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Abstract. 

Urbanization has a significant impact on water quality. Urban drainage systems and impervious 

surfaces accelerate the delivery of pollutants from land areas in watersheds to streams and rivers. The 

harmful pollutants include sodium and chloride associated with the application of road salts during the 

winter, metals and oils associated with vehicles and impervious surface. The goal of this project was to 

access impacts of urbanization on River Meadow Brook and validate a chloride assessment tool. The first 

phase of this research was a part of a chloride study sponsored by the Massachusetts Department of 

Environmental Protection (MassDEP). The second phase of the projects included flow and water quality 

monitoring. The first phase of the project involved the development of a linear regression equation to 

validate a chloride assessment tool that MassDEP had developed and implemented based on historical 

data.  River Meadow Brook, a Massachusetts stream that flows from a non-urban, rural area with 

relatively low pollutant concentrations to highly urbanized area in Lowell, MA, was chosen for that 

purpose because of the area’s large concentration of roadways and highways and historically high 

concentrations of chloride. Water samples and continuous conductivity data were collected for a 7-month 

period.  Using 24 grab samples analyzed at the United States Environmental Protection Agency (USEPA) 

laboratory in Chelmsford, MA, the model was validated with 99.37% confidence using a linear regression 

equation. Therefore, the relationship between conductivity and chloride was validated. Calculated 

chloride was used to identify chloride violations of ambient water quality standards in River Meadow 

Brook. 

In addition to MassDEP study, the relationship between the percent of imperviousness and 

various trace metals, anions and total suspended solids was developed to show impacts of urbanization on 

the stream.  The research approach included collection of both water samples and flows to calculate daily 

pollutant loads. Water monitoring included grab samples and unattended continuous conductivity with a 

30-minute recording intervals. Discharge monitoring included collection of flows in River Meadow 

Brook using a brad- crested dam and the area- velocity technique.  
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A wide variety of cations from a sampling of 5 sites along River Meadow Brook were analyzed 

using Inductively Coupled Plasma-Mass Spectrometry (ICP-MS). Cl, sulfate and nitrate were analyzed 

using the Dionex ICS-2100 Ion Chromatography System. Laboratory results of water quality parameters 

showed that pollutants associated with impervious surface increase as the stream flows from its 

headwaters to downstream. The result from the Pearson correlation analysis revealed that sodium, 

chloride, potassium, vanadium, nickel, copper, arsenic, TSs and pH had a positive relationship with 

imperviousness while DO and nitrate had negative relationship. The combination of laboratory and field 

analysis helped to assess the impacts of urbanization and checked against ambient water quality 

standards.   
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1. Introduction 

1.1. Background and Problem Overview 

According to a United Nations report published in 2013, it is projected that the human population 

will increase by 2.4 billion people by 2050 (United Nations, 2013). This increase will require additional 

development of cities, towns and associated infrastructure. 

The associated increase in these urban areas will lead to large amount of paved area and 

impervious surfaces. The increases in impervious area will result in reduction in infiltration and 

significant increases in volumes of stormwater runoff that are discharged directly into receiving water 

bodies.  

The traditional way of managing storm water runoff has been to construct a storm drainage 

networks to carry away this runoff volume to receiving streams. Surface water bodies that receive storm 

water runoff degrade because of the variety of pollutants have been discharged directly into water bodies, 

resulting in human health impacts and physiological impairment of aquatic biota.  

Contaminants commonly found in urban stormwater runoff are summarized in Table 1.1. The 

pollutants generated in urban water runoff may come from different sources: residential, commercial and 

residential activities, construction sites, parking lots, and atmospheric deposition. These pollutants include 

sediments, oil, grease and toxic chemicals from motor vehicles, road salt and heavy metals from 

roadways, highways, and other impervious surfaces. The heavy metals typically include lead copper, 

cadmium, chromium and zinc (Davis el at. 2001; International stormwater BMP database 2011). Road 

salt, which is particularly prevalent in the Northeast, is the main cause of elevated concentrations of 

sodium and chloride (Copper el at. 2014; Godwin el at. 2003; Harte el at. 2010). The impacts of these 

constituents on surface water bodies is difficult to quantify.  

Table 1.1. Sources of surface water pollution 

Pollutant  Contamination source  

Metals Automobiles, bridges, atmospheric deposition, industrial areas, soil 

erosion, corroding metal surfaces, combustion processes 

Total Suspended Solids Streets, lawns, driveways, roads, construction activities 

Nutrients Lawn fertilizers, atmospheric deposition, automobile exhaust, detergent 
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1.2. Study Goal and Objectives. 

The overall goal of this project was to determine changes in water quality as the stream flows 

from its headwaters to highly urbanized area with multiple highways and roads. The specific objectives 

are as follows: 

 Determine the relationship between conductivity and chloride present in River Meadow Brook 

using continuous conductivity data 

 Re- validate fresh water chloride assessment tool developed by MassDEP 

 Determine concentrations of pollutants present in different catchment areas along River Meadow 

Brook to assess urbanization impact 

 When available, calculate flows and pollutant loads using area- velocity technique and broad- 

crested weir  

 Compare pollutant concentrations against water quality standards 

There were several hypothesis developed in the beginning of the project, which include: 

 A highly polluted small stream can affect the water quality of a larger water body 

 Surface water quality degrades as the amount of paved surfaces increase 

 Percent of impervious coverage was expected to be strongly correlated with a variety of metals, 

anions and TSS  

To meet the objectives and address the hypotheses, this project concentrated on a river system 

that included varying levels of urbanization along its length. River Meadow Brook was chosen for this 

purpose. River Meadow Brook is a 6.4 mile tributary located in the Concord watershed in Massachusetts, 

which flows through Chelmsford, MA and Lowell, MA. This river, which flows through regions of 

increasing urbanization and impervious surface, was monitored for water quality parameters, including 

conductivity, toxic heavy metals, anions, dissolved oxygen (DO), pH and TSS to assess urbanization 

impacts on the stream. Water quality parameters were collected over a 7- month period including winter 
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time. Background material is summarized in Chapter 2 and the methodology is summarized in Chapter 3. 

The results, including the development and validation of the chloride assessment tool and the relationship 

between concentrations of various inorganics and impervious surface, are presented in Chapter 4, and a 

summary and conclusion are provided in chapter 5.  
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2. Background. 

This chapter provides background information on non-point source pollution, categories, sources 

and regulations of pollutants associated with impervious surface based on previous studies. In this 

chapter, each pollutant of interest was reviewed separately to identify its adverse impact on ambient water 

quality and relationship to impervious coverage. 

2.1. Non-Point Source Pollution. 

2.1.1. NPS Pollution Overview 

Surface water pollution refers to the contamination of a surface water body by substances that can 

adversely impact aquatic life and human health. Urban surface runoff is considered to be non- point 

source (NPS) pollution. NPS pollution, unlike pollutant discharges from industrial and sewage treatment 

plants, is caused by rainfall or snowmelt, transporting pollutants over and through the ground. As the 

runoff flows over surfaces, it transports pollutants, depositing them into rivers, lakes, wetlands, coastal 

and ground waters (“What is nonpoint source pollution”, 2016). Since land area in many urban areas is 

covered with asphalt pavement with asphalt and concrete, water is not able to filtrate into the soil and 

flows into rivers and streams as runoff. This process can impact ambient waters adjacent to urban areas, 

especially in the winter time when road salt is applied in large quantities. Another example of NPS 

pollution includes agricultural runoff. In agriculture, land is typically plowed to grow crops. Plowing the 

land exposes the soil for fertilizers and pesticides to escape, and to be deposited into nearby waterbodies 

during rainfalls. The primary NPS pollution of concern from agricultural activities are nitrogen and 

phosphorus. Both are essential for plant growth, but if too much of these substances enters a waterbody, it 

can lead to eutrophication. With NPS pollution, water quality can vary with season and can be 

significantly affected by precipitation events (Mallin et al., 2009). NPS pollution is not directly regulated 

and considered the leading remaining cause of water quality problems in the United States. The United 

States Environmental Protection Agency (USEPA) addresses NPS pollution problem through best 

management practices (BMPs). BMPs are the primary method for reducing pollution concentration from 
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storm water runoff (U.S. EPA 2012e).  Each state is required to submit a management program for waters 

that cannot meet water quality standards without controlling NPS pollution. 

2.1.2. NPS Pollution Management 

2.1.2.1. Federal Regulations 

Potential problems caused by pollutants from non- point sources such as urban and highway 

runoff are addressed by policies and laws such as the Clean Water Act (CWA) of 1972 and amendments 

and non-point source management programs. The state transportation agencies have a responsibility to 

identify and minimize impacts from highway pollutants that are being washed off from highways to 

nearby water bodies.  

In 1972, USEPA was charged to implement pollution control programs under the CWA to protect 

the condition of national water resources. CWA is a reorganized and expanded version of the Federal 

Water Pollution Control Act, 1948. The objective of the CWA is to “restore and maintain the chemical, 

physical and biological integrity of the Nation’s waters” (33 U.S.C §1251(a)). The CWA establishes the 

basic structure for regulating water quality standards and discharges of pollutants into the waters of the 

United States. Under the CWA, Section 304 (a)(1), the EPA requires water quality criteria to be 

developed based on the latest scientific knowledge that accurately indicate the impacts of pollutants on 

human health and the environment. Water quality parameters can be numeric and narrative (the desired 

conditions of a water body). Under Section 303 (c) of the CWA, states have the responsibility for 

adopting water quality standards as laws and regulations. If it is determined that water quality parameters 

in a waterbody are above standards, it is added to the 303d list. Section 303d of the CWA is known as a 

list of impaired waters in the United States. This list is updated every 2 years. For water bodies added to 

the 303d list, the total maximum loads (TMDLs) are established.  

Aquatic life criteria are developed under Section 304(a) of the Clean Water Act to set up a 

safe upper limit of toxic chemicals present in water that do not pose a significant risk to the 

majority of aquatic species. The USEPA recommends that states should use aquatic life criteria as 
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guidance in developing their own ambient water quality standards. Table 2.1 summarizes the 

aquatic life criteria of pollutants often associated with urban and highway runoff based on previous 

studies described in section 2.2.  

Sometimes these criteria can be adopted directly from USEPA. For example, in 1998, EPA 

defined chronic chloride toxicity as “the 4-day average concentration of chloride, when associated 

with sodium, does not exceed 230 mg/l more than once every 3 years on average”, and acute 

chloride toxicity as “the 1 hour average chloride concentration does not exceed 860 mg/l more than 

once every three years on average” (USEPA 1986). MassDEP Surface Water Quality Regulations 

(314 CMR 4.00) do not specifically include water quality standards for chloride for the protection 

of aquatic life. However, section 4.05 (5) (e) of the regulations states that USEPA’s recommended 

numerical criteria will apply for any pollutant where the Department has not otherwise listed a 

specific criterion or standard for such pollutant. Therefore, MassDEP utilizes USEPA’s 

recommended chronic and acute standards to assess water bodies for impairment due to elevated 

chloride concentrations. 

 

Table 2.1. Aquatic Life Criteria 

Priority Pollutant 

(dissolved) 

Freshwater Aquatic 

Life  

Saltwater Aquatic 

Life  

Freshwater 

criteria 

hardness 

based 

standard 
acute 

(µg/L) 

chronic 

(µg/L) 

acute 

(µg/L) 

chronic 

(µg/L) 

Arsenic, total 340 150 69 36 No 

Cadmium  1.8 0.72 33 7.9 Yes 

Chloride 860000 230000 — — No 

Sodium           

Chromium (III)  570 74 — — Yes 

Copper  — — 4.8 3.1 no 

Iron — 1000 — — Yes 

Lead  65 2.5 210 8.1 yes 

Nickel  470 52 74 8.2 yes 

Zinc  120 120 90 81 yes 
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2.1.2.2. Best Management Practices  

Because NPS pollution poses many threats to environmental and human health, it is important to 

effectively manage the associated pollution problems. In 1996, the MassDEP issued a Stormwater Policy 

aimed at preventing stormwater discharges from causing and contributing to the pollution of the surface 

waters of the Commonwealth. In 1997, MassDEP published the Massachusetts Stormwater Book as 

guidance on the Stormwater Policy (MassDEP 2014). Chapter 2 of the Stormwater Handbook presents 

strategies, BMPs, to improve already existing practices for capturing pollutants from stormwater 

discharge.  

BMPs may include structural and nonstructural methods of reducing pollutant content. The 

following BMPs often used in urban areas throughout Massachusetts: 

- Deep sump catch basin- an underground retention system designed to remove large debris and 

coarse sediment. Provides 25% TSS removal  

- Oil/grit separator- an underground storage tank with three chambers to remove heavy particulates 

and hydrocarbons from stormwater       

- Sediment forebay- usually consists of an excavated pit, or cast structure combined with a weir to 

slow down stormwater and provide the environment for sedimentation of suspended solids  

- Buffer strips- strips of grass located between and around impervious paving materials such as 

parking lots and sidewalks, and a body of water. This method helps to absorbs soil, fertilizers, and 

other pollutants before they can reach the water.  

-  Retention ponds typically an excavated pit that captures runoff and stormwater. Sediments and 

contaminants settle out of the water when they are trapped in the retention pond.  

-  Constructed wetlands a relatively recent innovation in which an area is made into a wetland; the 

land is then used to slow runoff and absorb sediments and contaminants. The constructed wetland 

also provides habitat for wildlife.  

- Porous paving materials- often used in parking lots and highways. The porous pavement allows 

rainwater and stormwater to drain into the ground beneath it, reducing runoff  
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In some cases, there is also a stone reservoir underneath the pavement to allow 

filtration of the water before it reaches the groundwater.  

2.2. Impact of Urban Land Use on Water Quality 

This section describes the key physical and chemical influences on ambient water quality 

associated with urban land use and imperviousness, based on a review of the information summarized 

from previous studies. Monitoring for specific chemicals helps states assess surface waters against 

ambient water quality criteria, as well as to identify and trace the source of the impairment.  

Urbanized areas directly affect ambient water quality because these areas often have high 

percentage of impervious area, which results in direct pollutant discharges into streams. For many years, 

urban water runoff has been the subject to numerous studies to characterize its nature and impacts on 

aquatic life. The Nationwide Urban Runoff Program (NURP) conducted the most comprehensive study of 

urban runoff. The program was focused on the characteristics of urban runoff from different urban land 

use categories. Sampling was conducted for 28 NURP projects which included 81 specific sites and more 

than 2,300 separate storm events. From NURP, it was concluded that all 13 metals of USEPA’s priority 

pollutant list were detected in urban runoff samples (Appendix A); Nutrients were present but 

concentrations did not appear to be high compared to other possible sources. Total suspended solids 

(TSS) were highly correlated with percentage of impervious surface in catchment areas. They also found 

that there were no significant differences between pollutant concentrations resulting from different urban 

land use categories such as commercial and residential. There was a significant difference, however, in 

pollutant concentrations in urban runoff generated from nonurban areas (USEPA 1983).  

In another study, the Federal Highway Administration (FHWA), analyzed stormwater runoff 

from 31 highways in 11 states during the 1970s and 1980s. It was determined that pollutants originating 

from urban water runoff included heavy metals, nutrients, TSS, sediments and other constituents 

(Newberry and Yonge 1996). However, it can often be challenging to understand the fate and transport of 

physical and chemical impairments in a watershed due to the variety of inputs from different sources and 

spatial variability (Barber et al., 2006).  
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2.2.1. Impervious Surface and Heavy Metals  

In wooded or natural areas, water pounded on the forest floor infiltrates into the soil, converts to 

groundwater, is utilized by plants, and evaporates or transpires into the atmosphere. In urban areas, on the 

other hand, that water is converted directly into surface runoff due to the large amount of impervious 

surface coverage. The larger the amount of impervious surface present, the higher the percentage of direct 

runoff.  

