Heat Transfer Parameters of Cylindrical Catalyst Particles with Internal Voids in Fixed Bed Reactor Tubes

A Major Qualifying Project Report
Submitted to the Faculty of the WORCESTER POLYTECHNIC INSTITUTE
in partial fulfillment of the requirements for the
Degree of Bachelor of Science In Chemical Engineering

By

Michael Ashman
Dmitriy Rybak
William Skene

Date: December 2009

Approved:

Dr. Anthony G. Dixon, Advisor

Abstract

This study measured and analyzed fixed bed heat transfer parameters for different size and shape packing materials that might be used for steam methane reforming. These parameters were compared to those found in the literature for similar packing types with fair agreement. The monoliths and 4-hole cylinders gave better radial heat transfer than the raschig rings; however the monoliths are too brittle for industrial processes.

Executive Summary

Steam methane reforming is a very important process for the industrial world and has many large scale applications. This process requires a very high operating temperature, high process flow rates, and also requires the presence of a catalyst. It is therefore necessary to optimize the process by finding a suitable catalyst shape and size that has a high surface area and a low pressure drop. The catalyst particle must be durable enough to withstand the process conditions, and it must also be able to transfer heat evenly and effectively to ensure uniformity throughout the process.

To more accurately study how different shaped particles transfer heat through fixed bed reactors, we employed a column with a heated air flow through the middle of the bed with a water cooled jacket to regulate temperature. The column was packed with different shaped packing materials and the heat dispersion was measured across the cross section of the column using an array of thermocouples that measured the temperature at several radial positions. The process was conducted using four different packing materials, each at four different bed depths and six different air flow rates. This process was conducted in a column with a diameter of 4 inches, and again in a column with a diameter of 2 inches.

Once the system was at steady state for each run, the temperature readings for each run were collected and analyzed. We used the Inlet Profile Plug Flow model to analyze the data and compared results for the different packing types. When fitted to the data, the IPPF model allowed us to determine which packing had the best heat transfer through the column. Overall, we found that the monoliths and 4-hole cylinders had better heat transfer characteristics than the raschig rings; however, we noted that the monoliths are too brittle to be considered for an industrial process as they are very prone to break and create dust (causing large problems in this type of setting).

Contents

Abstract ii
Executive Summary iii
List of Figures vii
List of Tables ix
Introduction 1
Background 4
IPPF Model 4
Dimensionless Parameters 9
Methodological Procedure 11
Equipment 11
Columns 11
Determining Reynolds number of inlet air flow 12
Packings 13
Micromega Heater 15
Thermocouples 15
Temperature Profile Collection 17
Procedure 21
Operating the Column 22
Safety Precautions 24
Data file format for model fitting 25
Fitting the IPPF model to collected data 26
F-test 28
Results 30
Parabolic Fit 30
Depth independence on heat transfer parameters 37
Peclet and Biot number analysis 39
The Bauer/Schlunder Method. 41
Comparison to past experiments using spheres 44
Asymptotic radial Peclet relationship to $\mathrm{k}_{\mathrm{r}} / \mathrm{k}_{\mathrm{f}}$ 46
Analytically determining a Nusselt wall value 48
N Dependence 49
Particle Durability 50
Analysis of Variance. 50
Conclusion 51
Nomenclature 52
References 53
Appendices 55
Appendix A: Sample Fortran Input Text File (for JM 4-hole cylinders in the 2 inch column) 56
Appendix B: θ vs. y for First Heights 65
Appendix C: θ vs. y by Reynolds Number 72
Appendix D: $\mathrm{k}_{\mathrm{r}} / \mathrm{k}_{\mathrm{f}}$ and Nu_{w} Height by Height Analysis. 114
Appendix E: $\mathrm{k}_{\mathrm{r}} / \mathrm{k}_{\mathrm{f}}, \mathrm{Nu}_{\mathrm{w}}, \mathrm{Bi}$, and Pe_{r} for all Packings and Columns. 121
4 inch column Spheres 122
4 inch column Spheres (Van Dongeren) 125
4 inch column Spheres (Pollica) 127
4 inch column Raschig Rings 128
4 inch column JM 4-hole cylinders 131
4 inch column Monoliths 133
2 inch column Raschig Rings 135
2 inch column 4-hole cylinders 137
2 inch column Monoliths 139
Appendix F: F-test values 141

