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Abstract

This project is an extension of the Reinforcement Learning Service (RLS) designed for the

ASSISTments learning platform. ASSISTments is an organization that is committed to

improving student learning using online software. The RLS is a service that is called whenever a

student requests additional instruction or tutoring. The RLS takes different features from the

student and the problem then recommends a related video or hint based on those features. Based

on if the student successfully answered the problem correctly afterward, the RLS then learns

from the results and refines its recommendation algorithm. For our project, we are mainly

concerned with what happens when the RLS receives a request and how it communicates with

the rest of ASSISTments. We wrote code that will use the information from a student or problem,

provide a recommendation with a given model, and will write a detailed log that can be analyzed

later.
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1. Introduction

1.1 The ASSISTments Platform

ASSISTments is an online platform that focuses on mathematical instruction. The

primary goals of ASSISTments are to empower teachers, tutor students, and perform research.

Through the platform, teachers can assign homework to their students as well as get quick

feedback to understand what areas their class is struggling in. While the students work on their

assigned problems, ASSISTments offers tutoring strategies to help students learn from difficult

problems they encounter. While making mathematical instruction more convenient,

ASSISTments also collects data and uses that data to perform research to improve the quality of

its mathematical instructions to help students in their learning endeavors (Heffernan, Neil T. and

Cristina Lindquist Heffernan).

1.2 Personalized Learning and RLS

Recently, ASSISTments has been looking into personalized learning to aid the students

on the platform. According to Peggy Grant and Dale Basye, personalized learning is a method of

instruction that considers the strengths, needs, and interests of an individual student and tailors

the instruction to take advantage of those qualities (Grant, P. and D. Basye). While students work

on problems via ASSISTments, they seek help using an online search engine if they’re confused

about a particular problem. During this search, a student will find information and videos are

abundant online. This may prove difficult for finding the appropriate resource to help clear that

initial confusion. Instead of students struggling to seek instruction, ASSISTments wants to

incorporate personalized learning by providing additional instruction tailored for the student to

clear up any confusion they might encounter while problem-solving.

To accomplish this, ASSISTments began the development of the Reinforcement Learning

Service (RLS). The RLS will recommend a video related to the problem the student is working

on. With this system, the RLS can personalize a student’s learning experience by recommending

videos with specific characteristics that aid the student in the learning process. For example, one
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student may learn more from videos where the speaker has a passionate tone, while another may

learn more from videos where the speaker has a calm tone.

1.3 Request Manager

The main focus of our project is what happens when the ASSISTments tutor makes a

request for the RLS to provide personalized learning. This portion of the RLS is what we called

the Request Manager. Our responsibilities included designing the class diagram, building the

backend code in Java, and integrating the project with the ASSISTments tutor.

The goal of the project was to have an implementation ready to be used and incorporated

into the RLS. If the Request Manager works as intended, the RLS will gain more knowledge that

will help improve the personalization of the service. The achievement of this goal would mean

that ASSISTments would be one step closer to providing personalized additional instruction for

students on the platform.

2. Background

2.1 ASSISTments

ASSISTments is an online learning platform designed for tutoring and helping students in

grade school. As stated earlier, the primary goals of ASSISTments are to empower teachers, tutor

students, and perform research. Teachers can take advantage of the ASSISTments platform to

easily track their student's performance and learn what areas they are struggling in. With the

ability to assign problems and automatic grading, teachers are empowered by this platform

(Heffernan, Neil T. and Cristina Lindquist Heffernan). For students using ASSISTments, they

can work on assigned problems and gain additional aid through the ASSISTments tutor (Figure

1). The ASSISTments tutor can handle requests for tutoring strategies on math problems by

asking TeacherASSIST (more detail in Section 2.3) for tutoring content such as hints and

explanations (Patikorn, Thanaporn and Neil T. Heffernan).
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Figure 1. Screenshot of ASSISTments Tutor

2.2 Personalized Learning

Typical methods of instruction in K-12 classrooms involve each student following a

cookie-cutter approach to learning new material. Personalized learning separates itself from the

standard cookie-cutter approaches to learning by providing instruction tailored to the individual

student's strengths (Bulger, Monica). There are many studies regarding personalized learning and

its effectiveness with varying results.

An example of a study that successfully supports personalized learning was performed by

a group of researchers working at ASSISTments. In this study, four randomly selected classes

composed of eighth-grade students participated in completing a pre-test and problem sets. While

completing these problem sets, students in a class had access to one of two learning methods.