As stated previously, impervious surfaces are described as pavements such as roads, sidewalks, 

driveways and parking lots that are covered by impenetrable materials. Imperviousness is one of the most 

important characteristics describing the extent of urbanization (Lee and Heaney 2003). Previous studies 

on urban runoff were to correlate urban runoff water quality in areas with different land uses and 

impervious surface. Initial studies of the effects of urbanization noted that there were four interrelated but 

separable effects on the hydrology of an area associated with urbanization: changes in peak flow, changes 

in total runoff, changes in the hydrological amenity, and changes in water quality (Leopold 1968). Later 

studies were conducted to proof that theory. Metasaranta et al. (2005) looked at the rainfall-runoff 

relationship and stormwater quality in three different urban areas with different percentage of impervious 

surface: <20%, 20% and 50% respectively. Runoff water quality results showed that the area with 

highways and road construction (50% impervious surface) led to poor water quality. Maximum average 

concentrations of total nitrogen, total phosphorous and total suspended solids were the highest compared 

to other two locations with lower percentage of impervious surface.  

Another research investigation that followed a similar approach was completed by Valtanen et al. 

(2014). Runoff water quality was continuously measured in three catchment areas with 19%, 62% and 

89% of impervious coverage. From the water quality results, it was concluded that TSS, tot-N, Mn, Co, 

Ni and Cu increased with increasing imperviousness. Total- phosphorous (tot-P), Al, Cr, Zn, Pb varied in 

city center catchments compare to low populated areas. Increased volume of runoff with larger pollutant 

loads are appeared to be more significant during warmer seasons especially during spring.  
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A number additional reports investigated the sources of metals in urban areas. Davis et al. (2001) 

investigated various sources of lead, copper, cadmium, and zinc in urban water runoff. The authors 

determined that all four metals came from building siding, and vehicle brake emissions the sources of 

copper, and tire wear of zinc. These four metals were found in the final report of the U. S. EPA’s NURP 

as the most prevalent constituents found in urban runoff (U.S.EPA 1983).  

Bannerman et al. (1993) studied critical urban source areas, which were defined as areas that 

produced large contaminant loadings. Contaminant concentrations and simulated runoff volumes were 

used to determine source-area loads. The samples were analyzed for 16 constituents including TSS, Cd, 

Co, Pb and Zn. Runoff from parking lots had the largest loads of solids and Co. Runoff from industrial 

roofs contributed the most of the Zn load. From this study, the majority of the runoff loads for many 

contaminants were from streets in every land use where the most of the pollutants come from parking lots.  

Van Matre and Mahler (2003) recognized that rooftops from urban contributed to loadings of zinc 

and lead. 20% and 18% of the total watershed load of zinc and lead, respectively, came from rooftops. 

The concentrations of zinc were in the range 141- 6200 mg/kg and lead from 36- 390 mg/kg over 22 

sampling dates. 

Tiefenthaler et al. (2001) evaluated samples of stormwater runoff from 8 different land use types 

in southern California for a number of metals including Fe, Zn, Cu and Pb. These metals had the highest 

mean concentrations of any constituents analyzed. The research showed that industrial land use sites 

contained highest concentrations of metal concentrations. Zinc was found in particularly high 

concentrations after dry periods.  

In a study conducted by Lind and Karro (1995), heavy metal concentrations in the topsoil layers 

of urban roadside areas in Sweden to be 2 to 8 times higher when compared to rural areas. In areas with 

high infiltration ability, concentrations of metals, on average, were 200% less than in the area with the 

traffic intensity 34000 vehicles in 24 hours. A general conclusion was that the concentration of Zn, Pb, Cu 

increases with increasing impervious surface.  
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2.2.2. Sediments 

As impervious surface coverage increases in urban areas, more sediments are generated. When 

rainfall or snowmelt event occurs, sediments are washed-off into nearby streams. Sediments may also 

come from stream channel erosion if large volumes of flow were generated. Solids in stormwater runoff, 

both suspended and dissolved, are classified using various approaches, with most dependent on size. 

Sediment pollutant levels can be measured as total suspended solids (TSS). TSS and total dissolved solids 

(TDS) are separated in practice by a 0.45-µm filter. TSS include all particles suspended in water which 

will not pass through a filter. There i s  n o  formal water quality criteria for TSS but it is generally 

accepted that water with TSS concentration less than 20 mg/L is considered to be relatively clear. One of 

the harmful effects of TSS on ambient water is that the solids tend to absorb heat from sunlight, which 

increases water temperature and, therefore, decreases levels of dissolved oxygen. Some fish such as trout 

are sensitive to changes in temperature (Meisner, 1990; Flebbe, 1994). Another negative impact from 

increased concentrations of TSS is reduction of vulnerable aquatic organisms such as benthic 

communities. Miserendino et al. (2008) conducted a study to assess urban impacts on benthic community 

and fish in Argentinian streams.  From the study, he concluded that higher levels of TSS in urban areas 

degraded invertebrate species richness compare to reference sites (minimally disturbed). Another study by 

Hepp and Santos (2009) also confirmed that the diversity and evenness of sensitive organisms tended to 

decrease along land use gradient- from low to high.  

A strong correlation between TSS and metals was observed in previous research because these 

elements tend to absorb onto sediments. That was a good observation because treating solids can actually 

reduce metal concentrations. Research study by Nasrabadi et al. (2016) linked concentrations of TSS to 

metal concentrations present in the South of Caspian Sea, Iran. In this study TSS and eight metals (Ni, Pb, 

Cd, Cu, Zn, Co and As) were analyzed from 10 locations within the catchment area. The robust 

relationship was achieved by linear regression with R2 being 0.87 for copper and 0.95 cadmium.  

EPA (1983) calculated that on an annual load basis, suspended solids contributions from urban runoff an 

order of magnitude or greater than those contributions from waste water treatment plants. Control 
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of urban runoff, as opposed to advanced waste treatment, should be considered where TSS-associated 

water quality problems exist.  

2.2.3. Nitrate and Sulfate 

Nitrogen pollution is one of the most common, expensive, and challenging environmental 

problems caused by increased concentrations of nitrogen. Nitrogen is naturally present in the air and are 

parts of aquatic ecosystem (EPA, Nutrient Problem). When these elements are in excess, they impact 

water bodies resulting in algae blooms. Algae harm water quality and decrease the oxygen present in 

water, which is needed for aquatic organisms to survive.  

In stormwater, nitrogen can take different forms such as ammonium (NH3-N), nitrate (NO3-N), 

nitrite (NO2-N), dissolved organic N (DON), and particulate organic N (PON) which makes nitrogen 

difficult to control (Li L. and Davis A. 2014). Any of these forms can contribute to eutrophication 

However, nitrogen in the form of nitrate is of the greatest concern because it is not absorbed by soil and 

usually moves with infiltrated water. Sources of nitrate in urban areas are include chemical fertilizers 

applied to lawns, landscaped areas, and gardens. Concentrations of nitrate can vary widely. Based on 

Shanley et al. (1995), nitrate concentrations were in the range from 0.06 to 0.6 mg/l in a Quabbin 

Reservoir, MA tributary. Concentrations of nitrate in rainwater of up to 5 mg/l have been observed in 

industrial areas (Van Duijvenboden & Matthijsen 1989). In rural areas, concentrations are somewhat 

lower. The nitrate concentration in surface water is normally low (0–18 mg/l) but can reach high levels as 

a result of agricultural runoff, refuse dump runoff or contamination with human or animal wastes.  

To control inputs of nitrate, the EPA has set a drinking water Maximum Contaminant Level 

(MCL) of 10 mg/L for nitrate to prevent blue-baby syndrome in infants under the age of six months who 

could consume the water from surface waters that serve as sources of drinking water (USEPA, 2009).  

Sulfate occurs naturally in rivers from weathering of rocks. Additional input of sulfate to surface 

waters can be from fuel combustion (Hem 1992). 

Campo, K. el at. (2003) monitored nine rivers in the New England region for various constituents 

including sulfate. In the report, it was indicated that sulfate concentrations were generally highest in the 
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intensely urbanized Aberjona River and lowest in the minimally urbanized Stillwater River. Therefore, 

the percentage of urban land use in the drainage basin affects sulfate concentrations Among the indicator 

median sulfate concentrations ranged from 6.9 (Stillwater River) to 25.8 mg/L (Aberjona River) in the 

indicators basins and from 7.1 (Kennebec River) to 12.25 mg/L (Charles River). 

2.2.4. Road salt 

In urban areas of the Northeast, road salt is an additional pollution contributor. When road salt is 

applied in large quantities, it may cause exceedances of the USEPA water quality standards, and has 

negative impacts on aquatic biota, plants and soils (Heath and Belaval, 2010; Novotny et al., 2008; 

Mattson and Godfrey, 1994; Trombulak and Frissell, 2000). 

Road salt has commonly been used for several decades to maintain safety on roads. When applied 

on snowy or icy roads, the salt creates a solution with a lower freezing point than water, therefore turning 

the ice into a drivable slush (Hochbrunn, 2010). Sodium chloride (NaCl), more commonly known as table 

salt, is one of the most commonly used types of road salt in Massachusetts and many other states.  

When the road salt interacts with water, it dissolves and the break down components are sodium 

(Na+) and chloride (Cl-) ions. These constituents, are transported via runoff and discharges into both 

surface water (streams, lakes and rivers) and the groundwater. Chloride and sodium ions have different 

physical and transportation paths in the environment. Chloride is a non- reactive, conservative ion that is 

soluble and very mobile. Sodium, on the other hand, is prompt to ion exchange in the subsurface releasing 

nutrients into the groundwater (NHDES). 

Because of the non- reactivity of chloride ions, the presence of it in water becomes a good 

indicator of pollution due to application of road salt. Several recent research findings indicate negative 

environmental impacts from deicing practices particularly due to released chloride ions. One of the 

studies presented by Mattson and Godfrey (1994) found a correlation between the length of area of 

interstate highways and observed elevated levels of chloride in streams based on sampling results 

collected in April 1992 from 162 random stations across the Commonwealth.  
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Another study conducted in New Hampshire has documented increased chloride concentrations in 

four watersheds with the most development. The chloride concentrations in streams ranged from 149.0 

mg/L to 308.7 mg/L where 8 to 31 percent of the watershed area consisted of commercial, industrial and 

transportation areas. Deicing of roadways and parking lots accounted for 91 percent of the chloride 

loading in each watershed (Throwbridge at el., 2010).  

A 2008 study stated that the average chloride concentrations in a rural stream in southeastern 

New York increased from 15 mg/L to 40 mg/l over a 20 year period from 1986 to 2005 due to application 

of road salt (Kelly et al. 2008). The U.S. Geological Survey has reported that the mean annual chloride 

concentrations in the Merrimack River increased from 2.9 mg/L in the early 1900’s to 24.9 mg/L as 

measured in 1995 (Robinson et al. 2003). 

MassDOT has conducted several research studies along I-93 corridor where they have found 

exceedances in chloride concentrations both from major interstates and parking lots, municipal roads, and 

developed areas with high percentage of imperviousness (MassDOT, 2012).     

2.2.4.1. Development of Chloride Assessment Tool 

Measuring chloride in-situ is a process requiring frequent calibrations, and involves additional 

complications. The preferred method for determining chloride in water is ion chromatography. The 

method is reliable, and provides accurate results. However, this method is not suitable for field 

applications or real-time monitoring. Historically, chloride was based solely on grab samples. Alternately, 

people measure conductivity to estimate chloride concentrations in water. In 2015, MassDEP developed 

the chloride assessment tool which correlates conductivity and concentrations of chloride. However, as 

mentioned earlier, one time grab samples cannot provide reliable information about chronic or acute 

chloride concentrations in ambient waters because the toxicity levels are based on the 4-day- average and 

1- hour- average chloride concentrations respectively.   

Alternately, people have also measured conductivity to estimate chloride concentrations in water 

using correlations between conductivity and chloride. In 2015, MassDEP developed the chloride 

assessment tool which correlates conductivity and concentrations of chloride. MassDEP gathered 2442 



15 
 

historical data points collected from 249 stations statewide from June 7, 1995 to November 14, 2012 

(Figure 2.1). These data were analyzed for chloride and specific conductance (SC) in co-located samples 

(i.e. collected at a single location). The Kolmogorov-Smirnov statistical test was used to examine whether 

or not statewide SC data were normally distributed (Daniel and Cross 2012). The results showed that the 

SC data has 15 points that are above 30,000 𝜇𝑆/𝑐𝑚 and 1 point in the 10,000 and 30,000 ranges that 

make the SC data precluded the use of a normal distribution. It was concluded that those points might be 

directly or indirectly influenced by the sea. Therefore, these points were excluded from the freshwater 

model because in Massachusetts, there is no inland freshwater stations with SC higher than 10,000 μS/cm 

(Health and Morse, 2013; Health, 2014). 

Linear regression was used to develop the relationship between chloride concentrations and for SC 

less than 10,000 μS/cm in freshwater (Figure 2.2). Chloride concentrations and SC show a strong linear 

relationship with an equation: Y = 0.2753X – 18.987 with R2 = 0.9445, P<0.001, N = 2,426 (Y=Chloride 

concentration, X= SC). The lowest chloride concentration was 1.0 mg/L and the highest was 2,400 mg/L. 

Threshold SC values that are associated with the chronic and acute exposures of dissolved chloride were 

calculated by plugging in Y= 230 mg/L (chronic level) and Y= 860 mg/L (acute level) into the equation, 

resulting in X = 904 μS/cm and X = 3,193 μS/cm, respectively.  

The regression freshwater model was first validated using data for the USEPA Auburn, MA project 

(winter 2013-2014) (Health, 2014). For the Auburn study, 37 samples were collected by the USEPA and 

analyzed for chloride concentrations along with co- located SC measurements. The freshwater model 

developed by MassDEP was used to calculate predicted concentrations of chloride. The predicted numbers 

generated by the MassDEP model was put on a best fit line with real data collected from the USEPA study.  

The results showed that the model developed by MassDEP is 99.08% accurate and the regression line is 

also close to the 1:1 line with a slope of 0.9709 (Figure 2.3). All the statistics and model estimation were 

performed using SAS® (Version 9.4, SAS Institute Inc. Cary, NC) 
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Figure 2.1. Chloride and co-located conductivity stations in Massachusetts 

        

 

 
                Figure 2.2. Relationship between Chloride and Conductivity 
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                      Figure 2.3. Validation of Freshwater Model using USEPA data 

               

2.3.  Flow monitoring 

To understand to what extent urban runoff effects the receiving water bodies, in terms of pollutant 

loads, surface water discharge measurements and pollutant concentrations need to be collected. Surface 

water discharge (volumetric flow) is the rate of flow or the volume of water that passes through a channel 

cross section in a specific period of time. Discharge is reported as total volume of water in cubic feet per 

second (ft3/s or cfs) or cubic meters per second (m3/s) (USGS, 2007).   

According to the USEPA, the first method of obtaining discharges in an open channel is to 

measure a cross sectional area of the channel and flowrates using a current meter. A second method is to 

use hydraulic structures such as weirs in a conjunction with an automated device such as mechanical or 

electronic flow meters. Additionally, a measurement of the stage needs to be used in determining the flow 

rate through the use of published equations. A stage (stream stage or gage height) is the height of the 

water surface relative to an established fixed point and is measured in meters or feet. For example, the 
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USGS uses different equipment and methodology for observation and recording of stage such as 

traditional still- well systems, bubble gages, submergible pressure, transducers, radar, acoustic and laser 

methods. These devices are used to collect stage height information continuously every 15 minutes, and 

automatically send data to office computers (USGS, 2010). It is often a challenge to establish a fixed 

point (datum) which is often set up as a zero height being near the river or stream bed. The distance 

between the water surface and the bottom of the stream is monitored using a rigid metal plate graduated in 

meters or feet attached to a secure backing usually related by survey to a fixed reference (e.g., a bridge 

deck). The application of stage measurements is the development of a stage-discharge relationship, also 

known as rating curve and computation of pollutant loads.  

