
RealTime Feedback in Coding Games
Major Qualifying Project

Written By:

JOHN AMARAL
SHUXING LI

GRACE PELELLA

Advisors:

LANE HARRISON
CHARLIE ROBERTS

A Major Qualifying Project
WORCESTER POLYTECHNIC INSTITUTE

Submitted to the Faculty of the Worcester Polytechnic
Institute in partial fulfillment of the requirements for the

Degree of Bachelor of Science in Computer Science.

AUGUST 22, 2019 - MAY 13, 2020

ABSTRACT

V isual feedback in the space of interactive media can give users more insight into the
execution of a program. This paper discusses the implications and results of incorporating
visual annotations into both programming environments and computer games and how

it affects the user experience. We combined both of these spaces and developed a coding-based
resource-management game and used playtesting feedback to analyze the impact of the visuals
on a user’s performance in the game. The collected data shows that in general, the introduction
of visuals assists players in making more well-informed decisions within a time limit. Based on
these gathered results, there is clearly a lot of undiscovered potential for visual annotations in
both coding and gaming to provide more informative experiences.

i

TABLE OF CONTENTS

Page

List of Figures iv

Executive Summary 1

1 Introduction 7

2 Background 12
2.1 Understanding Programming . 12

2.2 Annotations . 15

2.3 Real-time Feedback . 17

2.4 Simulation and Resource-Management Games . 19

2.4.1 Universal Paperclips . 19

2.4.2 Suspended . 20

2.4.3 Reigns . 21

2.5 Educational Coding Games . 22

2.5.1 CodinGame . 22

2.5.2 Swift Playgrounds . 23

2.5.3 Kodu Game Lab . 25

3 Methodology 27
3.1 Brainstorming . 28

3.2 Design . 30

3.3 Implementation . 34

3.4 Testing . 38

3.4.1 Setup . 39

3.4.2 Procedure . 39

3.4.3 Data Collection . 39

4 Results 41

5 Discussion and Conclusions 54

ii

TABLE OF CONTENTS

5.1 Discussion . 54

5.2 Recommendations . 60

5.3 Summary . 63

Appendix A: Survey Questions i

Appendix B: Study Protocols vii

Appendix C: Informed Consent Form xi

Appendix D: Crowdsourcing xvi

Bibliography xx

iii

LIST OF FIGURES

FIGURE Page
0.1 Screenshot from the Impromptu IDE, where simplistic visuals such as the timer

clearly indicate the state of the code to the programmer [1]. 2

0.2 Screenshot from the Universal Paperclips game, where resource management is made

easier with simple visual elements and separation of the layout design [2]. 3

0.3 Portion of one of our final design mockups with some examples of code that players

could write and visual elements they could utilize. 4

0.4 Screenshot from the final version of Coding Through the Ages. 5

1.1 An example of visuals that can show both the data and state of execution within a

program.Click here for the full video [3]. 8

1.2 A screenshot of code we wrote within the Webstorm IDE, with some color coding [4]. . 8

1.3 A screenshot of Gibber playing a song, with visuals to indicate the change in musical

data [4]. 9

1.4 One of the many decisions to make in Reigns, highlighting the simplistic but clear

visual design [5]. 10

2.1 A simple program that shows the output of each scaling and rotation on the shape on

the right [3]. 13

2.2 Multiple examples of different in situ visualizations [6]. 14

2.3 Visual representation of sounds as flashing boxes [4]. 16

2.4 LightTable’s inline annotations [7]. 17

2.5 The timer icon in the Impromptu heads-up display [8]. 18

2.6 The Paperclip game gets more complicated with multiple different components to

manage over time [2]. 20

2.7 The interactive console window of Suspended [9]. 21

2.8 The interface for making decisions and changing statistics in Reigns [5]. 22

2.9 One of the first JavaScript coding tutorials in CodinGame [10]. 23

2.10 The simple gem-collecting game Swift Playground offers in its tutorials [11]. 24

2.11 An example of using Swift Playground to experiment with visual design [11]. 25

2.12 The very simple visual programming UI of Kodu Game Labs [12]. 26

iv

LIST OF FIGURES

3.1 Early ideas of some of the major mechanics for our coding-based game. 29

3.2 Early ideas on arranging the elements of the coding-based game. 30

3.3 First iteration, emphasizing visuals and separation of components. 31

3.4 Constantly showing relevant statistics, history and multiple automation slots. 32

3.5 An early design of a pure coding editor layout. 33

3.6 A more finalized design with all functionalities in one window. 35

3.7 The vertical bar and timer inline visuals within the context of the game. 36

3.8 Screenshot of part of the tutorial, which introduces basic mechanics and story. 37

3.9 Sparklines for each statistic shown inline next to the bar visuals. 37

3.10 Screenshot of the final version of our game, Coding Through the Ages. 38

4.1 Box-and-whisker plot showing general distribution of hunger values at the end of each

age. Notice how the distribution remains roughly the same size throughout all of the

ages (D3). 42

4.2 Box-and-whisker plot showing general distribution of population values at the end of

each age. It is interesting to note that the distribution grows in size with each passing

age (D3). 43

4.3 Box-and-whisker plot showing general distribution of military values at the end of

each age. The number of outliers for the military values by the end of the final age is

especially interesting (D3). 44

4.4 Box-and-whisker plot showing general distribution of science values at the end of each

age. Notice how the recorded science values slowly max out with each successive age

(D3). 45

4.5 Box-and-whisker plot showing general distribution of security values at the end of

each age. Although not the best plot for the discrete security values, it is still possible

to see that security was kept on the higher end by most players (D3). 46

4.6 Pie chart detailing the amount of familiarity players had with visuals in programming.

More than 90% of the players had at least some experience. 47

4.7 Bar graph of player’s feedback on whether they could understand their decisions and

resulting consequences clearly. Only 22.3% of the players had trouble understanding

the results,and half of them seemed to understand their impact clearly. 48

4.8 Bar chart showing whether players used past decisions to influence their current

choice. More than 50% of the players never looked into the past. 48

4.9 Pie chart of player’s self evaluation on their reading speed. One-third of the players

claimed to have slow reading skills, while the rest claimed to have average-to-above

reading speed. 49

4.10 Bar chart showing player feedback on whether they had enough time to complete

different tasks during the course of the game The results were pretty evenly split,

with some players being more comfortable with the amount of time than others. . . . 50

v

LIST OF FIGURES

4.11 Event graph showcasing when decisions were made by different playtesters on their

last playthrough of the game (D3). To view the graph in a bigger window with full

interactivity, click here. 51

4.12 Zoom in of the event graph hovering over a specific decision, revealing the age, time,

and some of the statistic values recorded (D3). 51

4.13 Comparison from the event graph between playtester 8 and playtester 9’s time spent

making decisions. Pay particular attention to the large gaps in time found in playtester

9’s data (D3). 52

4.14 Close up of the event graph showing the last runs of both playtesters 2 and 3. Inter-

estingly, they both received a game over after finishing the first age (D3). 52

4.15 Playtester 0, a player who went out of curiosity and automated the choose() function.

The game ended in less than 30 seconds, and all statistics stacked upon each other (D3). 53

5.1 The hunger bar was intentionally designed to keep players’ attention the most out of

any statistics, as it was the first bar in the visual and also colored a deep red. 55

5.2 An example of an option where science would increase by a lot by military and

population would not, which could have biased recorded science values due to less

balancing in the game. 55

5.3 An in-game scenario that we noticed many times during playtesting, where a user

would instinctively use the secure() command right after seeing the blue text appear. 56

5.4 As is clearly (or rather not so clearly) illustrated, the sparklines are quite small

compared to other components in the game, which may have led players to overlook

them. 57

5.5 An in-game example of the change indicators appearing when typing the choose()

command with an option specified. Notice how the white indicator lines somewhat

blend with the bars and can be quite difficult to discern. 57

5.6 An example scenario within the game where a player could be getting used to the

automate() function and experimenting with its capabilities and not paying attention

to their hunger. 59

5.7 Diagram showing an example of branching story paths based on the decisions made

by a player. 60

5.8 Very simple diagram of ways to make different versions of our game in an experimental

procedure. 61

5.9 Example of possibly including parsing prompts to make decisions. In this case, the

player could look for a word such as “hunt” to make decisions based on increasing food. 61

10 An example screenshot from Amazon Mechanical Turk [13]. xvii

11 An example of one of Heer and Bostock’s experiments where different screen webpage

layouts were tested [13]. xviii

vi

https://realtimefeedbackmqp2019.github.io/mqp-results/

LIST OF FIGURES

12 A sample screenshot from Prolific [14]. xix

vii

EXECUTIVE SUMMARY

User experiences are shaped by the intentional design of a program and how well it com-

municates its current state to the user. This applies to almost any form of media, and it is

especially characteristic of programs such as coding environments and computer games. For a

programmer, it can be very challenging to understand the execution of written code without any

sort of immediate feedback. As a gamer, having the ability to respond to in-game events and

complete multiple different tasks within a relatively short time frame is often a requirement to

progress in the game. In either case, some intermediary between the program and the user is

needed to provide more context and allow the user to interact with the program on a deeper level.

One simple and effective way to maintain communication and flow between man and machine is

with the use of visual feedback.

The intention of these visuals is to aid the user in better understanding the software they are

working with. They can be found in all different shapes, sizes, and colors, which usually depends

on their functionality. Some can be complex graphs that reveal patterns and metrics within the

program’s data, while others are as simple as small dots or color coding alert the user to when

changes are occurring. No matter what form they take, all of these visuals give the user greater

insight into the inner workings of the program they are utilizing.

During our background research, we discovered many examples of these types of visuals. We

found that in the programming space specifically, visual annotations strike a balance between

the state of the world and the state of the code. In other words, these visuals clearly communicate

how each line of code is executed and how program data is manipulated while also keeping

the programmer informed of the program’s effects on real-world resources such as time and

memory. Figure 0.1 below exemplifies just one scenario of coding visuals from the Impromptu

programming environment [1]. In this specific example, the circular visual in-line with the

function definition (“define qc-bot”) represents the time left in executing that specific line of code.

1

LIST OF FIGURES

Figure 0.1: Screenshot from the Impromptu IDE, where simplistic visuals such as the timer
clearly indicate the state of the code to the programmer [1].

We also found several examples of visual feedback being used to provide a better gameplay

experience for players. Video games typically put a lot of effort in designing their interface to

ensure players have enough information to succeed in playing the game, and oftentimes this is

done with simple visual indicators representing changes in the data within the game. This is

especially the case with resource-management games, where several different statistics need

to be managed at once. One great example, although the visuals are not too complicated, is in

Figure 0.2 below with the browser game Universal Paperclips [2]. The game introduces assets

to manage one at a time in their own separate areas of the computer screen to not overwhelm the

player. Although the visual feedback is not as apparent as the previous example, each resource is

clearly distinguishable from the others due to carefully-crafted layouts and visual elements that

make each component distinct.

2

LIST OF FIGURES

Figure 0.2: Screenshot from the Universal Paperclips game, where resource management is made
easier with simple visual elements and separation of the layout design [2].

For this MQP, our goal was to develop a programming-based computer game that took

advantage of the capabilities of visual feedback by supplying the player with enough knowledge

to make decisions and manage time efficiently. Our general process flow followed these four main

steps:

1. Brainstorming game mechanics that took advantage of inline visual annotations

2. Designing several screen layouts to maximize visual communication

3. Developing the game in code and implementing visual elements

4. Testing gameplay and the effects of visuals on players for data analysis

We devoted a lot of time early on to thinking about different potential concepts for our coding-

based game and how visual feedback could be tied to gameplay. We eventually came up with the

idea of having several statistics (hunger, food, security, population, military, and science) to keep

track of, and prompts within the game would force players to choose between two options that

each affected the statistics differently. The prompt structure allowed us to envelop the player in a

narrative about traveling through time and needing to balance resources using visuals elements

presented within a computer terminal.

3

LIST OF FIGURES

We spent a considerable amount of time designing several possible screen layouts and

iteratively improving them to match our game mechanics and goals. As we got closer to finalizing

our design for the game, all of the elements became more compact until all of the player action

took place within one window in an online browser. This constrained our visual design to small

annotations in-line with the code that users typed, which better aligned with the previous

research we conducted and also with our project guidelines. Figure 0.3 below shows a design

mockup with some examples of inline visuals we considered. The bar graphs representing each

statistic value did make it into the final game, whereas the timer icon next to the first line was

changed to be a bar scrolling from right to left.

Figure 0.3: Portion of one of our final design mockups with some examples of code that players
could write and visual elements they could utilize.

When we were ready, we began official development of the game. The game was coded in

JavaScript and utilized a library called CodeMirror [15] that lets users enter lines of code in a

webpage as if they were using an actual programming environment. We implemented different

commands, such as choose() to decide on an option in response to a prompt, eat() to deplete some

food but increase your hunger, and secure() to increase your security when prompted to do so. The

most complicated but experimental mechanic we introduced was the automate() command, which

let users write their own functions that updated with each frame of the game. This allowed them

to automate processes that would otherwise require their attention to execute manually. With

all of these additions, the resource and time-management coding-based text adventure Coding

Through the Ages was born! Figure 0.4 below shows a screenshot from the final version of the

game.

4

LIST OF FIGURES

Figure 0.4: Screenshot from the final version of Coding Through the Ages.

In the back-end of the game, we recorded gameplay data such as statistic values and time

at each decision for any run-through of the game and stored it using Firebase. This was set up

for the purpose of playtesting, where we set up Zoom sessions with 18 different players and had

them try Coding Through the Ages. We kept track of all of their gameplay data, wrote down their

immediate reactions to game elements using think-aloud note-taking techniques, and collected

their opinions in a brief survey at the end of the game. As compensation for testing, each one of

them received a $10 Amazon eGift card. More details on playtesting can be found in the survey

questions, study protocols, and informed consent form in Appendices A, B, and C respectively.