One of these methods was a detailed step-by-step breakdown of a problem that leads to the

solution, while the other method showed only the solution. After finishing the problem sets, the

students of each class were then assigned to complete a post-test which can be compared to the

pre-test score to measure learning effectiveness. As the researchers of this experiment performed

their analysis, they ended up dividing the students into two groups based on their scores on a
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standardized math test: high proficiency students and low proficiency students. The results of

this study showed that highly proficient students learned much more effectively through being

shown the solution compared to being given the step-by-step breakdown. In contrast, low

proficiency students learned much more effectively through the step-by-step breakdowns

compared to being shown the solution (Razzaq, Leena and Neil Heffernan). This study

demonstrates that students can learn more effectively by providing the appropriate learning

method which can be achieved through personalized learning.

While some studies support personalized learning, some studies conclude personalized

learning to be not as effective. A study performed by two researchers, Massa and Maya,

highlights this. In this study, Massa and Maya provided computer-based electronics lessons

where the students were categorized to be visual learners or verbal learners. Massa and Maya

provided additional help during these lessons that came in either text or illustrations. Note that

both these methods cater to the learning styles of one group of students. Students from both

groups were exposed to these methods of additional help during instruction. Their results showed

no significant difference in performance even when the help was tailored to the student’s

personal learning preference. In the case of Massa and Maya’s study, there was no proper

evidence to provide separate personalized instruction for visualizers and verbalizers (Pashler,

Harold et al).

While these studies show different results for the effectiveness of personalized learning, it

is an area of research that can be further explored. Online learning platforms like ASSISTments

have the potential to incorporate personalized learning and design studies to test its effectiveness.

By taking advantage of student profiles and machine-learning algorithms, it is possible to

analyze an individual's strengths and respond with personalized instruction. Each student on the

platform is unique from their age, gender, ethnicity, academic performance, and learning

preferences. Taking these characteristics into consideration with the Request Manager, we can

provide personalized instruction for students on the ASSISTments platform. Researchers can

also design experiments around the personalized instruction to assess its effectiveness. Even if

8



we find personalized instruction is ineffective, the Request Manager will still provide a form of

instruction that is the most helpful for the student.

2.3 TeacherASSIST

TeacherASSIST is a feature recently implemented inside of the ASSISTments platform.

It is a crowdsourcing system designed for students to get on-demand assistance created from

teachers outside of their class. This on-demand assistance is tied to individual problems and it

will be referred to as “tutor strategies” throughout this paper. Teachers using TeacherASSIST

have the freedom to create tutor strategies for the math problems they assigned to their students.

As for the crowdsourcing aspect of TeacherASSIST, teachers who regularly create tutor

strategies and correct their mistakes for their students can re-distribute their tutor strategies to

other students through TeacherASSIST given their permission (Patikorn, Thanaporn and Neil T.

Heffernan).

TeacherASSIST currently supports three different types of tutor strategies: hints,

scaffoldings, and explanations. Hints are a series of helpful messages that provide students with

some additional information to aid in solving the problem. Scaffoldings are the original problem

decomposed into smaller steps to guide students towards the answer. Explanations are detailed

breakdowns on how to solve the problem and reveal the answer. While all three tutor strategies

are supported, teachers can only create hints and explanations through TeacherASSIST. The

complexity and time for creating a scaffolding went against the convenience aspect of

TeacherASSIST (Patikorn, Thanaporn and Neil T. Heffernan).

While students can request one of many tutor strategies for individual problems through

TeacherASSIST, the selection of the tutor strategy is random in the system’s current state. To

incorporate personalized learning, we needed to implement the Request Manager into

TeacherASSIST. Upon request for a tutor strategy, the Request Manager will select the tutor

strategy by considering all the available tutor strategies from TeacherASSIST. The Request

Manager then looks at an individual student's traits to make a personalized decision. Once the

decision is made, the Request Manager will inform TeacherASSIST which strategy to provide to
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the student. We will later discuss how we implemented the Request Manager into

TeacherASSIST in Section 3.3.

2.4 Reinforcement Learning

Reinforcement learning is one of the main approaches in machine learning. The goal of

reinforcement learning is for the model to learn how to make informed decisions on what action

to take in a complex environment to maximize a possible reward. Consider the situation where a

mouse must navigate through a maze. The faster he can finish the maze, the more food he will

receive as a reward. The mouse wants to receive the highest reward he can, so he will learn from

past maze runs to get through the maze as fast as possible. Typically, in the beginning, the model

will start by making seemingly random decisions. The purpose of this is to gather more

information about the environment. Each time that the model makes a decision, it will receive a

reward or penalty. With the intention of trying to maximize the reward, the model will look at

what factors had previously resulted or did not result with the reward and will consider those

factors when it makes its next decision.