 

It is often necessary to measure an instantaneous discharge to develop a stage-discharge 

relationship. It can be achieved through the area-velocity technique or broad- crested weirs that will be 

described in Chapter 3.   

 

2.4.  Pollutant Loads 

As mentioned above, establishing a solid relationship between discharge and pollutant 

concentrations can be used in pollutant load calculations for various nonpoint source parameters in urban 

areas. The pollutant load is the measure of mass of pollutant which passes through a cross-section of the 

river in a specific amount of time. Loads are expressed in mass units (e.g. tons, kilograms), but the 

interval of time over which the load occurs is always important to indicate.  

Total pollutant loads can be calculated as follows: 

LT =∑ 𝑄𝑛
𝑖=1 i ∗ Ci ∗ ΔTi               (Equation 1) 

Where, 

LT- is the total load of a pollutant in units of mass 

Q- is the flowrate in mass per time 

C- is concentration in mass/volume 

ΔT- is a time interval 



19 
 

In previous research, pollutant loads of different variables were correlated with imperviousness. 

For example, Hatt et al. (2004) estimated that the mean annual loads of several water quality parameters 

were strongly positively correlated with basin imperviousness. He also concluded that the percent of 

impervious surface coverage in drainage area controls water quality degradation, rather than the presence 

of impervious areas alone.  Relationships between imperviousness and loads of water quality parameters 

were taken as a central assumption in most simple and complex pollutant loading models (Donigian and 

Huber, 1991). For example, Simsek, Uygun and Albek (2014) used the Hydrological Simulation 

Program-Fortran (HSPF) developed by USEPA to model the relationship between impervious surface and 

water quality parameters such as sediment, chloride and nitrate. The result showed that impervious 

segments have been found to be affecting all parameter concentrations. 

 

2.5.  River Meadow Brook. General overview and early history.   

River Meadow Brook flows in a south-to-north direction from southwestern Lowell to the 

Concord River (Figure 2.4). The total length of the stream is 6.4 miles. River Meadow Brook’s 

headwaters are located in a nutrient-rich wetland. As the stream flows north in Lowell, MA more 

urbanized area become predominant with several highway and roads intersections such as Route 3A, 

Lowell Connector, and highway 495. River Meadow Brook narrows and becomes more sinuous as it 

flows through a residential area. The final section of River Meadow Brook flows through an industrial 

complex and passes under a couple of large brick buildings, then discharges into the Concord River. 
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                        Figure 2.4. River Meadow Brook watershed 

 

In the 19th century, River Meadow Brook was heavily polluted and considered a “sewer basin” 

according to the Lowell Board of Health (Figure 2.5). There was a small railroad repair shop, several 

cotton waste and batting mills, metal fabrication plants, bleaching industry, brewery, iron and steel boiler 

shops were located along the stream discharging their waste into the stream. For example, the Lowell-

Bleachery discharged millions of gallons of chemical waste from washing, bleaching, and dyeing cloth on 

a daily basis, U.S. Bunting dumped 300,000 gallons of wastewater from scouring wool, washing cloth, 

and dyeing stock, and U.S. Cartridge released 60,000 gallons of oil-heavy wash water from shell 

production (Lowell History). In 1893, the Massachusetts Board of Health conducted a series of 

inspections of water ways in the Commonwealth due to outbreaks of typhoid fever and complaints of foul 

odors. They recommended a construction of sewer industrial waste and the wastes of factory 

workers.  These recommendations were partially accepted; however, dumping of industrial water did not 

stop.  

In the 1930’s, during the Great Depression, River Meadow Brook was neglected and was subject 

to illegal garbage disposal, heavy junk and household and industrial chemicals disposal. 
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In 1960-62, River Meadow Brook experienced a dramatic change when the Lowell Connector 

highway was constructed. River Meadow Brook was straightened and rerouted to build a four-lane, 

divided highway. This project entailed the demolition of many residential buildings, as well as the 

removal of the dam at Hale’s Mills, replacing it with a concrete dam at the same location.  

In 1982, the Silresim Chemical Corporation located on Tanner Street was declared as a Superfund 

site due to thousands of abandoned steel drums contained highly toxic liquids (Fitzsimons, 2013).  

Today, based on the last evaluation of water quality conditions conducted by MassDEP, River 

Meadow Brook is listed in the 303(d) list of impaired waterbodies (MassDEP 2015). The main known 

causes of impairment are fecal coliform and pathogens. However, the urbanization and highway corridor 

provides a source of road salt, metals, and other constituents as well. This project is intended to assess the 

impact of urbanization and the associated inorganic constituents on water quality in River Meadow 

Brook.  

 

Figure 2.5 River Meadow Brook in the early 1900s. The scum floating at the surface of the 

intake pond to Ames Worsted Company’s  turbine building near the Middlesex Dam. 

* Adopted from http://lowelllandtrust.org website 
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3. Materials and Methods 

The goal of this study was to assess impact of urbanization on River Meadow Brook and validate 

a chloride assessment tool developed by MassDEP. To validate the tool, River Meadow Brook was 

chosen as the site containing historically high concentrations of chloride. The stream was continuously 

monitored for chloride and temperature. Conductivity was used to calculate chloride concentrations along 

River Meadow Brook. To assess impacts of urbanization, the stream was divided into 4 catchments areas. 

As the stream flows from upstream to downstream, the percentage of impervious surface increases, 

providing a useful basis for assessing the stream on urbanization impact. Inorganics associated with 

impervious surface and urbanization were analyzed using Inductively Coupled Plasma-Mass 

Spectrometry (ICP-MS) and Dionex ICS-2100 Ion Chromatography System. Additionally, laboratory 

analysis for pH, TSS and DO were performed. 

3.1. Site Characterization  

River Meadow Brook was broken down into 5 sampling sites. Additionally, 2 conductivity 

monitoring sites were chosen on the Concord River (Table 3.1, Figure 3.1). Historical data, collected by 

MassDEP personnel in 2006, showed that the downstream site (site 4) had a significantly higher 

concentration of chloride than the upstream site (site 2) (Figure 3.2). The variation in conditions showed 

that the stream provided a good representation of urbanization and degradation of water quality as the 

stream flows from less urbanized to highly urbanized areas. Stations 5 and 6 were located in the Concord 

River upstream and downstream of the confluence with the River Meadow Brook with an intention to test 

the hypothesis that the chloride concentration in the main stem of the Concord River can be affected by 

River Meadow Brook if chloride concentrations in this tributary is significantly different from the 

chloride concentrations in the Concord River.    

 

 

 

 



23 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 River Meadow Brook monitoring sites (map) 

 

Site 5 

Site 6 
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Table 3.1 River Meadow Brook monitoring sites  

Station # Lat/Long Waterbody Description 

1 

N 42°56186´ 
Unnamed Tributary About 1000 ft east from 26 Mt Auburn St, 

Chelmsford MA  W 071°33270´ 

2 

N 42°57819´ 
River Meadow Brook 230 ft upstream from Mill road, Chelmsford 

MA  W 071°33224´ 

3 

N 42°61485´ 
River Meadow Brook 50 ft downstream from Industrial avenue in 

Lowell, MA W 071°32236´ 

4 

N 42°63384´ 
River Meadow Brook 

100 ft upstream from Concord River W 071°30128´ 

4b 

N 42°632348 
River Meadow Brook 

Along Gorham street W 071°309457´ 

5 

N 42°63379´ 
Concord River  50 ft upstream from the mouth of River 

Meadow Brook W 071°30132´ 

6 

N 42°63379´ 
Concord River  Approximately 100 ft upstream from the 

Rogers St bridge W 071°30132´ 

 

 

            Figure 3.2 Specific conductance data for Station 2 (W1488) and Station 4 (W1489) in the River 

Meadow Brook collected in the summer 2006 (station 4 is downstream of station 4).  

 

Because of the variations in land uses along the stream, the samples sites provide good conditions 

for assessing River Meadow Brook since the catchment areas can be used to identify variations in 

pollutant concentrations in the stream in the areas with different percentage of development. Basin 

characteristics for each sampling site were delineated by catchment area using StreamStats (Table 3.2). 

StreamStats is a map-based web application used to provide information such as drainage- basin 
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boundary, stream flow statistics, basin characteristics and more. StreamStats showed that the percent of 

impervious coverage increased as the stream flows from upstream to downstream. 

Table 3.2. General characteristics of the four catchment areas for River Meadow Brook 

  Site 1 Site 2 Site 3 Site 4b Site 4  

Drainage area, mi2 7.9 10 22 26.4 26.9  

% area covered by forest 56.07 54.07 35.99 33.31 32.68  

% impervious surface 6.14 7.45 18 22.9 23.7  

% land use, class 21-24* 21 24.6 47.9 53.1 54  

% wetlands 22.28 20.36 16.24 15.37 15.08  

* Classes 21-24 indicate various intensities of development 

 

  

 

 
                                          Figure 3.3. Land use map for River Meadow Brook 
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The land use map for River Meadow Brook catchment area was created using MassGIS online and 

applying the land use 2005 data layer. The map is shown in Figure 3.3. Within the boundaries of River 

Meadow Brook, there are different types of land uses, including commercial, industrial, transportation, 

residential, power/ utility and forest.  

3.2. Field Program 

This section describes the field part of this study, particular, the sample and flow collection that 

was needed to validate a chloride assessment tool and assess water body for urbanization impacts. 

3.2.1. Water sample collection and analysis 

All analyses were performed in accordance with MassDEP Standard Operating Procedure 

(MassDEP 2015) and within allowable holding times (Rice et al. 012). Duplicates were taking at each 

sampling site based on rotating schedule. Water samples were analyzed for aluminum (Al), arsenic (As), 

cadmium (Cd), cobalt (Co), copper (Cu), chromium (Cr), iron (Fe), potassium (K), sodium (Na), 

magnesium (Mg), nickel (Ni), vanadium (V), zinc (Zn), sodium (Na), chloride (Cl), sulfate (SO4), nitrate 

(NO3), total suspended solids (TSS), pH and dissolved oxygen (DO). The abbreviations listed here are 

used throughout the remainder of this document. A digestion process was also used to determine total 

cation concentrations, but these are not included for the purpose of this thesis. Laboratory water quality 

results are reported in Chapter 4.  

3.2.1.1. Water sample collection  

Grab samples were collected on average once a month from October 2015 through April 2016 on 

a monthly basis (47 samples) using wade-in techniques. Sampling dates are presented in Table 3.4. New 

sample bottles were rinsed two-three times in ambient water before grabbing the samples. Sampling 

containers were obtained while facing upstream, with the bottles plunged into the water to about 6 inches 

below water surface to avoid collecting surface scum. The current climate, current site conditions, the use 

of any non-routing sampling techniques, and other observations were also noted on field sheets to help 

assess collected data. Water sample collection was guided by the MassDEP Standard Operating Procedure 
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CN1.21 (MassDEP 2015). All samples were stored in insulated coolers packed with ice to achieve the 

temperature of approximately 4℃ and transported to ether the EPA Region I New England Office of 

Environmental Measurement and Evaluation in North Chelmsford, MA as part of the Chloride 

Assessment Tool Project, and to the WPI Laboratory as part of the Master’s Thesis research.  

Twenty field visits were used to obtain 20 sets of samples including 12 dry and 8 wet weather 

sampling days. For the purpose of this study, a wet weather sample was defined with consideration to the 

total amount of rainfall (in inches) 24 hours prior to sampling. The rainfall amount are listed in Table 3.3. 

Rainfall/snowfall data was obtained from the National Oceanic and Atmospheric Administration 

(NOAA). 

Table 3.3 River Meadow Brook sampling summary 

Date Site1 Precipitation, in 

(24-hr prior 

sampling) 

Condition Season 

1 2 3 4 4b 

10/23/2015 x x x x   0.07 wet Fall 

11/3/2015 x x x x   0 dry Fall 

12/3/2015 x x x x   0.97 wet Fall 

1/8/2016     x x   0 dry Winter 

1/9/2016   x       0 dry Winter 

1/11/2016 x x x x   0.93 wet Winter 

2/24/2016 x x x x   0.2 wet Winter 

3/5/2016   x x x   0 dry Winter 

3/7/2016` x x x x   0 dry Winter 

3/8/2016   x       0 dry Winter 

3/15/2016           0.01 dry Winter 

3/16/2016            x x 0.26 wet Winter 

3/20/2016       x  x 0 dry Spring 

3/21/2016           0.26 wet Spring 

3/22/2016         x 1.12 wet Spring  

3/30/2016          0.3 wet Spring 

4/1/2016 x x x x x 0 dry Spring 

4/11/2016       x x 0 dry Spring 

4/17/2016         x 0 dry Spring 

4/20/2016 x x    x   0 dry Spring 
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3.2.1.2. Unattended continuous conductivity data 

HOBO conductivity loggers were deployed at 6 sites (except for site 4b) in October 2015 for 

collecting continuous conductivity and temperature information in River Meadow Brook and the Concord 

River (Appendix B). The resulting conductivity readings are the actual conductivity “raw” data, without 

temperature compensation (i.e. not in terms of specific conductance (SC) at 250C). These data were 

converted to SC using Equation 2 below. The data loggers were inserted in pipes and placed vertical. Sensor 

faces were cleaned as part of each monthly download.  

Specific conductance or conductivity obtained from an assessment of a water body is often used 

to develop a linear regression model to estimate chloride in water (Mattson 1994). Conductivity (in 

microsiemens per centimeter) is the specific conductance @25°C. Conductance/conductivity is a measure 

of water’s capability to pass electrical flow. This ability is directly related to the concentration of ions in 

water. These conductive ions come from dissolved salts and inorganic materials such as alkalis, chlorides, 

sulfides and carbonate compounds. There is a direct relationship between conductivity and the presence 

of ions in the water. The high number of ions in a water body is associated with a higher conductivity. 

Sudden increases in conductivity can indicate a change in water quality. If conductivity is measured, the 

specific conductance @ 25⁰C can be obtained using the following conversion equation: 

                      𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑎𝑛𝑐𝑒 =
Measured conductivity 

(1+𝑟∗(𝑇−25)
    (Equation 2) 

 Where, 

r is the temperature coefficient correction  

T is temperature in degrees Celsius  

And the conductivity is measured in μs/cm 

Conversion from specific conductance to chloride using a linear regression equation in surface 

waters is presented in several research papers (Table 3.5). In this equation, n represents the number of 

samples used to develop the model, x represents the specific conductance @ 25C° collected in- situ, and y 

represents estimated chloride concentration.  
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Table3.4 Previous studies used chloride and conductivity relationship 

Water source Equation 
n 

samples 
R2 SC@230 SC@860 Reference 

MassDEP Y=0.2753*x-18.987 2426 0.9445 904 3193   

NH streams Y=0.307*x-22 649 0.97 821 2873 Throwbridge 

Dark Brook, 

Auburn,MA 
Y=0.2864*x-21.9 37 0.9936 880 3079 Heath, D. 2014 

Barrows 

Wellfield, 

Wellfield, 

MA 

Y=0.3688*x-109.28 68 0.9932 920 2628 
Heath, D. and 

Morse, D. 2013 

 

3.2.1.3. Field use of Multiprobes to collect co-located SC data 

A multiprobe was used approximately once a month to collect temperature, specific conductance, 

pH, DO and temperature for quality control (QC) purposes. To assure valid in-situ water quality data pre-

survey calibration and post-survey checks were performed on the multiprobes monthly by MassDEP 

calibration laboratory supervisor. 