From all the data we collected, we were able to perform data analysis and draw general

conclusions about the game based on graphs we made (some using the D3 JavaScript library,

which can be found here, and others from the Google forms survey) and the survey responses we

gathered. We found that the vast majority of players had trouble in the first few stages of the

game and generally tended to lose during their first run. However, players overall got better and

better with each playthrough, and most of them managed to finish by the end of their playtesting

sessions. We did notice as players went through the game that some of the prompts appeared to

be poorly balanced based on results of certain decisions made by the players, especially regarding

changing the population or science statistics.

Based on observation of the players and their statistics over time, we believe that the bar

chart, the timer visual, and the highlighted text were extremely effective in communicating the

changes in game data to the player. However, other visuals such as the sparklines and value

change indicator were rarely used by the players and did not seem effective in helping the players

5

https://realtimefeedbackmqp2019.github.io/mqp-results/

LIST OF FIGURES

make decisions. Some players made decisions based on their interpretation of the prompt while

others attempted to speed their way through the game by choosing seemingly-random options,

and players who took more time to read prompts tended to have more trouble completing the

game in the amount of time allotted than those who self-evaluated as a fast reader.

Using valuable feedback from the players and some features we had to cut due to time

constraints for the project, we drafted out some future directions to take the game in. We would

like to expand upon the automation functions to make them a more user-friendly tool that

the players can experiment with, such as by allowing the players to parse prompts and make

decisions automatically based on the parsing results, or giving players the ability to create their

own variables. Another potential idea would be to make the coding experience in the game more

like an actual command line with options such as hitting the up arrow instead of re-entering

previously-entered commands and having a cheat table as a sort of command API to remind

players about specific mechanics without using the man() command. Finally, one aspect we

wanted to include but did not have enough time for was having a branching narrative, where

different decisions players made would lead them to completely different prompts than other

players. All of these additions to Coding Through the Ages would make it an even more unique

coding and gameplay experience.

Overall, we are extremely satisfied with how Coding Through the Ages turned out. According

to our testers, it managed to be a fun coding-based game with visuals that clearly showed the

current state of the game and led to better informed decisions being made. Although plenty of

additional features could be introduced to improve the experience, we feel that we adequately

met our project goals, and we hope that maybe someday another MQP group could continue work

on the game or take it in a new direction. Click here to try the game out for yourself. Click here

for the MQP presentation, and click here to watch the gameplay trailer.

6

https://realtimefeedbackmqp2019.github.io/TextAdventure/
https://drive.google.com/file/d/1eJqfBC8fsBZrFknbIBUs8_bYvVBfyEp4/view
https://drive.google.com/file/d/1byinscjp2dEMbWfZR29Ps8WEiHSekIIi/view

C
H

A
P

T
E

R

1
INTRODUCTION

Interpreting the current state of a computer program has always been a difficult challenge

for users to overcome. Whether that program is a coding environment where a programmer is

typing their own lines of code, a video game that a player is trying to complete, or any other

form of digital interactive media, understanding each component and how it changes over time is

crucial to creating a valuable user experience. When limited information about the execution of

the program is presented to the user, or when the information does not provide enough context

into the inner workings of the program, there is a large disconnect between the user and the

program that results in overall less usability and more frustration than should be needed. There

are many ways to help resolve this problem, and one of the most effective ways is with visual

elements that are used to represent the program’s data and how the data is modified as a result

of user actions and time.

One applicable use case for these visuals is within the context of coding. Supplementary

visuals, also referred to as annotations, in programming environments can make it easier for

programmers to better understand how the code within a program will run. These annotations

visually represent the data being manipulated within the code, or provide a direct view into the

current state of the running program. The visuals can have multiple forms, such as informative

graphs, color coding, simple icons, and comments generated in real-time, depending on the type

of input or output the program takes or produces. For instance, in Brett Victor’s [3] learning

example in Figure 1.1 below, each inline dot to the right of the code represents when a certain

line of code is executed within the while() loop, and the flow of the code can be observed by reading

left to right in the diagram. To the right of those visuals, the actual output of the program (lines

being drawn at different angles, or “shifts” in this case), is also visualized depending on what dot

7

CHAPTER 1. INTRODUCTION

(point of execution) the user has selected.

Figure 1.1: An example of visuals that can show both the data and state of execution within a
program.Click here for the full video [3].

Figure 1.1 is a great example of providing more context for the user to understand the flow

of the code, and therefore most programming environments must have similar visuals, right?

Unfortunately this is not necessarily the case: many commonly used integrated development

environments (IDEs) are lacking these concise and informative visuals. However, many modern

IDEs have basic visual elements, such as color coding to distinguish between comments, function

declarations, and variable references, and syntax highlighting for showing warnings or errors in

certain locations within the program. Take a look at Figure 1.2 below, which is a screenshot of

the Jetbrains Webstorm IDE for JavaScript development: is it possible to understand what the

program does within just a few seconds of viewing the code, even with the color coding?

Figure 1.2: A screenshot of code we wrote within the Webstorm IDE, with some color coding [4].

For most people, especially those who are not used to code structure and syntax, it would

be very difficult to understand what the code in Figure 1.2 does just by observing it quickly for

a few seconds or even skimming through it. Although the color coding distinguishes between

the individual elements of the code, it does NOT communicate the type of data used or how the

program processes and iterates upon that data. If the focus of the visuals was on communicating

8

the functionality of the code rather than the organization of it, it would be much easier to

understand how each line adds to the workflow of the program.

Many individuals and organizations have gone out of their way to incorporate helpful visual

annotations into their programs, and some of these programs even require the visuals to be

present at all times. By making the visual annotations a necessity, these programs focus on

providing a more comfortable user experience. Take Charlie Roberts’ live coding program Gibber

[4] for example. In a live coding program, the user can enter code and have the output change in

real time, which is what Gibber does to play different musical notes and instruments depending on

the code typed in. The visuals within Gibber are essential to the user experience: the notes within

the code are highlighted when they are currently being played, and sine waves representing the

patterns of notes are displayed in line. Figure 1.3 below shows a screenshot of Gibber currently

playing a song.

Figure 1.3: A screenshot of Gibber playing a song, with visuals to indicate the change in musical
data [4].

The constant presence of visuals in Gibber allows the user to successfully manage and

recognize multiple tasks at once. Based on this concept of juggling multiple tasks, it is clear to

see how these types of visuals could be applied to digital games. As previously mentioned, having

concise visuals in computer games leads to a more enjoyable player experience, and it is almost a

necessity in games that, like Gibber, require the player’s attention to be divided between multiple

components at once. A great example of this application done right is in the resource-management

9

CHAPTER 1. INTRODUCTION

game Reigns [5], where the player needs to make decisions as the ruler of a kingdom and manage

four resources: the church, the population, the military, and the economy of the kingdom. As

Figure 1.4 below shows, the four visuals at the top of each card, each representing one of the

four aforementioned resources, maintain simple designs that are very easy to understand and

also clearly show how much of each resource the player has depending on how “full” the icons are.

This extremely simple but informative visual design maintains the awareness of the state of the

game that the player needs to make informed decisions.

Figure 1.4: One of the many decisions to make in Reigns, highlighting the simplistic but clear
visual design [5].

When brainstorming how our project could contribute to the space of visual design in pro-

grams, we wondered what would happen if we took the basic premise of a resource-management

game such as Reigns with communicative visuals and expanded upon it in a coding context with

multiple facets to manage like in Gibber. This line of thinking led to the development of our

coding-based resource-management game, Coding Through the Ages. The main goal behind this

game was to observe if the presence of visual annotations within the game would give the player

a better understanding of the current state of the game and thereby give the player a better

chance to complete the game successfully. Designing the game within the space of programming

led us to make the visual annotations inline, so the player would have to type lines of code to

actually see the visuals and progress through the game.

The planning and development of Coding Through the Ages was a complicated process with

several different steps, including careful brainstorming of different game concepts and mechanics,

detailed screen mockups and layout designs, the actual development of the game, and testing

10

with different users and observing their gameplay data. However we even started this long

sequence of events, we first had to conduct some research into different areas that would affect

how we designed the game.

11

C
H

A
P

T
E

R

2
BACKGROUND

2.1 Understanding Programming

Programming has become a very selective skill as technology has advanced over the last few

decades. Although more people have grown accustomed to using technology, especially computers

and smartphones, in their everyday lives, the programmers who actually make the technology

work need to learn to think in a completely different way. This usually means having to learn

multiple different programming languages, including use cases (object-oriented vs. scripting) and

different syntax-related issues, just as one would when learning a brand new language. This

process may take years of exposure to different programs and may be difficult to pick up on for

some.

Programs should be much more intuitive and easy to understand. Anyone with even a little

understanding of technology should be able to observe a program and interpret its execution

with ease. This will in turn make it much easier for programmers to come up with creative ways

of solving problems through code, since they will be less focused on exact syntax. Developers

of software or programming languages need to take into account the user’s perspective while

also making the system robust in a way that encourages powerful thinking. An effective way of

designing these tools is to split it into two main components: the programming environment and

the programming language [3].

The programming environment is the software that displays the code on the computer screen.

As the environment is the way programmers visualize the program and its output, it should

accomplish a number of goals [3]:

12

2.1. UNDERSTANDING PROGRAMMING

• Explain the meaning of the program with little effort from the programmer

• Display the flow of the program and show how it changes over time

• Reveal each state of the computer and show all data

• Encourage the programmer to translate any ideas directly into code

• Allow code to be easily expandable, applying it to more specific use cases

Meeting all of the aforementioned goals of a programming environment allows programmers

to code at their highest potential. A programming environment is meant to be the canvas for

programmers to use to problem-solve in creative and efficient ways. Therefore, it should not just

have a lot of useful features, but it also should present those features in meaningful ways and be

fully transparent with program execution. Figure 2.1 shows a simple program and its output

and details how the program should be fully transparent to the programmer [3].

Figure 2.1: A simple program that shows the output of each scaling and rotation on the shape on
the right [3].

The other major component of a programming system is the programming language itself.

The programming language is what the programmer uses as a template to turn ideas in their

head into code in the programming environment. The syntax is different between all languages,

but the programmer should be able to effortlessly translate their thinking into code without

needing to worry about what language they are using. Some of the goals that well-designed

language should meet include [3]:

• Connect the programmer to the programming system in a meaningful way

• Allow the user to break down complex problems into simple function calls

• Facilitate the combination of different pieces of code into one program

• Explain different commands and functions through easily-interpretable syntax

These critical conditions to meet, along with those of the programming environment, will

facilitate the most creative thinking possible from a programmer. The environment and language

together should focus on visualizing the data rather than the code, allowing the programmer

to think more about how their code actually manipulates data rather than the exact syntax

13

CHAPTER 2. BACKGROUND

and structure of the code. In addition, having the visualizations dynamically change as the

programmer edits the code will make the functionality of the program even more transparent [3].

A specific type of visualization, called ‘in situ visualizations’ [6], are especially useful in

showing the state of the program and the exact data being manipulated. In situ visualizations are

located in or adjacent to the lines of code in a program and serve to explain the program at each

line. Not only do they provide information about the contents of the program at each line, but

they also maintain the flow of programming. In other words, there is no need to switch between

views to debug code and discover what the program does because the in situ visualizations show

exactly that information. The most effective in situ visualizations take advantage of programmer

flow by providing contextual information when needed and not distracting the programmer from

program execution. Figure 2.2 shows some examples of in situ visualizations.

Figure 2.2: Multiple examples of different in situ visualizations [6].

Different in situ visualizations are meant to serve different purposes. Certain visualizations,

such as simple indicators or numbers, are great for showing specific values at a certain point

in the program, while others, like truncated line charts or histograms, can represent a set of

different data points. These visualizations can also either explain the exact data at a certain

line in the program, while others, like indicators and time series plots, emphasize the change in

the data over the course of the program. Every visualization can serve a purpose in making the

program transparent to the programmer and keeping the programmer focused on the state of the

code [6].

14

2.2. ANNOTATIONS

In their experiments, Jane Hoffswell, Arvind Satyanarayan, and Jeffrey Heer measured the

helpfulness, interpretability, and intrusiveness of different types of in situ visualizations. They

found that most visualizations improved both speed and accuracy of program understanding,

and there was less of a disconnect between the programmer and the program due to the instant

changes in the code being visible immediately. Some of the visualizations were confusing to

participants, especially those relating to complex data analysis, but overall they increased the

programmer’s understanding of the code and ultimately maintained program flow [6].

2.2 Annotations

Annotations are defined by Merriam-Webster as a note added by way of comment or explana-

tion. Typically used in figures and diagrams to clarify the presented information, annotations are

not something often come across in programming. Live coding performances, which are digital

art events that mix coding, synthesized music, and performing, showcase the utility of real-time

annotations and visualizations. Such techniques mentioned in Roberts’ essay Annotations and

Visualizations [4] empower both the performers and the audience members, allowing them to

gain greater insight into discrete events, continuous signals, and the algorithmic transformation

of musical patterns.

There are many ways to display the states of variables in a program even though the viewing

area is confined by screen layout. One such method is to display all updates concurrently so

the audience members can choose where in the program to look at as code is developed. An

advantage to this is that it minimizes the time it takes to spend on user interactions for a

state. Another method - more of a principle - that Roberts mentions is similar to Gestalt theory,

where an annotation must have correct closeness to display its juxtaposition. In other words, an

annotation should be close enough to its corresponding information to avoid being interpreted as

the explanation of some other piece of information. As Figure 2.3 shows below, annotations can

be as simple as highlighting events to represent patterns (top) or more complex visualizations

depicting fades or waves for continuous data (bottom) [4].

