
Side-Channel Attacks on Intel SGX:
How SGX Amplifies The Power of Cache Attacks

by

Ahmad Moghimi

A Thesis

Submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

In partial fulfillment of the requirements for the

Degree of Master of Science

in

Computer Science

by

April 27, 2017

APPROVED:

Professor Thomas Eisenbarth, Major Thesis Advisor

Professor Robert Walls, Thesis Reader

Professor Craig E. Wills, Head of Department

Abstract

In modern computing environments, hardware resources are commonly shared, and
parallel computation is more widely used. Users run their services in parallel on
the same hardware and process information with different confidentiality levels ev-
ery day. Running parallel tasks can cause privacy and security problems if proper
isolation is not enforced. Computers need to rely on a trusted root to protect the
data from malicious entities. Intel proposed the Software Guard eXtension (SGX)
to create a trusted execution environment (TEE) within the processor. SGX allows
developers to benefit from the hardware level isolation.

SGX relies only on the hardware, and claims runtime protection even if the OS
and other software components are malicious. However, SGX disregards any kind of
side-channel attacks. Researchers have demonstrated that microarchitectural side-
channels are very effective in thwarting the hardware provided isolation. In scenarios
that involve SGX as part of their defense mechanism, system adversaries become
important threats, and they are capable of initiating these attacks.

This work introduces a new and more powerful cache side-channel attack that
provides system adversaries a high resolution channel. The developed attack is able
to virtually track all memory accesses of SGX execution with temporal precision.
As a proof of concept, we demonstrate our attack to recover cryptographic AES keys
from the commonly used implementations including those that were believed to be
resistant in previous attack scenarios. Our results show that SGX cannot protect
critical data sensitive computations, and efficient AES key recovery is possible in
a practical environment. In contrast to previous attacks which require hundreds of
measurements, this is the first cache side-channel attack on a real system that can
recover AES keys with a minimal number of measurements. We can successfully
recover the AES key from T-Table based implementations in a known plaintext and
ciphertext scenario with an average of 15 and 7 samples respectively.

1

Acknowledgements

I would like to express my deepest acknowledgement to my advisor, Prof. Thomas
Eisenbarth, for his professional tutoring and close collaboration during this research
project. His support during every step of this work made this master thesis less
challenging and more enjoyable. It was a great experience, and I am honored to
continue to work with him.

I also want to thank my thesis reader, Prof. Robert Walls, for his time and
attention and notable comments on the authorship of this work. I would like to
thank my department head, Prof. Craig Wills, for his support on pursing this
valuable degree.

I would like to give my kindest regards to Gorka Irazoqui Apecechea, Joshua
Pritchett, Curtis Taylor, Hang Cai, Amit Srivastava, Berk Gulmezoglu, Mehmet
Sinan Inci, Mohammad Essedik Najd and Okan Seker for creating a friendly and
joyful environment here in WPI.

I would like to thank my father Mohammad-Hassan, my mother Zahra, my
brother Amir and my sister Maryam. They have always supported me throughout
the course of life. At the end, thank you to Nathalie Majcherczyk, for all of her love
and support.

Part of this work are currently under submission at a peer-review venue, with a
preprint available as CacheZoom [42].

2

Contents

1 Introduction 7
1.1 Motivation . 7
1.2 Contribution . 8
1.3 Outline of the work . 9

2 Background & Related Work 10
2.1 Intel SGX . 10

2.1.1 Memory Encryption Engine (MEE) 11
2.2 Cache Memory . 12

2.2.1 Cache Addressing Schema . 14
2.2.2 Cache Coherency and Replacement policy 14

2.3 Microarchitectural Attacks in SGX 15
2.3.1 Prime+Probe . 16

2.4 Side-Channel Attacks & SGX . 17

3 Cache Side-Channel Attack on SGX 20
3.1 Attack Design . 20

3.1.1 Adversarial Model . 20
3.1.2 Cache Partitioning & Noise Reduction 21
3.1.3 Step by Step Execution . 22
3.1.4 Summary . 23

3.2 Attack Implementation . 23
3.2.1 Eviction Set . 24
3.2.2 Noise Reducing Configuration 25
3.2.3 Malicious Kernel Driver . 27

4 AES in Practice 28
4.1 T-Table Implementations . 29
4.2 Non-vulnerable Implementations . 30
4.3 Table Prefetching as a Countermeasure 30
4.4 Susceptibility to Cache Attacks . 31

3

5 AES Key Recovery Attack 33
5.1 Channel Measurement . 33

5.1.1 Experimental Setup . 33
5.1.2 Eviction Set Quality . 34
5.1.3 Channel Bandwidth . 35

5.2 AES T-Table KPA Attack . 36
5.2.1 Cache Prefetching . 39

5.3 AES T-Table KCA Attack . 40
5.3.1 Last Round Attack on T-Table 40
5.3.2 Last Round Attack Improvement 41

5.4 AES S-Box KCA Attack . 43

6 Conclusion 47

4

List of Figures

2.1 Enclave Memory Access . 11
2.2 Enclave Attack Surface . 12
2.3 MEE Operation . 13
2.4 Memory hierarchy of a modern computer 14
2.5 L1D Cache Addressing Schema . 15

3.1 Isolated Core-private Channel . 22
3.2 Initialized pointers to chase . 24

4.1 Prime and Probe Prefetching Timeline 31

5.1 Eviction cycle count . 34
5.2 Average Eviction Noise . 34
5.3 Cache Hit Map . 35
5.4 Cache Hit Map (Filtered) . 35
5.5 AES Memory Footprint . 37
5.6 First round attack key recovery success rate. 38
5.7 First round attack correct recovered key bits. 39
5.8 AES Memory Footpring with Prefetching 40
5.9 Last round attack recovered key bits. 41
5.10 Last round attack key recovery success rate. 42
5.11 Correlation between observed cache accesses and predicted accesses . 44
5.12 Correlation over key value . 45

5

List of Tables

2.1 Comparison of different side-channels against enclave 16

5.1 Statistics on recovered memory accesses for T-table implementations. 39

6

Chapter 1

Introduction

1.1 Motivation

In the world of parallel and distributed computing, processes with various trust
and criticality levels are allowed to run at the same time and share system re-
sources. Proliferation of cloud computing technology elevated these phenomena to
the next level. Cloud computers running many different services authored by various
providers process user information on the same physical hardware.

Traditionally, the operating system (OS) provides security services such as access
control, encryption and authentication to isolate concurrent tasks from interfering
with data and computation of other tasks. The dependence of various computation
units i.e., threads, processes, etc. on a privileged root of trust realizes the concept
of Trusted Computing Base (TCB) on the OS. In cloud computing, hypervisor
software and cloud service providers also become part of the TCB. High complexity
of modern computing and variety of attack surfaces make it unachievable to keep
an entire system secure and trusted [37, 22].

Minimizing the size of TCB on the software is practically ineffective against
attacks targeting the privileged mode of execution. There are numerous system ser-
vices, drivers and kernel interfaces vulnerable to privilege escalation attacks. Third
parties also contribute to this weakness by adding new features and extending the
kernel size. One workaround is to outsource security-critical services to a Secure
Element (SE) which is a separate hardware. Trusted Platform Modules (TPM),
for example, provide services such as cryptography and secure boot beyond the
authority of the OS [43].

Trusted Execution Environments (TEE) as an alternative to TPM attempt to
provide similar services directly within the CPU. A TEE is an isolated environment
to run software with a higher trust level than the OS. The software running inside
a TEE has full access to the system resources while it is protected from other appli-
cations and from the OS. Examples include ARM TrustZone [3] and Intel Software
Guard eXtension (SGX) [54]. Software solutions to virtualize or emulate TPM-like
features on commodity hardware have been proposed. However, they suffer from

7

security and usability challenges [17, 30, 48, 58].
Intel SGX provides a TEE on an untrusted system by only trusting the hardware

on which the code is executed. The runtime execution is secured inside an enclave
which is encrypted and authenticated by the processor. In particular, the CPU
decrypts and verifies the authenticity of an enclave code and data as it is moved
into the processor cache. Enclaves are logically protected from the OS and malicious
applications, and physical adversaries monitoring system buses. However, Intel
SGX is not protected against attacks that utilize hardware resources as a covert
channel [33]. And indeed, first works demonstrating that microarchitectural side
channels can be exploited have been proposed, including attacks using page table
faults [62], the branch prediction unit [38], and caches [51, 11].

Caches have become a very popular side channel in many scenarios, including
mobile [39] and cloud environments [31]. More specifically, last level cache (LLC)
attacks perform well in cross-core scenarios on Intel machines. Cache side channels
provide an information leakage channel with the granularity of a cache line size. The
small line size over the wide range of memory addresses has a high spatial resolution.
This spatial resolution becomes very advantageous for the adversaries. For example,
with a line size of only 64 bytes, attackers are able to distinguish accesses to different
RSA multiplicands for windowed exponentiation algorithms [40]. This high spatial
resolution, combined with a good temporal resolution, have enabled attacks on all
major asymmetric cryptographic implementations.

For symmetric cryptography, the scenario is more challenging. An optimized
table-based AES implementation can be executed in a few hundred cycles, while
performing a single cache access time measurement on an LLC set is computation-
ally more expensive. To avoid undersampling, synchronized attacks trigger a single
encryption and perform one measurement, yielding at best one observation per en-
cryption [7]. This heavily limits the observed information to perform key recovery
attacks.

1.2 Contribution

Our study explores practicality of cache side-channel attacks on SGX. This increases
the awareness of security community on an important threat affecting TEE platforms
and in particular SGX. In addition, application of the attack on implementations of a
cryptographic algorithm like AES shows that there exist weaknesses in the software.
Some of these weaknesses can only be exploited in certain security scenarios.

In this work, we demonstrate not only that Intel SGX is vulnerable to cache
based attacks, but also that the quality of information leakage channel is signifi-
cantly high in the SGX environment. The resolution of our channel enables attacks
that were infeasible in previously exploited scenarios, e.g., cloud environments or
smartphones. In particular, we take advantage of the capabilities that SGX assumes
an attacker has, i.e., access to the OS resources. We construct a malicious OS kernel

8

module that periodically applies the popular Prime and Probe attack [46] in the
local cache of physical processor core, i.e., core-private cache, thereby recovering
high-resolution information about the memory addresses that the target enclave ac-
cesses. By default, the OS tries to maximize the resource usage by spreading the
tasks among all the cores which reduces the applicability of core-private channels.
On the contrary, as the compromised OS schedules only the victim and attacker in
the same core, the usage of core-private resources is prone to the system activity
noise.

Tracking memory accesses of an enclave with high temporal (precision over the
execution time) and spatial (precision over the memory space) resolution can be
exploited in many application scenarios, i.e., any security data driven computa-
tion. We attack several AES implementations running inside the SGX enclave to
demonstrate the power of our proposed side channel setup. In particular, we take
advantage of our high resolution channel to construct more efficient key recovery
attacks against several AES implementations, including those exploited in previous
works [35] and those that are impossible to exploit without a high spatial resolution
channel. Furthermore, we show that cache prefetching and S-box implementations
as countermeasures are ineffective to prevent key recovery attacks, and they facili-
tate the memory trace extraction in some cases. In brief, this work:

• Presents a powerful high-bandwidth covert channel implemented through the
core-private cache by exploiting several system resources in lieu of a compro-
mised OS. The covert channel can be applied against TEEs to recover fine
grained information about memory accesses, which often carry sensitive infor-
mation.

• Demonstrates the high quality of our covert channel by recovering AES keys
with less traces than in previous practical attacks, and further, by attacking
implementations considered resistant to cache attacks.

• Shows that some of the countermeasures that were supposed to protect AES
implementations, e.g. prefetching and S-box implementations, are ineffective
in the context of SGX. In fact, prefetching can even be helpful to the attacker.

1.3 Outline of the work

In Chapter 2 we start by discussing the background information on Intel archi-
tecture and particularly SGX, Micro-architectural Side-Channel Attack and Prime

and Probe . Then, we introduce the design of our side channel in Chapter 3 and
discuss other methods to create low noise channels in adversarial operating system
scenarios. After explanation of the implementation of our attack, in chapter 4, we
talk about AES and its various common implementations. We show the results of
our attack on these implementation in chapter 5, and conclude the work in chapter
6.