The typical reinforcement learning framework can be seen in Figure 2. The process

begins when the model observes the current state of the environment. Afterward, the model will

decide on an appropriate action that affects the environment. The model will then observe if the

action produced the desired reward and the current state of the environment. Based on those

observations, the model will learn and then use them to decide the next action. This cycle will

then repeat.
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Figure 2. General Reinforcement Learning Model

A theoretical scenario where a reinforcement learning strategy could be applied would be

the multi-armed bandit problem. In this problem, there is a gambler at a row of slot machines

(one-armed bandits), each with different unknown probabilities of winning. To maximize his

winnings, he must choose which machine to play each time to balance getting information and

profiting from the machines. How a reinforcement learning strategy might try to handle this

problem would be to first explore information about the machines using a certain strategy or just

by random trial and error. Then, when it will use the known information to try to exploit the

machines to maximize the reward. However, different reinforcement learning strategies may

have different ideologies for the exploration vs. exploitation tradeoff.

When a student asks for additional instruction for a problem, the RLS in ASSISTments

will provide a personalized video. At first, the model for RLS will recommend videos and

strategies randomly. Then, the student will answer the next problem. If the student answered the

problem correctly, the model will receive a reward. If the student didn’t answer it correctly, it

will not. When analyzing which recommended videos resulted in a reward and which do not, the

model will observe the features of the student, the problem, and the video. From those features,

the model will learn which videos are most relevant when recommending a video.
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2.5 Ideas Lab Grant

When observing the number of STEM professionals, there is a clear underrepresentation

of certain populations. Concerning this, if a student from these underrepresented populations

were to watch an instructional video by searching Google, it is likely that the video that they

manage to find may not resonate with them as it would with other students. To help solve this

issue, ASSISTments proposed Ideas Lab. The Ideas Lab proposal focused on a process called

Precision Learning to provide personalized learning to students. As seen in Figure 3, the features

from the students and videos would be taken, and using those features, the Precision Learning

process would provide personalized recommendations. The recommended videos would be

labeled as “additional instruction”.

Figure 3. Ideas Lab Process Overview

The first phase of the Ideas Lab project involved collecting a portion of educational

videos (approx. 1,300) and developing video recommendation algorithms for ranking educational

value and for fairly recommending based on student features. The second phase of the project

will involve collecting many more educational videos (approx. 100,000) and starting

experimenting with real students to improve the algorithms. The third phase will involve using

the improvements of the algorithm to implement the service in ASSISTments. Then, based on

the effectiveness of the implementation, the model will be constantly refined.
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A visual mock-up of what the additional instruction button will look like when

implemented can be seen in Figure 4. When the student clicks on the button, a personalized

video related to the skill in the problem will be provided to the student.

Figure 4. Mock-Up of Student Perspective when Implemented

3. Methods

3.1 Designing and Coding the Request Manager

We started the design process for the Request Manager by attempting to define and

understand the purpose of our project and where it fits into the RLS. The Request Manager

receives a "request" which contains a list of tutor strategies as well as student and problem IDs

and then returns the tutor strategy that is predicted to be the most helpful to the student. This

process involves taking the features of the student and problem, choosing an RLS model, and

returning the tutor strategy or additional instruction.
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Student features include their gender, ethnicity, and average scores. Meanwhile, problem

features include the type of problem and the frequency of the correct answer is given. In the

context of the RLS, a model means the algorithm being used to calculate a score for each tutor

strategy which takes in any relevant features it may need. As stated previously, tutor strategies

are on-demand assistance associated with each problem. There are multiple types of tutor

strategies including hints, explanations, etc. In this stage of development, we considered an

“additional instruction” a special type of tutor strategy that provided a video on the assigned

topic and is related to a Common Core skill code. The features for each student, problem, tutor

strategy, and additional instruction are stored in databases that can be accessed through their

respective data access object (DAO). These databases are updated nightly in the RLS to get the

most recent information and DAOs can be implemented in Java programming to easily obtain

information from a database.

