

Abstract

Functional reactive programming (FRP) is a paradigm extending functional
languages with primitives which operate on state. Typical FRP systems contain
many dozens of such primitives. This thesis aims to identify a minimal subset
of primitives which captures the same set of behavior as these systems, and to
provide an axiomatic semantics for them using first-order linear temporal logic,
with the aim of utilizing these semantics in formal verification of FRP programs.
Furthermore, we identify several important properties of these primitives and
prove that they are satisfied using the Coq proof assistant.

Contents

1 Introduction 3
1.1 Overview of FRP . 3

1.1.1 Example . 4
1.1.2 FRP styles . 6
1.1.3 Comparison with synchronous dataflow 6
1.1.4 Properties . 7

1.2 Verification . 7
1.3 Goals . 8

2 Syntax and Semantics 9
2.1 FOLTL . 9
2.2 Monads . 10
2.3 Primitives . 11

2.3.1 Data types . 11
2.3.2 Event stream functions 11
2.3.3 Behavior functions . 13
2.3.4 Conversion functions . 13

3 Proofs of properties 15
3.1 Coq . 15
3.2 Monad laws . 16
3.3 Timestep irrelevance . 17
3.4 Time invariance . 17
3.5 Embedding of other FRP systems 17

3.5.1 FrTime . 18
3.5.2 Yampa . 21

4 Conclusion 26
4.1 Future Work . 26

4.1.1 Further reductions . 26
4.1.2 Fixpoints . 27
4.1.3 Implementation . 29
4.1.4 Verification framework . 29

1

A Proofs 33
A.1 Module LTL . 33
A.2 Module FRP . 33
A.3 Module FRP facts . 35
A.4 Module monad laws . 37
A.5 Module time invariance . 40

2

Chapter 1

Introduction and Related
Work

Functional reactive programming (FRP) is a relatively new paradigm encompass-
ing several different kinds of systems, all with the purpose of extending functional
languages with primitives which operate on state. FRP exhibits many properties
which make it seem to be an ideal target for application of formal verification
techniques. This thesis aims to explore the space of formal verification of FRP
programs, both identifying exactly what these properties are which FRP seems
to exhibit, developing a basic framework for FRP which does in fact enjoy these
properties, and using this framework to perform formal verification of FRP
programs.

In this chapter, we will give an overview of the ideas common to all functional
reactive systems, as well as explain the differences between them. Most impor-
tantly, we will identify exactly what properties are desirable for a functional
reactive system.

1.1 Overview of FRP
In the broadest sense, functional reactive programming (FRP) is a programming
paradigm which extends functional programming with a notion of time. Two
special datatypes, event streams and behaviors, are introduced. Event streams
are values which are discrete functions of time, whereas behaviors are values
which are continuous functions of time. Together they are termed signals. The
points at which an event stream is defined are termed events. Events are said to
occur on an event stream.

Both types of signals are designed to represent “real-world” phenomena.
Some examples of event streams are:

• mouse clicks

• key presses

3

• timer events

• network packets

• MIDI data

Examples of behaviors include:

• cursor position

• buffer contents

• time of day

• temperature

• audio data

Event streams and behaviors may be manipulated using a set of predefined
combinators. Let us illustrate with an example.

1.1.1 Example: Alarm clock
Consider a program implementing a graphical alarm clock. It has the following
requirements:

• The current time must be displayed on the screen.

• The user must be able to enter an alarm time in a text box.

• The program must emit a tone when the current time reaches the alarm
time.

• The user must be able to silence the tone by clicking a “snooze” button.

Our program has available the following inputs:

• the current time (curtime, a behavior)

• the value of the text box (alarmtime, a behavior)

• the “snooze” button clicks (snooze, an event stream)

We must provide the following outputs:

• graphics to render on the screen (screen, a behavior)

• audio to be played on the speaker (audio, a behavior)

4

3:02 AM

Snooze

screen

alarmtime

snooze

Figure 1.1: Alarm clock GUI

To draw the clock on the screen, we can use the following FRP pseudocode:

hour hand = line
(

[0, 0] ,
[

1
3

cos
(
−2π

12
curtime.hours + π

2

)
,

1
3

sin
(
−2π

12
curtime.hours + π

2

)])
minute hand = line

(
[0, 0] ,

[
2
3

cos
(
−2π

60
curtime.minutes + π

2

)
,

2
3

sin
(
−2π

60
curtime.minutes + π

2

)])
clock face = circle ([0, 0] , 1)

screen = hour hand ∪minute hand ∪ clock face

Here, the output behavior screen is set to be always equal to the rendering of a
circle and two lines pointing outward from the origin at angles representing the
current time. Unlike in traditional GUI programming, no mutation is needed to
update the screen, the FRP system internally manages this in order to ensure
that the defined relationship always holds true.

To determine when the alarm goes off, we create the following internal event
stream:

trigger = when (curtime ≥ alarmtime)

The FRP library function when creates an event stream which occurs at the
instant its argument becomes true. Here, an event will occur on trigger at the
instant when the current time becomes greater than the set alarm time.

Let us define our output tone and silence behaviors:

tone = sin (2π · 440 · curtime.seconds)
silence = 0

Finally, we must switch between the output tone and silence when trigger
occurs and when the user presses the “snooze” button:

audio = switch (silence, (on trigger → tone) + (on snooze → silence))

5

The FRP syntax (onx→ y) creates an event stream which occurs whenever x
occurs, but has the value y. Here, we create higher-order event streams which
carry the behaviors tone and silence in their events. The two event streams are
merged with the + operator, and the FRP library function switch creates a
behavior which switches between tone and silence when they occur in the event
stream. Initially we start with silence. This relational description contrasts
with the imperative “push” or “pull”-based approaches typically used in audio
interface code, where either audio data is pushed through a queue, or an output
buffer is read by the system at regular intervals.

And that is all! Using FRP, we have defined in eight lines of declarative code
what would otherwise take dozens of lines using a traditional GUI toolkit in an
imperative language. The implementation of our alarm clock remains very close
to our specification, making verification nearly trivial.

1.1.2 Monadic and Arrow-based FRP styles
FRP systems generally follow one of two styles, monadic or arrow-based. The
first system to call itself FRP was the Fran [9] language built on top of Haskell.
This system follows a monadic approach, meaning that signals are values which
can be manipulated as functors (by pointwise transforming their values), and
that higher-order signals may be simplified as with monad join. Other FRP
systems which follow the monadic approach include FrTime [4], Flapjax [17],
and OCaml RT [16].

An alternative FRP approach is to use arrows [15] to represent signal trans-
formers rather than simply the signals themselves. Conceptually, this allows
both the input and the output of a signal transformer to be manipulated, as op-
posed to the monadic approach, which allows only the output to be manipulated.
Fran’s descendant, Yampa [14], is an example of an arrow-based FRP system.

In this paper we will focus on the monadic approach.

1.1.3 Comparison with synchronous dataflow
FRP is most closely related to synchronous dataflow programming. Dataflow
programming languages such as Lustre [12] are similarly declarative in nature
and have a notion of time. However, time in dataflow languages is fully discrete:
there is a unit timestep to which all signals must be quantized. While potentially
simplifying the implementation, we lose not only the abstraction of continuous
time, but also the opportunity for some useful optimizations, as we will see in
section 1.1.4.

One further benefit FRP provides over dataflow programming is the ability
to manipulate signals as first-class objects. This is necessary for systems which
must dynamically change their structure at runtime. For example, consider
a document editor which may have multiple documents open: we would like
to reuse the same code to control each document. Because FRP allows us to
construct and re-route signals at run time, we can acheive this without resorting
to higher-level constructs.

6

1.1.4 Properties
Following are some properties of FRP systems which are desirable because they
abstract parts of the system which otherwise would be implementation-dependent,
and aid formal verification proofs of FRP programs.

Timestep irrelevance Because computers operate in discrete steps, any in-
terpreter for an FRP program must (short of mathematical analysis) discretize
time: behaviors cannot truly change continuously, nor can events truly last for
an infinitesimally short period of time. So the choice arises, in implementation,
as to what duration these discrete timesteps should be.

But this choice of timestep duration is just that: an implementation detail.
Ideally, we would like to prevent the construction of a program which can observe
either the existence or duration of these discrete timesteps, thus maintaining the
illusion of idealized time. This property is referred to as timestep irrelevance.

Time invariance A further desirable property of FRP programs is that they
be componental: that is, any analysis of an FRP program remains valid when it
is included as a component in a larger program. Timestep irrelevance partially
guarantees this: two FRP programs composed in parallel (meaning, their exe-
cution starts at the same time) will behave as if they were executed separately,
regardless of whether such composition affects the system’s timestep.

To extend this property to FRP programs composed sequentially (meaning,
their execution starts at different times), we would like also to require of FRP
programs the property that the behavior of an FRP program remains locally the
same regardless of at what global time it was invoked. This property is referred
to as time invariance.