9

Chapter 2

Background & Related Work

Intel introduced some modifications to its processors released after the Skylake gen-
eration, and proposed a new programming model to make hardware based TEE
available on commodity processors. However, SGX is a compatible extension based
on the Intel architecture and its core has remained untouched. Significant modi-
fications include integration of a memory encryption engine (MEE) hardware and
support for a new set of processor instructions designed for enclave specific oper-
ations. On top of that, previous concepts that apply to cache memory and cache
based timing side-channels are still applicable.

This chapter covers topics that help understand the side channel used in our key
recovery attacks against SGX. We discuss the basic functionality of Intel SGX and
possible micro-architectural attacks that can be deployed. After a brief discussion
of Intel cache architecture, we finally explain the main procedure of the Prime and

Probe technique which is used as part of our attack. Finally, we discuss the related
work in the literature.

2.1 Intel SGX

SGX is a new subset of CPU instructions. It allows execution of software inside
isolated environments called enclaves. Enclaves are user-level modules isolated from
other software components running on the same hardware, including compromised
OSs. SGX has recently gained popularity among the research community and vari-
ous security applications have been proposed [4, 5, 12, 44, 50, 53, 24].

Enclave modules are developed as the trusted components of an application,
and can be shipped and be loaded by untrusted components. The untrusted com-
ponents interact with the system software, and the system software dedicates pages
from a trusted memory region for the enclave by executing specific privileged in-
structions. The trusted memory region known as Enclave Page Cache (EPC) is
configured through system BIOS and preallocated at boot time. After that, during
the execution of the user application, the authenticity, integrity and confidentiality

10

Figure 2.1: Enclave Memory Access: After the traditional page table checks, the
processor verifies if memory access to the trusted memory region should be permitted

of a running enclave are provided and measured by the processor.
Any untrusted execution, including the OS, has no control over the trusted

memory region. Untrusted applications can only use specific instructions to call
trusted components through predefined interfaces. Memory accesses to an address
within the EPC range goes through additional vetting, and the processor blocks
unwanted memory accesses trying to access EPC pages. Figure 2.1 shows the enclave
specific memory access checks.

In summary, SGX assumes only the hardware to be trusted; any other agent is
considered susceptible of being malicious. Although, the (potentially) compromised
OS is in charge of the memory page mapping, SGX detects any malicious mapping
performed by it. In fact, any alteration of the enclave pages from the OS is stored
by SGX and is verifiable by the third party agents. This design helps developers
to benefit from the hardware isolation for security critical applications. Figure
2.2 differentiate the attack surface of enclave trusted modules and other untrusted
components.

Apart from the processor level access control that protects enclave pages from
software adversaries snooping on them, SGX is also designed to protect enclaves
from malicious physical adversaries monitoring system buses. When the operating
system requests from the processor to dedicate EPC pages and map the enclave
module, those pages in DRAM memory are encrypted and signed by the hardware.
Pages are only decrypted when they are moved to the cache and their signatures
are verified at the same time. MEE which resides between DRAM and LLC is
responsible for these cryptographic operations.

2.1.1 Memory Encryption Engine (MEE)

MEE is designed as a subcomponent of Memory Controller (MC) [27]. An internal
cache that accommodates a small but fast memory is the first place for processor

11

Figure 2.2: a) Left: attack surface without enclave. b) Right: Attack surface of
enclave modules with Intel SGX technology

to resolve memory transactions. If the transaction can not be serviced by cache, it
goes to MC. MC only utilizes cryptographic features provided by MEE to resolve
memory accesses to the trusted region. The trusted region consists of EPC and its
metadata which holds the mapped enclave pages and an integrity tree. In addition to
the encryption/decryption of the cache lines on write/read operation from DRAM,
MEE initiates additional transactions to update/verify the authentication tags with
respect to the integrity tree. The root of trust for the MEE integrity tree is stored
on an on-die SRAM which is not accessible outside of the processor package. Figure
2.3 illustrates MEE operations.

Note that, the aforementioned cryptographyic operations use two separate keys
for authentication and encryption. These keys are generated randomly at boot
from a random unique 256-bit entropy hardcoded into the processor, and they never
leave the processor trusted boundary. Any modifications of the integrity tree to
perform active attacks are detected at runtime and cause the processor to halt.
The potential active (physical) adversary can not avoid the halt and reboot of the
machine. Afterward, the processor has to generate new random keys.

2.2 Cache Memory

Modern computers use a hierarchical memory model with a different capacity and
speed at each level. In this hierarchy, registers are the closest and fastest, but most
expensive memories available to the processor. Most of the registers (depending on
their role) are directly accessible from the software stack, i.e., OS, Compiler, etc. As
processors have a limited number of registers, DRAMs are the next programmable
memory in this hierarchy. The processor, with the help of the OS, maps memory
pages from disk and other storage peripherals to DRAM. These peripherals and

12

Figure 2.3: MEE Operation: Transactions to the trusted region are issued with
MEE involvement

disks are significantly slower compared to DRAM memory.
In this hierarchy, there is still a gap between the processor and DRAM memory

speed. To avoid high latency, due to the data dependent instructions, modern
processors take advantage of some levels of internal cache memory. In particular,
Intel processors use three levels of cache known as the L1, L2 core-private caches
and the L3 or Last Level Cache (LLC). LLC is shared among all physical cores in
the processor. There are two L1 caches to separately store data and instructions
known as L1D and L1I respectively. Figure 2.4 shows the memory hierarchy of a
modern Intel based computer.

In general, when the processor tries to read data from a memory address, the
request is issued to the closest cache level in the hierarchy. If that cache level misses
the access, it passes to the next cache level, and finally fetches the data from DRAM.
The next time, the processor does not read the data from DRAM memory. It fetches
the data from the closest available cache, unless the data has changed or the cache
block has been evicted.

The cache read/write operations are performed in cache lines. The line size is
64 bytes in most processors. Caches are smaller and faster as they are closer to the
processor, and they are in general much smaller than DRAM memory. To be able to
cache the DRAM data to different levels of cache hierarchy and utilize it in a simple
but efficient way, an addressing schema and a coherency and replacement policy are
needed to be enforced.

Cache, unlike others, is not directly addressable and programmable from the
software stack. However, the software can use some instructions and side effects
to manage the usage of cache memory. The knowledge of the enforced addressing
schema and policies are important to engineer cache usage in a predictable manner.
In the next subsections, these concepts are briefly explained.

13

Figure 2.4: Memory hierarchy of a modern computer

2.2.1 Cache Addressing Schema

Each level of cache is grouped into n sets, and each set can store m number of lines,
i.e., m-way associative. The physical address is used to position the data in the
cache. With a line size of b-byte, the lower log2 b bits of the physical address are
used to index the byte in a line, and the next log2 n bits select the set that the line
is mapped to.

In our target architecture, we have 32 kB of L1D and 32 kB of L1I cache to store
data and instructions respectively. In L1D, there exists 64 sets and each set is 8 -way
associative. It should be noted that the line size is 64 byte. We used L1D as our
side channel primitive. Figure 2.5 illustrates the cache addressing schema for L1D.

2.2.2 Cache Coherency and Replacement policy

In a multi-processor system with different levels of cache, maintaining data for the
same address between different caches is a challenge. For example, if two physical
cores try to process data from the same address, there is a chance that one core
updates its core-private caches with the latest information, while the other core
uses the outdated information.

To avoid such synchronization problems, there are different policies that can be
adopted, e.g., not to cache shared data. For simplicity, the general approach used
on our target processor is for the L3 cache to be inclusive of the L1 and L2 cache,
which means the same data as L1 and L2 should be present for L3. On top of that,
if a cache line is evicted from the L3 cache, it will be evicted from L1 and L2 but not
reversely. As a result, in our attack on L1, filling a cache line will fill corresponding
L2 and L3 lines, but evicting the same cache line will not affect L2 and L3. This
behavior is important for the construction of cache eviction policy in our attacks.

The policy that is used to evict a line within a set is another important behavior.

14

Figure 2.5: L1D Cache Addressing Schema

As mentioned, several addresses can be mapped to the same set. When a set is full,
the processor frees space for the upcoming cache lines. It needs to decide which line
to evict beforehand. The most common cache replacement policy is Least Recently
Used (LRU), which discards the least recently used item first. This behavior makes
Prime and Probe attack (explained in the next section) more reliable, since an
adversary who tries to fill all the cache lines of a set will not be worried to accidentally
evict its own cache lines. Our target processor uses an adaptive LRU approach. In
our experiments, we assume that it is a simple LRU cache replacement, since the
adaptive behavior is unknown. Our experiments show that the amount of noise
added due to its adaptive behavior is negligible.

2.3 Microarchitectural Attacks in SGX

Despite all the protection that SGX offers, the documentation specifically claims
that side channel attacks were not considered under the threat scope in its design
[18, 33]. In fact, although dealing with encrypted memory pages, the cache utiliza-
tion is performed in a decrypted mode and concurrently to any other process in the
system. This means that the hardware resources can be utilized as covert chan-
nels by both malicious enclaves and OSs. While enclave-to-enclave attacks have
several similarities to cross-VM attacks [51], malicious OS-to-enclave attacks can
give attackers a new capability not observed in other scenarios: virtually unlimited
temporal resolution.

The OS can interrupt the execution of enclave processes every small number of
accesses to check the hardware utilization, as just the TLB cache (but no other
cache) is flushed during context switches. Further, while cross-core attacks gained
huge popularity in others scenarios (e.g. clouds or smartphones) for not requiring
core co-residency, a compromised OS can assign an enclave execution any core of
its choice, and therefore use any core-private channel. Thus, while SGX can pre-
vent untrusted software to perform Direct Memory Access (DMA) attacks, it also

15

gives almost full resolution for the exploitation of hardware covert channels. For
instance, an attacker can exploit page faults to learn about the memory page usage
of the enclave process [56, 62]. Further she can create contention and snoop on the
utilization of any core-private and core-shared hardware resource, including but not
limited to Branch Prediction Units (BPUs), L1 caches or LLC caches [1, 46, 40].

The applicability of DRAM based attacks like the rowhammer attack seems
infeasible due to the protection and isolation that the enclaves perform on DRAM
memory pages. Further, although applicable in other scenarios [9], execution of
enclave do not update the Branch Trace Store (BTS) and Processor Trace (PT) ,
and these can not provide (at least directly) information about the isolated process.

From the aforementioned resources, the resource that gives most information is
the hardware cache. Unlike page faults, which at most will give a granularity of
4 kB, cache hits/misses can give 64 byte utilization granularity (depending on the
cache line size). In addition, while other hardware resources like Branch Prediction
Units (BPU) can only extract branch dependent execution flow information, cache
attacks can extract information from any kind of memory access. Although most
prior work targets the LLC for being shared across cores, this is not necessary in
SGX scenarios, local caches are as applicable as LLC attacks.

In summary, because caches are not flushed when the enclave execution is inter-
rupted, the OS can gain almost unlimited timing resolution. Table2.1 compare the
discussed channels. In short, the processor core-private cache, and in particular L1
cache is the channel that gives us the highest resolution, lowest noise and can target
both code and data.

Table 2.1: Comparison of different side-channels and their applicability to attack
enclave.

Channel CPC1 LLC2 BP3 PF4 TLB5 RH6

Possible Yes Yes Yes Yes No No
Resolution 64 byte 64 byte Branches 4 kB N/A N/A
Noise Local Global Local N/A N/A N/A
Target Data+Code Data+Code Code Data+Code N/A N/A

1 Core-Private Cache; 2 Last-Level Cache; 3 Branch Predictor Cache;
4 Page Fault; 5 TLB Cache; 6 Rowhammering

2.3.1 Prime+Probe

The Prime+Probe attack was first introduced in [46] as a spy process capable
of attacking core-private caches. It was later expanded to recover RSA keys [2],
keystrokes in commercial clouds [49] and El Gamal keys across VMs [66]. Later the
attack was shown to be applicable also in the LLC [40, 34]. As our attack is carried

16

out in the L1 caches, we do not describe the major hurdles (e.g. slices) that an
attacker would have to overcome to implement it in the LLC. The Prime+Probe
attack is mainly implemented in 3 stages:

• Prime Stage: in which the attacker fills the entire cache or a small portion
of it with her own junk data.