Once we understood what our task was, we created a class diagram. We decided that the

best way to structure the Request Manager would be to use different sub-managers for the

different tasks in the process. We created three sub-managers: the Context Manager, the Model

Manager, and the Log Manager. The main purpose of the Context Manager is to obtain relevant

features and then form context objects which are sent back to the Request Manager. The main

purpose of the Model Manager is to use the given context to select one of the available RLS

models, then use that model to give the predicted score for a tutor strategy. The Request Manager

then compares the predictions of each tutor strategy and then picks the one with the highest

score. Finally, the main purpose of the Log Manager is to write a log entry to the RLS logs which

details all of the relevant information that can be used to revise the RLS models in the future.
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3.1.1 Request Manager

Once the core functionality of the Request Manager was designed, revisions were made

to fit expectations. We realized that the Request Manager obtained different types of context

from the Context Manager and needed a convenient object to store all that context. Thus, an

object called the RequestInfo was created with the purpose of holding all the relevant context

that is retrieved from the Context Manager. The class diagram of the Request Manger and

RequestInfo object can be seen in Figures 5 and 6. The Request Manager builds a RequestInfo

object by gathering the student, problem, and tutor strategy context objects provided by the

Context Manager. Another revision was made after we were informed that the Request Manager

should be able to make multiple predictions for different tutor strategy types. To achieve this, we

changed the input list of tutor strategies to be a hashmap containing the tutor strategy type as the

key and the list of tutor strategies as the value. The returned tutor strategy was also changed to be

a hashmap that contains a chosen strategy for each tutor strategy type.

Figure 5. Class Diagram for the RequestManager
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Figure 6. Class Diagrams for RequestInfo object

Once the initial design process had been approved, we moved on to the task of writing

code for the Request Manager. We wrote the selectTutorStrategy function which is the function

that is called every time by TeacherASSIST. selectTutorStrategy begins by creating the hashmap

to be returned. Then, using the student ID and problem ID, the student context and problem

context objects are made for later use. For each key in the hashmap, there is a list of tutor

strategies. Each tutor strategy in the list has an associated tutor strategy context object and then a

RequestInfo object. The RequestInfo object is then used to get a prediction from the model. The

model prediction is then compared to the previous highest prediction, and if it’s higher, the

selected tutor strategy will be replaced. The process continues until there are no more tutor

strategies in the list. When the tutor strategy with the highest prediction is found, that tutor

strategy is put into the recommended tutor strategies hashmap with its corresponding type. In
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addition, the RequestInfo relating to the tutor strategy and the model are sent to the Log Manager

to write a log.

There were also major revisions that came up with design later during the project during

the coding phase of the project. The decision was made that the TutorStrategyType enumeration

we had been using up until that point would be changed to a string. We then refactored our code

to accommodate this change. Additional instruction was originally intended to be grouped in the

TutorStrategyType enumeration. Later, it was decided that additional instruction and

TutorStrategyType should be separate. The Additional Instruction DAO and Additional

Instruction enumeration were also created which we also had to refactor the code for. Despite

this, the selectTutorStrategy function is still used for selecting an additional instruction.

3.1.2 Context Manager

The next part we wrote code for was the Context Manager. The initial step we took was

auto-wiring the DAOs to the Context Manager. For the getStudentContext and getProblemContext

functions, a query is built to find the matching student or problem reference ID in the DAO with

the most recent timestamp to ensure that the most recent features are being used. Once the

features have been found, they are used to build the student or problem context object which are

returned to the Request Manager. For the getTutorStrategyContext function, we used a switch

statement to check which tutor strategy type is being used. If the type matches one of the cases, it

will query the corresponding DAO using the given tutor strategy ID and return the appropriate

tutor strategy context object. If the type is an additional instruction, it will query the Additional

Instruction DAO using the provided ID. With the resulting AdditionalInstruction object, it will

check the Additional Instruction type ID, find the matching case, and return the appropriate tutor

strategy context. The class diagram for the Context Manager can be seen in Figure 7 below. The

only notable revision that was made when we made dummy DAOs for hints, explanations, and

scaffolding. We made it so the switch statement in getTutorStrategyContext could communicate

with the dummy DAOs and later be replaced by the DAOs for their respective tutor strategies.
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Figure 7. Class Diagram for Context Manager

3.1.3 Model Manager

Next, we wrote code for the Model Manager. The main function of this manager is

getPrediction which returns a ModelInfo object containing the model ID and the reward

prediction. We decided to add two helper functions to help with getPrediction. One of them was

the loadModel function, whose purpose is to take the context from RequestInfo and decide which

model to choose. The other is formContextArray function, which can form an array of doubles that

the chosen model will understand and use to make a predicted reward. When the model is loaded

and the context array is formed, the ID of the model and the predicted reward from the model are

put in the ModelInfo object which is returned to the Request Manager. The class diagram for the