1.2 Verification
Verifiability, either via proof methods, or model checking, is a desirable property
of any programming language. FRP is no exception. In particular, verification of
functional reactive programs is desirable because exisiting verification techniques
in the domains for which FRP is well-suited (those involving input/output and
state) are difficult to use, if at all existent. Interactive systems, when written in
traditional imperative languages, simply have too much state and parallelism for
verification to be made tractable.

Consider the example of the graphical alarm clock from section 1.1.1. If
written in a language such as Java using the AWT or Swing GUI toolkit,
this program would likely utilize callbacks (asynchronous externally generated
function calls) to process events generated by the system, and update the display
and audio using imperative constructs running in separate threads. The control
flow in such a system is hectic! Verifying a simple local property such as “the
clock hands always rotate clockwise” becomes non-trivial as we are forced to
consider non-local effects due to the threading and callbacks. It would seem that

7

we could more easily reason about the near-algebraic equations used in the FRP
implementation of this program.

To the author’s knowledge, there has been no work done to date on formal
verification of FRP programs. Formal denotational and operational semantics
have been given for various systems (including Yampa [5], and FrTime [3]),
but none have been specified axiomatically (which would further bridge the
verification gap by abstracting parts of the system, such as dependency relations).
However, there has been work done on formal verification of synchronous dataflow
languages: in particular, both a model checker [13] and a proof obligation
generator [7] have been developed for Lustre. The similarity between synchronous
dataflow and FRP would seem to indicate that the same is possible for FRP.

1.3 Goals
The main goal of this thesis is to identify a minimal subset of primitives which
captures the same set of behavior as the above-mentioned FRP systems, with the
end result of creating a system which caters to formal verification. We will define
the primitives by means of an axiomatic semantics in first-order linear temporal
logic. Such a specification has the advantage that it neither requires nor favors
any particular implementation, while still providing an adequate framework for
formal verification. These primitives will be presented in chapter 2.

An example of the style of verification we would like to perform is as follows.
Consider the alarm clock example from section 1.1.1, and the property from
section 1.2: “the clock hands always rotate clockwise”. Assuming we have access
to an angle of() function which returns the angle of a line object, we can specify
this property formally in first-order linear temporal logic (see section 2.1) as:

� ((angle of(hour hand)−©angle of(hour hand) mod 2π) > π)

where the notation n mod m denotes the smallest nonnegative value r such
that km + r = n, k being an integer. The proof of this property then follows
immediately from elementary algebra, the fact that curtime is monotonically
increasing, and the assumption that curtime is quantized to small enough
intervals such that the hands need never jump 180◦ or more. (Quantization of
inputs is a necessary evil in the discrete world of computers, as we shall see.)

To further bolster use of these primitives in formal verification, we will show
that they satisfy the properties of timestep irrelevance and time invariance
through formal proofs built using the Coq proof assistant. We will also show
embeddings of the two FRP systems FrTime and Yampa in our system to support
our claim of completeness. These proofs and embeddings will be presented in
chapter 3.

Another goal of this thesis had been to develop a verification framework for
FRP programs using the proposed primitives. Several attempts were made at
this, but none led to a workable system. These attempts, as well as other ideas
for future work, are documented in the conclusion of the paper in chapter 4.

8

Chapter 2

Syntax and Semantics

In this chapter we first give an overview of the formalisms used in the rest of the
document. We then present the formal syntax and semantics of the proposed
minimal set of FRP primitives.

2.1 First-order Linear Temporal Logic
To specify the semantics of the FRP primitives, we will utilize the first-order
linear temporal logic [10] (FOLTL). FOLTL extends first-order logic with a
notion of time: propositions may have different truth values at different times (or
states). More formally, propositions, predicates, and functions are extended to
be functions of time by implicitly parameterizing them over the natural numbers
(each denoting a distinct state). Furthermore, the following operators are added:

Next ©P means that “P is true in the next state.”

Globally �P means that “P is true in this state and in all following.”

Finally ♦P means that “P is true in at least one state now or in the future.”

Until P U Q means that “P is true up to the state in which Q is true.”

Releases P RQ means that “Q is true up to and including the state in which
P is true, if any.”

In the denotational semantics given in table 2.1, i, j, and k are natural numbers,
and the notation [P]i is a first-order logic statement denoting the truth value of
the FOLTL formula P at time i. Note that ©x may actually apply to any term,
denoting the value of that term as interpreted in the next state. Additionally,
we define the “weak until” operator P W Q ≡ (P U Q) ∨�P , with the meaning
that “P is true up to the state in which Q is true, if any.”

It is also important to note the notion of local time. Because functions in
FOLTL are implicitly functions of time, when we define their semantics using

9

[¬P]i ⇐⇒ ¬ [P]i
[P ∧Q]i ⇐⇒ [P]i ∧ [Q]i
[P ∨Q]i ⇐⇒ [P]i ∨ [Q]i

[P → Q]i ⇐⇒ [P]i → [Q]i
[©x]i ⇐⇒ [x]i+1

[�P]i ⇐⇒ ∀j, [P]i+j
[♦P]i ⇐⇒ ∃j, [P]i+j

[P U Q]i ⇐⇒ ∃j, [Q]i+j ∧
(
∀k, k < j → [P]i+k

)
[P RQ]i ⇐⇒ ∀j, [Q]i+j ∨

(
∃k, k < j ∧ [P]i+k

)
[∀x, P (x)]i ⇐⇒ ∀x, [P (x)]i
[∃x, P (x)]i ⇐⇒ ∃x, [P (x)]i

Table 2.1: Denotational semantics of FOLTL

FOLTL, the specifications will be relative to the time frame in which the functions
are invoked. This time frame will be referenced as local time 0. More formally,
for any function f :

f(x) : {y|P (y)}
[f(x) = y]i ⇐⇒ [P (y)]i

2.2 Monads
A monad is a structure consisting of a datatype M [α] parameterized over a type
α and three associated functions, unit : α→ M [α], map : (α→ β)→ M [α]→
M [β], and join : M [M [α]]→M [α]. Many data types are monads, for example,
lists or the “option” type (a type with an exceptional value). Monads follow
several laws which allow for algebraic simplification of expressions built using
them: by ensuring that our FRP primitives form monads, we will be able to
utilize these reductions in formal proofs.

Since monads have been covered in much detail elsewhere, we will instead
briefly summarize the laws governing a monad [18] in table 2.2.

A monad may also be characterized by a function return : α → M [α]
(equivalent to unit) and a function bind : M [α] → (α → M [β]) → M [β]
(equivalent to join ·map). These two equivalent characterizations will be used
interchangeably in the rest of this document.

10

(i) map(λx : α.x) = λx : M [α].x
(ii) map(g · f) = map(g) ·map(f)
(iii) map(f) · unit = unit · f
(iv) map(f) · join = join ·map(map(f))
(v) join · unit = λx : M [α].x
(vi) join ·map(unit) = λx : M [α].x
(vii) join · join = join ·map(join)

where g · f is function composition (g · f ≡ λx.g(f(x))).

Table 2.2: Monad laws

2.3 Primitives
This section will describe the twelve FRP primitives and their semantics. We
assume the existence of a language L reducible to the typed lambda-calculus
which is extended with the following primitives to generate a new language L+.
We make the further assumptions that time is discretizable (see section 1.1.4).

The semantics of each primitive are defined by FOLTL formulae. The
semantics of a functional reactive program P : L+ at time t are then given by the
interpretation of that program with all primitives replaced with their semantic
meaning at time t. The bodies of the primitives are referenced to the time frame
in which the primitive functions are invoked.

For readers familiar with the FrTime or Yampa systems, analogies of each
primitive to ones present in those systems will be made where appropriate. A
full formal mapping however will be provided in section 3.5.

2.3.1 Data types
L+ adds to L two new type constructors, E[α] and B[α], corresponding to
event streams and behaviors over type α, respectively. For the purposes of
defining semantics, we assume the existence of two functions, ε : E[α]→ α∪{⊥}
and β : B[α] → α, which map event streams and behaviors, respectively, to
their value (or ⊥, in the case of an event non-occurrence) as interpreted in the
present FOLTL time frame (which can be considered an implicit argument to
all functions). However it is important to note that these two functions are not
available as primitives themselves.

2.3.2 Event stream functions
Six primitives work only with event streams: returne, mape, joine, zeroe,
pluse, and fixe. The first five of these together with the event stream type
constructor define a monad (see Appendix A).

11

Unit event returne(x) is an event stream with exactly one event occurrence,
at local time 0, with value x:

returne(x : α) : {e : E[α]|ε(e) = x ∧©� (ε(e) = ⊥)}

returne is equivalent to Yampa’s now function.

Event mapping mape(f)(e1) is an event stream which is synchronous with
the event stream e1, but carries values obtained by applying f pointwise to the
values carried by e1:

mape(f : α→ β)(e1 : E[α]) : {e : E[β]|� (ε(e) = f ′(ε(e1)))}

where f ′(⊥) = ⊥ and f ′(x) = x otherwise. mape is analagous to Yampa’s fmap
function, and equivalent to FrTime’s map-e function.

Zero event zeroe is the event stream with no event occurrences:

zeroe : {e : E[α]|� (ε(e) = ⊥)}

It is equivalent to Yampa’s never value, or to an event receiver to which events
are never sent in FrTime.

