over JTAG Partial Reconfiguration

The primary advantage of using self-partial reconfiguration is that it allows for a complete “system on a chip”
design, where no external control is necessary for the partial reconfiguration to occur. Some additional
components are necessary, such as flash memory to hold the partial bitstreams and the FPGA’s original
configuration, but all of the control circuitry for the partial reconfiguration logic is internal to the FPGA.
Particularly, the method we used for basic JTAG partial reconfiguration required a full PC with iMPACT
software and a Xilinx platform cable. This is not practical in a final application; although it is likely possible that

a microcontroller could be configured to replace these devices.

A critical advantage to self-reconfiguration is the fact that it can be automated, rather than requiring a user to
press the program button on the PC as is currently required. Although this could happen with JTAG and a
microprocessor, it requires significant 10 monitoring to occur, or a scrubbing circuit on a timer. Other
advantages include easier portability to a triple mode redundancy design, as an internal reconfiguration
controller can easily have direct access to signals used anywhere on the FPGA by simply changing the VHDL
code. This means that the monitored signals can be changed just by updating the firmware, rather than
requiring changes to a circuit board. In addition, this means that fewer FPGA resources are required for a TMR
implementation, as all of the monitoring happens internally. Another related advantage is that it eliminates
possible failures in the TMR circuitry, as the reconfiguration logic can reconfigure any FPGA routing, which is

not possible with external routing on a PCB.

5.1.2: PowerPC vs. Custom Logic

As discussed in Chapter 3, the Xilinx Virtex series FPGA’s provide an internal port for reconfiguration by internal
logic called the Internal Configuration Access Port (ICAP). Implementation of self partial reconfiguration

requires that the designer choose to use custom logic or the internal PowerPC for controlling reconfiguration.



Use of the PowerPC holds two key advantages. First, Xilinx already provides the interface to the ICAP
controller for reprogramming the FPGA, as well as some example C code for the PowerPC. In addition,
interfaces to several other components are provided, such as RS232 for debugging and Flash memory for
storage of the partial bitstreams. However, in a custom logic design, the logic necessary to control the ICAP
port and the interface to the flash memory would have to be designed from scratch. The second key
advantage to the PowerPC is its scalability for larger designs. Because it is programmed in C code, and is a
programmable microprocessor rather than custom logic, it can scale much more easily to adapt to different
applications. Due to the fact that this project is not research for one specific design, adaptation of the

PowerPC was the more useful approach.

One major disadvantage of the PowerP(, is the fact that the peripherals (such as the flash memory controller,
the RS232 controller, and the ICAP controller) are not as resource efficient as possible, as they are designed for
general purpose use and may cover cases that we will never encounter. A custom logic interface would only
have logic necessary for our specific application. It should be noted that the PowerPC itself, on our Virtex 2 Pro
boards, does not require any additional logic as it is a hardware device that does not use reconfigurable
resources. Finally, if it was desired to have TMR principles applied to the self-reconfiguration controller, there
are only two PowerPC processors on the specific Virtex 2 Pro model that we are using, which means that triple
redundancy of the control circuits is not possible. However, there are versions of the chip with four PowerPC
modules, and it is unlikely that the PowerPC itself needs to be monitored for faults as it does not include any

reconfigurable logic.

5.2: Design Procedure

5.2.1: Overview

We separated the design of the self-reconfiguration controller into distinct steps. First, we developed a basic
system using the EDK tool, with RS232 and flash memory hardware, and developed the flash memory control.
Next, we attempted to crate an ICAP interface for the PowerPC. Finally, we attempted to apply the PlanAhead
tool to the EDK design to create reconfigurable modules to test the ICAP module with. Figure 5.1 shows the
addition of microprocessor static logic to the top level design from 4.1. It is important to note that the
microprocessor is not a black box but has implementation code. Although some of the peripherals may be

instantiated as a black box, the top level is not.
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Figure 5.1 - Top Level Design Hierarchy

5.2.2: BRAM vs. Flash Memory

When using the PowerPC and ICAP module to load the reconfiguration data out of memory, as previously
discussed, we needed to make a decision between storing the reconfiguration data in flash memory on the
P160 Communications Module 2, or in internal block RAM (BRAM). As we decided in the design requirements
section, the flash memory has a distinct advantage in the fact that it uses significantly fewer FPGA resources.
The flash memory’s resource usage is fixed to the size of the memory controller no matter what size memory
we address (beyond some additional bits for a larger data or address bus), whereas using BRAM increases

resource utilization linearly with the amount of memory required.

Although the flash has the large advantage of not requiring additional FPGA resources, it looses out in that it is
significantly more difficult to program. The BRAM can be programmed by simply storing the reconfiguration
data in the .DATA section of the corresponding C program, and setting the EDK tools to store the .DATA
section in BRAM. The BRAM would therefore be loaded as part of the FPGA’s bitstream while programming
over JTAG. However, to program the flash memory, a much more complicated method is necessary, as it is

not in the JTAG chain and only connected directly to the FPGA itself.

5.2.3: Programming Flash Memory

Programming the flash memory on the expansion communications module is not nearly as simple as
programming the platform flash or the FPGA itself (via JTAG), as it is not in the JTAG loop. The expansion flash

memory is only accessible via FPGA IO pins, and therefore must be programmed by passing the data through



the FPGA. Xilinx provides a script that executes most standard flash memory commands, which can be
accessed in the EDK by using the Device Configuration / Program Flash Memory option. It should be noted,
however, that although the script will look like it is running without moving the flashwriter.tcl file to the local
project directory, it will only program correctly if done so. The flash memory programming application can
program the flash with any binary file, although it is designed for programming ELF or SREC program
executables. However, to simplify the design, we will be storing the program itself in BRAM, and simply using
the flash memory to store the reconfiguration bitstreams only. The script works by loading a pass-through
program using the debugger tool, which passes through the data from the JTAG debugger connection to the
physical flash memory, using the FPGA’s 10. Figure 5.2, below shows a screenshot of the flash memory

programmer GUI.
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(HERGNRGNE (L /edk_data/tS/Adder_Subtractor/cobo-new. bi

[T Auto-comvert fle to bootioadable ISHEE vl format when proaramming flash

Froceszsar Instance: ppcd05_0

—Flazh Mermom Properties

Instance Mame: | SRAM_256Kx32_FLASH_TM=32_c_mem1_baseaddr |

Baze Address; 0x03400000 Size: 4 Mbytes Buz width: 32 bits

Frogram at Offzet: IDHDDDDDDDD

—Scratch Memom Properties

Instance Name: | SDRA&M_BSM=32_1 |

Baze Address; 0x00000000 Size: 32 Mbytes

[~ Create Flash Bootinader Application

Su dpplication Project:

Bootloader File Farmat:

—Mote

FFPGA must be pre-programmed with a bitstrean from an EDK. design containing an EkC
perpheral connected to Flash Memory

Program Flazh Cancel

Figure 5.2 - Flash Memory Programmer



Another issue with the flash memory programmer is that it does not support writing multiple files at separate
offsets to the flash memory. Although it can program at an offset, it only supports writing one file to that
location, and it erases the entire flash before it programs anything, making it useless to store multiple bitfiles.
Therefore, a script has been developed which combines multiple bitfiles together, which involves padding
them so they are even 32-byte words (rather than single bytes), combing the files together, and then providing
the offsets and lengths that are necessary for the PowerPC software to know for programming. An example

of the script is shown below, in Figure 5.3.

YW WINDOWS system32' cmid.exe

D:vedk_data~t?~Adder_Subtractor>baszh conv.sh Adder_Partial.bhit Subtractor_partiamm
1.hit out.bit

Padding files to be divishle by 4 bhytes...

?2433+1 records in

73+l records out

2433 +1 records in

73+1 records out

Combhining files...

Filez combined. Set the offszet to: 7434

Thiz zhould match the above numbher if the modules are equal: 9434
The combination of these two files, padded, iz placed in out.hit

D:~edk_data“~t?-Adder_Subtractor?

Figure 5.3 - Flash Combination Script

Once the bit file itself is loaded into flash, it can be accessed by the PowerPC microprocessor by simply
addressing its memory location, as with any other memory. This allows very simple portability between using
the flash and any other form of memory. The fact that the bit file is in flash memory is completely transparent

to the microprocessor code.

5.2.4: Programming - Configuration over ICAP [ PowerPC

Utilizing the on-board PowerPC processor to perform self reconfiguration is a slightly more involved process
when compared to manual programming over JTAG. Xilinx provides a software development kit known as the
Xilinx Platform Studio. The platform studio generates VHDL code to interface the FPGA with the on-board
processor. The platform studio also includes an embedded developer’s kit and an Eclipse-based interactive
development environment which provides the ability to write C and C++ programs that execute on the
processor and connected I/O devices. The processor also makes various memory banks available for data
segments, code segments, stacks, heaps, and boot loaders. These memory banks come in the form of block

RAM (BRAM), static RAM (SRAM), synchronous dynamic RAM (SDRAM), and flash memory.
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Figure 5.4 — Xilinx SDK Screen Shot

To perform reconfiguration, the embedded C program needs to make use of the Xilinx OPB_Hwlcap module
and C libraries. By including this library, a programmer can instruct the hardware ICAP module to program a
file based on a bitstream that can be referenced by a memory pointer. While this requires the bitstream to be
accessible by memory, this is only a minor inconvenience as it can be loaded from the flash at time of
programming. This also requires the bitstream to be converted from a binary file to a C standard array. While

Xilinx does not provide this feature, third party tools exist that allow this to take place.

