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Abstract

In domains such as Materials Science experimental results are often plotted

as two-dimensional graphs of a dependent versus an independent variable

to aid visual analysis. Performing laboratory experiments with specified

input conditions and plotting such graphs consumes significant time and

resources motivating the need for computational estimation. The goals are

to estimate the graph obtained in an experiment given its input conditions,

and to estimate the conditions needed to obtain a desired graph. State-of-

the-art estimation approaches are not found suitable for targeted applica-

tions.

In this dissertation, an estimation approach called AutoDomainMine

is proposed. In AutoDomainMine, graphs from existing experiments are

clustered and decision tree classification is used to learn the conditions

characterizing these clusters in order to build a representative pair of input

conditions and graph per cluster. This forms knowledge discovered from

existing experiments. Given the conditions of a new experiment, the rele-

vant decision tree path is traced to estimate its cluster. The representative

graph of that cluster is the estimated graph. Alternatively, given a desired
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graph, the closest matching representative graph is found. The conditions

of the corresponding representative pair are the estimated conditions.

One sub-problem of this dissertation is preserving semantics of graphs

during clustering. This is addressed through our proposed technique, Learn-

Met, for learning domain-specific distance metrics for graphs by iteratively

comparing actual and predicted clusters over a training set using a guessed

initial metric in any fixed clustering algorithm and refining it until error

between actual and predicted clusters is minimal or below a given thresh-

old. Another sub-problem is capturing the relevant details of each cluster

through its representative yet conveying concise information. This is ad-

dressed by our proposed methodology, DesRept, for designing semantics-

preserving cluster representatives by capturing various levels of detail in

the cluster taking into account ease of interpretation and information loss

based on the interests of targeted users.

The tool developed using AutoDomainMine is rigorously evaluated

with real data in the Heat Treating domain that motivated this disserta-

tion. Formal user surveys comparing the estimation with the laboratory

experiments indicate that AutoDomainMine provides satisfactory estima-

tion.
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Chapter 1

Introduction

1.1 Motivation

In scientific domains such as Materials Science and Mechanical Engineer-

ing experiments are performed in the laboratory with specified input con-

ditions and the results are often plotted as graphs. The term graph in this

dissertation refers to a two-dimensional plot of a dependent versus an in-

dependent variable depicting the behavior of process parameters. These

graphs serve as good visual tools for analysis and comparison of the corre-

sponding processes. Performing a real laboratory experiment and plotting

these graphs consumes significant time and resources, motivating the need

for computational estimation.

We explain this with an example in the domain of Heat Treating of Ma-

terials [M95] that motivated this dissertation. Heat treating is a field in

Materials Science that involves the controlled heating and rapid cooling of

a material in a liquid or gas medium to achieve desired mechanical and
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thermal properties [M95]. Figure 1.1 shows an example of the input condi-

tions and graph in a laboratory experiment in quenching, namely, the rapid

cooling step in heat treatment.

Figure 1.1: Experimental Input Conditions and Graph

The input conditions shown in this experiment such the Quenchant

Name (cooling medium) and Part Material are the details of the experi-

mental setup used in quenching. The result of the experiment is plotted as

a graph called a heat transfer coefficient curve. This depicts the heat trans-

fer coefficient hc versus temperature T . The heat transfer coefficient, a pa-

rameter measured in Watt/meter2Kelvin, characterizes the experiment by

representing how the material reacts to rapid cooling. Materials scientists

are interested in analyzing this graph to assist decision-making about cor-

responding processes. For instance, for the material ST4140, a kind of steel,

heat transfer coefficient curves with steep slopes imply fast heat extraction

capacity. The corresponding input conditions could be used to treat this

steel in an industrial application that requires such a capacity. However,

performing such an experiment in the laboratory takes approximately 5

hours and the involved resources require a capital investment of thousands

of dollars and recurring costs worth hundreds of dollars.

It is thus desirable to computationally estimate the resulting graph given

the input conditions. Conversely, given the graph desired as a result, it
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is also useful to estimate the experimental input conditions that would

achieve it. This inspires the development of a technique that performs such

an estimation.

1.2 Dissertation Problem: Computational Estimation

The estimation problem we address in this dissertation is explained as fol-

lows.

Goals:

• Given the input conditions of an experiment, estimate the resulting

graph.

• Given the desired graph in an experiment, estimate input conditions

that would obtain it.

These goals are illustrated in Figure 1.2.

Figure 1.2: Goals of Estimation Technique
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The estimation is to be performed under the assumption that the input

conditions and graphs of performed experiments in the domain are stored

in a database.

Desired Properties of Estimation Technique:

1). Domain expert intervention should not be required each time estima-

tion is performed.

2). The estimation should be such that it is effective for targeted applica-

tions in the domain. Thus it should accurately resemble the real do-

main experiment. Moreover, it should convey as much information

to the users as would be conveyed by a real experiment. This effec-

tiveness is to be judged by the users on comparison with laboratory

experiments not used for training the technique.

3). The time required for each estimation should be distinctly less than

the time required to perform a laboratory experiment in the domain.

With reference to property 3, it is to be noted that computational simu-

lations [LVKR02] of experiments that require as much time as the real lab-

oratory experiment. Nevertheless these simulations are considered useful

since they save the cost of resources. The aim of this dissertation however

is to save time as well as resources.
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1.3 State-of-the-art in Estimation

1.3.1 Similarity Search

Naive Similarity Search

A naive approach to estimation is a similarity search over existing data

[HK01]. When the user supplies input conditions of an experiment, these

are compared with the conditions stored in the database. The closest match

is selected in terms of the number of matching conditions. The correspond-

ing graph is output as the estimated result. However the non-matching

condition(s) could be significant in the given domain. For example, in Heat

Treating, the user-submitted experimental conditions may match many con-

ditions except the cooling medium used in the experiment and the material

being cooled. Since these two factors are significant as evident from basic

domain knowledge [TBC93], the resulting estimation would likely be in-

correct.

Weighted Similarity Search

A somewhat more sophisticated approach is performing a weighted search

[WF00]. Here the search is guided by the knowledge of the domain to some

extent. The relative importance of the search criteria, in our context, exper-

imental input conditions, is coded as weights. The closest match is deter-

mined using a weighted sum of the conditions. However, these weights are

not precisely known, with respect to their impact on the resulting graph or

even otherwise. For example, in Heat Treating, in some cases the agitation
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level in the experiment may be more crucial than the oxide layer on the sur-

face of the part. In some cases, it may be less crucial. This may depend on

factors such as the actual value of the conditions, e.g., high agitation may

be more significant than a thin oxide layer, while low agitation may be less

significant than a thick oxide layer [BC89]. Thus, there is a need to learn,

i.e., to discover knowledge in some manner, for example from the results

of experiments.

1.3.2 Case-Based Reasoning

Case-based reasoning (CBR) is an approach that utilizes the specific knowl-

edge of previously experienced problem situations, i.e., cases in order to

solve new problems [K93]. A case base is a collection of previously ex-

perienced cases. Memories and experiences are not directly mapped to

rules, but can be construed as a library of past cases in a given domain

[L96]. These existing cases serve as the basis for making future decisions

on similar cases using different types of case-based reasoning approaches

as described below [AP03].

Exemplar Reasoning

This is a simple reasoning approach that involves reasoning by example,

namely, using the most similar past case as a solution to the new case

[AP03, SM81]. In other words, this involves finding an existing case from a

case base to match a new user-submitted case and using the concepts in the

existing case to provide a solution to the new case [AP03]. In the context of
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our problem this would involve comparing the given input conditions with

those of existing experiments, finding the closest match and reasoning that

the graph of the closest matching experiment is the estimated result. How-

ever, this would face the same problem as in naive similarity searching,

namely, the non-matching condition(s) could be significant with respect to

the domain.

Instance-Based Reasoning

This approach involves the use of the general knowledge of the domain.

This knowledge is stored in the form of instances which can be stored as

feature vectors [AP03, M97]. This knowledge is used in addition to exist-

ing cases in making decisions about new cases. In our context, using this

approach would involve storing the relative importance of the input con-

ditions as feature vectors. In retrieving the closest matching case, this rel-

ative importance would be taken into account. However, this would face

the problem described in weighted similarity searching, i.e., this relative

importance is not known apriori. In this dissertation, one of the issues we

address is learning this relative importance.

Case-Based Reasoning with Adaptation

A third and very commonly used approach is the regular Case-based rea-

soning (CBR) that usually follows the R4 cycle [K93, AP03]. This involves

”R”etrieving an existing case from the case base to match a new case, ”R”e-

using the solution for the new case, ”R”evising the retrieved case to suit the
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new case referred to as Adaptation, and ”R”etaining the modified case to

the case-base for further use [K93, AP03]. In adaptation, one manipulates

a solution that is not quite right to make it better fit the problem descrip-

tion [K93]. Adaptation may be as simple as substituting one component of

a solution for another or as complex as modifying the overall structure of

a solution [K93, AV01]. In the literature, adaptation is done using various

approaches as discussed below.

Adaptation using Domain-specific Rules. Rule-based approaches are very

commonly used for case adaptation. In some systems, the rules may be

available apriori from the fundamental knowledge of the domain. This

occurs commonly in medical and legal CBR systems, which follow a typ-

ical reasoning method employed by the human experts in those domains

[K93, PK97]. For example, a doctor may recall that some patient in the

past with a certain set of symptoms pertaining to paternal history was di-

agnosed as diabetic. A new patient may have a similar set of symptoms,

the only difference being that these pertain to maternal history. The doctor

may then use the fundamental knowledge of the domain to realize that dia-

betic history is less significant if inherited from the maternal side. Hence in

the case of the new patient, there is a relatively less chance of diabetes oc-

curring. A medical CBR system can automate this reasoning for adaptation

by coding the fundamental domain knowledge in the form of rules.

Adaptation using Cases. In addition to having a regular case base, some

systems such as in [LKW95] build a library of adaptation cases. The adapted
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case along with the procedure for adaptation is stored in a library of adap-

tation cases for future use. Thus, when a new case is encountered, the case

base is first searched to find the closest matching case. Then the library of

adaptation cases is searched to adapt this closest matching retrieved case to

the new case. If no adaptation case is found, then adaptation is done from

scratch and the corresponding adaptation case is appended to the library.

Thus the adaptation is done in an automated manner by using adaptation

cases.

Adaptation using Manual Intervention. In some types of CBR systems

such as in [DWD97], the system can play an advisory role as opposed to a

problem solving role. In such systems, the goal is to guide the user in solv-

ing a problem, as opposed to conventional CBR systems, where the goal

is to provide an outcome as a suggested solution to the problem. Since an

advisory CBR system is only guiding the user, it retrieves an existing case

from the case base as an advice, and the user manually adapts this case

to solve the given problem. Such systems are not targeted towards naive

users. Rather they aim to assist domain experts in providing solutions to

problems by retrieving a similar case from the past, thus simulating the role

of the memory of the experts in recalling past experience. Since manual in-

tervention is required for adaptation, this approach relies on the knowledge

of the domain experts.

Possible application of CBR with Adaptation in this Dissertation. If

CBR is to be used as an estimation technique in this dissertation, we first
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need to define the concept of a case in the given context. Consider a case to

be a combination of input conditions and the resulting graph in an experi-

ment.

We first consider rule-based adaptation. If the retrieved case and new

case differ by some input condition(s), then domain-specific rules may be

applied to compensate for the difference. For example, suppose that in the

retrieved case all conditions match except Agitation. Now, from the do-

main knowledge, we have the rule High Agitation => Fast Cooling. An-

other rule is Fast Cooling => High Heat Transfer Coefficient. Applying

these two rules the system can estimate that the heat transfer coefficients in

the new case would be relatively higher than in the retrieved case. How-

ever, this is a subjective notion and likely it cannot be enhanced to plot a

new graph. It is not known precisely to what extent they would be higher

since heat transfer coefficients are a combination of several factors such as

part density, quenchant viscosity and so forth. The extent to which agita-

tion impacts the cooling rate differs for different experiments. Note that

in the literature on adaptation in CBR, the rule-based adaptation has been

used where the case solution is textual, categorical and so forth. To the

best of our knowledge, it has not been used for case solutions that involve

graphs and pictures.

Consider the approach of using adaptation cases. For example, if a re-

trieved case is such that it matches the new case, in terms of everything

except agitation, then the case base can be searched again to find another

case that matches agitation. However this second retrieved case may not

match some other parameter such as quenchant temperature. In such a sit-
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uation, the average of the two graphs corresponding to the two retrieved

cases can be suggested as the estimated graph in the new case. However,

constructing such an average depends on the relative importance of the in-

put conditions and also the significant aspects of the graphs. Thus it has

to be a weighted average, and these weights are not known apriori. More-

over, irrespective of the method used to build a library of adaptation cases,

this approach involves significant computation for each new case to be es-

timated. This may not be efficient.

We may instead consider the advisory role of CBR systems and only

output the closest matching retrieved case, leaving the user to do the adap-

tation. However, this would mean that the system only targets domain

experts, not general users. Moreover, the domain experts themselves may

not always be able to adapt the solution manually. For example, using the

same example above, where only the agitation of the retrieved case and the

new case differ, the domain expert will at the most be able to infer that the

heat transfer coefficients on the whole should be higher. Plotting the actual

curve however would require performing the real experiment.

1.3.3 Mathematical Modeling

Mathematical modeling is the process of deriving relationships between

various parameters of interest using numerical equations [PG60, S60]. It

can be used in science and engineering domains to perform estimation of

some parameters given others. This requires precise representation of the

graphs in terms of numerical equations. However, existing models may

not be sufficient under certain conditions. This is explained with reference
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to modeling in the Heat Treating domain.

Modeling in Heat Treating

In Heat Treating, there are analytical expressions that describe the temper-

ature during heating or cooling as a function of time and position within a

material. The most difficult variable in such unsteady-state situations is the

heat transfer coefficient hc governing energy transport between the surface

of the material and the surroundings [PG60]. As we have stated earlier, the

parameter hc measures the heat extraction capacity of a quenching or rapid

cooling process as determined by the characteristics of the part material,

the type of cooling medium used and the quenching conditions.

Stolz et. al. [S60] developed a numerical technique for obtaining heat

transfer coefficients during quenching from measurements of interior tem-

peratures of a solid sphere. Using this method heat transfer coefficients for

quenching oils were evaluated as a function of the surface temperature of

the solid. Despite the importance of quenching operations in the heat treat-

ment of alloys, the quantitative aspects of quenching heat transfer, strongly

linked to boiling heat transfer could not be accurately estimated. Although

boiling is a familiar phenomenon, from the energy transport point of view it

is a complicated process [PG60]. There are several variables involved. Heat

transfer coefficients depend on various aspects such as density, specific

heat, part temperature, quenchant temperature and cooling rate [MMS02].

Cooling rate itself depends on other factors such as quenchant viscosity, ag-

itation and part surface. Since there are many variables involved, and each

one in turn may depend on some others, it is difficult to use these models
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to estimate heat transfer coefficients as a function of temperature, i.e., to

predict a heat transfer coefficient curve.

In general, correlations of hc values applicable to quenching operations

have not been satisfactorily obtained due to the complexity of convection

systems [PG60]. It is indicated by domain experts that this modeling does

not work for multiphase heat transfer with nucleate boiling. Hence this

not useful to estimate the required graph, especially in liquid quenching

[M95]. Thus we propose heuristic methods to solve the given estimation

problem.

1.4 Proposed Estimation Approach: AutoDomainMine

1.4.1 What is AutoDomainMine

In the dissertation have proposed a computational estimation approach

called AutoDomainMine which works as follows: the two data mining

techniques of clustering and classification are integrated into a learning

strategy to discover knowledge from existing experiments. The graphs

obtained from existing experiments are first clustered using any suitable

clustering algorithm [M67]. Decision tree classification [Q86] is then used

to learn the clustering criteria (input conditions characterizing each clus-

ter) in order to build a representative pair of input conditions and graph

per cluster. These representatives along with the clustering criteria learned

through decision trees form the domain knowledge discovered from ex-

isting experiments. The discovered knowledge is used for estimation as

follows.
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Given a new set of input conditions, the relevant decision tree path is

traced to estimate the cluster of the experiment. The representative graph

of that cluster is estimated as the resulting graph of the new experiment.

Given a desired graph, the closest matching representative graph is found.

The corresponding representative conditions are estimated as the input

conditions to achieve the desired graph.

An interesting issue in AutoDomainMine involves clustering graphs

that are curves since clustering algorithms were originally developed for

points. Since a curve is typically composed of thousands of points, a related

issue here is dimensionality reduction. Another issue deals conveying an

estimate based on approximate match of the decision tree if an exact match

is not found. These issues are discussed in Chapter 3.

Besides these, two major challenges forming dissertation sub-problems

are as follows:

• Incorporating domain knowledge in clustering through a suitable no-

tion of distance.

• Preserving the semantics of the cluster in building representatives.

These sub-problems are addressed through our proposed techniques

LearnMet and DesRept respectively. They are discussed briefly here and

elaborated in Chapters 4 and 5 respectively.
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1.4.2 Learning Domain-Specific Notion of Distance with Learn-

Met

In AutoDomainMine, clustering is performed based on the graphs result-

ing from experiments. An important aspect is thus the notion of similarity

in clustering these graphs. Several distance measures have been developed

in the literature. However, in our targeted domains, it is not known apriori

which particular distance measure works best for clustering, preserving

domain semantics. Worst yet, no single metric is considered sufficient to

represent various features on the graphs such as the absolute position of

points, statistical observations and critical phenomena represented by cer-

tain regions. State-of-the-art learning techniques [M97, HK01] are either

found inapplicable or not accurate enough in this context. This inspires the

development of a technique to learn domain-specific distance metrics for

the graphs.

This is addressed through our proposed technique LearnMet [VRRMS0805,

VRRMS06]. The input to LearnMet is a training set of actual clusters of

graphical plots in the domain. These clusters are provided by experts.

LearnMet iteratively compares these actual clusters with those predicted by

an arbitrary but fixed clustering algorithm. In the first iteration a guessed

distance metric (consisting of a combination of individual metrics repre-

senting features on graphs) is used for clustering. This metric is then re-

fined using the error between the predicted and actual clusters until the

error is minimal or below a given threshold. The metric corresponding to

the lowest error is output as the learned metric.
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Challenges in LearnMet involve intelligently guessing the initial met-

ric, defining the notion of error, developing weight adjustment heuristics,

developing additional heuristics for selecting suitable data in each itera-

tion (epoch) to increase efficiency of learning as well as the accuracy of the

learned metrics and learning metrics that are simple while yet capturing

domain knowledge. These challenges are discussed in detail in Chapter 4.

1.4.3 Designing Semantics-Preserving Representatives with DesRept

In AutoDomainMine the clustering criteria are learned by classification in

order to semantics-preserving cluster representatives. An arbitrary graph

selected as a representative does not always convey all the relevant phys-

ical features of the individual plots in the cluster. Similarly any arbitrary

set of input conditions selected as a cluster representative may not have

certain input condition(s) considered crucial as per the domain. Thus it is

important to embody domain knowledge in building the representatives in

order to convey more appropriate information to the user.

In this dissertation a methodology called DesRept has been proposed

[VRRBMS0606, VRRBMS1106] to design a representative pair of input con-

ditions and graph per cluster incorporating domain knowledge. In DesRept,

two design methods, guided selection and construction, are used to build

candidate representatives of conditions / graphs capturing different levels

of detail in the cluster. Candidates are compared using an encoding pro-

posed in this dissertation analogous to the Minimum Description Length

principle [R87]. The criteria in this encoding are ease of interpretation of

the representative and information loss due to. Both these criteria take into
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account the interests of various users. Using this encoding, candidate rep-

resentatives are compared with each other. The winning candidate, that

with the lowest encoding, is output as the designed representative.

Challenges in DesRept involve outlining design strategies for building

the candidate representatives, defining a notion of distance to compare the

candidates and proposing a suitable encoding based on the given criteria.

These are elaborated in Chapter 5.

1.5 System Development and Evaluation

A software tool for computational estimation based on the AutoDomain-

Mine approach has been developed using real data from the Heat Treating

domain that motivated this dissertation. The tool is developed in Java,

using MySQL for the database and Javascript for the web interface. This

is evaluated using data from laboratory experiments in Heat Treating not

used for training. The tool is a trademark of the Center for Heat Treating

Excellence (CHTE) that supported this research. The development of the

tool and its evaluation involve three different stages as described below.

1.5.1 Stage 1: AutoDomainMine Pilot Approach

This includes the learning strategy of integrating clustering and classifi-

cation. However, it does not include LearnMet and DesRept. This has

been developed in order to evaluation is to assess the working of the basic

learning strategy. This pilot tool also serves as a criteria for comparison

with later versions of the tool. This has been evaluated with domain ex-
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pert interviews. Data from laboratory experiments not used for training

the technique is used for testing. Experts run tests comparing the estima-

tion of AutoDomainMine with the laboratory experiment. If the estima-

tion matches the real data then it is considered to be accurate. Accuracy

is reported as the percentage of accurate estimations over all the tests con-

ducted. Some evaluation in this stage is also automated using domain-

specific thresholds for comparison between the real and the estimated out-

put. Details of evaluation at this stage appear in Chapter 3. It is observed

that the estimation accuracy in this stage is approximately 75%. This is

found higher than the accuracy using similarity search which is approx-

imately 65%. It also works better than existing mathematical models as

confirmed by experts. However, they indicate that there is scope for fur-

ther enhancement in AutoDomainMine.

1.5.2 Stage 2: Intermediate Stage of AutoDomainMine with Learn-

Met

The second stage of the tool includes LearnMet for learning domain-specific

distance metrics to cluster graphs. LearnMet has been evaluated with the

help of domain expert interviews. Experts provide actual clusters over test

sets of graphs distinct from the training set. The distance metrics learned

from LearnMet are used to obtain predicted clusters over the test set. These

are compared with actual clusters over the test set. The extent to which the

predicted and actual clusters match is reported as the clustering accuracy.

The details of computing this accuracy are elaborated in Chapter 4. In addi-
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tion, LearnMet has also been evaluated by integrating it with AutoDomain-

Mine. The most accurate metric learned from LearnMet is used in the

clustering step of AutoDomainMine. The rest of the AutoDomainMine

strategy stays the same. Evaluation is then conducted similar to the ba-

sic AutoDomainMine approach. The results of the evaluation indicate that

estimation accuracy in this stage goes up to approximately 87%.

1.5.3 Stage 3: Complete System of AutoDomainMine with DesRept

The third and final stage of the tool includes the DesRept methodology that

designs semantics-preserving cluster representatives. DesRept has been

evaluated using the proposed Mininum Description Length based encod-

ing with domain experts giving inputs reflecting the user interests in var-

ious applications. Different data sets over the real experimental data are

used for evaluation. The winning candidate representatives for each data

set are determined with respect to the targeted applications. Details of this

evaluation are presented in Chapter 5. In addition formal user surveys

have been conducted at this stage since it is the complete system. The rep-

resentatives designed by DesRept are used for estimation in this stage. The

estimated output displayed to the users thus involves designed represen-

tatives. Users execute tests comparing the estimation with laboratory ex-

periments in a distinct test set. For each test, they convey their feedback in

terms of whether the estimation matches the real experiment, i.e., whether

the estimation is accurate and if so, which designed representative that best

meets their needs. It is found from the surveys that different candidate

representatives win in different applications. The estimation accuracy of
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AutoDomainMine increases to approximately 93%. This is as per the sat-

isfaction of the targeted users. Details of the user surveys are presented in

Chapter 6.

1.6 Dissertation Contributions

This dissertation makes the following contributions. We list each of them

along with their significant tasks.

• AutoDomainMine pilot approach

– Integrating clustering and classification as a learning strategy to

discover knowledge for estimation

– Adapting clustering algorithms to graphs that are curves

– Finding a suitable method for approximate match in decision

tree classification

• LearnMet technique for distance metric learning

– Intelligently guessing an initial metric

– Defining a notion of error

– Developing weight adjustment heuristics

– Developing additional heuristics to increase efficiency and accu-

racy

– Learning simple metrics that capture domain knowledge

• DesRept methodology for designing cluster representatives
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– Defining a notion of distance for the input conditions

– Developing suitable strategies for design of candidate represen-

tatives

– Proposing a suitable encoding to compare the candidates to se-

lect winners in targeted applications

• Development of a computational estimation system, a trademarked

tool in Heat Treating

– Implementing a software tool based on AutoDomainMine using

real data in Heat Treating

– Conducting domain expert interviews to evaluate various stages

of system development

– Evaluating the complete AutoDomainMine system with formal

user surveys in the context of targeted applications

1.7 Outline of Dissertation

The rest of this dissertation is organized as follows. Chapter 2 gives an

overview of the Heat Treating domain since we will use examples from

this domain to explain the concepts in this dissertation. Chapter 3 explains

the basic AutoDomainMine approach of integrating clustering and classifi-

cation. This forms Stage 1 of AutoDomainMine. Chapter 4 gives the details

of the LearnMet technique for distance metric learning. This refers to Stage

2 of AutoDomainMine. Chapter 5 elaborates on the DesRept methodology
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for designing cluster representatives. This corresponds to the 3rd and fi-

nal stage of AutoDomainMine. System implementation, related work and

evaluation of AutoDomainMine at each of its three stages is included in

the respective chapters. In addition, a complete system evaluation based

on user surveys is presented in Chapter 6. Chapter 7 states the conclusions,

including dissertation summary with contributions, and future work.
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Chapter 2

Overview of the Heat Treating

Domain

2.1 General Background

2.1.1 Materials Science

Materials Science is a field that involves the study of materials such as

metals, ceramics, polymers, semiconductors and combinations of materials

that are called composites. More specifically, it is the study of the structure

and properties of any material. It also encompasses the use of the knowl-

edge of these properties to create new types of materials and to tailor the

properties of a material for specific uses [C97].

In recent years, there has been considerable interest in the field of Com-

putational Materials Science [HLHM00, LVKR02, PJFC99]. This involves

the use of computational techniques to represent the behavior of physi-
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cal phenomena [HALLN00]. It includes building mathematical models

[PN96] and running simulations of laboratory experiments [FFC00, KR03].

This is helps gain a better understanding of the process parameters. Our

research on Data Mining in Materials Science involves building heuristic

models and falls under the realm of Computational Materials Science.