Event merging pluse(e1)(e2) merges the event streams e1 and e2, with e1
taking precedence in the case of simultaneous events:

pluse(e1 : E[α])(e2 : E[α]) : {e : E[α]|� (ε(e) = ε(e1)⊕ ε(e2))}

where ⊥⊕ y = y and x⊕ y = x otherwise. It is analogous to Yampa’s lMerge
function, and equivalent to FrTime’s merge-e function.

Event switching joine allows management of higher-order event streams.
joine(ee) initially behaves as zeroe, but whenever an event carrying an event
stream occurs on ee, joine(ee) behaves as that event stream until another such
event occurs:

joine(ee : E[E[α]]) : {e : E[α]| ((ε(e) = ⊥) W (ε(ee) 6= ⊥))∧
(∀e1 : E[α],� ((ε(ee) = e1)→
© (ε(ee) 6= ⊥) R (ε(e) = ε(e1))))}

joine(ee) is analogous to Yampa’s pSwitch function.

Event fixpoint fixe(f) computes the event stream fixpoint of the function f :

fixe(f : E[α]→ E[α]) : {e : E[α]|e = f(e)}

Note that fixe is not a monadic fixpoint operator (which would have type
(α→ E[α])→ E[α]). It is analogous to Yampa’s loop function.

12

2.3.3 Behavior functions
Four primitives work only with behaviors: returnb, mapb, joinb, and fixb. The
first three of these together with the behavior type constructor define a monad
(see section 3.2).

Unit behavior returnb(x) is a behavior which always has value x:

returnb(x : α) : {b : B[α]|� (β(b) = x)}

returnb is equivalent to the Yampa’s constant function.

Behavior mapping mapb(f)(b) is a behavior whose value is always f applied
to the current value of the behavior b:

mapb(f : α→ β)(b1 : B[α]) : {b : B[β]|� (β(b) = f(β(b1))}

mapb is equivalent to the Yampa’s arr1 function.

Behavior switching joinb allows management of higher-order behaviors.
joinb(bb) behaves as whichever behavior is currently carried by bb:

joinb(bb : B[B[α]]) : {b : B[α]|b = β(bb)}

Behavior fixpoint fixb(f) computes the behavior fixpoint of the function f :

fixb(f : B[α]→ B[α]) : {b : B[α]|b = f(b)}

Like fixe, fixb is not a monadic fixpoint operator. It also is analogous to
Yampa’s loop function.

2.3.4 Conversion functions
Two primitives are required to link event streams and behaviors: e2b and b2e.
Despite their names, they are not inverses of each other (although they are
jointly idempotent). Together, they allow for state to be stored and recalled.

Events to behaviors e2b allows storage of state in the form of a behavior.
e2b(i)(e) is a behavior which initially has the value i until an event occurs on
the event stream e, immediately after which b2e(i)(e) takes on the value of the
event, until another such event occurs:

e2b(i : α)(e : E[α]) : {b : B[α]| ((ε(e) 6= ⊥) R (β(b) = i))∧
(∀x : α,� ((ε(e) = x)→
© ((ε(e) 6= ⊥) R (β(b) = x))))}

e2b is equivalent to Yampa’s hold function when coupled with the unit delay
operator pre.

1Shiver me timbers!

13

Behaviors to events b2e allows retrieval of state from a behavior. b2e(b) is
an event stream with exactly one event occurrence, at local time 0, which carries
the value the behavior b has at that time:

b2e(b : B[α]) : {e : E[α]| (ε(e) = β(b)) ∧©� (ε(e) = ⊥)}

b2e is analogous to Yampa’s tag function, or to FrTime’s snapshot syntax.

14

Chapter 3

Proofs of properties

In order to prove that the monad laws, timestep irrelevance, and time invariance
hold true for the formulation of FRP given in chapter 2, the proof assistant Coq
[6] was used. This chapter details how the proofs were constructed in Coq.

3.1 Coq
Coq is based on a typed constructive logic called the Predicative Calculus
of Inductive Constructions (pCic). Through pCic, Coq provides first-class
types (using an infinite type hierarchy), universal quantification, λ-abstractions,
and function application. Terms (constants and functions) can be built from
other terms using these constructs, defined (co)inductively, taken as axioms, or
constructed using a proof. Proofs in Coq are constructed interactively using
backward reasoning. The state of an interactive proof consists of a set of
hypotheses and a set of goals, which are manipulated using tactics, until no
goals remain, at which point the proof is complete.

To embed FOLTL and FRP, we use the following scheme.

Types The type of a logic proposition in Coq, Prop, is extended by adding a
parameter of type nat (natural number): nat → Prop.

Logic connectives All logic connectives appearing in table 2.1 are utilized by
treating the notation [P]i as function application: any rule [P (x)]i ⇐⇒
Q
(

[x]f(i)

)
can be translated as:

DefinitionP (x : nat → Prop) : nat → Prop := fun (i : nat) ⇒ Q (x (f i)).

Temporal connectives All temporal connectives are treated the same as the
logic connectives, and are defined for convenience in the LTL module (see
appendix A.1).

FRP types The two FRP type constructors, E[α] and B[α], and their associ-
ated destructor functions ε : E[α]→ α∪{⊥} and β : B[α]→ α are defined
as axioms. The built-in option α type is used to represent α ∪ {⊥}.

15

FRP functions All FRP functions appearing in section 2.3 of the form are
translated as a pair of axioms: one asserting the existence of the function
(with the addition of an extra argument of type nat denoting the local
time), and one defining the semantics of the function. These definitions
are contained in the FRP module (see appendix A.2).

3.2 Monad laws
To prove that events and behaviors as defined in section 2.3 are indeed monads,
we show that they obey all monad laws. The proofs were performed using
Coq. Because the monad laws involve equality of functions, but Coq does
not provide existential equality, proofs were instead performed on the laws
applied to arbitrary values (so e. g. map(g · f) = map(g) · map(f) became
∀e,map(g · f)(e) = (map(g) ·map(f))(e). Furthermore, because event streams
and behaviors were defined axiomatically, each needed an equality predicate
defined: for events, this was taken to be e1

e= e2 ≡ � (ε(e1) = ε(e2)), for
behaviors, b1

b= b2 ≡ � (β(b1) = β(b2)).
The proofs are largely rewrite-based, since the monad laws involve equal-

ities, as do the semantic definitions. For example, the semantics of returne
state that ε(e) = x, where e = returne(x). This is translated into Coq as
eps (return e i x) i = Some x (where the i is a time index), which then serves as
a rewrite rule. Another rewrite rule exists for returne which, when simplified,
states eps (return e i x) (i+j+1) = None. Repeated application of these rewrite
rules (which is automated by the rewrite e and rewrite b tactic macros) results
in a great deal of simplification of the monad law equations.

The remaining proof steps to be performed consist mostly of case-based
reasoning. For example, proofs involving returne must be broken into two cases,
the time at which returne is invoked, and all times afterward. Proofs involving
mape often require two cases, one corresponding to the case of an event occurrence
at a given time, and another corresponding to an event non-occurrence.

An interesting case arises when working with proofs involving joine. It
becomes necessary in these proofs to know the first event which occurs on an
event stream, if such an event exists. The easiest way to prove that finding such
an event was possible turned out to be constructing a recursive program which
found an returned the event. The program was written using the Russell language,
which allows programs with specifications to be written in Coq, generating proof
obligations where necessary. The code and proofs can be seen in section A.3.

The monad law proofs themselves can be found in appendix A.4. Only monad
laws i–iii and v are currently proven for events, however all monad laws are
proven for behaviors.

16

3.3 Timestep irrelevance
To prove that the FRP primitives satisfy the propert of timestep irrelevance as
outlined in section 1.1.4, if we assume that time is never discretized so as to
cause events occuring at distinct times to appear to occur simultaneously, it is
sufficient that we assert the unobservability of the existence of discrete timesteps
by requiring the following: there cannot exist any FRP program, which, when
evaluated on a set of input signals I, produces a different output during the
intervals [0, i) and [j,∞) than when evaluated on the set of input signals which
differs from I only in that a behavior b ∈ I has been held constant on the interval
[i, j)1 during which no events occur in I except at time i.

Similarly, to assert the unobservability of the duration of the discrete
timesteps, it is sufficient for us to require that: there does not exist any FRP
program, which, when evaluated on a set of input signals I, produces a different
output than when evaluated on the set of input signals which differs from I only
in that the duration of all events e ∈ I occurring at time i have been extended
in duration to occur over the interval [i, j), during which no other events occur
and all behaviors are constant.

Formal proofs of timestep irrelevance were not performed. To carry out such
proofs in Coq would require embedding a formal grammar and interpreter for
FRP (to allow us to show that no such program can be constructed) and is
outside the scope of this thesis.

3.4 Time invariance
To prove that the FRP primitives satisfy time invariance as described in section
1.1.4, it suffices to show that: if an FRP program P produces the set of output
signals O when evaluated on a set of input signals I, the program P i produces
the set of output signals Oi when evaluated on the set of input signals Ii, where
the notation xi means “shifted to local time i”.