• Victim Access Stage: in which the attacker waits for the victim to make
accesses to particular sets in the cache, hoping to see data dependent cache
set utilization. Note that, in any case, victim accesses to primed sets will evict
at least one of the attackers junk memory blocks from the set.

• Probe Stage: in which the attacker performs a per-set timed re-access of the
previously primed data. If the attacker observes a high probe time, she deduces
that the cache set was utilized by the victim, as at least one of the memory
blocks came from the memory. On the contrary, if the attacker observes low
access times, she deduces that all the previously primed memory blocks still
reside in the cache set, i.e., it was not utilized by the victim.

Thus, the Prime and Probe methodology allows an attacker to guess the cache
sets utilized by the victim. In the L1 cache in particular, this information can
be used to determine the lower bits of the accessed physical address. Further,
the translation of virtual to physical address does not affect the lower 16 bits of
the address. This lets an attacker to infer which offset within a memory page of
the victim has been accessed. This information can be exploited in many privacy
and security critical applications. For example, A full key recovery attack can be
mounted if the algorithm has key-dependent memory accesses that are translated
into different cache memory accesses.

2.4 Side-Channel Attacks & SGX

Side-channel attacks have been studied for many years. On a local area network
having relatively accurate timing measurement, the timing of the decryption oper-
ation on a web server could reveal enough information about private keys stored
on the server [15]. Timing attacks are capable of breaking important cryptogra-
phy primitives, such as Diffie-Hellman exponent and factor of RSA keys [36]. More
specifically, microarchitectural timing side channels have been explored extensively
[25]. The first few attacks proposed were based on the timing difference between
L1/L2 core private cache misses and hits.

Microarchitectural Side-Channels

Generally, microarchitectural timing attacks are based on the fact that a spy process
is capable of using a resource shared with the victim, and utilize that to measure

17

timing differences of various victim operations. The difference of access time to the
shared cache is sufficient for an attackers to create a side channel to a victim process
and infer memory access patterns of that process. In the earlier days, these attacks
reflected the effectiveness of this technique to recover cryptography keys of ciphers
such as DES [60], AES [10] and RSA [47]. Although there exist solutions to make
cryptographic implementation resistant to cache attacks [13, 46], the adoption of
these solutions are limited due to worse performance. Further, cache attacks are
capable of extracting information from non-cryptographic applications [65].

More recent proposals applied cache side channels on shared Last Level Caches
(LLC), a shared resource among all the cores. This is important as, compared
to previous core-private attacks, LLC attacks are applicable even when attacker
and victim reside in different cores. The Flush+Reload [63, 6] LLC attack is only
applicable to systems with shared memory. Flush+Reload can be applied across
VMs [35], in Platform As a Service (PaaS) clouds [65] and on smartphones [39].
The Flush+Reload attack is less prone to noise, as it depends on the access to
a single memory block. However, it is constrained by the memory deduplication
requirement.

Prime and Probe [40], shows that in contrast to the previous L1/L2 core pri-
vate cache side channels and the Flush+Reload attack, practical attacks can be
performed without memory deduplication or a core co-residency requirement. The
Prime and Probe attack, unlike Flush+Reload, can be implemented from virtually
any cloud virtual machines running on the same hardware. The attacker can identify
where a particular VM is located on the cloud infrastructure such as Amazon EC2,
create VMs until a co-located one is found [49, 64] and perform cross-VM Prime

and Probe attacks [34]. Prime and Probe can also be mounted from a browser
using JavaScript [45] and as a malicious application on smartphones [39]. These
side channels can be improved by causing a denial of service to the Linux CFS
scheduler [28].

In addition to caches, Branch Target Buffer (BTB) is a shared processor cache
used to predict the target of a branch before its execution. It can be exploited
to determine if a branch has been taken by a target process or not [1, 38]. More
recently, BTB has been exploited to bypass Address Space Layout Randomization
(ASLR) [23].

Intel SGX Attack & Defence

Intel SGX has been analyzed based on the available resources from Intel [18]. A
side channel resistant TCB is proposed in the literature [19]. However, the proposed
solution requires significant changes to the design of the processor and it adds perfor-
mance penalties that may not be desirable. Similar to Intel SGX, ARM TrustZone
is vulnerable to side-channel attacks [39]. Control-Channel attack [62] has further
been proposed using page-fault as a side channel. An adversarial OS can introduce
page faults to a target application and, based on the timing of the accessed page, the

18

execution flow of a target can be inferred at page size granularity. Another possible
attack on SGX can exploit race conditions between two running threads inside an
enclave [61].

Runtime control flows inside SGX can be inferred using BTB [38]. However, data
dependent table based computations, e.g., AES T-Table and S-Box implementations
are not vulnerable to this side channel. It has been demonstrated that LLC side-
channels can be mounted from one enclave to another one [51]. This is similar to
previous LLC attacks proposed outside of the SGX context with a specific method
to find physical address of the enclave page. Similar to our work, using core-private
cache as a side channel has recently been released on eprint servers independent of
our work [11] . In contrast, their attack is not based on the interruption of the
target, is focused on stealthiness, and has a much lower resolution.

On the more defensive proposals, page fault side channels that are effective on
SGX can be defeated using software solutions [56] or by using an additional extension
of Intel processors named TSX [55]. In the latter, a user level application can detect
the occurrence of a page fault before passing it to the OS and terminate itself in
the face of malicious page fault patterns. In other proposals, SGX-Shield [52] adds
ASLR protection and introduces software diversity inside an enclave. Lastly a tool
named Moat [57] allows developers to verify security of an enclave application based
on different adversarial models.

19

Chapter 3

Cache Side-Channel Attack on
SGX

3.1 Attack Design

We explain how to establish a high resolution channel from a compromised OS to
monitor an SGX enclave. Such an attack allows fine-grained information leakage.
To achieve this goal with our system level adversarial model, we exploit features of
the operating system to create an accurate low noise channel.

We construct our attack by: (1) partitioning the available cache between the
victim task running an enclave module and the rest of the system running core
operating system kernel threads and every other running tasks. Afterwards, we do
not want to measure cache hit/miss of the whole enclave at once since the execution
of the enclave module may cause lots of memory accesses in one run. And the
bigger the computation of the enclave module, the more noise. That is one of the
limitations of previous cache side-channel attacks that the adversary has to run
the target service or task many times and perform the attack using statistical data
which the leaked information is more limited.

To avoid that, (2) we measure the target enclave one step at a time and in
each step, the processor executes the target for a short amount of time. After we
measured all the steps (or only the necessary steps), we can map the collected traces
to the target enclave binary to extract security critical information. In this section,
we first describe attacker capabilities, and then our main design goals.

3.1.1 Adversarial Model

In our attack, we assume that the adversary has root level access to a system run-
ning Intel SGX SDK. Attacker is capable of installing kernel modules and configuring
boot properties of the machine. In addition, the attacker is capable of scheduling
the execution of an enclave and the measurement tool at the same time. These
assumptions are reasonable, as SGX promises a trusted environment for code ex-

20

ecution on untrusted systems. For example, The adversary could be a malicious
cloud provider hosting a malicious OS, the root level access could have been gained
through exploiting kernel services or social engineering, or the adversary has gained
physical access to the system and can modify the the OS image on the disk. All of
these are practical examples that SGX is proposed to protect against.

The attacker also should have access to the target enclave binary, and for sim-
plicity, we assume the binary is not obfuscated. Access to the binary is inherent to
the root access on the OS. However, obfuscation could increase the defense bar and
makes it harder to infer security critical information from the collected memory ac-
cess patterns. This complexity is outside of the scope of this work, and is irrelevant
to our goal of exploring the main security problem.

3.1.2 Cache Partitioning & Noise Reduction

By default, the OS tries to maximize the performance of the available hardware
resources by sharing them among different tasks. Parallel execution of different
tasks scheduled on the same hardware adds significant noise to the main attack
channel. In the design of our malicious OS, we want to use part of the available
cache as an isolated channel resistant to the outside noise. Although having an
ideal channel is optimistic, we can exploit OS functionalities to reduce the noise as
much as possible. We can create a noise resistant, high bandwidth channel using
the following design choices:

• Scheduling only the target and the spy Prime and Probe code on one of the
physical cores, and dedication of other physical cores to all other running
operations. This isolates the core-private cache of a physical core from the
rest of the system, thus leaves the spy and the target an isolated core-private
channel.

• Core isolation will not work if we want to use the shared cache among the
processor cores such as LLC. However, we can force the virtual to physical
page mapping to always map specific pages to physical addresses that target
specific sets in the shared cache. Having that, we can map the target and spy
pages to a subset of shared cache sets, and map every other memory page on
the system to the remaining sets.

• It is possible to disable caching behavior for specific physical addresses. This
significantly reduces the performance of the running tasks that uses those
memory addresses. This method can not be used as a global system-wide
option to disable the noise for all OS relevant memory accesses. Yet, this can
be used on a case by case basis to reduce noise of a specific physical page.

• Configuration of CPU features available on the modern processors that affect
frequency to maintain a stable clock frequency. These configurations help to

21

Figure 3.1: Scheduling the noisy tasks on a separate core from the victim & spy to
create a core-private isolated channel.

have a pseudo-constant execution speed for all the instructions. This is useful
to avoid variable time measurement during the probe step. Having a constant
execution speed reduces the noise of eviction time thresholds.

In our attack, we use the isolated core-private cache as our channel, and configure
the processor to have a constant frequency. Figure 3.1 illustrates the design of this
channel.

3.1.3 Step by Step Execution

The longer the victim enclave runs without interruption, the higher the number of
accesses made to the cache, implying higher noise and less temporal resolution. We
force the enclave execution to be interrupted after short time intervals, in order to
identify all enclave memory accesses. We name a small number of instructions inside
and enclave executed without interruption, an execution unit. Here are the steps
that we take in our attack tool:

1. Initialize the required memory pointers used during Prime and Probe .

2. Start the interrupt service to interrupt an isolated core after every small num-
ber of cycles.

3. Schedule the victim enclave on the same core.

4. The victim enclave will be interrupted.

5. Probe access times for all of the cache sets (which is potentially affected by
the previous execution unit).

22

6. Store the measured access times to a separate buffer.

7. Prime all the target cache sets for probing the next execution unit.

8. Continue the execution until the next interrupt at step 4.

The loop in the aforementioned steps happen as far as we are interested in
the measurement. Afterward, we stop the interrupt service to restore the core
behavior to its normal state. Parallel to the above operations, we can schedule a
task on another core without adding noise to our isolated channel to transfer the
measurement buffer to the disk for real time or offline analysis of measured memory
accesses.

3.1.4 Summary

By having the mentioned two elements, even a comparably small cache memory like
the L1 cache turns into a high capacity channel with 64 byte granularity, as every
major processor features 64 byte cache lines. Note that our spy process monitors the
L1D cache, but can also be implemented to monitor in the L1I or last level caches.
Our spy process is designed to profile all the sets in the L1D cache with the goal of
retrieving the maximum information possible.

We should further reduce other possible sources of noise, e.g., context switches.
The main purpose is that the attacker can cleanly retrieve most of the secret de-
pendent memory accesses made by the target enclave. Note that the attacker can
directly identify the set number that static data and instructions from the victim
binary will occupy, as she has access to it. Since the L1 cache is virtually addressed,
knowing the offset with respect to a page boundary is enough to know the accessed
set.

3.2 Attack Implementation

We explain the technical details behind the implementation of our attack tool, in
particular, how the noise sources are limited and how we increase the time resolution
to obtain cleaner traces. We separate the implementation of our attack to the
following three main components:

• Eviction Set: The construction of the logic and code that we used to accurately
perform Prime and Probe on L1D set.

• Noise Reducing Configuration: The configuration and modification that we
make dynamically to the OS.

• Malicious Kernel Driver: The malicious kernel driver that program the OS
interrupt handler and perform the attack steps.

We explain the detail of each of the components in the following subsections.

23

Figure 3.2: Pointers with addresses associated to the same set are initialized. It
helps to reduce the number of instructions required to fill each set.

3.2.1 Eviction Set

The access times to L1 and L2 caches only differ in around 5 cycles and we want to
Prime and Probe the entire L1D cache at each sampling, any unwanted memory
access adds some amount of noise and reduces our channel capacity. To cope with
this issue we use pointer chasing to Prime and Probe the 8-way sets, and C macro
programming to repeat our Prime and Probe code stubs; which removes any un-
wanted memory access to the local stack pointer that might add noise and reduce
the footprint of the obtained trace.