3.2.1.4. Data quality assurance and quality control  

Water sample data were quality assured using quality control (QC) check samples, field 

duplicates and field blanks. The ambient field blanks were deionized water samples treated the same way 

as other samples taken in the field. Field blanks were submitted double-blind to USEPA Laboratory along 

with other samples. Field duplicate samples were collected simultaneously adjacent (side-by-side) with 

water samples. The field replicates account for both analytical and field sampling error. In addition, QC 

check samples were submitted to the lab with each sample batch. These were known standards made from 

a KCl stock solution. Additionally, chloride samples results from the EPA lab were compared to chloride 

results obtained at WPI lab. 

3.2.2. Flow Monitoring 

The purpose of flow monitoring was to determine the volumetric flowrates in 5 catchment areas 

along River Meadow Brook, named site 1, 2, 3, 4 and 4b. The flow estimates could be used in 

conjunction with concentration data to estimate loads.  
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To measure instantaneous discharge at locations 1, 2, 3 and 4, the area-velocity technique was 

used, and for location 4b, a broad-crested dam equation was used. 

- Area-velocity technique. 

This is the most common method of measuring discharge in open channels. Discharge is typically 

calculated as the product of velocity and cross-sectional area. The product of these two measurements 

gives discharge in volume per unit time: 

                              Q = V *A,                                                 (Equation 3) 

Where, 

V is the velocity in feet per second (ft/s) or meters per second (m/s) 

A is the cross- sectional area in m2 or ft2 

First, each catchment area was divided into segments (approximately 10 ft wide). The velocity of 

the water was measured at each segment using current meter. Current meters generally consist of a 

propeller or a horizontal wheel with small, cone-shaped cups attached to it which fill with water and turn 

the wheel when placed in flowing water. For segments with the stream depth less than 2.5 ft (0.8 m), a 

single velocity measurement at 60% of the total depth below the water surface was measured. For 

segments with the depths 2.5 ft or more, the average velocity was taken at 0.2 and 0.8 of depth. 

Second, cross-sectional area for each segment was multiplied by corresponding velocity to obtain 

discharge. The total discharge in the catchment area was calculated by summing discharges. 

- Broad-crested weir 

At site 4b, a dam served as a control point to get relatively accurate flow estimates. The shape of 

the spillway was approximated by a broad-crested weir. A broad-crested weir is a weir that is not formed 

by a thin plate (with a sharp edge). For a broad crested weir, the depth of water over a dam can be 

converted to a continuous rate of flow if the length of the dam is known using the following general 

equation:  

Q = CLH3/2 

C = (2/3)3/2(g)1/2  
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                                                                𝑄 = 0.55 ∗ √𝑔 ∗ 𝐿 ∗ 𝐻1.5                (Equation 4) 

Where, 

Q is the discharge in cfs 

G is the acceleration of gravity 32.2 ft/sec2  

L is the width of dam in ft 

H is the upstream height of water above the weir (head) 

           For this case, the coefficient in the equation was calibrated using field flow measurement taken at site 

4b. The final equation took the following form as indicated above.  

The length of the dam at location 4b was measured 40 ft. A depth probe and a ruler was used to 

continuously monitor water depth over dam. The ruler was securely attached to the dam’s abutment. A 

single reading on a ruler was recorded to a field journal during every depth probe installment or removal. 

Then continuous probe depth data was adjusted relative to the ruler. Adjusted depth value was used to 

calculate continuous water height over the dam.  

Two different rulers were used: one ruler was used to adjust water depth for two time periods- 

3/8-3/16 and 3/20-3/30. A new ruler was placed on 3/30 and was used for all measurements there-after.  

The 36 inch long ruler was placed such that readings increased with increasing depth. As per the ruler, the 

top of the dam was measured 12.375 inches. Every depth probe reading needed to be adjusted by the 

value d2 which was calculated according to the following equation: 

                                                               d2 = d1 + (dm - dp1),  

Where, 

dp1 is the probe measurement at the sample time as measurement on the ruler 

Dm is the measured depth on the ruler  

d1 is the initial probe reading  

       d2 is the adjusted probe reading 

Based on the ruler used, the height over dam was calculated using the following equation  

H = d2 - 12.375 in 



32 
 

 

3.2.3. Pollutant Loads 

The stream discharge and pollutant concentrations can be used to in pollutant load calculations 

that provides information to understand nonpoint source loads in urban areas. Total pollutant loads were 

calculated as follows: 

LT ∑ 𝑄𝑛
𝑖=1 ΔTi                       (Equation 5) 

Where, 

LT is the total load of a pollutant in units of mass 

Q is the flowrate in mass per time 

C is the concentration in mass/volume 

ΔT is the time interval 

 

3.3. Laboratory procedures 

Surface water samples were analyzed for trace metals (Al, V, Cr, Fe, Co, Ni, Cu, Zn, As, Cd, Pb), 

cations (Na, Mg, K), anions (Cl, sulfate and nitrate), TSS, pH and DO. Not every sample was analyzed 

for each parameter. For example, TSS analysis were performed for 12 samples out of 46. A summary of 

laboratory analysis and methods is presented in Table 3.5. 

Table 3.5 Laboratory analysis summary 

Laboratory analysis Method used  Standard 

Anions Dionex ICS-2100 RIFC, Ion Chromatography 

Cations and metals  NexION 350X ICP-MS 

Spectrometer 

 

Specific conductance HOBO loggers  

Total Suspended Solids Pump, oven, and 

Ohaus Discover scale 

EPA 160.2 

pH Accumet Basic AB15 pH 

Meter 

- 

Dissolved oxygen Thermo Electron Corp. 

Orion 3 star DO benchtop 

- 

TSS Pump, oven, and 

Ohaus Discover scale 

EPA 160.2 
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3.3.1. Anions 

Chloride, sulfate, and nitrate were analyzed using ion chromatography in accordance with 

Standard Method 4110 (APHA et al., 1995) using a Dionex ICS-2100 RIFC (Figure 3.4). Prior to 

analysis, a calibration curve of anion standards was developed for concentrations ranging from 100 to 

5,000 μg/L using a standard solution prepared in advance. The detection limits for chloride, nitrite, and 

sulfate analyses were assumed to be equal to 50 μg/L. Samples were diluted 1:100 due to high presence of 

chloride. Therefore, phosphate and bromide were below detection limits, and not considered for this 

study. Filtered samples were transferred to 5 mL sample cells with filter caps, which were loaded into the 

automatic sampler for analysis. The results of each sample analysis were integrated based on the 

calibration curve. 

3.3.2. Heavy metals 

Dissolved and total metals were determined by NexION 350X ICP-MS Spectrometer (inductively 

coupled plasma mass spectrometry) (Figure 3.5). Dissolved metals were determined after filtering with 

0.45-µm membrane filter. Total metals were defined as the concentration of metals contained in unfiltered 

samples after vigorous digestion with nitric acid (HNO3) to pH<2.  

 
Figure 3.4. NexION 350X ICP-MS Spectrometer 

 

 

- Dissolved metals analysis 
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Samples for analyzed for Mg, Na and K were diluted by 1:100. To dilute samples, a digital 

micropipette set to 500 microliters was used. A 500 µl of a sample was released in a 50 ml tube and filled 

up to a 50 ml mark with deionized water. For further analysis, some of those samples were poured into a 

14ml tube (Figure 3.6). 

 

 
Figure 3.5. Water samples cut 1:100 for dissolved metal analysis 

 

- Total metals analysis 

  

To convert metals to a free metal form, a digestion technique was used. The digestion technique 

include using a 100 mg sample and 5ml of HNO3. This mixture was transferred to a hot plate for 

evaporation. A sample was down approximately to 20ml clear solution. Then the volume was filtered and 

adjusted back to 100 ml before transferred to 14ml tube for further analysis (Figure 3.7) 
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Figure 3.6 Digested samples on a hot plate for total metal analysis 

 

3.3.3. Total Suspended Solids (TSS) 

 

A standard Method 2540 D “Total Suspended Solids dried at 103-105°C” (APHA et al., 1995) 

was used for determining the total amount of suspended material in a water sample. A new standard glass 

fiber filter disk was rinsed with reagent grade water, dried at 105°C, and weighted with/without aluminum 

weighting dish. That filter was inserted into the filtration apparatus with wrinkled side up to filter a 

measured volume of sample through using vacuum suction, and washed three times with 20mL portion of 

reagent-grade water (Figure 3.8-3.10). The residue retained on the filter was dried in the oven for 1 hour 

at a constant temperature 105°C to evaporate excess of water. Removed filters were transferred to an inert 

aluminum weighting dish and weighted. The increase in weight of the filter represented the total 

suspended solids.  

To determine the TSS, the following equation was used: 

TSS = 1000*(Wfl-Wi)/V                   (Equation 6) 

Where,  

TSS- is the total suspended solids 

Wfl- is the final weight (mg) 

Wi- is the initial weight (mg) 

V- is the sample volume 
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Figure.3.7. Pump for TSS analysis 

 

 
        Figure 3.8. Ohaus Discover scale                           Figure 3.9. TSS results  

 

3.3.4. pH 

An Orion 720 pH probe, Model 420A with an Accumet AB15 Benchtop pH Meter was used to 

measure pH in the laboratory in accordance with Standard Method 4500-H+ B (APHA et al., 1995). 

Before analysis, the pH meter was calibrated using pH 4, 7, and 10 buffers (Figure 3.11).  One pH 

measurement was taken for each sample by inserting the pH probe into a small volume (~50 mL) of 

sample and recording the resulting measurement. 
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Figure 3.10. Orion 720 pH probe, Model 420A for pH analysis 

 

3.4. Statistical Analysis 

3.4.1. The Pearson’s Correlation Analysis 

The Pearson Correlation Analysis is a statistical test that measures the statistical relationship 

between two variables. Variables are not dependent on the data units. Therefore, all variables must be 

standardized before the analysis (meaning use the same units). Correlation analysis were performed using 

the CORR procedure of the SAS system to compute Pearson correlation coefficients. The correlation 

coefficient, r, is a value of the linear relationship between data pairs. Depending on the value of r, the 

significance of relationship for two values was determined. The correlation between the same two 

constituents is always 1. A negative sign of the r value indicates inverse correlation, whereas zero 

indicates no correlation. The confident interval was chosen to be 95% (p ≤ 0.05), which is commonly 

used for research. The P-value is a measure how reliable the data is. The results of this test can be found 

in the “Results” section of this paper.  
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3.4.2. ANOVA Analysis 

The analysis of variance (ANOVA) is a statistical test that determines the variation of the means 

of a group of data or variables to understand statistical significance. The Student-Newman-Keuls Test for 

values was performed using the SAS Statistical software. This test is a multiple comparison procedure 

used to identify sample means that are significantly different from each other. This test controls the Type 

I experiment wise error rate under the complete null hypothesis but not under partial null hypotheses. The 

null hypothesis states that there is no difference between groups of data. Type I error occurs when the null 

hypothesis is true, but rejected. It is asserting something that is absent, a false hit. Similar to the Pearson’s 

Correlation Analysis, the significance level is set to 95% (p ≤ 0.05).  
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4. Results and discussions  

This project provided information on the impacts of urbanization on the water quality in River 

Meadow Brook, a New England Stream with varying land uses. In this chapter, the flow and quality of 

water in River Meadow Brook were characterized. Flow data and water samples were collected and 

analyzed along River Meadow Brook. This section on water quantity is divided into two sub-sections: one 

is for sites 1, 2, 3 and 4 and the other is for site 4b. The water quality section (Section 4.2) is also broken 

down into two major sub-sections: one is for chloride analysis based on continuous conductivity data and 

the other one is for the rest of inorganics.   

4.1. Water quantity 

In order to obtain total loads of constituents, concentration and discharge information were 

needed. Since the project had started as a chloride assessment tool study sponsored by MassDEP, the 

discharge information and estimating pollutant loads was not initially included within the scope and 

flowrates could not be obtained until January, 2016. The first flow measurements for site 1, 2, 3, 4 were 

performed on 01/11/2016. In February and March, streamflow information was not collected due to harsh 

weather conditions and ice coverage.  To compensate for limited flow data, additional streamflow data 

were obtained in June, after the collection of previous water depth data. These data were used to estimate 

rating curves for the sampling stations along River Meadow Brook.  

On March 8th, an additional site (Site 4b), located near Gorham Street, Lowell, MA, was chosen 

to collect flow information. The site, which was located a short distance upstream of Site 4, was included 

because a dam at this site provided an ideal control section and assured that there would be no backwater 

effect from the Concord River. The control section allowed for accurate flow estimation. A rating curve 

was constructed based on field flow measurements over the dam and the development of a rating curve 

(i.e. stage-discharge curve) based on a spillway relationship. Rating curves are intended to contain 

numerous discharge measurements at all ranges of stage and streamflow. Due to the limited time frame of 

this study, the rating curve did provide full range of flows, but it did provide sufficient flow information 

to provide approximate estimates of flow and loads.  
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4.1.1. Area-velocity technique  

At each site, a distance across River Meadow Brook was measured and divided into zones. For 

each zone, velocity and stream depth were measured. Based on collected information, discharge for sites 

1, 2 and 3 was calculated as described in Chapter 3. Detailed discharge calculations can be found in 

Appendix C. Discharge was not considered when developing rating curves due to lack of uniform flow 

and a consistent downstream control. Since the Concord River was the downstream control for River 

Meadow Brook, a constant relationship between stage and flow could not be maintained at Site 4. 

Additionally, for each flow measurement, a distance from a designated point to water surface was 

measured and written in a field journal. A designated point at each site was chosen to be a centerline of 

the bridge. Based on collected information, rating curves for each location were constructed (Figure 4.1 

through 4.3). Due to limited data, rating curves do not contain a full range of flows. For days when only a 

distance to water surface was measured, the discharge was retrieved from the rating curve. For example, 

the distance from a centerline of the bridge located at site 1 on the March 5, 2016 field trip was 1ft. From 

the rating curve for site 1, the discharge at stage 1ft is approximately equal to 0.5 ft3/sec (5/19/16) . The 

same procedure was repeated for all days and summarized is Table 4.1. The curves for Figures 4.1 

through 4.3 are shown with stage measured downwards from the reference. The distance between the 

references and the channel bottoms were 1.26 feet for Site 1, 4.65 feet for site 2, and 13.95 feet for site 3.   
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Figure 4.1. Rating curve for site 1 

 
Figure 4.2. Rating curve for site 2 
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Figure 4.3. Rating curve for site 3 

 

                  Table 4.1. Summary of area-velocity measurements and calculations 

Site Date  Discharge, ft3/sec Mean discharge,  ft3/sec 

1 1/11/2016 2.0 

0.7 

  3/5/2016 0.5 

  4/1/2016 0.4 

  5/19/2016 0.5 

  6/22/2016 0.1 

2 1/11/2016 37.1 

17.7 
  3/5/2016  16.1 

  4/1/2016 16.8 

  6/22/2016 1.0 

3 1/11/2016 66.2 

27.8 

  2/24/2016 39.0 

  3/5/2016 30.0 

  4/1/2016 36.2 

  5/19/2016 11.0 

  6/10/2016 6.2 

  6/22/2016 5.9 

4 1/11/2016 96.8 
70.8 

  4/11/2016 44.9 
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Discharge increases as the stream flows from upstream to downstream. The mean discharge was 

0.7 ft3/sec for site 1, 17.7 ft3/sec for site 2, 27.8 ft3/sec for site 3 and 70.8 ft3/sec was for site 4. 