The proofs of time invariance proceed similarly to those of the monad laws,
with the addition of two auxiliary functions shift e and shift b which shift
an event stream or behavior in time. The proofs themselves can be found in
appendix A.5.

3.5 Embedding of other FRP systems
To support my claim that my proposed combinators support FRP in the same
style as previous systems, I will show an embedding of all core functions in the
monadic FRP system FrTime [1], and the arrow-based FRP system Yampa .
The embeddings are complete excluding those operators which would violate
either timestep irrelevance or time invariance.

1Meaning, ∀x ∈ (i, j), the value of b at time x equals the value of b at time i.

17

For conciseness, the monadic do notation is used to extend the language of
FRP expressions. The sequence x e← y; expr is translated as joine (mape (λx.expr) (y)),
where expr may be either a simple expression or itself a do notation expression.

Additionally, the notation x+y is shorthand for pluse(x)(y), and the function
oncee(e), which returns an event stream containing only the first event occuring
on e (if any), is defined by the following pseudocode.

Algorithm 1 oncee(e)
{ remember whether an event has occured }
let h = e2b(true) (mape (λx.false) (e))
x
e← e;

c
e← b2e(h); { c indicates whether x is the first event }

if c then
returne(x)

else
zeroe

end if

3.5.1 FrTime
Type constructors The event[a] type constructor corresponds directly to
E[a]. The behavior[a] constructor corresponds to the type E[a]×B[a]. The
purpose of the event stream in this tuple is to represent discontinuous changes
in the behavior. The notation xe refers to the event stream component of this
tuple, and xb refers to the behavior component.

value-now The value-now operator is not directly encodable using the FRP
primitives, because it allows for values to escape the monad. However, the usage
(let ((x (value-now b))) ...) in the context of an event stream function
would correspond to x e← b2e(b); ..., and in the context of a behavior function
would correspond to x b← b;

delay-by Implementation of the delay-by operator for event streams requires
the existence of a function tick(t : R) : E[unit] which creates an event stream on
which an event occurs after t seconds, but is otherwise straightforward (although
outside the scope of this embedding).

The delay-by operator for behaviors cannot however be directly encoded.
The issue lies with our ideal abstraction of FRP: because behaviors are continuous
functions, we would need an infinite amount of storage to store the value of
the behavior during the delay interval. However, if we are content to allow
our behaviors to be approximated by their accompanying event stream (almost
always reasonable) then the problem reduces to that for event streams.

18

integral and derivative Both integral and derivative, like delay-by,
require external functions dealing with physical time, but are otherwise straight-
forward and outside the scope of this embedding.

map-e The function (map-e fb e) can be simulated by the following pseu-
docode.

Algorithm 2 (map-e fb e)

x
e← e;

f
e← oncee (fbe + b2e(fbb));

returne(f(x))

filter-e The function (filter-e fb e) can be simulated by the following
pseudocode.

Algorithm 3 (filter-e fb e)

x
e← e;

f
e← oncee (fbe + b2e(fbb));

if f(x) then
returne(x)

else
zeroe

end if

merge-e The function (merge-e) corresponds directly to zeroe, and (merge-e
e1 ...) corresponds directly to pluse(e1) ((merge-e ...)).

once-e The function (once-e e) corresponds directly to oncee(e).

changes The function (changes b) simply returns be.

hold The function (hold e i) returns the tuple (e, e2b(i)(e)).

switch The function (switch be i) can be simulated by the following pseu-
docode.

19

Algorithm 4 (switch be i)
{ switch the change events }
let e = joine (mape (λb.be) (be) + returne(ie))
{ switch the behaviors }
let b = joinb (e2b(ib)(mape (λb.bb) (be)))
{ insert change events for switches }
let e′ = joine (mape(b2e)(be))
(e+ e′, b)

accum-e The function (accum-e fe i) can be simulated by the following
pseudocode.

Algorithm 5 (accum-e fe i)
{ remember last event occurence }
let b = e2b(i)(e)
f
e← fe;

x
e← b2e(b);

returne(f(x))
where e is the event stream output from this code, as obtained using the fixe
function.

accum-b The function (accum-b fe i) is simply the tuple (e, e2b(i, e)), where
e is (accum-e fe i).

collect-e The function (collect-e e i f) can be simulated by the following
pseudocode.

Algorithm 6 (collect-e e i f)
{ remember last event occurence }
let b = e2b(i)(e′)
x
e← e;

y
e← b2e(b);

returne(f(x, y))
where e′ is the event stream output from this code, as obtained using the fixe
function.

collect-b The function (collect-b e i f) is simply the tuple (e, e2b(i, e)),
where e is (collect-e e i f).

when-e The function (when-e b) can be simulated by the following pseu-
docode.

20

Algorithm 7 (when-e b)

x
e← be;

if x then
returne(x)

else
zeroe

end if

Lifted procedures Procedures applied to behaviors can be simulated using
the mape and mapb functions. For example, (f b), where f is an unlifted function
and b is a behavior, is simply the tuple (mape(f)(be), mapb(f)(bb)).

if The syntax (if cb tb eb) can be simulated by the following pseudocode.

Algorithm 8 (if cb tb eb)
{ select the change events }
let e =

(
c
e← cbe; c ? (tbe + b2e(tbb)) : (ebe + b2e(ebb))

)
{ select the behavior }
let b =

(
c
b← cbb; c ? tbb : ebb

)
(e, b)

where the syntax x ? y : z is shorthand for “if x then y else z”.

snapshot Like value-now, snapshot is not directly encodable using the FRP
primitives. However, the usage (snapshot (b) ...) in the context of an event
stream function would correspond to b e← b2e(b); ..., and in the context of a
behavior function would correspond to b b← b;

3.5.2 Yampa
Because in Yampa, event streams are simply a subtype of behaviors, the property
of timestep irrelevance does not hold: an event stream, when treated as a
behavior, can be used to determine the length of a timestep. However we can
still approximate Yampa’s semantics if we treat event streams specially.

Type constructors To simulate Yampa’s arrow-based design, we can use
functions over signals. The exact type mappings depend on the expression, but
in general, the signal function type SF (Event a) (Event b) corresponds to
E[a]→ E[b], SF a b corresponds to E[a]×B[a]→ E[b]×B[b] (the meaning of
the tuples being as described in section 3.5.1), etc. The Event a type constructor,
when used alone, corresponds to the type a ∪ {⊥}.

21

arr The function arr f is simulated by the expression (λb. (mape(f)(be), mapb(f)(bb)))
when applied to behaviors. The corresponding construct for event streams, arr
(fmap f), is simply mape(f).

loop The function loop a is simulated by the expression (λe.a (e, fixe (λr. {a (e, r)}2)))
for event streams, where the notation {t}i denotes the ith component of the
tuple t. For behaviors, the same expression appies, with fixe replaced by fixeb,
defined as:

fixeb(f) ≡fixe
(
λe. {f (e, fixb (λb. {f(e, b)}2))}1

)
,

fixb
(
λb. {f (b, fixe (λe. {f(e, b)}1))}2

)
Arrow instance methods Because we are simulating signal functions using
functions, the other arrow instance methods are trivially defined and can be
summarized in the following table:

a > > > b (λs.b (a s))
a < < < b (λs.a (b s))
first a (λ (s1, s2) . (a s1, s2))
second a (λ (s1, s2) . (s1, a s2))
a *** b (λ (s1, s2) . (a s1, b s2))
a &&& b (λs. (a s, b s))
returnA (λs.s)

Basic signal functions The constant identity is simply the identity function,
(λs.s), and the function constant x is simply (λs.returnb(x)).

Initialization The initalization functions make no sense in this embedding,
since they can introduce pointwise discrepancies in behaviors.

never The constant never is simply (λs.zeroe).

now The function now x is simply (λs.returne(x)).

edgeBy The function edgeBy f i can be simulated by the following pseu-
docode.

22

Algorithm 9 edgeBy f i
let b be the signal function input
let e = returne(i)
x
e← be;

y
e← e+ b2e(bb);

if f(x) 6= ⊥ then
returne(f(x))

else
zeroe

end if

All other edge functions are defined in Yampa in terms of edgeBy.

notYet The constant notYet can be simulated by the expression

(λe.joine (returne (zeroe) + mape (returne) (e)))

takeEvents The function takeEvents n can be simulated by the following
pseudocode.

Algorithm 10 takeEvents n
let e be the signal function input
let i = fixb

(
λi.e2b(0)

(
x
e← e; i′ e← b2e(i); i′ + 1

))
x
e← e;

c
e← b2e(i); { c gives count of previous events }

if c < n then
returne(x)

else
zeroe

end if

The constant once is defined in Yampa in terms of takeEvents. The function
dropEvents is defined similarly to takeEvents.

switch The function switch i k can be simulated for event streams by the
following pseudocode.

Algorithm 11 switch i k
let s be the signal function input
let (e, se) = i(s)
joine (mape(k) (oncee(se)) + returne(e))

The algorithm for behavior inputs is similar (see section 3.5.1 for an example).