2.1.2 Heat Treating of Materials

The domain of focus in this dissertation is the Heat Treating of Materials

[M95]. Heat Treating deals with operations involving controlled heating

and cooling of a material in the solid state to obtain specific properties

[M95]. Quenching is the process of rapid cooling of a material in a liquid

and/or gas medium in order to achieve desired mechanical and thermal

properties. It forms an important step of the Heat Treating operations in

the hardening process [TBC93, BC89]. The setup used for quenching at the

Center for Heat Treating Excellence (CHTE) at WPI is shown in Figure 2.1

[MCMMS02]. This is a typical CHTE Quench Probe System.

The CHTE Quench Probe System consists of a notebook-PC-based data

acquisition system, pneumatic cylinder with air valve, a small box fur-

nace, a 1 liter beaker for the quenchant (cooling medium) and a K-type

thermocouple-connecting rod-coupling interchangeable probe tip assem-

bly The pneumatic cylinder rod moves the probe down into the quench

tank from the box furnace. The pneumatic cylinder is connected to the

pneumatic valve by 2 tubes [MCMMS02].

Time-temperature data from the thermocouple placed at the center of

the probe is acquired using the LabView Data Acquisition Software on a
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Figure 2.1: CHTE Quenching Setup
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notebook computer running Windows 98. The thermocouple is connected

to a connector box which is connected to the computer via the PCMCIA

DAQCard and a cable. The data analysis and graphing is done using Mi-

crosoft Excel and SIGMAPLOT graphing software. The DAQCard is capa-

ble of sampling at the rate of 20 kilo samples per second (20 KS/sec) on a

single channel with 16 bit resolution [MCMMS02].

Terminology

The material being quenched is referred to in the literature [TBC93] as the

part. The part is made of a certain alloy. This has characteristics such as

alloy composition and properties based on the microstructure of the alloy,

for example the uniformity of the grains. These are identified by the name

of the Part Material such ST4140 and SS304. In addition the part has prop-

erties such as Oxide Layer, namely the presence and thickness of oxidation

on its surface. A sample of the part called the probe is used for quenching.

The probe has properties such as shape and dimension that are identified

by the Probe Type, e.g., ”CHTE Probe” and ”IVF Probe” [BC89].

The cooling medium in which the part is placed is known as the Quen-

chant. Quenchants have properties such as the type of the quenchant (e.g.,

mineral oil, water, bio oil), viscosity, heat capacity and boiling point [HH92].

These properties are characterized by the Quenchant Name. Examples of

quenchant names include ”T7A”, ”DurixolHR88A”.

During the quenching process, the quenchant is maintained at a cer-

tain temperature recorded in degrees Celsius. This is referred to as the

Quenchant Temperature. The quenchant is also subjected to a certain level of



2.1. GENERAL BACKGROUND 27

agitation such as high, low or absent (no agitation). This is referred to as

Agitation Level.

The details of the quenchant, part and other factors, such as agitation,

form the quenching input conditions. These conditions determine the rate

of cooling and consequently the heat transfer coefficients. After quenching,

the part acquires desired properties, for example a specific level of hardness

[TBC93].

Time and Resources

Performing a quenching experiment takes approximately 5 hours. This in-

cludes setting up the apparatus, filling up the tank with a suitable quen-

chant, making the parts ready for quenching by polishing, heating up the

part to a very high temperature and then immersing it into the quenchant

for rapid cooling. This is followed by capturing the resulting data by a

computer, storing it in a suitable format and plotting graphs that serve as

depictions of the results [MCMMS02].

The resources involved can be divided into capital investment and re-

curring costs. The capital investment includes the CHTE Quench Probe

System [MCMMS02]. The furnace, thermocouple, notebook computer and

other equipment in this system together costs thousands of dollars. This is a

one-time cost. The recurring costs that are incurred each time a laboratory

experiment is performed include the probe tip, Data Acquisition (DAQ)

cards for the computer, quenchants and of course the human resources to

perform the experiment. These costs are on the order of hundreds of dollars

per quench test [HH92].
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2.2 Graphical Plots in Heat Treating

The results of quenching experiments are plotted graphically. Three im-

portant graphs are the cooling curve, the cooling rate curve and the heat

transfer coefficient curve. These are described below.

2.2.1 Cooling Curve or Time-Temperature Curve

The cooling curve is a direct plot of the measured part surface temperature

T versus time t during the quenching process. This is also referred to as

the time-temperature curve [TBC93]. The part temperature is measured in

degrees Celsius and time is measured in seconds. The slope of this curve

at any given point gives the cooling rate at that point. Figure 2.2 shows an

example of a cooling curve.
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Figure 2.2: Cooling Curve
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2.2.2 Cooling Rate Curve

This graph is a plot of part temperature versus cooling rate [TBC93, MCMMS02].

The cooling rates at different points are the derivatives of the part temper-

ature values with respect to the time values denoted as (dT/dt). Thus this

curve is a plot of part temperature T versus cooling rate (dT/dt). Part tem-

perature is measured in degrees Celsius while cooling rate is measured in

degrees Celsius per second. An example of a cooling rate curve is shown in

Figure 2.3. The multiple curved lines seen here represent the cooling rates

based on several experiments performed with the same input conditions.

Each line represents one experiment. The middle one is the average of the

values at the given time over all runs.

Figure 2.3: Cooling Rate Curve

The cooling rate curve is used to calculate the heat transfer coefficient
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curve as explained below.

2.2.3 Heat Transfer Curve

Heat Transfer Coefficient

The heat transfer coefficient measures the rate of heat extraction in a quench-

ing process [MCMMS02, MMS02]. It is denoted by hc. The following equa-

tion is used to obtain the heat transfer coefficient hc [MMS02]

hc =
ρ( V

A
)Cp( dT

dt
)

T−Tc

where:

hc = heat transfer coefficient averaged over the surface area measured

in Watt per meter square Kelvin

A = surface area of the part in meter square

T = temperature of the part in degrees Celsius

Tc = temperature of the quenchant in degrees Celsius

ρ = density of the part material in kilogram per meter cube

V = volume of the part in meter cube

dT/dt = derivative of temperature with respect to time

Calculating the Heat Transfer Coefficient

The calculation of heat transfer coefficient is critical for characterizing the

quenching performance of different quenching media. Generally there are

3 important modes of heat transfer. These are heat conduction, thermal ra-

diation and heat convection. However the thermal resistance to conduction

in the solid is small compared to the external resistance and also the probe
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tip in the CHTE experiments is very tiny. Hence it is assumed that the spa-

tial temperature within a system is uniform. Thus only the convective heat

transfer between probe tip and quenching fluid is considered. This approx-

imation is called the lumped thermal capacity model [M95]. This model is

valid when the Biot number (Bi) is less than (0.1) where the Biot number is

given by the following equation called the Biot Number Equation.

Bi = hLc/k

where:

h = mean heat transfer coefficient

Lc = volume / surface area

k = thermal conductivity

Under the given conditions the heat transfer coefficient is calculated

using the Heat Transfer Coefficient Equation given above.

Plotting the Heat Transfer Curve

The plot of heat transfer coefficient hc versus part temperature T is referred

to as a heat transfer coefficient curve. The heat transfer coefficients calcu-

lated using the given equation at different points along a cooling rate curve

are used to obtain this curve. An example of this curve appears in Figure

2.4. Here also, the middle curve shows the average of the experiments, as

in the case of the cooling rate curve. This average curve is used for analysis

by scientists. The heat transfer curve is also referred to as a heat transfer

coefficient curve.
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Figure 2.4: Heat Transfer Curve
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Importance of Heat Transfer Curves

The heat transfer curve represents the heat extraction capacity in the ex-

periment determined by the combination of the quenchant, part, surface

conditions, temperature, agitation and other experimental inputs. The cor-

responding experimental conditions can be used for quenching in the in-

dustry in order to achieve similar results. Among all the graphs, this is

of greatest interest to the scientists since it represents the overall heat ex-

traction capacity in the process as determined by a combination of various

input conditions. Hence the heat transfer curve is what needs to be esti-

mated given the input conditions of a quenching experiment in order to

save the costs of performing the real experiment in the laboratory.

Significant Features of Heat Transfer Curves

There are some points on heat transfer curves that are significant for mak-

ing comparison. These correspond to certain features on the curve that

represent domain-specific physical phenomena [TBC93, BC89]. Since these

features help to understand the meaning of the heat transfer curve with re-

spect to the domain they depict the semantics of the curves. These are listed

below and illustrated in Figure 2.5.

• BP : The heat transfer coefficient at the boiling point of the quenchant.

• LF : The Leidenfrost point at which the vapor blanket around the part

breaks.

• MAX : The point of maximum heat transfer.
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• MIN : The point of minimum heat transfer.

• SC : The point where slow cooling ends.

The Boiling Point BP marks the beginning of the convection phase at

which the temperature of the part being cooled is reduced to the boiling

point of the cooling medium and slow cooling begins [BC89]. The Lei-

denfrost Point LF denotes the breaking of a vapor blanket resulting in the

beginning of rapid cooling in the partial film boiling phase. Thus a curve

with and without a Leidenfrost point denotes two different physical ten-

dencies in quenching [BC89].

Also significant is the range of maximum heat transfer MAX achieved

in a quenching process. This serves to separate the curves, and hence the

corresponding experiments, statistically into different categories. Likewise

the mean heat transfer achieved in the process is also a statistical distin-

guishing factor [BC89, MCMMS02].

Other important points on the curve are MIN , the point of minimum

heat transfer, and SC , the point where slow cooling ends. This summarizes

the semantics associated with heat transfer curves.

Experimental data about the conditions of the quenching setup and de-

tails of the quenchants and parts forms the input conditions of the quench-

ing experiments. For each experiment its input conditions and its resulting

graph, i.e., the heat transfer curve are stored in a database. This data is

used as the basis for computational estimation in AutoDomainMine.
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Figure 2.5: Heat Transfer Curve with its Semantics
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Chapter 3

AutoDomainMine: Integrating

Clustering and Classification

for Computational Estimation

3.1 Steps of AutoDomainMine

The proposed computational estimation approach called AutoDomainMine

involves a one-time process of knowledge discovery from existing data

and a recurrent process of using the discovered knowledge for estimation.

These two processes are illustrated along with their steps in Figure 3.1.

AutoDomainMine discovers knowledge from experimental results by

integrating clustering and classification, and then uses this knowledge to

estimate graphs given input conditions or vice versa. The two data mining

techniques are integrated for knowledge discovery in AutoDomainMine as
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Figure 3.1: The AutoDomainMine Approach
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explained below.

3.1.1 Knowledge Discovery in AutoDomainMine

The process of knowledge discovery is depicted in Figure 3.2. Clustering

is first done over the graphical results of existing experiments that have

been stored in the database. Since clustering techniques were originally

developed for points [KR94], a mapping is proposed that converts a 2-

dimensional graph into an n-dimensional point. A suitable notion of dis-

tance for clustering graphs is defined based on the knowledge of the do-

main 1. Once the clusters of experiments are identified by grouping their

graphs, the clustering criteria, i.e., the input conditions that characterize

each cluster are learned by decision tree classification. This helps under-

stand the relative importance of the conditions in clustering. The paths of

each decision tree are then traced to build a representative pair of input

conditions and graph for each cluster. The decision trees and represen-

tative pairs form the discovered knowledge. This knowledge is used for

estimation as follows.

3.1.2 Estimation in AutoDomainMine

The process of estimation is shown in Figure 3.3. There are two processes

here, estimating the graph given the conditions and estimating the condi-

tions given the graph. These are explained as follows.
1In the pilot stage of AutoDomainMine the notion of distance between the graphs is

based on Euclidean distance taking into account significant features of graphs as identified
by experts. This is elaborated in the section on clustering. This is refined in later stages.
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Figure 3.2: Discovering Knowledge from Experiments

In order to estimate a graph, given a new set of input conditions, the

decision tree is searched to find the closest matching cluster. The repre-

sentative graph of that cluster is the estimated graph for the given set of

conditions.

To estimate input conditions, given a desired graph in an experiment,

the representative graphs are searched to find the closest match using the

given notion of distance for the graphs. The representative conditions cor-

responding to the match are the estimated input conditions that would ob-

tain the desired graph. Note that this estimation takes into account the

relative importance of the conditions as identified from the decision tree.

3.2 Related Work

In AutoDomainMine, two data mining techniques, clustering and classifi-

cation are integrated into a learning strategy to discover knowledge for es-
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Figure 3.3: Using Discovered Knowledge for Estimation
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timation. In the literature, integration of data mining techniques has been

performed in the context of given problems. We briefly overview a few that

are relevant to this dissertation.

3.2.1 Rule-Based and Case-Based Approaches

Rule-based and case-based approaches have been integrated in the liter-

ature to solve certain domain-specific problems [L96]. General domain

knowledge is coded in the form of rules, while case-specific knowledge is

stored in a case base and retrieved as necessary. For example, in the do-

main of law [PK97], rules are laid down by the constitution and legal cases

solved in the past are typically documented. In dealing with a new case,

a legal expert system works as follows. It applies the rules relevant to the

new case and also retrieves similar cases in the past to learn from experi-

ence. It has been observed that these two approaches combined derive a

more accurate solution to the new case, than either approach individually

[PK97, L96].

However, in the literature this approach has been used for cases that in-

volve text-based documents which is common in the legal domain [PK97,

L96]. For example, the solution for a past offense that involved an adult

can be modified based on rules in the constitution if the offender in a new

case is a minor. However, it is non-trivial to apply this approach to graphs

in our context. If for example, one input condition differs between the old

and the new case, then the knowledge about the difference of conditions is

not sufficient to modify a graph from the old case as a solution (estimation)

for the new one. Moreover, in our targeted domains, we do not have a fixed



3.2. RELATED WORK 42

set of rules available analogous to the constitution.

3.2.2 Classification and Association Rule Mining

Liu et. al. [LHM98] propose a framework called associative classification

that combines the approaches of classification and association rule mining

[LHM98]. Classification aims to discover rules in the database that forms

an accurate classifier. Association rule mining finds all the rules existing in

the database that satisfy some minimum support and minimum confidence

constraints. The proposed framework focuses on mining a special subset

of association rules called Class Association Rules (CARs) [LHM98]. The

ultimate goal here is to classify a target. However, data that needs to be

classified is likely to have a large number of associations. Using classifi-

cation techniques alone would not mine these associations, leaving some

useful rules undiscovered. Thus, it is feasible first discover associations

and then use these for classification. Adaptation of existing association rule

mining algorithms [AIS93] has been done to mine only the CARs is needed

so as to reduce the number of rules generated, thus avoiding combinatorial

explosion [LHM98]. The proposed integration also involves discretizing

the continuous attributes based on the classification predetermined class

target. They then build a classifier based on the generated CARs.

However the data in [LHM98] is of a quantitative and categorical na-

ture. Hence it is meaningful to derive association rules between the at-

tributes. We have used association rules in our earlier system QuenchMinerTM

that predicted only ranges of parameters. It was thus feasible to apply as-

sociation rules to estimate ranges in terms of values such as high, medium
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and low. However, when graphs are involved, the issues are different. Con-

sider for example a rule derived from QuenchMinerTM such as High Agita-

tion => Fast Cooling. This rule is not sufficient to estimate a graph though

it is sufficient to estimate ranges of cooling rates. Any further discussion

on this would go beyond the state-of-the-art and is not addressed here.

3.2.3 Association Rules and Clustering

In [LSW97] an Association Rule Clustering System (ARCS) is described.

The ARCS system clusters 2-dimensional association rules in large databases.

More specifically, they consider the problem of clustering association rules

of the form A ∧ B => X where the Left Hand Side (LHS) attributes A

and B are quantitative and the Right Hand Side (RHS) attribute X is cat-

egorical. For example, the rules (age = 40) => (ownHome = yes) and

(age = 41) => (ownHome = yes) are clustered as (40 <= age < 42) =>

(ownHome = yes). They define a term called segmentation as the collec-

tion of all the clustered association rules for a specific value X of the RHS.

Their goal is to find the fewest number of clusters that cover association

rules in a segmentation.

However, their constraints are that the left hand side is numeric and the

right hand side is categorical. Drawing an analogy with our problem, the

left hand side consists of mixture of attributes that are numeric, categorical

and ordinal [HK01] while the right hand side consists of graphs. Hence the

constraints in their problem are not satisfied in our dissertation problem.

Thus a direct application of their ideas is not applicable to us. Moreover,

association rules are also not sufficient to solve the estimation problem for
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reasons discussed above.

3.2.4 Clustering to aid Classification

In [BL04] the Minimum Description Length (MDL) principle [R87] is ap-

plied to evaluate how a clustering algorithm run on data aids a classifica-

tion algorithm. Their goal is to produce a set of clusters that best agree with

a certain set of hidden labels forming classification targets. They consider a

distribution over (X,Y ) where X is the input and Y is a hidden label. The

assumption is that Y can take one of L possible values, such that L > 1.

If c is the number of clusters, r is the number of random initializations of

the clustering algorithm from which the best initialization is chosen and s

is the number of clustering algorithms considered, the MDL encoding is

given by Length = c log L + log r + log ((c-1)c) + log s. Minimizing this length

gives the best set of clusters, as per the goal in [BL04].

We can draw an analogy here in terms of using both clustering and clas-

sification in the approach. However, in [BL04] they evaluate clustering in

the context of classification. They do not integrate clustering and classifi-

cation into a learning strategy for knowledge discovery. Classification is

not actually executed in this approach. Rather their goal is to evaluate clus-

tering and produce the best set of clusters with the possible intention of

classification. In our problem, we execute both clustering and classification

for discovering knowledge from experimental results in order to use the

discovered knowledge for estimation.
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3.2.5 Learning Methods of Materials Scientists

From a detailed study of the relevant literature in Heat Treating and dis-

cussions with domain experts it has been noticed that Materials Scientists

often use the following learning methods to discover certain facts from ex-

perimental results. They group experiments based on the similarity of their

results and then reason the causes of similarity between the groups based

on the input conditions of the experiments [SMMV04].

For example, it was learned experimentally that a thin oxide layer on

the surface of a part causes fast cooling while a thick oxide layer causes

slow cooling [SMMV04]. This was learned by conducting experiments

with thin and thick oxide layers among the input conditions with other

conditions being the same. The results showed that for all the experiments

with thin oxide layer the cooling was fast while for those with thick oxide

layer it was slow. Experts then reasoned further on the basis of existing

domain knowledge that the thin oxide probably caused the vapor blanket

around a part to break resulting in fast cooling while thick oxide acted as

an insulator resulting in slower cooling. Thus, the learning was done by

grouping experiments based on similarity of their results and reasoning

based on their corresponding input conditions [SMMV04].

This grouping and reasoning is analogous to the data mining techniques

of clustering and classification respectively. We thus automate these learn-

ing methods of scientists by integrating clustering and classification as a

learning strategy for knowledge discovery in AutoDomainMine.
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3.3 Details of Clustering

Clustering groups objects into classes such that objects within a class have

high similarity but are different from items in other classes [KR94]. In

AutoDomainMine, we can use any clustering algorithm such as k-means

[M67]. In applying clustering there are three main issues that we need to

deal with as follows.

• Applying clustering algorithms to graphs that are curves since these

algorithms were originally developed for points.

• Addressing issues of dimensionality reduction since these graphs are

composed of thousands of points.

• Defining a notion of similarity for the graphs.

These issues are explained in the following subsections.

3.3.1 Applying Clustering to Curves

In order to apply clustering algorithms [KR94] to curves, we propose a

mapping that converts a 2-dimensional curve to an multi-dimensional point

as follows. Consider a 2-dimensional curve consisting of n points each hav-

ing an x-coordinate and a y-coordinate. The n x-coordinates on the curve

are mapped to n dimensions. The n y-coordinates on the curve are mapped

to lengths along these n dimensions respectively.

Mathematically this can be represented as (x, y) 7→ (dimension, length)

where 7→ denotes ”maps to”. This mapping is shown in the Figure 3.4. In

this figure x1...xn indicate the n dimensions. For example, a point (200, 400)
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on the original curve is mapped to length 400 on the xth
200 dimension. Like-

wise each point on the curve is mapped to a dimension and a length along

that dimension. Thus after mapping each (x, y) point on the 2-dimensional

curve to a (dimension,length) pair we effectively get an n-dimensional point.

Note that in this figure the axes on the right hand side represent the dimen-

sions, not the lengths along these dimensions.

Figure 3.4: Mapping a 2-dimensional curve to an n-dimensional point

3.3.2 Dimensionality Reduction

Since a curve has typically thousands of points it may be inefficient to con-

vert each x-coordinate into a separate dimension. Hence dimensionality

reduction is often used. There are various methods of dimensionality re-

duction among which Sampling, [HK01] and Fourier Transforms [F55] are

relevant to our problem. We briefly describe these below.
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Selective Sampling

This method has some similarities with Random Sampling [HK01]. In

Random Sampling, points are sampled at random intervals. In Selective

Sampling [HK01] points are chosen based on certain criteria. In our prob-

lem, sample the points at regular intervals, and in addition sample critical

points that correspond to significant features of the graph. Knowledge of

the domain gathered from literature surveys and discussions with experts

helps in determining the significant features.

This method is shown in Figure 3.5 where xcriticali indicates each critical

dimension, corresponding to a critical point (xi, yi) on the original curve.

In this figure, the axes on the right hand side represent the lengths along

the dimensions drawn approximately to scale.

Figure 3.5: Selective Sampling for Dimensionality Reduction

Fourier Transform

A Fourier Transform decomposes a given curve into sinusoids of different

frequencies such that they sum back to the original waveform [F55]. By
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retaining some of these sinusoids and discarding the rest, we can thus re-

duce the dimensionality of the original curve. In our AutoDomainMine ap-

proach, Fourier Transforms can be used as follows. We first apply Equation

1 [AFS93], in order to map the n dimensions of the curve (n-dimensional

point) into n Fourier Coefficients. Each Fourier Coefficient corresponds to

a different frequency. In this equation F(s) refers to the frequency domain

while f(t) refers to the time domain.

F (s) = (1/
√

N)ΣN−1
t=0 e−j2Πf(t)/N (3.1)

We then retain the Fourier Coefficients that are considered useful with

respect to the domain. As in Selective Sampling, domain knowledge ob-

tained from literature surveys and discussions with experts is useful here.

For example in Heat Treating, generally the first 16 coefficients are con-

sidered to be useful. This is because the graphs (heat transfer curves) [M95]

are such that these coefficients representing lower frequency values con-

tain useful information. Our experimental evaluation confirms this as will

be shown later. The remaining coefficients representing higher frequency

values are regarded as noise [B68, TBC93].

3.3.3 Notion of Distance

The default notion of distance in clustering algorithms is often Euclidean.

In the pilot AutoDomainMine approach this is used as the fundamental

notion of distance between graphs. However, domain experts have a sub-

jective notion that the 3 points on a heat transfer curve MAX , LF and
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BP are more significant than others. These are respectively the point of

maximum heat transfer coefficient, the Leidenfrost point at which rapid

cooling begins, and the heat transfer corresponding to the Boiling Point

of the Quenchant [TBC93]. Thus, in addition to the original curve, these

regions are considered as 3 more dimensions in the representation of the

2-dimensional curve as an multi-dimensional point. Thus, the number of

dimensions in the multi-dimensional point is n + 3 where n refers to the n

x-coordinates while the additional 3 dimensions correspond to the 3 points

MAX , LF and BP respectively.

3.3.4 Steps of Clustering

Clustering is done in AutoDomainMine by sending either the original curves

(n + 3-dimensional point) or their Selective Samples or Fourier Transforms

to a clustering technique such as k-means. Once the clusters are obtained

for each graph (which represents each experiment), the output of the clus-

tering needs to be sent to the classifier. Therefore each experiment is stored

in terms of its input conditions and cluster label. These steps are listed

below.

Clustering in AutoDomainMine

1). Map each 2-dimensional graph into a multi-dimensional point

2). Perform dimensionality reduction as needed

3). Define notion of distance for graphs
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4). Send each graph as multi-dimensional point to clustering technique

such as k-means

5). Use the given notion of distance to cluster the graphs

6). Store the input conditions and cluster corresponding to each graph

3.4 Details of Classification

It is important to know the causes of similarities and differences between

the experiments. This helps us to understand the reasoning behind the

clustering, i.e., the clustering criteria. In other words, it helps to determine

the relationships between the clusters of graphs and the corresponding in-

put conditions. The method proposed in AutoDomainMine for determin-

ing the clustering criteria is classification using decision trees.

3.4.1 Decision Trees as Classifiers

A decision tree [KK95] is a structure consisting of nodes, arcs and leaves

where each internal node denotes a test on an attribute, each arc leaving a

node represents an outcome of the test, and leaf nodes represent classes or

class distributions. The reasons for selecting decision tree as classifiers in

AutoDomainMine are:

• It helps to identify the relative importance of the criteria used in clas-

sification. Thus in our context, this is useful in determining the rela-

tive importance of the input conditions leading to the clusters.
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• It is an eager learning approach, i.e., it learns based on existing data.

This is useful to us because our knowledge discovery step is a one-

time process executed in advance over existing data.

• It provides reasons for its decisions. Thus in our context its structure

is well-suited to provide partial matches if a complete set of input

conditions does not match.

Decision trees in AutoDomainMine are constructed using the J4.8 algo-

rithm [Q86]. J4.8 generates a decision tree for the given data by recursively

splitting that data. The decision tree grows using a depth-first strategy. The

J4.8 algorithm considers all the possible tests that can split the data and se-

lects a test that gives the best information gain [Q86]. For each discrete

attribute, one test is used to produce as many outcomes as the number of

distinct values of the attribute. For each continuous attribute, the data is

sorted, and the entropy gain is calculated based on binary cuts on each dis-

tinct value in one scan of the sorted data. This process is repeated for all

continuous attributes. The J4.8 algorithm allows pruning of the resulting

decision trees. The J4.8 algorithm can also deal with numeric attributes.

This is useful in AutoDomainMine, because the input to the decision tree

classifier is the output of the clustering step, which includes input condi-

tions that may be numeric values.