15

CHAPTER 2. BACKGROUND

Figure 2.3: Visual representation of sounds as flashing boxes [4].

While these visualizations are great for live coding performances, how would they translate to

your typical programmer sitting in a workspace or cubicle? Programming is typically a blind job

that relies on prior knowledge and experience. Why should professionals have to spend extra time

just to see the result of a small change in the code? Simply put, annotations are a great quality of

life improvement for all programmers. Light Table [7] is a prime example of this novelty. A code

editor with built-in annotations give the programmer far more consistency when building their

application. Visualizations in this type of environment are slightly different than the annotations

in a live coding environment, though the concept of displaying the state of variables is the same.

Figure 2.4 below shows a couple of examples of some annotations in Light Table.

16

2.3. REAL-TIME FEEDBACK

Figure 2.4: LightTable’s inline annotations [7].

2.3 Real-time Feedback

Cyberphysical programming [8] is a type of programming in which changes to the code can

happen at any moment in real time. A sub-domain of cyberphysical programming is livecoding,

where a programmer write code in front of the audience in real time to create audio and visual

appeal to the audience. In a cyberphysical programming environment, the code is changed and

re-evaluated by the programmer’s intervention. The state of the world, or the data stored in

memory and the call stack, essentially describes the general environment of the code. On the

other hand, the state of the code is the actual code of the program itself. Unfortunately, such a

cyberphysical environment can cause the state of the world and the state of code to diverge from

each other. When the state of code and state of world diverge, mistakes can happen frequently,

17

CHAPTER 2. BACKGROUND

and the programmer is likely to become confused.

In order to make the information clearer, one can implement visual annotations to the

programming interface, providing the programmer with valuable information and resources,

and clear out any confusions caused by the states diverging. Common types of annotations can

be syntax highlighting, or visualizing current ram usage, cpu usage using graphs, and even

more conceptual information such as code smells or code coverage. These annotations can be

characterized into 3 categories: visualization of the state of world, state of code, or visualizing the

connection between both the state of world and state of code [8].

The visualization for the state of the world is fairly straightforward. It could be anything from

the performance of the code, callback rate, or other information that can help the programmer to

make adjustments based on the information gained. For example, if the programmer learned that

the CPU usage is rising quickly, he might as well tweak the code to remove the CPU intensive

code and replace them with a similar, but better piece of code. More easy to understand graphs

also exist - as seen in the Impromptu head up display demonstration (Figure 2.5), a circle timer

is drawn near the start of code to indicate how long it will take for the code to execute again [8].

Figure 2.5: The timer icon in the Impromptu heads-up display [8].

The state of code visualization is a type of visualization directly related to the code written.

Syntax highlighting, or checking for a code’s syntax errors all fall in this category. By accentuating

these information, the development environment can prevent unwanted waste of resources or

crashes during the performance, or avoiding making a mistake when multiple loops are present.

A more direct and effective way of fixing the problem also exists In the impromptu head up

display demo: the code reverts back to a previous state when the speaker tried to evaluate a line

of broken code, so no problems will occur in the execution [8].

The visualization of the state of world to state of code relationship can be as simple as whether

a code has been re-evaluated since the last change, or whether the code is currently executing.

Throughout this kind of annotation, the programmer can have an idea of whether the two parts

18

2.4. SIMULATION AND RESOURCE-MANAGEMENT GAMES

are diverging from each other or not. It could also be visualizing how much stress the code will

put onto the system if evaluated, allowing the programmer to react to it dynamically [8].

2.4 Simulation and Resource-Management Games

Many aspects of our game were inspired by simulation, resource management, and interactive

fiction games. A simulation game can be defined as a game that mimics certain aspects of real

life. Typically, such games use "ticks", a set period of time to update the game. Interactive fiction

games can be considered a subgenre of simulation games where players use text commands to

influence the environment or control characters. Resource management games, on the other hand,

involve numerous types of available materials or assets that the player need to cope with in order

to win the game, usually by establishing their relative values in the gameplay context.

2.4.1 Universal Paperclips

Our team resonated with Universal Paperclip’s [2] aspect of starting small and building up

complexity. Universal Paperclip’s game is a simulation game, in which as the player progresses,

some resource management elements are introduced to make the game more difficult. Its starting

interface is extremely simple, teaching the player the idea behind the game. Our team resonated

with Universal Paperclip’s aspect of starting small and building up complexity. Universal Pa-

perclip’s is a simulation game, in which as the player progresses, some resource management

elements are introduced to make the game more difficult. Its starting interface is extremely

simple, teaching the player the idea behind the game. Universal Paperclips gradually introduces

many elements along it’s storyline, so much that it almost fills the entire webpage, as Figure 2.6
shows.

19

CHAPTER 2. BACKGROUND

Figure 2.6: The Paperclip game gets more complicated with multiple different components to
manage over time [2].

2.4.2 Suspended

Suspended [9] is a classic 80’s interactive fiction game. At the time, the game was a text

adventure breakthrough and evolved the interactive computer novel industry. The game was

bundled with extra physical items, such as a map and overview booklet, to help players keep

track of their environment. In our game we wanted to experiment with visually restricting the

user to a code editor-like context. We noted how complicated Suspended appeared to be without

the proper equipment, and wanted to make sure our game is playable without extra tools. Figure
2.7 shows a screenshot of the gameplay in Suspended.

20

2.4. SIMULATION AND RESOURCE-MANAGEMENT GAMES

Figure 2.7: The interactive console window of Suspended [9].

2.4.3 Reigns

Our team also took heavy inspiration from Reigns [5], a uniquely simple resource manage-

ment game, where the player must make choices balancing their kingdom’s assets. Reigns has a

very simple interface: players can swipe the card on screen to the left or right to make different

decisions that affect four pools of resources. Our team wanted to emulate something very similar,

and ended up basing our general concept on this game. To keep our game from getting too

complicated, we decided to restrict the player’s choices to two, similar to Reigns. Unlike Reigns

however, our game has a linear story and does not have branching events at this time. Figure
2.8 shows the player making a decision in Reigns.

21

CHAPTER 2. BACKGROUND

Figure 2.8: The interface for making decisions and changing statistics in Reigns [5].

2.5 Educational Coding Games

2.5.1 CodinGame

CodinGame [10] is an interactive coding platform that teaches users how to code with different

miniature games. There are many different languages available to learn, including JavaScript,

C#, Java, and Python. The user can choose what language to learn and interact with upon

starting the tutorial.

Once a language is chosen, the user can begin playing the different games available. In each

game, the user must add code based on the given the specified framework of the game’s code. This

can consist of writing for loops that iterate upon multiple game frames, designing if statements

to check that certain game states are currently active, and returning values of game variables in

the console log. Figure 2.9 is taken from the tutorial game, which simply involves copying and

pasting a certain block of code to get the user acquainted with the coding system [10].

22

2.5. EDUCATIONAL CODING GAMES

Figure 2.9: One of the first JavaScript coding tutorials in CodinGame [10].

Each game has at least one test to complete. Each test contains different in-game criteria

to be met, and all together they test the ability of the user’s generated code to work in all cases.

Even if the user does not pass all tests, they can decide to submit their code and be graded based

on the performance of their code on the tests [10].

The main purpose of CodinGame is to teach users how to code in a specific language while

keeping the coding process fun. Each game snippet teaches users to observe the current coding

framework and add code based on the current context of the program, which happens to be a

game with this system. This incentivizes the user to see the game working properly by correcting

their code and making sure it passes all of the tests [10].

2.5.2 Swift Playgrounds

Swift Playground [11] is an app running on both macOS and on iPadOS that allows users

to attempts to teach users how to program by providing an incentive to coding: playing a game.

The app user can control the movement and other actions of the main character by typing code.

The player can perform certain actions, such as moving forward a space or collecting a gem, by

interacting with a text editor that exists on one half of the screen. The other half contains the

game area where the player can see the visualization of their code, as Figure 2.10 below shows.

23

CHAPTER 2. BACKGROUND

Figure 2.10: The simple gem-collecting game Swift Playground offers in its tutorials [11].

The code shown on the left is in a language called Swift. Swift is an Apple-created language

that is used for building iOS apps. It is open source, which allows programmers to have many

creative freedoms in terms of what to build, as long as it is on Apple iOS devices. Some examples

of apps that were built using Swift include Lyft, LinkedIn, and Khan Academy [11].

Swift Playground uses the simple API of Swift and combines it with a gaming interface to try

to teach players basics about programming. Having both the code and the game itself displayed

on the same screen allows the user to quickly observe the effects that the code they typed has on

the game. After the players practice basic function calls such as moveForward() and collectGem()

to progress through a basic level in the game, the app introduces common coding practices such

as for loops to execute the same blocks of code a certain number of times. This learning approach

slowly introduces the user to programming techniques that will allow them to slowly but surely

understand the essentials of coding [11].

Swift Playgrounds offers many different tutorials for that specific game, but there are other

options as well, such as the visual spirals shown in Figure 2.11 below. Users can write their

own Swift code and share it with their contacts who also have iOS devices, which allows for

pair-programming as well, a common trend in the coding industry. All of these accessible options

allows for a lot of creative potential in Swift code and the programs that result [11].

24

2.5. EDUCATIONAL CODING GAMES

Figure 2.11: An example of using Swift Playground to experiment with visual design [11].

The major downside to Swift Playgrounds is that it is exclusive to Apple products, specifically

the iPad. Since the iPad is a touchscreen device, some users may find it less intuitive to create

code, especially users who are already experienced programmers and would find the user of a

physical keyboard more efficient for typing code. The main issue with Apple exclusivity however

is the smaller range of users that can work with the app. While it is true that many people do own

Apple products, and many of those people own iPads, the app would gain much more traction if it

was a browser game or hosted on a PC, and therefore it would gain more attention and educate

more people about coding [11].

2.5.3 Kodu Game Lab

Kodu Game Lab [12] is another environment for teaching programming that targets a much

younger audience. It allows children to create games for either PC or Xbox using a special visual

programming language that is much different than the typical language and IDE environment

developers are used to. As shown in Figure 2.12 below, the game is run by a linkage of two

actions: “When” and “Do.” Users can select certain conditions for “When” a specific action should

be executed in the game, and the action to be executed can be placed under the “Do” section. This

functionality emulates the idea of if-then statements in standard programming languages, but

25

CHAPTER 2. BACKGROUND

allows for a much more child-friendly interface.

Figure 2.12: The very simple visual programming UI of Kodu Game Labs [12].

Children can use this accessible language to add interactivity to their worlds. They can select

different objects from a predetermined list of models, assemble their world, and then use the

language to interact with the different objects in the environment. They can then share their

worlds online for anyone else to download [12].

Of course, due to the simplicity of the game, it is extremely limited in terms of what it can

accomplish technically. However, this is completely intentional, as the target audience is younger

children. Kodu Game Labs is meant to introduce the overall concept of programming to make

a game playable at an early age. That way, when the children who use Kodu grow up, they

will already have some basic understanding of coding and may be able to pick up on typical

programming much more quickly [12].

Kodu Game Labs is quite outdated, and not many updates have been released in recent

years. The community is still thriving, and newly-created worlds can still be downloaded from

the website. It served as a great example of how to teach kids the main ideas behind coding and

how it can be used to make programs function [12].

26

C
H

A
P

T
E

R

3
METHODOLOGY

Visual feedback has been shown to mitigate the confusion a user may have about a program,

whether that program is a block of code within a coding environment or a task in a computer

game. Our goal with this project is to understand the correlation between the presence of visual

annotations and a player’s experience within an environment with both coding and gaming

aspects.

To achieve this goal, we developed a coding-based game that utilized supplementary, inline

visuals. We accomplished this through the following methodology:

• Brainstorming game ideas that utilized visual annotations in code.

– Planning out the actual concept of the game.

– Creating balanced game mechanics along with unique gameplay ideas related to

visuals.

– Idealizing a narrative structure for the game.

• Designing different potential screen layouts of the game to prioritize visual information.

– Completing many design iterations to prioritize screen space and player attention.

– Brainstorming more visual annotation ideas to compliment the layout.

• Implementing the game mechanics and visual elements into the game.

– Developing a command parser within a code editor to serve as a game framework.

– Structuring a sense of progression through an introduction and story.

– Adding different visual elements to supplement the player’s code.

– Recording gameplay data and storing into a database for later analysis.

-

27

CHAPTER 3. METHODOLOGY

• Testing the effects of the inline game visuals for later analysis.

– Setting up online Zoom playtesting sessions.

– Planning the session procedures.

– Running the sessions and collecting data from in-game, think-aloud note-taking, and

a survey.

3.1 Brainstorming

The first task we accomplished after understanding our project goal was planning what we

wanted our actual project deliverable to be. To relate to the topic at hand, we had to incorporate

some form of visual feedback alongside code. We came up with several different ideas, including

a coding game with mechanics similar to Space Invaders, a coding assistant like Clippy from

Microsoft Word, and a mathematics-based annotation system. We knew early on that we wanted

users to apply their programming skills and be able to see the effect of their code in some visual

form.

After a followup discussion with our project advisors and some more brainstorming, we

decided to create a “text adventure” type of game where players would interact with a text-based

window to make decisions in response to different challenges. Similarly to the game Suspended

[9], players would enter commands to respond to the different prompts they were given. As we

thought of different commands that the user could enter, we took inspiration from games such

as Reigns [5] and Universal Paperclips [2] and added a resource-management component. The

player would need to balance six different statistics within the game: their own hunger level,

the amount of food they had, the security of the computer terminal that they interacted with, a

human population they had control over, the military protecting that population, and the amount

of science (or knowledge) that the community had. Having all of these components to manage

justified the ability to enter commands and also added complexity to the game.