List of Figures

Figure 1: Schematic of Laboratory Apparatus. 11
Figure 2: Monoliths (http://www.made-in-china.com/showroom/hisina88/product- detailKoXmSOuGZzVf/China-Automobile-Exhaust-Catalyst-Carrier.html) 14
Figure 3: Thermocouple Cross 16
Figure 4: Side view of one arm in the thermocouple cross 17
Figure 5: DMM Config Screenshot 19
Figure 6: DMM Scan Screenshot 20
Figure 7: Temperature Profile Parabolic Fit for Raschig Rings in the 4 inch column with Reynolds Number 432 31
Figure 8: Poor parabolic fit for temperature profile of JM 4-hole cylinders in the 2 inch column with Reynolds Number 1052 32
Figure 9: Temperature Profile for JM 4-hole cylinders in the 4 inch column for Reynolds Number 268 33
Figure 10: Temperature Profile for JM 4-hole cylinders in the 4 inch column for Reynolds Number 358 34
Figure 11: Temperature Profile for JM 4-hole cylinders in the 4 inch column for Bed Depth 200mm 35
Figure 12: Temperature profile for Monoliths in the 4 inch column with Reynolds Number 12936
Figure 13: Example of θ exceeding 1; Raschig Rings in the 2 inch column with Reynolds number
1570. 37
Figure 14: Height by height analysis of $\mathrm{kr} / \mathrm{kf}$ for JM 4-hole cylinders in the 4 inch column withReynolds Number 58438
Figure 15: Height by height analysis of Nu_{w} for JM 4-hole cylinders in the 4 inch column with
Reynolds Number 584 38
Figure 16: Illustration of bed depth dependence for heat transfer parameters (Landon, 1996). 39
Figure 17: Peclet number versus Reynolds Number for JM 4-hole cylinders in the 4 inch column40
Figure 18: Peclet Number versus Reynolds Number for JM 4-hole cylinders in the 2 inch column40
Figure 19: Biot Number versus Reynolds Number for Raschig Rings in the 2 inch column 41

Figure 20: Comparison of Borkink Raschig Ring effective radial thermal conductivity to values
\qquad
Figure 21: Comparison of k_{r} / k_{f} for spheres... 45
Figure 22: Comparison of Nu_{w} for spheres ... 45
Figure 23: Peclet versus Reynolds number for monoliths in the 4 inch column 47
Figure 24: Nu_{w} versus Re for raschig rings in the 4 inch column... 48
Figure 25: Nu_{w} versus Re for 4-hole cylinders in the 4 inch column ... 49
Figure 26: Nu_{w} versus Re for 4 -hole cylinders in the 4 inch column with corrected $\mathrm{k}_{\mathrm{r}} / \mathrm{k}_{\mathrm{f}}$ bed..... 49

List of Tables

Table 1: Flow data for a ½-27-G-10 rotameter tube with a ½-GSVT-48A float........................... 12
Table 2: Packing to column diameter ratios15
Table 3: Radial position of each thermocouple represented in Figure 2 in both columns 16
Table 4: Table of runs 21
Table 5: FORTRAN input template 25
Table 6: Comparison of $K_{\text {Bauer }}$ and $K_{\text {exp }}$ to account for corrected equation 43
Table 7: Correlation between experimentally found slopes and radial Peclet numbers 47

Introduction

In many cases, it is beneficial to convert natural gas into syngas $\left(\mathrm{H}_{2}\right.$ and CO$)$ and then into a liquid through use of the Fischer-Tropsch process. The most common method used to convert natural gas into hydrogen is through conventional steam reforming (SR). Other methods similar to SR include Autothermal Reforming (AR) and Gas Heated Reforming (GHR). Commercial hydrogen production is also necessary for the production of ammonia, the production of methanol, as a reducing agent in metal ores, to increase the level of saturation in unsaturated fats and oils (such as margarine) and in hydrogen fuel cell research (New York Energy Research and Development Authority, 2009). The reaction taking place is shown below.

$$
\mathrm{CH}_{4}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{CO}+3 \mathrm{H}_{2} \quad \Delta \mathrm{H}=+206 \mathrm{~kJ} / \mathrm{mol}
$$

At high temperatures, above 700 degrees Celsius and with the use of a nickel catalyst, steam reacts with methane to produce hydrogen and carbon monoxide in fixed bed reactors. The process is highly endothermic, therefore this process consumes a lot of energy as heat. Thus, large amounts of energy are required to heat the reactors; over half of the plant's operating cost will be used for the syngas generation section alone. (US DOE, 2009) Production of hydrogen from methane has an efficiency of about 70%, and is the most common and cheapest method to produce hydrogen.

Fixed bed reactor tubes can have very high radial temperature gradients, and it is very important to ensure that there is effective heat transfer from the wall to the packing so that the reactor does not overheat and fail. A steam reformer facility usually has several hundred of these fixed bed reactor tubes and they each usually cost about $\$ 6,000-\$ 7,000$ due to the high process temperature that they are designed for. It is therefore very important to fully understand how the packing shape affects the radial heat transfer to maximize the lifespan of the reactors. Since altering the wall temperature of one of these tubes by 20 K can shorten the lifespan of the tubes from ten years to less than five, this can save the company millions of dollars over time (Dixon, 2009).