Figure 3.6 shows a sample partial input to the classifier. This is ob-

tained from the output of the clustering step in AutoDomainMine using

Heat Treating data. It depicts the input conditions of the experiments and

the cluster in which the corresponding graph was placed.
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Figure 3.6: Sample Partial Input to Classifier

Figure 3.7 shows a snapshot of a partial decision tree created for this

data. The sets of input conditions that lead to each cluster have been iden-

tified in this tree. For example, with reference to the given partial input

and partial decision tree, it is clear that Cluster D consists of experiments

with quenchant ”HoughtoQuenchG”, part material, ”ST4140”, agitation,

”Absent”, and quenchant temperature in the range of ”(90-140)”. Cluster F

has all the same conditions, except the quenchant temperature. From this

decision tree it can be inferred that a crucial clustering criterion is the quen-

chant name, since that forms the root of the tree. However, criteria such as

quenchant temperature are also important since a difference of tempera-

ture range causes the experiments to be placed in different clusters. Thus

this tree helps to reason the causes of similarities and differences between

experiments with respect to their input conditions.
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Figure 3.7: Snapshot of Partial Decision Tree

3.4.2 Selecting Representative Pairs

The decision trees form the basis for selecting a representative pair of input

conditions and graph per cluster. In the pilot AutoDomainMine approach

the process of selecting representative pairs is as follows.

Selecting Representatives for Classification in AutoDomainMine

1). Trace the paths from the root to each leaf of the decision tree.

2). Consider each path as a set of input conditions.

3). Treat the leaf of each path as the cluster for that set of conditions.

4). Among all graphs in that cluster select any one as a representative graph.

5). Among all the paths (sets of conditions) leading to a particular cluster,

select any one path as representative conditions.
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6). Store the representative conditions and representative graph for each clus-

ter as its representative pair.

A sample representative pair is illustrated in Figure 3.8 with reference

to the partial decision tree in Figure 3.7.

Figure 3.8: Sample Representative Pair for Cluster D

These representative pairs are used for classifying a user-submitted ex-

periment, serving as the basis for estimation.

3.5 Estimation in AutoDomainMine

AutoDomainMine estimates the graph obtained in an experiment, given

the input conditions and vice versa. This is explained in the two subsec-

tions below, with reference to Heat Treating domain.
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3.5.1 Estimating the Graph

The user enters the input conditions of the new experiment, and requests

AutoDomainMine to estimate the graph that would be obtained in a new

experiment. AutoDomainMine traces the decision tree to find the appro-

priate path leading to the cluster in which the new experiment should be

placed. The representative graph of that cluster is output as the estimated

graph in the user-submitted experiment.

Since the relative importance of the input conditions has already been

learned through the decision tree, this helps to make an educated guess

about the closest matching cluster for the user-submitted input conditions.

Hence, if the more important conditions as identified by the higher levels of

the tree do not match, this is considered insufficient to provide an estimate.

However, if from the lower level onwards no complete match is found, then

it is considered acceptable to give an estimate based on a partial match. The

distinction between high and low levels is made depending on the height

of the tree. The levels at or above half the depth of the tree are considered

as high and those below are half the depth as low. This is an intuitive

approximation used in the pilot stage of AutoDomainMine 2.

The concept of selecting the cluster with the greatest number of exper-

iments in case of a partial match is analogous to the concept of majority

class in classifiers [M97].

The process of estimating the graph is as follows.
2In later stages of AutoDomainMine this approximation is justified by learning a heuris-

tic for distances between sets of conditions in the decision tree paths
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Estimation of Graph in AutoDomainMine

1). Accept new input conditions from the user.

2). Compare each path of decision tree of with new input conditions.

3). If one or more partial paths match upto less than or equal to half

the height of the tree, convey that the graph cannot be estimated and

Quit.

4). If one or more partial paths match upto greater than half the height

of the tree, among all clusters emerging from the partial path(s), the

representative graph of the cluster with the greatest number of exper-

iments is the estimated graph, go to Step 6.

5). If a complete path matches upto the leaf node, then the representative

graph of that cluster is the estimated graph.

6). Display the estimated graph to the user.

This estimation process is illustrated in Example 1.

Example 1

Estimate the heat transfer curve in the following experiment, given its quench-

ing conditions.

• Quenchant Name: ”HoughtoQuenchG”

• Quenchant Temperature: ”25”

• Agitation Level: ”Absent”
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• Part Material: ”ST4140”

• Oxide Layer: ”Thin”

• Probe Type: ”CHTE”

Analysis. The relevant path of the decision tree traced for the above set

of conditions is shown in Figure 3.9.

Figure 3.9: Relevant Partial Decision Tree

Estimated Cluster. From the above tree, the estimated cluster of the new

experiment is D.

Representative Graph. The representative graph of the estimated cluster

is shown in Figure 3.10

Output. The graph shown in Figure 3.11 is output as the estimated heat

transfer coefficient curve for the user-submitted experiment. (This is the
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Figure 3.10: Representative Graph of Estimated Cluster

same as the representative graph in Figure 3.10).

Figure 3.11: Estimated Heat Transfer Curve

3.5.2 Estimating the Conditions

The user enters a sample graph as a desired result and requests AutoDomain-

Mine to estimate the required experimental conditions that would achieve

this. AutoDomainMine compares this graph with the representative graphs

in the clusters using the given notion of distance. AutoDomainMine selects

the graph with the closest match, and outputs the representative condi-

tions of that cluster, as the required experimental conditions to achieve this
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graph. We define a similarity threshold for graphs in the domain. In Heat

Treating this threshold is 10%.

If no match is found within the given threshold, then it implies that the

desired graph cannot be obtained based on the knowledge discovered from

existing experimental data. Thus it is conveyed to the user that the condi-

tions to obtain this graph cannot be estimated. If only one representative

graph matches the desired graph within the threshold, then it is obvious

that the corresponding representative conditions are the estimated condi-

tions. If several representative graphs match, it is desirable to select the

closest match. However, if two or more graphs match to the same extent

then we approximate based on considering the representative conditions

of the majority class. This is done analogous to classifiers in the literature

[M97].

The process of estimating the conditions is as follows.

Estimation of Conditions in AutoDomainMine

1). Accept desired graph from the user.

2). Compare desired graph with all the representative graphs.

3). If no match is found within the given threshold then convey that the

conditions cannot be estimated and Quit.

4). If only one graph matches within threshold, then representative con-

ditions of that graph are the estimated conditions, go to Step 7.

5). If more than one graph matches within the threshold, then represen-
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tative conditions of closest matching graph are the estimated condi-

tions.

6). If two or more graphs match to the same extent, then the represen-

tative conditions corresponding to the graph with greater number

of experiments in the corresponding cluster are the estimated con-

ditions.

7). Display the estimated conditions to the user.

This estimation process is illustrated in Example 2.

Example 2.

Estimate the quenching conditions required to obtain the heat transfer curve

shown in Figure 3.12.

Figure 3.12: Desired Graph

Matching Graph. The closest matching graph to the desired graph is shown

in Figure 3.13.
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Figure 3.13: Matching Graph

Estimated Conditions. The representative conditions of the cluster of the

matching graph are listed below.

• Quenchant Name: ”T7A”

• Agitation Level: ”Absent”

• Quenchant Temperature: ”(20-30)”

• Part Material: ”SS304”

• Oxide Layer: ”None”

• Probe Type: ”CHTE”

Output. The estimated conditions above are output as the required quench-

ing conditions to obtain the desired heat transfer curve.
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3.6 Evaluation of AutoDomainMine Stage 1: Pilot Tool

3.6.1 Implementation of Pilot Tool

A pilot tool has been implemented with the basic learning strategy in AutoDomain-

Mine, i.e., clustering followed by classification with the details as explained

in this chapter.

The implementation of AutoDomainMine has been done in Java. The

database has been built using MySQL [T02]. The tool developed using

the AutoDomainMine approach is a property of the Center for Heat Treat-

ing Excellence, WPI. Existing tools such as the WEKA system [FHKH02,

WF00] have been used to provide some of the basic functionalities required

in the approach. These include the k-means algorithm for clustering [M67]

and J4.8 decision trees [Q86] for building classifiers.

The pilot tool in AutoDomainMine has been evaluated with real data

from the Heat Treating domain. The evaluation has been done using two

methods, namely, 4-fold cross-validation, and domain expert interviews.

The details of all the evaluation are described below.

3.6.2 Evaluation with Cross Validation

In this evaluation process, the AutoDomainMine approach of clustering

followed by classification has been executed over different data set sizes.

For each data set, the accuracy of the resulting classifier has been evaluated

to observe whether it predicts the correct cluster of an experiment over un-

seen data. This has been done by 4-fold cross-validation (cv) as illustrated

in Figure 3.14 and explained with an example below [M97].
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Figure 3.14: Evaluation of AutoDomainMine with Cross Validation
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Process of Evaluation. Consider a data set of 100 experiments. The graphs

obtained from these experiments are clustered and the clustering output is

sent to a decision tree classifier. This output consists of the input condi-

tions of each experiment along with the cluster in which it was placed.

The classifier is then constructed and evaluated as follows. In each fold,

75 experiments are used for training and the remaining 25 experiments for

testing. Classifier accuracy is measured in terms of how well it predicts

the correct cluster for the remaining 25 experiments. Thus if it predicts the

correct cluster for 20 experiments out of 25, then its accuracy in that fold is

80%. The process is repeated 4 times, each time using 75 different experi-

ments for training and the remaining 25 for testing. The average accuracy

of these 4 folds is the classifier accuracy.

Parameters in the Tests. The parameters altered in these tests are as data

set size, number of clusters, clustering seeds, decision tree classifier seeds

and dimensionality reduction techniques. We consider selective sampling

altering the number of selective samples and Fourier Transforms altering

the number of Fourier coefficients. The results of the evaluation are shown

below.

Effect of Data Set Size and Number of Clusters

These tests are conducted with data set sizes ranging from 100 to 500 graphs.

For each data set, the number of clusters is varied from 10 to 50 in steps of

5. In these tests, the original curve, i.e., all n data points and in addition

3 points for the three critical regions are sent as the input to the clustering
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algorithm.

The evaluation results shown in the charts in Figures 3.15 to 3.19 are

the accuracy values for each test. For these tests, and all the tests shown

under cross validation, the time taken to build the model is observed to be

approximately 0.1 seconds. Since it is almost the same for every test, it is

not shown in the charts.

Figure 3.15: Effect of Number of Clusters with Data Set Size 100

Figure 3.16: Effect of Number of Clusters with Data Set Size 200
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Figure 3.17: Effect of Number of Clusters with Data Set Size 300

Figure 3.18: Effect of Number of Clusters with Data Set Size 400

Figure 3.19: Effect of Number of Clusters with Data Set Size 500
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Observations and Discussion

• As data set size increases, accuracy increases. This is because more

training data is available for learning.

• In each data set, for very low values of k (number of clusters), accu-

racy is relatively low. This is probably because the number of experi-

ments in each cluster in that case would be high, leading to too much

generality in classifying new experiments.

• On the other hand, it is observed that for very high values of k also,

the accuracy is fairly low. A probable interpretation for this would

be that very high values of k lead to clustering that gets too specific,

not allowing new experiments to be suitably categorized, thereby ad-

versely affecting accuracy.

• An interesting observation is that for all the data sets, highest accu-

racy is observed at values of k close to square root of G, where k is

the number of clusters and G is the number of graphs, i.e., the num-

ber of experiments in the data set, namely, the data set size. This

seems to provide a middle ground between the two extremes dis-

cussed above pertaining to very low and very high values of k. These

middle range values of k are likely to give a good trade-off between

being too generic and too specific. Hence this is a parameter setting

used in further experiments.



3.6. EVALUATION OF AUTODOMAINMINE STAGE 1: PILOT TOOL 69

Effect of Selective Sampling

In these tests, equally spaced selective samples are taken per graph and sent

as the input to the clustering technique. In addition to the selective sam-

ples on the original graph which include the critical regions, 3 additional

samples are taken along the critical regions to emphasize their importance.

Thus, for example, 53 selective samples, means that 50 samples are taken to

capture the graph and 3 additional samples to capture its critical regions.

The number of selective samples is varied from 23 to 203. The evaluation

results in terms of accuracy are shown in Figures 3.20 to 3.24.

Figure 3.20: Effect of Selective Sampling with Data Set Size 100

Observations and Discussion

• As the number of selective samples increase, the accuracy tends to

increase until about 103 to 123 samples.

• Accuracy levels out at approximately 103 to 123 selective samples and

thereafter, increasing the number of samples does not substantially
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Figure 3.21: Effect of Selective Sampling with Data Set Size 200

Figure 3.22: Effect of Selective Sampling with Data Set Size 300

Figure 3.23: Effect of Selective Sampling with Data Set Size 400
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Figure 3.24: Effect of Selective Sampling with Data Set Size 500

increase the accuracy.

• As data set size increases, accuracy increases.

• Selective sampling provides higher efficiency since fewer dimensions

are needed per curve.

Effect of Fourier Transforms

In these tests, the Fourier coefficients are used for clustering. The number

of Fourier coefficients varies from 2 to 20. In these tests, there are no addi-

tional inputs for critical regions since the Fourier coefficients are such that

they cannot be mapped to the critical regions of the original graph [F55].

The evaluation results are shown in Figures 3.25 to 3.29.

Observations and Discussion:

• For all data sets, highest accuracy is observed around the range of

16 Fourier coefficients. This corroborates the information given by
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Figure 3.25: Effect of Fourier Transforms with Data Set Size 100

Figure 3.26: Effect of Fourier Transforms with Data Set Size 200

Figure 3.27: Effect of Fourier Transforms with Data Set Size 300
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Figure 3.28: Effect of Fourier Transforms with Data Set Size 400

Figure 3.29: Effect of Fourier Transforms with Data Set Size 500
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domain experts.

• Further increasing the number of Fourier coefficients reduces the ac-

curacy. This is probably because the high frequency coefficients cor-

respond to noise.

• For very few Fourier coefficients (around 2), the accuracy is also low.

This could be because such few coefficients are not enough to capture

the original graph.

• In general, the tests with Fourier coefficients give less accuracy than

those with selective samples and with the whole graph. This can pos-

sibly be interpreted as follows. The basic property of the Fourier

transform [F55] is that it converts a given waveform (in our case

the graph) into frequency sinusoids such that they all sum back to

the original waveform. Since it takes the integral of the waveform as

a whole, the critical dimensions cannot be considered separately in

mapping to the frequency domain. Hence the information about crit-

ical regions is not retained in the Fourier coefficients thus adversely

affecting accuracy.

3.6.3 Comparative Evaluation with Clustering based on Condi-

tions

In AutoDomainMine, the clustering is done based on the graphs. This is

compared with the alternative of clustering based on the conditions. In the

latter approach, the conditions of the experiments are used for clustering
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and the output of the clustering is sent to the decision tree classifier. The

classifier accuracy is evaluated using 4-fold cross validation. The tests con-

ducted with this approach are with data set sizes varying from 100 to 500

and number of clusters varying from 10 to 100 for each data set. The eval-

uation results are shown in Figures 3.30 to 3.34.

Figure 3.30: Effect of Clustering with Conditions on Data Set Size 100

Figure 3.31: Effect of Clustering with Conditions on Data Set Size 200
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Figure 3.32: Effect of Clustering with Conditions on Data Set Size 300

Figure 3.33: Effect of Clustering with Conditions on Data Set Size 400

Figure 3.34: Effect of Clustering with Conditions on Data Set Size 500
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Observations and Discussions

• As data set size increases, accuracy increases.

• The ranges of accuracy are around 60% to 65%.

• In general the accuracy in these tests is observed to be lower than in

the tests with clustering based on graphs. Thus we prefer to cluster

based on graphs which is also in keeping with the learning methods

of scientists in the domain [SMMV04].

3.6.4 Evaluation with Domain Expert Interviews

This process of evaluation is explained below. Distinct test sets consisting

of real laboratory experiments in Heat Treating not used for training the

technique are used for testing. Domain experts execute test sets comparing

the estimation with the real experiment. If the estimation matches the real

experiment as per the satisfaction of the experts, then the test is considered

accurate, else inaccurate. Accuracy is reported as the percentage of accurate

tests over all the tests conducted. In addition, the efficiency of the technique

is also noted. Efficiency refers to the response time of the tool, i.e., the

amount of time required to perform the estimation given a new set of input

conditions or graph.

Examples from evaluation are shown below with screen-dumps from

the AutoDomainMine tool.
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Estimation of Graph

The input conditions as shown in Figure 3.35 are submitted by a domain

expert to AutoDomainMine for estimating the resulting graph, i.e., heat

transfer coefficient curve.

Figure 3.35: Given Conditions

The estimated graph is shown in Figure 3.36. On comparing this with

the graph obtained in the laboratory experiment performed with the same

input conditions (as stored in the test set), the domain experts conclude that

this estimation is satisfactory.
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Figure 3.36: Estimated Graph
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Estimation of Conditions

A domain expert submits the heat transfer coefficient curve as shown in

Figure 3.37 to estimate the corresponding input conditions. This curve is

selected from a given test set of curves not used for training the technique.

Figure 3.37: Given Graph

The estimated conditions are shown in Figure 3.38. On comparing these

with the conditions of the laboratory experiment to achieve the same graph

(as stored in the test set), the domain experts conclude that this estimation

is satisfactory.

Likewise 100 tests have been conducted by domain experts with the

help of work-study students in Materials Science. The estimation accuracy
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Figure 3.38: Estimated Conditions
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has been observed as approximately 75 percent, i.e., in 75 percent of the

tests, the estimation matched the real experiment. The response time of the

tool has been found on an average 0.1 second. This is illustrated in charts

below along with the results of comparative evaluation.

3.6.5 Comparative Evaluation with Similarity Search

Domain experts have run tests using similarity search with the same test

data that was used for AutoDomainMine estimation. The process of evalu-

ation is described below.

A sample tool is built using naive similarity search. Given a set of input

conditions, the tool compares them with the conditions of existing experi-

ments. The closest matching conditions are found and the corresponding

graph is output as the estimated result. This estimation is compared with

the real laboratory experiment. If they match each other as per the satisfac-

tion of the domain experts and students then the estimation is considered

to be accurate. Accuracy is reported as the percentage of tests in which the

estimation was accurate. The response time of the tool was also noted.

The results of the comparative evaluation between AutoDomainMine

and similarity search are summarized in Figures 3.39 and 3.40 below. Fig-

ure 3.39 shows the estimation accuracy in terms of the percentage of ac-

curate estimations out of the total number of tests conducted. Figure 3.40

shows the efficiency in terms of the average response time of the tool dur-

ing all these tests.
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Figure 3.39: Comparison between Accuracy of AutoDomainMine and Sim-
ilarity Search

Figure 3.40: Comparison between Efficiency of AutoDomainMine and Sim-
ilarity Search
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Observations and Discussion

• The accuracy of AutoDomainMine is higher than that of similarity

search. This is probably because AutoDomainMine performs the es-

timation based on discovering knowledge by automating the learning

methods of domain experts.

• The response time of AutoDomainMine is lower than that of simi-

larity search, implying that AutoDomainMine is more efficient. This

happens because AutoDomainMine has to scan only the representa-

tives as opposed to similarity search which scans the entire database

of experiments to find the closest match.

3.6.6 Conclusions from the Pilot Tool Evaluation

It was inferred from the pilot tool that the basic AutoDomainMine ap-

proach works as a computational estimation technique and is better than

state-of-the-art methods in the domain such as mathematical modeling.

However potential for further improvement was identified at this stage.

The pilot tool, in addition to evaluating the effectiveness of the basic

learning technique in AutoDomainMine, also serves as a yardstick for com-

parison with later stages of the tool.
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Chapter 4

LearnMet: Learning

Domain-Specific Distance

Metrics for Graphical Plots

4.1 Need for Distance Metric Learning

4.1.1 Motivation

In the clustering step of AutoDomainMine the notion of similarity for the

clustering algorithm [KR94] is based on distance. The default notion is

Euclidean distance [HK01]. However this poses certain problems as illus-

trated with an example in Figure 4.1. Clustering with Euclidean distance

places the two heat transfer curves shown in the figure in the same cluster

relative to other curves, even though one has a visible Leidenfrost point

while the other does not. This is a problem since the two curves depict
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distinctly different physical tendencies, as confirmed by domain experts.

Hence the inferences drawn from such clustering would be incorrect.

Figure 4.1: Example of Inaccuracy in Clustering

4.1.2 Distance Metrics

We now review distance metrics. Several distance metrics exist in the liter-

ature. We describe the distance metric types relevant to our domains with

respect to 2 n-dimensional objects A and B given by A(A1, A2 . . . An) and

B(B1, B2 . . . Bn) respectively.

Position-based Distances

They refer to distances based on the absolute position of the objects [HK01].

Examples of position-based distances are:

Euclidean Distance. This is the as-the-crow-flies distance between objects,

calculated as:

DEuclidean(A,B) =
√

Σn
i (Ai −Bi)2

Manhattan Distance. This is the city-block distance between objects. It is

calculated as:
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DManhattan(A,B) = Σn
i |Ai −Bi|

Statistical Distances

These refer to distances based on statistical observations in the objects [PNC99].

Examples of statistical distances are:

Mean Distance. This is the distance between mean values of the objects,

given as:

DMean(A,B) = |Mean(A)−Mean(B)|

Maximum Distance. This is the distance between maximum values of the

objects. It is calculated as:

DMax(A,B) = |Max(A)−Max(B)|

Minimum Distance. This is the distance between minimum values of the

objects. It is calculated as:

DMin(A,B) = |Min(A)−Min(B)|

Critical Distances

In addition to the distance metric types reviewed above, we introduce the

concept of critical distances for graphical plots applicable to our targeted

domains. A critical distance metric is defined in general as follows.

Critical Distance Metric. Given two graphical plots A and B, a critical

distance metric is a metric that represents the distance between critical re-
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gions of A and B where a critical region represents the occurrence of a sig-

nificant physical phenomenon. Each such metric is calculated in a domain-

specific manner as explained with examples below.

In order to give examples of critical distances, we refer to the critical

points on the heat transfer curve shown in Figure 4.2. These are the Lei-

denfrost point LF , the Boiling Point BP and the Slow Cooling Point SC .

Note that this curve also shows the MAX and MIN points that serve to

define statistical distances DMax and DMin respectively.

Figure 4.2: Points to define Distances on a Heat Transfer Curve

Given this, the Leidenfrost distance is the distance between the Leiden-

frost points [TBC93] on two heat transfer curves calculated as follows.

For curves A and B, DLF (A,B) =
√

(ATLF −BTLF )2 + (AhLF −BhLF )2

where TLF is the temperature at Leidenfrost Point and hLF is the heat

transfer coefficient at that point.

Another critical distance is the Boiling Point distance. This is the dis-

tance between points on the curves corresponding to the Boiling Points

of the respective cooling media in heat treatment [TBC93]. Thus for two

curves A and B, the Boiling Point distance DBP is given as DBP (A,B) =
√

(ATBP −BTBP )2 + (AhBP −BhBP )2 where TBP is the temperature at
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Boiling Point and hBP is the heat transfer coefficient at that point.

Likewise the Slow Cooling distance can also be considered with refer-

ence to the heat transfer curves. This is the distance between points on

the curves corresponding to the end of the Slow Cooling phase [TBC93]

as shown by SC in Figure 1. Thus for any curves A and B, DSC(A,B) =
√

(ATSC −BTSC)2 + (AhSC −BhSC)2 where TBP is the temperature at the

Slow Cooling point and hBP is the heat transfer coefficient at that point.

4.1.3 Need to Learn Domain-Specific Metrics

Although a variety of metrics from the literature could be selected, it is

seldom known which of them work best while preserving the domain se-

mantics. When applied to a given problem, each of the selected metrics

serves as a single distinguishing factor. That is, each such metric serves

to separate the graphical plots based on a given feature. For example, Eu-

clidean distance separates them based on the absolute position of points in

the plots. Critical distances separates them based on the occurrence of the

domain-specific physical phenomena they represent. However, in order to

capture semantics accurately, it is essential to consider several distinguish-

ing factors, each being represented by one or more of these metrics. Do-

main experts may at best have subjective notions about the usefulness of

these metrics. It is thus desirable to learn a distance metric encompassing

the various notions of distance applicable to the domain, in order to ad-

equately represent domain semantics when analyzing the scientific plots.

This is precisely the focus of this dissertation sub-problem.
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4.2 Related Work

4.2.1 Metrics for Graphical Data

Approximate Neighborhood Function

Techniques have been developed for data mining over graphical data types.

In [PGF02], they use an Approximate Neighborhood Function for com-

parison, focuses on a fast and scalable method for mining. However this

compromises on accuracy. For our goals, accuracy is more important than

efficiency.

Tri-Plots

The Tri-plots [TTPF01] technique provides a scalable tool for multidimen-

sional data mining. This enables mining over data of various shapes and

dimensions using cumulative distribution functions of pair-wise distances

between two or more objects. However, they focus on the the intrinsic di-

mensionality of multi-dimensional objects. They not take into account the

position of the objects nor critical data points in them. In the context of

the problem defined here, the basic dimensionality of all the objects is the

same, since they are all 2-dimensional graphs plotting the behavior of pro-

cess parameters. Instead we need to focus on the semantics of individual

graphs.
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Edit Distances

Chen and Ozsu [CO03] compare the use of different metrics such as DTW

(Dynamic Time Warping) and LCSS (Longest Common Sub-Sequence) for

similarity-based retrieval of time series data. However, they do not con-

sider semantics of the data in the retrieval. Also in this work they do not

learn a single metric involving several individual metrics. In [CN04] Chen

and Ng propose a new metric based on the marriage of Lp-Norm and Edit

distance also for time-series data. This metric called ERP (Edit Distance

with Real Penalty) satisfies metric properties and also local time shifting

making it good for querying over a time series and also for index struc-

tures applicable to metrics. However this metric is more suitable for con-

tinuously varying data where some of the properties involved are needed

for comparison. Our data is not of a time-varying nature and hence such

properties are not needed.

4.2.2 Searching Multimedia Data

Keim et. al. [KB04] present an overview of various distance metrics for

similarity searching in multimedia databases. They focus on the content-

based retrieval of similar objects. They take into account a variety of data

such as text, images and audio in a single query. Rather than finding an

exact match, since that is not feasible for multimedia objects, they develop

efficient and effective similarity search techniques using various state-of-

the-art distance metrics. However, they do not propose the learning of a

single distance metric that combines various components. Nor do they de-
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fine the aspect of critical distance that is important in our targeted domains.

They focus on a variety of data, while our data is primarily graphical. Our

focus is on the detailed analysis of graphs, as opposed to a general search

over different categories of multimedia data. Some of the distance types

and subtypes overviewed in their work however could form the types and

subtypes in learning our domain-specific distance metric.