Once we thought of these core mechanics, we began to plan out the complexity behind

balancing all of the statistics. We introduced a time limit to increase tension and force players to

make a decision within a given amount of time. These decisions would affect some of the statistics,

specifically population, military, and science, but in addition, all of the statistics besides food and

security would slowly decrease with time. The level of each statistics would affect the rate at

which others decreased: having zero population or science would decrease population faster, zero

population would decrease hunger faster, and zero hunger would result in a game over. All of

these ideas made it into the final version of the game, but some other early ideas are shown in

Figure 3.1 below.

28

3.1. BRAINSTORMING

Figure 3.1: Early ideas of some of the major mechanics for our coding-based game.

Since this was a coding-oriented game, we needed to choose a familiar programming language

that would be able to host our game and also allow players to interact with the game code via

commands. Therefore, we decided to build the game in JavaScript and HTML, which would allow

our game to easily be hosted in a web browser while having simple syntax rules that we wanted

our target audience to understand. The entire project team also had a moderate amount of prior

JavaScript experience, which made developing the game much easier and more efficient.

Early on, we had hoped to create an experimental setup where users would play different

versions of our game, each with different amounts of visual annotations present, and we wanted

to observe how they performed in each version. Originally, we came up with three different

experimental cases: one with extremely limited visuals (base case), one with slightly more visuals

(experimental case) and one with a multitude of visuals (other experimental case). The number of

different cases decreased as we designed and developed the game, but we still needed to finalize

our experimental measurements. Some early ideas we had for tracking player performance were

measuring the time it took for a player to enter a command and using a JavaScript library to

track player eye movement on certain portions of the computer screen. However, many of these

ideas completely changed as we began to brainstorm how the game would actually look.

29

CHAPTER 3. METHODOLOGY

3.2 Design

As we discussed our brainstorming ideas over the first half of the school year, we created many

design mockups, making sure to consider how certain elements like statistics and other visuals

would appear within the same space. Screen layout was extremely important, as we wanted

to create a flow between each distinct visual element for the player to form a more cohesive

gameplay experience. We spent a considerable amount of time thinking about different potential

layouts before making official mockups. Figure 3.2 below shows some of the ideas we originally

came up with.

Figure 3.2: Early ideas on arranging the elements of the coding-based game.

Our first official design iteration conveyed many of the main features we discussed during

the brainstorming phase. As seen in Figure 3.3, the visuals for the statistics (the vertical bars)

occupied a large portion of the screen: we wanted the players to clearly see the fluctuating bars

to influence their choices, but there was originally almost too much of an emphasis placed on

the visuals. There were also stricter, more defined areas of the screen that each represented a

different component of the game, with each being a general container that split up the viewed

information.

30

3.2. DESIGN

Figure 3.3: First iteration, emphasizing visuals and separation of components.

During this first iteration, we began storyboarding and coming up with different creative

ideas for prompts, their choices, and the affected statistics. We started coming up with different

events that the player would have to respond to, and each of these events had some influence

from real life or common sci-fi tropes, such as Godzilla destroying a city and aliens invading the

earth. Taking inspiration from these media definitely added some familiarity to the game and

would in theory help players to make their own decisions.

Our second batch of mockups prioritized the player’s eye movement within the page space. As

seen in Figure 3.4, all of the elements were organized into separate containers. We originally

wanted all elements to be visible at all times for the player’s convenience, so the screen was

organized to allow for that. The prompt and visuals for the current statistics were placed at

the top of the page, as they represented all of the contextual information the player would need

to make choices. The bottom half of the screen was dedicated to areas where the player would

input their code. At this point in time, our experiment idea was to use an eye-tracking JavaScript

library and track which half, the top or the bottom, the player spent most of their time looking at.

We theorized that with added visuals in the bottom half of the screen, the player would not need

to look at the prompts and bars in the top half too often.

31

CHAPTER 3. METHODOLOGY

Figure 3.4: Constantly showing relevant statistics, history and multiple automation slots.

It was during this design iteration when we added two new features into the game: automated

blocks of code and showing previous changes in statistics. The automated blocks of code were

not fully realized, but they would essentially allow players to type any code and have it run

every frame of the game. Visualizing the changes in statistics, represented by the line graphs in

the figure, would cause players to prioritize certain statistics over others when making a final

decision. These two new components added more strategy to the game and also used up more

screen space in the bottom half.

The “statistic history” feature fully came about when we decided to split up parts of the story

of our game into different eras in time. We specifically based the natural progression of events on

humanity’s timeline, starting with the Stone Age and ending in a futuristic time. This organized

structure helped us come up with many more ideas for prompts since we could base some of them

off historical events and add familiar context to the game to appease players. This also made the

user’s past decisions much more organized, since the change in statistics was simply displayed

for the previous age rather than a long list of all the past choices the player made.

As we continued reorganizing the layout through many iterations, we made sure to modify

the statistics visuals to take up less space as well as making it stylistically different. We changed

each bar within the visual to have its own color corresponding to a different statistic, and we

changed the color scheme to invoke the feeling of using an old computer terminal with green

32

3.2. DESIGN

text but with additional color in the visuals.. Along with colors, we also explored more options

for different features, such as having the timer be a circle that depleted in a counter-clockwise

fashion and integrating more visuals into the prompt window to make the game less dull and

more visually appealing.

We eventually reached a point where our advisors envisioned a more programming-oriented

focus for automating tasks and potentially the entire game. We considered how much we wanted

to constrain the player’s ability to automate for more strategic thinking and decision making.

Once we started putting emphasis on more editor-focused layouts, we could make the game have

a greater focus on programming and be able to automate different processes easier.

Since we decided to have a heavier focus on programming this time, we included a small

section that would act as a cheat table or guide for the player that had the predetermined

commands that the player would use. We explored many options regarding the timer including

clock-like, text, and boxed timer visuals. As this seemed like a lot to juggle for the player, we

decided to explore functionality that would slowly introduce all the game elements to the player.

Figure 3.5 below shows a design layout that leaned further towards a singular, coding-focused

view of the game with visuals, commands, and automated code all integrated into the same

general area.

Figure 3.5: An early design of a pure coding editor layout.

Once we confirmed with our advisors that we were definitely focusing more on the coding

environment style of the game, we kept reiterating on design ideas until we consolidated all of

the components, prompts and code together, into a single interface. It was during this last phase

of designs that we began to look into ways to start actual development of the game. Although we

33

CHAPTER 3. METHODOLOGY

had not completely finalized the full design of the game, we had enough information to work with

and therefore started implementing features that we had brainstormed earlier on.

3.3 Implementation

After building a simple prototype to prove our idea, we started structuring the underlying code

and building the core functionalities for the game. We used the JavaScript library CodeMirror

[15] to add coding capabilities to our web-based game. CodeMirror creates an HTML widget in

your webpage that acts as a code editor, enabling users to enter and edit code as if they were

in a normal programming environment. The library provides many other benefits, such as line

numbers, color formatting, and command execution.

We stored our story prompts in a JSON format, and each prompt would sequentially be

displayed in the CodeMirror editor. With CodeMirror’s line widget functionality, we were able to

create visual annotations in the CodeMirror display using the HTML5 canvas tag. Many visual

elements were adjusted along the process of development, such as coloring and text size, in order

to improve aesthetics and readability. We also came up with different inline visual annotations

to see which ones were easiest to comprehend within the game. By adjusting the position of

the visuals based on the current cursor position, the players’ eye movement would be reduced,

allowing them to focus on writing code without any distractions.

As we developed the game, several design choices from earlier on had to be changed due to

development restrictions, and new design ideas were formed to further enhance the game. We

eventually consolidated all of the information being displayed on the screen into the CodeMirror

widget instead of having separate areas or tabs within the game. Figure 3.6 below shows a more

streamlined, programming-focused design that we developed at this point.

34

3.3. IMPLEMENTATION

Figure 3.6: A more finalized design with all functionalities in one window.

Working everything into one unified space meant we needed to rework some of the core pieces

of functionality within the game to work within the one CodeMirror editor. This required us to

add more commands, and eventually we came up with the following list of commands:

• choose(number) - make a choice in response to a story prompt, with the given number

corresponding to the choice.

• eat() - eat a piece of food (if you have any food left)

• secure() - raise your security by 1 (if allowed to do so)

• man() - bring up a manual listing all of the commands you can do (or the usage of a specific

command if you specify it as a parameter)

• legend() - pull up a legend mapping the color of the bar visuals to specific statistics

• automate(function) - create an automated function that will run at the current every frame

if the specific condition within it holds true

The other major addition that was made during this phase was the actual inline visual designs.

We went through several iterations of designs for different aspects of the game. For the statistics,

for instance, we thought of having vertical bars, horizontal bars, and circles that changed over

time when the corresponding statistics changed. We decided on vertical bars because they were

not too small to read, were easy to interpret, and were noticeable when they changed. To add an

extra visual element, when the player typed “choose(“ and then a choice number before actually

executing the command, the vertical bars would extend to show the effect that choice would have

if the player finished the command. The timer visual was made into a horizontal line beneath the

last line of the CodeMirror editor that got smaller over time. Figure 3.7 below shows a close-up

of some of the visual designs we settled on.

35

CHAPTER 3. METHODOLOGY

Figure 3.7: The vertical bar and timer inline visuals within the context of the game.

We added some new mechanics as we developed the game to provide a more interesting and

balanced game experience. One of these mechanics was the security system. Although we had the

idea of the security statistic early on, we were not entirely sure how it would affect the gameplay.

When we got to this phase, we decided to have security factor in some randomness to keep players

on their toes. The level of the security statistic would correspond to a value between 0 and 1.

That value represented the probability that a choice would automatically be chosen for you after

the timer reached the halfway point for that prompt. The lower the security level, the greater the

chance that a random choice would be made on that prompt. The player had a chance to raise

their security after 3 prompts were decided on by the player, assuming their security was not at a

maximum of 5. This feature was also linked to when the timer ran out for the current prompt.

To more clearly understand the relationship between annotations and player performance, we

considered adding a Firebase implementation to gather the quantitative data like the variance in

statistics and the time it takes for the players to make each decision, as well as noting how many

times the player takes too long to make a decision. We used a unique session id to track each

player data anonymously.

As we got further in development with the game, we wanted another way to gather data,

specifically feedback from the players themselves. Since we started to move towards playtesting

instead of a fully fledged experiment, we anticipated these opinions would help gather more

qualitative data as well as judging how much enjoyment they get out of the game. Because we

were refraining from collecting personal data, to link between a player’s Firebase data and their

Google Survey responses, we utilized the game session’s unique id for both data sets.

At this point, we discussed adding a small tutorial at the beginning of the game to get players

familiar with inputting our syntax. This went through a couple of iterations, initially starting

with a separate page with the relevant information and a button to go to the game. As this was

essentially an information dump for the player, and did not allow the player to practice, it did

not meet our expectations to be a good tutorial. The finalized version not only gives context and

story elements to the player, but also enables them to experiment with our syntax to move on to

gameplay. Figure 3.8 below displays part of the tutorial screen and how it introduces the player

to the core functionalities within the game.

36

3.3. IMPLEMENTATION

Figure 3.8: Screenshot of part of the tutorial, which introduces basic mechanics and story.

Another gameplay element that was added to help the player was one of the main features we

discussed in our previous designs. Showing how the statistics changed over the course of each age

seemed like relevant supplementary information. We anticipated this feature to further reinforce

the goal of balancing each resource. Discussing the best way to show this graph led to a choice

between a general trend line or a more detailed chart showing the effects of each choice. Upon

some exploration in this area and advisor feedback, we actually chose neither option. Instead, we

created small sparklines that were to the right of the bar visuals and still inline with the code.

Each sparkline corresponded to a different statistic and captured the change in each statistic

over the last five decisions. Figure 3.9 below shows our implementation of the sparklines in the

final version of the game.

Figure 3.9: Sparklines for each statistic shown inline next to the bar visuals.

As we continued development of the game, we made sure to go back and refactor some of

our outdated code as well as fix any bugs or issues that came up. Although we originally began

developing the game before we finalized our design, we knew that we wouldn’t fully know what

the game would and should look like until we began implementing it via code. After giving our

visuals a new 8-bit inspired aesthetic and making a few other minor changes, we considered

Coding Through the Ages, our game, complete! Figure 3.10 below shows a screenshot of the final

form of the game, with all of our additional design ideas in place.

37

CHAPTER 3. METHODOLOGY

Figure 3.10: Screenshot of the final version of our game, Coding Through the Ages.

3.4 Testing

Before COVID-19 became an international pandemic, we had planned to have in-person

playtesting on the WPI campus. We intended for CS or technical IMGD majors to play our game

and receive playtesting credit for their IMGD courses. This, however, needed to change once

students could no longer be on campus. We began to consider our options for remote playtesting,

such as crowdsourcing and online playtesting. Even though full remote options like crowdsourcing

often scale better and result in a much larger audience, we were concerned with how much more

work would need to be done to set up remote options such as prerequisite tests. (We conducted

plenty of previous research on crowdsourcing that was originally in our Background section. See

Appendix D for further details.)

We felt that there were more benefits with doing an online playtesting session hosted on a

virtual platform, where we could still interact with our players. This required much less set up

than crowdsourcing, and we could obtain immediate reactions to the visuals in our game in a

live remote playtesting session. Due to the IMGD department no longer requiring playtesting

credit for the final term of the year, when we planned on conducting our tests, we discussed

other compensations to award participants, such as gift cards to local businesses or donations to

charities. In the end, we decided on giving each player a $10 Amazon eGift card as compensation,

since purchasing and distributing them was extremely easy to do remotely.

During this testing stage, our group planned for the setup, procedure, and data collection for

each individual taking part in our playtesting. These were organized as described in the following

38

3.4. TESTING

subsections.