Context Manager can be seen in Figure 8 below.
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Figure 8. Class Diagram for Model Manager

The first model we made was called RandomModel and returned a randomly generated

prediction score for each tutor strategy. The second model, DummyModel, was made alongside

the dummy DAOs we mentioned previously. For each tutor strategy type, we made a

DummyModel which returned a placeholder value in the tutor strategy context object. Originally,

loadModel loaded the RandomModel if the tutor strategy type was additional instruction and the

DummyModel if the type was a hint, explanation, or scaffolding. For getPrediction, if the

RandomModel was being loaded, the context array would be empty. If it was the DummyModel,

the context array consisted of the placeholder value. Later, we were tasked with making the

ThompsonSamplingModel which would replace the DummyModel in loadModel and

getPrediction. The ThompsonSamplingModel holds the mean and standard deviation of rewards
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and the number of times picked for each tutor strategy in a string. To find the predicted reward

for a tutor strategy, we used the formula (R × 𝜎) + μ where R is a random Gaussian number, 𝜎 is

the standard deviation, and μ is the mean. After the ThompsonSamplingModel was implemented,

we then constructed the BinaryThompsonModel. This model uses the same method for

predicting the reward but contains different information in the model value string. The string

now contains the number of times each 1 and 0 have been returned as the reward. With this

information, the mean and standard deviation can be derived. The mean is found with the

equation μ = n1 / (n1 + n0) while standard deviation can be found with 𝜎 = √((n0 × n1) / (n1 + n0)3)

where n0 is the number of times 0 has been returned and n1 is the number of times 1 has returned.

3.1.4 Log Manager

After the Model Manager, we wrote the code for the Log Manager. The writeLog function

uses the RequestInfo and ModelInfo objects of the tutor strategy with the highest predicted

reward. An RLS log entry is created. The contents of the log entry can be seen in Table 1. For

nextProblemCorrectness and nextProblemCorrectnessTimestamp, the required information will only

be available after the student has answered the next problem, so they are not handled by the Log

Manager when creating a log entry. When the available information is provided, the Log

Manager sends the log entry through the RLS logs DAO. The class diagram for the Log Manager

can be seen in Figure 9 below.

Figure 9. Class Diagram for Log Manager
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Logged Item Description

studentFeatureID ID for the student’s features in the student features DAO.
Obtained from RequestInfo.

problemFeatureID ID for the problem’s features in the problem features DAO.
Obtained from RequestInfo.

tutorStrategyTypeID Type of tutor strategy being recommended.
Obtained from RequestInfo.

tutorStrategyFeatureID ID for the selected tutor strategy’s features in the tutor strategy
features DAO. Obtained from RequestInfo.

tutorStrategyPredictedReward Predicted value of the selected tutor strategy.
Obtained from ModelInfo.

modelId ID for the selected model in the RLS model DAO.
Obtained from ModelInfo.

recommendationTimestamp Time of when the tutor strategy was recommended.
Obtained in Log Manager.

nextProblemCorrectness Boolean for if the student answered the next problem correctly.
Obtained when the student answers the next problem.

nextProblemCorrectnessTimestamp Time of when the student answers the next problem. Obtained
when the student answers the next problem.

Table 1. RLS Log Entry

3.2 Implementing Request Manager in TeacherASSIST

Once the Request Manager implementation was completed, the next step taken was to

integrate it into TeacherASSIST. As we established previously, TeacherASSIST is responsible

for providing a tutoring strategy to students upon request. These tutoring strategies are related to

the problem the student is working on and randomly selected. By integrating the Request

Manager into TeacherASSIST, we set the stage for tutor strategies to be personally selected for

each student.
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The first step to integrating the Request Manager was to combine the RLS project with

the TeacherASSIST project. This step was relatively straightforward as the RLS project is a

Maven project type. Maven projects can convert the Java files within into .jar files and upload

them through a process called a Maven build. After performing the Maven build, we can access

the uploaded .jar files by editing the Project Object Model (POM) file of the TeacherASSIST

project. The POM file of a Maven Project is responsible for configuring the project and by

editing it, we tell the TeacherASSIST project to import the .jar files we previously uploaded.

Through this process, we were able to access the implementation of the Request Manager and

created instances of the manager inside of the TeacherASSIST project.