5.2.5: PlanAhead Development

Once a hardware system was chosen in the EDK and the hardware is synthesized, the next step was to load the
net list into PlanAhead. In PlanAhead, the partial reconfig module was defined and placed in an appropriate
PBlock. It is important to note that only one of the actual reconfigurable modules can be done at a time so if
that area contains more than one module, a new PlanAhead project is needed each time. Bus macros needed

for communication between the reconfigurable module and the static logic had to be placed along with any



external /O mappings for the bus macros. The rest of the logic is considered to be static and is assigned to the
base module PBlock and is not constrained to any specific location. This allows the Xilinx tools to automatically
place and the route the hardware in any way it sees fit. Upon successful passage of the DRC checks, the
floorplan can be exported to a new folder and the PlanAhead partial reconfig flow can be executed . The order

of the flow is as follows:

1. Budgeting
2. Static logic implementation
3. Partial reconfig module implementation

4. Final assembly

Once completed, there should be a partial bit stream for the reconfigurable module, a partial bit stream for the
blank module, and a full bit stream. These bit files can then be brought back into the EDK so that bit stream

initialization can be run for the block memory (BRAM) and the executable files can be loaded.

5.2.6: Flow Integration

The key to successfully running partial reconfiguration while using the PowerPC microprocessor on the Virtex-Il
Pro chips was to integrate the Embedded Development Kit and Xilinx PlanAhead. A tool flow was created that

allowed for development and implementation on the board. The process flow is as follows:

1 Phase 1 - Embedded Development Kit (EDK)
1.1 Create a new project in EDK using the Base System Builder
1.2 Add peripherals from the IP catalog
1.3 Modify appropriate top level logic using the VHDL files (.\hdl folder in EDK project)
1.4 Modify synthesis parameters in system_xst.scr to force XST to keep heirarchy
1.5 Synthesize using the ‘Generate Netlist’ command.
1.6 Run ‘Generate Bitstream’ and ‘Update Bitstream’ in order to initialize BRAM and to compile
the embedded program.
NOTE: This process will create its own bit file called ‘download.bit’, do not use it.
2 Phase2 - PlanAhead, complete for each unique reconfigurable module
2.1 Import all NGC files from the EDK (.\implementation folder in the EDK project) and any
defined constraint files into a new PlanAhead project
2.2 Draw a PBlock for the reconfigurable modules and assign the reconfig module to that PBlock
2.3 Assign all other modules to the base module

2.4 Connect all static /O and bus macros to pins, if appropriate



2.5 Run DRC checks
2.6 Export floorplan to a new folder
2.7 Add bus macro files to a subfolder on exported floor plan
2.8 Run PR Budgeting
2.9 Run Static Logic Implementation
2.10 Run Partial Reconfig Module Implementation
2.11 Run Assembly
3 Phase 3 -iMPACT
3.1 Assign a new configuration file using the static_full.bit file generated in PlanAhead
3.2 Add system_bd.bmm, the block memory mapping file
3.3 Add executable.elf, the executable code for the

3.4 Program the board

5.3: Issues

5.3.1: Lack of design flow

Flow integration was not a straightforward process as Xilinx does not provide a fully documented and
supported method of integrating microprocessor development in the EDK with partial reconfigurable modules
in PlanAhead. Xilinx does provide hints that this is feasible and explains how to use PlanAhead to merely
generate constraints which the EDK would use for synthesis, mapping, and routing. Xilinx also provided some
documentation on how to use the ISE design flow with the EDK but not XST. With the release of Platform
Studio 8.2i, ISE has been deprecated and is not recommended for use. Therefore, implementation has been

done using XST.

5.3.2: Removal of DCM wrappers

Because the clock needs to be a global signal in a partial reconfiguration implementation, it cannot be
contained within a sub module. In order to address this problem, the top-level VHDL file (system.vhd) needed
to be modified so that the digital clock module (DCM) was not contained in a black box called a DCM_wrapper.
To fix that, the component instantiation had to be removed from the wrapper and placed directly in the top

level. This process simply involved copying and pasting the provided code at the higher level.



5.3.3: EDK Makefiles

Because the EDK depends heavily on UNIX makefiles to synthesize hardware and compile code, decoupling the
steps in the flow was rather difficult. If files changed in the background, the EDK would automatically remake
all the sections it thought needed to be made. This resulted in the synthesis function running many times
which took a long time. The makefile also on occasion called the EDK platform generation tool (platgen) which
automatically erased customized VHDL files and synthesis parameters and created problems if overlooked.
Two customized files that were prone to being overwritten were (based on the EDK project directory root):

e .\hdl\system.vhd

e .\synthesis\system xst.scr

5.3.4: Synthesis parameters

One of the benefits of using the ISE Project Navigator to synthesize VHDL code was the ability to specify extra
parameters that are needed to successfully do partial reconfiguration. XST however did not provide this in a
graphical interface. The synthesis file had to be modified by hand in a text editor to contain the necessary

parameters. The complete file can be found in Appendix B.1.

5.3.5: AREA_GROUP errors when mapping bus macros

Xilinx posted a known bug on their website related to running the map command in the partial reconfig tool.
Normally, PlanAhead does not automatically copy over the bus macro files when exporting the floorplan. This
caused the ngdbuilder to not find the bus macro files. The result is an error message that says that the bus
macro does not have an area group assigned to it. To resolve this issue, the bus macro implementation files
need to be copied over to the exported floorplan directory as a subfolder and that folder needs to be added to
the search path. This can be done by adding the following parameter to the static logic implementation
ndgbuild:

-sd .\<name of subfolder>\

5.3.6: Memory mapping errors on static implementation

In the static logic implementation, there is an option to add block memory mapping (BMM) files as a parameter
for ngdbuild. It made logical sense to add the system bd.bmm auto-generated file that the EDK built. The
reasoning is that it would make the router aware of the microprocessor’s block memory. The problem was
that when the bmm file was added as a parameter, the static logic implementation (step 2.9 in the flow) failed.

A screenshot of the error message is shown in figure 5.5.



E Place & Route Output g@ﬁ

riting NGD file “"top.ngd™ ...
riting NGDEUILD log file "top.bld™...

GDEUILD done.

# TEEERAEEEN Srart map ats 2723707 11:22:18 AN wRAEwwaaas

ID: ' Eristant snapshotiwpi_hw\Partial Reconfig CO7YSourcesyPlandhead\hwreconfig2ihwreconfigzexpi-8hatatic> map -pr b -intstyle ise top.ngd
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Mapping design into LUTs...

IERROR:Maplib: 462 - Blockraw rawhlé_sl_sl 0 is a memory mapped blockran generated
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be trimmed. Please connect up all memory mapped blockram properly and re-run
Ngdbuild.

ERROR:Maplib: 452 - Blockram ramblé sl sl 1 i3 a memory mapped blockram generated
for the Microprocessor. Howewver it is not connected properly, causing it to
be trimmed. Please connect up all memory mapped blockram properly and re-run
Ngdbuild.

IERROR: Maplih: 462 - Blockram rawhlf_sl_sl 10 is a memory mapped blockram
generated for the Microprocessor. However it is not connected properly,
causing it to be trimwed. Please connect up all newory mapped blockram
properly and re-run Ngdbuild.

[ERROR: Maplib: 452 - Elockram ramhlé 31 _s1 11 i3 a memory mapped blockram
generated for the Microprocessor. However it is not commected properly,
causing it to be trimmed. Please connect up all newory mapped blockram
properly and re-run Ngdbuild.

IERROR:Maplih: 462 - Elockram rawhlé sl sl 12 is a menory mapped hlockram
generated for the Microprocessor. However it is not comnected properly,
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properly and re-run Ngdbuild.

[ERROR: Maplib: 452 - Elockram ramhlé 31 _s1 13 i3 a memory mapped blockram
generated for the Microprocessor. However it is not comnected properly,
causing it to be trimmed., Please connect up all newory mapped blockram
properly and re-run Ngdbuild.

IERROR:Maplih: 482 - Blockram rawhlé sl sl 14 is a memory mapped hlockram
generated for the Microprocessor. However it is not commected properly,
causing it to be trimwed. Please connect up all mewory mapped blockram
properly and re-run Ngdbuild.