3.4.1 Setup

• During signups for playtesting sessions, players enter their name and email into a spread-

sheet next to the specific day and time on which they want to play. The email is used for

sending playtesting confirmation after the session and also for receiving the $10 Amazon

eGift card after particpation.

• Two of the group members join a Zoom session: one person leads the session and talks

directly to the player, and the other person takes notes.

• At the appropriate time, the scheduled player joins the online session.

3.4.2 Procedure

• The player reads through and electronically signs (upon agreement) a pdf copy of the

informed consent form, and the session leader provides a brief overview of the game to the

player.

• If they decide to stay, the player will be directed to the GitHub pages link that hosts the

game, which can be found here. The game lasts approximately 20-30 minutes, and the

player may restart the game as many times as they like within the time allotted for the

session.

• When they finish their game session, the player completes a survey about their gameplay

experience.

• The player leaves the playtesting session, and they are sent an email thanking them for

their time and contribution and later another email with the $10 Amazon eGift card.

3.4.3 Data Collection

We collected the following data from each player during the course of the game in no particular

order:

• The time it took for the player to make each decision

• The values of each statistic made at each decision and at the end of each age

• The number of times the player utilized the in-game manual

• The number of times the player ran out of time during a decision

• Think-aloud notes during the game session

• An anonymous, unique user ID generated by the program

39

https://realtimefeedbackmqp2019.github.io/TextAdventure/

CHAPTER 3. METHODOLOGY

• Post-game survey regarding topics about:

– Coding ability

– Opinions on inline visuals in game

– Enjoyability and improvements

As development of the game continued and different features were added or changed, our

testing guidelines had to be refined. We made sure to start on these procedures early enough in

case of situations like the pandemic. We also had to wait a little while for the WPI IRB to approve

of our playtesting proposal as well as our survey questions (Appendix A), our study protocols

(Appendix B), and our informed consent form (Appendix C). See the corresponding appendices

for more details.

Once the playtesting materials were approved and our game had been developed to a playable

stage, we set up playtesting sessions for CS and IMGD majors and began collecting important

results.

40

C
H

A
P

T
E

R

4
RESULTS

To being the playtesting process, we sent basic premise and procedure information to the WPI

IMGD and CS students mailing lists. 20 students signed up for a playtesting session, although

not everyone could show up. By the end of the week in which we conducted all of our playtesting,

18 players were able to make it to their sessions. These players were later sent a 10$ Amazon gift

card as compensation for their participation.

After conducting all of our playtesting sessions, recording the gameplay data from multiple

playthroughs of each player and storing it in a database, and collecting survey responses from

each participant, we analyzed the data and visualized the results. Some of the graphs were made

using the JavaScript library D3, and the others were pulled from the responses from the Google

forms survey; these visualizations are accompanied by direct quotes from participants.

We first wanted to visualize a topic that is common to almost any type of game: how did the

players perform? Using all the statistics from each player recorded at the end of each age (except

for food, since that was dependent on hunger which we were already recording), we can observe

gameplay performance in a large box-and-whiskers plot. The x-axis for the plot represents each

age for each statistics, and the y-axis represents the percentage of the total bar that the statistic

value was recorded at. We separated the original plot by statistic to show the individual statistic

distributions over each age, but the original combined plot can be found here.

Figure 4.1 shows the distribution of hunger values over the course of each age. Overall,

the distribution remains relatively the same across ages. However, it is important to note that

the average recorded hunger value at the end of the first age is much higher than the average

hunger values at the end of the other ages. In addition to the average recorded hunger value

41

https://realtimefeedbackmqp2019.github.io/mqp-results/

CHAPTER 4. RESULTS

dropping after the first age, the number of collected data points also drops, implying that many

playthroughs of the game ended after during the second age. (This is the case with all of the

plots.) Finally, although the overall distribution remains roughly the same across each age, there

are more outliers with each progressive age, and by the end of the final age, the recorded hunger

values are quite varied.

Figure 4.1: Box-and-whisker plot showing general distribution of hunger values at the end of
each age. Notice how the distribution remains roughly the same size throughout all of the ages
(D3).

The box-and-whiskers plot for the population statistics (Figure 4.2) show quite a different

scenario than with hunger. The main takeaway from this plot is that the range of population

values grows with each sequential age. Although the average recorded population drops slightly

after the first age, it then slightly increases with each age, with the biggest increase being

between the second and third ages. Similar to the hunger distribution, the amount of outliers

with the population statistic also increases, and about half of the collected population values are

outliers by the final age.

42

Figure 4.2: Box-and-whisker plot showing general distribution of population values at the end of
each age. It is interesting to note that the distribution grows in size with each passing age (D3).

The distribution for the military statistics, as detailed in the box-and-whiskers plot in Figure
4.3, is not consistent at all. Unlike with the population statistical distribution where many of the

recorded values are clustered together, the military values by the end of the first age are much

more spread out. Both the range and average recorded military statistics take a huge dive down

by the end of the second age and remain consistently low for the next couple of ages. By the end

of the final age, the average military value is extremely low, but the range is so great due to the

number of large outliers either at 0% or at 100%. Out of all of the statistics with box-and-whisker

plots, military has the greatest range at the end of the final age.

43

CHAPTER 4. RESULTS

Figure 4.3: Box-and-whisker plot showing general distribution of military values at the end of
each age. The number of outliers for the military values by the end of the final age is especially
interesting (D3).

The science statistics generate a unique box-and-whiskers plot, which is visualized in Figure
4.4 below. This plot may be the most interesting out of them all: the range of science values

decreases with each age as almost all of them converge to 100%, and by the final age, the range is

very small. The average science value increases by roughly 0.3 over the first few ages and reaches

a maximum by the end of the third age. Although there are a few outliers in each age after the

first one that have relatively lower science, the plot shows that most playthroughs of the game

ended up with almost full science.

44

Figure 4.4: Box-and-whisker plot showing general distribution of science values at the end of
each age. Notice how the recorded science values slowly max out with each successive age (D3).

The last statistic we gathered data on is the player’s security levels throughout the game. As

seen in Figure 4.5 below, the box-and-whiskers plots are difficult to read. This is primarily due

to the fact box and whisker plots are used to visualize continuous data, rather than discrete data.

Since the security statistic can only be an integer from 1 to 5, the data is discrete and therefore

cannot be described well by a box-and-whiskers plot. A stacked or grouped bar chart would likely

show the data in a much more informative way. However, you can still observe in the plot below

that players for the most part kept their security high when they had the chance to upgrade, and

by the end of the final age most players had a security level in the upper range (3 to 5).

45

CHAPTER 4. RESULTS

Figure 4.5: Box-and-whisker plot showing general distribution of security values at the end of
each age. Although not the best plot for the discrete security values, it is still possible to see that
security was kept on the higher end by most players (D3).

Now that it is possible to see visually how players performed in the game, the next question

to answer reflects the main goal of our project: did the visuals help the players make informed

decisions? Although the above box-and-whisker plots certainly provide some insight into the

effectiveness of the visuals, additional graphs and quotes from the survey will provide more of

the players’ perspectives and better answer the question that dictated our project.

It is important to note that previous familiarity with visuals in a programming or gaming

context may introduce a slight bias into the results, so we asked players in the survey if they

had any experience with these types of visuals. The pie chart in Figure 4.6 below shows the

responses. Slightly more than half of the players were familiar with visual feedback similarly to

how it appears in our game, and another 39% said they knew about some basic visuals, leaving

only 5% of players who had zero prior experience.

46

Figure 4.6: Pie chart detailing the amount of familiarity players had with visuals in programming.
More than 90% of the players had at least some experience.

Although prior knowledge of visual feedback may influence the results quite a bit, they

will have little impact if the visuals themselves were not understandable. Between the bar

graphs representing the amount of each statistic, the timer, the color coding, the legend, and

the sparklines showing the change in each statistic over the last few prompts, all of the visuals

within the game were meant to influence the decisions that players made. Some of the quotes

pulled from the surveys communicate whether the visuals helped each player make decisions or

not:

• “I didn’t remember what all of the health/food/other bars stood for.”

• “The visuals definitely helped in understanding the current state of the game.”

• “Some of the bars were unclear as to what they were.”

• “The different prompt colors were nice, at least to differentiate the text.”

• “It took a little time to know what the icons meant on the health bar, but it was great once

I understood it.”

The quotes are quite varied, with many players clearly seeing the correlation between the

visuals and their decisions in the game, while others were more confused about the purpose of the

visuals. The bar chart in Figure 4.7 below shows a similar result, where the players were asked

on a scale from 1 to 5 of how easy it was to understand how the results of their decisions impacted

the rest of the game. Exactly half of the players were able to see the impact their decisions had

on gameplay, while the other half either were in the middle or had no idea what their decisions

actually did in the game.

47

CHAPTER 4. RESULTS

Figure 4.7: Bar graph of player’s feedback on whether they could understand their decisions
and resulting consequences clearly. Only 22.3% of the players had trouble understanding the
results,and half of them seemed to understand their impact clearly.

Although many players seemed to be using the visuals to view the results of their decisions,

this same level of understanding did not apply to other elements of the game. One major option

that players had in the game was to use past decisions, either by looking at the trends of each

statistics with the sparkline visuals (the easier way) or scrolling back up to previously-answered

prompts (the more difficult way). As the bar chart in Figure 4.8 below shows, not many players

appeared to look into the past for making a current decision. In fact, more than 50% of players

did not, and only approximately 17% of players did.

Figure 4.8: Bar chart showing whether players used past decisions to influence their current
choice. More than 50% of the players never looked into the past.

The visuals within Coding Through the Ages are intended to show players how all of the

statistics change with each decision, and the above results provide a good idea of whether the

visuals are effective in that regard or not. However, the visuals within the game are not static;

rather, they change with time, which is a major component of the game. Therefore, there is one

48

more crucial question to ask with regards to the visuals: did they help players manage their time?

Every person has differing management skills, especially in regards to stressful tasks. It is

difficult to provide a generalized conclusion for a whole group of people regarding time manage-

ment, so we pulled together a pie chart shown in Figure 4.9 below where we asked how fast of

a reader each player is. Although reading the prompts is not the only component of the game

that requires quick thinking and acting, it is certainly one of the aspects that could take a lot of

time. Almost half of our players could interpret text after reading fairly quickly, and interestingly

one third of the players were very slow readers. This last observation stressed the need for more

visual annotations to further help manage time in the game.

Figure 4.9: Pie chart of player’s self evaluation on their reading speed. One-third of the players
claimed to have slow reading skills, while the rest claimed to have average-to-above reading speed.

If there were no visuals in the game and players had to fully read each prompt in order to

make an informed decision, we could expect to see extremely varied results: players who could

read faster more than likely be less stressed out about the time aspect of the game than players

who needed to take their time to read. However, the visuals were placed into the game with

the intention of allowing the players to better manage every component in the game and not

be as stressed with finishing everything in time. The following quotes taken from some survey

responses reveal some of the players’ opinions on managing time in the game:

• “I didn’t feel like I had enough time to code the functions.”

• “Having it that fast was a bit challenging, but that also added an appeal because you had

to stay on the ball.”

• “The game was so fast that I do not remember any of my decisions.”

• “It seemed that everything moved in a good pace and in the right direction.”

49

CHAPTER 4. RESULTS

• “I was too focused on the health bar. It seemed to fall too quickly.”

Once again, the responses from all of the players of our game were completely different, with

some people feeling comfortable (likely not at first, but shortly after getting used to the mechanics)

with the amount of time they had while many others were stressed out at how little time they

had with so many pieces to manage. This sentiment is reflected in Figure 4.10 below, which is

a bar chart showing on a scale of 1 to 5 if players felt they had enough time for completing the

different tasks in the game. The results were pretty evenly split: about one third of players did

not feel like they had enough time, another third of players felt that they had plenty of time, and

the rest were in the middle. It is important to note how, especially as the above quotes explain,

some components of the game, such as automating functions and reading the prompts, required

more time than other tasks. The chart below summarizes the time over all tasks in the game,

rather than individual ones.

Figure 4.10: Bar chart showing player feedback on whether they had enough time to complete
different tasks during the course of the game The results were pretty evenly split, with some players
being more comfortable with the amount of time than others.

To further analyze the amount of time that players needed to progress in the game, we plotted

an event graph in D3 of the final run of several playtesters, which is shown in Figure 4.11 below.

(Unfortunately, due to data collection issues, the last decision of each age was lost.) Each row

represents the timeline of a player’s run-through of the game, with each dot presenting when a

decision was made. Each age is a different color, and the first dot in each age is bigger to represent

when the first decision in each age was made. It is difficult to read the graph as is since it is quite

long and plotted over the entire course of gameplay, so we will break it into chunks and analyze

the most important observations. The entire event graph can be found here.

50

https://realtimefeedbackmqp2019.github.io/mqp-results/

Figure 4.11: Event graph showcasing when decisions were made by different playtesters on their
last playthrough of the game (D3). To view the graph in a bigger window with full interactivity,
click here.

Figure 4.12 below shows a zoom-in of the functionality of the event graph when navigating

to the link provided above. When hovering any point (decision) in any playtester’s timeline, a

small box listing what age the player was in, at what time the decision was made (in seconds),

and the amount of almost every statistic they had at the time is detailed. This makes it possible

to observe specific details about player choices at any point in time.

Figure 4.12: Zoom in of the event graph hovering over a specific decision, revealing the age, time,
and some of the statistic values recorded (D3).

There are a few key observations that can be drawn from the event graph in terms of time

management in the game. One obvious thing to note is that some players made decisions more

quickly than others, which confirms the variety of responses we got from players before with the

graphs and quotes about having enough time. However, we noticed this difference especially after

the start of the second age. To highlight an example, Figure 4.13 shows just how much more

time playtester 9 took to make some of their decisions than playtester 8 did by comparing the

first few ages in their gameplay. Playtester 9 had large gaps of time in between finishing the first

age and deciding on the second age, and they hadn’t even finished the second age by the time

playtester 8 finished the third age.