4.1.2. Broad- crested weir  

Because of the presence of the hydraulic structure (broad- crested dam), located near Gorham 

Street in Lowell, MA, site 4b was chosen to continuously monitor flows. The length of the dam was 

estimated to be 40 ft. The depth probe was set to continuously record water depth with a 15- minute 

interval. Depth probe data were adjusted relative to the ruler placed adjacent to the dam, and converted 

into continuous head values (water depth over dam). Adjusted head values over time periods from 3/8 to 

3/16, 3/20 to 3/30, 4/1 to 4/11 and 4/17 to 5/1 were entered into the discharge equation. Based on stream 

discharge and stage information, a rating curve for site 4b was created (Figure 4.4). 

Over the four flow monitoring periods, 5497 depth probe data points were recorded. The depth 

over the dam ranged from 0.859 in to 8.684 inches and the discharge 2.4 ft3/sec and 76.8 ft3/sec 

respectively. The average discharge was 49.5 ft3/sec. This mean value falls between the mean discharge 

values for site 3 and site 4, which make sense. Field measurements confirmed that the flow at Site 4b 

closely matched the flows at Site 4.  
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Figure 4.4. Rating curve for site 4b 

The limitation of this approach are that the flow over weir is assumed to be well represented in 

terms of the discharge equation, and that the shape of the dam needed to be estimated because the 

engineering department for the city of Lowell, MA could not provide us the exact parameters of the dam. 

The field measurements indicated that the approach provided reasonable estimates for the flow.  

4.2. Water Quality  

Water samples were analyzed for metals, anions, TSS, pH and DO to capture water quality 

changes from upstream to downstream of River Meadow Brook. The results are present in this section, 

and are summarized into two subsections: chloride and other pollutants.  

In the first part of the chloride section a chloride assessment tool developed by MassDEP was re-

validated. The tool, which is an equation developed by MassDEP, was used to calculate chloride 

concentrations based on continuous conductivity data collected for a 7-month period. In the second part of 

the section the relationship between precipitation, chloride violations and spikes along River Meadow 

Brook were identified.  
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In the “Other Constituents” section, trace metals, anions, cations, TSS, DO, pH trends from site 1 

through site 4 are shown. The Pearson correlation analysis was used to show the relationship between 

impervious surface and various water quality parameters. 

4.2.1. Chloride 

In this section, a chloride assessment tool was re-validated by evaluating results for River 

Meadow Brook. It was found to match the results with a 99.37% confidence. The tool was then used to 

estimate chloride concentrations and determine violations of chloride ambient water quality standards. 

The relationship between elevated chloride concentrations and snowfall is also discussed in this section. 

Finally, chloride concentrations results determined by USEPA and WPI laboratories are compared for 

QC/QA purposes.  

4.1.1.1. Calculated Chloride Concentrations 

As part of the MassDEP study, 24 grab samples collected along River Meadow Brook were 

analyzed for chloride by USEPA laboratory. These results were compared to 24 co-located chloride 

concentrations calculated using a linear regression equation.  For example, a grab sample collected on 

October 6, 2015 at 10.00am and analyzed by USEPA laboratory showed a chloride concentration of 83 

mg/l. A single conductivity reading for the same day and time extracted from the logger was 384.4 µs/cm 

@25ºC. The conductivity point was plugged into the equation developed by MassDEP (Y = 0.2753X – 

18.987, where X represents conductivity and Y calculated chloride concentration). Therefore, Y = 

0.27553*384.4-18.987 or Y = 86.72 mg/l, where “Y” represents a calculated chloride concentration. In 

Table 4.2, 24 grab samples and 24 calculated chloride concentrations were compared using a linear 

regression comparison in Excel. The goal was to check how calculated chloride values close to the real 

chloride concentrations measured by USEPA laboratory. It is demonstrated that the calculated chloride 

values explained 99.37% of the EPA measured results (Figure 4.5) and their linear regression line is very 

close to the 1:1 line. This result represents re-validation of the Tool developed by MassDEP.  
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Table 4.2 summarizes chloride concentrations predicted by the tool and analyzed by USEPA 

laboratory. The relative percent difference (RPD) was calculated to compare chloride concentrations. The 

comparison is expressed as a unitless ratio. 

 

Table 4.2. Calculated chloride and EPA laboratory results 

# Date Site 
EPA lab 

Measurement, mg/l 

Model 

Prediction, mg/l 
RPD, % 

1 10/6/2015 1 83 86.72 4.39 

2   2 100 97.31 -2.73 

3   3 390 336.98 -14.59 

4   4 320 286.19 -11.16 

5 11/3/2015 1 94 101.31 7.49 

6   2 78 73.60 -5.80 

7   3 270 247.48 -8.70 

8   4 270 248.22 -8.41 

9 12/3/2015 1 86 87.77 2.04 

10   2 140 124.07 -12.06 

11   3 180 167.26 -7.34 

12   4 200 181.82 -9.52 

13 1/21/2016 1 90 91.54 1.70 

14   2 130 125.91 -3.20 

15   3 220 214.26 -2.64 

16   4 260 241.13 -7.53 

17 3/7/2016 1 79 76.27 -3.52 

18   2 97 90.69 -6.72 

19   3 190 172.00 -9.94 

20   4 220 204.40 -7.35 

21 4/20/2016 1 81 79.63 -1.71 

22   2 120 107.18 -11.29 

23   3 230 196.25 -15.84 

24   4 250 222.55 -11.62 

 Average  174.08 160.8 6.08 
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Figure 4.5. Chloride linear regression analysis  

 
Because the tool/equation (Y = 0.2753X – 18.987) developed by MassDEP proved to be reliable, 

and validated twice through USEPA Auburn and MassDEP studies with a high percent accuracy, it was 

used to calculate chloride concentrations. Calculated chloride concentrations were used for estimating 

chronic and/or acute toxicity violations for each site. A chronic chloride violation considers whether the 4-

day average concentration of chloride exceeds 230 mg/l. An acute chloride violation considers whether the 

one-hour average chloride concentration more than 860 mg/l. The following paragraphs summarize results 

for each site.  

- Site 1 

Continuous monitoring of specific conductivity from 10/06/2015 to 04/20/2016 shows that the 

stream did not exceed chronic/acute standards for chloride. The maximum chloride concentration derived 

from conductivity was 118.78 mg/L (01/06/16) and the minimum concentration was 27.08 mg/L 

(01/10/16) (Table 4.3). Chloride from grab samples ranged from 83 to 94 mg/L (table 4.2). Based on 

logger measurements, the average concentration over the eight month period was 81.3 mg/L (Figure 4.6a) 
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Figure 4.6a- Calculated chloride concentrations at site 1 

- Site 2 

River Meadow Brook at Site 2 did not experience chronic/acute exceedances in chloride (Figure 

4.6b). The maximum calculated chloride level was 212.0 mg/l (on March 8, 2016), the minimum 

concentration was 65.8 mg/l (on 02/28/2016), and the average concentration over the study period was 

101.3 mg/l (Table 4.3). Grab samples analyzed for chloride ranged from 78 mg/l to 140 mg/l (Table 4.2).  

Figure 4.6b- Calculated chloride concentrations at site 2 
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- Site 3 

Site 3, has the most potential for impact by chloride due to close vicinity of State Highway 495, 

Road 3 and Lowell Connector S. Numerous outfalls connected to the catch basin bring flow and 

pollutants directly to the stream. The maximum concentration of calculated chloride was 1228.62 mg/l 

(02/16/16), the minimum concentration of chloride was 55.93 mg/l (10/29/15), and the average was 218.3 

mg/l (Table 4.3). The seven months of monitoring showed that the chloride exceeded the 230 mg/l 

chronic standard for 22 days. The periods ranged in length from 5 days in November and December to 22 

days in October (Table 4.4). Chloride concentrations at site 3 exceeded the acute water quality standard 

one time on 2/16/16 with the mean concentration 1062 mg/l.  

 
Figure 4.6c- Calculated chloride concentrations at site 3 

- Site 4 

At its confluence with the Concord River, River Meadow Brook receives all inputs within the 

subbasin. As a result, this location can show the cumulative impacts from chloride. Site 4 had 13 episodes 

of calculated chronic chloride exceedance lasting for 49 days. The periods of violation ranged in length 

from 3 days in March to 24 days in October. (Table 4.4). The highest spike of chloride was 1035 mg/L 

which occurred on 02/16/16 and gradually stabilized. The minimum concentration of chloride for the 

seven-month period was 50.5 mg/l, and the average 240.4 mg/l (Figure 4.6d). 
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Figure 4.6d- Calculated chloride concentrations at site 4 

- Site 5 

At site 5, upstream of the Concord River where River Meadow Brook discharges, the maximum 

chloride concentration was 251 mg/l, and the average 163 mg/l. Chloride from grab samples, ranged from 

145 mg/l to 186 mg/l (Table 4.2). Data collected from continuous conductivity loggers showed the 

maximum calculated chloride concentration was 251 mg/l (02/16/16), the minimum was 105.17 mg/l 

(01/02/2016), and the average was 163 mg/l over the seven-month period (Figure 4.6e)  

 
Figure 4.6e- Calculated chloride concentrations at site 5 

- Site 6 

Site 6, was located in the Concord River, downstream of the confluence with River Meadow 

Brook. In February 2016, this site exceeded the 230 mg/l range twice. No other chronic or acute 

exceedances were observed. The maximum calculated chloride concentration was 468.82 mg/l, the 
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minimum chloride concentration was 106.11 mg/l, and the average was 168.81 mg/l (Figure 4.6f). Five 

grab samples were collected during the study ranged from 160 mg/l to 190 mg/l for chloride (table 4.2).  

 
Figure 4.6f- Calculated chloride concentrations at site 6 

                                     Table 4.3. Min, max and average concentrations of chloride  

Site 
Chloride concentrations, mg/l 

Min Max Average 

1 27.1 118.8 81.3 

2 65.8 212 101.3 

3 55.9 1228.6 218.3 

4 50.5 1035.1 240.4 

5 105.2 251 162.8 

6 106.1 468.8 168.8 

 

4.1.1.2. Estimated Chloride Violations 

The number of chloride violations of chronic and acute water quality standards were calculated 

using the model developed by MassDEP. Based on the number of violations, it was determined that River 

Meadow Brook was impaired according to ambient water quality standards. Violations of the acute and 

chronic water quality standards for chloride were calculated by rolling averages for all possible blocks of 

one and 96 hours, respectively. This method captured all occurred violations. The time increment for the 

rolling averages was 30 minutes; therefore, the time blocks by rolling averages overlapped. Each 

independent period of violation was identified by the beginning of the time block of the first overlapping 

0.00

100.00

200.00

300.00

400.00

500.00

600.00

700.00

800.00

900.00

9/23 10/23 11/22 12/22 1/21 2/20 3/21 4/20 5/20

Modeled Cl¯, mg/L



52 
 

violation and the end of the time of the last overlapping violation. The total duration of each independent 

period was calculated. The number of violations corresponding to each independent period was 

calculating by dividing the duration by one hour and 96 hours and rounding to the nearest integer. The 

number of violations for the period of record was summed for all the independent periods of violation 

(Table 4.3).  

Analysis of the continuous monitoring data for specific conductance for the 7-month period 

showed that concentrations of chloride at site 3 exceeded the 230 mg/l mark for 22 days including 3 hours 

of the acute water quality standard of 860 mg/l. The maximum chloride concentration at site 3 was 1228 

mg/l.  

The accumulation of chloride at site 4 resulted in a chronic chloride violation that lasted for 49 

days. The maximum calculated chloride concentrations was 1035 mg/l.  

Three episodes of exceedances of chronic chloride concentrations were observed at site 6. The 

maximum average chloride concentration for these periods was 278 mg/l. No acute chloride exceedances 

were observed at this site. There was no violations observed at site 5 which provides some affirmation of 

the assumption developed in the beginning of this study that a small stream can affect water quality of a 

large stream. 

Table 4.4. Chloride water quality violations, part 1 

Site Block Date start Block Date end Duration, 

days 

# of 

Violations 

Violation 

type 

Mean [Cl¯], 

mg/l 

3 10/6/2015 12:00 10/31/2015 7:30 22 1001 Chronic  342.0 

3 11/3/2015 7:00 11/11/2015 23:00 8 343 Chronic 240.5 

3 11/16/2015 15:00 11/20/2015 9:30 5 84 Chronic 235.4 

3 12/28/2015 22:00 1/2/2016 12:30 5 33 Chronic 234.1 

3 1/3/2016 18:00 1/11/2016 5:00 9 167 Chronic 243.8 

3 1/13/2015 20:00 1/21/2016 23:30 9 201 Chronic 244.9 

3 2/2/2016 4:00 2/13/2016 4:00 12 338 Chronic 239.6 

3 2/12/2016 17:30 2/21/2016 5:30 10 229 Chronic 304.6 

3 2/16/2016 18:30 2/16/2016 20:00 N/A  3 Acute  1062.5 

3 4/1/2016 16:00 4/9/2016 0:00 8 161 Chronic  249.0 

  

Total # violations for site 3 

    

2560 (22 

days) 
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Table 4.4. Chloride water quality violations, part 2 

Site Block Date start Block Date end Duration, 

days 

# of 

Violations 

Violation 

type 

Mean [Cl¯], 

mg/l 

4 10/6/2015 14:00 10/30/2015 23:30 24 1029 Chronic  351.3 

4 10/31/2015 16:30 11/13/2015 6:30 13 464 Chronic  265.0 

4 11/13/2015 9:00 11/21/2015 4:00 8 232 Chronic  252.7 

4 11/22/2015 3:30 11/26/2015 23:00 4 89 Chronic  235.4 

4 12/5/2015 4:00 12/15/2015 17:30 10 364 Chronic  249.7 

4 12/28/2015 11:00 1/3/2016 20:00 5 164 Chronic  259.9 

4 1/3/2016 11:00 1/11/2016 12:30 8 245 Chronic  260.9 

4 1/16/2016 17:30 1/29/2016 4:30 13 599 Chronic  253.0 

4 1/27/2016 19:30 2/2/2016 12:30 6 199 Chronic  232.1 

4 1/31/2016 20:00 2/22/2016 3:00 23 962 Chronic  277.8 

4 2/16/2016 17:00 2/16/2016 18:30 N/A 3 Acute 942.3 

4 3/22/2016 1:00 3/25/2016 2:00 3 147 Chronic  259.2 

4 4/1/2016 20:30 4/9/2016 5:00 8 211 Chronic  284.3 

  

Total # violations for site 4 

    

4708 (49 

days)     

6 2/9/2016 17:30 2/14/2016 10:00 5 35 Chronic  251.7 

6 2/12/2016 10:00 2/18/2016 3:30 6 83 Chronic  269.0 

6 2/16/2016 16:30 2/21/2016 3:30 5 25 Chronic  278.6 

  

Total # violations for site 6 

    143 days)     
 

4.1.1.3. Snowstorm and chloride exceedances relationship  

To show the relationship between the applications of road salt, exceedances of chloride and 

snowfall along River Meadow Brook, daily snowfall data were retrieved and evaluated from the National 

Climate Data Center (NOAA). For this study, daily snowfall at each location was assumed to be 

associated with a potential road salt application (Table 4.5). Continuous conductivity data for the 7- 

month period did not reveal any particular trends associated with snowfalls and application of road salt at 

locations 1 and 2 (Figure 4.7a and 4.7b). This is most likely because of the absence of direct runoff and 

low application of road salt at these sites. At locations 3 and 4, on the other hand, chloride spikes occurred 

almost immediately after each snowstorm event resulting in multiple chronic and acute violations of water 

quality standards for chloride (Figure 4.7c and 4.7d). During multiple snowstorm events that occurred in 

the winter 2016, location 5 did not show any particular trend related to snowstorm events and chloride 

concentrations (Figure 4.7e). This might be due to high flows and dilution in the Concord River. Even 
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though location 5 did not respond to a possible road salt application during snowfall events, spikes 

occurred at site 6 after the March and April snowstorm events were recorded (Figure 4.7f). This 

observation supports the assumption that a small stream may have an influence on a bigger river with 

high flows. Snowstorm observations supported the statement/assumption we had developed in the 

beginning of the study which was that urbanization and the close vicinity of roads have a negative effect 

on water quality in River Meadow Brook due to salt application. 