[ERROR: MapLib: 482 - BElockram ramhlf 31 _s1 15 i3 a memory mapped blockram
generated for the Microprocessor. However it is not comnected properly, -

< ‘ >

Figure 5.5 - Map error on Static Implementation

5.4.7: ClearCase check-in errors for binary files

One other observed problem occurred when trying to check in synthesized binary files into the ClearCase
repository. ClearCase does not know how to handle files ending in .ut, .ncd, .ngd, & .ngm because it assumes
that they are text files. As a result, these files never get checked in. Manual means of transfer (flash drive,

network share, email, etc.) are needed to share these files.

5.4: Results

5.4.1: Successes

After running the partial reconfig tools in PlanAhead, the bit files were successfully loaded onto the FPGA. We
were also able to verify that the reconfigurable module can be replaced without disrupting the static logic that

was on the board. The Xilinx iMPACT tool was used to load the bit files onto the Virtex-1l board.



5.4.2: Failures

The primary failure is that even though the bit files can be successfully loaded and reconfigured while the
system is in operation, the microprocessor is not functional. Efforts to make the processor boot or to access
any of the peripherals where unsuccessful. As shown in figure 5.6, the JTAG connector cannot reach the
PowerPC. The hypothesis is that the PlanAhead tools break the I/O connections to the microprocessor

hardware.

CAWINDOWS\system32\cmd. exe - xmd

Connecting to cahbhle (llzh Port - USB22>.
Checking cable driver.
Driver xushdfuwu.sys version: 1021 (1821>.
Driver windrurb.sys version = Y.B.B.A.Calling setinterface num=B. alternate=8.
DeviceAttach: received and accepted attach for:
vendor id Bx3fd, product id Ox8, device handle Bx2438038
Cahle PID = GO0@8.
Hax current requested during enumeration iz 280 mA.
Cable Type = 3, Reviszion = B.
Setting cabhle speed to 6 MH=z.
Cable connection established.
Firmware version = 1821.
CPLD file version = B@12h.
CPLD version = 8812h.
INFO:MDT — fAssumption: Selected Device 1 for debugging.

JTAG chain configuration

ID Code IR Length Part Mame
B8127e@23 14 XC2ZUP38

Unabhle to connect to PowerPC target. Invalid Processor Uersion No BxB00008H88

B MDD

Figure 5.6 - PowerPC is unreachable via JTAG and the Xilinx debugger



Conclusion

This project was completed successfully, however due to issues we ran into we were not able to complete all
of our original goals. A proof of concept of partial reconfiguration was completed, and work was begun on
self-controlled dynamic partial reconfiguration, but not completed. Fortunately, in D term 2007 a group will
follow up on this project and attempt to complete the self-controlled dynamic partial reconfiguration

hardware.

Goal Completion

At the beginning of this project, three goals were set — to complete a successful proof of concept of dynamic
partial reconfiguration, create a proof of concept of self-controlled dynamic partial reconfiguration, and finally
setup a storage database which future project teams will have access to. We successfully completed the first
and third goal, but ran out of time to complete the second goal due to problems with the software tools used

for development.

Our primary goal, a proof of concept of dynamic partial reconfiguration, using the PC and a JTAG tool, was
completed successfully. However, this simply proves that partial reconfiguration is possible, and is not
particularly useful in any final application, as it requires external control to reconfigure the FPGA. The desired
result is to have the reconfiguration logic be internal to the FPGA itself, which was the second goal of the

project.

The second goal, of self-controlled dynamic partial reconfiguration, was started but not completed. However,
several components critical to the success of this task were completed. A flash module, for reading from the
flash on the development board was developed, as well as scripts on the PC side to combine several partial
bitstreams together and load them onto the flash memory via the JTAG tool. This was tested and verified to be
completed and successful. In addition, software for the PowerPC to interface to the ICAP was developed,
however we were not able to test it since the hardware was not successfully completed. The issues preventing

the completion of this goal were based on problems integrating the Xilinx PlanAhead and EDK tools.

The third and final goal of the project was to setup a version control system to be used for both this project
and future projects.  Using the Rational ClearCase tool provided to us by our sponsor, we successfully
implemented this. This will allow future MQP project groups and future General Dynamics projects access to
our work in a single location. In addition, it provided us a system to keep track of versions of our files while in

development.



Future Work

The overall goal the sponsor, General Dynamics C4 Systems, is to develop an encryption system which uses
TMR and partial reconfiguration. Our project developed the proof of concept for the partial reconfiguration
part, and previous projects have researched the TMR implementation. However, significant work still needs to

be completed before the final goal of a working encryption system using PR and TMR can be completed.

Another MQP group will be completing a direct follow-up to our project, in D term 2007. It is our
recommendation that they further investigate partial reconfiguration and develop a working system, using
self-controlled partial reconfiguration. Beyond that, further groups will need to develop a useable, scalable
implementation of TMR before it is feasible to use in an encryption design. In addition, the version of the AES
encryption algorithm that the sponsor currently has is far too large to fit three copies on the Virtex 2 FPGA’s we
were using, and therefore a larger FPGA or more compact encryption hardware must be used. Finally, a
dedicated partial reconfiguration toolset (including scripts for linking PlanAhead and EDK) would much
improve the scalability and transferability of the work done, and could be investigated as an MQP project if

Xilinx does not create one themselves.
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Glossary

AES - Advanced Encryption Standard. Made Effective in 2002 by the National Institute of Standards and
Technology (NIST) as the main encryption standard in the United States. AES is still widely used across world

as of 2007 and is highly secure in comparison with its predecessor the Data Encryption Standard (DES).

ASIC - Application Specific Integrated Circuit; generally faster and less power consuming than FPGAs but lacks

the ability to be reprogrammed in the field or be adapted to many different uses.

Bit file - File(s) created by ISE, or PlanAhead which are then directly loaded onto the FPGA. Bit files are the

finished product of the design flows and are binary representations used to configure the FPGA.

Bit stream - Typically used to describe the configuration data being loaded onto the FPGA. One or more bit

files can be loaded into the bit stream for configuration onto the FPGA.

Black box — Practice of creating blank modules in the top level. Partial reconfigurable designs require that the
top level contain no logic. Instead, empty modules are black boxes are created and then referenced to a

separate net list. This practice is common in modular design.

BRAM - Block Random Access Memory. BRAM is internal to the FPGA itself and can be referenced directly in

embedded applications.

Bus macro - Type of hard macro used to route data to and from reconfigurable modules. Bus macros are
required in partially reconfigurable designs to eliminate data loss during reconfiguration. Bus Macros must be

physically placed across reconfigurable boundaries within PlanAhead.

Constraints — Term used to describe timing and location requirements of an FPGA design. This includes

assignment of 1/O pins, Pblock ranges and properties, as well as timing events.

DRC - Design Rule Checks. These tests are run within PlanAhead to check for known design issues and

problems. DRCs are completed as an aid to the designer to diagnose problems early on.

Embedded Development Kit (EDK) - Xilinx software toolset used to implement embedded microprocessor
applications on Xilinx FPGAs. The EDK provides a GUI for implementation of peripherals available on the board

and interfaced with the embedded processors.



Field Programmable Gate Array (FPGA) — A semiconductor device which contains programmable logic blocks.
They offer the distinct ability to programmed and re-programmed after production and are ideal for situations

in which designs must be changed often.

Flash Memory - Non volatile memory which is available on the P160 Communications Module. The Flash can

be used to store bit files for download to the FPGA and remains stored even when the board is powered down.

Floor-planning - The practice of controlling where modules are physically implemented on an FPGA. Floor-
planning is most often used to improve timing and power efficiency in designs by minimizing excess routing.

However, floor-planning is required in partial reconfiguration designs for proper creation of partial bit files.

GUI - Graphical User Interface - Term used to describe a software environment in which graphic

representation is used in place of plain text. GUIs are generally considered to be more user friendly.

1/0 - Term used to describe Input and Output pins.

1/0 Buffers - Created at the top level so pins can be properly assigned to ports within the design. Buffers are

not desirable at the lower level in modular design and must be turned off.

ICAP - Internal Configuration Access Port. The ICAP can be used internally to control FPGA configuration. In

the case of self partial reconfiguration the ICAP is called by the PowerPC to partially reconfigure the FPGA.

JTAG - IEEE 1149.1 Standard Test Access Port and Boundary-Scan Architecture. The JTAG port is used to
interface the FPGA with a PC or other external controller. iMPACT software uses the JTAG connection to

complete a boundary scan and load bit files to the FPGA.

LED - Light Emitting Diode. Basic user output on the FF1152 board.

Modular design - Design model considered to be most useful in complex designs created by several team
members. Module design follows a specific design flow and is advantageous over basic design flows in that
multiple pieces can be designed concurrently and trouble shooting can be done separately. This allows for

modules to be changed or repaired without affecting areas which are working properly.

Netlist - File(s) created during synthesis (.ngc, .edif, .edn) which hold the configuration data for

implementation of each module or top level design. Net lists are implemented into PlanAhead and then



altered with floor planning data. These files are then used to generate bit files by a number of Xilinx provided

scripts.