4.2.3 Learning Metrics for Nearest Neighbor Searches

Learning Position-based Distances

It is often desirable to learn a distance metric in order to guide the search

for the nearest neighbor, because the precise metric may not be known in

advance in several applications. Xing et. al. propose a technique that, given

examples of similar and dissimilar pairs of points, learns a distance metric

that respects these relationships [XNJR03]. They start with a generic dis-

tance formula that parameterizes a family of Mahalanobis distances. They

then try to learn the value of a particular variable in that formula which

determines whether the distance is Euclidean, or Manhattan or any other.

They use gradient descent and the idea of iterative projections. They re-

peatedly take a gradient step and then project the variable onto the given

training set so that the constraints of similarity and dissimilarity among

the pairs of points are satisfied [XNJR03]. However, in the learning pro-

cess, they only focus on position-based distances defined by the generic

Mahalanobis distance formula. They do not consider other aspects such

as statistical distances, shape-based distances and critical distances. In the
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context of our problem, all these aspects are important. Depending on the

domain, some may be more important than others. Thus, we cannot focus

our metric learning on a general category of position-based distances only.

Learning Relative Importance of Dimensions

When the search for the nearest neighbor occurs in high dimensional spaces,

an interesting problem is how to determine the relative importance of the

dimensions. Hinneburg et. al. propose an algorithm to solve this gener-

alized nearest neighbor problem [HAK00]. They use a greedy search and

a quality criterion to select relevant dimensions or projections with respect

to a given query. As an example of a meaningful quality criterion they

rate how well the data is clustered around a given query point within the

selected projection. They call this the projected nearest neighbor search.

However, in the real world application, the quality function has to be mod-

ified due to the data dependency of the term ”meaningful”. Also, their

search uses a basic distance metric such as Euclidean or Manhattan and

then learning the relative importance of the dimensions only. For our work

it is essential to learn the basic metric itself.

4.2.4 Genetic Algorithms, Neural Networks and Support Vector

Machines

Genetic algorithms [F58] can be used to select features in graphs relevant

for clustering thus trying to learn a distance metric. However, this does not

give enough accuracy in our applications. Neural networks [B96] could
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possibly be used for distance metric learning. However our data is such

that the distance between pairs of plots is not known in advance to serve as

the training set required. Similar issues hold for other learning techniques

such as support vector machines [M97] since we do not have positive

and negative training samples available in advance as required for learn-

ing. However, exploring distance metric learning using these and other

approaches as alternatives and comparing them with LearnMet presents

topics for future work.

4.2.5 Ensemble Learning

Zhou et. al. [ZWT02] propose an approach for ensembling neural net-

works. They train a number of neural networks at first, then assign random

weights to them and employ a genetic algorithm to evolve the weights to

characterize the fitness of the neural network in constituting an ensemble.

Although we do not use neural networks, each distance metric in our prob-

lem could possibly be viewed as a learner, thus in combining them we get

an ensemble. At present, we use an approach analogous to greedy search

to learn simple metrics [M97]. Considering other approaches for such sub-

problems within LearnMet and comparing their computational complexity

and accuracy with our present approach presents interesting future issues.

4.3 Proposed Approach: LearnMet

We propose a technique called LearnMet [VRRMS0805] to learn semantics-

preserving distance metrics for graphical plots. The input to LearnMet is
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a training set with actual clusters of such graphs provided by domain ex-

perts. The five basic steps of our technique are: (1) guess an initial metric D

as a weighted sum of distance metrics applicable to the domain; (2) use that

metric D for clustering with an arbitrary but fixed clustering algorithm to

get predicted clusters; (3) evaluate clustering accuracy by comparing pre-

dicted clusters with actual clusters; (4) adjust the metric D based on the

error between the predicted and actual clusters, and re-execute the cluster-

ing and evaluation until error is below a threshold or maximum number of

epochs is reached; (5) output the metric D giving lowest error as the learned

metric. Note that an epoch refers to a run of all the 5 steps of LearnMet.

The LearnMet technique is summarized in the flowchart in Figure 4.3.

Figure 4.3: Flowchart on LearnMet

The details of LearnMet are discussed in the subsections to follow.
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4.4 The LearnMet Distance

In order to proceed with the discussion of the learning strategy, we first

define the following terminology.

4.4.1 Definition of LearnMet Distance

A LearnMet distance D is a weighted sum of components, where each com-

ponent can be a position-based, a statistical, or a critical distance. The

weight of each component is a numerical value indicating its relative im-

portance in the domain.

Thus a LearnMet distance is of the form D = Σm
i=1wiDi where each Di

is a component, wi is its weight, and m is number of components.

It is desirable that the LearnMet distance is a metric so that clustering

algorithms requiring the notion of distance to be a metric [KR94] can be

applied. Also, pruning during similarity search can be done using triangle

equality [HK01]. We now discuss distance metric properties with reference

to LearnMet.

In general, the properties required for any distance function to be a met-

ric are listed below with respect to objects P , Q and R in n-dimensional

space [HK01].

1). Distance should be non-negative, i.e., Distance(P,Q) >= 0.

2). Distance of an object to itself should be zero, i.e., Distance(P, P ) = 0.

3). Distance should be commutative, i.e., Distance(P,Q) = Distance(Q,P ).
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4). Distance should satisfies triangle inequality, i.e., if 3 objects P,Q and

R form a triangle in n-dimensional space,then sum of any two sides

is greater than the third, i.e..,

• Distance(P,Q) + Distance(Q,R) > Distance(P,R)

• Distance(P,Q) + Distance(P,R) > Distance(Q,R)

• Distance(P,R) + Distance(Q,R) > Distance(P,Q)

With reference to the above properties, we state below the conditions

for the LearnMet distance D = Σm
i=1wiDi to be a metric.

4.4.2 Conditions for the distance function D in LearnMet to be a

Metric

The sufficient conditions for the distance D = Σm
i=1wiDi to be a metric are

stated as Theorem 1.

Theorem 1

If each component Di is a distance metric and each weight wi >= 0 then

D = Σm
i=1wiDi is a distance metric, i.e., it satisfies the metric properties.

Proof of Theorem 1 Since each component Di is a metric, it is known that:

1). Di(P,Q) >= 0

2). Di(P, P ) = 0

3). Di(P,Q) = Di(Q,P )
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4). If P , Q and R form a triangle in n-dimensional space then,

• Di(P,Q) + Di(Q,R) > Di(P,R)

• Di(P,Q) + Di(P,R) > Di(Q,R)

• Di(P,R) + Di(Q,R) > Di(P,Q)

Now consider D(P,Q) using D = Σm
i=1wiDi.

Thus D(P,Q) = Σm
i=1Di(P,Q) = w1D1(P,Q) + w2D2(P,Q) + · · · +

wmDm(P,Q)

Consider each individual metric property for D = Σm
i=1wiDi

Property 1: Distance is non-negative Since each component Di is a met-

ric,

D1(P,Q) >= 0, D2(P,Q) >= 0 . . . Dm(P,Q) >= 0

Hence for all wi >= 0,

w1D1(P,Q) >= 0 (Eqn. 1.1)

w2D2(P,Q) >= 0 (Eqn. 1.2)

. . .

. . .

. . .

wmDm(P,Q) >= 0 (Eqn. 1.m)

Summing the equations (1.1) . . . (1.m),

w1D1(P,Q) + w2D2(P,Q) + · · ·+ wmDm(P,Q) >= 0

Hence D(P,Q) = Σm
i=1wiDi(P,Q) >= 0

Hence Property 1 is satisfied.
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Property 2: Distance of an object to itself is zero Since each component

Di is a metric,

Dc1(P, P ) >= 0, D2(P, P ) = 0 . . . Dm(P, P ) = 0

Hence for all wi >= 0,

w1D1(P, P ) = 0 (Eqn. 2.1)

w2D2(P, P ) = 0 (Eqn. 2.2)

. . .

. . .

. . .

wmDm(P, P ) = 0 (Eqn. 2.m)

Summing the equations (2.1) . . . (2.m),

w1D1(P, P ) + w2D2(P, P ) + · · ·+ wmDm(P, P ) = 0

Hence D(P, P ) = Σm
i=1wiDi(P, P ) = 0

Hence Property 2 is satisfied.

Property 3: Distance is commutative Since each component Di is a met-

ric,

D1(P,Q) = D1(Q,P ), D2(P,Q) = D2(Q,P ) . . . Dm(P,Q) = Dm(Q,P )

Hence for all wi >= 0,

w1D1(P,Q) = w1D1(Q,P ) (Eqn. 3.1)

w2D2(P,Q) = w2D2(Q,P ) (Eqn. 3.2)

. . .

. . .

. . .

wmDm(P,Q) = wmDm(Q,P ) (Eqn. 3.m)
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Summing the equations (3.1) . . . (3.m),

w1D1(P,Q) + w2D2(P,Q) + · · ·+ wmDm(P,Q)

= w1D1(Q,P ) + w2D2(Q,P ) + · · ·+ wmDm(Q,P )

Hence Σm
i=1wiDi(P,Q) = Σm

i=1wiDi(Q,P )

Hence D(P,Q) = D(Q,P )

Hence Property 3 is satisfied.

Property 4: Triangle inequality Since each component Di is a metric,

If P, Q and R form a triangle in n-dimensional space then,

D1(P,Q) + D1(Q,R) > D1(P,R), D1(P,Q) + D1(P,R) > D1(Q,R),

D1(P,R) + D1(Q,R) > D1(P,Q);

D2(P,Q) + D2(Q,R) > D2(P,R), D2(P,Q) + D2(P,R) > D2(Q,R),

D2(P,R) + D2(Q,R) > D2(P,Q);

. . .

. . .

. . .

Dm(P,Q) + Dm(Q,R) > Dm(P,R), Dm(P,Q) + Dm(P,R) > Dm(Q,R),

Dm(P,R) + Dm(Q,R) > Dm(P,Q);

Hence for all wi >= 0,

w1D1(P,Q) + w1D1(Q,R) > w1D1(P,R) (Eqn. 4.1.1)

w1D1(P,Q) + w1D1(P,R) > w1D1(Q,R) (Eqn. 4.1.2)

. . .

w1D1(P,R) + w1D1(Q,R) > w1D1(P,Q) (Eqn. 4.1.m)

w2D2(P,Q) + w2D2(Q,R) > w2D2(P,R) (Eqn. 4.2.1)
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w2D2(P,Q) + w2D2(P,R) > w2D2(Q,R) (Eqn. 4.2.2)

. . .

w2D2(P,R) + w2D2(Q,R) > w2D2(P,Q) (Eqn. 4.2.m)

. . .

. . .

. . .

wmDm(P,Q) + wmDm(Q,R) > wmDm(P,R) (Eqn. 4.m.1)

wmDm(P,Q) + wmDm(P,R) > wmDm(Q,R) (Eqn. 4.m.2)

. . .

wmDm(P,R) + wmDm(Q,R) > wmDm(P,Q) (Eqn. 4.m.m)

Summing the equations (4.1.1), (4.2.1) . . . (Eqn. 4.m.1),

w1D1(P,Q)+w1D1(Q,R)+w2D2(P,Q)+w2D2(Q,R)+· · ·+wmDm(P,Q)+

wmDm(Q,R) > w1D1(P,R) + w2D2(P,R) + . . . + wmDm(P,R) (Eqn. 5)

Equation 5 can also be written as,

Σm
i=1wiDi(P,Q) + Σm

i=1wiDi(Q,R) > Σm
i=1wiDi(P,R)

Similarly, summing the equations (4.1.2), (4.2.2) . . . (4.m.2),

w1D1(P,Q)+w1D1(P,R)+w2D2(P,Q)+w2D2(P,R)+· · ·+wmDm(P,Q)+

wmDm(P,R) > w1D1(Q,R) + w2D2(Q,R) + · · · + wmDm(Q,R) (Eqn. 6)

Equation 6 can also be written as,

Σm
i=1wiDi(P,Q) + Σm

i=1wiDi(P,R) > Σm
i=1wiDi(Q,R)

Similarly, summing the equations (4.1.m), (4.2.m) . . . (4.3.m),
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w1D1(P,R)+w1D1(Q,R)+w2D2(P,R)+w2D2(Q,R)+· · ·+wmDm(P,R)+

wmDm(Q,R) > w1D1(P,Q) + w2D2(P,Q) + · · ·+ wmDm(P,Q) (Eqn. 7)

Equation 7 can also be written as,

Σm
i=1wiDi(P,R) + Σm

i=1wiDi(Q,R) > Σm
i=1wiDi(P,Q)

Hence from equations (5), (6) and (7),

• D(P,Q) + D(Q,R) > D(P,R)

• D(P,Q) + D(P,R) > D(Q,R)

• D(P,R) + D(Q,R) > D(P,Q)

Hence Property 4 of triangle inequality is satisfied.

Conclusion: Hence it has been proved above that all properties of dis-

tance metrics are satisfied for D = Σm
i=1wiDi. Thus, if each component Di

is a metric and each weight wi >= 0, then D = Σm
i=1wiDi is a distance

metric. This proves Theorem 1.

In our targeted applications, conditions in Theorem 1 are satisfied. Since

the plots have interval-scaled variables, distances applicable to them are

metrics [HK01], this is sufficient to say that each is component a metric.

Also, we consider only non-negative weights since negative weights do

not have a semantic interpretation in our targeted applications [SMMV04,

TBC93].



4.5. DETAILS OF LEARNMET 103

4.5 Details of LearnMet

The steps of the technique are as follows.

1). Initial Metric Step

2). Clustering Step

3). Cluster Evaluation Step

4). Weight Adjustment Step

5). Final Metric Step

The details of each of these steps are explained below.

4.5.1 Initial Metric Step

Domain experts are asked to identify components (i.e., distance metrics)

applicable to the graphical plots that will serve as building blocks for the

learning of a new metric. If the experts have subjective notions about the

relative importance of the components, this information is used to assign

initial weights. An Initial Weight Heuristic is proposed.

Initial Weight Heuristic: Assign initial weights to the components in the

LearnMet distance metric based on the relative importance of the compo-

nents in the domain.

The relative importance of the components can be inferred from the

subjective notion of the domain experts. If this relative importance is un-

known then random weights are assigned to all components. Initial weights

are typically assigned on a scale of 0 to 10.
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4.5.2 Clustering Step

The domain experts provide a set of actual clusters over a training set of

graphical plots. In order to perform clustering in LearnMet, an arbitrary

but fixed clustering algorithm such as k-means [M67] is selected. Using

D = Σm
i=1wiDci as the distance metric, k clusters are constructed using the

selected algorithm, where k is the number of actual clusters in the given

training set. The clusters obtained from the algorithm using metric D are

referred to as the predicted clusters.

4.5.3 Cluster Evaluation Step

The cluster evaluation involves comparing the predicted and actual clus-

ters over the training set with each other. An example of predicted and

actual clusters of plots is shown in Figure 4.4.

Ideally, the predicted clusters should match the actual clusters perfectly.

Any difference between predicted and actual clusters is considered an er-

ror. To compute this error, we consider pairs of graphical plots and in-

troduce the following notation to depict the notion of correctness in the

domain.

Notion of Correctness

Given a pair of graphs ga and gb, we say that:

• (ga, gb) is a True Positive (TP ) pair if ga and gb are in the same actual

cluster and in the same predicted cluster, e.g., (g1, g2).
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Figure 4.4: Predicted and Actual Clusters

• (ga, gb) is a True Negative (TN) pair if ga and gb are in different actual

clusters and in different predicted clusters, e.g., (g1, g3).

• (ga, gb) is a False Positive (FP ) pair if ga and gb are in different actual

clusters but in the same predicted cluster, e.g., (g3, g4).

• (ga, gb) is a False Negative (FN) pair if ga and gb are in the same actual

cluster but in different predicted clusters, e.g., (g4, g5).

Figure 30 includes examples of each of these kinds of pairs. The pair

(g1, g2) is a true positive; (g2, g3) is a true negative pair; (g3, g4) is a false

positive pair; and (g4, g6) is a false negative pair. The error measure of

interest to us is failure rate which is defined below [WF00].
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Success and Failure Rates

Let TP , TN , FP and FN denote the number of true positive, true negative,

false positive and false negative pairs respectively. Also let SR denote the

Success Rate and FR = (1− SR) denote the Failure Rate.

Then, SR = TP+TN
TP+TN+FP+FN

Hence FR = FP+FN
TP+TN+FP+FN

In our context, false positives and false negatives are equally undesir-

able. Hence, our definition of failure rate weighs them equally.

Given a number G of graphs in the training set, the total number of

pairs P is given by G choose 2, i.e, P = G!
2!(G−2)! [PNC99]. Thus, for 25

graphs there are 300 pairs, for 50 graphs, 1225 pairs, etc.

Overfitting

To avoid overfitting in LearnMet, we use an approach analogous to in-

cremental gradient descent [B96]. Instead of using all pairs of graphs

for evaluation, a subset of pairs is used called ppe or pairs per epoch. In

each epoch, a randomly selected subset of pairs is used for evaluation and

weight adjustment. Thus there is significant randomization in every epoch.

If ppe = 15, then we have a total of 300 choose 15 i.e, 300!
15!285! distinct pairs for

learning [PNC99]. Thus in each epoch 15 randomly selected pairs can be

used. This still gives a large number of epochs with distinct pairs for learn-

ing. This incremental approach reduces time complexity and helps avoid

overfitting. Determining good ppe values is an enhancement issue and will

be discussed in Section 4. Also in LearnMet, the random seed is altered
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in the clustering algorithm in different epochs as an additional method to

avoid overfitting. This refers to the seed in the algorithm such as k-means

[M67] used in clustering.

Error Threshold

Ideally, the error i.e., failure rate in an epoch should be zero. However,

in practice a domain-specific error threshold t is used. A domain-specific

error threshold t is the extent of error allowed per epoch in the domain,

where error is measured by failure rate.

If the error is below threshold then the final distance metric is output as

explained in step 5. However, if the error is not below threshold in a given

epoch, then the metric is adjusted based on this error as explained below.

4.5.4 Weight Adjustment Step

In order to proceed with the details of weight adjustment the following

terminology related to distances is first explained. This is because the cause

of the error can be traced to certain distances between pairs of graphs in the

predicted and actual clusters.

Distance between a Pair of Graphical Plots

The distance D(ga, gb) between a pair of graphs ga and gb is the weighted

sum of components in the plots using metric D. Thus, D(ga, gb) = w1D1(ga, gb)+

· · · + wmDm(ga, gb).
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The concept of average distance between false positive and false nega-

tive pairs is now introduced.

Average False Negative (DFN) and False Positive (DFP ) Distances

The distances DFN and DFP are defined as the average distance using

the metric D of the false negative pairs and of the false positive pairs re-

spectively. These are calculated as:

DFN = (1/FN)ΣFN
j=1D(ga, gb) where (ga, gb) denotes each FN pair.

DFP = (1/FP )ΣFP
j=1D(ga, gb) where (ga, gb) denotes each FP pair.

Figure 4.5: Distances used in Weight Adjustment

Given this notion of distances refer to Figure 4.5. Consider first the false

negative pairs, e.g., (g4, g5) and (g4, g6). These pairs are in the same actual

cluster. However they are predicted to be in different clusters. Since pre-

dicted clusters are obtained with the metric D the cause of the error is that

the (average) distance DFN between these pairs with the given metric is

greater than it should be. Hence these pairs are incorrectly pushed far apart
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to be in different predicted clusters although they in reality they should

have been closely placed in the same actual cluster. Conversely, for false

positive pairs in different actual but same predicted clusters, e.g., (g3, g4)

in Figure 4.5, the cause of the error is that the (average) distance DFP is

smaller than it should be. These distances are now used in altering weights

using heuristics as follows.

Heuristics in Weight Adjustment

Consider the error due to the false negative pairs. To reduce this error it

is desirable to decrease the distance DFN . In order to reduce DFN the

weights of one or more components in the metric used to calculate the

distance in the present epoch is decreased. For this we propose the FN

Heuristic.

FN Heuristic Decrease the weights of the components in the metric D in

proportion to their contributions to the distance DFN . That is, for each

component:

New weight w
′

i = wi − DFNi

DFN

where DFNi = DFN for component Di alone.

Conversely, consider the FP pairs. To reduce their error we increase

DFP . This is done by increasing the weights of one or more components

in the metric using the FP Heuristic.

FP Heuristic Increase the weights of the components in the metric D in

proportion to their contributions to the distance DFP . That is, for each
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component:

New weight w
′′

i = wi + DFPi

DFP

where DFPi = DFP for component Di alone.

Combining these two we get the weight adjustment heuristic below.

Weight Adjustment Heuristic For each component Di, its new weight is

w
′′′

i = max(0, wi − DFNi

DFN + DFPi

DFP ).

Thus, the new metric is: D
′′′

= Σm
i=1w

′′′

i Di

This new metric obtained after weight adjustments is likely to minimize

the error due to the both false positive and false negative type pairs. Clus-

tering in the next training epoch is performed with this new metric.

As stated earlier, the final metric step is reached if the error is the below

threshold or if the maximum number of epochs is reached. This step is

explained below.

4.5.5 Final Metric Step

If the learning terminates because the error is below the threshold then the

metric in the last epoch is output as the final metric. However if termination

occurs because the maximum number of epochs is reached then the most

reasonable metric to be output is the one corresponding to the epoch with

the minimum error among all epochs.

Convergence:

LearnMet is not guaranteed to converge or to yield an optimal distance

metric. However, thorough experimental evaluation in our application
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domain has consistently shown convergence to errors below the required

threshold.

4.6 Algorithm for LearnMet

Given the overview and detailed discussion on the steps of the LearnMet

technique, we now give the algorithm for LearnMet.

The LearnMet Algorithm Given: Training set with k actual clusters over G graphical plots,

error threshold t, maximum number of epochs max, domain expert input on distance components Di

applicable to graphs

1). Initial Metric Step

a. Assign each component Di to D

b. If relative importance of each Di available then use Initial Weight Heuristic to assign each

wi

c. Else assign a random wi to each Di

d. Thus initialize D = Σm
i=1

wiDi

2). Clustering Step

a. Select arbitrary but fixed clustering algorithm

b. Number of clusters = k (constant)

c. Cluster plots using distance D = Σm
i=1

wiDi

3). Cluster Evaluation Step

a. Select ppe pairs of graphs

b. Calculate TP, TN, FP, FN for ppe pairs

c. Calculate failure rate FR = (FP + FN)/(TP + TN + FP + FN)

d. If (FR < t) or (epoch == max) then go to 5. Final Metric Step
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4). Weight Adjustment Step

a. Calculate distances DFN , DFP

b. Apply Weight Adjustment Heuristic to get new metric D
′′′

c. Go to 2(c) in Clustering Step using D = D
′′′

as distance

5). Final Metric Step

a. If (FR < t) then return metric D

b. Else find epoch with minimum failure rate FR

c. Return corresponding metric D

4.7 Approach Enhancements

The LearnMet approach described in the algorithm above yields metrics

that provide higher clustering accuracy than the default Euclidean distance

[VRRMS0805]. This is elaborated in the section on evaluation. However,

there is scope for further enhancement.

4.7.1 Goals in Enhancement

The three primary goals in enhancement are:

• Quality: This goal refers to improving the accuracy of the distance

metrics in processes such as clustering.

• Efficiency: This involves reducing the number of epochs needed for

convergence and hence the total training time.

• Simplicity: This deals with learning simple metrics that meet the re-

quirements in the domain. Simplicity is concerned with the number

of components in the distance metric.
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The most significant among all these goals in the context of our problem

is quality. This is because when the learned metrics are used as the distance

in processes such as clustering, the resulting inferences should be as close

as possible to the notion of correctness in the domain. This is to ensure

that the inferences convey the right information for applications such as

decision support in the domain.

The following approaches are used to meet one or more of the above

goals:

1). Selecting Pairs Per Epoch: This refers to selecting a suitable number of

pairs of plots in each epoch, denoted as pairs per epoch or ppe. This

is to avoid overfitting and learn a generic hypothesis. This mainly

aims to achieve the goal of quality. However it also impacts efficiency

due to the lower execution time involved with the reduced number

of pairs per epoch.

2). Using Domain Knowledge in Weight Selection and Adjustment: This deals

with considering the semantics of the distance components in adjust-

ing weights and intelligently guessing the initial weights so as to en-

hance the learning. This is in order to learn metrics closer to the no-

tion of correctness in the domain and to converge faster. Thus it aims

to meet the two goals of quality and efficiency.

3). Learning Simple Metrics: In this approach we apply the Occam’s Razor

principle [M97] in preferring simpler theories over complex ones.

Thus we first consider metrics with a single component, then with

two components, then three and so forth until convergence occurs or
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the training times out.

4.7.2 Selecting Pairs Per Epoch

The LearnMet approach by default considers the number of pairs per epoch,

ppe = G where G is the number of graphs in the training set [VRRMS0805].

The enhancement to LearnMet involves selecting a suitable number of pairs

per epoch such that there are sufficient pairs in every epoch and yet enough

randomization to avoid overfitting. This is addressed as follows.

Total Number of Pairs

Given that the number of graphs in the training set is G, the total number

of pairs available for learning is P = G!
2!(G−2)! [PNC99]. For example, if

G = 25, P = 300. In every epoch of LearnMet, a random set of ppe pairs is

selected for evaluation and weight adjustment. The total number of distinct

combinations of ppe pairs that can be made from P pairs is given as R =

P !
ppe!(P−ppe)! . While ppe denotes the amount of training data in each epoch, R

denotes the extent of randomization. For example if G = 25 and ppe = 15,

the total number of combinations available for learning is R = 7.68 × 1024.

We now consider different ranges for ppe.

Low Range of ppe

In order to learn a hypothesis that does not overfit the training data, it is

desirable to have more randomization. This would suggest using low ppe

values, e.g., ppe <= G. These are likely to give a wider range of distinct
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combinations. However, consider for example an extreme of ppe = 1. If

one distinct pair is used in each epoch for evaluation and weight adjust-

ment, then it could happen that convergence to error below threshold oc-

curs over the first few epochs. However the learned metric may only fit

the few pairs that got considered in these epochs. The resulting hypothe-

sis, namely, the learned metric would possibly not give high accuracy over

unseen test data, since it is not generic. Likewise, ppe values higher than 1

but still in the low range are likely to yield a similar, though perhaps less

serious problem of overfitting.