Once the RLS and TeacherASSIST projects were combined, we had to figure out where

exactly we should add the Request Manager. We ended up having to meet with Thanaporn

“March” Patikorn. March is a PhD student in the ASSISTments lab and the head developer

behind TeacherASSIST. During this meeting, March suggested that we create a new Java class

called RLSHelper. The main reasoning for creating an entirely new class was to keep the code

organized and allow future editors of TeacherASSIST to have an easier time finding where RLS

was integrated. Inside of the RLSHelper, we created functions that take specific parameters

provided by TeacherASSIST and use the Request Manager to select the proper tutoring strategy

or video for the student. Once we understood where we could add the Request Manager, we

needed to know where to create an instance of the RLSHelper in TeacherASSIST.

TeacherASSIST is mainly structured around the TeacherAssistManager. In the

implementation of TeacherAssistManager, there is a function called selectTutorStrategyFromMany

where a decision is made to select a tutor strategy. This was the place where we were able to

insert our instance of RLSHelper. The parameters for this function can be seen in Table 2.
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Parameter Description

tsList a list of potential tutor strategies TeacherASSIST can
provide to the student

creatorType an enum to indicate how the strategy was selected

rlsEnabled a boolean to help form a conditional for using RLS

studentXref a string that uniquely identifies the student requesting a
tutoring strategy

problemId an integer that uniquely identifies the problem the
student requires a tutoring strategy

Table 2. Parameters for selectTutorStrategyFromMany function

The most problematic part about using these parameters is the tsList since it is a list of

TutorStrategy objects. This structure of the data caused a problem since the Request Manager is

not aware of this object which leads to compatibility issues with TeacherASSIST. In other words,

something needed to be done to handle the list of TutorStrategy objects, or we cannot use the

Request Manager to select tutor strategies. Recall that the Request Manager takes in a hashmap

where the key is a string and the value is an array of integers. Also, recall that the string is an

indicator for the tutor strategy type and the array holds integers that help identify the tutor

strategy. To sort out this compatibility issue, we created a function inside of RLSHelper that

iterated through the list of TutorStrategy objects and processed it into a hashmap that is

compatible with the Request Manager. This worked out since the TutorStrategy object itself

contains the unique identifier for the tutor strategy and the type of tutor strategy needed to

construct the hashmap for Request Manager. After the hashmap was created, we were

successfully able to pass it to the Request Manager to select a tutor strategy as we intended. By

selecting a strategy through Request Manager, we can add personalization and log the instances

of a tutor strategy requested by a specific student.
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3.3 Implementing Additional Instruction

While we had already integrated Request Manager to select tutor strategies for

TeacherASSIST, we still needed to implement video recommendations into TeacherASSIST.

This process was tricky since there were multiple approaches to its implementation. At first, we

were going to treat videos as a tutor strategy called “additional instruction”. However, after many

meetings, a decision was made to handle additional instruction differently from tutor strategies.

The justification for this decision was because tutor strategies are linked to specific problems

while additional instructions are linked to the skills used to solve the problem. This will also

allow for more types of additional instructions to be created in the future.

To adapt to the change of separating additional instruction from tutor strategies,

adjustments needed to be made for the Request Manager and RLS Helper. The first of these

adjustments involved creating an AdditionalInstruction object. The characteristics of the object

and they represent can be seen in Table 3.

Characteristic Description

skillId a unique ID that corresponds to each of the Common Core
Standard codes.

Ex.  a value of “7” may correspond to the 4.G.A.1 skill

value a string that holds the contents of the additional instruction
such a video link

Ex. http://www.youtube.com/watch?v=9O7D-YiSxOo

typeId an integer that identifies the type of additional instruction

Ex. a value of “1” corresponds to a YouTube Link

Table 3. Characteristics of the AdditionalInstruction object
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With the AdditionalInstruction object created and implemented in both Request Manager

and RLS Helper, the next step was to find a method to decide which video to recommend upon

an additional instruction request. The video must be related to the skills being assessed in the

problem as with any form of additional instruction. Each problem hosted on the ASSISTments

platform is already tagged with the appropriate skill codes defined by the Common Core

Standards for Mathematics. To ensure quality and correctness during the skill tagging process

with videos, ASSISTments hired a dozen teachers to decide if the videos that were found with

algorithmic YouTube searches were relevant to the skills being assessed.

Knowing that both the videos and problems were tagged with skill codes, we needed to

implement a function to correlate the two. TeacherASSIST already has an identifier for the

problem that the student is working on but not its skill codes. To retrieve the skill codes, we got

some aid from Joseph St. Pierre, a software developer working at ASSISTments. Joseph wrote a

function that will return the skill codes of a problem given the problem identifier. After

implementing this function inside of RLSHelper,  we were able to take the problem identifier

from TeacherASSIST, obtain the skill codes related to the problem, and find potential videos to

recommend. We then passed these videos to the Request Manager where a single video is

recommended.