Pblock - Designation in PlanAhead for Area Groups. Pblocks are drawn in rectangular form for each
reconfigurable module. Pblocks are used to reserve physical space for specific modules to be placed routed on

the FPGA. Asingle Pblock is created for all static logic but is not drawn; instead it is left without a range.

PowerPC (PPC) - Microprocessor originally developed by IBM and widely used in Apple personal computers.
The PPC has also been implemented in embedded applications such as on the Virtex Il Pro and Virtex 4 series

FPGA:s.

Scrubbing - The practice of rewriting whole or part of an FPGA with code already configured onto it.

Scrubbing can be completed at regular intervals increase system reliability.

SDRAM - Synchronous Dynamic Random Access Memory. SDRAM is a type of solid state memory which is

most commonly used in Personal Computers. The FF1152 development board provides 64 mb of SDRAM.

Slice — Physical separation of Logic, BRAM, and interconnects on an FPGA. Slice positions are used to define
locations of Pblocks. The term slice utilization refers to how large a particular Pblock is in relation to the entire

FPGA.

Tool flow - Description of steps required for a successful design. Tool flows vary based on design intent and
become more complex with the addition of other tool sets. Common partial reconfiguration designs include
the combination if ISE and PlanAhead tool flows while a more complicated self-reconfiguring design requires

the addition of the EDK tool flow.

Triple modular redundancy (TMR) - The design practice of replicating each working module three times. A
voting circuit is then used to detect output differences as a check to make sure the system has not been

compromised. Common TMR systems also replicate the voting circuit to further increase reliability.

Versioned Object Base (VOB) - The name of a source controlled repository in ClearCase. VOBs are the root-
level of the repository in which documents and folders can be placed. VOBs can be mounted as a view on a

workstation.



VHDL - Also known as VHSIC HDL or Very High Speed Integrated Circuit Hardware Description Language.
VHDL is a popular language for the creation of FPGA designs. VHDL code is synthesized in ISE with the Xilinx
Synthesis Tool and was the primary design language used in this project. VHDL is different from programming
languages as it is actually a description of hardware behavior used to physically create hardware
configurations.

Xilinx - Worlds largest developer and original creator of FPGAs. Xilinx makes the Virtex Il Pro series FPGA as

well as the software tools used in this project.

Xilinx iMPACT - Software used for bit file download to the development board. iMPACT uses a USB or Parallel
Platform cable to connect to the FPGA JTAG chain. iMPACT is used when the design is completely
implemented and ready to be loaded onto the FPGA.

Xilinx ISE - Base toolset for FPGA design. Includes synthesis and simulation tools and can be used to generate
complete basic designs or export hierarchical net lists for use in PlanAhead to create partially reconfigurable

designs.

Xilinx PlanAhead - Software used for creation of a partially reconfigurable design. PlanAhead uses exported

ISE or EDK net lists and allows for floor-planning as well as constraints creation and design rule checks.

XPS - Xilinx Platform Studio. XPS is the toolset used for the design of embedded applications. XPS is a part of
the Embedded Development Kit (EDK).



Appendix A - Basic Circuit - PR over JTAG Design

A.1: Top Level - VHDL

-- Worcester Polytechnic Institute

-- General Dynamics C4 Systems MQP

-- Michael Kristan

-- Brian Loveland

-- Robert Sazanowicz

-- C Term 2007

-- Dynamic Partial Reconfiguration of an FPGA

-- Top Level Initial Design for Partial Reconfiguration over JTAG
-- Synthesize with 1/0 Buffers and Keep Heirarchy
-- Modules must remain Black Boxes

-- Included Libraries and Packages

library I1EEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
use busmacro_xc2vp_pkg.-ALL;

-- Top Level Entity Declaration

entity top is

Port ( CLOCK in STD_LOGIC;
IN1 in STD_LOGIC_VECTOR (3 downto 0);
IN2 :in STD_LOGIC_VECTOR (3 downto 0);
OUTPUT > out STD_LOGIC_VECTOR (3 downto 0);
LED1 > out STD_LOGIC;
LED2 > out STD_LOGIC;
LED3 : out STD_LOGIC;
LED4 > out STD_LOGIC);

end top;

-- Top Level Behavioral

architecture Behavioral of top is
-- Declared Components

component add_module is

port ( ADDIN1: in STD_LOGIC_VECTOR (3 downto 0);
ADDIN2: in STD_LOGIC_VECTOR (3 downto 0);
ADDOUT: out STD_LOGIC_VECTOR (3 downto 0));

end component;

component dis_module is

port ( CLK :in STD_LOGIC;
BLINK - out STD_LOGIC;
SOLID - out STD_LOGIC;

LIGHT1 : out STD_LOGIC;
LIGHT2 : out STD_LOGIC);
end component;

--Declared Signals



signal siginl,
sigin2,
sigout: std_logic_vecto
-- Begin Top Level Behavioral

begin

r (3 downto 0);

--Instantiate Black Box Modules and Bus Macros

--Reconfigurable Module - Adder Logic

reconfig_module : add_module port map

--Static Module - LED Display Logic

base_module: dis_module port map

--Input and Output Bus Macros

(ADDIN1 => siginil,
ADDIN2 => sigin2,
ADDOUT => sigout);

(CLK => CLOCK,
BLINK => LED1,
SOLID => LED2,
LIGHT1 => LEDS3,
LIGHT2 => LED4);

outputbusleft: busmacro_xc2vp_r2l_async_narrow

port map(inputO => sigout(0),
inputl = "0",
input2 => "0",
input3 = "0",
input4 = "0°%,
input5 = "0",
input6 => "0",
input? => "0",
outputO => OUTPUT(0));

inputbusleft: busmacro_xc2vp_lI2r_async_narrow

port map(inputO => IN1(0),
inputl => IN1(2),
input2 => IN1(2),
input3 => IN1(3),
input4 => "0",
input5 = "0°",
input6 = "0°%,
input?7 = "0",
outputO => siginl(0),
outputl => siginl(l),
output2 => siginl(2),

output3 => siginl(3));

outputbusright: busmacro_xc2vp_I2r_async_narrow

= '0',
inputl
input2
input3
input4
input5
input6
input?
outputl
output2
output3

port map(inputO

=> sigout(l),
=> sigout(2),
=> sigout(d),
=> '0',
=> 0",
=> 0",
= "0",
=> OUTPUT(1),
=> OUTPUT(2),
=> OUTPUT(3));

inputbusright: busmacro_xc2vp_r2l_async_narrow

= "0°",
inputl
input2
input3

port map(inputO

= "0",
= "0",
= 07,



input4d => IN2(0),

input5 => IN2(D),
input6 => IN2(2),
input?7 => IN2(3),
output4 => sigin2(0),
output5 => sigin2(l),
output6 => sigin2(2),
output? => sigin2(3));

end Behavioral;

A.2: Reconfigurable Module - Addition Logic - VHDL

-- Worcester Polytechnic Institute

-- General Dynamics C4 Systems MQP

-- Michael Kristan

-- Brian Loveland

-- Robert Sazanowicz

-- C Term 2007

-- Dynamic Partial Reconfiguration of an FPGA

-- Reconfigurable Module - Addition Logic for use with Partial Reconfiguration over JTAG Design
-- Synthesize without 1/0 Buffers and Keep Heirarchy

--Included Libraries and Packages
library I1EEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE._STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
--Entity Declaration
entity add_module is
port ( ADDIN1: in STD_LOGIC_VECTOR (3 downto 0);
ADDIN2: in STD_LOGIC_VECTOR (3 downto 0);
ADDOUT: out STD_LOGIC_VECTOR (3 downto 0));
end add_module;
--Modular Architecture of Component
architecture Modular of add_module is
--Begin Architecture
Begin
--Addition of two 4 bit inputs resulting in a single 4 bit output
ADDOUT <= (not(ADDIN1 + ADDIN2));

end modular;

A.3: Reconfigurable Module - Subtraction Logic - VHDL

-- Worcester Polytechnic Institute



-- General Dynamics C4 Systems MQP

-- Michael Kristan

-- Brian Loveland

-- Robert Sazanowicz

-- C Term 2007

-- Dynamic Partial Reconfiguration of an FPGA

-- Reconfigurable Module - Subtractor Logic for use with Partial Reconfiguration over JTAG

-- Synthesize without 1/0 Buffers and Keep Heirarchy

-- Included Libraries and Packages

library I1EEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

-- Entity Declaration

entity add_module is
port ( ADDIN1: in STD_LOGIC_VECTOR (3 downto 0);
ADDIN2: in STD_LOGIC_VECTOR (3 downto 0);
ADDOUT: out STD_LOGIC_VECTOR (3 downto 0));
end add_module;

-- Modular Architecture of Component

architecture Modular of add_module is

-- Begin Architecture

Begin
-- Subtracts 2nd 4 bit input from 1st 4 bit input resulting in a 4 bit output
ADDOUT <= (ADDIN1 - ADDIN2);