In pointer chasing approach, we initialize a memory buffer with linked lists of
pointers associated to the same set. Having a buffer initialized like Figure 3.2, we
can easily read all the addresses with only one instruction per read. Reducing the
number of instructions that we execute on each sampling decreases the measurement
time. Further, the dependency of access to each pointer on the previous one helps to
avoid out-of-order execution of the instructions. Listing 3.1, 3.2, show the assembly
code stubs that we used for our prime and probe stub. Note that, out-of-order
execution of Prime and Probe operations adds an unpredictable noise, which is
not acceptable.

24

mfence ;
mov (%rbx) , %rbx ;
mov (%rbx) , %rbx ;
mov (%rbx) , %rbx ;
mov (%rbx) , %rbx ;
mov (%rbx) , %rbx ;
mov (%rbx) , %rbx ;
mov (%rbx) , %rbx ;
mov (%rbx) , %rbx ;

Listing 3.1: Prime assembly code
(AT&T syntax): Traversing the
pointers.

mov %rax , %r10 ;
mfence ;
rd t s c ;
mov %eax , %ecx ;
mov (%rbx) , %rbx ;
mov (%rbx) , %rbx ;
mov (%rbx) , %rbx ;
mov (%rbx) , %rbx ;
mov (%rbx) , %rbx ;
mov (%rbx) , %rbx ;
mov (%rbx) , %rbx ;
mov (%rbx) , %rbx ;
l f e n c e ;
rd t s c ;
sub %rax , %rcx ;
mov %r10 , %rax ;
neg %rcx ;

Listing 3.2: Probe assembly code
(AT&T syntax): Traversing the
pointers and measuring the time us-
ing rdtsc instruction.

3.2.2 Noise Reducing Configuration

The target Linux OS schedules different tasks among available logical processors
by default. The core of the Linux scheduler which has been implemented in ..

/kernel/sched/core.c and the main scheduler function __schedule is triggered
on every tick of the logical processor’s local timer interrupt. One way to remove a
specific logical processor of the default scheduling algorithm is through the kernel
boot configuration isolcpus which accepts a list of logical cores to be excluded
from scheduling. To avoid a logical core from triggering the scheduling algorithm
on its local timer interrupt, we can use nohz_full boot configuration option, which
similarly receives a list of logical processors as parameter.

Recall that reconfiguring the boot parameters and restarting the OS is included
in our attackers capabilities. However, these capabilities are not necessary, as we can
walk through the kernel task tree structure and turn the PF_NO_SETAFFINITY flag off
for all tasks. Then, by dynamically calling the kernel sched_setaffinity interface
for every task, we are able to force all the running kernel and user tasks to execute
on specific processors. In addition to tasks and kernel threads, interrupts also need
to be isolated from the target core. Most of the interrupts can be restricted to
specific cores by configuring smp_affinity, except for the non-maskable interrupts
(NMIs), which cannot be avoided. However, in our experience, the occurrence of

25

Boot Con f i gura t i ons :
i s o l c p u s =1,3
n o h z f u l l =1,3

Disab le l o g i c a l CPU p a i r s
echo 0 > / sys / dev i c e s / system/cpu/cpu2/ o n l i n e
echo 0 > / sys / dev i c e s / system/cpu/cpu3/ o n l i n e

Set IRQ a f f i n i t y mask to CPU 0
cd / proc / i r q /
echo 1 | t e e ∗/ s m p a f f i n i t y

Set CPU frequency s c a l i n g to performance mode
cd / sys / dev i c e s / system/cpu/
echo performance | t e e cpu∗/ cpuf req / s c a l i n g g o v e r n o r
echo 3050000 | t e e cpu∗/ cpuf req / s c a l i n g m a x f r e q
echo 3010000 | t e e cpu∗/ cpuf req / s c a l i n g m i n f r e q

Listing 3.3: Malicious OS Configuration

them is negligible and does not add noise to our channel.
CPU frequency has a more dynamic behavior in modern processors. Our target

processor has Speedstep technology which allows dynamic adjustment of processor
voltage and C-state, which allows different power management states [20]. These
features, in addition to hyper-threading (concurrent execution of two threads in the
same physical core), make the actual measurement of cycles through rdtsc less reli-
able. rdtsc instruction returns the number of cycle since reboot. Cache-side channel
attacks that use this cycle counter are affected by the dynamic CPU frequency, as
it affects the number of cycles it takes to execute an instruction. In non-system ad-
versarial scenarios, these noise sources have been neglected thus forcing the attacker
to do more measurements. In our scenario, these processor features can be disabled
through the computer BIOS setup or can be configured by the OS to avoid unpre-
dictable frequency. In our attack, we simply disabled every second logical processor
to practically disable the hyper-threading feature.

To have a stable frequency in spite of the available battery saving and frequency
features, we set the CPU scaling governor to performance and limited the maxi-
mum and minimum frequency range. In our experiment, these configurations that
can be done from a root shell effectively reduces the noise of our isolated channel.
Listing 3.3 shows the configurations during our experiments.

26

3.2.3 Malicious Kernel Driver

Aiming at reducing the number of memory accesses made by the victim between two
malicious OS interrupts, we use the local APIC programmable interrupt, available
on each processor core. The APIC timer has different programmable modes but
we are only interested in the TSC-Deadline mode. In TSC deadline mode, the
specified TSC value will cause the local APIC to generate a timer IRQ once the CPU
reaches it. In the Linux kernel, the function lapic_next_deadline is responsible
for setting the next deadline on each interrupt. The actual interrupt handler code
for this IRQ is the function local_apic_timer_interrupt. We exploit the first
function to set the TSC deadline to an arbitrary value and the second function to
execute our Prime and Probe attack code.

In order to enable and disable our measurment tool as needed at runtime, we
install hooks on these two functions. A look at the disassembly of these functions
reveals that there are calls to a null function at the beginning that can be replaced
by calls to the malicious functions of our kernel module.

ffffffff81050900 lapic_next_deadline

ffffffff81050900: e8 2b 06 7b 00 callq 0xffffffff81800f30

ffffffff81050905: 55 push %rbp

ffffffff81050c90 local_apic_timer_interrupt

ffffffff81050c90: e8 5b 02 7b 00 callq 0xffffffff81800ef0

ffffffff81050c95: 55 push %rbp

In the modified lapic_next_deadline function, we set the timer interrupt to
specific values such that the running target enclave is interrupted every short period
of execution time, thus the target processor trigger the interrupt in short periods
and leave the actual running target enclave a short period of execution time.

In the modified local_apic_timer_interrupt, we first probe the entire 64 sets
of the L1D cache to gather information of the previous execution unit and then
prime the entire 64 sets for the next execution. After each probe, we store the
the retrieved cache information from the sampling of the L1 D cache to a separate
buffer in kernel memory. Our kernel driver is capable of performing 50000 circular
samplings.

To be able to run our attack code against the execution inside the enclave, we
need to start and end our attack at the time the target process is inside the enclave.
For this purpose, our kernel driver supports two ioctl interfaces to install/uninstall
the attack timer hooks. In the user level, we enable the attack timer interrupt before
the call to the enclave interface and disable it right after.

27

Chapter 4

AES in Practice

Advanced Encryption Standard (AES) is a subset of an original cipher named Ri-
jndael after Vincent Rijmen and Joan Daemen [21]. It is a standard by National
Institute of Standards and Technology (NIST). The following gives a detailed de-
scription of AES and its various implementations to help the reader understand the
attacks that we later perform. AES is a widely used symmetric block cipher that
supports three key sizes from 128 bit to 256 bits. Our description and attacks focus
on the 128-bit key version, AES-128, but most attacks described can be applied
to larger-key versions as well. AES is based on 4 main operations: AddRoundKey,
SubBytes, ShiftRows and MixColumns and a state table initialized to the plain text.
Algorithm 1 shows the main procedure of AES encryption function.

Algorithm 1 AES Encryption

1: procedure encrypt
2: i← 0
3: ExpandKeys
4: AddRoundKey(i)
5: round :
6: SubBytes
7: ShiftRows
8: MixColumns
9: AddRoundKey(i)

10: i← i + 1
11: if i < n− 1 then
12: goto round

13: SubBytes
14: ShiftRows
15: AddRoundKey(i)

The input block size for AES is 128 bits but the operations are performed on a
byte granularity. AES consists of a state table and n rounds of repeated operations

28

which n depends on the key size. In case of 128-bit key version, n is equal to 10. At
the initial step of the procedure, the cipher key is expanded to the round keys used
in each round individually and the state table is initialized with the input block. The
last round ends with a final key addition without any MixColumns operation. The
main leakage source in AES implementations comes from the fact that they utilize
state-dependent table look up operations for the SubBytes operation. SubBytes
replace each byte of the state table with the corresponding output of a non-linear
function.

Rather than calculating the output of the function each time at runtime, a pre-
computed 256 entry substitution table known as S-Box is used. These look-ups
result in secret-dependent memory accesses that can be exploited by cache attacks
and leak information about the round keys. In practice, a total of a 160 accesses
are performed to the S-box during a 128-bit AES encryption, 16 accesses per round.
We refer to this implementation as the S-box implementation.

4.1 T-Table Implementations

For performance improvements, some implementations combine the MixColumns
and SubBytes in a single table lookup. At the cost of bigger pre-computed tables
(and therefore, more memory usage) the encryption time can be significantly re-
duced. The most common type uses 4 T-tables: 256 entry substitution tables, each
entry being 32 bits long. Listing 4.1 shows the summarized T-Table implementation
of AES. The entries of the four T-tables are the same bytes but rotated by 1, 2 and
3 positions, depending on the position of the input byte in the AES state table Ê.
Each rounds of operation is summarized to four statements consist of a series of
32-bit operations Ë. We refer to this as the 4 T-table implementation.

Aiming at improving the memory usage of T-table based implementations, some
designs utilize a single 256 entries T-table, where each entry is 64 bits long. Each
entry contains two copies of the 32 bit values typically observed with regular size T-
tables. This design reads each entry with a different byte offset, such that the values
from the 4 T-tables can be read from a single bigger T-table. The performance of
the implementation is comparable, but requires efficient non word-aligned memory
accesses. We refer to this as the Big T-table implementation.

T-Table based implementations of AES have extensive memory footprints. The
memory accesses to the 4 T-tables and Big T-Table will be issued over 64 and 32
sets respectively. As distinguishing memory accesses over more sets are easier to
observe, these implementation are highly vulnerable to cache side channels.

29

1Ê stat ic const u32 Te0 [2 5 6] = {0xc66363a5U , . . . } ;
2 stat ic const u32 Te1 [2 5 6] = {0xa5c66363U , . . . } ;
3 stat ic const u32 Te2 [2 5 6] = {0x63a5c663U , . . . } ;
4 stat ic const u32 Te3 [2 5 6] = {0x6363a5c6U , . . . } ;
5 . . .
6 for (; ;) {
7Ë t0 = Te0 [(s0>>24)] ˆ Te1 [(s1>>16)&0 x f f] ˆ Te2 [(s2>>8)&0x f f]
8 ˆ Te3 [(s3)&0 x f f] ˆ rk [4] ;
9 t1 = Te0 [(s1>>24)] ˆ Te1 [(s2>>16)&0 x f f] ˆ Te2 [(s3>>8)&0x f f]

10 ˆ Te3 [(s0)&0 x f f] ˆ rk [5] ;
11 t2 = Te0 [(s2>>24)] ˆ Te1 [(s3>>16)&0 x f f] ˆ Te2 [(s0>>8)&0x f f]
12 ˆ Te3 [(s1)&0 x f f] ˆ rk [6] ;
13 t3 = Te0 [(s3>>24)] ˆ Te1 [(s0>>16)&0 x f f] ˆ Te2 [(s1>>8)&0x f f]
14 ˆ Te3 [(s2)&0 x f f] ˆ rk [7] ;
15 . . .

Listing 4.1: AES 4 T-Table Encryption, Each T-Table consists of a shifted variation
of the same 32 bit values. The round keys stored as 32 bit values (rk) will be added
on each round.