After the Request Manager has returned the recommended video, it is now

TeacherASSIST’s responsibility to deliver that video to the student who initially requested

additional instruction. To achieve the implementation shown in the Ideas Lab mock-up in Figure

4, we needed aid from the engineering team of ASSISTments. The engineering team is currently

responsible for modifying the manifest that communicates to the ASSISTments tutor and

updating the user interface for displays. These steps are necessary to fully implement the

additional instruction feature and allow students to watch the videos we recommended.
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3.4 Designing a Study for Testing RLS Personalization

Once the implementation for the RLS service is up and running on ASSISTments, a study

would be necessary to test that this personalized service is working properly. When it comes to

recommending videos, there are many video features to consider for a particular student. Some

students at Penn State University managed to compile a list of video features (see Table 4) for

the RLS service to identify and personally tailor its recommendations.

Video Feature Description

Pronunciation score how clear the speaker articles and pronounces
words

Gender the gender of the speaker

Tone the tone of the speaker used throughout the video

Voice Only whether or not the speaker's face is shown in the
video

Views the number of views on the YouTube video

Likes the number of likes on the YouTube video

Dislikes the number of dislikes on the YouTube video

Table 4. Example Video Features that RLS takes into consideration

Now that we established what features the RLS services will use to make their

recommendations, it is appropriate to start talking about how to design a study around it. For any

study, it is important to remove bias from the data and that is often done through randomly

selecting participants for the study. Conveniently, ASSISTments can easily create randomized

control groups for a study such as this one. Students on the ASSISTments platform will be

randomly selected and placed into either one of two groups. The first group will be referred to as

the control group. Inside the control group, students will have access to a service that will

recommend videos randomly upon request. The video will still relate to the skills assessed in the

problem in which the service was requested but, there is no personalization involved. The second
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group will be referred to as the experimental group. The experimental group will have access to

the RLS service where they receive personalized additional instruction upon request. The videos

that are recommended by the RLS service are not randomized and will take advantage of a

personalized learning algorithm to find the best video to suit the student. A summary of the two

groups and what they are exposed to can be seen in Table 5.

Group Name Exposure

Control A randomized video recommendation service

Experimental A personalized video recommendation service
(RLS)

Table 5. Groups for testing RLS personalization

Now that we established the groups for the study and what they are being exposed to, we

need to discuss what type of data we are going to collect and measure. We want to measure

student knowledge gain. To accomplish this, we want to observe instances where students of the

two groups request additional instruction and get a video recommendation. A student will most

likely seek additional instruction after getting a problem wrong. If a student can answer the

problem correctly after watching the video, we assume they have learned and gained the

knowledge necessary to solve the problem.

We are doing this study to measure how effective personalized learning is. After

collecting all this data, we would analyze it and compare the results of the experimental group to

the control group. More specifically, we would be looking at the difference in the average

knowledge gained for a student from using personalized recommendations and randomized

recommendations. If the average knowledge gained in the experimental group is significantly

larger than the control group, that would indicate that personalized recommendations are

significantly more effective than randomized recommendations. If the difference in the average

knowledge gained is about the same, that would indicate that both recommendation methods
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were equally effective in aiding students. Overall, the study will indicate the effectiveness of the

personalized additional instruction provided by the RLS service.

4. Future Work

4.1 Additional Steps and Ideas

While we did mention needing the assistance of the software engineering team of

ASSISTments to implement personalized videos for students, there are still some other features

that still need to be done for this project. From a coding perspective, we would still need to

establish a link between TeacherASSIST and the manifest files once they are finished by the

engineering team. Afterward, the code that we have written will be used and can be ready to be

implemented on the ASSISTments platform.

Some other aspects that can be worked on are related to the Model Manager in the

Request Manager. To be more specific, the need to implement models that use the additional

features in the reward calculation. Recall how we were able to retrieve features regarding the

student and the problem inside of the Context Manager. These features have not been considered

in any of the models we have already implemented in the Model Manager. These models are

more complex and time-consuming to develop but allow tutor strategies to be more tailored for

an individual’s experience. Some other features that can also be considered such as the teachers

of the student. For example, if a teacher often provides visual explanations to their students, we

can consider that feature and favor explanations that use visuals for those students in that

teacher’s class.