A lot of effort is therefore spent researching the best methods to heat the reactor tubes, so that the tubes are heated evenly and efficiently. There are several different approaches to the design of burners, including top, side and terraced wall firing for the steam reformers. Hundreds of burners are used to ensure that the heating is done in a uniform manner through the reformer.

In order to improve the interaction between the steam and the methane within the fixed bed, the reactor is filled with catalyst coated packing (Smirnov, 2003). The shape of the packing determines the amount of interaction between the steam and methane, and also determines the heat flow through the reactor. In order to control the process most efficiently, it is necessary to analyze how the shape and size of the packing alters the flow of heat through the reactor. In addition, the packing must function practically within the tube. The strength and durability of the packing are serious concerns and the packing must also be shaped properly to avoid sharp edges on the packing that lead to particle deterioration and dust that would contaminate the equipment.

Another vital concern in the development of a steam reformer is ensuring that the catalysts are loaded into the reactor tubes in a uniform manner (Stitt, 2005). If any tubes are packed tighter or less densely than another, then the reactant flow to the tubes which are in parallel would tend to have higher flows in some of the tubes than others which lead to hot spots and eventually system failure. To overcome this challenge, technicians perform highly accurate tests to ensure that the pressure drop across each tube for a given flow rate is as uniform as possible to ensure that the reactant flow does not tend towards certain reactor tubes over others.

There is a difficult tradeoff when deciding what kind of catalyst packing to use in a packed bed reactor. Catalysts are more effective with higher surface area, which would indicate that smaller particles with a larger surface area would be beneficial. But it is also true that larger packing particles require a lower pressure drop across the column, which allows for higher flow rates through the column. In addition, the tube to particle diameter ratio also determines the efficiency of the radial heat transfer (Stitt, 2005).

Research in the past regarding heat transfer modeling in packed beds is lengthy. Some of the first significant research was conducted by Coberly and Marshall in 1951, who were the first
engineers to use h_{w} and k_{r} as prior work had utilized k_{r} and $k_{r}(r)$. In 1972 DeWasch and Froment were the first to question the perceived dependence of k_{r} and h_{w} to bed height. In 1975, Gunn and Khalid were the first to introduce the concept of axial thermal dispersion, represented by the term k_{a}. In 1978, Bauer and Schünder developed what is today the standard model for k_{r}. Also in 1978, Dixon and Creswell introduced the theory that k_{r} and h_{w} ware not height dependant. In 1985, Dixon showed that k_{a} had little physical basis, he also measured heat leaks through the calming section to eliminate height dependence. In 1988, Dixon reviewed Pe_{r} and Bi with a significant amount of heat transfer data. In 1993, Borkink, Borman and Westerterp introduced the Inlet Profile Plug Flow model to eliminate height dependence of the packing. In 1993, Martin and Niles found a relationship to describe Nu_{w}. In 1996, Landon, Hebert and Adams published results for different shaped packing materials. In 1997, Dixon looked at the effect that a low tube-to-particle ratio has on heat transfer for spheres.

There are many different shapes of packing used industrially for steam reforming, but there has been little research done exploring the heat transfer through fixed beds containing cylindrical packing with internal holes and domes. The main purpose of the team's research is to analyze the heat transfer across a fixed bed with different shaped packing. From these findings, optimal designs for catalyst particles can be suggested, which is a major step in the effort to develop more efficient steam reforming technology.

Background

Heat transfer is categorized into three types: conduction, convection, and radiation. For these experiments, radiation does not apply as the temperatures were relatively low. Through research done over the years, models have been created using Fourier's law where conduction and convection parameters are strictly based on packing size and shape as well as fluid flow. The effective radial thermal conductivity, k_{r}, represents all mechanisms of heat transfer in the center of the bed (unaffected by wall effects). The wall heat transfer coefficient, h_{w}, is a parameter representing the increased heat transfer resistance close to the wall. Both of these parameters can be found from data using models such as the Plug Flow (PF) model or the Inlet Profile Plug Flow (IPPF) model.

In order to model the heat transfer using the equipment and model used, the following assumptions were made:

- The system was in steady state
- No reaction took place
- There is no radiation
- The pressure throughout the bed was constant
- No radial variation of the superficial gas velocity (Reynolds number)
- The wall temperature was constant and steady for each run
- The physical properties of the gas and solid were independent of temperature

IPPF Model

The standard model used to analyze the temperature profile data acquired was the Inlet Profile Plug Flow (IPPF) model. The PF model uses the temperature of the inlet air as the inlet temperature; however, with the apparatus in the laboratory, it was impossible to determine the temperature of the air flowing into the packing at $z=0$ due to heat loss in the calming section. The IPPF model uses the first height temperature profile as the inlet temperature profile, and compares it to the temperature profiles at consequent heights.