                                  Table 4.5. Snowfall data 

Month Date Snowfall, in 

October   N/A 

November   N/A 

December 12/29/2015 0.9 

  12/31/2015 1.4 

January 1/13/2016 2.6 

  1/18/2016 2.4 

  1/18/2016 0.8 

February 2/6/2016 8 

  2/9/2016 6.3 

  2/11/2016 0.2 

  2/16/2016 2.6 

March 03/05/2016 0.1 

 3/21/2016 3 

  3/22/2016 1 

April 4/5/2016 4 

 04/12/2016 0.22 
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Figure 4.7a- Snowfalls and calculated chloride at site 1 

 

Figure 4.7b- Snowfalls and calculated chloride at site 2 

 

Figure 4.7c- Snowfalls and calculated chloride at site 3 
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Figure 4.7d- Snowfalls and calculated chloride at site 4 

 

Figure 4.7e- Snowfalls and calculated chloride at site 5 

 

Figure 4.7f- Snowfalls and calculated chloride at site 6 
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4.1.1.4. Quality Control of laboratory analysis  

Twenty water samples analyzed by USEPA laboratory and at WPI were compared for quality 

control and quality assurance purposes. The result showed that chloride concentrations from the WPI and 

EPA laboratory matched within a 93.25% confidence that the results are close to a 1:1 line. The water 

samples collected for the laboratory analysis were collected side-by-side.  

               Table 4.6. WPI and EPA chloride concentrations comparison  

# Date Site 
WPI EPA 

Cl-, mg/L 

1 10/26/15 1 76.8 83 

2   2 104 100 

3   3 422 390 

4   4 417 320 

5 11/3/15 1 91 94 

6   2 80 78 

7   3 260 270 

8   4 257 270 

9 12/3/16 1 87 86 

10   2 129 140 

11   3 190 180 

12   4 184 200 

13 3/7/2016 1 75 79 

14   2 97 97 

15   3 250 190 

16   4 206 220 

17 4/20/2016 1 75 81 

18   2 119 120 

19   3 209 230 

20   4 324 250 

 

mailto:S@
mailto:S@
mailto:S@
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             Figure 4.8. Linear regression analysis for chloride by EPA and WPI labs                            

 

4.2.2. Inorganic constituents 

The laboratory analysis were performed for metals, anions, total suspended solids (TSS), dissolved 

oxygen (DO), pH. The mean, maximum, minimum and average concentrations found in River Meadow 

Brook during this study are presented along with basic information on regulatory requirements in Table 

4.7. The full dataset is attached as Appendix D. The full list of constituents is as follows:  

Na, K, Cl, TSS, DO are presented in ppm. Whereas, Al, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Cd, Pb 

concentrations are indicated in ppb. Ppm refers to as parts per million and is equal to mg/l, and ppb stands 

for part per billion and is equal to µg/l.  

Cr, Co, and Pb were not statistically analyzed due to very low concentrations. A negative sign 

indicates in front of the concentration indicate that is was below the detection limits. Therefore, it was 

concluded that any trends associated with these constituents are not accurate. 
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Table 4.7. Mean, min and max dissolved concentrations of water quality parameters in River Meadow  

Brook 

Constituent Units average min max 

Regulatory 

requirements.  

Cl mg/l 164.0 27.1 1228.6 230(2) 

Na mg/l 93.0 26.4 251.6 20 

K mg/l 4.7 2.5 9.4   

Al µg/l 46.9 1.1 235.2 87 

V µg/l 1.6 0.4 2.9   

Cr µg/l 0.3 0.04 2.5 120 

Mn µg/l 101.9 0.5 524.8 No Criteria 

Fe µg/l 203.0 17.4 466.8 1000 

Co µg/l 0.4 0.1 1.2 No Criteria 

Ni µg/l 5.8 2.2 27.7 56 

Cu µg/l 9.4 1.5 39.1 6.5(2) 

Zn µg/l 11.0 0.7 73.9 120 

As µg/l 1.9 0.7 5.7 150 

Cd µg/l 0.1 0.01 0.9 0.66(2) 

Pb µg/l 0.2 0.02 0.8 2.5 

TSS mg/l 2.7 0.2 8.3 30.00 

pH   6.6 6.4 6.9 6.5-8.3 

DO mg/l 9.4 7.9 10.3 >5(1) 

Sulfate mg/l 14.9 7.0 28.8 250(4) 

nitrate mg/l 2.9 0.8 6.3 320(5) 

Conductivity µS/cm 651.7 167.5 4536.8 N/A 

Temp °C 6.0 0.1 17.6   

 (1) USEPA Ambient Water Quality Standard 

(2) MasDEP 

(3) USEPA Maximum Contaminant Level Goal 

(4) USEPA for Ambient Water Quality Standard for total Nitrogen 

 

4.2.2.1. Relationship between impervious surface and inorganics  

A SAS computer procedure, CORR (The Pearson Correlation Analysis), was used to determine 

the relationship between impervious surface and water quality parameters along River Meadow Brook. 

For the Pearson Correlation analysis, average concentrations of pollutants for each site were used (Table 

4.7). The outcome was the Pearson correlation coefficient r- and P-values. The P-value is the parameter 

that measures a linear relationship between two variables (water quality parameters). The P-values that 

are less than <0.05 indicated that the relationship are statistically significant. The Pearson Correlation 
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coefficients measured the strength and direction of a linear relationship between two variables.  Table 4.8 

represents the final results of the Pearson correlation analysis. Yellow highlighted cells indicate the 

presence of a statistically significant relationship. As described in chapter 2, the percent of impervious 

coverage increases from upstream to downstream in River Meadow Brook: -6.14% at site 1, -7.45% at 

site 2, -18% at site 3, -23.7%. at site 4. 

                                          Table 4.8. The Pearson correlation analysis  

Na 0.96875 

Na 0.0313 

Cl 0.96874 

Cl 0.0314 

Mg 0.94012 

Mg 0.0599 

K 0.95861 

K 0.0414 

Al -0.70523 

Al 0.2948 

V51 0.98874 

V51 0.0113 

Mn 0.8365 

Mn 0.1635 

Fe 0.9271 

Fe 0.0729 

Ni 0.99951 

Ni 0.0005 

Cu 0.87122 

Cu 0.1322 

Zn 0.66256 

Zn 0.3374 

As 0.96773 

As 0.0323 

Cd -0.9375 

Cd 0.0652 

TSS 0.9909 

TSS 0.0091 

pH 0.9877 

pH 0.0123 

DO -0.90991 

DO 0.0901 

Sulfate 0.93103 

Sulfate 0.069 

Nitrate -0.29607 

Nitrate 0.7039 
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Based on the Pearson Correlation Analysis, Al, Mn, Mg, Fe, Cu, Zn, Cd, DO, sulfate and nitrate 

did not have significant correlation (P>0.05). On the other hand, Cl, Na, K, V, Ni, As, TSS were 

significantly correlated. TSS and Ni had the most significant degrees of correlation (r=0.9909, P=0.0091) 

and (r=0.99951, P=0.0005), respectively. These results support previously conducted studies that TSS and 

Ni increase with higher percentage of impervious coverage (Metasaranta et al. 2005). It was not a surprise 

to see a strong Na/Cl and impervious surface relationship because these are the two primary components 

of road salt. Na and imperviousness were correlated r=0.96875 P=0.0313; chloride r=0.96874 and 

P=0.0314. As the percent impervious coverage increased from upstream to downstream, pH decreased 

(r=0.9877 P=0.0123). Cd indicated a significant negative correlation with impervious surface (r=0.97495 

P=0.0252). A negative correlation for Al and DO indicated that the concentrations of Al and dissolved 

oxygen increases in the opposite direction, from downstream to upstream. This result might be due to a 

high groundwater concentration, and the water increased dilution downstream. K (r=0.95861, P=0.0414) 

showed strong correlation with impervious surface. A study by Solomon and Natusch (1977) study 

supports the notion K can come from roads. They concluded that K, Cr, Na, Cu, Ni, Pb, Cd and several 

other metals were part of large particles deposited onto the roadway.  

4.2.2.2.  ANOVA Analysis 

The Student-Newman-Keuls test was run to determine the variation in water quality parameters 

from site to site. Figures showing the more significant variations are included in this section.  

4.1.2.1. ANOVA analysis  

 

The ANOVA analysis with the Student-Newman-Keuls test was run to identify sample means that 

were different from each other. The results also helped to identify trends of various inorganics along River 

Meadow Brook.   

- Arsenic (As) 

The mean concentrations of arsenic along River Meadow Brook were significantly different among 

the four sites (P<0.001) (Figure 4.9). Site 1 and 2 had the lowest concentrations of arsenic and Sites 3 and 



62 
 

4 had the highest concentrations of arsenic. A possible principal source of arsenic upstream of at Site 3and 

4 could be fossil fuel combustion products. The mean concentration of arsenic was 1.92 µg/l, the maximum 

concentration was 5.67 µg/l and the minimum concentration was 0.66 µg/l.. 

 

 

 

 

 

 

 

Figure 4.9. ANOVA analysis for arsenic 

 

 

- Chloride (Cl) and Sodium (Na) 

 

ANOVA analysis showed that the concentrations of sodium and chloride were significantly 

different at Site 3 and Site 4 compared to the concentrations of sodium and chloride at Site 1 and Site 

2.(P<0.0001 for sodium and chloride) (See Figure 4.10 and Figure 4.11). The elevated concentrations of 

sodium and chloride at Sites 3 and 4 were due to the application of road salt in the winter time and 

contaminated groundwater contribution during low- flow periods. The mean concentration of sodium 

during the study period was 167.74 mg/l and the mean concentration for chloride was 93.87 mg/l. 
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Figure 4.10. ANOVA analysis for chloride 

 

                                                                                                                        

 

 

 

 

 

 

 

Figure 4.11. ANOVA analysis for sodium 
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copper between Sites 3 and 4. Taking into the account that the principle source of copper in urban water 

runoff is vehicle parts and industrial waste, the ANOVA analysis make sense. 

 

  

 

 

 

 

 

Figure 4.12. ANOVA analysis for copper 

 

 

- Iron (Fe) 

 

Iron is a trace element required by both plants and animals. Primary sources of iron in urban runoff 

are auto body rust, steel highway structures and engine parts (Tiefenthaler at el.(2001))l. Based on the 

ANOVA test, the mean concentrations of iron along River Meadow Brook were statistically different 

(r=6.71 and P=0.0009) (Figure 4.13). The mean concentration of iron at Site 1 was 101.31 µg/l and 277.67 

µg/l at Site 4. The overall trend was that the concentrations of iron increases as River Meadow Brook flows 

from upstream to downstream. 
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Figure 4.13. ANOVA analysis for Iron 

 
- Nickel (Ni) 

 

The primary source of nickel in urban stormwater runoff are diesel fuel and gasoline, lubricating 

oil, metal plating, brake lining wear and asphalt paving. Even though, there is a major transportation 

corridor at Site 3 and Site 4, the ANOVA analysis did not show any significant differences in 

concentrations of nickel along River Meadow Brook (r=3.40 and P=0.0272) (Figure 4.14). Nevertheless, 

the overall trend was that the mean concentrations of nickel increased from Site 1 (3.7 µg/l) to Site 4 (8.2 

µg/l), so there was an increase as would be expected. 
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Figure 4.14. ANOVA analysis for nickel 

- Vanadium (V) 

 

The ANOVA analysis indicated that the mean concentration of vanadium at Site 1(1.1 µg/l) 

was statistically different from Site 4 (2.1 µg/l) (F=6.28 and P=0.0014) (Figure 4.15). The overall trend 

for vanadium was that the concentrations increased from Site 1 to Site 4.  

 

 

 

   Figure 4.15. ANOVA Analysis for vanadium 
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Figure 4.16. Concentrations of Na and Cl by season 

 

Figure 4.17. Concentrations of V, Ni and As by season 
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Meadow Brook were 167.5 mg/l, it is lower than in the spring (180.87 mg/l). Approximately 25 inches of 

snow had fallen in the winter compare to 8.2 inches in the spring. Every snowfall was assumed to be 

associated with road salt application. Even though there were only 8.2 inches of snow in the spring, an 

abundant snowmelt that happened in the spring had possibly carried pollutants to the stream. Therefore, 

higher concentrations of chloride in the spring make sense. Concentrations of sodium showed a similar 

trend with lowest concentrations in the winter, and close concentrations in the fall and spring (104 and 

107 mg/l respectively).  

Higher concentrations of Cr and Cd were observed in the spring. Then the concentrations had 

significantly decreased in the winter, and increased again in the spring. Similar trend was noted in 

Gomez-Alvarez et al. (2014) where the average concentration of Cd, Cr and Cu were lower in the dry 

season. Concentrations of copper reaches maxima in the spring, and relatively variant at winter and fall. 

Concentration of vanadium were not significantly different from season to season.  

As, Ni, As showed lowest concentration in the winter. Higher concentrations of these trace metals 

in the fall can be explained by a possible wash-off of pollutants that accumulated on impervious surface 

during the extended-dry period (summer). In the winter, concentrations went down possibly due to high 

flows and dilution. Finally, with more precipitations occurred in the spring, the concentrations went back 

up again. 

4.3. Pollutant loads 

Average pollutant loads for Na, Cl, K, Ni, V and As for the four catchment areas were calculated 

based on flow measurements taken from January through June. For example, at site 1 the mean 

concentration of Na over three sampling dates was equal to 26.4 mg/l. The mean discharge was equal to 

0.8 ft3/sec. To calculate mean daily load, a conversion factor described below was applied. Mean 

discharge, the concentration and the conversion factor were multiplied to obtain daily pollutant load. 

Detailed calculations of pollutant loads are shown in Appendix D, and the summary is presented in Table 

4.10. 
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Daily load = mg/l*ft3/sec * 28.32 l/ft3 * 8640 sec/day * 1kg/106mg 

Where the pollutant concentration is in mg/l, the discharge in ft3/sec and a conversion factor is 

used to obtain the final units of kg/day or gram/day 

f- conversion factor 

c- pollutant concentration, mg/l 

d- discharge, ft3/sec 

                   Table 4.9. Summary daily pollutant loads  

  Units 

Site   Site Site Site 

1 2 3 4 

Cl kg/day 13 500 1586 2978 

Na kg/day 7 170 890 1731 

K kg/day 0.6 18 36 70 

V gram/day  0.2 6 12 25 

Ni gram/day  0.6 18 47 99 

As gram/day  0.2 7 16 33 

 

From the chart, it is noticeable that chloride contributes the highest daily loads between 13 

kg/day at site 1 to 2978 kg/day at site 4. Contribution of sodium ranged between 7 kg/day at site 1 to 1731 

kg/day at site 4. Sodium contributed to 7kg/day at site 1 and 1731 kg/day at site 4. These high loadings 

can be explained, as discussed earlier, by the application of road salt in the winter and groundwater 

contribution during the low-flow period.  The chronic water quality standard for chloride is 230 mg/l 

based on 4-day average concentrations, acute 860 mg/l based on 1-hour average. As per MassDEP, a 

recommended concentration of sodium does not exceed 20 mg/l. The minimum sodium concentration 

during the study was 26.4 mg/l at site 1, and the highest was 251.6 mg/l. The average concentration was 

93.8 mg/l. Therefore, the concentrations of Na exceeded water quality standards. Exceedances and 

violations of chloride were described in the “Chloride” section. 