23

rSwitch The function rSwitch i can be simulated by the expression

(λ(s, sfe).joine (mape (λsf .sf s) (sfe) + returne(sf i)))

for event stream inputs. The algorithm for behavior inputs is similar.

dSwitch and drSwitch The delayed switch functions, when applied to be-
haviors, are not representable in this system, because they would violate the
property of timestep irrelevance. When applied to functions, their definitions are
similar to those of switch and rSwitch, with the addition of a behavior used
as a memory of what the previous switched-in signal is.

kSwitch and dkSwitch Here our system for representing signal functions
breaks down. Because it is not possible to “stop” and “restart” a signal by means
other than through join, we cannot provide the arbitrary signal storage allowed
by the continuations provided in kSwitch and dkSwitch.

Collections Given a collection structure, embedding Yampa’s signal function
collection functions should be possible. However this requires a great deal of
code beyond the scope of this thesis.

hold The function hold i can be simulated by the expression (λe. (e, e2b(i)(e))).

trackAndHold The function trackAndHold i can be simulated by the following
pseudocode.

Algorithm 12 trackAndHold i
Let b be the signal function input. The event stream component of this function
is given by:
x
e← be;

if x 6= ⊥ then
returne(x)

else
zeroe

end if
The behavior component of this function is joinb (e2b(returnb(i))(be)), where
be is given by:
x
e← be;

if x 6= ⊥ then
returne(bb)

else
y
e← b2e(bb) { get the old value of bb }

returne(returnb(y))
end if

24

accumBy The function accumBy f i can be simulated by the following pseu-
docode.

Algorithm 13 accumBy f i
let e be the signal function input
let b = e2b(i)(e′)
x
e← e;

y
e← b2e(b);

returne(f(y)(x))
where e′ is the event stream output from this code, as obtained using the fixe
function.

The function accum i is defined in Yampa in terms of accumBy.

accumFilter The function accumFilter f i can be simulated by the following
pseudocode.

Algorithm 14 accumFilter f i
let e1 be the signal function input
let e = fixe

(
λe′.let b = e2b(i)({e′}2) in x e← e; y e← b2e(b); returne(f(y)(x))

)
x
e← e;

if x 6= ⊥ then
returne(x)

else
zeroe

end if

pre and iPre Yampa’s unit delay operators are not representable in this
system, because they violate the property of timestep irrelevance. However,
they are typically used to break ill-founded behavior loops. This effect can be
achieved by instead using the b2e function. For example, the expression arr f,
normally translated as:

(λb. (mape(f)(be), mapb(f)(bb)))

when written as arr (\b -> f (pre b)), could instead be translated as:(
λb.
(

mape(f)
(
x
e← be; b2e(bb)

)
, mapb(f)(bb)

))
assuming that the function f is concerned only with changes in b.

25

Chapter 4

Conclusion

In this document, we have described the properties of timestep irrelevance and
time invariance which preserve an ideal view of functional reactive systems, while
providing for both efficient verification and implementation. We presented a
small set of primitives sufficient to construct a functional reactive language which
satisfy these and other properties, and prove these claims.

4.1 Future Work
As this thesis simply lays the foundation of a minimal subset of FRP, there are
many ways in which future work can branch from here. These include reduction
of the primitives needed, analyzing fixpoints, and implementation of a system
using the primitives.

4.1.1 Further reductions
During the course of verifying the properties of the above outline set of combi-
nators, the author noticed several other reductions which may be performed:

• returne(x) may be written as b2e(returnb(x))

• returnb(x) may be written as e2b(x)(zeroe)

• joine(ee) could be removed in favor of the simpler joineb(eb) : B[E[α]]→
E[α], and then written as joineb(e2b(zeroe)(ee))

This would reduce the number of necessary combinators from twelve to ten,
and simplify one. Of course, this would result in the specifications of returne
and returnb being overly complicated, and inefficient if used directly in an
implementation.

A different type of simplification, one inspired by Fran [9], would be to
restrict event streams to have at most one occurrence of an event. A “traditional”
multi-event stream of type E[α] could then be represented using this new type

26

0

1

2

3
4 5 6

7

8

9

10
11

0
1
2
3
4
5
6
7
8
9

10
11

Figure 4.1: Two input controls

constructor (let us call it Ė) recursively as Ė[α×E[α]]: that is, a single-event
stream which carries as its value the value of the first occurrence of the multi-
event stream, and a “continuation” multi-event stream containing the rest of the
events.

Most notably, this would greatly simplify the oncee function used repeatedly
in chapter 3.5. It is also possible that this would simplify verification of the
properties of the combinators.

4.1.2 Fixpoints
A recurring theme in FRP seems to be that of fixpoints. Most extant FRP
systems deal with fixpoints by means of a unit delay operator, such as Yampa’s
pre. But, as shown in section 3.5.2, such operators violate the property of
timestep irrelevance. They also cause the computations constructed by the
fixpoints to be potentially non-terminating, which is undesirable in the real-time
environments in which FRP is often intended to be used.

We do not want to disallow fixpoints, because many important constructs
require them. For example, maintaining recurrent state, as with FrTime’s
accum-e function, requires fixpoints, although the use here is well-founded: the
unit delay built into the e2b function ensures this. Furthermore, there are
recurrent equations such as x = x−1 + 1 for which there are mathematical closed
forms which could be determined through some form of analysis.

There is a particularly interesting case of fixpoints which occurs in GUI
systems based on FRP. Consider the GUI in figure 4.1, consisting of two real-
valued inputs. These two widgets could be created by the hypothetical functions
dial and slider, each of type R→ widget ×B[R], taking an initial value and
returning both a widget (to be composed into a larger GUI) and a behavior
representing the widget’s current value.

Consider now the case where we wish to link the two widgets together: a
change in the value of one should be reflected in the other. This problem has
been addressed in the context of declarative web programming by Greenberg [11]
using an idea akin to database lenses. I propose however an alternative solution
which would require no additional constructs beyond those provided by FRP.
We can enhance our widget functions to accept as input a behavior rather than

27

0

1

2

3
4 5 6

7

8

9

10
11

0
1
2
3
4
5
6
7
8
9

10
11

Figure 4.2: Two input/output controls

0

1

2

3
4 5 6

7

8

9

10
11

0
1
2
3
4
5
6
7
8
9

10
11

Figure 4.3: Linked input/output controls

an initial value: B[R]→ widget ×B[R]. Our new dial′ and slider′, instead of
displaying their internal state, display this input behavior. The output behavior
continues to reflect the internal state as before, although is constrained by the
input behavior.

We can recover the original behavior of our unlinked widgets by finding the
fixpoint of dial′ or slider′: by connecting a widget’s output to its own input,
it will display its internal state as expected (see figure 4.2). We can take this a
step further however, by connecting the output of one widget to the input of
the other, and vice-versa (see figure 4.3): the fixpoint of this system would be
the one in which both widgets effectively share the same internal state, thus
acheiving our desired behavior. This can be generalized to any number of linked
widgets by simply connecting them in a loop.

It is important to note that the calculation of this fixpoint is non-trivial:
much program analysis would be required to determine which widget is currently
“driving” the loop. Furthermore, there must be a method provided to the
programmer to initialize the fixpoint loop, since the initial solution would be
otherwise undefined.

28

4.1.3 Implementation
Much focus has been given recently to efficient implementation of FRP sys-
tems. Techniques such as lowering [2] have been developed to perform algebraic
simplification of functional reactive programs, and attention has been given to
eliminating unnecessary updates [8]. Both these problems can be addressed by
the primitives defined in this paper: algebraic simplification can be performed
on FRP expressions by using the monad laws, and the guarantee of timestep
irrelevance allows efficient push-based updates to be used without sacrificing the
abstraction of continuous behaviors (and already has been done in OCaml RT
[16]).

It should also be possible to inhabit the axioms defined in the Coq proofs with
actual implementations. Such an implementation, although potentially inefficient,
could simplify many of the proofs and allow for a reference implementation to
be extracted into another language such as OCaml or Haskell.

4.1.4 Verification framework
During the course of development of this thesis, much work was done on develop-
ing a framework for formal verification of FRP systems, which would allow for the
verification of properties such as that described in section 1.3. The first attempt
was made using Coq as a foundation. We embedded linear temporal logic in
Coq similarly to that shown in section 3.1 (using nat → Prop to represent modal
propositions, etc.), but also provided modal versions of all the Coq built-ins.
This allowed modal formulas to be written in a very natural style in Coq. For
example, the definition of the semantics of the returne operator could be written
simply as:

Definition sem return e(A: Type) := { return e: A -> Mt(E A) |
forall e x, globally valid (M e = return e x =>

eps e = M (Some x) /\ [X] [G] NoEvent(e)) }.

However, this effort was abandoned for two reasons. First, defining modal versions
of all the Coq built-ins became very tedious: there were many special cases
(for example, higher-order functions) which could not be covered by automated
methods. Secondly, many of Coq’s built-in proof tactics became useless due to
the extra hidden λ-abstractions now present in every formula.