51

https://realtimefeedbackmqp2019.github.io/mqp-results/

CHAPTER 4. RESULTS

Another interesting thing to note is that some of the playtesters shown here did not complete

the game on their last run through. Specifically, a few of them lost the game at the end of the

first age. As clearly shown in Figure 4.14 below, playtesters 2 and 3 ran out of hunger curiously

right in between the first and second ages during their final experience with the game. Playtester

6 also lost the game at that same spot, although it is not shown in the figure. However, notice

the exact times at which those three players made decisions are not the same, so the amount of

time they had to make the decisions may not have been as much of a factor as one would initially

believe.

One final observation to make is that on their last gameplay session, a player (playtester

0) who was skillful in using JavaScript decided to experiment with the automation function.

This playtester wanted to explore the automation to its fullest and used it to run the choose()

command automatically. We did not expect players to use the automation functionality for this,

and were very surprised to find that the method essentially broke the game. Playtester 0 was

able to zoom through all 20 prompts and finish the game in less than 30 seconds, as seen in

Figure 4.15 below.

Figure 4.13: Comparison from the event graph between playtester 8 and playtester 9’s time spent
making decisions. Pay particular attention to the large gaps in time found in playtester 9’s data
(D3).

Figure 4.14: Close up of the event graph showing the last runs of both playtesters 2 and 3.
Interestingly, they both received a game over after finishing the first age (D3).

52

Figure 4.15: Playtester 0, a player who went out of curiosity and automated the choose() function.
The game ended in less than 30 seconds, and all statistics stacked upon each other (D3).

Finally, based on all the data we gathered from players in terms of their performance, their

understanding of the visual feedback, and their ability to manage time, we could gauge their

overall enjoyment of the game and its mechanics. We asked players directly in the surveys how

they would describe their gameplay experiences, and these are some of the responses we received:

• “I had a good experience overall. The visuals were good. I liked the simplicity in terms of

keeping the game to a down-scrolling text game. The buckets/bins showing the levels for

each stat could’ve been bigger though. The icons for each stat are also hard to see in the

persistent status bar."

• “The gameplay was okay. I personally think that the timer is way too short for someone to

actually fully experience the game. For me, I skipped reading a lot in order to make my

next choice by the time the timer ran out. When I tried to do automated functions I ran out

of time. I did much better in the game by not using automated things.”

• “It felt like a programming environment. I liked the dark theme. Sometimes I wished the

text was smaller or there was less text. I also think additional space between the output

and prompt are needed. eat() & secure() should be required to type in each time and be

cleared from the prompt.”

• “I thought it was a really cool concept. I wished there were some more graphics, but because

it’s a coding based adventure game, I understand why there’s less visuals.”

• “The game was fun, the options were simple but diverse enough to think about each choice

a bit. The visuals helped understand the health but my main focus was on the timing bar

at the bottom of the screen.”

Each player had their own level of enjoyment from the game, similarly to how varied the

rest of our results were. Some players were able to manage time better than others, some were

more informed of the impact their decisions had on the remaining time in the game, and some

players experimented with different techniques that we did not even think of ourselves. Since

there were so many tools at the player’s disposal within the game, they each had their own

unique experience and therefore enjoyed the game to a different degree than others. Based on

the information presented here, we can make several predictions and theorize why the gameplay

experiences for each player ended up the way they did.

53

C
H

A
P

T
E

R

5
DISCUSSION AND CONCLUSIONS

5.1 Discussion

Based on the gameplay results gathered from all of our playtesters, it is clear to see that

each player had a different experience within the game. Formulating all of the graphs from

the collected data revealed just how mixed the results were. In almost every category, player

opinions were either quite positive or fairly negative, and the quantitative data was evenly split

between higher and lower values. Therefore, as an overall statement, we can assume that our

implementation of the game was not the most effective, but that is not to say the visuals did not

assist the players in making informed decisions.

Many players were able to progress through the game, although most gameplay sessions

ended in a game over. With each successive age, less and less decisions were recorded since more

and more players were losing the game and not progressing. During our playtesting sessions, we

observed that many first-time playthroughs of the game resulted in a game over within the first

few prompts. This seemed to be mostly because the players had a hard time understanding the

mechanics of the game within the time limit at first. However, when players restarted the game,

in general they got closer to the end, and most players completed the game before the end of each

session. Although it was not our original intention when designing the game, Coding Through the

Ages ended up requiring several tries to master, and this may suggest that more game balancing

was needed.

Going into further detail about each statistic, the hunger statistic distribution remaining

54

5.1. DISCUSSION

relatively the same shape across each age implies that players were able to manage it quite

consistently. Once players understood that the hunger bar reaching 0 meant game over, it seems

that they kept an eye especially on that hunger bar in the visual and did not let it get too low. As

we observed during our playtesting sessions, some players would eat whenever they had food and

their hunger was not at the maximum, and others would play a riskier game and let the hunger

get really low before spamming the eat() command. The red coloring, positioning, and relatively

fast decrease of the hunger bar may have allowed players to pay attention to the current status

of their hunger, as Figure 5.1 below illustrates.

Figure 5.1: The hunger bar was intentionally designed to keep players’ attention the most out of
any statistics, as it was the first bar in the visual and also colored a deep red.

There was much less consistency with the population, military, and science statistics, es-

pecially since those values were affected by the decisions chosen by the player. It is difficult

to say based on the box-and-whisker plots whether or not the players used the bar visuals to

intentionally choose certain stats over others. On average, however, science was quite high for

most players while both military and population were varied depending on the decisions made.

This could mean either players prioritized science or the decisions in the game favored science too

much and were not fully balanced. There were a few possible decisions throughout the game that

increased science by a large amount, so it is definitely possible that each player just happened

to choose those options without any true intention of increasing science. Figure 5.2 shows an

example of change indicators showing how science could drastically increase while population

and military did not change by much.

Figure 5.2: An example of an option where science would increase by a lot by military and
population would not, which could have biased recorded science values due to less balancing in
the game.

We can make a fairly accurate statement about the distribution of security values though.

Almost consistently for every player over the course of the game, security was kept in the upper

range from 3 - 5. This likely means that the prompts alerting the player to increase security

when they were allowed to did indeed work, especially with the blue color coding to differentiate

it from the rest of the in-game text. We cannot definitively claim that players understood what

keeping security high actually did within the game (especially because several players claimed

55

CHAPTER 5. DISCUSSION AND CONCLUSIONS

they didn’t understand it), but they were able to recognize that it was an aspect to keep a close

eye on. Figure 5.3 shows an example of how the blue security text would cause a player to want

to increase security right away with the secure() command.

Figure 5.3: An in-game scenario that we noticed many times during playtesting, where a user
would instinctively use the secure() command right after seeing the blue text appear.

So the question still remains: did the visuals help the player make informed decisions in the

game? The short answer is that they did in some areas and not in others. The fact that every

player was a computer science major and that most were already familiar with some amount

of visual feedback obviously helped them to ascertain the purpose of the in-game visuals. The

most prominent visuals in the game were the bars corresponding to each statistic, so we hoped

that those visuals especially would influence each decision the players made. According to our

gathered results, most players could see how their choices affected the gameplay, which means

that they definitely noticed the inline bar visuals change with each decision made.

However, a few players mentioned in the survey responses that they were not exactly sure

what some bars were supposed to represent, and other players reported that they were choosing

between options almost randomly without even reading the prompts. Clearly the connectivity

between each bar visual and the options in each prompt was not made clear enough during

gameplay, and this affected some players more than others. Despite this, on the whole players

relied more on the bar visuals for understanding the current context of the game rather than

reading all of the text in the prompts, which in turn sped up their gameplay, so they did indeed

influence decisions made, just not to the exact degree we had hoped for.

Unfortunately, not all of the visuals in the game were utilized by the players to the extent

of the bar visuals. The sparklines especially went almost completely unnoticed. They captured

the change in each statistic over the last 5 decisions made, so they were intended to give players

some guidance in making a choice by showing the previous history of each statistic. However,

almost no players used prior statistic values to make their current decision, and we believe this

may be because the sparklines were too small and not easily distinguishable to the player. This is

further proven by the fact that no players even mentioned the sparkline visuals in the survey

responses, so they may not have even noticed them. The sparklines were finalized fairly late

into development and only a couple of weeks before playtesting, so with further refinements

they may have been a more prominent feature within the game. Figure 5.4 below displays an

56

5.1. DISCUSSION

entire screenshot of the game with the bar visuals and sparklines and highlights how small the

sparklines really are.

Figure 5.4: As is clearly (or rather not so clearly) illustrated, the sparklines are quite small
compared to other components in the game, which may have led players to overlook them.

Two other visuals that were seemingly rarely used, but more so than the sparklines, were the

change indicators on each bar (the white boxes for each bar before making a decision showing

how choosing that option will increase or decrease the bar), and the legend. There were only a

few instances where we noticed a player looking through both options for a prompt and seeing

how each bar would change before making a final decision. Most players made a decision and

executed the choose() command without considering both options, possibly because they did not

notice the change indicators. The indicators were small white outlines, and especially since the

bars themselves were limited in terms of width and height, they may have gone unnoticed. A

flashing animation above the bars may have been a better implementation of signifying a change.

Figure 5.5 shows the potential of the change indicators to show the player how options will

impact statistics, but also demonstrates how faint the lines can be.

Figure 5.5: An in-game example of the change indicators appearing when typing the choose()
command with an option specified. Notice how the white indicator lines somewhat blend with the
bars and can be quite difficult to discern.

Also, not every player remembered the legend() command, which may have been because

players did not fully take the time to understand what each bar meant, or because the legend()

command was the last command mentioned in the manual (before automation was unlocked).

57

CHAPTER 5. DISCUSSION AND CONCLUSIONS

The players who did use the legend found it to be very useful, especially with the pixelated icons

matching and color coding matching the bar visuals.

The color coding and the timer were the two visuals that players understood best. They also

happened to be the simplest, which definitely contributed to their successful interpretation by

players. The unique color for each bar in the bar visual was apparent enough so that players were

able to tell that each bar represented something entirely different. The coloring with the text

especially helped to communicate to the player if a special event within the game was happening,

such as with the blue text indicating security could be used or the yellow text explaining the

amount of automated functions a player could write. As mentioned before, the colored text within

the legend further surfaced the meaning of the bar visuals. In addition, the timer was simple and

always present at the bottom of the screen, so it clearly conveyed to players the sense of urgency

that made up the foundation of the game.

The amount of time players had was made apparent by the simplistic timer visual, but did

players feel like they had enough time to complete each task within the game? Once again, the

answer is not as simple as yes or no, as the results were fairly evenly split. Some players felt

they had enough time to do different tasks, especially making decisions, and those are more than

likely the players who claimed they were faster readers in our surveys. Others were very stressed

out by the time limit, as several of them mentioned in the survey responses, and they may have

very well been overwhelmed by the presence of the time limit within the game. Stress related

to limited time was definitely an aspect we wanted within our game, but the idea was that the

visuals would help mitigate this stress by streamlining the decision process and making it much

easier to see the effects of decision-making.

Some players took much longer to make decisions than others. As pointed out in the event

graph in the Results section, several players spent a considerable amount of time between

decisions after the end of the first age, and we believe the reason for this might be related to

automation. The automation functionality is introduced right after the first age, but when the

tutorial is displayed, the game timer pauses. Right after several players passed through the

automation tutorial and began the second age, they most likely tried experimenting with the

automation before making a decision. Other players did not do this however, and as we noticed

in the survey responses, many players felt that the automation was not explained clearly or

that they did not have enough time to stop and try messing around with it. Some players even

received a game over right after the first age, possibly implying that they tried experimenting

with automation and forgot about keeping their hunger up. Figure 5.6 below shows an example

scenario where tinkering with automation too much could result in a game over.

58

5.1. DISCUSSION

Figure 5.6: An example scenario within the game where a player could be getting used to the
automate() function and experimenting with its capabilities and not paying attention to their
hunger.

We believe the examples from the event graph where players took more time between some

decisions represent the players who experimented more with automated functions. We can

almost guarantee this is the case for the first playtester in the event-timeline graph, where they

completed the game in record time, and many of the recorded decision points appeared to overlap

within tiny increments of time. We had one of our players actually automate the choose command

(executing choose(1) whenever they could), and we believe that run is shown as the first entry

in the event graph. The automation was a bit confusing for some people, as it could’ve been

explained better, but for those who did use it we can tell that overall their gameplay session was

longer due to less time-related stress.

Many players were frustrated with what little time they had to complete each task, and many

especially felt they did not have enough time to try automation or to read each individual prompt.

However, that did not mean they did not enjoy the game. We got many positive responses from

players explaining that the game was a really neat concept and that in general they understood

how the visuals worked within the game. Some people even mentioned wanting more visuals to

refine the gameplay process even more. Even though we developed a unique and fun computer

game with semi-effective visual annotations in Coding Through the Ages, there are plenty of

tweaks and additional elements that could be incorporated to create a more enjoyable player

experience.

59

CHAPTER 5. DISCUSSION AND CONCLUSIONS

5.2 Recommendations

As we developed Coding Through the Ages, we had many creative ideas that we unfortunately

did not have the time or resources to implement within the game. Some of these features include

the following:

• Branching story paths

• Official experimental setup

• Prompt parsing

• More automation functionality

Branching story paths was something we planned on including from the very beginning.

We envisioned a player following a different sequence of prompts depending on the decision

they chose, so the changes in statistics would not be the only difference between options when

responding to a prompt. Eventually, the story paths could converge to prevent too many different

endings from needing to be within the game. This would be extremely easy to implement, as

the prompts for the game are stored in a JSON object, and each prompt has a field for which

prompt to go to next. Any future developer could simply add a new prompt into the correct age

and specify the name of that new prompt as the destination. Figure 5.7 below shows a very

simple diagram with an idea for diverging and converging story branches.