Arsenic daily loads ranged between 0.2 gram/day to 25 gram/day as River Meadow Brook flows 

from headwaters to site 4 in Lowell, MA. During this study, the mean arsenic concentrations found in 

River Meadow Brook were 1.92 µg/l with the highest 5.67 µg/l (site 4) and lowest 0.66 µg/l (site 1). 
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According to the National Recommended Aquatic Life Criteria table, arsenic chronic concentration does 

not exceed 150 µg/l, and acute 340 µg/l. The principal natural sources of arsenic are fossil fuel 

combustion products, and atmospheric deposition from mining operations. There are no mining activities 

present near River Meadow Brook. Therefore, concentrations of arsenic increases from upstream to 

downstream because of the high automobile activities at upstream sites. 

Daily loadings of nickel ranged between 0.6 gram/day at site 1 to 99 gram/day at site 4. Primary 

sources of nickel from road runoff are diesel fuel and gasoline, lubricating oil, metal plating, brake lining 

wear and asphalt paving. The average Ni concentration among the 5 sites was 5.8 µg/l. Chronic ambient 

water standard for Ni is based on hardness. For this study a 50 mg/l hardness was assumed. Therefore, the 

criteria is 56 µg/l and as 24-hour averages, the concentration should not exceed 1100 µg/l.  

Daily loading for vanadium were different among four sites. At site 1, V contributed 0.2 

gram/day and 25 gram/day at site 4. Vanadium is not on the list of the ambient water quality criteria. As 

per the background chapter of this paper, vanadium was associated with impervious surface based on 

previous studies. V mean concentrations found in River Meadow Brook was 1.6 µg/l.   

Daily potassium loadings ranged from 0.6 kg/day to 70 kg/day.  The average potassium 

concentration found in River Meadow Brook was 4.7 mg/l, minimum 2.5 mg/l and maximum 9.4 mg/l.  

Water quality parameters from River Meadow Brook study were compared to a Campo et al. 

(2003) study to get a better understanding of the health of the stream. Five rivers with different level of 

urban disturbance were monitored during 1998-2000 for different parameters. Stillwater River 

represented a non-urban and undisturbed area with pristine water. Ipswich and Neposet Rivers are located 

in moderately urbanized areas, and Saugus and Aberjona Rivers were located in an intensely disturbed 

areas. River Meadow Brook was checked against the average concentrations found in the rivers (Table 

4.13). Comparison of the water quality parameters showed that River Meadow Brook exceeded the 

average Cl, Na, K concentrations among 5 rivers.  Ipswich and Aberjona that are moderately and 

intensely urbanized Rivers exceeded the average concentrations of Fe and Mn.
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Table 4.10 Comparison River Meadow Brook with New England Rivers 

River 
River Meadow 

Brook 
Stillwater Ipswich Neponset Aberjona Saugus 

Drainage area, mi2 24 32 45 35 25 23 

Urbanization level   Minimum Moderate Moderate Moderate High 

  Units             

Na mg/l 93.0 10.70 31.00 26.00 58.10 54.40 

Cl mg/l 164.0 18.30 56.10 47.40 108.00 103.00 

K mg/l 4.7 1.25 2.34 1.77 3.37 2.57 

Mn  µg/l 101.9 43.30 114.00 101.00 201.00 97.40 

Fe µg/l 203.0 140.00 320.00 260.00 140.00 200.00 

TSS mg/l 2.7 4.00 4.00 6.00 7.00 4.00 
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5. Conclusion 

The goal of this project was to assess the effects of urbanization on water quality on the River 

Meadow Brook, a stream that flows a rural area in Chelmsford, MA to highly urbanized  area with 

multiple roads and highway intersections in Lowell, MA. Between October 2015 and April 2016, River 

Meadow Brook was monitored as part of a project with two phases: a DEP study focusing on specific 

conductance and chloride and a second study to assess the relationship between impervious area and 

chloride and other inorganic constituents.  

During the first phase of the project, there were two main objectives:  to monitor conductivity 

continuously at 4 sites located in River Meadow Brook and 2 sites in the Concord River, and to re-

validate a chloride assessment tool developed by MassDEP. Using the monitoring conductivity data and 

chloride analysis, the DEP model was used to convert the continuous conductivity data into chloride 

concentrations distributions for the 7-month period. Calculated chloride concentrations were used to 

identify chloride violations at six sites along River Meadow Brook. At two sites, chloride concentrations 

exceeded the chronic ambient water quality standard for 22 days and 49 days respectively. The maximum 

chloride concentration observed in River Meadow Brook was 1228 mg/l at site located downstream of 

major highway interchanges and high contributing impervious area (Site 3) and the lowest chloride 

concentration found to be 27.08 mg/l at the site with the lowest impervious area (Site 1) The lowest 

concentration was found by previous investigations for several New England Rivers with similar drainage 

basin areas (i.e. less than 50 mi2). Conductivity data collected in the Concord River upstream and 

downstream of the confluence of with River Meadow Brook indicated that the brook may have direct 

impacts on the chloride concentrations in the main stem of the Concord River, since high concentrations 

were observed at the downstream station when high concentrations were observed in River Meadow. The 

maximum concentration observed at site 5, which is located upstream of the confluence with River 

Meadow Brook, was 250.9 mg/l. In addition, the maximum chloride concentration at Site 6, which is 

downstream of the confluence with River Meadow Brook, was 468.8 mg/l. Results also indicate that 

chloride spikes and violations occurred primarily during the winter and, typically coincided with 
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snowfalls (when road salt application is commonly used to maintain safety on roads in Massachusetts) 

Therefore, in streams, located in the close vicinity to roads such as River Meadow Brook, chloride 

concentrations that exceed ambient water quality standards may be considered to be a common 

occurrence.   

For the second phase of the study, the stations installed for phase 1 were also used to investigate 

the impact of urbanization on the water quality of River Meadow Brook. Forty-seven grab samples were 

collected from the four stations and were analyzed for Al, As, Cd, Co, Cr, Fe, K, Na, Mg, Ni, Pb, V, Zn, 

TSS, DO, pH, sulfate and nitrate to achieve that goal. The Person’s Correlation Analysis was used to 

determine the relationship between impervious surface and water quality parameters. The ANOVA 

analysis with the Student-Newman-Keuls test was performed to determine whether the mean values of 

water quality parameters were significantly different from site to site. The result from the Pearson’s 

Correlation Analysis showed that the concentrations of Cl, Na, K, V, Ni, Cu, As, TSS increased along 

with the percent of impervious coverage. Dissolved oxygen and Al showed a negative correlation with 

impervious surface, although there were likely due to the stream conditions or, in case of Al, associated 

with the high concentrations of Al in groundwater due weathering of granitic rock. The result from the 

ANOVA test showed that the concentrations of As, Cl, Na and V are significantly lower at downstream 

sites (Site 1 and 2) compared to upstream sites (Site 3 and 4). The ANOVA result indicated that the 

concentrations of As, Cl, Na and V in River Meadow Brook located downstream of major highway 

intersection and high impervious area (Site 3 and Site 4) may have a direct negative on the brook. 

River Meadow Brook was compared to five other streams in New England with a similar 

drainage basin characteristics. The comparison showed that River Meadow Brook contained the highest 

concentrations of Na, Cl and K among the streams. These high concentrations are likely a result of the use 

of road salt and heavy traffic volumes associated with the major highway interchanges in the region. 

The overall trend for the key constituents (Na, Cl, K, V, Ni, As, TSS and pH) was that pollutant 

load increased significantly as the stream flows from less developed areas into more urbanized  areas 
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associated with roads and urban activities. In addition, there are increases in concentrations as well as 

increases in load.  

Seasonal changes were found to play a role in pollutant concentrations in River Meadow Brook. 

The lowest concentrations of the key components were found to be lower in the winter, and higher in the 

fall and spring. This trend suggests that snowmelt washes off a significant portion of pollutants to River 

Meadow Brook, especially at the sites located near highways and roads.  
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6. Recommendations. 

This study is intended to serve as a basis for additional steps to protect River Meadow Brook and 

other surface streams in Massachusetts. As indicated previously, the sampling sites on River Meadow 

Brook that were located near highways and roads had multiple chronic and acute violations of sodium and 

chloride. It is highly likely that these concentrations were due to the application of road salt in the winter. 

Given these results, there is a basis for adding River Meadow Brook to the 303d list as chloride impaired.  

The high concentrations of sodium and chloride in the fall, particularly during low-flow periods, 

suggests that groundwater entering River Meadow Brook is affected by the high concentrations of Na, Cl 

and other constituents. A Total Maximum Daily Loads (TMDL) analysis would help to develop 

approaches to reduce impact from road salt. In addition, to gain a better understanding of the variations 

Na, Cl, metals and other constituents throughout the year, additional studies are recommended. Water 

quality monitoring of the stream over a long period of time would provide additional information of 

seasonal changes and dry/wet periods. Several of the trace metals tested showed that the relationship 

between the percent of impervious coverage and increase in concentrations as the stream flows from 

upstream to downstream. This result indicates that the trace metals associated with vehicles and 

impervious surface increase as the stream flows through a more urbanized area.  

In summary, this research provides a basis for assessing the impacts of urbanization on River 

Meadow Brook. A more detailed review of these relationship, and consideration total and dissolved loads 

of constituents in other streams, would provide a valuable follow-up to develop a full understanding of 

the impacts of urbanization on streams in New England.  
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Appendix A. HOBO Conductivity logger Manual 
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Appendix B. Area-velocity flow calculations 

January 11th, 2016 

Table 4.8a. 01/01/16 flow calculation for site 1 

Zone 

Distanc

e across 

stream, 

(in)  

Width, 

ΔW (in) 

Depth, 

D (in) 

Mean 

velocity

, v 

(ft/sec) 

Mean 

velocity, 

v(in/sec

) 

Area,        

ΔW*D 

(in2) 

Discharge, 

inches3/se

c  

A 0.0 0.8 0.0 0.0 0.0 0.0 0.0  

B 1.5 5.5 6.0 2.5 30.0 33.0 990.0  

C 11.0 7.9 6.5 2.5 30.0 51.2 1535.6  

D 17.3 6.5 7.0 1.6 19.2 45.5 873.6  

E 24.0 3.4 0.0 0.0 0.0 0.0 0.0  

                 

      Total Q: 3399.2 in3/sec 

        1.96714 cfs 

Table 4.8b. 01/01/16 flow calculation for site 2 

Zone 

Distance 

across 

stream, 

(in)  

Width, 

ΔW (in) 

Width, 

ΔW (ft) 

Depth, 

D (ft) 

Mean 

velocity, 

v 

(ft/sec) 

Area,        

ΔW*D 

(ft2) 

Discharge, 

ft3/sec  

A 0.0 14.5 1.2 0.0 0.0 0.0 0.0  

B 29.0 26.0 2.2 1.0 1.0 2.1 2.1  

C 52.0 24.5 2.0 1.9 1.3 3.9 5.0  

D 78.0 33.0 2.8 3.1 1.2 8.4 10.1  

E 118.0 36.5 3.0 3.1 1.2 9.5 11.4  

F 151.0 28.5 2.4 3.8 0.6 9.0 5.4  

G 175.0 22.5 1.9 2.6 0.4 4.8 1.9  

H 196.0 27.5 2.3 1.7 0.3 3.9 1.2  

I 230.0 17.0 1.4 0.0 0.0 0.0 0.0  

      Total Q: 37.1398 ft3/sec 
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Table 4.8c. 01/01/16 flow calculation for site 3 

Zone 

Distance 

across 

stream, 

(in)  

Width, 

ΔW (in) 

Width, 

ΔW (ft) 

Depth, 

D (ft) 

Mean 

velocity, 

v 

(ft/sec) 

Area,        

ΔW*D 

(ft2) 

Discharge, 

ft3/sec  

A 0.0 4.8 0.4 0.0 0.0 0.0 0.0  

B 9.6 31.0 2.6 1.8 1.0 4.7 4.7  

C 62.0 65.7 5.5 2.2 1.3 12.2 15.9  

D 141.0 77.0 6.4 2.0 1.2 13.0 15.6  

E 216.0 76.0 6.3 2.1 1.2 13.4 16.0  

F 293.0 77.0 6.4 2.1 0.6 13.3 8.0  

G 370.0 64.0 5.3 1.9 0.4 9.9 4.0  

H 421.0 29.5 2.5 2.7 0.3 6.7 2.0  

I 429.0 4.0 0.3 0.0 0.0 0.0 0.0  

      Total Q: 66.20 ft3/sec 

Table 4.8d. 01/01/16 flow calculation for site  

Zone 

Distance 

across 

stream, 

(in)  

Width, 

ΔW (in) 

Width, 

ΔW (ft) 

Depth, 

D (ft) 

Mean 

velocity, 

v 

(ft/sec) 

Area,        

ΔW*D 

(in2) 

Discharge, 

inches3/sec  

A 0.0 
Blockage 

 

A' 30.0  

B 36.0 33.5 2.8 2.3 1.3 6.4 8.4  

C 97.0 69.0 5.8 2.3 2.0 13.4 26.8  

D 174.0 53.5 4.5 2.6 1.4 11.6 16.3  

D' 204.0 
Concrete footing 

 

E' 252.0  

E 273.0 39.0 3.3 2.5 1.8 8.2 14.7  

F 330.0 64.5 5.4 1.9 1.9 10.4 19.7  

G 402.0 50.5 4.2 1.8 1.4 7.7 10.8  

H 431.0 14.5 1.2 0.0 0.0 0.0 0.0  

   27.04   Total Q: 96.76 ft3/sec 

 

 

 

 

 

 

 

 

 

 

 

 



84 
 

April 1st, 2016 

Table 4.8e. 04/01/16 flow calculation for site  

Zone 

Distance 

across 

stream, 

ft 

Width, 

ft depth, ft 

Mean 

velocity, 

ft/sec Area, ft2 

Discharge, 

cfs  

0 0 2.5 0.000 0.000 0.000 0.000  

1 5 5 1.042 1.300 5.208 6.771  

2 10 5 1.000 1.000 5.000 5.000  

3 15 5 1.125 0.950 5.625 5.344  

4 20 5 1.083 1.000 5.417 5.417  

5 25 5 1.333 1.300 6.667 8.667  

6 30 3.5 1.417 1.000 4.958 4.958  

7 32 1 0.000 0.000 0.000 0.000  

            36.156 ft3/sec 

 

Table 4.8f. 04/01/16 flow calculation for site 2 

Zone 

Distance 

across 

stream, 

ft 

Width, 

ft depth, ft 

Mean 

velocity, 

ft/sec Area, ft2 

Discharge, 

cfs  

0 1 2 0.693 0.600 1.387 0.832  

1 5 3.5 2.683 0.550 9.392 5.165  

2 8 3.5 3.663 0.325 12.822 4.167  

3 12 3 2.123 0.200 6.370 1.274  

4 14 5 1.733 0.150 8.667 1.300  

5 22 4.5 0.693 1.300 3.120 4.056  

6 23 0.5 0.000 0.000 0.000 0.000  

            16.794 ft3/sec 

 