Taking into account the awkwardness of parameterizing all expressions by
nat, a second attempt using Coq was made, in which modality was added by
means of the following three axioms:

Axiom M: nat -> Prop -> Prop.
Axiom M sum: forall (j k: nat) (P: Prop), M j (M k P) = M (j+k) P.
Axiom M zero: forall (P: Prop), M 0 P = P.

This definition allowed for LTL formulas still to be represented very naturally, and
for proofs to be carried out without needing to manage λ-abstractions. However,

29

a problem arose when dealing with expressions involving equality. Consider
the expression x = 1 ∧© (x = 2). While this is a valid LTL formula, written
as-is in Coq, this is not valid: the equality x = 1 can be used to rewrite the x
inside of © (x = 2), resulting in the invalid formula © (1 = 2). The solution to
this problem would have been to utilize Coq’s support for user-defined equality
relations, but defining such was outside the scope of this project.

A third attempt was made at constructing a proof obligation generator
for Coq using OCaml. This approach seemed promising, having been used
successfully for verification of Lustre programs [7]. The overall design of the tool
is to take as input a program written using the FRP primitives presented in
section 2.3 and a set of assertions written in FOLTL, and produce as output a
proof obligation in Coq. For example, given the following program which creates
a behavior v counting events on the event stream tick:

v = collect b succ tick 0
tick: { e: E A | [F*] (eps e = ()) }
succ(u: unit)(x: int): { y: int | y = x + 1 }

and assertions stating that v is monotonically increasing:

forall x y: int, [G]((x = beta v /\ [X] (y = beta v)) -> x <= y)
forall x y: int, [F*]((x = beta v /\ [X] (y = beta v)) -> x < y)

the tool would produce as output the following proof obligation in Coq:

(forall j, exists k, k >= j /\ (eps e k = Some ())) ->
(forall u, (eps tick 0 = Some u) ->

exists y, (beta v 0 = y) /\ (y = 0 + 1)) ->
((eps e 0 = None) -> (beta v 0 = 0)) ->
(forall j u, (eps tick (j+1) = Some u) ->

exists x y, (beta v (j+1) = y) /\ (beta v j = x) /\ (y = x + 1)) ->
(forall j, (eps tick (j+1) = None) -> (beta v (j+1) = beta v j)) ->
(forall j x y, (x = beta v j) /\ (y = beta v (j+1)) -> x <= y) /\
(forall j, exists k, k >= j /\

forall x y, (x = beta v k) /\ (y = beta v (k+1)) -> x < y)

A parser and the beginnings of a translator were written, but not enough time
remained to complete work on this tool, so it remains as future work.

30

Bibliography

[1] The Father Time Language (FrTime). http://pre.plt-scheme.org/plt/
collects/frtime/doc.txt.

[2] K. Burchett, G.H. Cooper, and S. Krishnamurthi. Lowering: a static
optimization technique for transparent functional reactivity. Proceedings of
the 2007 ACM SIGPLAN symposium on Partial evaluation and semantics-
based program manipulation, pages 71–80, 2007.

[3] G.H. Cooper. PhD thesis, Brown University. Not yet published.

[4] G.H. Cooper and S. Krishnamurthi. Embedding dynamic dataflow in a
call-by-value language. European Symposium on Programming, 2006.

[5] A. Courtney. Modeling User Interfaces in a Functional Language. PhD
thesis, Yale University, 2004.

[6] The Coq development team. The Coq proof assistant reference manual.
LogiCal Project, 2004. Version 8.0.

[7] C. Dumas and P. Caspi. A PVS proof obligation generator for Lustre
programs. 7th International Conference on Logic for Programming and
Automated Reasoning, 2000.

[8] C. Elliot. Simply efficient functional reactivity. 2008.

[9] C. Elliott and P. Hudak. Functional reactive animation. Proceedings of the
second ACM SIGPLAN international conference on Functional programming,
pages 263–273, 1997.

[10] E.A. Emerson. Temporal and modal logic. Handbook of Theoretical Com-
puter Science, 8:995–1072, 1990.

[11] M. Greenberg. Declarative, composable views, 2007. Undergraduate honors
thesis, Brown University.

[12] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous data
flow programming language LUSTRE. Proceedings of the IEEE, 79(9):1305–
1320, 1991.

31

http://pre.plt-scheme.org/plt/collects/frtime/doc.txt
http://pre.plt-scheme.org/plt/collects/frtime/doc.txt

[13] N. Halbwachs, F. Lagnier, and C. Ratel. Programming and verifying real-
time systems by means of the synchronous data-flow language LUSTRE.
Software Engineering, IEEE Transactions on, 18(9):785–793, 1992.

[14] P. Hudak, A. Courtney, H. Nilsson, and J. Peterson. Arrows, Robots, and
Functional Reactive Programming. Advanced Functional Programming: 4th
International School, Afp 2002, Oxford, Uk, August 19-24, 2002: Revised
Lectures, 2003.

[15] J. Hughes. Generalising monads to arrows. Science of Computer Program-
ming, 37(1-3):67–111, 2000.

[16] C. King. Objective Caml Reactive Toolkit. http://users.wpi.edu/
~squirrel/ocamlrt/.

[17] L. Meyerovich. Flapjax: Functional Reactive Web Programming, 2007.
Undergraduate honors thesis, Brown University.

[18] P. Wadler. Comprehending monads. Proceedings of the 1990 ACM conference
on LISP and functional programming, pages 61–78, 1990.

32

http://users.wpi.edu/~squirrel/ocamlrt/
http://users.wpi.edu/~squirrel/ocamlrt/

Appendix A

Proofs

A.1 Module LTL

Set Implicit Arguments.
Implicit Type P Q R: nat → Prop.

Definition next(A: Type)(x: nat → A) := fun i ⇒ x (S i).
Definition until P Q :=

fun i ⇒ ∃ j, Q (i+j) ∧ ∀ k, k < j → P (i+k).
Definition release P Q :=

fun i ⇒ ∀ j, Q (i+j) ∨ ∃ k, k < j ∧ P (i+k).
Definition finally P := fun i ⇒ ∃ j, P (i+j).
Definition globally P := fun i ⇒ ∀ j, P (i+j).
Definition infinitely often P := globally (finally P).
Definition almost everywhere P := finally (globally P).
Definition wuntil P Q := fun i ⇒ until P Q i ∨ globally P i.
Definition srelease P Q := fun i ⇒ release P Q i ∧ finally P i.

A.2 Module FRP

Set Implicit Arguments.
Implicit Type A B C : Set.
Implicit Type i j k: nat.

Require Import LTL.

Axiom ev beh: Set → Set.
Axiom eps: ∀ A, ev A → nat → option A.
Axiom beta: ∀ A, beh A → nat → A.

Definition NoEvent A (e: ev A) := fun i ⇒ eps e i = None.
Definition SomeEvent A (e: ev A) := fun i ⇒ ∃ x, eps e i = Some x.

Axiom return e: ∀ A, nat → A → ev A.

33

Axiom return e sem 0: ∀ A i (x: A),
let e := return e i x in
eps e i = Some x.

Axiom return e sem n: ∀ A i (x: A),
let e := return e i x in
next (globally (NoEvent e)) i.

Axiom map e: ∀ A B, (nat → A → B) → nat → ev A → ev B.
Axiom map e sem: ∀ A B (f : nat → A → B) i e1,

let e := map e f i e1 in
globally (fun i ⇒ eps e i = option map (f i) (eps e1 i)) i.

Axiom zero e: ∀ A, nat → ev A.
Implicit Arguments zero e [A].
Axiom zero e sem: ∀ A i,

let e: ev A := zero e i in
globally (NoEvent e) i.

Axiom plus e: ∀ A, nat → ev A → ev A → ev A.
Axiom plus e sem: ∀ A i (e1 e2: ev A),

let e := plus e i e1 e2 in
globally (fun i ⇒ IF NoEvent e1 i then eps e i = eps e2 i else eps e i = eps

e1 i) i.

Axiom join e: ∀ A, nat → ev (ev A) → ev A.
Axiom join e sem: ∀ A i (ee: ev (ev A)),

let e := join e i ee in
wuntil (NoEvent e) (SomeEvent ee) i ∧
(∀ e1: ev A, globally (fun i ⇒ (eps ee i = Some e1) →
release (next (SomeEvent ee)) (fun i ⇒ eps e i = eps e1 i) i) i).

Axiom fix e: ∀ A, (nat → ev A → ev A) → nat → ev A.
Axiom fix e sem: ∀ A (f : nat → ev A → ev A) i,

let e := fix e f i in
globally (fun i ⇒ eps e i = eps (f i e) i) i.

Axiom return b: ∀ A, nat → A → beh A.
Axiom return b sem: ∀ A i (x: A),

let b := return b i x in
globally (fun i ⇒ beta b i = x) i.

Axiom map b: ∀ A B, (A → B) → nat → beh A → beh B.
Axiom map b sem: ∀ A B (f : A → B) i b1,

let b := map b f i b1 in
globally (fun i ⇒ beta b i = f (beta b1 i)) i.