High Range of ppe

Consider the argument that a hypothesis is likely to be stronger if it is

learned over a larger volume of data. This would suggest the other ex-

treme, i.e., using ppe values closer to P = G!
2!(G−2)! . Mathematically this

would yield a fairly large number of distinct combinations R. For exam-

ple, consider ppe = 285. This gives R = 300!
285!(300−285)! . Now consider

ppe = P − 285 = 15. This gives R = 300!
15!(300−15)! . Thus both ppe = 285

and ppe − 15 give R = 300!
15!285! , thus mathematically producing the same

number of distinct combinations, i.e., 7.68 × 1024. However, there is a ma-

jor difference between the two. For ppe = 285, there is the danger of the

same pairs getting selected in each epoch, with only a few pairs distinct.

For example, if pairs 2 through 286 are selected in one epoch, and pairs 3

to 287 in another, then only 2 pairs are distinct in these two epochs. Thus

there is not really enough randomization which leads to the risk of overfit-

ting. Moreover, with high ppe values, there is also a huge overhead in each
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epoch. An extreme case of this occurs for ppe = P , i.e., using all pairs per

epoch. In this case, the exact same pairs would get selected in each epoch

giving even less generality.

Middle Range of ppe

Let us now consider using ppe values close to P/2, i.e., half the total num-

ber of pairs in every epoch. This mathematically gives a large extent of

randomization R = P !
(P/2)!(P/2)! . For example, for P = 300, this would yield

R = 300!
150!150! . Also this is likely to yield genuinely distinct combinations of

pairs per epoch, since it does not consider almost the same the P pairs in

each epoch. In addition, this gives a fairly large number of pairs in every

epoch. Thus the learned metrics are likely to be more generic. This reduces

the risk of overfitting. At the same time the overhead in each epoch is not

as high as with ppe values close to P . For example, given G = 25, a good

ppe value would be ppe = 300/2 = 150. In general it is thus advisable to

select ppe values in the middle range, i.e., equal to or close to P/2. This is

corroborated in the experimental evaluation section.

4.7.3 Using Domain Knowledge in Weight Selection and Adjust-

ment

The basic LearnMet approach [VRRMS0805] proposes a weight adjustment

heuristic that considers all individual metrics at par when assigning the

blame for the error. This heuristic is based on the distance contribution of

each component to the average false positive and false negative distances
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DFP and DFN respectively. However, consider for example that a contri-

bution of DFNi/DFN = 0.4 for Euclidean distance may be more or less

crucial than the same for Leidenfrost distance. It is thus desirable to incor-

porate the semantics of the components and scale the weight adjustment

accordingly. Based on this, we now define the term scaling factor as fol-

lows.

Scaling Factor

A scaling factor for a distance component in the LearnMet metric is a num-

ber that determines the extent to which the weight of that component should

be altered based on its semantics.

Scaling factors are calculated as follows. Consider a single component

in the LearnMet metric used as the notion of distance in clustering. The

greater the accuracy of the clusters given by that component alone, the

greater is the significance of the component in the domain. This is because

clustering accuracy in LearnMet is the extent to which the predicted clus-

ters over a given data set match the notion of correctness depicted by actual

clusters. Thus if a component alone used as the distance metric yields high

clustering accuracy, it implies that this component by itself is a significant

feature in preserving domain semantics. Now, if a component is more sig-

nificant, then it is advisable to alter its weight to a greater extent in making

adjustments. It is likely to give faster convergence and learn a more accu-

rate metric. We therefore propose the following heuristic for scaling factors.
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Scaling Factor Heuristic Assign a scaling factor to each component in the

LearnMet metric directly proportional to the clustering accuracy obtained

with that component alone used as the notion of distance.

With this discussion, we give the procedure for assigning scaling fac-

tors.

Scaling Factor Calculation

Scaling factors are calculated as follows.
Given: Training set with actual clusters of G graphs, Set of Components applicable to them

1). For each component Di

a. Repeat N times (where N = A × B, such that A = number of training sets and B =

number of clustering seeds)

i. Perform clustering over training set using D = Di

ii. Calculate TP, TN, FP, FN for all P pairs

iii. Calculate accuracy as Success Rate SRi = (TP + TN)/(TP + TN + FP + FN)

b. Calculate scaling factor sfi = (1/N)ΣN
j=1

SRi

2). Return scaling factors for all components

Scaled Weight Adjustment Heuristic

The Weight Adjustment Heuristic is now modified to incorporate scaling

factors. We thus propose the Scaled Weight Adjustment Heuristic as fol-

lows.

Scaled Weight Adjustment Heuristic: For each component Di, its new

weight is:
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w
′′′

i = max(0, wi − sfi × DFNi

DFN + sfi × DFPi

DFP ).

Thus, the new metric is: D
′′′

= Σm
i=1w

′′′

i Di.

Initial Weight Selection

Scaling factors are likely to have a better impact on the learning if the

weights in the initial metric are assigned according to the initial weight

heuristic, i.e., based on the relative importance of each component. Then

although learning the weight of a component with a low scaling factor may

take longer, this effect is counterbalanced by the fast convergence of com-

ponents with high scaling factors. Since the components with high scaling

factors are more important, the overall convergence to the notion of cor-

rectness is likely to be quicker. Also the accuracy of the learned metric in

clustering is likely to be higher since the weights of the more significant

components have been scaled to emphasize their importance.

In the basic LearnMet approach [VRRMS0805], the relative importance

of components is determined by the subjective notions of the domain ex-

perts and initial weights are assigned accordingly. However, if this relative

importance is not known in advance then weights are assigned randomly.

In the enhanced approach, we assign initial weights proportional to the ac-

curacy of each individual component in clustering (accuracy is measured

as the success rate SR using that component alone as explained in the Clus-

ter Evaluation Step of LearnMet). Initial metrics thus selected exploit the

power of scaling factors to an even greater extent, as corroborated experi-

mentally. Thus the selection of initial weights and scaling factors both pro-

portional to accuracy is likely to boost the performance of the algorithm.
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4.7.4 Learning Simple Metrics

The Goal of Simplicity

This goal in the enhancement of LearnMet refers to learning a metric that

is simple and yet meets the requirements in the domain. The main require-

ment in our targeted domains is that the learned metric should give high

accuracy in clustering. The simplicity of the metric is measured in terms of

two parameters, namely:

• Number of components: The fewer the components used in the metric,

the simpler is the metric.

• Amount of data for each component: The less the amount of data needed

to store a component, the simpler is that component and hence the

corresponding metric.

It is to be noted that this notion of simplicity is subjective. Also, qual-

ity is more critical than simplicity for our goals. Thus a simple metric is

preferred over a complex one only if both achieve the same quality.

The reasons for learning a simple metric are as follows.

1). Simple metrics are more efficient in terms of time complexity when

used as the notion of distance in processes such as clustering.

2). Less storage space is required for simple metrics.

3). Experts cannot always identify components applicable to the plots. A

brute force combination of components is not practical.
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Principle in Learning

The main principle applied here is that of Occam’s Razor which states that

simpler theories are preferred over complex ones [M97]. In our case, the

theory refers to the learned metric. Considering the two criteria of quality

and simplicity, the process of learning, analogous to greedy search [M97]

is outlined below.

Process of Learning Simple Metrics Given: Training set with actual clusters of plots;

error threshold t

1). Identify all m components Di : i = 1 to m in the domain

2). For each Di

a. Do clustering in LearnMet with D = Di, get FR and SR (failure and success rates)

b. If (FR <= t) then set final metric = D and go to step 5

3). If (FR > t) then m
′

= 2;

• Repeat

– Execute LearnMet with D = Σm
′

i=1
wiDi where D1 . . . D

′

m are the m
′

components

with highest clustering accuracies

– If (FR <= t) then set final metric = D and go to step 4

– Set m
′

= m
′

+ 1

• Until m
′

= m

4). Output final metric

4.8 Evaluation of LearnMet

LearnMet has been rigorously evaluated in the Heat Treating domain [M95]

that motivated this research. The source code used for experimentation



4.8. EVALUATION OF LEARNMET 122

is our LearnMet software tool [VRRMS1005]. This tool is developed in

Java. We have implemented the k-means algorithm [M67] for clustering.

The platform used for running these experiments has been a Mobile In-

tel Celeron (R) PC with a CPU Speed of 2 GHz, 192 MB of RAM and the

Microsoft Windows XP Professional Version 2002 operating system. The

general parameter settings in these experiments have been as follows.

Domain experts have provided data sets of different sizes consisting

of heat transfer curves placed in actual clusters. These have been used as

training and test sets such that the training set for one experiment served

as the test set for another. Thus training sets and test sets have been kept

distinct in every experiment. We have used three different data set sizes, of

G = 15, G = 25 and G = 40 graphs respectively. This has given P = 105,

P = 300 and P = 780 pairs of graphs respectively. The maximum number

of epochs has been set to 1000 [VRRMS1005] in all these experiments. The

parameters altered have been the error thresholds, ppe values, scaling fac-

tors and initial metrics. The seeds in the clustering step of LearnMet have

also been altered to provide randomization. Our experimental evaluation

is presented below.

4.8.1 Effect of Initial Metrics and Error Thresholds

In these experiments the goal has been to observe the impact of general

parameters such as error thresholds and initial metrics. The number of

pairs per epoch has been maintained at the default value of ppe = G. The

experiments shown below are for G = 25 giving P = 300, i.e., a training

set of 25 graphs giving 300 pairs. Actual clusters over the training set have
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been provided by domain experts. The value of k (number of clusters) has

been kept constant at k = 5 since this is the number of actual clusters. The

test set consisted of 40 distinct graphs giving 780 pairs. Actual clusters over

the test set are also provided by experts.

Effect of Initial Metrics

These experiments have been conducted to observe the impact of the initial

metrics on the learning. Hence the other parameters have been maintained

constant. Experts give an error threshold of 10 percent, i.e., 0.1 as acceptable

in the domain for evaluation over test sets. As a default, we have used the

same threshold for learning over the training set. The maximum number

of epochs has been maintained at a constant value of 1000. The number of

pairs per epoch, ppe = G = 25 for these experiments. Initial components in

the metric have been given by experts. Two distinct assignments of initial

weights have been given by two different experts. The corresponding two

metrics are denoted by DDE1 and DDE2 respectively. A third initial met-

ric DEQU has been obtained by assigning equal weights to all components.

Several experiments have been run by assigning random weights to com-

ponents. We present here two such experiments with randomly generated

metrics called DRND1 and DRND2. Note that each experiment shown here

represents the average of 4 experiments conducted using different seeds in

the clustering algorithm. The initial metrics are shown in Figure 4.6 be-

low. The learned metrics are shown in Figure 4.7. In these figures, DE1

denotes the experiment conducted with initial metric DDE1, EQU denotes

the experiment with initial metric DEQU and so forth.
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Figure 4.6: Initial Metrics

Figure 4.7: Learned Metrics

Figures 4.8 through 4.12 depict the behavior of LearnMet during train-

ing. Experiments EQU , RND1 and RND2 take longer to converge than

DE1 and DE2. However they all converge to approximately the same D.

Figure 4.8: Training Behavior in Experiment DE1

The clustering accuracy of each of the learned metrics over a the test

set is shown in Figure 4.13. The size of the distinct test set has been G =

40 graphs. The clustering accuracy as stated earlier has been measured

by comparing clusters obtained from learned metrics with actual clusters
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Figure 4.9: Training Behavior in Experiment DE2

Figure 4.10: Training Behavior with Experiment EQU

Figure 4.11: Training Behavior in Experiment RND1
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Figure 4.12: Training Behavior with Experiment RND2

over the test set. Comparative evaluation has also been performed using

Euclidean distance (shown as ED in the figure). The learning efficiency in

terms of the number of epochs for convergence is shown in Figure 4.14.

Figure 4.13: Clustering Accuracy with Different Learned Metrics and Eu-
clidean Distance

Observations from experiments with different initial metrics

• Convergence to error below threshold occurs in all the experiments.

• The experiments with initial metrics provided by experts converge

faster than the others.

• In each experiment the learned metrics have approximately the same
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Figure 4.14: Learning Efficiency with Different Initial Metrics

weights, i.e., irrespective of the initial metrics the experiments con-

verge to approximately the same learned metrics.

• Clustering accuracies of the learned metrics are higher than that of

Euclidean distance.

Effect of the Error Threshold

The parameter of interest in these experiments has been the error threshold.

The training and test sets used here have been the same as for the experi-

ments on initial metrics. The impact of altering thresholds from 0.1 to 0.01

has been noted. Each experiment here represents the average of 4 experi-

ments conducted using different initial metrics and altering the seeds in the

clustering algorithm. The number of pairs per epoch has been maintained

at a constant value of ppe = G = 25 in these experiments. All other param-

eters have also been constant, except the threshold, so that the effect of the

threshold can be observed.

Figures 4.15 to 4.19 depict the behavior of LearnMet during training

with different thresholds.

Figures 4.20 shows the clustering accuracy over the test set obtained
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Figure 4.15: Training Behavior with Threshold = 0.1

Figure 4.16: Training Behavior with Threshold = 0.075

Figure 4.17: Training Behavior with Threshold = 0.05
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Figure 4.18: Training Behavior with Threshold = 0.025

Figure 4.19: Training Behavior with Threshold = 0.01

with the learned metrics. Figure 4.21 shows the learning efficiency over the

training set.

Observations from the experiments on varying error thresholds

1). Clustering with the learned metrics gives higher accuracy than clus-

tering with Euclidean distance (as observed from earlier experiments).

2). As the error threshold is reduced, the number of epochs to converge

tends to increase. Thus the learning efficiency reduces with a decrease

in threshold.

3). With reduced thresholds however, the clustering accuracy over the

test set is higher. As the threshold is reduced from 0.1 to 0.01, accu-
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Figure 4.20: Clustering Accuracy with Varying Thresholds

Figure 4.21: Learning Efficiency with Varying Thresholds



4.8. EVALUATION OF LEARNMET 131

racy increases from approximately 81 to 83 percent.

4). Since accuracy is more critical for our goals it is advisable to select

lower error thresholds to getter better quality results. Thus for the

remaining experiments we use an error threshold of 0.01 throughout.

4.8.2 Effect of Parameters after Enhancement

In these experiments the parameters of interest have been the number of

pairs per epoch, the scaling factors and the components in the metric. Each

of these has been considered separately.

Effect of the Number of Pairs Per Epoch

The following experiments have been conducted to observe the impact of

the number of pairs per epoch ppe on the learning. The parameters varied

in these experiments have been the ppe values and seeds in clustering. The

observations shown here are for number of graphs G = 25, number of clus-

ters k = 5, error threshold constant at 0.01, maximum number of epochs

set to 1000 and initial metric D = 5DEuclidean +4DMean +3DMax +2DLF +

1DBP . Each experiment here is the average of 4 experiments with different

initial weights and clustering seeds. Figures 4.22 through 4.33 show the

training set observations for different ppe values. The failure rate is plotted

versus the epoch showing the behavior during training.

The learned metrics have been used for clustering over a distinct test

set. The test set size used here is G = 40. The clustering accuracy over the

test set with the different learned metrics is shown in Figure 4.34. The learn-
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Figure 4.22: Training Behavior with ppe = 25

Figure 4.23: Training Behavior with ppe = 50

Figure 4.24: Training Behavior with ppe = 75
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Figure 4.25: Training Behavior with ppe = 100

Figure 4.26: Training Behavior with ppe = 125

Figure 4.27: Training Behavior with ppe = 150

Figure 4.28: Training Behavior with ppe = 175
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Figure 4.29: Training Behavior with ppe = 200

Figure 4.30: Training Behavior with ppe = 225

Figure 4.31: Training Behavior with ppe = 250
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Figure 4.32: Training Behavior with ppe = 275

Figure 4.33: Training Behavior with ppe = 300

ing efficiency over the training set is also recorded in terms of the training

time and the number of epochs to converge. This is shown in Figure 4.35.

In addition, in Figure 4.36 a comparison between training behavior is pre-

sented for different ranges of ppe. In this figure the failure rate has been

plotted versus the epoch for three different ppe values.

Observations from the experiments on pairs per epoch

1). Failure rate decreases monotonously for high ppe values but oscillates

for lower ppe values. This is because for low ppe values, a distinctly

different set of pairs get used in each epoch for learning, so the metric

is learned over a different set of pairs each time. For higher ppe val-
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Figure 4.34: Clustering Accuracy with ppe Values

Figure 4.35: Learning Efficiency with ppe Values

Figure 4.36: Training Behavior with ppe Values
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ues, almost the same pairs get selected in each epoch, thus causing a

uniform decrease in failure rate.

2). Low ppe values, such as ppe < G may converge faster but the learned

metrics give relatively lower clustering accuracy over the test set.

Also some experiments with low ppe values may take as long to con-

verge as ppe close to G. This depends on which ppe pairs get ran-

domly selected for evaluation and weight adjustment.

3). Middle range ppe values take longer to converge than low range but

give the best clustering accuracy over the test set.

4). High ppe values close to P , (i.e, all pairs) take still longer to converge

and give less accuracy over test set than middle range values.

5). The setting used for further experiments is ppe = P/2, i.e., half the

total number of pairs. This is because it is found to give best accuracy

over test set while still giving acceptable efficiency.

Effect of Scaling Factors

The experiments below have been conducted to observe the impact of scal-

ing factors (sf) on the learning. The experiments shown here are for G = 25

and k = 5. The distance components used have been the DSC , DEuclidean,

DMin, DMean, DMax, DLF and DBP distances.

The number of pairs per epoch has been maintained at ppe = P/2 = 150

for these experiments, based on the results from the ppe experiments. The

parameters varied have been the initial weights and scaling factors. Figure
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4.37 summarizes the parameter settings used for the experiments shown

here. The seeds in clustering are also altered to provide randomization

and each experiment represents the average of 4 experiments with different

seeds. Figures 4.38 through 4.42 show the training set observations in terms

of the failure versus the epoch.

Figure 4.37: Parameter Settings in Experiments on Scaling Factors

Figure 4.38: Training Behavior for Experiment 1 on Scaling Factors

Figure 4.39: Training Behavior for Experiment 2 on Scaling Factors
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Figure 4.40: Training Behavior for Experiment 3 on Scaling Factors

Figure 4.41: Training Behavior for Experiment 4 on Scaling Factors

Figure 4.42: Training Behavior for Experiment 5 on Scaling Factors
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The learned metrics are used for clustering over a distinct test set. The

test set shown here is of size G = 40. Figure 4.43 shows the clustering

accuracy over the test set. Figure 4.44 shows the learning efficiency over

the training set.

Figure 4.43: Clustering Accuracy in Experiments on Scaling Factors

Figure 4.44: Learning Efficiency in Experiments on Scaling Factors

Observations from the experiments on scaling factors

1). With scaling factors proportional to the accuracy of each individual

component and with random initial metrics, the convergence may

occur faster or slower than with no scaling factors. This appears to

depend on the initial metric.

2). With initial metrics provided by domain experts and with scaling
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factors proportional to accuracy, the results observed are better than

those with random metrics.

3). Even better results are observed for initial metrics and scaling factors

both proportional to accuracy of each individual component in clus-

tering.

Effect of Components

Figure 4.45: Metrics used in Experiments on Components

These experiments have been conducted with the goal of learning sim-

ple metrics. The aim has been to learn metrics that have few components

and yet achieve clustering accuracy acceptable in the domain. The exper-

iments below show the impact of altering the components in the distance

metric. The setup for the experiments shown here has involved the follow-

ing fixed parameters. The number of graphs in the training set has been

G = 25 from which P = 300 pairs of plots have been obtained. The num-

ber of clusters has been k = 5 from the actual clusters over the training set.

The number of pairs per epoch has been maintained at ppe = P/2 = 150,
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since this has been found to be a good setting from previous experiments.

The error threshold has been maintained at 0.01 and maximum number of

epochs at 1000. The test set used has been of size G = 40.

The parameters altered have been the following. The number of com-

ponents has been altered in each experiment. The possible components

identified in the domain have been the individual metrics DSC , DEuclidean,

DMean, DMin DMax, DLF and DBP . Figure 4.45 shows the components

used in each experiment.

The results are summarized below for each experiment on components.

Note that for those experiments involving only a single component, there

are no weights involved. Hence the only observations are the failure and

success rates, i.e., error and accuracy respectively. For the experiments with

multiple components, the initial and final weights are shown. Also the

number of epochs required for learning are recorded. Note that for the

experiments with multiple components, the order of selection is based on

the accuracy of each individual component in clustering. Thus we select the

best two, then best three and so forth until all components are considered.

Results of Experiments on Components

• Experiment 1: Slow Cooling Distance alone

– Metric: DSC

– Error (Failure Rate): 0.76

– Accuracy (Success Rate): 0.24

• Experiment 2: Euclidean Distance alone

– Metric: DEuclidean
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– Error (Failure Rate): 0.2633

– Accuracy (Success Rate): 0.7367

• Experiment 3: Minimum Distance alone

– Metric: DMin

– Error (Failure Rate): 0.7733

– Accuracy (Success Rate): 0.2267

• Experiment 4: Mean Distance alone

– Metric: DMean

– Error (Failure Rate): 0.5

– Accuracy (Success Rate): 0.5

• Experiment 5: Maximum Distance alone

– Metric: DMax

– Error (Failure Rate): 0.3267

– Accuracy (Success Rate): 0.6734

• Experiment 6: Leidenfrost Distance alone

– Metric: DLF

– Error (Failure Rate): 0.4133

– Accuracy (Success Rate): 0.5867

• Experiment 7: Boiling Point Distance alone

– Metric: DBP

– Error (Failure Rate): 0.3633

– Accuracy (Success Rate): 0.6367

• Experiment 8: Euclidean and Maximum Distances

– Initial Metric: 7.367DEuclidean + 6.733DMax

– Convergence: No
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– Minimum Error (Failure Rate): 0.2267

– Number of Epochs for Learning: 1000

– Final Metric: 6.5449DEuclidean + 4.5927DMax

– Training Time: 3425.0 milliseconds

• Experiment 9: Euclidean, Maximum and Boiling Point Distances

– Initial Metric: 7.367DEuclidean + 6.733DMax + 6.367DBP

– Convergence: No

– Minimum Error (Failure Rate): 0.1133

– Number of Epochs for Learning: 1000

– Final Metric: 6.4669DEuclidean +4.3651DMax +4.0522DBP

– Training Time: 3135.0 milliseconds

• Experiment 10: Euclidean, Maximum, Boiling Point and Leidenfrost Distances

– Initial Metric: 7.367DEuclidean + 6.733DMax + 6.367DBP + 5.867DLF

– Convergence: Yes

– Minimum Error (Failure Rate): 0.01

– Number of Epochs for Convergence: 375

– Final Metric: 5.6070DEuclidean +4.4870DMax +3.4299DBP +2.8589DLF

– Training Time: 4426.0 milliseconds

• Experiment 11: Euclidean, Maximum, Boiling Point, Leidenfrost and Mean Distances

– Initial Metric: 7.367DEuclidean +6.733DMax +6.367DBP +5.867DLF +5DMean

– Convergence: Yes

– Minimum Error (Failure Rate): 0.01

– Number of Epochs for Convergence: 267

– Final Metric: 4.8605DEuclidean +3.1034DMax +3.2270DBP +2.5293DLF +2.1589DMean

– Training Time: 4216.0 milliseconds

• Experiment 12: Euclidean, Maximum, Boiling Point, Leidenfrost, Mean and Slow Cooling Dis-

tances
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– Initial Metric: 7.367DEuclidean +6.733DMax +6.367DBP +5.867DLF +5DMean +2.4DSC

– Convergence: Yes

– Minimum Error (Failure Rate): 0.01

– Number of Epochs for Convergence: 263

– Final Metric: 4.7147DEuclidean +3.4635DMax +3.1183DBP +2.3700DLF +2.3119DMean

+0.2479DSC

– Training Time: 4165.0 milliseconds

• Experiment 13: Euclidean, Maximum, Boiling Point, Leidenfrost, Mean, Slow Cooling and

Minimum Distances

– Initial Metric: 7.367DEuclidean +6.733DMax +6.367DBP +5.867DLF +5DMean +2.4DSC

+2.267DMin

– Convergence: Yes

– Minimum Error (Failure Rate): 0.01

– Number of Epochs for Convergence: 272

– Final Metric: 4.8456DEuclidean +3.4834DMax +3.5536DBP +2.4744DLF +2.5584DMean

+0.1505DSC +0.2104DMin

– Training Time: 4243.0 milliseconds

The learned metrics in each experiment are used for clustering over the

test set and the clustering accuracy is recorded. The clustering accuracy

obtained with different learned metrics is shown in Figure 4.46.

Observations from experiments on components

• Among the individual metrics, Euclidean distance gives highest ac-

curacy.

• The combination of Euclidean, Maximum, Leidenfrost and Boiling

Point distances in Experiment 10 gives error below threshold.
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Figure 4.46: Clustering Accuracy with Different Components

• Further increasing the number of components does not increase ac-

curacy.

• For some of the experiments on components, convergence to error

below threshold does not occur, implying that the selected compo-

nents are not sufficient for representing the graphs, irrespective of

their weights. Thus the components need to be selected such that

they depict the features needed to distinguish the graphs. Then the

learning of weights can occur so as to achieve high clustering accu-

racy. Thus LearnMet also serves to identify the bare minimum com-

ponents needed to represent the graphs, in the situation where the

components are not provided in advance by domain experts.

• The simplest learned metric in these experiments has four compo-

nents, DEuclidean, DMax, DLF and DBP . This gives accuracy approxi-

mately in the range if 90 percent, with settings of ppe = P/2, (i.e., half

the total number of pairs), and both scaling factors as well as initial

metrics proportional to accuracy of each component in clustering.
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4.9 Evaluation of AutoDomainMine Stage 2: Interme-

diate Stage

Stage 2 of AutoDomainMine incorporates the LearnMet technique for learn-

ing domain-specific distance metrics for clustering graphs. Since Learn-

Met has been developed with the aim of capturing the semantics of the

graphs through the domain-specific distance metrics, the learned metrics

have been used as the notion of distance in clustering. This is with the in-

tention of producing better clusters. The resulting clusters have been used

for the classification step in AutoDomainMine. The estimation obtained

using the classifiers obtained from the improved clusters is thus likely to

be better than the earlier estimation in Stage 1, i.e., the Pilot Tool. This is

because Stage 1 involved the default notion of Euclidean distance in clus-

tering as opposed to Stage 2 which used the learned metrics that preserve

domain semantics. AutoDomainMine has thus been evaluated in Stage 2

by measuring the accuracy of the estimation using clusters obtained with

and without the learned metrics. The estimation obtained from clustering

using the learned metrics has been compared with that from clustering us-

ing Euclidean distance. The difference in estimation accuracy represents

the effectiveness of the metrics obtained from LearnMet. This process of

evaluation is described below.