Table 4.8g. 04/01/16 flow calculation for site 3 

Zone 

Distance 

across 

stream, 

ft 

Width, 

ft depth, ft 

Mean 

velocity, 

ft/sec Area, ft2 

Discharge, 

cfs   

0 0.417 0.25 0.167 1.000 0.042 0.042   

1 0.917 0.54 0.167 2.000 0.090 0.181   

2 1.500 0.29 0.375 1.600 0.109 0.175   

            0.397 ft3/sec 
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April 11th 2016 

Table 4.8h. 04/11/16 flow calculation for site 4  

Location 

Width, 

ft ΔW, ft 

Velocity 

(V), ft/s 
depth to 

bottom, ft 

depth to 

water, ft 

water 

depth 

(D), ft  

Area,        

ΔW*D 

(ft2) 

Discharge, 

ft3/sec  

  0.0 0.5   Blockage     0.0 0.0  

0 1.0 1.5 0.4 10.0 6.7 3.3 5.0 2.0  

1 3.0 3.6 0.6 9.0 6.0 3.0 10.5 6.3  

2 8.1 5.8 0.7 9.3 6.0 3.3 19.0 13.3  

3 14.5 4.5 0.3 9.6 6.0 3.6 15.9 4.8  

  17.0     Concrete          

  21.0               

4 22.8 3.3 0.3 8.7 6.0 2.7 8.9 2.7  

5 27.5 5.4 0.6 8.9 5.5 3.4 18.5 11.1  

6 33.5 4.2 0.4 8.8 6.0 2.8 11.8 4.7  

7 35.9 1.2 0.0     0.0 0.0 0.0  

       Total Q: 44.90 ft3/sec 
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Appendix C. Laboratory Analysis  

 

 

 

  

 

 

Cl NA K Ca Al V 51 Cr-1 52 Mn 55 Fe-1 57 Co Ni Cu Zn As Cd Pb TSS pH DO Sulfate nitrate

ppm mg/l

Site1 F 10/23/15 76.80 36.76 5.39 11.94 10.10 0.46 0.25 0.49 57.15 0.11 3.59 1.49 0.74 0.78 0.03 0.03 1.50

F 11/3/15 91.39 45.79 5.72 14.57 28.17 1.51 0.97 3.87 72.54 0.65 6.05 7.39 3.85 1.59 0.47 0.35 26.41 2.44

F 12/3/15 86.98 40.73 3.57 11.43 108.80 1.44 0.29 3.61 149.56 0.11 4.25 2.32 2.42 1.40 0.02 0.23 0.71 6.94 28.81 4.43

W 1/11/16 52.32 26.38 2.48 4.95 235.22 1.57 0.21 54.55 168.77 0.16 2.16 6.03 5.20 0.88 n/d 0.30 2.37 13.83 2.74

W 2/24/16 81.72 42.66 2.81 10.56 105.32 0.71 0.23 24.55 71.93 0.17 2.32 1.79 3.86 0.66 0.02 0.19 0.51 6.69 10.27 16.41 0.79

W 3/7/16 75.00 44.46 3.61 10.21 97.96 1.35 0.21 10.27 66.69 0.12 4.03 3.50 4.26 1.06 0.02 0.09 13.40

S 4/1/16 72.11 37.77 2.70 8.11 111.95 0.84 0.23 0.95 112.55 0.10 3.25 2.65 3.02 0.98 0.02 0.09 6.58 10.15 10.40 3.37

S 4/20/16 74.80 41.06 2.78 11.99 92.51 1.17 0.25 10.98 111.30 0.16 4.43 2.67 23.98 1.21 0.03 0.12 9.27 6.20

average 76.39 39.45 3.63 10.47 98.75 1.13 0.33 13.66 101.31 0.20 3.76 3.48 5.92 1.07 0.09 0.18 1.20 6.74 10.21 16.93 3.07

min 52.32 26.38 2.48 4.95 10.10 0.46 0.21 0.49 57.15 0.10 2.16 1.49 0.74 0.66 0.02 0.03 0.51 6.58 10.15 9.27 0.79

max 91.39 45.79 5.72 14.57 235.22 1.57 0.97 54.55 168.77 0.65 6.05 7.39 23.98 1.59 0.47 0.35 2.37 6.94 10.27 28.81 6.20

Site2 F 10/23/16 103.96 46.05 5.92 9.07 5.17 0.57 0.16 91.06 233.92 0.15 5.31 3.43 1.39 1.81 0.02 0.05 6.95 6.31

F 11/3/16 79.90 42.32 5.97 8.19 8.13 1.80 1.11 29.16 120.61 1.19 5.63 8.22 3.15 2.35 0.94 0.75 1.40

F 12/3/16 128.88 67.76 4.99 9.39 10.81 1.98 0.08 26.24 139.30 0.06 2.98 4.40 1.15 1.64 0.01 0.11 2.07 6.86 9.14 2.84

W 1/9/16 127.53 66.42 3.76 8.73 47.98 1.44 0.14 51.94 221.37 n/d 3.24 11.34 1.84 1.38 n/d 0.02 11.98 1.59

W 1/11/16 113.65 58.56 3.42 8.77 58.24 1.48 0.04 93.32 294.31 0.06 3.18 9.07 4.05 1.32 n/d 0.05 1.76 15.64 1.90

W 2/24/16 94.62 49.40 2.92 8.87 61.79 0.41 0.14 56.80 115.79 0.17 2.34 2.21 3.04 0.92 0.01 0.10 0.24 6.41 9.79 13.33 1.93

W 3/5/16 91.80 51.03 3.23 8.19 45.40 1.02 0.15 22.29 117.39 0.11 3.46 3.42 2.76 1.34 0.01 0.09 11.68 1.40

W 3/7/16 97.12 54.72 3.49 8.26 44.11 1.29 0.14 28.00 138.92 0.12 3.60 3.66 2.60 1.41 0.01 0.08 12.17

W 3/8/16 212.01 127.00 5.01 16.11 20.28 2.01 0.12 149.15 199.36 0.47 7.37 12.84 8.59 2.47 0.03 0.10 12.54 2.50

4/1/16 102.57 57.66 3.40 8.91 49.58 0.90 2.52 19.69 223.96 0.16 5.14 5.40 73.88 1.31 0.02 0.10 6.69 9.55 7.31

4/20/16 118.70 64.33 3.69 12.03 41.90 1.24 0.14 61.54 196.16 0.17 4.47 3.83 19.59 1.71 0.01 0.12 11.10 3.83

average 115.52 62.30 4.16 9.68 35.76 1.29 0.43 57.20 181.92 0.27 4.25 6.16 11.10 1.60 0.12 0.14 1.35 6.65 9.67 11.18 2.63

min 79.90 42.32 2.92 8.19 5.17 0.41 0.04 19.69 115.79 0.06 2.34 2.21 1.15 0.92 0.01 0.02 0.24 6.41 9.55 6.95 1.40

max 212.01 127.00 5.97 16.11 61.79 2.01 2.52 149.15 294.31 1.19 7.37 12.84 73.88 2.47 0.94 0.75 2.07 6.86 9.79 15.64 6.31

Site3 F 10/23/16 422.00 251.64 9.36 27.97 7.95 1.54 0.36 524.83 277.29 0.86 13.48 15.68 60.83 3.71 0.23 0.15 19.23 4.32

F 11/3/16 259.90 144.78 7.91 18.91 13.83 1.65 0.25 403.63 397.12 0.97 10.44 21.56 10.09 3.19 0.04 0.13 20.34 1.46

F 12/3/16 190.70 89.40 5.05 12.79 22.16 2.65 0.18 110.66 216.75 0.34 4.69 4.53 9.21 2.18 0.11 0.19 1.68 6.67 18.09 2.62

W 1/8/16 254.14 136.48 5.19 17.77 25.16 1.69 n/d 219.80 256.51 0.59 6.11 7.57 8.80 2.18 n/d 0.10 4.26

W 1/11/16 120.02 63.06 3.20 7.26 80.16 1.67 0.15 147.34 274.08 0.46 3.30 11.29 9.75 1.34 n/d 0.35 6.60 13.12 3.07

W 2/24/16 259.80 151.77 3.61 13.36 39.10 0.64 0.18 107.64 117.91 0.44 4.19 5.43 10.12 1.57 0.07 0.14 2.76 6.51 9.75 16.53 1.85

W 3/5/16 174.07 104.38 4.26 13.02 27.30 1.63 0.13 80.65 128.94 0.33 5.95 7.10 5.86 1.96 0.03 0.10 14.62 2.85

W 3/7/16 250.65 146.26 6.07 18.80 26.00 1.95 0.13 103.01 147.15 0.40 6.57 7.90 6.17 2.15 0.03 0.09 23.31

S 4/1/16 218.66 123.46 4.93 16.37 21.07 1.16 0.13 109.22 275.11 0.35 5.52 16.47 4.77 2.06 0.02 0.14 6.53 7.99 12.36

S 4/20/16 208.90 116.09 4.57 20.02 23.28 2.07 0.14 153.18 277.86 0.52 7.61 8.23 20.51 2.47 0.02 0.14 11.30 4.11

duplicate 3aS 4/20/16 206.11 111.22 4.31 18.20 22.15 2.39 0.15 154.49 279.48 0.53 8.02 9.82 21.13 2.66 0.03 0.13 15.16 4.00

average 233.18 130.78 5.31 16.77 28.01 1.73 0.18 192.22 240.74 0.53 6.90 10.51 15.20 2.32 0.06 0.15 3.68 6.57 8.87 16.40 3.17

min 120.02 63.06 3.20 7.26 7.95 0.64 0.13 80.65 117.91 0.33 3.30 4.53 4.77 1.34 0.02 0.09 1.68 6.51 7.99 11.30 1.46

max 422.00 251.64 9.36 27.97 80.16 2.65 0.36 524.83 397.12 0.97 13.48 21.56 60.83 3.71 0.23 0.35 6.60 6.67 9.75 23.31 4.32

Site4 F 10/23/16 417.84 229.12 9.31 30.86 1.07 2.81 0.16 27.78 17.38 0.33 27.65 39.05 9.34 5.67 0.05 0.04 17.81 3.82

F 11/3/16 257.16 145.72 8.26 4.52 9.33 1.58 0.20 262.91 466.81 0.51 10.34 26.75 10.44 3.04 0.02 0.70 16.66 1.35

F 12/3/16 184.08 104.39 5.17 13.67 16.94 2.90 0.23 150.41 321.20 0.32 5.01 7.10 9.29 2.41 0.02 0.29 2.78 6.60 14.33 2.26

W 1/8/16 279.50 151.36 5.73 17.83 13.84 2.22 n/d 287.01 424.24 0.65 6.71 15.88 8.82 2.45 n/d 0.10 2.47

W 1/11/16 138.38 73.31 3.27 7.52 59.89 1.83 0.09 183.36 303.95 0.50 3.45 12.56 7.93 1.49 n/d 0.29 8.28 11.20 2.46

W 2/24/16 278.47 161.58 3.92 15.26 32.78 0.78 0.17 170.40 128.37 0.59 4.75 6.14 11.25 1.84 0.05 0.20 2.90 6.60 9.93 15.42 1.40

W 3/5/16 201.30 119.18 5.00 14.48 25.57 1.84 0.13 123.81 185.62 0.42 6.65 10.28 7.17 2.25 0.03 0.11 14.11 2.59

W 3/7/16 205.82 123.98 4.76 15.95 22.45 2.08 0.12 151.67 232.81 0.56 7.12 11.51 7.23 2.47 0.02 0.11 15.76

W 3/16/16 112.44 4.48 13.26 39.03 1.86 0.24 60.50 256.86 0.27 6.31 11.67 9.32 2.25 0.03 0.16

S 3/20/16 203.17 101.70 3.80 11.74 33.50 1.60 0.19 178.50 462.80 0.60 7.78 26.90 10.30 2.70 0.04 0.16 13.77 1.83

S 3/22/16 182.76 9.21 16.06 31.40 2.10 0.20 200.30 435.60 0.65 7.70 35.30 10.50 3.20 0.04 0.16

S 4/1/16 260.67 147.84 5.78 19.88 26.47 1.21 0.15 77.19 199.27 0.27 5.12 16.42 4.72 1.83 0.02 0.15 6.56 7.94 16.79

S 4/11/16 200.09 164.83 5.63 21.96 34.05 2.63 0.19 90.33 271.29 0.30 7.25 13.41 24.81 2.69 0.02 0.15

S 4/17/16 13.72 2.69 0.15 15.21 205.60 0.11 8.23 13.12 25.28 3.05 0.07 0.11

S 4/20/16 323.80 183.08 6.55 28.20 16.54 2.75 0.15 191.37 411.23 0.55 8.45 14.28 18.53 3.15 0.03 0.20 19.73 5.11

average 245.86 142.95 5.78 16.51 25.10 2.06 0.17 144.72 288.20 0.44 8.17 17.36 11.66 2.70 0.03 0.20 4.65 6.59 8.94 15.56 2.59

min 138.38 73.31 3.27 4.52 1.07 0.78 0.09 15.21 17.38 0.11 3.45 6.14 4.72 1.49 0.02 0.04 2.78 6.56 7.94 11.20 1.35

max 417.84 229.12 9.31 30.86 59.89 2.90 0.24 287.01 466.81 0.65 27.65 39.05 25.28 5.67 0.07 0.70 8.28 6.60 9.93 19.73 5.11

`

average 167.74 93.87 4.72 13.36 46.91 1.55 0.28 101.95 203.04 0.36 5.77 9.38 10.97 1.92 0.08 0.17 2.72 6.64 9.42 15.02 2.86

min 52.32 26.38 2.48 4.52 1.07 0.41 0.04 0.49 17.38 0.06 2.16 1.49 0.74 0.66 0.01 0.02 0.24 6.41 7.94 6.95 0.79

max 422.00 251.64 9.36 30.86 235.22 2.90 2.52 524.83 466.81 1.19 27.65 39.05 73.88 5.67 0.94 0.75 8.28 6.94 10.27 28.81 6.31

Date
ppm ppb mg'l
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Appendix D. Pollutant loads calculations  

  

mean 

conc. 

d, 

cft/sec f 

L, 

gram/day 

  site 1 

Cl 76.4 0.7 244.68 13083.6 

Na 39.4 0.7 244.68 6756.6 

K 3.6 0.7 244.68 622.2 

V 1.1 0.7 244.68 0.2 

Ni 3.8 0.7 244.68 0.6 

As 1.1 0.7 244.68 0.2 

 

  

mean 

conc. 

d, 

cft/sec f L, gram/day 

  site 2 

Cl 115.5 17.7 244.68 500299.7 

Na 62.3 17.7 244.68 269790.6 

K 4.2 17.7 244.68 18030.1 

V 1.3 17.7 244.68 5.6 

Ni 4.2 17.7 244.68 18.4 

As 1.6 17.7 244.68 7.0 

 

  

mean 

conc. 

d, 

cft/sec f L, gram/day 

  site 3 

Cl 233.2 27.80 244.68 1586095.4 

Na 130.8 27.80 244.68 889546.4 

K 5.3 27.80 244.68 36143.3 

V 1.7 27.80 244.68 11.8 

Ni 6.9 27.80 244.68 46.9 

As 2.3 27.80 244.68 15.8 

 

  mean conc. 

d, 

cft/sec f L, gram/day 

  Site 4b 

Cl 245.9 49.50 244.68 2977729.3 

Na 142.9 49.50 244.68 1731346.2 

K 5.8 49.50 244.68 69959.5 

V 2.1 49.50 244.68 24.9 

Ni 8.2 49.50 244.68 98.9 

As 2.7 49.50 244.68 32.7 
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