4.2 Non-vulnerable Implementations

There are further efficient implementations of AES that are not susceptible to cache
attacks, as they avoid secret-dependent memory accesses. These implementation
styles include bit-sliced implementations [41], implementations using vector instruc-
tions [29], constant memory access implementations and implementations using AES
instruction set extensions on modern Intel CPUs [32].

However, the aforementioned implementations all come with their separate draw-
backs. The bit-sliced implementations need data to be reformatted before and after
encryption and usually show good performance only if data is processed in large
chunks [8]. Constant memory access implementations also suffer from performance
as the number of memory accesses during an encryption significantly increases.
While hardware support like AES-NI combines absence of leakage with highest per-
formance, it is only an option if implemented and if the hardware can be trusted [59],
and further might be disabled in BIOS configuration options.

4.3 Table Prefetching as a Countermeasure

In response to cache attacks in general and AES attacks in particular, several cryp-
tographic library designers implement cache prefetching approaches, which just load
the key dependent data or instructions to the cache prior to their possible utiliza-
tion. In the case of AES this simply means loading all the substitution tables to the
cache, either once during the encryption (at the beginning) or before each round

30

Attacker primes Start FinishPrefetch table Attacker probes

AES round

Figure 4.1: Prefetching and the timeline effect for a regular Prime and Probe attack

execution.
Prefetching takes advantage of the low temporal resolution that an attacker ob-

tains when performing a regular non-OS controlled cache attack, as it assumes that
an attacker cannot conduct an attack faster than the prefetching action. Translated
to AES, prefetching assumes that a cache attack does not have enough temporal
granularity to determine which positions in the substitution table have been used if
they are prefetched, e.g., at the beginning of each round.

An example of the implications that such a countermeasure will have on a typical
cache attack can be observed in Figure 4.1. The Prime and Probe process cannot
be executed within the execution of a single AES round. Thanks to prefetching, the
attacker is only able to see cache hits on all the Table entries.

We analyze whether those countermeasures, implemented in many cryptographic
libraries, resist the scenario in which an attacker fully controls the OS and can inter-
rupt the AES process after every small number of accesses. As it was explained in
the background, attacking SGX gives a malicious OS almost full temporal resolution,
which can reverse the effect of prefetching mechanisms.

4.4 Susceptibility to Cache Attacks

Depending on the implementation style, implementations can be more susceptible
to cache attacks or less. The resolution an attacker gets depends on the cache line
size, which is 64 bytes on all relevant modern CPUs, including Intel and most ARM
cores.

For the S-box implementation, the S-box occupies a total of 4 cache lines (256
bytes). That is, an attacker able to observe each access to a table entry can learn at
most two bits per access. Attacks relying on probabilistic observations of the S-box
entries not being accessed during an entire encryption [35] would observe such a
case with a probability of 1.02 · 10−20, making a micro-architectural attack nearly
infeasible. For a 4 T-tables implementation, each of the T-tables gets 40 accesses
per encryption, 4 per round, and occupies 16 cache lines. Therefore, the probability
of a table entry not being accessed in an entire encryption is 8%, a fact that was

31

exploited in [35] to recover the full key.
In particular, all these works target either the first or the last round to avoid

the MixColumns operation. In the first round, the intermediate state before the
MixColumns operation is given by s0i = Ti[pi⊕k0

i], where pi and k0
i are the plaintext

and first round key bytes i, Ti is the table utilization corresponding to byte i and s0i
is the intermediate state before the MixColumns operation in the first round. We
see that, if the attacker knows the table entry being utilized xi and the plaintext he
can derive equations in the form xi=pi ⊕ k0

i to recover the key. A similar approach
can be utilized to mount an attack in the last round where the output is in the
form ci = Ti[s

9
i] ⊕ k10

i . The maximum an attacker can learn, however, is 4 bit per
lookup, if each lookup can be observed separately. The scenario for attacks looking
at accesses to a single cache line for an entire encryption learn a lot less, hence need
significantly more measurements.

For a Big T-table implementation, the T-table occupies 32 cache lines, and the
probability of not accessing an entry is reduced to 0.6%. This, although not exploited
in a realistic attack, could lead to key recovery with sufficiently many measurements.
An adversary observing each memory access separately, however, can learn 5 bits
per access, as each cache line contains only 8 of the larger entries.

Note that an attacker that gets to observe every single access of the aforemen-
tioned AES implementations would succeed to recover the key with significantly
fewer traces, as she gets to know the entry accessed at every point in the execu-
tion. This scenario was analyzed in [16] with simulated cache traces. Their work
focuses on recovering the key based on observations made in the first and second
AES rounds establishing relations between the first and second round keys. As a
result, they succeed on recovering an AES key from a 4 T-table implementation with
as few as six observed encryptions in a noise free environment. These attacker capa-
bilities could even turn micro-architectural attacks against S-box implementations
practical.

32

Chapter 5

AES Key Recovery Attack

In this chapter, we discuss our key recovery attack analysis and results. First, we
show the results on quality of our side channel. Afterward, we discuss three different
cryptographic key recovery attacks on different implementations of AES using our
attack tool. We also explain the effect of table prefetching in this context. In short
we demonstrate the following attacks:

• Known plaintext attack (KPA) on T-Table using the leakage from first two
rounds of AES operation.

• Known ciphertext attack (KCA) on T-Table using the leakage from last two
rounds of AES operation.

• Known ciphertext attack (KCA) on S-Box using the leakage from last round
of AES operation.

In all of the above attacks, we assume no knowledge of the key used inside the
enclave, but we assume to have access to the enclave binary, and thus to the offset of
the substitution tables in the enclave module. We obtained these implementations
from latest OpenSSL & wolfSSL libraries, and compiled them with available flags
to make different characteristics enabled/disabled.

5.1 Channel Measurement

We analyzed the capacity of our side channel. This section discusses our results on
our channel quality, and explains how we used our observations to infer memory
accesses.

5.1.1 Experimental Setup

Our experimental setup is a Dell Inspiron 5559 laptop with Intel(R) Skylake Core(TM)
i7-6500U processor running Ubuntu 14.04.5 LTS and SGX SDK 1.7. Our target pro-
cessor has 2 hyper-threaded physical cores. Each physical core has 32 kB of L1D

33

0 1 2 3 4 5 6 7 8

Number of Eviction

30

40

50

60

70

80

90

100

C
y
c
le

Figure 5.1: Average cycle count based on the number of evictions in a set.

0 10 20 30 40 50 60

Set Number

40

50

60

70

80

90

100

C
y
c
le

 C
o
u
n
t

Eviction

Limit

Figure 5.2: Average cycle count for each sets. Variations are due to channel noise,
making 5 sets unusable for our attack.

and 32 kB of L1I local cache memory. The L1 cache, used as our side channel, is
8-way associative and consist of 64 sets.

5.1.2 Eviction Set Quality

Even though Skylake processors do not always use the LRU cache replacement
policy and have a more adaptive undocumented cache replacement policy [26], our
results show that we can still use the pointer chasing eviction set technique to detect
memory accesses. In the specific case of our L1D cache, the access time for chasing
8 pointers associated to a specific set is 40 cycles on average.

In order to test the resolution of our covert channel, we took an average of 50000
samples of all the sets and varied the number of evictions from 0 to 8. The results
can be seen in Figure 5.1, where the access time is increased by roughly 5 cycles for
every additional eviction. Thus, the results show that our eviction technique gives
us an accurate measurement on the number of evicted lines within a cache set.

34

Figure 5.3: Cache hit map before filtering for context switch noise.

Figure 5.4: Cache hit map after filtering for context switch noise. Enclave memory
access patterns are clearly visible once standard noise from context switch has been
eliminated.

5.1.3 Channel Bandwidth

Our isolated CPU core and the L1D eviction set have the minimal possible noise
due to the removal of various source of noises such as variable CPU frequency, and
the OS noise; however, the actual noise from the context switch between enclave
process and attacker interrupt is mostly unavoidable.

The amount of noise that these unwanted memory accesses add to the observa-
tion can be measured by running an enclave with an empty loop under our attack
measurement. Our results, presented in Figure 5.2, show that every set has a consis-
tent number of evictions. Among the 64 sets, there are only 5 sets that get filled as
a side effect of the context switch memory accesses. For the other sets, we observed
either 0 or less than 8 unwanted accesses. Due to the consistency of the number of
evictions per set, we can conclude that only sets that get completely filled are blind
and do not reveal any information about the target enclave, 4 out of 64 sets in our
particular case.

An example of the applied noise ex-filtration process can be observed in Fig-

35

ure 5.4, in which the enclave process was consecutively accessing different sets. It
shows the access pattern retrieved from the enclave once the context switch noise
access has been taking into account and removed.. Figure 5.3 shows the hit access
map, without taking into account the appropriate thresholds.

5.2 AES T-Table KPA Attack

Our first attack target the T-table implementations. To recover the AES key from as
few traces as possible in a known plaintext scenario, we observe the memory access
pattern of the first 2 rounds of the AES function. A perfect single trace of the first
round cache access information reveals at most the least significant 4 and 5 bits of
each key byte in 4 T-table (16 entries/cache line) and big T-table implementations
(8 entries/cache line) respectively.

As we want to retrieve the key with a minimal number of traces, we also retrieve
the information from the accesses in the second round and use the relations between
the first and second round key. In particular, we benefit from relations described
in [16], who utilized simulated data to demonstrate the effectiveness of their AES
key recovery algorithm. As our attack is close to getting all specific T-table accesses,
their equations serve us the most efficient mechanisms to retrieve the key from the
first two rounds information.

x10 = 2s(p0 ⊕ k0)⊕ 3s(p5 ⊕ k5)⊕ s(p10 ⊕ k10)⊕ s(p15 ⊕ k15)⊕ s(k13)⊕ k0 ⊕ 1

x11 = s(p0 ⊕ k0)⊕ 2s(p5 ⊕ k5)⊕ 3s(p10 ⊕ k10)⊕ s(p15 ⊕ k15)⊕ s(k14)⊕ k1

x12 = s(p0 ⊕ k0)⊕ s(p5 ⊕ k5)⊕ 2s(p10 ⊕ k10)⊕ 3s(p15 ⊕ k15)⊕ s(k15)⊕ k2

x13 = 3s(p0 ⊕ k0)⊕ s(p5 ⊕ k5)⊕ s(p10 ⊕ k10)⊕ 2s(p15 ⊕ k15)⊕ s(k12)⊕ k3

x14 = 2s(p4 ⊕ k4)⊕ 3s(p9 ⊕ k9)⊕ s(p14 ⊕ k14)⊕ s(p3 ⊕ k3)⊕ s(k13)⊕ k0 ⊕ k4 ⊕ 1

x15 = s(p4 ⊕ k4)⊕ 2s(p9 ⊕ k9)⊕ 3s(p14 ⊕ k14)⊕ s(p3 ⊕ k3)⊕ s(k14)⊕ k1 ⊕ k5

x16 = s(p4 ⊕ k4)⊕ s(p9 ⊕ k9)⊕ 2s(p14 ⊕ k14)⊕ 3s(p3 ⊕ k3)⊕ s(k15)⊕ k2 ⊕ k6

x17 = 3s(p4 ⊕ k4)⊕ s(p9 ⊕ k9)⊕ s(p14 ⊕ k14)⊕ 2s(p3 ⊕ k3)⊕ s(k12)⊕ k3 ⊕ k7

x18 = 2s(p8 ⊕ k8)⊕ 3s(p13 ⊕ k13)⊕ s(p2 ⊕ k2)⊕ s(p7 ⊕ k7)⊕ s(k13)⊕ k0 ⊕ k4 ⊕ k8 ⊕ 1

x19 = s(p8 ⊕ k8)⊕ 2s(p13 ⊕ k13)⊕ 3s(p2 ⊕ k2)⊕ s(p7 ⊕ k7)⊕ s(k14)⊕ k1 ⊕ k5 ⊕ k9

x110 = 2s(p8 ⊕ k8)⊕ 3s(p13 ⊕ k13)⊕ s(p2 ⊕ k2)⊕ s(p7 ⊕ k7)⊕ s(k15)⊕ k2 ⊕ k6 ⊕ k10

x111 = 2s(p8 ⊕ k8)⊕ 3s(p13 ⊕ k13)⊕ s(p2 ⊕ k2)⊕ s(p7 ⊕ k7)⊕ s(k12)⊕ k3 ⊕ k7 ⊕ k11

x112 = 2s(p12 ⊕ k12)⊕ 3s(p1 ⊕ k1)⊕ s(p6 ⊕ k6)⊕ s(p11 ⊕ k11)⊕ s(k13)⊕ k12 ⊕ k0 ⊕ k4 ⊕ k8 ⊕ 1

x113 = s(p12 ⊕ k12)⊕ 2s(p1 ⊕ k1)⊕ 3s(p6 ⊕ k6)⊕ s(p11 ⊕ k11)⊕ s(k14)⊕ k13 ⊕ k1 ⊕ k5 ⊕ k9

x114 = 2s(p12 ⊕ k12)⊕ 3s(p1 ⊕ k1)⊕ s(p6 ⊕ k6)⊕ s(p11 ⊕ k11)⊕ s(k15)⊕ k14 ⊕ k2 ⊕ k6 ⊕ k10

x115 = 2s(p12 ⊕ k12)⊕ 3s(p1 ⊕ k1)⊕ s(p6 ⊕ k6)⊕ s(p11 ⊕ k11)⊕ s(k12)⊕ k15 ⊕ k3 ⊕ k7 ⊕ k11

(5.1)

36

3.948 3.95 3.952 3.954 3.956 3.958 3.96 3.962

Measurement
10

4

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

S
e

t
N

u
m

b
e

r

Round 1

Round 2

Round 3

Figure 5.5: Memory footprint of the AES execution inside enclave over time steps.
At each step, a few instructions has been executed.