4.9.1 Process of Evaluating AutoDomainMine with LearnMet

The metric obtained from LearnMet has been assessed by measuring the ac-

curacy of the estimation in AutoDomainMine. Data used for evaluation is
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from all the performed experiments has been stored in the database. Hence

the domain experts did not need to provide a separate test set. The opinion

of the experts however has been considered in evaluation.

The evaluation approach has been as follows. As a first step, clustering

has been done with the metric obtained from LearnMet. The metric has

been learned over the training set and then used for clustering all the data

in the database. In the second step, the clustering output has been sent to a

decision tree classifier in the required format, namely, input conditions and

cluster of each graph. The results of the classification have been used as

the basis for estimation. The accuracy of the estimation has been evaluated

using n-fold cross-validation (cv) [WF00]. For example, in 4-fold-cv, in

each fold, 75 percent of the clustering output has been used for building

the tree and the remaining 25 percent has been used as new experiments

whose cluster is to be predicted given the input conditions. If the correct

cluster has been predicted then the estimation has been considered accurate

else inaccurate. Percentage accuracy has been reported accordingly. This

process is illustrated in Figures 4.47 and 4.48 respectively.

The estimation obtained from clustering using the learned metrics has

been compared with that from clustering using Euclidean distance. An-

other criterion for comparison involved clustering using Euclidean dis-

tance. The resulting clusters have been sent to decision tree classifiers and

the estimation accuracy has been observed. The observations for all the

metrics are recorded.
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Figure 4.47: Process of Evaluating AutoDomainMine with LearnMet: Clus-
tering Step
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Figure 4.48: Process of Evaluating AutoDomainMine with LearnMet: Clas-
sification Step
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4.9.2 Results of Evaluating AutoDomainMine with LearnMet

The results of evaluating LearnMet with AutoDomainMine are presented

here. The metrics learned from the LearnMet experiments in section 4.8

have been used for clustering and the corresponding estimation accuracy

has been recorded. For convenience we have used the same subtitles as

used in Section 4.8 for the respective experiments.

Effect of Initial Metrics

We first consider the experiments on the effect of initial metrics in Learn-

Met. These are experiments DE1, DE2, EQU , RND1, RND2 for initial

metrics and experiments on thresholds. The respective learned metrics

have been used for clustering in AutoDomainMine. Figure 4.49 shows the

estimation accuracy with learned metrics output from from experiments

DE1 through RND2.

Figure 4.49: AutoDomainMine Estimation with the output of LearnMet Ini-
tial Metric Experiments

Observations from estimation with experiments on initial metrics
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• The estimation accuracy with each metric output from LearnMet is

higher than that with Euclidean distance.

• Estimation accuracy with metrics from experiments DE1 and DE2 is

higher than the others.

• The highest estimation accuracy with these experiments is approxi-

mately 84.5 percent.

Effect of the Error Threshold

We now consider the experiments on the effect of the error threshold in

LearnMet. The respective learned metrics have been used for clustering in

AutoDomainMine. Figure 4.50 shows the estimation accuracy with these

metrics output from LearnMet.

Figure 4.50: AutoDomainMine Estimation with the output of LearnMet
Threshold Experiments

Observations from estimation with experiments on thresholds

• The estimation accuracy with these experiments on the whole is slightly

higher than with the experiments on initial metrics.
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• Estimation accuracy increases as the error threshold reduces.

• The highest estimation accuracy observed in these experiments is ap-

proximately 85.1 percent.

Effect of the Number of Pairs Per Epoch

Next we consider the experiments on the effect of the number of pairs per

epoch (ppe) in LearnMet. The respective learned metrics have been used for

clustering in AutoDomainMine. Figure 4.51 shows the estimation accuracy

with the metrics output from the LearnMet ppe experiments.

Figure 4.51: AutoDomainMine Estimation with output of LearnMet ppe
Experiments

Observations from estimation with experiments on pairs per epoch

• The estimation accuracy with these experiments on the whole is higher

than with the experiments on initial metrics and thresholds.

• Estimation accuracy is higher with middle range ppe values.
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• Lower estimation accuracy is observed for ppe values close to the two

extremes of high and low.

• The highest estimation accuracy observed in these experiments is ap-

proximately 89.5 percent.

Effect of Scaling Factors

We now use the output of the experiments on the effect of scaling factors

in LearnMet. The respective learned metrics have been used for clustering

in AutoDomainMine. Figure 4.52 shows the estimation accuracy with the

metrics output from the LearnMet scaling factor experiments.

Figure 4.52: AutoDomainMine Estimation with output of LearnMet Scaling
Factor Experiments

Observations from estimation with experiments on scaling factors

• The estimation accuracy with these experiments on the whole is higher

than with the experiments on initial metrics and thresholds.

• Estimation accuracy is higher with those experiments where initial

weights are proportional to scaling factors.
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• Lower estimation accuracy is observed for experiment 1 with random

initial weights and no scaling factors.

• The highest estimation accuracy observed in these experiments is ap-

proximately 90.5 percent.

Effect of Components

We then use the output of the experiments on the effect of scaling factors

in LearnMet. The respective learned metrics have been used for clustering

in AutoDomainMine. Figure 4.53 shows the estimation accuracy with the

metrics output from the LearnMet scaling factor experiments.

Figure 4.53: AutoDomainMine Estimation with LearnMet Metrics from Ex-
periments on Components

Observations from estimation with experiments on components

• Estimation accuracy with individual components is lower than those

with a combination of components.

• Among the individual components, Euclidean distance gives the high-

est estimation accuracy.
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• The experiment using components DEuclidean, DMax, DLF , DBP and

DMean, i.e., experiment 10 gives estimation accuracy approximately

90.

• Further increasing the number of components, i.e., adding DSC and

DMin does not substantially increase the estimation accuracy.

4.9.3 Conclusions from the Evaluation of Stage 2 of AutoDomain-

Mine

It is observed that the estimation accuracy in the experiments in Stage 2,

i.e., the Intermediate Stage of AutoDomainMine is higher than in Stage 1,

i.e., the Pilot Tool. In Stage 2, we get an estimation accuracy of approxi-

mately 86% to 87% on an average while in Stage 1, the estimation accuracy

is approximately 74% to 75% on an average. This proves the effectiveness

of the LearnMet approach in learning domain-specific distance metrics to

preserve the semantics in the graphs. Thus Stage 2 of AutoDomainMine

that incorporates the LearnMet approach provides better performance than

Stage 1 with the pilot AutoDomainMine approach. Thus the effectiveness

of AutoDomainMine as an estimation technique is increased in Stage 2.
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Chapter 5

DesRept: Designing

Semantics-Preserving

Representatives for Clusters

5.1 Need for Designing Representatives

The pilot and intermediate stages of AutoDomainMine use a randomly se-

lected set of input conditions and graph from each cluster as its represen-

tative pair. These representatives form the basis for estimation. However,

a randomly selected representative may not adequately represent the clus-

ter. Distinct combinations of input conditions could lead to a single cluster

and graphs in a cluster could have some variations of ranges. Moreover,

different applications may need different levels of detail in the cluster. For

example, presenting all the information in the cluster causes inefficiency in
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certain applications such as simulation tools [LVKR02]. In other applica-

tions such as visual displays for parameter selection [MCMMS02] avoiding

clutter on the screen is important. Hence it is advisable to design cluster

representatives that preserve domain semantics in the context of targeted

applications.

5.1.1 Motivating Example

We present a motivating example in the context of cluster representatives

for conditions. Consider the sets of conditions S1 through S9 in Example 1

showing the input conditions in a given cluster.

Example 1

• S1: Quenchant Name = DurixolW72, Part Material = SS304, Agitation

Level = High, Oxide Layer = None, Quenchant Temperature = (70-

80), Probe Type = CHTE

• S2: Quenchant Name = DurixolW72, Part Material = SS304, Agitation

Level = High, Oxide Layer = None, Quenchant Temperature = (80-

90), Probe Type = CHTE

• S3: Quenchant Name = DurixolV35, Part Material = ST4140, Agita-

tion Level = High, Oxide Layer = Any, Quenchant Temperature =

(50-60), Probe Type = CHTE

• S4: Quenchant Name = DurixolV35, Part Material = ST4140, Agita-

tion Level = Low, Oxide Layer = None, Quenchant Temperature =
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(60-70), Probe Type = CHTE

• S5: Quenchant Name = MarTemp355, Part Material = SS304, Agita-

tion Level = High, Oxide Layer = None, Quenchant Temperature =

(20-30), Probe Type = CHTE

• S6: Quenchant Name = DurixolV35, Part Material = ST4140, Agita-

tion Level = Any, Oxide Layer = Thin, Quenchant Temperature = (60-

70), Probe Type = CHTE

• S7: Quenchant Name = DurixolW72, Part Material = SS304, Agitation

Level = High, Oxide Layer = None, Quenchant Temperature = (60-

70), Probe Type = CHTE

• S8: Quenchant Name = MarTemp355, Part Material = SS304, Agita-

tion Level = High, Oxide Layer = None, Quenchant Temperature =

(30-40) C, Probe Type = CHTE

• S9: Quenchant Name = DurixolW72, Part Material = SS304, Agitation

Level = High, Oxide Layer = None, Quenchant Temperature = (90-

100), Probe Type = CHTE

All these sets of conditions in Example 1 lead to a similar experimental

output, hence they have been assigned to the same cluster.

We now consider the application of simulation tools [LVKR02]. Users

often run simulations of real experiments with a given set of input condi-

tions. These simulations are typically as time-consuming as a real exper-

iment (about 6 hours). They are preferred over a real experiment mainly

because they save resources. Imagine that a randomly selected set of input
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conditions is displayed to the user as the output of estimation. If the user

runs a simulation using this representative, then ranges of information in

the cluster are not captured, thus reducing the sample space of simulations.

On the other hand if the user runs a simulation using a representative that

conveys all the information in the cluster, it would take very long to run.

Since each simulation takes approximately 6 hours with one set of input

conditions, running it with 9 sets of conditions would take 54 hours, which

is often not practical. Thus there is a need for a trade-off between the two

extremes in such applications. However, there are other applications where

information loss is more critical while efficiency is not an issue, and vice

versa.

Likewise, for graphs in each cluster, randomly selected representatives

are not always sufficient in incorporating semantics. For example, in a par-

ticular cluster the highest heat transfer coefficient could range from 2000

to 2300 Watt per meter squared Kelvin, the Slow Cooling could occur be-

tween 200 to 250 degrees Celsius and so forth. It is useful to know that

the corresponding graphs still get placed in the same cluster and that these

variations do not separate the respective experiments. A randomly selected

representative does not convey this information. Also, it is important to

avoid visual clutter in displaying information and take into account the

interests of various users.

Thus there is a need to design semantics-preserving cluster representa-

tives in the context of targeted applications.
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5.1.2 Goals of the Design Process

The goals for designing cluster representatives are stated as follows.

• Given: Clusters of graphs in the domain with input conditions char-

acterizing each cluster.

• Design: A representative pair per cluster embodying the semantics of

the domain and comprising of:

– Set of input conditions to represent the cluster.

– Graph to represent the cluster.

Before explaining the details of the proposed approach, we review re-

lated work in the area.

5.2 Related Work

We overview related work applicable to the design of representatives for

graphs and conditions in our problem. In addition, we review work on

evaluating clusters and visual displays. We also review work on similarity

measures for data analogous to the input conditions in this dissertation.

Related work on similarity measures for graphs has already been discussed

in Chapter 4.
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5.2.1 Designing Representatives

Medoid Approach

In [BKKPV03] they address the problem of similarity search in database

systems by visualizing the hierarchical clustering structure of a database of

objects to speed up the similarity search. They consider the use of reacha-

bility plots to extract the significant clusters in a hierarchical cluster repre-

sentation along with suitable cluster representatives. The reachability plot

is a visualization of the clustering hierarchy that enables each object to be

assigned to its closest cluster. The concept of reachability plots is based on

a binary relation called reachability which is the minimum distance of each

database object to one of its predecessors in the ordering. The reachabil-

ity values are plotted for each object, and the cluster ordering is such that it

minimizes the reachability values. The representatives are then constructed

using a medoid-approach.

However, their constraint is that the representative must be a real ob-

ject of the data set. Hence they consider the medoid of a cluster as the

closest object to the mean or centroid of all the objects in the cluster. In

our problem, we do not have the constraint that the representative must be

an object of the cluster, thus giving us the freedom to consider alternative

design strategies.

Image Rating

In [HH01] they build representatives for web information. They have user-

interfaces for web-based applications. These interfaces need to facilitate ac-
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cess of relevant information without displaying unnecessary detail. Their

interfaces involve both text as well as image data. The text is organized

in hierarchies of web-page titles or URL taxonomies. Image representation

involves choosing a single image from a group of images to adequately

summarize the group. An example is when a single image needs to be cho-

sen from a web page containing a group of images. They use an approach

of image rating. Images are rated based on aspects of quality in terms of

color, clarity, and frequency of access by targeted users. The image with

the highest rating is the representative image for a given group. Also they

employ manual selection of representatives by groups of targeted users.

Their methods involve considerable user-intervention in building the

representatives which is not desirable in our problem. Moreover in our

work, the quality of all individual graphs in the cluster is the same in terms

of color, clarity and so forth.

Common Sub-structures

In [FGOT03], the problem of document clustering is addressed. They clus-

ter structurally similar Web documents, especially XML documents. Their

goal is the analysis and management of Web data. They build cluster rep-

resentatives as follows. Their notion of distance is based on edit distance

between XML trees, namely, the minimum-cost sequence of operations to

convert one tree into another. Using this distance, they consider the com-

mon sub-structures between XML documents within a cluster by XML tree

matching, and then add all the uncommon ones to it by tree merging. They

then prune the merge tree by removing the least frequent nodes. This
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serves as the representative of the given cluster. We can draw some analogy

here when we are building a representative of conditions using a decision

tree, i.e., retaining the top levels of the tree as ”common sub-structures”.

However, in our context, we need as a representative a complete set

of conditions leading to a cluster. Thus using only part of the tree as a

common substructure and then adding the uncommon ones does not seem

practical. Instead we need to consider complete paths and then compute

their distances from each other, defining a suitable distance function as

needed.

5.2.2 Evaluating Clusters

Clusters of Text

Nomoto et. al. [NM01] propose an approach for text summarization based

on exploiting diversity concepts in text. They propose an information-

centric approach for evaluation where the text summaries are judged in

terms of how well they represent their source documents in processes such

as document retrieval and text categorization. They use the Minimum

Description Length (MDL) principle to determine the number of clusters

needed for text summarization. If the MDL encoding with two clusters is

lower than that with greater than two clusters, then two clusters are used.

This concept is extended to multiple clusters. Their MDL encoding takes

into account probability of occurrence of words, the number of parame-

ters and the number of data objects. However, they do not construct and

evaluate different types of representatives.
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Clusters of Association Rules

In the ARCS system [LSW97], clusters of association rules are constructed,

based on the similarity of the left-hand side of the association rule. They

consider error in terms of incorrectly clustered tuples with respect to a set

of optimal clusters provided. Given this, the MDL encoding is as follows.

The greater the number of clusters, the higher is the cost to describe them.

The cost of encoding the sampled data using a given set of clusters is de-

fined to be the sum of all errors for all clusters. If a tuple is not an error, then

it is identified by a particular cluster and hence its cost is included within

the description of the cluster. If a tuple is in error, it must be specifically

identified as such and this incurs a cost. The goal in the ARCS system is to

minimize this MDL cost. However they do not consider the cost of encod-

ing the association rules themselves. In our context, to evaluate clusters we

need to take into account the manner of storing all the graphs and input

conditions in the clusters as well as the corresponding representatives. Nor

do they evaluate different types of representatives.

Clustering to aid Classification

In [BL04] the MDL principle is applied to evaluate how a clustering algo-

rithm run on data aids a classification algorithm. They propose a type of

MDL bound with the notion that clustering algorithms with a small bound

must have a small number of clusters which agree with a set of hidden la-

bels. They consider a distribution over (X,Y ) where X is the input and

Y is the label. The assumption is that Y can take one of L possible val-
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ues, such that L > 1. Their MDL encoding takes into account the number

of clusters, the algorithm used for clustering, the number of random ini-

tializations of the algorithm and the number of hidden labels. Given this,

they choose the encoding that minimizes the description length so that the

clustering algorithm aids a classification algorithm. However, in their con-

text, hidden labels are already provided, which is not true for our problem.

Moreover, they need to evaluate a set of algorithms whereas in our context

we consider an arbitrary but fixed clustering algorithm. Also, they do not

construct and evaluate cluster representatives. In their work, it is essential

to recover the original cluster from the encoding, which is not a require-

ment in our problem.

5.2.3 Visual Displays

Semantic Textual Units

Personal Digital Assistants (PDAs) often have displays with information

displayed in levels of detail. In [BMP01] such an approach is described

that involves the summarization of text from the web on handheld PDAs.

They partition the original web page into ”Semantic Textual Units” (STUs)

which are fragments of pages such as paragraphs, lists, tables etc. They

then consider various methods of displaying the STU. In the incremental

approach, each STU is revealed gradually in terms of the first line, the first

few lines and then the whole STU. In the keywords approach, the impor-

tant keywords that appear within each STU are displayed. In the summary

approach, the most significant sentence of each STU is displayed.
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We can draw an analogy here in terms of displaying information in lev-

els of detail in the context of designing representatives for conditions in our

problem. However, keywords and significant sentences are not applicable

in our context since we deal with input conditions of experiments. More-

over in our context, the relative importance of the input conditions needs to

be conveyed when displaying the information. Also a complete set of input

conditions needs to be displayed to the user for each estimation. Moreover,

they do not propose objective evaluation measures for comparison between

their STUs.

Semantic Fish Eye Views

Users often search information from a general to a specific level of detail.

Janecek et. al. [JP03] address the problem of facilitating such searches

based on the concept of ”Semantic Fish Eye Views” (SFEVs). An SFEV con-

sists of a collection of several objects in a small space. It visually empha-

sizes more interesting information and filters less important information.

The degree of interest is calculated based on the apriori interest which re-

flects its relevance to a user query. Thus the apriori interest establishes the

global context in which the user searches. Although the SFEV is an interest-

ing form of display in searching information over the Web, in our context

the only analogy is the emphasis on more interesting information such as

the features of graphs.

We discuss this in the context of designing representatives for graphs

in our context. It is essential in our work to see the representative as the

output of an estimation. Hence conveying too many individual graphs as
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an output leads to too much generality. Some of this would be on the lines

of simple query processing where all the images pertaining to a query are

returned. Since our problem is estimation, we need to provide a single

object (simple or complex) as an approximately correct answer. Moreover,

in [JP03] no objective measures are proposed to evaluate the SFEVs.

5.2.4 Similarity Measures

Similarity of Complex Categorical Attributes

Das et. al. [DMR98, DM00] define similarity between categorical attributes

based on inter-dependencies in datasets. They consider similarity depend-

ing not only on the values of the given attributes but also based on the

values of other attributes that are inter-dependent. In [DMR98] they ex-

plain, for example, that in market basket data notions of similarity can be

inferred from the buying tendencies of customers. Two products can be

considered similar if the buying habits of customers are similar. They thus

define similarity based on internal and external measures where an inter-

nal measure depends only on the values of the attributes while external

measures depend on the data in other columns, which they call the probe

columns. They use these similarity measures to build hierarchies using as-

sociation rule mining algorithms [DMR98].

In [DM00] they present the Iterated Contextual Distances (ICD) algo-

rithm to learn distances between attributes taking into account such inter-

dependencies. The ICD algorithm starts with an arbitrary distance function

between attributes which is used to derive a vector representation for rows
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which gives a vector representation for subrelations. The value of the sub-

relation distance function is used to get a new distance value for attributes.

Starting with random initial values, the ICD algorithm converges to stable

distances between attributes. From these, stable distances between rows

and subrelations are defined.

However, the kind of inter-dependencies that they define do not exist

in our datasets. The similarity between our attributes such as Quenchant

Name, Part Material etc. do not depend on user interests. Hence we do

not need to learn such similarity measures. Instead in our context, user

interests are significant in displaying information in terms of factors such

as levels of detail, information loss, ease of interpretation etc. and we take

these into account in designing representatives.

Similarity of Strings in Text Documents

Learnable similarity measures for strings are presented in [BM03] based

on support vector machines and expectation maximization. These mea-

sures are applied for duplicate detection. However, they deal with natural

language text strings and the involved semantics, while our data is differ-

ent. We work with domain-specific input conditions that involve a mixture

of attributes such as numeric, categorical and ordinal. We do not deal with

strings of text whose meaning has to be interpreted in a broader natural

language context. Moreover, in our context domain knowledge has already

been derived from decision trees and can directly be applied to define a dis-

tance function for the conditions without further learning.
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5.3 Proposed Approach: DesRept

We propose a methodology called DesRept to design semantics-preserving

cluster representatives. Each cluster representative is a pair consisting of

two parts, namely, a set of input conditions and a graph.

The inputs to DesRept are the clusters of graphs in the domain and the

sets of conditions characterizing each cluster. Thus, the clusters from the

clustering step and decision trees resulting from them in AutoDomainMine

serve as the input to DesRept. The output of DesRept is a representative

pair consisting of a set of input conditions and a graph for each cluster.

Designing a representative of conditions involves several issues regard-

ing semantics. Designing a representative graph is concerned with another

set of issues regarding domain-specific aspects. Hence these two parts are

dealt with separately in DesRept. However, the general principles behind

the two parts are the same. Hence the basic methodology of designing rep-

resentative pairs in DesRept is summarized below.

The DesRept Methodology

1). Input: Clusters of graphs, decision tree paths of conditions leading to

clusters

2). Define the notion of distance for the sets of conditions and for the

graphs

3). Build candidate representatives for each cluster by using various de-

sign strategies so as to capture the different levels of detail found in

the cluster.
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4). Compare the candidate representatives with an encoding for effec-

tiveness based on the Mininum Description Length principle.

5). For each cluster return the winner, i.e., representative of conditions/graph

with the lowest encoding as the designed representative.

6). Output a representative pair of input conditions and graph for each

cluster.

Note that we use the term clusters of conditions to refer to the sets of input

conditions leading to the respective clusters of graphs.

The approach of designing representatives for sets of input conditions is

referred to as DesCond while that for designing representatives for graphs

is called DesGraph. The details of DesCond and DesGraph are discussed

in the next two subsections respectively.

5.4 DesCond: Designing and Evaluating Representa-

tives for Conditions

We propose an approach called DesCond to design a representative set of

input conditions for each cluster. We first define/refresh the following ter-

minology.

• Input Condition: This refers to an individual process parameter input

to an experiment. Each condition is defined by an attribute value pair,

e.g., Part Material = ST4140.

• Attribute: This gives name of each condition, e.g., Part Material.
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• Value: This gives the content of each condition, e.g., ST4140.

• Set of Conditions: This refers to all the input conditions in a given ex-

periment, e.g., Quenchant Name = DurixolV35, Part Material = ST4140,

Agitation Level = low, Oxide Layer = none, Quenchant Temperature = (60-

70). These are also referred to as the conditions or input conditions for

an experiment.

The semantics of the domain is captured by defining a suitable a dis-

tance function for the set of conditions. Using this notion of distance, can-

didate representatives are designed for each cluster showing gradually in-

creasing levels of detail.

In the first level, the representative is designed by selecting a set of con-

ditions from the original cluster such that it forms the nearest neighbor for

all other objects in the cluster. This candidate is called the nearest represen-

tative.

At the second level, a candidate known as the summarized representa-

tive is designed by forming sub-clusters within each original cluster using

domain knowledge and the given notion of distance.

In the third level, the candidate is constructed by combining all infor-

mation in the cluster and abstracting it in a suitable form. This candidate is

called the combined representative.

Thus, the process of designing the nearest representative is guided selec-

tion in which the representative is an object belonging to the original cluster.

On the other hand, the process of designing the summarized and combined

representatives is construction where the representative is developed using
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the information within the cluster.

The candidates are compared using a measure called the DesCond En-

coding analogous to the Minimum Description Length principle [M97].

This encoding takes into account the complexity of each representative

measured as the number of data points stored for it and the information

loss due to it measured as its distance from other objects in the cluster. The

interests of targeted users based on the relative importance attached to the

complexity and information loss are also taken into account in the encod-

ing. The candidate giving the lowest value in the encoding is the winner

and is returned as the designed representative. Note that there could be

multiple winners based on the encoding, reflecting the corresponding user

interests.

Thus, in our framework, the three main tasks in the design of domain-

specific cluster representatives for conditions are as follows:

1). Defining a notion of distance for the set of conditions.

2). Obtaining candidate cluster representatives showing different levels

of detail each capturing domain semantics.

3). Proposing an encoding to compare the candidates in order to find a

suitable winner meeting specific application requirements.

These tasks are discussed in the following three subsections.

5.4.1 Notion of Distance

We consider three criteria in defining distance. The first is the data type of

each attribute as applicable to the domain. The second criterion is the dis-
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tance between the individual attribute values defined in a domain-specific

manner. The third one is the weight of each attribute based on its relative

importance in the domain. These are explained as follows.

Data Types of the Attributes

The attributes describing the input conditions are of different types such

as numeric, categorical and ordinal [HK01]. Categorical attributes are of

the character or string type and store descriptive information. Numeric

attributes represent data that is of the integer or real number type. Ordinal

attributes are those whose values are also of the string and character type

but store information where the order matters.

The types of attributes applicable to the Heat Treating datasets in our

problem are listed below. For ordinal attributes, their possible values are

also stated. Each attribute represents an individual input condition in Heat

Treating.

• Quenchant Name (QN): Categorical

• Part Material (PM): Categorical

• Probe Type (PT): Categorical

• Oxide Layer (OL): Ordinal [None, Thin, Thick, Any]

• Agitation Level (AL): Ordinal [Absent, Low, High, Any]

• Quenchant Temperature (QT): Numeric
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Distance between the Attribute Values

We use the sets of conditions shown in Example 1 in Section 5.1.1 in order

to explain the calculation of distance for each type of attribute.