Figure 5.7: Diagram showing an example of branching story paths based on the decisions made
by a player.

Originally, we wanted to set up an actual experiment for our game, where different versions of

the game had varying amounts of visual information presented to the player. One version would

have no visuals and only rely on reading the prompts, another version had a limited amount

of visuals where the user could be told which stats would change from there decisions, but not

by how much, and one final version with full visuals that would have been very similar to our

60

5.2. RECOMMENDATIONS

current game. We planned on doing in-person testing as well as crowdsourcing (the crowdsourcing

research can be found in Appendix D). However, due to time constraints, the drastic gameplay

effects with a lack of visuals, and COVID-19, we decided to focus on just creating an enjoyable

game with a maximum amount of visual annotations and hold playtesting sessions remotely.

This is something that could definitely push our game and visual feedback research forward, as it

would be possible to directly show how players performed with visuals as compared to without.

An extremely simple diagram detailing different experimental groups for different versions of

our game is shown in Figure 5.8 below.

Figure 5.8: Very simple diagram of ways to make different versions of our game in an experimental
procedure.

Although one of the main intentions of the bar visuals was to decrease the amount of time

players needed to spend reading the prompts, we had originally wanted the prompts to play

more of a role in the game. One idea we had that would’ve been interesting was the ability to

parse the prompts - essentially pick out keywords from the prompt descriptions or options and

make a decision based on the words picked. For example, as shown in Figure 5.9 below, the word

“hunt” is mentioned, which implies that food will be gained for whatever option that word occurs

in. In this case, both options have it, but players would parse the prompt with an automated

function, check to see which option has the word “hunt” or another food-related word, and make

the decision based on that. Other keywords would be available as well if players wanted to

prioritize decisions for other statistics.

Figure 5.9: Example of possibly including parsing prompts to make decisions. In this case, the
player could look for a word such as “hunt” to make decisions based on increasing food.

While on the topic of automation, a majority of the players used the automation function

purely for calling the command eat() repetitively so they would not have to worry about getting

61

CHAPTER 5. DISCUSSION AND CONCLUSIONS

their hunger too low. This also happened to be the example provided in the automation tutorial,

and many players copied and pasted the example for their own use. Many of them commented in

the survey responses that they could not think of any other uses for automation besides using

the eat() command when hunger was low enough. Extending this functionality to other areas of

the game besides the built-in commands and letting users write their own functions or create

their own variables would make the automation be an even more user-friendly and experimental

tool to utilize to the player’s advantage.

While we had several of our own ideas on how to add the Coding Through the Ages, our

playtesters also had a few ideas on things we could add or improve upon. Some of these ideas

include the following:

• “Maybe the legend could be on the side with the labels. Maybe that will make legend()

command useless but it would be more user-friendly.”

• “Since I am fairly familiar with using command line, I often expected the instruction I

wrote to disappear, and to be able to make it reappear by using the up arrow key. Tab

complete would be nice also.”

• “I think a tutorial round where you actually type out each of the functions would be nice. I

think the green and yellow [text colors] were fine. It would be nice to have maybe an API

type thing at the top of the screen.”

If the player needs to understand in text what each icon and color in the bar visuals actually

means, they need to call the legend() function. This presents some usability issues, as a few

players noted, since it requires the player to type another command to display. Originally, we had

thought of having a “cheat table” with brief explanations of the commands and statistics on the

side of the interface, which would also contain the legend. This would allow players to look up

the meanings of each statistics and command without being interrupted from flow of the rest of

the game. Other improvements to the visuals, such as increasing the height for the bar visuals

and using more color coding with aspects like the change indicator, could augment the game even

further.

The other major change players suggested was making the game more like an actual command

line. The eat() and security() commands did not disappear after typing them and hitting enter,

like most commands in a terminal would. The choose() command did disappear, but the reason

eat() and security() didn’t was so players could repeatedly execute them without having to retype

them. Having other pieces of functionality like hitting the up arrow to reuse a previously-typed

command and having a “cheat sheet” on screen to access as a mini API could further immerse the

player in the game experience and make them feel as though they were interacting with an old

computer terminal.

62

5.3. SUMMARY

Many additional components have the potential to make Coding Through the Ages an even

more special experience. Some can be incorporated to improve the clarity in visuals, some can

further envelop the player in the game’s narrative, and some can be general bug fixes that would

make the gameplay experience slightly less cumbersome. Despite the benefits these additions

would serve, the game we ended up creating seemed to meet our overall goals.

5.3 Summary

With this project, we set out to develop a coding-based game with visual annotations that

would help the player make informed decisions throughout the course of the game. We feel that

we accomplished this goal with all of our visuals, especially the bar visuals, timer, and colored

text. Although many players did not even notice the sparklines, change indicators, and legend()

command visuals, all of the data we gathered and visualized along with survey responses proved

that the combination of all the visuals helped players with both time and resource management

to some degree.

There is still so much to explore within the area of visual feedback in games, and it’s surprising

that not many examples besides the ones mentioned in our background research don’t utilize the

true capabilities of these types of visuals. There is so much potential for coding-based games with

inline visual annotations, and the different possible applications for that kind of research seems

endless. With careful planning, multiple iterations of design and implementation, and observant

testing, we were able to scratch the surface of what could be a very unique genre for gaming and

even programming itself.

If you enjoyed what you read, click here to try Coding Through the Ages for yourself.

63

https://realtimefeedbackmqp2019.github.io/TextAdventure/

APPENDIX A: SURVEY QUESTIONS

The following pages are the survey that we had playtesters fill out at the end of their session.

They contain both multiple choice and free response questions about background and game

experience, specifically regarding the visuals. The UUID at the end of the survey was randomly

generated and and not editable by the user. This was used to link the survey responses to the

player’s last run of the game, which had the same UUID.

i

5/15/2020 Real-Time Feedback in Coding Based Games

https://docs.google.com/forms/d/1UZ7SP-sjJWDe9gYaVB_VdpRsmiXOpdMKzE509hoLEUA/edit 1/5

Skip to question 1Skip to question 1

Background
Experience

Please answer the following questions honestly and to the best of your
ability.

1.

Mark only one oval.

None

Beginner (very basic programs, not too much coding experience)

Intermediate (more complex programs, good amount of coding experience)

Expert (advanced programs / software, lots of coding experience)

2.

Mark only one oval.

I am a very slow reader, I need to take my time.

I read at a reasonable pace and can get the gist of text fairly quickly.

I am a fast reader, I can skim text and understand it clearly.

Real-Time Feedback in Coding Based
Games
In this survey, you will be prompted with several questions regarding your background skills and
your gameplay experience. The survey should take only a few minutes to complete. Click Next to
start the survey.

What is your programming skill level?

How fast of a reader are you?

5/15/2020 Real-Time Feedback in Coding Based Games

https://docs.google.com/forms/d/1UZ7SP-sjJWDe9gYaVB_VdpRsmiXOpdMKzE509hoLEUA/edit 2/5

3.

Mark only one oval.

I do not work well under pressure, I get too stressed out.

I can perform fairly well under pressure, with some very minor setbacks.

I can still complete tasks extremely well under pressure.

I work better under pressure than without having some constraint.

4.

Mark only one oval.

I had no idea visual feedback existed in the context of programming.

I only knew a little bit about visual feedback, such as color coding in coding
environments.

I've seen and/or utilized several instances of visual feedback while coding, similar to
the ones found in this game.

Skip to question 5

Gameplay
Experience

Please answer the following questions honestly and to the best of your
ability.

5.

Mark only one oval.

Strongly disagree

1 2 3 4 5

Strongly agree

How well would you say you perform under pressure?

Before playing the game, how familiar were you with visual feedback while
programming?

The instructions / explanations / tutorial provided me with enough information to
understand all aspects of the game.

5/15/2020 Real-Time Feedback in Coding Based Games

https://docs.google.com/forms/d/1UZ7SP-sjJWDe9gYaVB_VdpRsmiXOpdMKzE509hoLEUA/edit 3/5

6.

Mark only one oval.

Strongly disagree

1 2 3 4 5

Strongly agree

7.

8.

Mark only one oval.

Strongly disagree

1 2 3 4 5

Strongly agree

9.

Mark only one oval.

Strongly disagree

1 2 3 4 5

Strongly agree

I had enough time to complete different tasks in the game, such as making
decisions, checking the manual, and creating automated functions.

Did you feel comfortable coding in the environment provided in the game, or were
there any restrictions that bothered you? Please explain.

I had a good understanding of how each resource changed over time.

It was clear to see the results of my decisions and how they affected the overall
gameplay.

5/15/2020 Real-Time Feedback in Coding Based Games

https://docs.google.com/forms/d/1UZ7SP-sjJWDe9gYaVB_VdpRsmiXOpdMKzE509hoLEUA/edit 4/5

10.

11.

Mark only one oval.

Rarely

1 2 3 4 5

Always

12.

13.

Skip to question 14

ADMIN
ONLY

If you are not an admin, do not change this field. This question will be automatically entered
as the player goes from the game to this survey. This will allow the player's game data to be
linked to their responses here.

Did you feel that the results of your decisions were fair, and did they make sense in
the context of the story? Please explain.

How often did you look at past decisions to influence your current choice?

Briefly, how would you describe your overall gameplay experience, especially in
regards to the visuals?

Did you discover any bugs with the game? Please describe them in detail.

5/15/2020 Real-Time Feedback in Coding Based Games

https://docs.google.com/forms/d/1UZ7SP-sjJWDe9gYaVB_VdpRsmiXOpdMKzE509hoLEUA/edit 5/5

14.

This content is neither created nor endorsed by Google.

UUID

 Forms

APPENDIX B: STUDY PROTOCOLS

The following pages are for the study protocol we made when submitting our playtesting

proposal to the IRB. It outlined the premise of the game, our playtesting setup and procedure,

and what data we would be collecting from players.

vii

Realtime Feedback in Coding-Based Games
Standard Playtesting Protocols

Game Summary:

In this coding-based simulation game, the player must type code to make decisions to
balance different resources such as hunger, population, and science that they are trying to
manage. The game sees the player go through an entire timeline of human history, starting with
the prehistoric era and ending in a futuristic age. Within each age, the player is presented with a
challenge that they must solve by choosing one of two options, and each option will change the
amount of resources they have in different ways. The player can code different commands to
control the game, such as choose() to make a decision, eat() to eat a piece of food to keep their
hunger up, and secure() to raise the security of the system they are coding with. There is also a
special command called automate() that allows players to code functions that are run depending
on the conditions within the function they specify. The player wins by making it until the end of
the futuristic age, and the ultimate goal is to keep all of the resources balanced. If the player’s
hunger reaches zero before the end of the game, the game is over.

Setup:

For the experiment, we will host several sessions over Zoom to allow us to observe the
gameplay via screen sharing as the participant plays it and to hear the player’s immediate
responses to the game elements. Besides having a stable Internet connection, the only other setup
consists of electronic copies of the informed consent form to send to the participant, the link to

the website where the game is hosted, and a Google Form survey that the player will fill out at
the end of the session.

Procedure:
The general procedure of the playtesting session will be as follows:

● Players will sign up for playtesting with their emails in a spreadsheet that the hosts will
send out a week before playtesting begins.

● The hosts will send out an invitation link for the Zoom session after sign ups are
completed. The player will join the Zoom call at the time they signed up for.

● At least two group members, one to lead the session and one to take notes, will host the
Zoom session. When the player arrives, the hosts will send them an electronic copy of the
informed consent form. After reading through the document, the player can decide to
leave without signing and participating (and NOT receive the $10 eGift card), or they can
stay and provide an electronic signature at the bottom of the consent form.

● If they decide to stay, the hosts will send them the URL to the online website where the
game is hosted, and the player can begin playing. Anonymous data will be collected
during gameplay (see the Data Collection section below for more details).

● The player will be able to go through the game as many times as they like, even if they
get a game over at any point or complete the game early. The session will be a total of 30
minutes, and the players have up until 5 minutes at the end of the session to keep playing,
at which point the hosts will redirect the player to the survey. The player can also decide
to skip directly to the survey at any point when the game ends (game over or winning).

● When they finish their game session, the player will complete the anonymous survey,
which consists of questions about the game mechanics and their experience playing the
game.

● Before leaving the playtesting session, the host will describe the next steps in terms of
receiving compensation. Later that day after the session, an email will be sent to the
player thanking them for testing the game. By early May, they will receive another email
with a $10 Amazon eGift card. The player will then leave the session.

Data Collection:
We will collect the following data from each player during the course of the game:

● The time for each player to make each decision
● The values of each statistic made at each decision and at the end of each age
● Think-aloud notes during the game session
● An anonymous, unique user ID generated by the program

We will also be asking questions in the surveys about topics such as coding ability,
opinions on inline visuals in coding, and if the game was enjoyable. We will NOT be collecting
any sensitive data that can be directly linked back to any individual, except for the player’s
email. The email will be used for sending out Zoom invitation links after signing up, when we
send an email thanking the player for participating after the sessions that day, and when sending
an email by early May with their $10 Amazon eGift card. However, their name and email will
NOT be linked to their gameplay data and will not be collected by the program.

We will be collecting this data within a script that runs the game and sending them to a

Firebase database that we will then look through later to conduct some data analysis on and
create some charts and graphs. No personal identifiable information, such as name and email,
will be presented to the public with any of this data, so they will remain anonymous.