Equations 5.1 show the relations of the first round key bytes. ki is a key byte,
and x1

i is the index of each T-Table lookup in the second round. We first gather
enough information for the high nibbles of the key bytes from the first round memory
accesses. At the next step, solving the above equations using the information from
the second round traces reduce the key space to a computationally small size. An
experiment on a set of simulated data gathered using the binary instrumentation
tool, Pin, shows that an ideal cache access trace of the first two AES rounds (32
memory accesses) reduce the key size to 4-8 bits.

In our specific practical attack, we face three problems:

1. Even in our high resolution attack, we have noise that adds false positives and
negatives to our observed memory access patterns.

2. Our experiments show that the out-of-order execution and parallel process-
ing of memory accesses does not allow for a full serialization of the observed
memory accesses.

3. Separating memory accesses belonging to different rounds can be challenging.

The first two facts can be observed in Figure 5.5, which potentially shows 16
memory accesses to each round of a 4 T-table (4 access per table) AES. Due to our
high resolution channel and the out-of-order execution of instructions, we observe
that we interrupt the out-of-order execution pipeline while a future memory access
is being fetched. Thus, interrupting the processor and evicting the entire L1D cache
on each measurement forces the processor to repeatedly load the cache line memory
until the target read instruction execution completes.

Hence, attributing observed accesses to actual memory accesses in the code is
not trivial. Although this behavior adds some confusion, we show that observed

37

0 5 10 15 20 25 30 35 0

Number of samples

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
u

c
c
e

s
s
 r

a
te

Unordered 4 T

Ordered 4 T

Unordered Large T

Ordered Large T

Figure 5.6: First round attack key recovery success rate.

accesses still have minimal order that we can take into account. As for the third
fact, it involves thorough visual inspection of the collected trace. In particular, we
realized that beginning of every round involves the utilization of a substantially
higher number of sets than the rest, also observable in Figure 5.5.

In the first implementation of our key recovery algorithm, we just use the set
access information without taking into account the ordering of our observed accesses.
Recall that we have access to the binary executed by the enclave, and thus, we can
map each set number to its corresponding T-table entry. This means that all our
accesses can be grouped on a T-table basis. Duplicated accesses to a set within
a round are not separated and are considered part of the same access, due to its
difficulty with out-of-order execution. After applying this filter to the first and
second round traces, we apply the key recovery algorithm, as explained in [16].

The accuracy of our measurements with respect to the aforementioned issues
can be seen in Table 5.1. For the 4 T-table implementation, 55% of the accesses
correspond to true accesses (77% of them were ordered), 44% of them were noisy
accesses and 56% of the true accesses were missed. For the single Big T-table
implementation, 75% of the T-table accesses corresponded to true accesses (67%
ordered), 24% were noisy accesses and 12% of the true accesses were missed. The
quality of the data is worse in the 4 T-table case because they occupy larger number
of sets and thus include more noisy lines, as explained in Figure 5.2.

With these statistics and after applying our key recovery algorithms with vary-
ing number of traces, we obtained the results presented in Figure 5.6. If we do
not consider the order in our experiments, we need roughly 20 traces (crosses and
diamonds) to get the entire correct key with 90% probability in both the 4 T-table
and single T-table implementations. In a different statistic using the first round
information, Figure 5.7 shows the amount of recovered correct bits per number of
samples on average.

38

Table 5.1: Statistics on recovered memory accesses for T-table implementations.

Implementation 4 T-table Large T-table
True Positive 55% 75%
False Positive 44% 24%
False Negative 56% 12%

Ordered 77% 67%

0 5 10 15 20 25 30 35 0

Number of samples

0

10

20

30

40

50

60

70

80
R

e
c
o

v
e

re
d

 k
e

y
 b

it
s

Unordered 4 T

Ordered 4 T

Unordered Large T

Ordered Large T

Figure 5.7: First round attack correct recovered key bits.

To further improve our results, we attempt to utilize the order of the observed
accesses. We obtain the average position for all the accesses observed to a set within
one round. These positions are, on average, close to the order in which sets were
accessed. The observed order is then mapped to the order in which each T-table
should have been utilized. Since this information is not very reliable, we apply a
score and make sure misorderings are not automatically discarded. After applying
this method, the result for our key recovery algorithm can be observed again in
Figure 5.6, for which we needed around 15 traces for the 4 T-table implementation
(represented with stars) and 12 traces for the single Big T-table implementation
(represented circles) to get the key with 90% probability. Thus, we can conclude
that using the approximate order helped us to recover the key with fewer traces.

5.2.1 Cache Prefetching

Cache prefetching is implemented to prevent passive attackers from recovering AES
keys. Our attack tool, in theory, should bypass such a countermeasure by being
able to prime the cache after the T-tables are prefetched. The observation of a
trace when cache prefetching is implemented before every round can be observed in
Figure 5.8.

39

2.945 2.95 2.955 2.96 2.965 2.97 2.975

Measurement
10

4

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

S
e

t
N

u
m

b
e

r

Prefetch

Round 1

Round 2

Figure 5.8: Memory footprint of the AES execution inside an enclave with prefetch
countermeasure over time. The prefetch is clearly distinguishable and helps to iden-
tify the start of each round. Further, it also highlights out-of-order execution and
in-order completion.

We can see how cache prefetching is far from preventing us to recover the nec-
essary measurements. In fact, it eases the realization of our attack, as we now can
clearly distinguish accesses belonging to different rounds clearly, allowing for further
automation of our key recovery step. Thus, our attack not only bypasses but further
benefits from mechanisms that mitigated previous cache attacks.

5.3 AES T-Table KCA Attack

The attack we demonstrated in the previous section on T-Table implementations
can be improved in KCA scenario. Here, rather than looking at the the first two
rounds information leakage, we use the information leakage from the last two rounds
and knowledge of the ciphertext.

5.3.1 Last Round Attack on T-Table

In contrast to the KPA that we could only gather information about the high nibble
of each key bytes with the first round information, we can recover more diverse key
information from the last round attack described here. As a result, instead of 64
bits (80 bits in Big T-Table), the entire key will be recovered through repeated ob-
servation of the first round with different known ciphertexts. Measurement samples
for the last round serve to increase the correctness recovered key.

This is because of the way AES rounds are designed. As we described before,
the initial AES round only consists of a key addition step. The key addition is a

40

0 5 10 15 20 25 30

Number of samples

0

20

40

60

80

100

120

140

R
e

c
o

v
e

re
d

 k
e

y
 b

it
s

Unordered 4 T

Ordered 4 T

Figure 5.9: Last round attack recovered key bits.

linear operation. The first round memory access is only dependent on the plaintext
and the initial round key. On the contrary, the last round memory accesses that we
observe happens before a non-linear S-Box operation.

As a result, in an reverse view of AES operation, the last round information is
dependent on the inverse S-Box of the last round key bytes and ciphertext bytes.
We use the equation x10

i = s−1(ci ⊕ ki), which i is the index of the byte in the last
round key, ciphertext and the sequence of last round memory accesses x10.

We built a scoring histogram by implementing an algorithm based on this equa-
tion. Our results shows that the last round information is much more powerful in
recovering the key compared to the combined information of the first two rounds.
Figure 5.9 shows the number of correct key bits recovered in this attack with and
without the partial access order information. On average, we can reduce the key to
a brute-forcible space with around 7 partially ordered samples.

The key recover computation is also much more efficient in this attack. Previ-
ously, we had to solve the second round equations to recover the same key space,
which it takes some computation time (5-8 minutes). However, recovering the key
using the last round information, only takes a few seconds. Figure 5.10 shows the
success rate of this attack on recovering the entire key.

5.3.2 Last Round Attack Improvement

We showed that using only the last round information is much more efficient than
using the combined first two rounds information. In addition, we can still use the
second last round information to improve the last round attack. There are scenarios,
e.g., using a new symmetric key on each encryption operation, that we only have
access to a few samples for a unique key. Reducing the number of samples make
attacks on such scenarios more practical.

41

0 5 10 15 20 25 30

Number of samples

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
u

c
c
e

s
s
 r

a
te

Unordered 4 T

Ordered 4 T

Figure 5.10: Last round attack key recovery success rate.

In this section, we propose our improvement to the last round attack. we hope
to reduce the number of samples in the key recovery to ideally one. We created the
relations between the first and second round keys as shown in Equation 5.2.

2s(x90)⊕ 3s(x91)⊕ s(x92)⊕ s(x93) = s−1(c0 ⊕ k160)⊕ k160 ⊕ s(k173 ⊕ k169)⊕ 0x36

s(x90)⊕ 2s(x91)⊕ 3s(x92)⊕ s(x93) = s−1(c13 ⊕ k173)⊕ k161 ⊕ s(k174 ⊕ k170)

s(x90)⊕ s(x91)⊕ 2s(x92)⊕ 3s(x93) = s−1(c10 ⊕ k170)⊕ k162 ⊕ s(k175 ⊕ k171)

3s(x90)⊕ s(x91)⊕ s(x92)⊕ 2s(x93) = s−1(c7 ⊕ k167)⊕ k163 ⊕ s(k172 ⊕ k168)

2s(x94)⊕ 3s(x95)⊕ s(x96)⊕ s(x97) = s−1(c4 ⊕ k164)⊕ k160 ⊕ k164

s(x94)⊕ 2s(x95)⊕ 3s(x96)⊕ s(x97) = s−1(c1 ⊕ k161)⊕ k161 ⊕ k165

s(x94)⊕ s(x95)⊕ 2s(x96)⊕ 3s(x97) = s−1(c14 ⊕ k174)⊕ k162 ⊕ k166

3s(x94)⊕ s(x95)⊕ s(x96)⊕ 2s(x97) = s−1(c11 ⊕ k171)⊕ k163 ⊕ k167

2s(x98)⊕ 3s(x99)⊕ s(x910)⊕ s(x911) = s−1(c8 ⊕ k168)⊕ k164 ⊕ k168

s(x98)⊕ 2s(x99)⊕ 3s(x910)⊕ s(x911) = s−1(c5 ⊕ k165)⊕ k165 ⊕ k169

s(x98)⊕ s(x99)⊕ 2s(x910)⊕ 3s(x911) = s−1(c2 ⊕ k162)⊕ k166 ⊕ k170

3s(x98)⊕ s(x99)⊕ s(x910)⊕ 2s(x911) = s−1(c15 ⊕ k175)⊕ k167 ⊕ k171

2s(x912)⊕ 3s(x913)⊕ s(x914)⊕ s(x915) = s−1(c12 ⊕ k172)⊕ k168 ⊕ k172

s(x912)⊕ 2s(x913)⊕ 3s(x914)⊕ s(x915) = s−1(c9 ⊕ k169)⊕ k169 ⊕ k173

s(x912)⊕ s(x913)⊕ 2s(x914)⊕ 3s(x915) = s−1(c6 ⊕ k166)⊕ k170 ⊕ k174

3s(x912)⊕ s(x913)⊕ s(x914)⊕ 2s(x915) = s−1(c3 ⊕ k163)⊕ k171 ⊕ k175

(5.2)

In the equations, every 4 of them consist of 4 memory access, i.e, index of the
T-Tables and some last round keys. In our algorithm, we group them to four based

42

on the memory accesses as follow:

• Group 1: x9
4, x

9
5, x

9
6, x

9
7.