END modular;

A.4: Static Module - LED Display - VHDL

-- Worcester Polytechnic Institute

-- General Dynamics C4 Systems MQP

-- Michael Kristan

-- Brian Loveland

-- Robert Sazanowicz

-- C Term 2007

-- Dynamic Partial Reconfiguration of an FPGA

-- Static Display Module for use with Adder-Subtractor PR over JTAG Design
-- Synthesize without 1/0 Buffers and Keep Heirarchy

--Included Libraries and Packages

library I1EEE;
use IEEE.STD_LOGIC_1164.ALL;

Design



use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

-- Entity Declaration

entity dis_module is

port ( CLK : in STD_LOGIC;
BLINK > out STD_LOGIC;
SOLID - out STD_LOGIC;

LIGHT1 : out STD_LOGIC;
LIGHT2 : out STD_LOGIC);
end dis_module;
-- Modular Architecture
architecture Modular of dis_module is

--Declared Components

component CIk_Convrt is

Port (CIk_in :in std_logic;
Reset :in std_logic;
Clk_1Hz,

Clk_10Hz,
Clk_10KHz : out std_logic);

end component;

--Begin Architecutre of Display Module

begin

-- Clock Conversion Component - Creates 2 Hz, 20 Hz, and 20Khz Clocks (With XC2VP30-
FF1152)

-- Borrowed From WPI ECE 3801 Online Laboratory Resources

-- Note: Code was initially designed for use with a Spartan 3 board and a 50 MHz Internal
Clock

-- The FF1152 board used with this design includes a 100 Mhz clock, therefore the clock
signals

-- mentioned are actually doubled in speed. This is irrelevant as the frequency is not
important

-- to the design and is only used as a visual testing aid for PR implementation

clockconverter : Clk_Convrt port map ( Clk_in => CLK,
Reset = "0-",
Clk_1Hz => BLINK,
Clk_10KHz => SOLID);

-- LEDS ON - Tie Remaining LEDS to Logic O (FF1152 LEDs operate on Inverted Logic)

LIGHT1 <= "0%;
LIGHT2 <= "0%;

end Modular;

A.5: Clock Converter Module

-- This Code is borrowed from the ECE 3801 Online Laboratory Resources

-- Initially designed for use with a 50 Mhz clock, the actual clock speeds are off

-- by a factor of two. This module is only used as a testing aid to ensure PR design

-- is free of glitches. The ECE 3801 site is viewable at http://ece.wpi.edu/courses/ee3801/

library I1EEE;
use IEEE_STD LOGIC_1164_ALL;
use IEEE.STD_LOGIC_ARITH.ALL;


http://ece.wpi.edu/courses/ee3801/

use IEEE.STD_LOGIC_UNSIGNED.ALL;

-- This code generates three clock signals
-- (1 Hz, 10 Hz, 10 KHz) from a single
-- 50 MHz clock provided by the Spartan3 board

entity Clk_Convrt is
Port ( Clk_in : in std_logic;
Reset : in std_logic;
Clk_1Hz,Clk_10Hz,Clk_10KHz : out std_logic
):
end Clk_Convrt;

architecture Behavioral of Clk_Convrt is

signal tmp_clk_1Hz : std_logic:="0";
signal tmp_clk_10Hz : std_logic:="0";
signal tmp_Clk_10KHz : std_logic:="0";

begin
Clk_1Hz <= +tmp_clk_1Hz;
Clk_10Hz <= +tmp_clk_10Hz;
Clk_10KHz <= tmp_Clk_10KHz;

process(Reset,Clk_in)

variable counter_1Hz:integer range 0 TO 25_000_000;
variable counter_10Hz:integer range 0 TO 2_500_000;
variable counter_10KHz:integer range 0 TO 2_500;

begin
if Reset = "1" then
counter_1Hz := O;
counter_10Hz := O;

counter_10KHz := 0O;
elsif Clk_in"event and Clk_in = "1" then

counter_1Hz := counter_1Hz+1;
counter_10Hz := counter_10Hz+1;
counter_10KHz := counter_10KHz+1;

if counter_1Hz = 25 _000_000 then

tmp_clk_1Hz <= not tmp_clk_1Hz;
counter_1Hz := O;
end if;

if counter_10Hz = 2_500_000 then

tmp_clk_10Hz <= not tmp_clk_10Hz;
counter_10Hz := O;
end if;
if counter_10KHz = 2_500 then
tmp_Clk_10KHz <= not tmp_Clk_10KHz;
counter_10KHz := O;
end if;
end if;
end process;

end Behavioral;



Appendix B - Self Reconfiguration — PR over ICAP design

B.1: XST synthesis parameter file (system_xst.scr)

run

-keep_hierarchy YES

-rtlview Yes

-glob_opt AllClockNets
-read_cores YES
-write_timing_constraints NO
-cross_clock_analysis NO
-bus_delimiter <>

-case maintain
-slice_utilization_ratio 100
-verilog2001 YES
-fsm_extract YES -fsm_encoding Auto
-safe_implementation No
-fsm_style lut

-ram_extract Yes

-ram_style Auto

-rom_extract Yes

-mux_style Auto
-decoder_extract YES
-priority_extract YES
-shreg_extract YES
-shift_extract YES
-xor_collapse YES

-rom_style Auto

-mux_extract YES
-resource_sharing YES
-mult_style auto

-bufg 16
-register_duplication YES
-register_balancing No
-slice_packing YES
-optimize_primitives NO
-tristate2logic Yes
-use_clock_enable Yes
-use_sync_set Yes
-use_sync_reset Yes

-iob auto
-equivalent_register_removal YES
-slice_utilization_ratio_maxmargin 5
-opt_mode speed

-opt_level 1

-p xc2vp30ffll52-6

-top system

—-ifmt MIXED

-ifn system_xst.prj

-ofn ._./implementation/system.ngc
-hierarchy_separator /
—-iobuf YES

-max_fanout 10000

-sd {..7/implementation}

B.2: Sample ICAP test program

/

*

* hwreconfig2_1.c - Xilinx hardware I1CAP sample application

*



WP1/General Dynamics Electrical & Computer Engineering MQP C2007
Self-partial reconfiguration of Field Programmable Gate Arrays
(gdcO7students@wpi -edu)

This file contains implementation code tests to see if partial
reconfiguration works using the on-board ICAP module. This code
is designed to work with the on-board PowerPC processor on

a Virtex-11 Pro FPGA.

ok % b ok X % b ¥

// Included libraries
#include "xparameters.h"
#include <stdio.h>
#include "xutil_h"
#include "reconfig.h"

#include "bitstream.dat" // A bit file converted to a C array

int main (void)

{
int bitstream_length;
bitstream_length = 1000;

print(""Greetings!I\r\n');

Xil_printf("WP1/General Dynamics CO7 MQP\r\n'");
xil_printf(*'gd07students@wpi -edu\r\n');
xil_printf(""Self partial reconfiguration utility\r\n");

//7xil_printf("Enter length of the bitstream : ');
//scanf('%d", &bitstream_length);

xil_printf(*"The number you entered is : %d", bitstream_length);

xil_printf('"\nTesting partial reconfiguration....\r\n");

if(dynamic_config(bitstream_loc, bitstream_length) != XST_SUCCESS)

{

print("Failure™);
print(**Success™);

Xil_printf(""\nExiting main Q\r\n");
return O;

B.3: HWICAP User-defined tools - Header file

reprogram.h - Xilinx hardware ICAP programming tool

WP1/General Dynamics Electrical & Computer Engineering MQP C2007
Self-partial reconfiguration of Field Programmable Gate Arrays
(gdcO7students@wpi .edu)

This file contains function prototypes that will assist the
parent application with programming a Xilinx FPGA. This code
is designed to work with the on-board PowerPC processor on

a Virtex-11 Pro FPGA.

ok % o b X o+ b X X o %




// Pre-processor directives

// Declaration of local variable to prevent multiple includes
#ifndef REPROGRAM_H_

#define REPROGRAM_H_

// Constant declarations

#define _ICAP_IO_LOCATION_ Oxffff80000

#define _XILINX_FPGA_TYPE_ XHI_XC2VP30

// External libraries
#include "xHwlcap.h"

// Function prototypes
XStatus dynamic_config(char * buffer, unsigned int bitstreamSize);

#endif /*REPROGRAM_H_*/

B.4: HWICAP User-defined tools — Implementation code

reprogram.c - Xilinx hardware ICAP programming tool

WP1/General Dynamics Electrical & Computer Engineering MQP C2007
Self-partial reconfiguration of Field Programmable Gate Arrays
(gdcO7students@wpi .edu)

This file contains implementation code that will assist the
parent application with programming a Xilinx FPGA. This code
is designed to work with the on-board PowerPC processor on

a Virtex-11 Pro FPGA.