APPENDIX C: INFORMED CONSENT FORM

The following pages are the informed consent form that we required players to read and sign

before continuing with each playtesting session. This was required by the IRB, as even projects

involving human subjects with minimal risk must have a consent form. It details the purpose

of playtesting, the testing procedures, the risks and compensation involved, and a place at the

bottom for both the participant and host to sign.

xi

Informed Consent Agreement for Participation in Playtesting

Investigators: John Amaral, Shuxing Li, Grace Pelella

Contact Information: gr-rfinccmqp@wpi.edu

Title of Study: Real-time Feedback in Coding-Based Games

Advisors: Lane Harrison and Charlie Roberts

Introduction: You are being asked to participate in a game playtesting session. Before
you agree, however, you must be fully informed about the purpose of the study, the
procedures to be followed, and any benefits, risks or discomfort that you may experience
as a result of your participation. This form presents information about the study so that
you may make a fully informed decision regarding your participation.

Purpose of the study: The study aims to understand if players believe whether the
presence of graphical visuals allows them to fulfill the goals of the game or if they are
more distracting, as well as to observe whether the game provides an interesting and
enjoyable experience or not.

Procedures to be followed: The following steps will be conducted sequentially to
ensure a valuable experience for both the players and the host:

At the scheduled time, the player will join the Zoom link that was sent out via
email by the hosts. Once the player has joined the Zoom call, the hosts will share
an electronic copy of this consent form, and the player will read this form in its
entirety. Upon reading the form and asking the hosts any questions or bringing
up any concerns, the player can choose to no longer participate and leave the
Zoom call. However, the Amazon $10 eGift card will NOT be awarded to
players who do not sign this consent form and play the game at least once
through (either getting a game over or winning the game).

If the player does decide to stay, they need to sign this consent form at the
bottom, and the hosts must sign as well. After signing, the hosts will send the
player a GitHub pages link to the game, which will be played in a web browser of
choice. (For the best results, Google Chrome is recommended, although any other
browser is acceptable. A stable Internet connection is also necessary for data
collection.) The game will then load in the web browser, and the player will share

their screen with the hosts so the hosts can observe their gameplay. They will also
be encouraged to think aloud and describe any criticisms or observations to the
hosts as they experience the game. The player can ask questions during the game,
although the answers from the hosts may be limited to let the players discover
gameplay for themselves.

During the course of the game, the player’s gameplay data will be collected,
but it will remain completely anonymous and in no way will have any personal
identifiable information. The player will have most of the remaining 30-minute
session to play through the game. The player can restart the game as many times as
they like, and at any point they can decide to stop playing and fill out the survey.
Otherwise, once 5 minutes of the session is left, the hosts will direct the player to
the survey to have enough time to complete it.

The survey will also be anonymous, but it will have a special ID that can link it
to the previously-collected gameplay data. The player can (and it is recommended
that they do) stop sharing their screen upon completion of the survey to keep the
responses anonymous. Once the player submits the survey, the hosts will inform
them of two emails being sent to them: one later that day thanking them for their
playtesting participation, and another email with their awarded $10 Amazon eGift
card that will be sent out by early May. After this brief summary, the player can
leave the session.

Risks to players: Although there are no major risks to players during this game,
they will need a good Internet connection to be able to participate. Having a
stable Internet connection will ensure that the player can share their screen over
Zoom and play through the game at least once while their data is being collected so
they can be awarded the $10 Amazon eGift card via email by early May.

Benefits to players and others: The player will receive a $10 Amazon eGift card in
an email sent out by early May, and they may also gain some useful programming
skills by participating in the playtesting session. The $10 Amazon eGift card will
only be emailed if the player completes the experiment by playing through the game
at least once (whether winning the game or receiving a game over).

Record keeping and confidentiality: All data recorded will be anonymous. Only the
game developers will have access to the exact data collected during and after the
platesting session. The data will be stored in a cloud database that is only accessible to
the developer team. Records of player participation in this study will be held confidential

so far as permitted by law. The study investigators, the sponsors under certain
circumstances, the Worcester Polytechnic Institute Institutional Review Board (WPI IRB)
will be able to inspect and have access to player data that does not identify the player by
name.

However, we will be collecting the name and email of each player during the
playtesting session, only for the purposes of playtesting session signups, sending a
confirmation email after the session thanking the player for their time, and sending
another email by early May with the $10 Amazon eGift card. The IMGD department in
charge of funding may also need to know the emails to have the eGift cards properly
distributed. However, any publication or presentation of the data will NOT identify
the player.

Compensation or treatment in the event of injury: The playtesting session does not
have any physical risk to the participants. The player does not give up any of their legal
rights by signing this statement. If an unpredicted impact in Internet connection occurs
during the session, if the player already played through the game at least once, they will
still receive the $10 Amazon eGift card via email by early May. However, if an
interruption early on in the session prevents any data from being collected and prevents
the player from completing the game even once, the hosts will NOT compensate the
participant with the gift card. This makes the necessity for a stable Internet connection all
the more important, and that should be carefully considered before signing below.

Cost/Payment: The playtesting session will not cost any money to participate in, but
there will be a $10 Amazon eGift card sent in an email to all participants by early
May (upon completion of the game once, whether by receiving a game over or
winning the game).

For more information about this research or about the rights of research
participants, or in case of research-related injury, contact:

Developer contact: gr-rfinccmqp@wpi.edu
IRB Manager: Ruth McKeogh, Tel. 508 831- 6699, Email: irb@wpi.edu
Human Protection Administrator: Gabriel Johnson, Tel. 508-831-4989, Email:
gjohnson@wpi.edu

Your participation in this playtesting session is voluntary. Your refusal to participate
does mean that you will not receive the $10 Amazon eGift card, but there is no other
penalty to deciding not to participate. You may also decide to stop participating in the

session at any time, but as previously stated, you will NOT receive the $10 eGift card
unless you complete the game once, whether ending by game over or by winning. The
project investigators retain the right to cancel or postpone the session at any time they
see fit. However, if it is done during the session and the player has gone through the
game at least once (and some of their data has been collected), the player will still
receive the $10 eGift card.

By signing below, you acknowledge that you have been informed about and consent to
be participating in the playtesting session described above. Make sure that your questions
are answered to your satisfaction before signing. You are entitled to retain a copy of this
consent agreement.

______________________ Date: ________________
Study Participant Signature

Study Participant Name (Please print)

____________________________________ Date: ________________
Signature of Person who explained this study

APPENDIX D: CROWDSOURCING

The following writing was originally part of our Background section, as earlier we intended to

utilize crowdsourcing in an online experiment setup. However, due to wanting to move towards

playtesting rather than an official experiment, we took the research out of the Background and

placed it here.

Experimentation is an absolutely necessary step in justifying a hypothesis, and acquiring

meaningful results is the backbone of successful experimentation. Classic experiments utilized

in-person studies to directly gain feedback from participants as the study was conducted, and

many experiments today still use this method. It can be very reliable in terms of obtaining

immediate user feedback by having the user “think aloud” as he or she is going through the

experiment. However, this method is not cost or time effective: several expenses are needed to set

up the experiment in-person, and enough time has to be spent on each participant completing a

set number of tasks for the experiment.

The method of crowdsourcing aims to reduce these issues in experimentation. Crowdsourcing

is an online method of receiving feedback from a wide range of users. Through crowdsourcing,

the cost for experimentation is reduced significantly: instead of paying for physical equipment or

hiring professionals, as they are no longer needed, the cost is mainly spent on paying the study

participants for completing assigned tasks. Time is also not an issue, as most experiments are

broken down into sub-tasks that can be completed in a matter of minutes, and infinitely many

participants can complete the same task at once [13].

There are a few drawbacks to crowdsourcing, however. As Judith Aquino notes in her observa-

tions of crowdsourcing, there are two potential problems that can be introduced: lack of in-person

communication and lack of credible results. Experiments that are best conducted with immediate

feedback from participants may not suit the crowdsourcing formula too well, as human to human

interaction can be quite limited online. Also, since crowdsourcing enables many more users to

participate in a study, there is a larger focus on quantity over quality, meaning there could easily

be some questionable responses / feedback mixed in with actual good results [16].

Depending on the type of study being conducted, the pros of crowdsourcing may outweigh

xvi

the cons. For instance, Jeffrey Heer and Michael Bostock held an online graphical perception

experiment using Amazon Mechanical Turk. MTurk allows results to be collected from a “global

workforce” consisting of people called “Turkers” to complete each sub tasks in a study. For each

sub task completed, a Turker is paid a certain amount of money determined by the organizers of

the study, usually around 10 cents per task. Figure 10 below shows a sample screenshot from

Amazon Mechanical Turk [13].

Figure 10: An example screenshot from Amazon Mechanical Turk [13].

Heer and Bostock found that crowdsourcing greatly reduced the cost of experimentation,

promoted a faster completion rate of experiment tasks, and allowed for a more diverse pool of re-

sponses. Their experiments consisted of comparing differences in the visual spacing, contrast, and

size of all elements of graphs. Heer and Bostock replicated a previous study that was originally

completed in-person and compared their crowdsourcing results to the original study. Figure 11
below shows an example of one of the experiments that Heer and Bostock conducted [13].

xvii

APPENDIX D: CROWDSOURCING

Figure 11: An example of one of Heer and Bostock’s experiments where different screen webpage
layouts were tested [13].

Surprisingly, most of their results were similar to those of the original study, and in some

cases the variation in results was even less than the original study. Overall, they discovered that

crowdsourcing was an extremely viable method of conducting studies, and in combination with

traditional, in-person studies could lead to very important results [13].

There are many other crowdsourcing options to choose from besides MTurk, as crowdsourcing

has become much more popular in recent years. Another popular crowdsourcing platform is

Prolific [14]. Prolific is similar to MTurk in that there is a collective group of workers dedicated

to completing studies online. However, unlike MTurk, Prolific has multiple payment options

and does not pay per subtask of a study. Prolific allows either hourly payment, in which it

suggest 6.50 per hour, or payment per study. Payment per study depends upon the number of

participants required and the estimated time for each participant to complete the study, which

can be calculated on the Prolific website. For instance, for 50 participants and 1 minute for each

to complete the study, the estimated cost is 7.34 per study. Prolific is slightly more expensive

than MTurk overall, but it claims to have even higher quality results due to verification and

monitoring of participants. Figure 12 shows a sample screenshot from Prolific’s website.

xviii

Figure 12: A sample screenshot from Prolific [14].

Since crowdsourcing has become an extremely promising method of gathering experiment

results in recent years, the options for crowdsourcing has also increased. Almost everyone has

access to the Internet, and when in-person equipment and people are not accessible, crowdsourc-

ing provides an easy way to collect lots of results with a certain degree of quality. These results

can be gathered at relatively low costs in a short amount of time. Although there may be lesser

quality in results and a lack of person-to-person communication with crowdsourcing, on its own

it is still an effective way of gathering data, and in combination with in-person studies can lead

to impressive results.

xix

BIBLIOGRAPHY

[1] A. Sorensen, “Impromptu heads up display,” jun 2011. [Online]. Available: https:

//vimeo.com/25699729

[2] F. Lantz, “Universal paperclips,” Online Browser Game, 2017. [Online]. Available:

https://www.decisionproblem.com/paperclips/index2.html

[3] B. Victor. (2012, sep) Learnable programming. [Online]. Available: http://worrydream.com/#!

/LearnableProgramming

[4] C. Roberts. (2018, nov) Realtime annotations & visualizations in live coding performance.

[Online]. Available: https://charlieroberts.github.io/annotationsAndVisualizations/

[5] D. Digital, “Reigns,” Video Game, aug 2016.

[6] J. Hoffswell, A. Satyanarayan, and J. Heer, “Augmenting code with in situ visualizations

to aid program understanding,” University of Washington, Standford University, Tech.

Rep., apr 2018.

[7] Light Table, Kodowa Inc., 2014.

[8] B. Swift, A. Sorensen, H. Gardner, and J. Hosking, “Visual code annotations for cyberphysical

programming,” in 2013 1st International Workshop on Live Programming (LIVE), 2013,

pp. 27–30.

[9] Infocom, “Suspended,” Computer Game, 1983.

[10] (2020) Codingame. [Online]. Available: https://www.codingame.com/start

[11] Apple. (2020) Swift playgrounds. [Online]. Available: https://www.apple.com/swift/

playgrounds/

[12] Microsoft, “Kodu game lab,” Computer Program, 2018.

[13] J. Heer and M. Bostock, “Crowdsourcing graphical perception: Using mechanical turk to

assess visualization design,” Stanford University, Tech. Rep., apr 2010.

xx

https://vimeo.com/25699729
https://vimeo.com/25699729
https://www.decisionproblem.com/paperclips/index2.html
http://worrydream.com/#!/LearnableProgramming
http://worrydream.com/#!/LearnableProgramming
https://charlieroberts.github.io/annotationsAndVisualizations/
https://www.codingame.com/start
https://www.apple.com/swift/playgrounds/
https://www.apple.com/swift/playgrounds/

BIBLIOGRAPHY

[14] (2020) Prolific. [Online]. Available: https://www.prolific.co/

[15] M. Haverbeke, CodeMirror, apr 2020.

[16] J. Aquino, “The pros and cons of crowdsourcing,” CRM Magazine, vol. 17, p. 30, feb 2013.

xxi

https://www.prolific.co/

	List of Figures
	Executive Summary
	Introduction
	Background
	Understanding Programming
	Annotations
	Real-time Feedback
	Simulation and Resource-Management Games
	Universal Paperclips
	Suspended
	Reigns

	Educational Coding Games
	CodinGame
	Swift Playgrounds
	Kodu Game Lab

	Methodology
	Brainstorming
	Design
	Implementation
	Testing
	Setup
	Procedure
	Data Collection

	Results
	Discussion and Conclusions
	Discussion
	Recommendations
	Summary

	Appendix A: Survey Questions
	Appendix B: Study Protocols
	Appendix C: Informed Consent Form
	Appendix D: Crowdsourcing
	Bibliography