• Group 2: x9
8, x

9
9, x

9
10, x

9
11.

• Group 3: x9
12, x

9
13, x

9
14, x

9
15.

• Group 4: x9
0, x

9
1, x

9
2, x

9
3.

In our algorithm, we first solve the first three group of equations individually
to reduce the sub keys in each group. Then we merge the results of the sub keys
for each group to build the reduced full last round key. Our experiment, with an
idealistic data, shows that solving the first three group of equations, and merging
them reduce the entire key space to 16 bits. We do not use Group 4 of equations
at the first step, since there are more key bytes involved and solving them is not
computationally efficient. Moreover, We do not necessarily need to use them if we
have an ideal memory trace as 16 bits is a very small key space.

However, we can use the first group of equation to verify the correct key. At
the second step in our algorithm, we verify the 16 bits key with the information
gathered from the first 4 memory accesses in group 4. Our experiment shows that
we can reduce the key space to less than 1 bit, i.e, recover the exact last round key.
Note that AES key schedule is a reversible algorithm, and we can recover the cipher
key having the last round key without any heavy computation.

Our experiment over simulated data show that we can recover the cipher key
in 2 hours having only one ideal sample. We did not use real data as our current
implementation is not efficient, and more noise entropy causes more computation.
However, the discussed algorithm can significantly be improved to recover key using
real data, and this is enough evidence to show that using the first and second last
information is much more powerful.

5.4 AES S-Box KCA Attack

Using the S-box implementation is seen as a remedy to cache attacks, as all S-box
accesses use only a very small number of cache lines (typically 4). With 160 S-Box
accesses per encryption, each line is loaded with a very high likelihood and thus
prevents low resolution attackers from gaining information. Adding a prefetch for
each round does not introduce much overhead and also prevents attacks that attempt
interrupting the execution [14, 28]. However, our attack can easily distinguish S-box
accesses during the rounds, but due to the out-of order execution, it is not possible
to distinguish accesses for different byte positions in a reliable manner, especially
since all accesses hit the same 4 cache lines. With or without the prefetch, we see
accesses to all 4 cache lines even if not all 4 cache lines are accessed in that round.

43

2 4 6 8 10 12 14 16

0

0.05

0.1

0.15

Figure 5.11: Correlation between observed cache accesses and predicted accesses
caused by one byte position. Leakage is much stronger for later byte positions.
Correlation for raw observed accesses (blue) vs. relative accesses (amber).

However, one distinguishable feature is the number of accesses each set sees
during a round. We hypothesize that the number of observed accesses correlates
with the number of S-box lookups to that cache line. If so, a classic DPA correlating
the observed accesses to the predicted accesses caused by one state byte should
recover the key byte. Hence we followed a classic DPA-like attack on the last round,
assuming known ciphertexts. Since observed leakage is no longer distinguishable by
byte position, more traces will be needed to recover key information.

The used model is rather simple: for each key byte k, the accessed cache set
during the last round for a given ciphertext byte c is simply given as set = S−1(x⊕
k)� 6, i.e. the two MSBs of the corresponding state byte before the last SubBytes
operation. The access profile for a state byte position under an assumed key k and
given ciphertext bytes can be represented by a matrix A where each row corresponds
to a known ciphertext and each column indicates whether that ciphertext resulted
in an access to the cache line with the same column index. Hence, each row has four
entries, one per cache line, where the cache line with an access is set to one, and the
other three columns are set to zero (since that state byte did not cause an access).

Our leakage is given as a matrix L, where each row corresponds to a known
ciphertext and each column to the number of observed accesses to one of the 4
cache lines. A correlation attack can then be performed by computing the correlation
between A and L, where A is a function of the key hypothesis. We used synthetic,
noise-free simulation data for the last AES round to validate our approach, where
accesses for 16 bytes are accumulated over 4 cache lines for numerous ciphertexts
under a set key. The synthetic data shows a best expectable correlation of about
.25 between noise-free cumulative accesses L and the correct accesses for a single
key byte A. As little as 100 observations yield a first-order success rate of 93%.

Next, we gathered hundreds of measurements using our attack tool. Note that
due to a lack of alignment, the collection of a large number of observations and
the extraction of the last round information is not trivially automated and at the
moment still requires manual intervention. When performing the key recovery at-

44

0 50 100 150 200 250

0

0.05

0.1

0.15

Figure 5.12: Correlation over key value for the best (k15, amber) and worst (k0,
blue) byte positions based on 1500 traces. The guess with the highest correlation
(o) and the correct key (x) a match only for k15.

tack, even 200 observations yielded 4-5 key bytes correctly. However, the first-order
success rate only increases very slowly with further measurements.

We further observed that (1) more traces always recover later key bytes first
and (2) key ranks for earlier lookups are often very low, i.e. the correct key does
not even yield a high correlation. To analyze this behavior, we simply correlated
the expected leakage A for each byte position to the observed leakage L. The result
is shown in Figure 5.11. It can be observed that the correlation for the later key
bytes is much stronger than for the earlier key bytes. This explains why later key
bytes are much easier to recover. The plot also shows a comparison of using the
absolute number of observed accesses (ranging between 10 and 80 observed accesses
per round, blue) an the relative number of accesses per cache set (amber) after
removing outliers.

Results for the best and the worst key guess are shown in Figure 5.12. For k15
(amber), the correlation for the correct key guess is clearly distinguishable. For k0
however, the correct key guess does not show any correlation with the used 1500
observations. In summary, 500 traces are sufficient to recover 64 key bits, while 1500
recover 80 key bits reliably. While full key recovery will be challenging, recovering 12
out of 16 key bytes is easily possible with thousands of observations. The remaining
key bytes can either be brute-forced or can be recovered by exploiting leakage from
the second last round.

Next, we explain the reason why we believe bytes processed first are harder to
recover. The Intel core i7 uses deep pipelines and speculative out-of-order execu-
tion. Up to six micro-instructions can be dispatched per clock cycle, and several
instructions can also complete per cycle. As a result, getting order information for
the accesses is difficult, especially if 16 subsequent S-box reads are spread over only
4 cache lines. While execution is out-of-order, each instruction and its completion
state are tracked in the CPU’s reorder buffer (ROB). Instruction results only affect
the system state once they are completed and have reached the top of the ROB.
That is, micro-ops retire in-order, even though they execute out-of-order. The re-

45

sult of micro-ops that have completed hence do not immediately affect the system.
In our case, if the previous load has not yet been serviced, the subsequent com-
pleted accesses cannot retire and affect the system until the unserviced load is also
completed.

Every context switch out of an enclave requires the CPU to flush the out-of order
execution pipeline of the CPU [18]. Hence the interrupt causes a pipeline flush in
the CPU, all micro-ops on the ROB that are not at the top and completed will be
discarded. Since our scheduler switches tasks very frequently, many loads cannot
retire and thus the same load operation has to be serviced repeatedly. This explains
why we see between 9 and 90 accesses to the S-box cache lines although there are
only 16 different loads to 4 different cache lines. The loads for the first S-box are,
however, the least affected by preceding loads. Hence, they are the most likely to
complete and retire from the ROB after a single cache access. Later accesses are
increasingly likely to be serviced more than once, as their completion and retirement
is dependent on preceding loads. Since our leakage model assumes such behavior (in
fact, we assume one cache access per load), the model becomes increasingly accurate
for later accesses.

46

Chapter 6

Conclusion

This work presented a high resolution attack, a new tool to analyze memory accesses
of SGX enclaves. To gain maximal resolution, we combined a L1 cache Prime and
Probe attack with OS modifications that greatly enhance the channel bandwidth.
SGX makes this scenario realistic, as both a compromised OS and knowledge of the
unencrypted binary are realistic for enclaves.

We demonstrate that our attack can be mounted to recover key bits from well
accepted software implementations of AES, including ones that use prefetches for
each round as a cache-attack countermeasure. Furthermore, keys can be recovered
with as few as 7 observations for T-table based implementations. We also improved
the number of required samples in our key recovery attack on these implementations.
For the trickier S-box implementation style, 100s of observations reveal sufficient key
information to make full key recovery possible.

Prefetching is in this scenario beneficial to the adversary, as it helps identify-
ing and separating the accesses for different rounds. Our tool serves as evidence
that security-critical code needs constant execution flows and secret-independent
memory accesses. As SGXs intended use is the protection of sensitive information,
enclave developers must thus use the necessary care when developing code and avoid
microarchitectural leakages. For AES specifically, SGX implementations must fea-
ture constant memory accesses. Possible implementation styles are thus bit-sliced
or vectorized-instruction-based implementations or implementations that access all
cache lines for each look-up.

47

Bibliography

[1] Onur Aciiçmez, Çetin Kaya Koç, and Jean-Pierre Seifert. On the power of
simple branch prediction analysis. In Proceedings of the 2nd ACM symposium
on Information, computer and communications security, pages 312–320. ACM,
2007.

[2] Onur Acıiçmez and Werner Schindler. A vulnerability in rsa implementations
due to instruction cache analysis and its demonstration on openssl. In Topics
in Cryptology–CT-RSA 2008, pages 256–273. Springer, 2008.

[3] ARM TrustZone. https://www.arm.com/products/security-on-arm/

trustzone. Accessed: April 27, 2017.

[4] Sergei Arnautov, Bohdan Trach, Franz Gregor, Thomas Knauth, Andre Martin,
Christian Priebe, Joshua Lind, Divya Muthukumaran, Daniel OKeeffe, Mark L
Stillwell, et al. SCONE: Secure linux containers with Intel SGX. In 12th
USENIX Symposium on Operating Systems Design and Implementation (OSDI
16). USENIX Association, 2016.

[5] Andrew Baumann, Marcus Peinado, and Galen Hunt. Shielding applications
from an untrusted cloud with haven. ACM Transactions on Computer Systems
(TOCS), 33(3):8, 2015.

[6] Naomi Benger, Joop van de Pol, Nigel P Smart, and Yuval Yarom. Ooh Aah...
Just a Little Bit: A small amount of side channel can go a long way. In
International Workshop on Cryptographic Hardware and Embedded Systems,
pages 75–92. Springer, 2014.

[7] Daniel J. Bernstein. Cache-timing attacks on AES, 2004. URL:
http://cr.yp.to/papers.html#cachetiming.

[8] Daniel J. Bernstein and Peter Schwabe. New AES Software Speed Records,
pages 322–336. Springer Berlin Heidelberg, Berlin, Heidelberg, 2008.

[9] Sarani Bhattacharya and Debdeep Mukhopadhyay. Who Watches the Watch-
men?: Utilizing Performance Monitors for Compromising Keys of RSA on Intel
Platforms, pages 248–266. Springer Berlin Heidelberg, Berlin, Heidelberg, 2015.

48

[10] Joseph Bonneau and Ilya Mironov. Cache-collision timing attacks against AES.
In International Workshop on Cryptographic Hardware and Embedded Systems,
pages 201–215. Springer, 2006.

[11] Ferdinand Brasser, Urs Müller, Alexandra Dmitrienko, Kari Kostiainen, Srdjan
Capkun, and Ahmad-Reza Sadeghi. Software Grand Exposure: SGX Cache
Attacks Are Practical. arXiv preprint arXiv:1702.07521, 2017.

[12] Stefan Brenner, Colin Wulf, David Goltzsche, Nico Weichbrodt, Matthias
Lorenz, Christof Fetzer, Peter Pietzuch, and Rüdiger Kapitza. SecureKeeper:
Confidential ZooKeeper using Intel SGX. In Proceedings of the 17th Interna-
tional Middleware Conference, page 14. ACM, 2016.

[13] Ernie Brickell, Gary Graunke, Michael Neve, and Jean-Pierre Seifert. Software
mitigations to hedge AES against cache-based software side channel vulnera-
bilities. IACR Cryptology ePrint Archive, 2006:52, 2006.