This source code borrows heavily from Chapter 12 of the document
"Self-reconfigurable platform for cryptographic application"

ook % o ok X X b ok X % ok % X

// Included libraries
#include "reconfig.h"
#include *"xHwlcap.h"

// Standard libraries
#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <unistd.h>

// Preprocessor directives in reprogram.h (provided for reference)
// #define _ICAP_10_LOCATION
// #define _XILINX_FPGA TYPE_

// Implementation code
XStatus dynamic_config(char * buffer, unsigned int bitstreamSize)
{

// Declarations of local variables

Xuint32 * current_data;

*current_data = (Xuint32)buffer;

XHwlcap * MyHWICAP = _ICAP_I10_LOCATION_;

// Initalize Hardware ICAP

XStatus HWICAP_status;

HWICAP_status = XHwlcap_Initialize(&MyHWICAP, 0, _XILINX_FPGA_TYPE );
iT(HWICAP_status != XST_SUCCESS)



return HWICAP_status;
T
XHwlcap_CommandDesync (&MyHWICAP) ;

// Program the FPGA
HWICAP_status = XHwlcap_SetConfiguration(&MyHWICAP,

(Xuint32) (bitstreamSize/4));

}

return HWICAP_status;

XStatus dynamic_config_by filename(char * filename)

{

// Declarations of local variables
FILE *fp;

unsigned int fileSize;

char * buffer;

// Open file

fp = fopen(filename, "'rb');
if(fp == NULL)

{

}

// Get size of file
fseek(fp,0,SEEK_END);
fileSize = ftell(fp);
rewind(fp);

exit(l);

// Allocate buffer

buffer = (char*)malloc(FfileSize);
if(buffer == NULL)

{

}

// Copy file contents into buffer
fread(buffer, 1, fileSize, fp);

exit(2);

// Call dynamic_config
return dynamic_config(buffer, fileSize);

B.5: Bit file to array Perl tool

HHHFHHFHEHEHEHEHEHHH®

bin2hex.pl by Chami.com
http://www.chami.com/tips/

Modified by Michael Kristan
Michael .Kristan@gdc4s.com

February 2007
Fixed small errors when sending out
to C-style arrays

For academic/research purposes ONLY

# number of characters per line
$chars_per_line = 15;

(Xuint32*)*current_data,



perl bin2hex.pl <binary_file_name> <language_id>
language id

Perl (default)
C / C++
Pascal / Delphi

HHRHIFHHHHTE
NEFk O
I n

R4
[
=}
«Q

= $ARGV[1];

$rem_begin = "begin binary data:';
$rem_end = "end binary data.";

# initialize for Perl strings

# by default

#$_var = "# $rem_beginn".
"$bin_data = # %dn";

#$_begin = ;
#3$_end = "nt;
#$_break = "tont;
#$_format = "\x%02X";

#$_separator = '"';
#$_comment "# $rem_end .
“size = %d bytes";

# C / C++
if(1 == $lang)
{
$_var = "/* $rem_begin */".
“char bin_data[] = *.
"/* %d </
$_begin = "{";
$_end ="}
$_break ="
$_format = "Ox%02X";
$_separator = ",";
$_comment = "/* $rem_end .

"'size = %d bytes */"';

3
elsif(2 == $lang)

{
$_var = "{ $rem_begin }n".
"'const bin_data : ".
“array [1..%d] of ™.
"byte = n"';
$_begin ="
$_end = ");n";
$_break = "n";
$_format = "$%02X";
$_separator = ",";
$ comment = "{ $rem_end .
“size = %d bytes }";
3
if(open(F, "<".$ARGV[0]))
{
binmode(F);
$s = "7;
$1 = 0;
$count = 0;
$first = 1

$s .= $_begin;
while(Teof(F))

if($i >= $chars_per_line)

$s .= $_break;
$1 = 0;

3
if(1$First)



$s .= $_separator;
b
$s .= sprintf(
$_format, ord(getc(F)));
++$i ;
++$count;
$first = 0;

$s .= $_end;
$s .= sprintf $_comment, $count;
$s .= """

$s = ""_sprintf($_var, S$count).$s;
print $s;

close( F );
b
else
t
print
“bin2hex.pl by Chami.comn™.
n".
"'usage:n"'.
perl bin2hex.pl <binary file>".
' <language id>n".
n".
<binary file> : path to the "
“binary filen".
<language id> : 0 = Perl, "
C/C++/Java, ".
Pascal/Delphin™.

"
"2
O

B.7: Bitstream Combiner Script

# run script as ./conv.sh infilel_.bit infile2_bit outfile.bit

echo "Padding files to be divisble by 4 bytes..."

dd if=$1 of=$1-e ibs=4 conv=sync

dd if=$2 of=$2-e ibs=4 conv=sync

echo '""Combining files..."

cat $1-e $2-e > $3

sizel=$(cat $1-e | wc -c)

calcsize=%(expr $sizel / 4)

echo "Files combined. Set the offset to: $calcsize"”

sizel=$(cat $2-e | wc -c)

calcsize=$(expr $sizel 7/ 4)

echo "This should match the above number if the modules are equal: $calcsize"
rm -rf $l-e

rm -rf $2-e

echo "The combination of these two files, padded, is placed in $3"

B.8: Diff on customized system.vhd based on generated file

33,40c33,40

< sys_rst_pin : in std_logic;

< IN1 : in STD_LOGIC_VECTOR (3 downto 0);
< IN2 : in STD_LOGIC_VECTOR (3 downto 0);

< OUTPUT : out STD_LOGIC_VECTOR (3 downto 0);



< LED1 : out STD_LOGIC;

< LED2 : out STD_LOGIC;

< LED3 : out STD_LOGIC;

< LED4 : out STD_LOGIC

> sys_rst_pin : in std_logic

>

>

>

>

>

>

>

46,47d45

e

< -- Declared Components for PR top level

49,110c47,110

< component busmacro_xc2vp_I2r_async_narrow is

< port (
inputO0 : in std_logic;
inputl : in std_logic;
input2 : in std_logic;
input3 : in std_logic;
input4 : in std_logic;
input5 : in std_logic;
inputé : in std_logic;
input?7 : in std_logic;
outputO : out std_logic;
outputl : out std_logic;
output2 : out std_logic;
output3 : out std_logic;
output4 : out std_logic;
output5 : out std_logic;
output6 : out std_logic;
output?7 : out std_logic

):

ANNNANANNANNANNNNNNANNNNNNNNNNNNNANNNNANNNNNNNNANNANNNNNNNNNANNANNNNNNNNANNA

end component;

component busmacro_xc2vp_r2l_async_narrow is

port (

);

inputO
inputl
input2
input3
input4
input5
input6
input?
outputO
outputl
output2
output3
output4
output5
output6
output?

end component;

-
5 33333335

out
out
out
out
out
out
out
out

std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;

std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic;
std_logic

component add_module is

port ( ADDIN1:

end component;

in STD_LOGIC_VECTOR (3 downto 0);
ADDIN2: in STD_LOGIC_VECTOR (3 downto 0);
ADDOUT: out STD_LOGIC_VECTOR (3 downto 0));

component dis_module is

port ( CLK:

in STD_LOGIC;

BLINK: out STD_LOGIC;
SOLID: out STD_LOGIC;
LIGHT1: out STD_LOGIC;



< LIGHT2: out STD_LOGIC);

< end component;

<

<

<

< signal siginl, sigin2, sigout: std_logic_vector (3 downto 0);
< --signal clocktemp: std_logic;
L
>

>

>

1038c1038

< component dcm_0O_module is

> component dcm_O_wrapper is
1062c1062
< -- attribute box_type of dcm_O_wrapper: component is "black_box";

> attribute box_type of dcm_O_wrapper: component is "black box";

1312,1313d1311
&
< -- Added for PR reconfig design
1315,1401d1312
< reconfig_module : add_module port map (ADDIN1 => siginil,
<
ADDIN2 => sigin2,
<
ADDOUT => sigout);
<
<
< base_module: dis_module port map (CLK => sys_clk_pin,
<
BLINK => LED1,
<
SOLID => LED2,
<
LIGHT1 => LEDS3,
<
LIGHT2 => LED4);
<
<

outputbusleft: busmacro_xc2vp_r2l_async_narrow
port map(inputO => sigout(0), outputO0 => OUTPUT(O),

inputl => "0°",
input2 => "0",
input3 => "0",
input4 => "0°%,
inputs => "0°",
inputé => "0",
input7 => "0%);

- clk0 => CLOCK,

-- ce0 => "1°,

- cel => "1°7,

ce2 => "1°7,

- ce3 => "1°,

- clkl => "0°",
- clk2 => "0°",
- clk3 => "0%);

inputbusleft: busmacro_xc2vp_lI2r_async_narrow
port map(inputO => IN1(0), outputO => siginl(0),
inputl => IN1(1), outputl => siginl(l),
input2 => IN1(2), output2 => siginl(2),
input3 => IN1(3), output3 => siginl(3),
input4 => "0",
input5 => "0°",