Categorical Attributes. For categorical attributes, the distance is consid-

ered to be 0 if the attribute values are identical and 1 if they are not identical.

Hence the distance is calculated as:

DCategorical(Si, Sj) = 0 if vi = vj and DCategorical(Si, Sj) = 1 if vi <> vj

where Si and Sj are the respective sets of conditions, while vi and vj are the

respective values of the given categorical attribute.

Thus, considering the categorical attribute Part Material and referring

to Example 1, we calculate distance between the Part Material values as

DPM (S1, S3) = 1, and DPM (S1, S2) = 0, since Part Material values are not

equal in the sets of conditions S1 and S3, while they are equal in S1 and S2.

Numeric Attributes. For numeric attributes, distance is calculated as the

absolute difference of their attribute values. If the values are grouped into

ranges as a data pre-processing step, then we consider the difference be-

tween the mean values of the respective ranges. Suitable scaling factors are

applied if needed to maintain parity with other attributes. Thus, distance

for numeric attributes is calculated as:

DNumeric(Si, Sj) = SF × |vi − vj | where Si and Sj are the respective

sets of conditions, vi and vj are the values (or mean value of ranges) of the

respective numeric attributes, and SF is a scaling factor based on domain

knowledge.
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Thus in Example 1, for the numeric attribute Quenchant Temperature

with scaling factor SF = 1/10 (given in the domain) we get distances be-

tween Quenchant Temperature values as DQT (S1, S2) = 1 and DQT (S1, S3) =

2.

Ordinal Attributes. For ordinal attributes, the distance is calculated as

the absolute difference between their values after they are mapped to nu-

meric based on their order. For example, Agitation values of High, Low and

Absent are mapped to 3, 2 and 1 respectively. The value Any implies that

the attribute can take any value. Hence its distance is considered to be zero

from all other values. This mapping is a data preprocessing step. Distance

for ordinal attributes is then given as:

DOrdinal((Si, Sj) = |v′i − v
′

j| where Si and Sj are the respective sets of

conditions, while v
′

i and v
′

j are numeric values to which the respective or-

dinal values are mapped.

In Example 1 therefore, for the ordinal attribute Agitation Level, dis-

tance is calculated as DAL(S1, S2) = 3− 3 = 0 and DAL(S3, S4) = 3− 2 = 1.

Distance for Set of Conditions Given these distances for the attribute

types, the distance function Dcond for the set of conditions is then defined in

terms of the distances between individual attribute values and the weights

of the respective attributes as follows:

Dcond = ΣA
i=1Wi × Di where each Di is a distance function for the in-

dividual attributes, each Wi is a weight giving the relative importance of

the corresponding attribute and A is the total number of attributes. The
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weights are obtained as explained in the next subsection.

Weights of the Attributes

As stated earlier, in our problem decision trees [Q86] are used to learn

the relative importance of the conditions characterizing each cluster with

respect to the domain. Hence the decision tree paths are used to derive the

weights of the attributes depicting these conditions. The reasoning behind

the method for deriving the weights is as follows.

1). An attribute is considered to have a higher weight than other at-

tributes if it is at a higher level in the decision tree. This is because the

root of the tree represents the most significant input condition while

the lower levels represent less significant conditions. Also, attributes

not identified in the decision tree represent insignificant conditions

for the given data sample.

2). The shorter the path in which an attribute appears, the higher is the

significance of that attribute. This is because a shorter path with fewer

attributes is more definite in classifying the data than a longer path.

An extreme of this would be one particular value of the root lead-

ing directly to a given cluster. For example, if all data pertaining to

QuenchantName = T7A belongs to Cluster C, irrespective of other

attributes, then in this path Quenchant Name should get a higher

weight than in a path having other attributes such as Part Material

and Agitation Level.
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3). The greater the number of experiments in the cluster corresponding

to a path, the more important is that path and hence an attribute ap-

pearing in that path. This is because the given path then classifies a

greater amount of data.

We draw an analogy with the decision tree induction algorithms such

as ID3 and J4.8 [Q86] in this reasoning. It is not feasible to directly use the

weights from these algorithms, because the weights are different in each

epoch and we need one uniform set of weights for the attributes. More-

over, if we were to use their weights we would need to define a constant

of proportionality which is not known apriori. Also, running the ID3/J4.8

epochs again on the same dataset is likely to be inefficient, given that the

tree has already been constructed. Thus, we use the analogy behind the

induction of decision trees.

Given these considerations and applying the reasoning above, a heuris-

tic for the weights of the attributes in the decision tree is defined below.

Decision Tree Weight Heuristic Wi = 1
P ΣP

j=1
Hi,j

Hj
×Gj

where, Wi = weight of each attribute,

P = total number of paths in the decision tree,

Gj = number of graphs in the cluster of path j,

Hi,j = height of node for attribute i in path j and

Hj = height of path j

such that, ”height” H is defined number of nodes away from the leaf.
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Thus, in a given path the leaf has a height of 0, the node immediately

above the leaf has a height of 1 and so forth. The height of a path is basically

the height of its root node.

The use of the decision tree heuristic in calculating weights is explained

in Example 2 using the partial decision tree shown in Figure 5.1.

Figure 5.1: Partial Decision Tree

Example 2 For the given partial decision tree, assume that Cluster B has

10 experiments and Cluster H has 5 experiments. Then we get the follow-

ing weights.

Quenchant Name: WQN = 1
3(4

4 × 10 + 3
3 × 5 + 4

4 × 10) = 8.33

Part Material: WPM = 1
3 (3

4 × 10 + 2
3 × 5 + 3

4 × 10) = 5.44

Agitation Level: WAL = 1
3(2

4 × 10 + 0 + 2
4 × 10) = 3.33

Oxide Layer: WOL = 1
3(0 + 1

3 × 5 + 1
4 × 10) = 1.39
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Quenchant Temperature: WQT = 1
3(1

4 × 10 + 0 + 0) = 0.83

Probe Type: WQT = 1
3(0 + 0 + 0) = 0

We will use the weights derived from the corresponding complete deci-

sion tree in this example in order to illustrate the design of the candidate

cluster representatives. The weights of the attributes inferred from the com-

plete tree (whose partial snapshot is shown in Figure 5.1) are as follows.

• Quenchant Name (QN): weight WQN = 8.12

• Part Material (PM): weight WPM = 5.97

• Agitation Level (AL) : weight WAL = 3.05

• Oxide Layer (OL): weight WOL = 2.08

• Quenchant Temperature (QT): weight WQT = 0.81

• Probe Type (PT): weight WPT = 0

Thus the distance function derived from the complete tree is:

Dcond = 8.12×DQN +5.97×WPM +3.05×DAL+2.08×DOL+0.81×DQT

where the individual distances DQN , DPM and so forth are calculated

based on the values and types of the individual attributes. Given the man-

ner in which it is derived, this distance function incorporates domain se-

mantics and can be used for the design of candidate cluster representatives.
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5.4.2 Levels of Detail

We consider the following levels of detail in designing the candidate repre-

sentatives.

• Level 1: Nearest Representative. This is also known as the Single

Conditions Representative and is one set of conditions closest to all oth-

ers in the cluster using the giving notion of distance that incorporates

domain semantics.

• Level 2: Summarized Representative. This is also called the Multi-

ple Conditions and involves multiple sets of conditions summarizing

cluster information through sub-clusters built using the same notion

of distance.

• Level 3: Combined Representative. This is also referred to as the All

Conditions Representative and consists of all possible sets of conditions

in the cluster abstracted using domain knowledge.

The process of designing each of these is explained below. In order

to illustrate the concepts, we consider Example 1 showing all the sets of

conditions, i.e., decision tree paths leading to a given cluster. These paths

are obtained from the complete decision tree over the given data set. Using

the distance function derived from the complete decision tree, candidate

representatives are designed as follows.
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Nearest Representative

The nearest representative is designed by guided selection, namely, it is

chosen as one of the original objects in the given cluster. Using the distance

function for conditions developed above that incorporates domain seman-

tics, the nearest representative is selected as the set of conditions closest to

all others in the cluster. It other words this representative is such that the

sum of its distances from all other sets of conditions in the cluster is the

least.

The nearest representative for the cluster in Example 1 is shown in Fig-

ure 5.2.

Figure 5.2: Example of Nearest Representative

This representative is designed to show the most important cluster in-

formation in a concise form. It is useful in applications where the user is

interested in finding out the most likely set of input conditions that would

give a desired nature of output. Since it consists of just one set of condi-

tions from the original cluster, this representative is also called the Single

Conditions Representative.

Summarized Representative

The summarized representative as the very name implies summarizes the

information in the cluster. It is designed by construction, i.e., it is developed



5.4. DESCOND: DESIGNING AND EVALUATING REPRESENTATIVES FOR
CONDITIONS 183

by using information from original cluster. The construction occurs as fol-

lows. The set of conditions in each cluster are grouped into sub-clusters

based on the similarity of the conditions. The notion of similarity for sub-

clustering the conditions is the distance function Dcond defined earlier.

The number of sub-clusters for each cluster is determined based on do-

main knowledge. For example, in Heat Treating we have the following

information.

• Quenchant Name is the root of the tree and gets a higher weight than

other attributes in the distance function.

• One important purpose of conducting the quenching experiments in

Heat Treating is to categorize the quenchants.

• Quenchant Name has more distinct values than the other attributes

closer to the root.

Based on this knowledge, the number of sub-clusters is set equal to the

number of distinct values of Quenchant Name.

Sub-clustering is then done using any suitable clustering algorithm us-

ing Dcond as the notion of distance [HK01]. For each sub-cluster, a rep-

resentative is selected as the set of conditions closest to all the others in

the sub-cluster. Likewise, representatives are obtained for each sub-cluster.

The summarized representative is an aggregation of all sub-cluster repre-

sentatives displayed in a tabular form. The summarized representative for

Example 1 is shown in Figure 5.3.
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Figure 5.3: Example of Summarized Representative

The summarized representative is designed because it depicts a trade-

off between the amount of detail displayed to the user and the amount of

information captured within the cluster. It is useful in applications where

the user wishes to find out, for example, distinct combinations of the most

significant condition that would give a desired nature of output. Since this

representative consists of multiple sets of conditions from the original clus-

ter it is also called the Multiple Conditions Representative (MCR).

Combined Representative

The combined representative is designed to capture all the data in the clus-

ter with no information loss. This is also designed by construction. It is

constructed by retaining all the original sets of conditions and displaying

them by sorting based from the most to least significant attribute. The sig-

nificance of the attributes is determined based on the distance function

Dcond. The values of each set of conditions are abstracted using domain

knowledge wherever possible. For example, in Heat Treating, if three sets

of conditions are identical except that the value of Agitation Level is Absent

for one, Low for another and High for the third, then this is abstracted as

Agitation = Any, where Any refers to any possible value of agitation ap-

plicable to the domain. Likewise, if two sets of conditions are identical
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except that Quenchant Temperature has two consecutive ranges (110 − 120)

and (120 − 130), then these are abstracted into a single set of conditions

with Quenchant Temperature = (110 − 130). This is in order to avoid visual

clutter, while still displaying all information in the cluster.

The combined representative is an aggregation of all the sets of condi-

tions sorted in ascending order from the most to the least significant. The

combined representative for Example 1 is shown in Figure 5.4.

Figure 5.4: Example of Combined Representative

The combined representative is designed so as to convey all the infor-

mation in the cluster in an organized manner. It is useful in applications

where the user is interested in studying in detail all the possible inputs that

would lead to a given nature of output. Since this representative consists

of all sets of conditions within the cluster, it is also called an All Conditions

Representative (ACR).

Thus, three types of candidate representatives are designed for each

cluster.
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5.4.3 Comparison of Candidates

The candidate representatives are compared using an analogy with the

Minimum Description Length (MDL) principle. The MDL principle pro-

posed by Rissanen [R87] aims to minimize the sum of encoding the theory

and the examples using the theory. In the literature, when MDL is used to

encode cluster information, it is essential to be able to recover the original

cluster from the encoding. However, in the context of our problem, we do

not need to retrieve the cluster. Instead, we need to compare the cluster rep-

resentatives with each other in order to evaluate them. Hence we propose

a measure for comparison that is analogous to the Minimum Description

Length of the cluster.

Our proposed measure is called the DesCond Encoding or the DesRept

Encoding for Conditions. In our context, the theory (with respect to MDL)

refers to the cluster representatives while the examples refer to all the other

objects in the cluster. We take into account the complexity of each repre-

sentative and the information loss due to it. Complexity refers to the ease

of interpretation which is measured as the amount of data stored for the

representative. Information loss refers to the capacity of the representative

in capturing information within the cluster and is measured as the distance

of the representative from all the objects in the cluster. The relative impor-

tance attached to the two terms of complexity and distance (information

loss) is also taken into account in the encoding, based on the interests of

targeted users. Given this, the DesCond Encoding is described below.
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The DesCond Encoding Enc = UBC×log2(AV )+UBD×log2
1
sΣs

i=1D(R,Si)

where, Enc = encoding for conditions,

A = number of attributes in the representative,

V = number of values for each attribute in the representative,

R = cluster representative,

Si = each set of conditions in cluster,

D(R,Si) = distance between representative and every set

of conditions using the given distance function,

s = total number of sets of conditions in cluster,

UBC = percentage weight giving user bias for complexity,

UBD = percentage weight giving user bias for distance.

The first term in this encoding log2(AV ) denotes the complexity of the

representative. This is calculated as the number of attributes and values

that need to be stored for that representative. The second term, i.e., the

distance term log2
1
sΣs

i=1D(R,Si) denotes the information loss due to the

representative. It is calculated as the average distance of the representative

from all the other sets of conditions in the cluster. The terms UBC and

UBD are the percentage weights assigned to the complexity and distance

terms respectively in order to give the user bias for those two terms. Unless

otherwise specified, equal weights are assigned to complexity and distance,

i.e., 50% each.

Candidate cluster representatives are evaluated using the DesCond En-

coding. The representative with the lowest value of the encoding for the

given cluster is considered the best and is returned as its designed repre-
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sentative.

5.4.4 Evaluation of DesCond

DesCond has been implemented in Java and evaluated using real data from

the Heat Treating domain [TBC93]. Evaluation of DesCond has been con-

ducted with domain expert interviews using the DesCond Encoding as de-

scribed below.

Evaluation Process

Domain experts have provided different user bias weights in the DesCond

Encoding based on their notions of targeted user interests. Using these

weights candidate representatives have been evaluated. Different datasets

consisting of Heat Treating experiments placed into clusters have been sent

as input to DesCond. Parameters altered in DesCond besides the user bias

weights have been dataset size and number of clusters. Any suitable algo-

rithm such as k-means [KR94] has been used to generate the clusters over

the datasets. In addition to altering the values of k, i.e., number of clusters,

the clustering seeds have been altered to provide randomization. Given

these clusters as input, the output of DesCond is the winning candidate for

each cluster.

For comparison, a random representative has been considered per clus-

ter in the evaluation process. Scores have been assigned to each representa-

tive as the number of clusters in the given dataset in which it is the winner.

For example, in a dataset of 25 experiments placed in 5 clusters with (50/50)
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weights, if the winner has been the nearest representative for one cluster

and the combined representative for the other four, then the scores have

been, Nearest:1, Summarized:0, Combined:4 and Random:0. The statistics

are reported accordingly.

We show here the evaluation results over totally 210 experiments with

a small dataset of 25 Heat Treating experiments placed in 5 clusters, a

medium dataset of 150 experiments in 10 clusters and a large dataset of 400

experiments in 20 clusters. We consider 7 different user bias weights in the

DesCond Encoding spreading over various possible applications as identi-

fied by experts. Each experiment shows the average of 10 experiments with

different clustering seeds. Results are reported as scores for representatives

in Figures 5.5, 5.6 and 5.7 respectively.

Figure 5.5: Statistics for Small Data Set

Observations and Discussion

• For (20/80) weights, the combined representatives generally win. Such

weights are likely to occur in applications such as intelligent tutoring
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Figure 5.6: Statistics for Medium Data Set

Figure 5.7: Statistics for Large Data Set
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systems [BK88]. In such systems it is important to study all informa-

tion in the cluster to analyze process behavior in detail. Complexity

of the representative does not matter as much. Thus combined repre-

sentatives would be useful here.

• For (50/50) weights, the summarized representatives win for most

data sets. These would probably be useful in simulation applications

[LVKR02] where a trade-off between complexity and information loss

is needed.

• For (80/20) weights, the nearest representatives are often winners.

These would most likely be useful in applications such as parameter

selection [MCMMS02]. Here a representative is used to analyze the

behavior of a cluster to compare processes for selecting process pa-

rameters in industry. Thus a simple representative is good and hence

nearest representatives are useful especially for large data sets.

• For the (40/60) and (60/40) weights, combined representatives win

for the small dataset while summarized representatives win with or

without a tie for medium and large datasets. These would likely also

be useful in various simulation applications where the user bias could

tilt more or less in favor of complexity and distance, still requiring a

trade-off.

• Random representatives lose in most cases. This indicates that de-

signed representatives consistently outperform random ones in our

targeted applications.
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5.5 DesGraph: Designing and Evaluating Representa-

tives for Graphs

We propose an approach called DesGraph that designs and evaluates domain-

specific cluster representatives of graphs. In DesGraph also as in DesCond

we utilize two design methods, namely, guided selection and construction.

In guided selection, the representative is chosen to be one object of the clus-

ter, e.g., the graph that forms the cluster medoid [KR94]. In construction,

the representative is a new object developed using cluster information, e.g.,

by superimposing all graphs in the cluster. These selected and constructed

objects form candidate representatives in DesGraph. An effectiveness mea-

sure for evaluating these representatives is proposed. The proposed mea-

sure called the DesGraph Encoding is analogous to the Minimum Descrip-

tion Length [M97] principle. The DesGraph Encoding incorporates the

complexity of the cluster representative, information loss due to the rep-

resentative and interests of targeted users. Candidate representatives are

compared using this encoding. The candidate with the lowest encoding is

the winner.

Thus the main tasks involved in DesGraph are as follows.

1). Specify a notion of distance for the graphs.

2). Design candidate cluster representatives using the design strategies

of guided selection and construction.

3). Define an effectiveness measure to compare the candidates in order

to return the best in the context of targeted application.
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These tasks are discussed in the three subsections to follow.

5.5.1 Notion of Distance

In DesGraph, the distance metric learned from LearnMet is used as the no-

tion of distance for graphs. For convenience the definition of this distance

metric is stated here.

Distance Metric for Graphs A distance metric for graphs, namely, Dgraph

is a weighted sum of components, where each component can be a position-

based, a statistical, or a critical distance metric applicable to the graphs.

The weight of each component is a numerical value indicating its relative

importance in the domain.

Hence, this distance metric is of the form Dgraph = Σm
i=1wiDi where

each Di is a component, wi is its weight, and m is number of components

applicable to the graphs.

The components and weights in this distance metric are learned from

the executions of LearnMet. Among the metrics learned from various such

executions, the metric that gives the highest accuracy in clustering after

rigorous evaluation of LearnMet is the preferred notion of distance in Des-

Graph.

5.5.2 Building Candidate Representatives

Consider the example of Cluster A in Figure 5.8. We explain design of

candidate representatives based on this example.
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Figure 5.8: Clusters of Graphs

Design by Guided Selection

In guided selection the representative is chosen as one of the objects of the

cluster. Two candidate representatives, nearest and medoid are selected as

shown in Figure 5.9.

Figure 5.9: Selected Representatives
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Nearest Representative The nearest representative is based on the con-

cept of nearest neighbors using pairwise distances, as defined below.

FOR f = 1 to g

SUM(f) = Σg
i=1D(Gf , Gi)

ENDFOR

RETURN R = Gf with lowest SUM(f)

where Gf ,Gi refer to individual graphs in the cluster, g is the total number

of graphs in the cluster, R is the representative graph and D is the dis-

tance between graphs using the given metric. We use sum and not sum

of squares because the assumption is that squared distances are already

incorporated in the metric. This representative, the nearest graph, shows

users the member of the cluster that is nearest to the others using the given

distance metric. Since the metric incorporates domain semantics this rep-

resentative conveys nearness with respect to relative importance of regions

on graphs. This representative is also called the minimal distance graph since

it is the graph in the cluster with minimal distance from all others.

Medoid Representative A medoid representative, the graph in the clus-

ter closest to its centroid, is defined below.

FOR j = 1 to n

Cen(j) = 1
gΣg

i=1Gi(j)

ENDFOR

FOR i = 1 to g

DIST (i) = Σg
i=1D(Cen,Gi)
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ENDFOR

RETURN R = Gi with lowest DIST (i)

where Gi refers to each graph, Gi(j) is the value of the dependent variable

(y-coordinate) at the jth value of the independent variable (x-coordinate), n

is the number of x-coordinates on the graphs, g is the number of graphs in

the cluster, Cen is the cluster centroid and D is the distance using the given

metric. The assumption is that the x-coordinates for all graphs are the same.

Hence in computing the centroid, we take a mean of the y-coordinates only.

This representative, the medoid graph, helps users visualize the object in

the cluster closest to the average behavior of the dependent variable on the

graphs. This representative is also called the selected average graph since it is

the graph in the original cluster closest to its average.

Design by Construction

In construction the representative is an object developed using data in the

cluster. We describe two such representatives, summarized and combined as

shown in Figure 5.10.

Summarized Representative The summarized representative presents a

summary of information in the cluster. It is an average of graphs in the

cluster with domain-specific upper and lower prediction limits. Average

is computed as the cluster centroid while prediction limits are percentage

upper and lower domain-specific thresholds added and subtracted from

the average respectively, as follows.
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Figure 5.10: Constructed Representatives

FOR j = 1 to n

RAv(j) = 1
gΣg

i=1Gi(j)

RUp(j) = RAv(j) + U
100 ∗ RAv(j)

RLow(j) = RAv(Xj)− L
100 ∗ RAv(j)

ENDFOR

RETURN R = RUp,RAv ,RLow

where Gi refers to each graph, Gi(j) is its y-coordinate at the jth x-coordinate,

n is the number of x-coordinates, g is the number of graphs in the cluster,

RAv , RUp and RLow are the average graph, upper limit and lower limit re-

spectively, RAv(j), RUp(j) and RLow(j) being their respective y-coordinates

at the jth x-coordinate, U and L are percentage thresholds for upper and

lower limits respectively, and R denotes the representative. Thresholds are

obtained from a study of the data and discussions with experts. For exam-

ple, in Heat Treating both thresholds are 10%. This representative, namely,

the average graph with prediction limits, is a complex object consisting of

3 curves. It gives users a depiction of ranges of information in the cluster.
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This is also called the constructed average graph since it is constructed as an

average with prediction limits by using graphs in the original cluster.

Combined Representative The combined representative is constructed

by superimposing all the graphs in a given cluster on each other as follows.

FOR j = 1 to n

FOR i = 1 to g

Ri = (Gi(j))

ENDFOR

ENDFOR

RETURN R = Ri : i = 1 to g

where Gi is each graph, Gi(j) is its y-coordinate at the jth x-coordinate, n is

the number of x-coordinates, g is the number of graphs in the cluster, and R

is the representative. This representative, called the superimposed graph,

is a complex object composed of g curves. It shows users the whole cluster

with no information loss and depicts possible subtleties in the cluster. For

example, the combined representative in Figure 5.10 shows that maximum

heat transfer occurs at around the same temperature for all graphs in the

cluster. This is also called the superimposed graph since it is constructed by

superimposing all graphs in the cluster on each other.

5.5.3 Effectiveness Measure for Representative Graphs

We propose an effectiveness measure called the DesGraph Encoding or DesRept

Encoding for Graphs for evaluating the representative graphs. This encoding
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is analogous to the Minimum Description Length (MDL) principle [M97].

MDL aims to minimize the sum of encoding a theory and the examples us-

ing a theory. In DesGraph, the theory is the representative itself and the

examples are all the objects in the cluster. However, the difference is that

in DesGraph, we do not need to retrieve the original cluster from the en-

coding. Rather, we aim to compare the quality of the representatives in

terms of how well they capture cluster information and how complex they

are taking into account user interests. Hence the complexity of storing the

representative graph and its distance from all graphs in the cluster are in-

corporated in the DesGraph Encoding. This encoding aims to minimize the

sum of the number of bits to store the representative and the distance of all

graphs from the representative. The user bias for complexity and distance

is considered as percentage weights for each term. The encoding is given

below.

The DesGraph Encoding (DesRept Encoding for Graphs) Eng = UBC∗

log2(Nr) + UBD ∗ log2(
1
gΣg

i=1D(R,Gi))

where Eng = encoding for graphs

Nr = number of data points to store representative graph

R = the representative graph

Gi = each individual graph in the cluster

D = distance between graphs using the given metric

g = total number of graphs in the cluster

UBC = percentage weight giving user bias for complexity
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UBD = percentage weight giving user bias for distance

The first term in the encoding, log2(Nr), is the complexity of storing the

representative. Given that N is the number of x-coordinates, Nr = N if R

is nearest or medoid, Nr = 3 ∗ N if R is summarized, and Nr = g ∗ N if R is

combined.

The second term in the encoding, log2(
1
gΣg

I=1D(R,Gi)) is the average

distance of each graph in the cluster from the representative. This distance

gives the information loss with respect to domain semantics because it is

computed using the given distance metric. Distance is D(R,Gi) if R is near-

est or medoid, as the minimum of D(RAv, Gi), D(RUp, Gi) and D(RLow, Gi)

if R is summarized and as the minimum of all values D(Ri, Gi) : i = 1 to g

for the given Gi if R is combined.

Percentage weights UBC and UBD give user bias for complexity and

distance terms in the encoding respectively. Default weights are 50% each,

indicating equal importance of both terms. In some situations users are in-

terested in capturing more information in the cluster and do not care about

how complex the representative is. Thus complexity gets a lower weight.

Some categories of users give high importance to complexity for reasons

such as storage and ease of display. Hence complexity gets a higher weight.

Figure 5.11 shows calculations for measuring the effectiveness of rep-

resentatives for Cluster A. Designed candidates are compared with each

other and with a random representative. Complexity and Distance columns

in the figure show values of the respective terms in the encoding without

user bias. Columns (10/90), (50/50) and (90/10) give user bias for com-
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plexity and distance respectively. Winners for each column are shown in

italics.