[14] Samira Briongos, Pedro Malagón, José L. Risco-Mart́ın, and José Manuel Moya.
Modeling side-channel cache attacks on AES. In Proceedings of the Summer
Computer Simulation Conference, SummerSim 2016, Montreal, QC, Canada,
July 24-27, 2016, page 37, 2016.

[15] David Brumley and Dan Boneh. Remote timing attacks are practical. Computer
Networks, 48(5):701–716, 2005.

[16] A. C, R. P. Giri, and B. Menezes. Highly Efficient Algorithms for AES Key
Retrieval in Cache Access Attacks. In 2016 IEEE European Symposium on
Security and Privacy (EuroS P), pages 261–275, March 2016.

[17] Xiaoxin Chen, Tal Garfinkel, E Christopher Lewis, Pratap Subrahmanyam,
Carl A Waldspurger, Dan Boneh, Jeffrey Dwoskin, and Dan RK Ports. Over-
shadow: a virtualization-based approach to retrofitting protection in commod-
ity operating systems. In ACM SIGARCH Computer Architecture News, vol-
ume 36, pages 2–13. ACM, 2008.

[18] Victor Costan and Srinivas Devadas. Intel SGX explained. Technical re-
port, Cryptology ePrint Archive, Report 2016/086, 2016. https://eprint. iacr.
org/2016/086, 2015.

[19] Victor Costan, Ilia Lebedev, and Srinivas Devadas. Sanctum: Minimal Hard-
ware Extensions for Strong Software Isolation. In 25th USENIX Security Sym-
posium (USENIX Security 16), pages 857–874, Austin, TX, 2016. USENIX
Association.

[20] Power Management States: P-States, C-States, and Pack-
age C-States. https://software.intel.com/en-us/articles/

49

power-management-states-p-states-c-states-and-package-c-states.
Accessed: April 27, 2017.

[21] Joan Daemen and Vincent Rijmen. The design of Rijndael: AES-the advanced
encryption standard. Springer Science & Business Media, 2013.

[22] Kamal Dahbur, Bassil Mohammad, and Ahmad Bisher Tarakji. A survey of
risks, threats and vulnerabilities in cloud computing. In Proceedings of the 2011
International conference on intelligent semantic Web-services and applications,
page 12. ACM, 2011.

[23] Dmitry Evtyushkin, Dmitry Ponomarev, and Nael Abu-Ghazaleh. Jump Over
ASLR: Attacking Branch PredShared Cache Attictors to Bypass ASLR. In
IEEE/ACM International Symposium on Microarchitecture (MICRO), 2016.

[24] Benny Fuhry, Raad Bahmani, Ferdinand Brasser, Florian Hahn, Florian Ker-
schbaum, and Ahmad-Reza Sadeghi. HardIDX: Practical and Secure Index
with SGX. arXiv preprint arXiv:1703.04583, 2017.

[25] Qian Ge, Yuval Yarom, David Cock, and Gernot Heiser. A Survey of Microar-
chitectural Timing Attacks and Countermeasures on Contemporary Hardware.
IACR Eprint, 2016.

[26] Daniel Gruss, Clémentine Maurice, and Stefan Mangard. Rowhammer. js: A
remote software-induced fault attack in javascript. In Detection of Intrusions
and Malware, and Vulnerability Assessment, pages 300–321. Springer, 2016.

[27] Shay Gueron. A Memory Encryption Engine Suitable for General Purpose
Processors. IACR Cryptology ePrint Archive, 2016:204, 2016.

[28] David Gullasch, Endre Bangerter, and Stephan Krenn. Cache Games–Bringing
Access-Based Cache Attacks on AES to Practice. In 2011 IEEE Symposium on
Security and Privacy, pages 490–505. IEEE, 2011.

[29] Mike Hamburg. Accelerating AES with Vector Permute Instructions, pages
18–32. Springer Berlin Heidelberg, Berlin, Heidelberg, 2009.

[30] Owen S Hofmann, Sangman Kim, Alan M Dunn, Michael Z Lee, and Em-
mett Witchel. Inktag: Secure applications on an untrusted operating system.
In ACM SIGARCH Computer Architecture News, volume 41, pages 265–278.
ACM, 2013.

[31] Mehmet Sinan Inci, Berk Gulmezoglu, Gorka Irazoqui, Thomas Eisenbarth,
and Berk Sunar. Cache attacks enable bulk key recovery on the cloud. In
International Conference on Cryptographic Hardware and Embedded Systems,
pages 368–388. Springer, 2016.

50

[32] Intel. Intel Data Protection Technology with AES-NI and Secure Key.

[33] ISCA 2015 tutorial slides for Intel SGX. https://software.intel.com/

sites/default/files/332680-002.pdf. Accessed: April 27, 2017.

[34] Gorka Irazoqui, Thomas Eisenbarth, and Berk Sunar. S $ A: A Shared Cache
Attack That Works across Cores and Defies VM Sandboxing–and Its Applica-
tion to AES. In 2015 IEEE Symposium on Security and Privacy, pages 591–604.
IEEE, 2015.

[35] Gorka Irazoqui, Mehmet Sinan İncİ, Thomas Eisenbarth, and Berk Sunar. Wait
a Minute! A fast, Cross-VM Attack on AES. In RAID, pages 299–319, 2014.

[36] Paul C Kocher. Timing attacks on implementations of Diffie-Hellman, RSA,
DSS, and other systems. In Annual International Cryptology Conference, pages
104–113. Springer, 1996.

[37] Ralph Langner. Stuxnet: Dissecting a cyberwarfare weapon. IEEE Security &
Privacy, 9(3):49–51, 2011.

[38] Sangho Lee, Ming-Wei Shih, Prasun Gera, Taesoo Kim, Hyesoon Kim,
and Mark Peinado. Inferring Fine-grained Control Flow Inside SGX En-
claves with Branch Shadowing. Technical report, arxiv Archive, 2016.
https://arxiv.org/pdf/1611.06952.pdf, 2017.

[39] Moritz Lipp, Daniel Gruss, Raphael Spreitzer, and Stefan Mangard. Ar-
mageddon: Last-level cache attacks on mobile devices. arXiv preprint
arXiv:1511.04897, 2015.

[40] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B Lee. Last-level
cache side-channel attacks are practical. In IEEE Symposium on Security and
Privacy, pages 605–622, 2015.

[41] Mitsuru Matsui and Junko Nakajima. On the Power of Bitslice Implementation
on Intel Core2 Processor, pages 121–134. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2007.

[42] Ahmad Moghimi, Gorka Irazoqui, and Thomas Eisenbarth. CacheZoom: How
SGX Amplifies The Power of Cache Attacks. arXiv preprint arXiv:1703.06986,
2017.

[43] Thomas Morris. Trusted platform module. In Encyclopedia of Cryptography
and Security, pages 1332–1335. Springer, 2011.

[44] Olga Ohrimenko, Felix Schuster, Cdric Fournet, Aastha Mehta, Sebastian
Nowozin, Kapil Vaswani, and Manuel Costa. Oblivious multi-party machine
learning on trusted processors. In USENIX Security, 2016.

51

[45] Yossef Oren, Vasileios P Kemerlis, Simha Sethumadhavan, and Angelos D
Keromytis. The spy in the sandbox: Practical cache attacks in javascript and
their implications. In Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security, pages 1406–1418. ACM, 2015.

[46] Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache attacks and counter-
measures: the case of AES. In Cryptographers Track at the RSA Conference,
pages 1–20. Springer, 2006.

[47] Colin Percival. Cache missing for fun and profit, 2005.

[48] Ronald Perez, Reiner Sailer, Leendert van Doorn, et al. vTPM: virtualizing the
trusted platform module. In Proc. 15th Conf. on USENIX Security Symposium,
pages 305–320, 2006.

[49] Thomas Ristenpart, Eran Tromer, Hovav Shacham, and Stefan Savage. Hey,
you, get off of my cloud: exploring information leakage in third-party compute
clouds. In Proceedings of the 16th ACM conference on Computer and commu-
nications security, pages 199–212. ACM, 2009.

[50] Felix Schuster, Manuel Costa, Cédric Fournet, Christos Gkantsidis, Marcus
Peinado, Gloria Mainar-Ruiz, and Mark Russinovich. VC3: trustworthy data
analytics in the cloud using SGX. In 2015 IEEE Symposium on Security and
Privacy, pages 38–54. IEEE, 2015.

[51] M. Schwarz, S. Weiser, D. Gruss, C. Maurice, and S. Mangard. Malware Guard
Extension: Using SGX to Conceal Cache Attacks. ArXiv e-prints, February
2017.

[52] Jaebaek Seo, Byounyoung Lee, Seongmin Kim, Ming-Wei Shih, Insik Shin,
Dongsu Han, and Taesoo Kim. Sgx-shield: Enabling address space layout
randomization for sgx programs. In Proceedings of the 2017 Annual Network
and Distributed System Security Symposium (NDSS), San Diego, CA, 2017.

[53] Kristoffer Severinsen, Christian Johansen, and Sergiu Bursuc. Securing the
End-points of the Signal Protocol using Intel SGX based Containers. Security
Principles and Trust Hotspot 2017, page 1, 2017.

[54] Intel SGX. https://software.intel.com/en-us/sgx. Accessed: April 27,
2017.

[55] Ming-Wei Shih, Sangho Lee, Taesoo Kim, and Marcus Peinado. T-sgx: Erad-
icating controlled-channel attacks against enclave programs. In Proceedings of
the 2017 Annual Network and Distributed System Security Symposium (NDSS),
San Diego, CA, 2017.

52

[56] Shweta Shinde, Zheng Leong Chua, Viswesh Narayanan, and Prateek Saxena.
Preventing Page Faults from Telling Your Secrets. In Proceedings of the 11th
ACM on Asia Conference on Computer and Communications Security, pages
317–328. ACM, 2016.

[57] Rohit Sinha, Sriram Rajamani, Sanjit Seshia, and Kapil Vaswani. Moat: Ver-
ifying confidentiality of enclave programs. In Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Security, pages 1169–
1184. ACM, 2015.

[58] Mario Strasser and Heiko Stamer. A software-based trusted platform module
emulator. In International Conference on Trusted Computing, pages 33–47.
Springer, 2008.

[59] Tatsuya TAKEHISA, Hiroki NOGAWA, and Masakatu MORII. AES Flow
Interception: Key Snooping Method on Virtual Machine - Exception Handling
Attack for AES-NI. Cryptology ePrint Archive, Report 2011/428, 2011. http:
//eprint.iacr.org/2011/428.

[60] Yukiyasu Tsunoo, Teruo Saito, Tomoyasu Suzaki, Maki Shigeri, and Hiroshi
Miyauchi. Cryptanalysis of DES implemented on computers with cache. In
International Workshop on Cryptographic Hardware and Embedded Systems,
pages 62–76. Springer, 2003.

[61] Nico Weichbrodt, Anil Kurmus, Peter Pietzuch, and Rüdiger Kapitza. Async-
Shock: Exploiting Synchronisation Bugs in Intel SGX Enclaves. In European
Symposium on Research in Computer Security, pages 440–457. Springer, 2016.

[62] Yuanzhong Xu, Weidong Cui, and Marcus Peinado. Controlled-channel attacks:
Deterministic side channels for untrusted operating systems. In 2015 IEEE
Symposium on Security and Privacy, pages 640–656. IEEE, 2015.

[63] Yuval Yarom and Katrina Falkner. Flush+reload: a high resolution, low noise,
L3 cache side-channel attack. In 23rd USENIX Security Symposium (USENIX
Security 14), pages 719–732, 2014.

[64] Yinqian Zhang, Ari Juels, Alina Oprea, and Michael K Reiter. Homealone:
Co-residency detection in the cloud via side-channel analysis. In 2011 IEEE
Symposium on Security and Privacy, pages 313–328. IEEE, 2011.

[65] Yinqian Zhang, Ari Juels, Michael K. Reiter, and Thomas Ristenpart. Cross-
Tenant Side-Channel Attacks in PaaS Clouds. In Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications Security, 2014.

[66] Yinqian Zhang, Ari Juels, Michael K. Reiter, and Thomas Ristenpart. Cross-
VM Side Channels and Their Use to Extract Private Keys. In Proceedings of
the 2012 ACM Conference on Computer and Communications Security, 2014.

53