ANANNNNANANNANNANNNNANNNANNANNANNNNNNNNNANNNANNNNAN
|
|



< inputé => "0%,

< input7 => "0%);

< -- clk0 => CLOCK,

< —- ce0 => "17,

< -- cel => "1°7,

< -- ce2 => "1-,

< -- ce3 => "1°,

< - clkl => "0",

< - clk2 => "0",

< - clk3 => "07%);

<

<

< outputbusright: busmacro_xc2vp_I2r_async_narrow

< port map(inputO => "0°,

< inputl => sigout(l), outputl => OUTPUT(1),
< input2 => sigout(2), output2 => OUTPUT(2),
< input3 => sigout(3), output3 => OUTPUT(3),
< input4d => "0-,

< inputs => "0°",

< inputé => "0",

< input7 => "0%);

< -- clk0 => CLOCK,

< - ce0 => "1-,

< - cel => "1°7,

< —- ce2 => "1+,

< -- ce3 => "1%,

< -- clkl => "0",

< - clk2 => "0",

< __ clk3 => "07);

<

<

< inputbusright: busmacro_xc2vp_r2l_async_narrow

< port map(inputO => "0°,

< inputl => "0-,

< input2 => "0°",

< input3 => "0",

< input4 => IN2(0), output4 => sigin2(0),
< input5 => IN2(1), output5 => sigin2(1),
< inputé => IN2(2), output6 => sigin2(2),
< input?7 => IN2(3), output?7 => sigin2(3));
< -- clk0 => CLOCK,

< -- ce0 => "17,

< -- cel => "1+,

< - ce2 => "1°,

< -- ce3 => "1°,

< - clkl => "0",

< - clk2 => "0",

< - clk3 => "0%);

1403c1314,1403

& o —————————————————————————————————————————————————————————————

>

2313c2313

< dem_O0 : dcm_O_module

> dcm_0 : dcm_O_wrapper



Appendix C: Basic PR - Troubleshooting Guide

Q1. Why is the Partial Reconfiguration Flow Tool shown in grey in PlanAhead?

Q.

Q3.

Q4.

Qs.

Partial reconfiguration is not initially enabled in the PlanAhead software. To use it, you must first enable
the following script.

Hdi::param set —name project.enablePR —bvalue yes

Why are all 10 ports marked as “IBUF” or “OBUF”’ and why am I unable to constrain them

in PlanAhead?

This error results from incorrect synthesis option within the ISE or EDK. You must leave 10 Buffers on
during top level synthesis and turn them off during module level synthesis. When this is done properly,

you will be able to properly constrain input and output ports in the PlanAhead package view.

How do I place the bus macros within PlanAhead?

Bus macros must be placed manually in the device view. To do this you must first turn Site Constraint
Mode on in the top right toolbar. Then, find the bus macros in your primitive net list view. You can then
drag each bus macro into the device view placing them by moving the mouse over the lower left and
corner of the slice to the left of the reconfigurable module boundary. Remember, bus macros are
unidirectional so the function of each macro as an input or output is dependant on which direction macro
you are using and what side of the module it is placed on. A properly placed macro will straddle the
reconfigurable module and span across two full slices on the FPGA. DRC checks will alert you if the macro
is placed incorrectly. Xilinx recommends keeping input macros on the left side of and output macros on

the right side of each reconfigurable module. This may simplify the amount of routing required.

DRC Checks fail and claim that the reconfigurable rectangles are not properly located.

Although all Pblocks must be drawn with a rectangle, PlanAhead may claim that the rectangle is incorrectly
placed. To do this, be sure that the rectangle is large enough for the logic confined within it. To do this,
check the attributes for the module and be sure that the available values are larger than required. Second,
you must place the minimum x and y values for the reconfigurable module on an even slice, and the
maximum values on an odd slice. To check this, select the properties window for the module and double

click on the rectangles tab.

Why do the design rule checks return an error of type “TPSYNC for asynchronous bus macro’?
When using asynchronous bus macros this error will always be returned and can be ignored if

asynchronous macros are sufficient for your design. PlanAhead recommends the use of synchronous



Q6.

Q7.

Q8.

Q9.

macros to avoid problems in timing critical paths. A solution to this is shown in the Design Rule Violation

window.

The Partial Re-config Tool Flow is not completing correctly, but DRC checks all pass.

Check to make sure that the floor plan was exported properly to a new and empty directory. Also,
remember that each step in the partial reconfig flow must be completed in order. This is also required if
any changes are made. For example, if static budgeting is rerun, all steps following it must also be rerun.
This is because PlanAhead simply calls scripts which edit existing files. In some cases, the files are copied
to a new location before changed and in other cases they are not. Running a step out of order may

corrupt files needed for subsequent steps.

I can assign modules to their appropriate pblocks but I still receive an error when attempting to run the
initial budgeting and static implementation phases.

Check to make sure that the appropriate net lists were added in the initial project creation. PlanAhead will
show the modules accordingly because the instantiations are present in the top level design even if their
separate net lists were not added. Select the File menu and choose the update net list option. Make sure

that each module has the appropriate net list assigned to it rather than the top level list.

PlanAhead is unable to locate any of the required files in the Assemble Stage.
As of PlanAhead 8.2.7 you must remember to export the floor plan to new or empty directory. If files exist
within the directory, PlanAhead will create a .data directory inside of it. This causes an error in the

directory path when scripts are called later in the process.

I’'ve completed my design in PlanAhead but the Assemble stage will not complete correctly as it is unable
to locate one or more .ncd files.

If the directory path is correct, and the files do exist, this can be explained by a bug within the PlanAhead
software. To work around this, simply run the Budgeting and Implementation steps in GUI mode. Then,
generate a script file for the Assemble stage instead. When the script is run, this error should not occur

and if your design is correct, it will complete successfully. This bug was not fixed as of PlanAhead 8.2.7.

Q10. The partial Re-config tool was run and completed successfully, what next?

The tool should have created bit files for download to the FPGA. Locate the export folder you created on
disk. The \merge directory inside of this folder will include 3 bit files for each reconfigurable design. They

will be labeled with static_full, pblock *cv_routed_partial, and pblock * blank. Note that the asterisk



Q.

denotes the name you chose for the reconfigurable pblock. Remember that you need to create a new

PlanAhead project for each version of the reconfigurable design.

How do I create a design with multiple reconfigurable modules?

A separate PlanAhead project must be created for each version of a reconfigurable module. Once the
initial project is completed, simply start a new one. When importing the initial net lists, choose a different
reconfigurable version than in the previous project. (NOTE: You must only choose one version for each
project). Then, import the constraints file from the exported directory from the previous project. This
constraints file will apply all the changes required in PlanAhead saving you a lot of time and work. Next,
run the Partial Re-config Tool as before remembering to first export the floor-plan to a new empty

directory.



Appendix D: EDK Troubleshooting Guide

Q1. Why does the flashwriter script fail on identifying the flash type?

Q2.

Q3.

Q4.

Qs.

Q6.

Q7.

Qs.

Be sure that you have downloaded the bitstrem for the current project to the device. The flashwriter

script relies on the addresses of the project you are working on to run correctly.

Why does flashwriter execute but the flash doesn’t get programmed?
The flashwriter script must be in the project directory that it is executing in, otherwise it won’t correctly
program the flash. It will look like it is executing, but because of a path problem, it will not execute

correctly.

Why does the bitstream combiner script fail2

You must have GNU tools (bash, dd, expr, rm and cat specifically) in your path for this to work correctly.

Why doesn’t the code execute when | choose program hardware?
Check your linker script — if you want the PowerPC to boot your code, without using the XMD debugger

over JTAG, everything except for dynamic memory (stack and heap) must be in BRAM.

Why don’t standard stdio functions work?

Xilinx provides proprietary stdio functions. For example, printfis xil_printf.

Why can’t | edit the source code within Xilinx Platform Studio?
There are two types of XPS projects, elf-only projects and full projects. If the source code is edited in Xilinx
Platform Studio SDK (the eclipse-based software development environment), it must be built in SDK as

well, and can not be modified in XPS.

Why won’t my program boot upon download?
Check that the option “Mark to initialize BRAM” when right-clicking on the software project is checked off.

Also, verify that the processor has the correct executable .elf file in the boot option.

Why do | get read-only errors when trying to compile, generate netlists, or bitstreams?
If you’re working in a ClearCase dynamic view, you cannot do any of those. Either switch to a snapshot

view or do EDK project work in a non-ClearCase directory.



Appendix E: ClearCase information

E.1: VOB directory structure

The directory structure of the WP | VOB is shown in the screenshot below:

= Kristant_snapshot
=1 wpi_hw
+-_ lost+Found
- Partial_Reconfig_C07
J Misc
= J MGP_Paper
] Screen Shots
] Research
J Scripks
= J Sources
T aes_src
+-_] Eit Files
+-_] EDK
+- ] I5E
1 MoWrapper
4] Planshead
=] Project_D0O7
—-[_] Basic_PR_Design
+-[_] Bit_Files
+-[_] ISE_Praject_Files
4[] Planshead_Project_Files
] ClearCase_Scripts
] MQP_C07_Report
] Mon_Peconfig_AES_SRC
] Previous_Research
] Report_Work
= J Sources
+{] ECK
+ ] ISE
+-_] Planahead
1 Useful_Programs

Project files are found within the sources folder. EDK projects were placed in the EDK folder, ISE projects were

placed in the ISE folder, and so on.