It is also important to consider the algorithms that will be deciding which model to use to

predict the rewards. In the future, we could use a supervised learning algorithm such as neural

nets, decision trees, or logistic regression. In supervised learning, the algorithm analyzes a set of

certain data and makes decisions based on the analysis. We would start by providing videos to

students randomly. Then when we had a significant amount of data to analyze, we would give it
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to the algorithm and it would observe the context and give the student the video with the highest

chance of the student getting the next problem correct. We could also implement unsupervised

learning algorithms. In unsupervised learning, clusters are formed based on certain attributes and

these clusters can be analyzed and an algorithm can be derived. In our case, the clusters can be

formed using the provided features from students or problems. With the way the RLS was

designed, many possible algorithmic models could be implemented and experimented with.

Once a machine-learning algorithm has been selected and successfully implemented, it

would be time to put everything together to get the RLS service up and running. Before one can

release a new online service, testing is necessary to ensure a smooth experience for its users. One

of the most common ways to test a new service would be through a closed beta. A beta for the

RLS service would be beneficial to perform bug fixes and get valuable feedback from users.

ASSISTments has done closed betas before such as with ASSISTments 2.0 so a similar treatment

for the RLS service would be reasonable. After the service has been thoroughly tested and

implemented into the ASSISTments platform, it would be appropriate to perform the RLS

personalization study described in Section 3.5.

One last idea that can be done in the continuation of this project is adding more types of

additional instruction. While this project only planned to provide videos hosted on YouTube,

there is an opportunity to add to more forms of additional instruction given how the code was

structured. Some ideas for new types of additional instruction could be links to other learning

platforms such as Khan Academy due to its structured format and many resources to help

students understand the skills required to solve the problems they were originally assigned.

Another form of additional instruction that has potential is links to websites with articles

explaining the concepts such as Wikipedia or MathIsFun. These websites often have a variety of

example problems and have graphics that can be helpful for students to learn concepts with a

different approach.
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4.2 Takeaways from the Project

Working on this project has been a commitment in both terms of time and effort.

However, the experience we gained was invaluable and something we will carry on into future

projects and work environments. One of the immediate benefits of this project was learning

proper communication skills and understanding how an organization like ASSISTments

operates. There are many distinct teams in ASSISTments working on various projects

simultaneously.  There were many times we had to reach out to people outside of our team to get

feedback and assistance. This includes talking to software engineers and head developers who

attended meetings with us and provided constructive criticism towards our coding style and

structure. One of the biggest challenges was learning how to write code in a way that makes

logical sense to anyone who sees it for the first time. This was an important skill to learn as

future workers of this project can easily understand what we wrote and how we approached it.

By learning how to redistribute online content on a learning platform, we also learned how to

write clean and effective code which will certainly be helpful in our careers.

5. Conclusion

The code we have written serves a pivotal role in the integration of the RLS. The Request

Manager can take a list of tutor strategies and pick one that is predicted to help the student the

most. It does this with the aid of its sub-managers. The Context Manager is able to pull the

features of the relevant student, problem, and tutor strategy from the database, so they can be

used when predicting a reward. The Model Manager is responsible for choosing the appropriate

model to be used, providing it with the context, and returning the predicted reward to the Request

Manager. The Log Manager can add a log entry to the RLS log database so that the model

chosen can be refined later based on the results. Another crucial step that we performed was

integrating the Request Manager with TeacherASSIST. The initial step was to build the .jar file

of the RLS and edit the POM file in TeacherASSIST to access it. Next, we made the RLSHelper

class in TeacherASSIST, which contained functions to handle communicating with the Request
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Manager. For the function that chooses a tutor strategy in TeacherASSIST,

selectTutorStrategyFromMany, we needed to convert the list of tutor strategies that was provided

into a hashmap in order to use selectTutorStrategy in the RequestManager. After that step was

finished, the groundwork was set for TeacherASSIST to operate with the RLS.

By implementing the Request Manager, the RLS can receive requests from

TeacherASSIST and return with a personally selected tutor strategy. In addition, different

machine learning models can be provided to choose videos for students using given context.

Beginning soon, students using the ASSISTments platform will be able to select additional

instruction, then be aided with a video that will be chosen based on what will help them the most.

Through this process, we were able to learn key skills in developing a software application as a

team as well as apply our skillset to assist in researching teaching strategies that will help

students. This project has given us more software engineering experience, which will help us

later in our careers. We have also learned how our work can benefit others like students and

teachers as well as fellow programmers. We hope that the implementation of the Request

Manager will lead students to have a personalized and quality experience in their pursuits of

knowledge on the ASSISTments platform.
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Appendix: UML Class Diagram
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