Axiom join b: ∀ A, nat → beh (beh A) → beh A.
Axiom join b sem: ∀ A i (bb: beh (beh A)),

let b := join b i bb in
globally (fun i ⇒ beta b i = beta (beta bb i) i) i.

34

Axiom fix b: ∀ A, (beh A → beh A) → nat → beh A.
Axiom fix b sem: ∀ A (f : beh A → beh A) i,

let b := fix b f i in
globally (fun i ⇒ beta b i = beta (f b) i) i.

A.3 Module FRP facts

Set Implicit Arguments.
Implicit Type A B C : Set.
Implicit Type i j k: nat.

Require Import Arith.
Require Import LTL FRP.

Theorem ev dec: ∀ A (e: ev A) i, {SomeEvent e i}+{NoEvent e i}.
Proof.
intros A e i. unfold SomeEvent, NoEvent. destruct (eps e i).
left. ∃ a. reflexivity.
right. reflexivity.

Qed.

Lemma le minus O: ∀ n m, n ≤ m → n - m = O.
Proof.
intros n m Hnm. assert ({n < m}+{n = m}) as H.
apply le lt eq dec. assumption.

destruct H as [H | H].
apply not le minus 0. apply lt not le. assumption.
subst m. symmetry. apply minus n n.

Qed.

Section first event.

Variable A: Set.
Variable e: ev A.
Variables i j : nat.
Variable Hj : SomeEvent e (i + j).

Program Fixpoint find first event (k: { k | ∀ k’, k’ < j - k → NoEvent e (i +
k’)}) {measure proj1 sig k}:

{ f | f ≤ j ∧ SomeEvent e (i + f) ∧ ∀ k, k < f → NoEvent e (i + k) } :=
match eps e (i + (j - k)) with
| Some x ⇒ j - k
| None ⇒
match k with
| S k’ ⇒ find first event k’
| O ⇒ j
end

end.

35

Next Obligation.
Proof.
split.
apply le minus.
split.
unfold SomeEvent, NoEvent. replace (eps e (i + (j - k))) with (Some x).

∃ x. reflexivity.
assumption.

Qed.
Next Obligation.
Proof.
assert ({k’0 < j - S k’}+{k’0 = j - S k’}) as Hjk’0.
destruct j as [| n].
elimtype False. apply (lt n O k’0). assumption.
simpl. assert ({k’0 < n - k’}+{k’0 = n - k’}).
apply le lt eq dec. apply lt n Sm le. assert ({k’ ≤ n}+{n < k’}) by

apply le lt dec.
decompose sum H1.
rewrite minus Sn m. assumption.
assumption.

rewrite minus Sn m. assumption. assert (S n - k’ = 0).
apply le minus O. apply lt le S. assumption.

replace (S n - k’) with 0 in ×. elimtype False. apply (lt n O k’0).
assumption.

assumption.
destruct Hjk’0 as [Hjk’0 | Hjk’0].
auto.
subst k’0. unfold NoEvent. symmetry. assumption.

Qed.
Next Obligation.
Proof.
rewrite ← minus n O in ×. auto.

Qed.

Program Let first event sig := find first event j.
Next Obligation.
Proof.
rewrite ← minus n n in ×. elimtype False. apply (lt n O k’). assumption.

Qed.

Program Theorem first event dec:
∃ f, f ≤ j ∧ SomeEvent e (i + f) ∧ ∀ k, k < f→ NoEvent e (i + k).

Proof.
destruct first event sig as [k H]. ∃ k. assumption.

Qed.

End first event.

36

A.4 Module monad laws

Set Implicit Arguments.
Implicit Type A B C : Set.
Implicit Type i j k: nat.

Require Import Arith.
Require Import LTL FRP FRP facts.

Notation "f @ g" := (fun x ⇒ f (g x))
(at level 97, left associativity).

Notation "e1 %= e2" := (globally (fun i ⇒ eps e1 i = eps e2 i))
(at level 70, no associativity).

Notation "b1 @= b2" := (globally (fun i ⇒ beta b1 i = beta b2 i))
(at level 70, no associativity).

Ltac rewrite e :=
repeat (
rewrite return e sem 0 in × || rewrite return e sem n in × ||
rewrite map e sem in × || rewrite join e sem in *).

Ltac rewrite b :=
repeat (
rewrite return b sem in × || rewrite map b sem in × || rewrite join b sem

in *).

Theorem M1e: ∀ A e1 i,
(map e (fun i (x: A) ⇒ x) i e1 %= (fun x ⇒ x) e1) i.

Proof.
intros A e1 i j. rewrite e. destruct (eps e1 (i+j)); reflexivity.

Qed.

Theorem M2e: ∀ A B C (f : nat → B → C) (g: nat → A → B) e1 i,
(map e (fun i ⇒ f i @ g i) i e1 %= (map e f i @ map e g i) e1) i.

Proof.
intros A B C f g e1 i j. rewrite e. destruct (eps e1 (i+j)); reflexivity.

Qed.

Theorem M3e: ∀ A B (f : nat → A → B) x i,
((map e f i @ return e i) x %= (return e i @ f i) x) i.

Proof.
intros A B f x i j.
rewrite e. destruct j ;
[rewrite plus 0 r | rewrite <- plus Snm nSm]; rewrite e; reflexivity.

Qed.

Theorem M5e: ∀ A (e: ev A) i,
((join e i @ return e i) e %= (fun e ⇒ e) e) i.

Proof.
intros A e i j.

37

pose (He := join e sem i (return e i e)).
destruct He as [Her]. pose (Her ej := Her e 0). rewrite ← plus n O in

Her ej.
rewrite e. assert (Some e = Some e) as H1 by reflexivity. pose (H2 := Her ej

H1).
destruct (H2 j) as [H3 | H3].
assumption.
destruct H3 as [k [[x H3]]]. pose (H4 := return e sem n i e k).
unfold SomeEvent in H3. unfold NoEvent in H4.
rewrite plus Sn m in H4. rewrite H3 in H4.
elimtype False. cut (Some x = None). discriminate. assumption.

Qed.

Theorem M6e: ∀ A (e: ev A) i,
((join e i @ map e (@return e A) i) e %= (fun e ⇒ e) e) i.

Proof.
intros A e i j.
pose (Hjoin := join e sem i (map e (return e (A:=A)) i e)).
destruct Hjoin as [Hjoinl Hjoinr]. destruct Hjoinl as [Hjoinl | Hjoinl].
destruct Hjoinl as [k [Hjoinll Hjoinlr]].
pose (Hfirst := first event dec i k Hjoinll).
destruct Hfirst as [f [Hfirst1 [Hfirst2 Hfirst3]]].
destruct (le lt eq dec f k Hfirst1) as [Hfk | Hfk].
pose (H1 := Hjoinlr f Hfk).
unfold SomeEvent in Hfirst2.
destruct Hfirst2 as [e1 Hfirst2].
pose (H := Hjoinr Hfirst2).
unfold globally in Hjoinr.

unfold SomeEvent, NoEvent in ×. rewrite map e sem in Hjoinll, Hfirst2.

unfold SomeEvent, NoEvent in Hjoinll. rewrite map e sem in Hjoinll.
assert ({j < k}+{j = k}+{k < j}) as Hjk by apply lt eq lt dec.
decompose sum Hjk.
rewrite Hjoinlr.
destruct (eps e (i + j)).

pose (Hmap := map e sem (return e (A:=A)) i e j). simpl in Hmap.
assert ({NoEvent e (i + j)}+{SomeEvent e (i + j)}) as H1 by apply ev dec.
unfold SomeEvent, NoEvent in H1. destruct H1 as [H1 | H1].
rewrite H1 in ×. simpl in Hmap.
unfold globally in Hjoinr. destruct (eps e (i + j)).

Theorem M4e: ∀ A B (f : nat → A → B) ee i,
((map e f i @ join e i) ee %= (join e i @ map e (map e f) i) ee) i.

Proof.
intros A B f ee i j.
rewrite e.

38

assert (∀ k, SomeEvent ee (i+k)↔ SomeEvent (map e (map e f) i ee) (i+k))
as Hsync.

intro k. unfold SomeEvent, NoEvent. rewrite e. destruct (eps ee (i+k)).
split; intros; discriminate.
split; auto.

pose (Hee := join e sem i ee).
pose (Hmap := join e sem i (map e (map e f) i ee)).
destruct Hee as [Heel Heer]. destruct Hmap as [Hmapl Hmapr].
destruct Heel as [Heel | Heel]; destruct Hmapl as [Hmapl | Hmapl].
destruct Heel as [k Heel]. destruct Hmapl as [k’ Hmapl].
assert ({k < k’}+{k = k’}+{k’ < k}) as Hkk’ by apply lt eq lt dec.
decompose sum Hkk’.
destruct Heel as [H1]. destruct Hmapl as [H2 H3].
destruct (Hsync k) as [H3]. absurd (NoEvent (map e (map e f) i ee)

(i + k)).
apply H3. assumption.
apply H2.

assert ({j < k}+{j = k}+{k < j}) as Hjk by apply lt eq lt dec.
decompose sum Hjk.
destruct Heel as [H1]. destruct Hmapl as [H2].

rewrite Heel. simpl.
destruct Hmapl as [Hmapl | Hmapl].
destruct Hmapl as [k [Hmapll Hmaplr]].
assert ({j < k}+{j = k}+{k < j}) as H1 by apply lt eq lt dec.
decompose sum H1.
rewrite Hmaplr. reflexivity. assumption.
assert (∃ e1, eps (map e (map e f) i ee) (i+k) = Some e1) as H2.
destruct (eps (map e (map e f) i ee) (i+k)).
∃ e. reflexivity.
contradiction Hmapll. reflexivity.

subst k. destruct H2 as [e1 H2]. pose (H3 := Hmapr e1 j H2).
destruct (H3 0) as [H4 | H4]. rewrite plus 0 r in H4. rewrite H4.

unfold globally in Hmapr. pose (H2 := Hmapr
assert ({j < k}+{j = k}+{k < j}) as H1 by apply lt eq lt dec.

rewrite Hmapl. reflexivity.

destruct Heel as [k [Heell Heelr]].

destruct (eps ee i).
rewrite (map e sem f).*)
Theorem M1b: ∀ A b1 i,
(map b (fun (x: A) ⇒ x) i b1 @= (fun x ⇒ x) b1) i.