E.2: ClearCase config spec

Because our team decided not to do branching, all branch related entries were commented out with a # sign.
Changing the order of the items (ClearCase evaluates config specs from top to bottom) changed the way the
view displayed items. To revert to a previous day’s snapshot, we uncommented the daily label and moved it

above the /main/LATEST entry. A sample screenshot of a working config spec is provided.



M:\KristanM_view Properties

Gereral Config Spec ]Advanced] Access | Pratections

Element * CHECKEDOUT

element * mainfLATEST

#Felement * WPI_2007_01_31_Daily

Felement * . fkristanm_testbranch1/LATEST

#Felement = WPI_2007_01_31_Daily -mkhranch kristanm_testh
#Felement * ImainfLATEST -mkhranch kristanm_testbranchi

A view’s config spec can be accessed by right clicking on the view’s icon in Rational ClearCase explorer on the

left vertical bar and selecting view properties.

E.3: Add to source control recursive script (add-to-src-control.bat)

@rem= "PERL for Windows NT -- ccperl must be in search path
@echo off

ccperl %0 %1 %2 %3 %4 %5 %6 %7 %8 %9

goto endofperl

@rem *;

HHHEHHH R A
# Begin of Perl section

#

# Written by IBM Corporation

#

# Adapted & modified by Michael Kristan

# Michael _.Kristan@gdc4s.com

$start_dir = $ARGV[O0];

#
# Fixed variable

#

$S = "\\"';

$list_file = "c:".$S."list_file";

$list_add = "c:".$S."list_add";

$choosed = "'c:".$S.'""choosed";

$max_elements = 150; #To prevent clearcase from freaking out and crashing the video card

sub clean_Tfile

{

$status = system(“'del $list_file > NUL 2> NUL™);
$status = system(“'del $list_add > NUL 2> NUL™);
$status = system(“'del $choosed > NUL 2> NUL™);

}



#
# Start of the script...
#

$counter = 0O; # Simple loop counter

printf(*'add-to-src-control $start_dir...\n");

clean_file(Q);

$status = system(‘‘cleartool Is -view_only -r -s $start_dir > $list_file™);
open(LIST_ELEMENT,$list_Tfile);

while (($element=<LIST_ELEMENT>) && ($counter < $max_elements) )
$counter++;

chop $element;

# printf " Processing $element ;

it ($element =~ /CHECKEDOUT/)

{
# printf("" checkedout file \n");

¥

else

{

# printf " view private \n";

printf " Processing $element ...\n";

#

# For files with spaces...

#

it ($element =~ 7/ /)

{

$status = system(*'cmd /c echo \"$element\" >> $list_add");
¥

else

{

$status = system(“'cmd /c echo $element >> $list_add™);
3

b

3
close(LIST_ELEMENT);
if (-e $list_add)

$listelement = “type $list_add™;
$listelement2 = “type $list_add™;
$listelement2 =~ s/\n//g;

$listelement =~ s/\n/,/g;

$status = “echo $listelement > $list_add™;

$status = system(echo $listelement2™);

#$status = system(“'clearprompt list -outfile $choosed -dfile $list_add -choices
#-prompt \'"Choose element(s) to put over version control : \" -prefer_gui');

if ($status = 0)

{

# printf(""\n Aborting ...\n");
clean_file();

exit $status;

}

#

$listtoadd = “type $choosed™;

$listtoadd =~ s/\n//g;

#used to be $listotadd

printf(''\n cleardlg /addtosrc $listelement2");
$status = system(‘‘cleardlg /addtosrc $listelement2);

clean_file(Q);
exit $status;



}

else

{

# printf(""\n No files founded...\n");
clean_file();

exit $status;

}

# End of Perl section

__END__
zendofperl

E.4: Timestamp label generator (datelabel.sh)

datelabel.sh ran every day from hostname kristanm.gdc4s.com as a scheduled task. This scheduled task ran
each business day at 12:15PM. The purpose was to allow the group to take a daily snapshot of the VOB should
there be a need to revert a view to a previous date. Bash does need to be installed in order to run this script.

To make running this script easier, a .bat wrapper was created with the simple command bash ./datelabel.sh.

#1/bin/bash
# Label generator for ClearCase VOB
# Written by Michael Kristan (Michael .Kristan@gdc4s.com)

# Internal Use Only
# This script lives in the \wpi_hw\Partial_Reconfig_CO07\Scripts directory

# Generate the label using the bash date command
CLEARCASE_DATE_LABEL=$(date +"WPI_""%Y"_""%m"_"'%d"_Daily')
echo "Daily label generation for WP1_HW ClearCase VOB
echo "Generating label: $CLEARCASE_DATE_LABEL"

# Change folders to the VOB root and generate label

cd ../../

cleartool mklbtype -nc $CLEARCASE_DATE_LABEL
cleartool mklabel -replace -recurse -version \\main\\LATEST $CLEARCASE_DATE_LABEL .

E.5: Miscellaneous recursive commands

Each of the batch files in this section is called from within the cleartool find command. The find command is

run in the base directory which the recursion starts from. An example command would be:

cleartool find . —exec “cmd /c revert.bat”

E.5.1: Revert checked out files to the VOB version (revert.bat)

@echo off
cleartool uncheckout -rm "%CLEARCSE_PN%'
cleartool checkout -nwarn -unr -nc "%CLEARCASE_PN%"



E.5.2: Push changes to VOB but keep elements checked out (push.bat)

@echo off
cleartool checkin -nc -nwarn "%CLEARCASE_PN%""
cmd /c cleartool checkout -nwarn -unr -nc "%CLEARCASE_PN%'

E.5.3: Recursive unreserved check out

cleartool checkout —unr —nc “%CLEARCASE_PN%

E.5.4: Recursive checkin

cleartool checkout —unr —nc “%CLEARCASE_PN%”

E.6: ClearCase Menu Administrator

A useful trick was to add the previously mentioned clear case scripts to the right click menu within Windows
Explorer. ClearCase provides a program called “ClearCase Context Menu Editor” to do that. To accessit, go to

Start, click on Run, and type in clearmenuadmin and click ok. The following windows should appear:

ClearCase Context Menu Editor for Windows Explorer

Configuration  Application  Help

Choose ClearCase object to customize menu far

Object Type: Object State:
= Dynamic-views drive ~
= Diynamic View \C:hecl';e_d Out
I wae iew Private
- DI[ECFD[}I Selection Type
File:

Symbolic Link @ Single Selection

Derived Object  + " Multiple Selection

Custamize
This Menu Contents: Available Menu Choices

............ V.

ce About
Check Out... 4 Add to Source Control [rec
Check Out Reserved [recursive Add to Source Contral...
Remave »

Check Out Unreserved [recursiv Apply Label...
------------ bl Check In [recursive] v
< ¥ < ¥
Move Up Find... Eind.. |
Maove Down Rezet New...

Test
Enter pathname of a sample ClearCase object. To test the context
menu for that object, click the 'Test' buttan. To edit the menw, click
the 'Edit Menu' buttan. The appropriate object Type and State will be
zelected automatically.

Test thiz gide of the Explarer: " Tree 1 List

L

| Browse...

Feady




From within the menu editor, new menu choices can be added for each of the scripts such as a recursive

unreserved check out.

Menu ltem Properties f@
General l
Menu Text:
Help Text: |Eheck out all files and folders j
Command Type: |Executable j
Command: |cleartool.exe J
Initial Directory: |$dir_or_fi|e1 j
Arguments: |find $file: -ewec "omd o cleartool checkout j
Comment: |

QK | Cancel Help

New menu choices appear on the right hand side in “Available Menu Choices” and then can be added to an
appropriate menu context. An example would be selecting a dynamic view directory as an object type with an

object state of checked in.

E.7: Snapshot views vs. Dynamic views

ClearCase views come in two different types, snapshot and dynamic. Both types of views allow users to check
out files, make changes, and check them back in. Dynamic views operate similarly to a network drive, all of the
files are stored on the server in read only form (if you check out a file, it is no longer read only). Snapshot

views copy the entire VOB to the local hard drive.

General Dynamics strongly suggests using dynamic views because dynamic views automatically reflect changes
that other users check-in just like a traditional network drive whereas snapshot views require manual updates.
The only advantages offered by snapshot views are that they are faster because the data is stored on the local
hard drive and that files can be hijacked and/or deleted by the Xilinx tools during synthesis or build phases.

Deleting files in a dynamic view require use of the cleartool rmname and cleartool rmelem commands.
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