Figure 5.11: Effectiveness of Representatives

5.5.4 Evaluation of DesGraph

DesGraph has been implemented in Java and is experimentally evaluated

using real data from Heat Treating. Evaluation of DesGraph has been per-

formed by conducting domain expert interviews and using the DesGraph

Encoding.

Evaluation Process

In the evaluation clusters of graphs over different data sets have been sent

as input to DesGraph. Domain experts have provided different user bias

terms for complexity and distance reflecting the interests of users in tar-

geted applications. Input parameters altered have been the weights of com-

plexity and distance, data set size, number of clusters, and clustering seeds.

The clustering algorithm used has been k-means [KR94]. Output of Des-

Graph is the winning candidate for each cluster.
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For comparison, a random representative has been considered per clus-

ter in the evaluation process. Scores have been assigned to each repre-

sentative as the number of clusters in the data set in which it is the win-

ner. For example, in a data set of 25 graphs in 5 clusters with (50/50)

weights, if the winner has been the medoid representative for two clus-

ters and the summarized representative for the remaining three, then the

scores have been, Nearest:0, Medoid:2, Summarized:3, Combined:0 and

Random:0. The statistics has been reported accordingly.

Evaluation Results

A summary of the evaluation of DesGraph in Heat Treating is presented

here. We show the results of 330 experiments run with a small data set of

25 graphs in 5 clusters, a medium data set of 150 graphs in 10 clusters and

a large data set of 400 graphs in 20 clusters. For each data set, user bias

for complexity and distance is altered from (0/100) to (100/0) respectively

in steps of 10. Each experiment is run 10 times, altering clustering seeds

to build the clusters input to DesGraph. The average of 10 experiments

is shown here. Results are reported as scores for representatives in Figures

5.12, 5.13 and 5.14 respectively. The observations made from the evaluation

results are given below, followed by a discussion on their usefulness with

respect to targeted applications.

Observations and Discussion

The following observations can be made from the evaluation results.
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Figure 5.12: Results for Small Data Set

Figure 5.13: Results for Medium Data Set
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Figure 5.14: Results for Large Data Set

• For the small data set, combined representatives are often winners

followed by nearest and medoid.

• For the medium data set, the winners are usually summarized and

combined representatives.

• For the large data set, summarized representatives are winners in

most cases.

• For (10/90) weights, combined representatives win regardless of data

set size.

• For (50/50) weights, summarized representatives win (with or with-

out a tie) for all data sets.

• For (90/10) weights, all data sets have nearest/medoid representa-

tives as winners.

• Random representatives lose almost always, except when users give

zero weight to the distance term.
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These observations help design representatives in domain-specific ap-

plications as follows.

• The (90/10) weights are likely to arise in applications such as param-

eter selection [MCMMS02]. Here a representative is used to study

the behavior of a cluster to compare processes for selecting process

parameters in industry. Hence a simple representative is desirable.

Thus nearest/medoid representatives are useful, especially for large

data sets.

• The (50/50) weights are typically found in simulation applications

[LVKR02]. Users run simulations with representatives depicting ranges

of information in the cluster. Hence the distance term matters because

it denotes information loss. Complexity matters because simulations

are time-consuming. Hence summarized representatives are useful

for most data set sizes.

• The (10/90) weights would probably occur in applications such as

decision support systems [VTRWMS03] for experts. In such systems

it is important to study all information in the cluster to analyze pro-

cess behavior in detail. Complexity of the representative does not

matter as much. Thus combined representatives are useful in such

applications.
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5.6 Estimation using Designed Representatives from

DesRept

The output of DesRept is a designed representative pair of input condi-

tions and graph per cluster. Each representative graph is stored as an n-

dimensional point. The conditions are stored as attribute-value pairs. Note

that the designed representatives are the best candidate representatives for

every cluster. Estimation is now done using these representative pairs. The

process of estimation is similar to that in the basic AutoDomainMine ap-

proach.

5.6.1 Estimation of Conditions

Consider the situation when the user submits a desired graph to estimate a

set of conditions that would achieve this. In order to search for the closest

matching graph, the metric Dgraph is used as the notion of distance. The

desired graph is compared with all the representative graphs. A threshold

for similarity is defined.

If no match is found within the given threshold, then it is conveyed

to the user that the conditions to achieve the desired graph cannot be es-

timated. However if within a given threshold a match is found, then the

representative set of conditions corresponding to the representative graph

are displayed to the user in plain text.
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5.6.2 Estimation of Graph

Consider the scenario where the user submits a set of conditions to esti-

mate the graph that would be obtained. The given set of conditions are

compared with all the decision tree paths to trace the cluster as in the basic

AutoDomainMine approach.

If the search stops at less than half the the height of the decision tree

path, then it is conveyed to the user, that the estimation cannot be per-

formed. If the search stops at greater than half the height, then any cluster

from that point can be the estimated cluster. This is justified by learning

the decision tree weight heuristic since the attributes above half the height

of the tree get distinctly higher weights than those below.

If exactly one path matches, then that cluster is the estimated one. If

more than one complete path matches, then a majority voting for clusters is

done. For example, if three paths lead to cluster B and two to cluster C, then

cluster B is the estimated cluster. In case two or more clusters win, then any

one is selected. The designed representative graph of the estimated cluster

is then the estimated graph for that experiment. This is displayed to the

user as a plotted graph.

5.6.3 Displaying the Output

The output of the estimation displayed to the user are the best overall can-

didate representatives as determined by a thorough evaluation of DesCond

and DesGraph respectively. The representative set of conditions is dis-

played as a table while the representative graph is displayed as a picture.
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5.6.4 Evaluation with AutoDomainMine

The evaluation of the representatives of input conditions and graphs built

by DesRept (DesCond and DesGraph respectively) has been done by incor-

porating them into AutoDomainMine, and judging the effectiveness of the

overall estimation. A good representative should provide more accurate

estimation since it takes into account domain semantics. The opinion of the

targeted users is considered in this evaluation. This is discussed in detail

in the next chapter.
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Chapter 6

User Evaluation of the

AutoDomainMine System

6.1 AutoDomainMine Stage 3: The Complete System

Stage 3 of AutoDomainMine is the complete system that incorporates all

the parts, i.e.,

• The basic AutoDomainMine approach of integrating clustering and

classification to discover knowledge for estimation.

• The LearnMet technique for learning semantics-preserving distance

metrics for graphs

• The DesRept methodology for designing domain-specific cluster rep-

resentatives.
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The tool developed using AutoDomainMine after incorporating Learn-

Met and DesRept has been subjected to user evaluation in targeted appli-

cations of AutoDomainMine. The evaluation has been conducted with real

data from the Heat Treating domain.

We give below the process of evaluation, the evaluation results and a

discussion on the evaluation. This is followed by an assessment of the esti-

mation accuracy of AutoDomainMine based on the user evaluation.

6.2 Process of User Evaluation with Formal Surveys

The AutoDomainMine system has been evaluated by the targeted users of

its applications. Formal user surveys have been conducted for evaluation.

The process of evaluating AutoDomainMine is as follows.

6.2.1 Holdout Strategy for Evaluation

Laboratory experiments in Heat Treating, namely, quenching experiments,

have been used to evaluate the estimation provided by AutoDomainMine.

The holdout strategy [RN95] has been used with the entries in the database,

i.e., some entries have been held aside for testing. These have not been used

for training in the clustering and classification steps of AutoDomainMine.

For these entries held aside for testing, the estimation and real experiment

have been compared by heat treating user through formal user surveys.

If the estimation matched the real experiment, then it has been consid-

ered accurate, else inaccurate. Likewise, accuracy has been evaluated using

the data in the test set. Percentage accuracy has been reported as the per-
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centage of tests for which the estimation has matched the real result. The

purpose of this evaluation has been two-fold. First, it has helped to evalu-

ate the effectiveness of the designed representatives for estimation. Second,

has served as an evaluation of the complete AutoDomainMine system as an

estimation tool.

6.2.2 Details of User Surveys

Users have executed tests by comparing the estimation of AutoDomain-

Mine with the real laboratory experiments not used for training the tech-

nique. In each test executed by users, the designed representatives have

been compared with each other in terms of their effectiveness in captur-

ing information in the applications of AutoDomainMine. The applications

include parameter selection, simulation tools, intelligent tutoring systems

and decision support systems.

User Displays

In order to perform the evaluation, the estimated output of AutoDomain-

Mine has been displayed to the users in three different levels of detail as

follows.

• Display 1: Nearest Representative

• Display 2: Summarized Representative

• Display 3: Combined Representative
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We have designed these displays based on the winning candidates in

the DesCond and DesGraph evaluations based on the respective encodings.

It has been found that for different sets of user bias weights, different can-

didates were winners. However, randomly selected representatives have

consistently been losers and hence have not been included in these dis-

plays to avoid redundancy. Among the nearest and medoid graphs, it has

been found that nearest graphs won overall based on a majority vote over

the entire data set for those user bias weights where complexity mattered

distinctly more. Hence the nearest graph has been used for the respective

display. Note that in these surveys, the real users have been involved and

we needed to consider the fact that they had limited amount of time to

complete the surveys. Moreover, they wanted to see the system at its best.

Hence the evaluation that has already been conducted with domain expert

interviews using the encoding has been used to effectively design the dis-

plays for the evaluation with formal user surveys.

Survey Questionnaire

In the surveys, the users have been asked to indicate which display cap-

tured the real experiment most closely, with respect to their targeted appli-

cation. They have been given the option of indicating that none matched

implying that estimation itself is inaccurate. Accuracy has been reported

as the percentage of accurate estimations (i.e., where users selected dis-

plays 1, 2 or 3). This has been compared with the accuracy in Stage 2 of

AutoDomainMine that used randomly selected cluster representatives for

estimation.
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6.3 Evaluation Results in Targeted Applications

We now summarize the results of the user evaluation surveys with respect

to different applications.

6.3.1 Computational Estimation

The survey results in this category are for the AutoDomainMine system

as a whole indicating the effectiveness of the designed representatives in

computational estimation [VRRBMS06]. The users have conducted 100

tests in this category.

Observations from Computational Estimation Applications

Figures 6.1 and 6.2 show pie charts giving the distribution of winners among

the candidate representatives for conditions and graphs respectively. In

these pie charts the region corresponding to None Wins shows the inaccu-

rate estimations.

Figure 6.1: Winners for Conditions in Computational Estimation
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Figure 6.2: Winners for Graphs in Computational Estimation

Analysis of Computational Estimation Applications

It is seen that for computational estimation, the combined and summarized

representatives are winners in most tests executed by users, with nearest

representatives trailing closely behind. Since computational estimation has

a broad range of users, different types of representatives are found to win.

6.3.2 Parameter Selection

In these applications, the output of AutoDomainMine is used to select pro-

cess parameters in industry [MCMMS02]. The users have conducted 53

tests in this category.

Observations from Parameter Selection Applications

The winners in these applications are shown in the pie charts in Figures 6.3

and 6.4 for conditions and graphs respectively.

The None Wins region in these charts indicates the tests where none of

the candidate representatives matched the real data as per the needs of
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parameter selection users, hence the estimation was inaccurate with respect

to parameter selection applications.

Figure 6.3: Winners for Conditions in Parameter Selection

Figure 6.4: Winners for Graphs in Parameter Selection

Analysis of Parameter Selection Applications

As observed in the figures, nearest representatives are the winners for most

tests. The reason for this likely would be that in parameter selection, typi-

cally most users want one right answer that is displayed in a concise man-

ner.
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6.3.3 Simulation Tools

In simulation tools, the users need the cluster representatives to run com-

puter simulations of a real laboratory experiment [LVKR02]. The simula-

tion users have conducted 62 tests with AutoDomainMine.

Observations from Simulation Tool Applications

Figures 6.5 and 6.6 show the winning candidates in simulation tool appli-

cations for conditions and graphs respectively.

The None Wins region in these chart indicates the tests where none of

the candidate representatives matched the real data as per the needs of

simulation tool users, hence the estimation was inaccurate with respect to

simulation applications.

Figure 6.5: Winners for Conditions in Simulation Tools

Analysis of Simulation Tool Applications

From the pie charts, it is seen that summarized representatives are the win-

ners in most tests. This is probably because simulation tool users generally
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Figure 6.6: Winners for Graphs in Simulation Tools

want to use ranges of information in order to increase the sample space of

the simulations, but they also care about complexity since simulations are

time-consuming. Hence, we find that they prefer the summarized repre-

sentatives.

6.3.4 Intelligent Tutoring Systems

Intelligent tutoring systems are used to study in detail the behavior of pro-

cesses analogous to classroom study on the given topic [BK88]. Totally 37

tests have been conducted by users in this category.

Observations from Intelligent Tutoring System Applications

Figures 6.7 and 6.8 show what type of representatives suited the users of

these applications for conditions and graphs respectively.

The None Wins region in these charts indicates the tests where none of

the candidate representatives matched the real data as per the needs of

intelligent tutoring system users, hence the estimation was inaccurate with
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respect to tutoring applications.

Figure 6.7: Winners for Conditions in Intelligent Tutoring Systems

Figure 6.8: Winners for Graphs in Intelligent Tutoring Systems

Analysis of Intelligent Tutoring System Applications

From the charts it is clear that in most cases combined representatives are

the winners. This is most likely due to the fact that in most intelligent

tutoring applications, users are interested in learning more details about

the system and do not care much about complexity. Hence, more detail is

appreciated.
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6.3.5 Decision Support Systems

Decision support systems [VTRWMS03] are used for various purposes. In

high level business decision support, at-a-glance retrieval of information is

important without much emphasis on detail. Some decision support users

however, focus on process optimization and need to scrutinize information

in more detail. We have had 44 tests conducted by decision support system

users.

Observations from Decision Support System Applications

The distribution of winning candidates in decision support systems in shown

in Figure 6.9 and 6.10 for conditions and graphs respectively.

The None Wins region in these charts indicates the tests where none of

the candidate representatives matched the real data as per the needs of

decision support system users, hence the estimation was inaccurate with

respect to decision support applications.

Figure 6.9: Winners for Conditions in Decision Support Systems
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Figure 6.10: Winners for Graphs in Decision Support Systems

Analysis of Decision Support System Applications

From the figures, it is found that there is a fairly good mix of winners in

these applications. This is because different decision support users are in-

terested in different levels of detail. Hence it is desirable to retain all the

representatives in designing such applications, and to display information

in increasing levels of detail.

6.4 Discussion on User Surveys

The following conclusions can be drawn from the results of the user sur-

veys.

• The use of the designed representatives enhance the estimation accu-

racy to 94% in AutoDomainMine [VRRBMS06]. This is higher than

the earlier version of the system that used randomly selected repre-

sentatives for estimation giving an accuracy of 87%.

• The results of the formal user surveys agree with the results of the
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evaluation conducted with domain expert interviews using the DesRept

Encodings. For example, summarized representatives win with (50/50)

weights in the encoding. These representatives are also the winners in

simulation applications [LVKR02] which require a trade-off between

complexity and information loss.

• All the designed representatives are useful (more or less) in com-

putational estimation [VRRBMS06] and decision support applica-

tions [VTRWMS03]. Hence in designing these applications all of

them would be retained, displaying the information in three differ-

ent levels of detail.

• Nearest representatives are most useful in parameter selection [MCMMS02],

summarized representatives in simulation tools [LVKR02] and com-

bined representatives in intelligent tutoring systems [BK88]. Hence

in designing the systems for the corresponding applications these

representatives would be used respectively.

6.5 Estimation Accuracy of AutoDomainMine

Based on the results of the user surveys, the estimation accuracy of the

AutoDomainMine system has been assessed. This depicts the final stage

of AutoDomainMine, i.e., the completed system. The results are presented

below with respect to the targeted applications of AutoDomainMine. Thus

besides the main application of computational estimation, accuracy is also

reported with respect to parameter selection, simulation tools, intelligent
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tutors and decision support systems.

6.5.1 Observations on Estimation Accuracy

Figures 6.11 and 6.12 show the accuracy for estimation of conditions and

graphs respectively.

Figure 6.11: AutoDomainMine Accuracy for Estimation of Conditions

Figure 6.12: AutoDomainMine Accuracy for Estimation of Graphs
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6.5.2 Discussion on Estimation Accuracy

Thus in this final stage, the overall estimation accuracy of AutoDomain-

Mine is in the range of around 90% to 95%. This is higher than the inter-

mediate stage (Stage 2) that gave an accuracy of approximately 86% to 87%

and the pilot stage (Stage 1) that gave around 70% to 75%. This accuracy of

90% to 95% is considered acceptable in the domain.

The response time of the tool has been always found to be just a fraction

of a second. It has not been separately noted in each user test, because it the

same in each test. Thus AutoDomainMine takes distinctly less time than a

real laboratory experiment.

AutoDomainMine also displays the estimation output to the users in an

easy to interpret form while also conveying as much information as possi-

ble with respect to targeted applications.

6.5.3 Conclusions from User Evaluation of AutoDomainMine

The AutoDomainMine system has been considered an effective tool for

computational estimation in the domain of Heat Treating of Materials as

judged by the satisfaction of the users. It meets the targeted requirements

of accuracy and efficiency while also conveying the output of the estima-

tion in a form acceptable to the users.
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Chapter 7

Conclusions

7.1 Summary and Contributions

Motivation and Goals. Experimental in scientific domains are often plot-

ted as graphs to visually assist the analysis and comparison of the corre-

sponding processes. The domain of focus in this dissertation is the Heat

Treating of Materials that inspired this work. Performing an experiment in

a laboratory and plotting graphs consumes significant time and resources

motivating the need for computational estimation. The following are the

goals of the required estimation technique.

• Given the input conditions of an experiment, estimate the resulting

graph.

• Given the desired graph in an experiment, estimate the input condi-

tions to obtain it.
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The assumption is that existing experimental data is stored in a database as

a set of input conditions and graph per experiment. It is found that state-

of-the-art approaches, e.g., case-based reasoning, mathematical modeling

and similarity search, are not satisfactory in the targeted applications.

Proposed Approach. In this dissertation, we have proposed a computa-

tional estimation approach called AutoDomainMine. AutoDomainMine

integrates clustering and classification to discover knowledge from existing

experimental data serving as the basis for estimation. Graphs from existing

experiments are first clustered using a suitable clustering algorithm such as

k-means. Decision tree classification with algorithms such as ID3 / J4.8 is

then used to learn the clustering criteria (sets of input conditions character-

izing each cluster) from which a representative pair of input conditions and

graph is built per cluster. The decision trees and representative pairs form

the knowledge discovered from existing experiments. Knowledge discov-

ery is a one-time process. The discovered knowledge is used for the recur-

rent process of estimation. Given the input conditions of a new experiment,

the relevant path of the decision tree is traced to estimate its cluster. The

representative graph of that cluster is returned as the estimated graph for

the experiment. Given a desired graph, the closest matching representative

graph is found and its conditions are conveyed as estimated conditions to

obtain the given graph. This estimation incorporates relative importance

of conditions learned by decision trees.

AutoDomainMine follows a typical learning strategy of Materials Sci-

entists. They often analyze by grouping experiments based on similarity
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of obtained graphs and reasoning causes of similarity group by group in

terms of impact of input conditions on graphs. This learning strategy is

automated for knowledge discovery in AutoDomainMine.

Challenges. A significant challenge in AutoDomainMine is capturing the

semantics of the concerned graphs in clustering. Several distance metrics

such as Euclidean and statistical distances exist in the literature. However

it is not known a priori which metric(s) would best preserve semantics if

used as the notion of distance in clustering. Experts at best have vague

notions about the relative importance of regions on the graphs but do not

have a defined metric. State-of-the-art distance learning methods are either

not applicable or not accurate enough in this context. We therefore propose

a technique called LearnMet to learn domain-specific distance metrics for

graphs. A LearnMet metric D is a weighted sum of components where each

component is an individual metric such as Euclidean or statistical distance

and its weight gives its relative importance in the domain. LearnMet itera-

tively compares a training set of actual clusters given by experts with pre-

dicted clusters obtained from any fixed clustering algorithm, e.g., k-means.

In the first iteration, a guessed metric D is used for clustering. This metric

is adjusted based on error between predicted and actual clusters using our

proposed weight adjustment heuristic until error is below a given thresh-

old or a maximum number of epochs is reached. The metric with error

below threshold or with minimal error among all epochs is returned as the

learned metric. The output of LearnMet is used as the notion of distance

for clustering the graphs.
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Another challenge in AutoDomainMine is capturing relevant data in

each cluster while building representatives. A default approach of ran-

domly selecting a representative pair consisting of a set of input conditions

and graph per cluster is not found to be effective in preserving the neces-

sary information. Since several sets of conditions lead to a single cluster,

randomly selecting any one as a representative causes information loss.

Randomly selected representatives of graphs do not incorporate seman-

tics and ease of interpretation based on user interests. Thus, we propose

a methodology called DesRept to design domain-specific cluster represen-

tatives for input conditions and graphs. In DesRept, two design methods

of guided selection and construction are used to build candidates captur-

ing various levels of detail within the cluster. Candidates are compared

using encodings proposed in this dissertation analogous to the Minimum

Description Length principle. The criteria in these encodings are complex-

ity of the representative and information loss due to it based on user inter-

ests. The winning candidate for conditions and graphs, i.e., with the lowest

encoding, is output its as designed representative. Thus, a designed repre-

sentative pair consisting of the winning set of input conditions and graph

is stored for each cluster. Likewise, various designed representative pairs

showing information in different levels of detail are output by DesRept

based on the interests of respective users as conveyed in the encoding. The

designed representative pairs are used for estimation in AutoDomainMine.

Contributions. The main contributions of this dissertation are:

• The AutoDomainMine approach of integrating clustering and classi-
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fication as a learning strategy to discover knowledge for estimation.

• The LearnMet technique for learning domain-specific distance met-

rics for graphs.

• The DesRept methodology of designing semantics-preserving cluster

representatives for input conditions and graphs.

• The system developed using AutoDomainMine for computational es-

timation, a trademarked tool in Heat Treating.

Evaluation. AutoDomainMine has been evaluated rigorously in the Heat

Treating domain. AutoDomainMine estimation is compared with real ex-

periments from a distinct set not used for training. Formal user surveys are

conducted for evaluation. Users execute tests comparing the estimation of

AutoDomainMine with the real experiment. If the estimation matches the

real experiment as per the needs of users in targeted applications, then it

the estimation is considered to be accurate, else inaccurate. Accuracy is

reported as the percentage of accurate estimations over the test set. The

AutoDomainMine applications include parameter selection, decision sup-

port systems, intelligent tutoring systems and simulation tools. On being

evaluated by the respective users in these categories, it is observed that

AutoDomainMine gives an estimation accuracy in the range of 90% to 95%

in different targeted applications.
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7.2 Future Work

Image Mining. One interesting problem that stems from this disserta-

tion is mining over complex data such as images with the goal of making

domain-specific comparisons. For example, consider the field of Nanotech-

nology, a popular area in scientific databases today. In nanotechnology,

there are images depicting nanostructures of materials. Comparing such

images is important to understand the difference between material prop-

erties such as hardness. Data mining could prove useful here in order to

automate some of these comparisons.

There are significant challenges in this process that provide the poten-

tial for research. One major challenge is the selection and/or development

of appropriate techniques in order to automate image comparison. Another

challenge is defining the notion of similarity for comparison. Yet another

challenge is to propose interestingness measures analogous to the ideas of

domain experts in drawing inferences from the comparison.

The dissertation contributions mentioned here could be enhanced to ad-

dress some of these issues. For example, the AutoDomainMine approach

of integrating clustering and classification as a learning strategy for knowl-

edge discovery could be useful here. Images can be clustered based on

their similarity and classification can be used to learn the causes of simi-

larity. This could be useful to draw inferences in the given domain. The

LearnMet technique for distance metric learning could be used to deter-

mine the notion of similarity between images. The steps and heuristics in

LearnMet could be modified to deal with images that are more complex
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than graphs.

Research on domain-specific image comparison would involve a thor-

ough study of the literature in data mining and in the given domain. The

involvement of domain experts would also be crucial in order to provide

the necessary inputs to solve the concerned problems.

Visualization of Text and Image Data. The manner of designing semantics-

preserving representatives in this dissertation can be used for image and

text summarization in visual displays. Examples of such displays include

handheld PDA devices, web pages and other GUIs (Graphical User Inter-

faces). The encodings proposed in DesRept based on the Minimum De-

scription Length Principle can be used to objectively evaluate representa-

tives for visual displays. Since these encodings take into account the inter-

ests of targeted users in various applications, they can be used to design

displays catering to the respective categories of users. These DesRept en-

codings can be modified as needed to suit specific applications based on

the nature of the data.

Moreover, the design strategies of guided selection and construction

can be used to build different types of representatives for displays. These

strategies can also be enhanced to consider other methods of design giv-

ing more types of representatives as required in given applications. The

DesRept criteria for design and evaluation, namely, domain semantics, vi-

sual ease of interpretation and interests of targeted users can be used in

various other systems. These can also be altered to include other aspects in

design and evaluation, such as display space which is often critical.
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Further research on this topic presents interesting issues in data mining

and visualization that are worth exploring in the future.

Data Stream Matching. There are interesting problems in the field of data

stream matching. Continuous line matching techniques are often used for

time series data. Retrieval of such data has several applications in the real

world in engineering, medical and financial domains.

In medical applications, for example, a patient’s heartbeat can be mon-

itored and compared with existing data in a medical database to detect

irregularities.

In financial domains, stock market analysis typically involves compar-

ing trends in various time periods to find fluctuations in stock prices and

use them to predict future trends. Several financial applications also in-

volve intrusion detection based on outliers in time-series data. If a partic-

ular pattern is drastically different from normal, then it is used to indicate

the possibility of intrusion.

In engineering, there are sensors that often send data streams. The sys-

tem needs to monitor these streams to find relevant patterns. Instant reac-

tions need to be delivered accordingly in some applications.

All these applications involve continuous time-series data with domain

semantics. The distance metric learning technique LearnMet proposed in

this dissertation could be used with various distance types in the litera-

ture to propose notions of similarity for the data in the respective domains.

Enhancement would probably be needed to deal with streaming data.

Besides distance learning, there are other issues involved in data stream
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matching such as defining interestingness measures, proposing thresholds

for matching and so forth. Exploring these issues would involve a detailed

study of state-of-the-art in order to outline specific research problems and

propose solutions.

Likewise several potential future issues are likely to emerge from this

dissertation. Addressing them would pose interesting challenges. Some of

these will probably be addressed in the near future.
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