Proof. intros A b1 i j. rewrite b. reflexivity. Qed.

Theorem M2b: ∀ A B C (f : B → C) (g: A → B) b1 i,
(map b (f @ g) i b1 @= (map b f i @ map b g i) b1) i.

39

Proof. intros A B C f g b1 i j. rewrite b. reflexivity. Qed.

Theorem M3b: ∀ A B (f : A → B) x i,
((map b f i @ return b i) x @= (return b i @ f) x) i.

Proof. intros A B f x i j. rewrite b. reflexivity. Qed.

Theorem M4b: ∀ A B (f : A → B) bb i,
((map b f i @ join b i) bb @= (join b i @ map b (map b f i) i) bb) i.

Proof. intros A B f bb i j. rewrite b. reflexivity. Qed.

Theorem M5b: ∀ A (b: beh A) i,
((join b i @ return b i) b @= (fun b ⇒ b) b) i.

Proof. intros A b i j. rewrite b. reflexivity. Qed.

Theorem M6b: ∀ A (b: beh A) i,
((join b i @ map b (return b i) i) b @= (fun b ⇒ b) b) i.

Proof. intros A b i j. rewrite b. reflexivity. Qed.

Theorem M7b: ∀ A (bbb: beh (beh (beh A))) i,
((join b i @ map b (join b i) i) bbb @= (join b i @ join b i) bbb) i.

Proof. intros A b i j. rewrite b. reflexivity. Qed.

A.5 Module time invariance

Set Implicit Arguments.
Implicit Type A B C : Set.
Implicit Type i j k: nat.

Require Import Arith.
Require Import LTL FRP FRP facts.

Notation "f @ g" := (fun x ⇒ f (g x))
(at level 97, left associativity).

Notation "e1 %= e2" := (globally (fun i ⇒ eps e1 i = eps e2 i))
(at level 70, no associativity).

Notation "b1 @= b2" := (globally (fun i ⇒ beta b1 i = beta b2 i))
(at level 70, no associativity).

Ltac rewrite e :=
repeat (
rewrite return e sem 0 in × || rewrite return e sem n in × ||
rewrite zero e sem in × || rewrite plus e sem in × ||
rewrite map e sem in × || rewrite join e sem in *).

Ltac rewrite b :=
repeat (
rewrite return b sem in × || rewrite map b sem in × || rewrite join b sem

in *).

Axiom shift e: ∀ A, nat → ev A → ev A.

40

Axiom eps shift: ∀ A i j (e: ev A), eps (shift e i e) (i + j) = eps e j.
Axiom shift b: ∀ A, nat → beh A → beh A.
Axiom beta shift: ∀ A i j (b: beh A), beta (shift b i b) (i + j) = beta b j.

Theorem return e ti:
∀ A (x: A) e, (e %= return e 0 x) 0 →
∀ i, (shift e i e %= return e i x) i.

Proof.
intros A x e H1 i j. rewrite eps shift. unfold globally in H1.
destruct j.
rewrite ← plus n O. pose (H10 := H1 0).
simpl in H10. rewrite H10. rewrite e. reflexivity.

pose (Hri := return e sem n i x).
rewrite ← plus n Sm. rewrite ← plus Sn m. rewrite Hri.
pose (H1Sj := H1 (S j)). simpl in H1Sj. rewrite H1Sj.
pose (Hr0 := return e sem n 0 x j). simpl in Hr0. rewrite Hr0. reflexivity.

Qed.

Theorem map e ti:
∀ A B (f : nat → A → B) e1 e, (e %= map e f 0 e1) 0 →
∀ i, (shift e i e %= map e (fun j ⇒ f (j - i)) i (shift e i e1)) i.

Proof.
intros A B f e1 e H1 i j. unfold globally in H1.
rewrite e. repeat rewrite eps shift. rewrite minus plus.
pose (H1j := H1 j). rewrite e. simpl in H1j. rewrite H1j. reflexivity.

Qed.

Theorem zero e ti:
∀ A (e: ev A), (e %= zero e 0) 0 →
∀ i, (shift e i e %= zero e i) i.

Proof.
intros A e H1 i j. unfold globally in H1. rewrite eps shift.
pose (H1j := H1 j). rewrite e. simpl in H1j. rewrite H1j. reflexivity.

Qed.

Theorem lplus e ti:
∀ A (e1: ev A) e2 e, (e %= plus e 0 e1 e2) 0 →
∀ i, (shift e i e %= plus e i (shift e i e1) (shift e i e2)) i.

Proof.
intros A e1 e2 e H1 i j. unfold globally in H1. rewrite eps shift.
pose (H1j := H1 j). simpl in H1j.
pose (Hp0 := plus e sem 0 e1 e2 j).
pose (Hpi := plus e sem i (shift e i e1) (shift e i e2) j).
unfold NoEvent in Hp0, Hpi. repeat rewrite eps shift in Hpi. simpl in Hp0.
unfold IF then else in ×.
assert ({SomeEvent e1 j}+{NoEvent e1 j}) as He1 by apply ev dec.
destruct He1 as [He1 | He1]; destruct Hp0 as [Hp0 | Hp0]; destruct Hpi as [Hpi

| Hpi].

41

destruct He1 as [x He1]. rewrite He1 in Hp0. destruct Hp0. discriminate.
destruct He1 as [x He1]. rewrite He1 in Hp0. destruct Hp0. discriminate.
destruct He1 as [x He1]. rewrite He1 in Hpi. destruct Hpi. discriminate.
destruct Hpi as [Hpi]. rewrite Hpi. rewrite H1j. destruct Hp0 as [Hp0].

rewrite Hp0. reflexivity.
destruct Hpi as [Hpi]. rewrite Hpi. rewrite H1j. destruct Hp0 as [Hp0].

rewrite Hp0. reflexivity.
unfold NoEvent in He1. rewrite He1 in Hpi. destruct Hpi as [Hpi]. elimtype

False. apply Hpi. reflexivity.
unfold NoEvent in He1. rewrite He1 in Hp0. destruct Hp0 as [Hp0].

elimtype False. apply Hp0. reflexivity.
unfold NoEvent in He1. rewrite He1 in Hp0. destruct Hp0 as [Hp0].

elimtype False. apply Hp0. reflexivity.
Qed.

Theorem return b ti:
∀ A (x: A) b, (b @= return b 0 x) 0 →
∀ i, (shift b i b @= return b i x) i.

Proof.
intros A x b H1 i j. pose (H1j := H1 j). cbv beta in H1j.
rewrite beta shift. rewrite b. assumption.

Qed.

Theorem map b ti:
∀ A B (f : A → B) b1 b, (b @= map b f 0 b1) 0 →
∀ i, (shift b i b @= map b f i (shift b i b1)) i.

Proof.
intros A B f b1 b H1 i j. pose (H1j := H1 j). cbv beta in H1j.
rewrite b. repeat rewrite beta shift. assumption.

Qed.

Theorem join b ti:
∀ A (bb: beh (beh A)) b, (b @= join b 0 bb) 0 →
∀ i, (shift b i b @= join b i (shift b i bb)) i.

Proof.
intros A bb b H1 i j. pose (H1j := H1 j). cbv beta in H1j.
rewrite b. repeat rewrite beta shift. assumption.

Qed.

42

	Introduction
	Overview of FRP
	Example
	FRP styles
	Comparison with synchronous dataflow
	Properties

	Verification
	Goals

	Syntax and Semantics
	FOLTL
	Monads
	Primitives
	Data types
	Event stream functions
	Behavior functions
	Conversion functions

	Proofs of properties
	Coq
	Monad laws
	Timestep irrelevance
	Time invariance
	Embedding of other FRP systems
	FrTime
	Yampa

	Conclusion
	Future Work
	Further reductions
	Fixpoints
	Implementation
	Verification framework

	Proofs
	Module LTL
	Module FRP
	Module FRP_facts
	Module monad_laws
	Module time_invariance