The IPPF model is derived from the following dimensional energy balance:

$$
G C_{p} \frac{\partial T}{\partial z}=k_{r}\left(\frac{\partial^{2} T}{\partial r^{2}}+\frac{1}{r} \frac{\partial T}{\partial r}\right)
$$

With the following boundary conditions:

$$
\begin{gathered}
T=T_{z, o}(r) \text { at } z=z_{o} \\
\frac{\partial T}{\partial r}=0 \text { at } r=0 \\
-k_{r} \frac{\partial T}{\partial r}=h_{w}\left(T-T_{w}\right) \text { at } r=R
\end{gathered}
$$

These equations are usually made dimensionless by defining the following:

$$
\begin{gathered}
\vartheta=\frac{\left(T-T_{w}\right)}{\left(T_{o}-T_{w}\right)} \\
y=\frac{r}{R} \\
x=z / R \\
P e_{R}=\frac{G C_{p} R}{k_{r}} \\
B i=\frac{h_{w} R}{k_{r}}
\end{gathered}
$$

In this case, using the first measurement height at $\mathrm{z}=\mathrm{z}_{0}$ as the inlet temperature, we get:

$$
\begin{gathered}
\zeta=\frac{z / L-{ }^{Z}{ }_{o} / L}{1-{ }^{Z_{o}} / L} \\
\frac{\partial \zeta}{\partial z}=\frac{1}{L} \frac{1}{1-{ }^{Z_{o} / L}}
\end{gathered}
$$

So:

$$
\frac{\partial T}{\partial z}=\frac{\partial T}{\partial \zeta} \frac{\partial \zeta}{\partial z}=\frac{1}{L} \frac{1}{1-{ }^{Z_{o}} / L} \frac{\partial T}{\partial \zeta}
$$

Then:

$$
G C_{p} \frac{1}{L} \frac{1}{1-{ }^{Z_{o}} / L} \frac{\partial \vartheta}{\partial \zeta}=k_{r} \frac{1}{R^{2}}\left(\frac{\partial^{2} \vartheta}{\partial y^{2}}+\frac{1}{y} \frac{\partial \vartheta}{\partial y}\right)
$$

i.e.

$$
\frac{\partial \vartheta}{\partial \zeta}=\frac{k_{r} L}{G C_{p} R^{2}}\left(1-z_{o} / L\right)\left(\frac{\partial^{2} \vartheta}{\partial y^{2}}+\frac{1}{y} \frac{\partial \vartheta}{\partial y}\right)
$$

Define:

$$
\begin{aligned}
B o_{h, r}^{\theta} & =\frac{G C_{p} R^{2}}{k_{r} L} \\
\theta & =\frac{\vartheta}{\vartheta_{o}}
\end{aligned}
$$

Where:

$$
\vartheta_{o}=\frac{\left(\left.T\right|_{r=o}-T_{w}\right)}{\left(T_{o}-T_{w}\right)}
$$

Gives:

$$
\frac{\partial \theta}{\partial \zeta}=\frac{1}{B o_{h, r}^{\theta}}\left(1-\frac{z_{o}}{L}\right)\left(\frac{\partial^{2} \theta}{\partial y^{2}}+\frac{1}{y} \frac{\partial \theta}{\partial y}\right)
$$

With boundary condition:

$$
-k_{r} \frac{\partial T}{\partial r}=h_{w}\left(T-T_{w}\right)
$$

This can be made dimensionless into:

$$
-k_{r} \frac{1}{R} \frac{\partial \vartheta}{\partial y}=h_{w} \vartheta
$$

This may be reduced to the following:

$$
\frac{\partial \vartheta}{\partial y}+B i \vartheta=0
$$

And then:

$$
\frac{\partial \theta}{\partial y}+B i \theta=0
$$

Assume a parabolic profile at $z=z_{o}$:

$$
T=\left.T\right|_{r=o}+A^{\prime} r^{2}
$$

Where A' <0 for cooling.

$$
\begin{gathered}
\frac{\left(T-T_{w}\right)}{\left(T_{o}-T_{w}\right)}=\frac{\left(\left.T\right|_{r=o}-T_{w}\right)}{\left(T_{o}-T_{w}\right)}+\frac{A^{\prime}}{T_{o}-T_{w}} R^{2} y^{2} \\
\vartheta=\vartheta_{o}+\frac{A^{\prime} R^{2}}{T_{o}-T_{w}} y^{2}
\end{gathered}
$$

So:

$$
\theta=\frac{\vartheta}{\vartheta_{o}}=1+\frac{A^{\prime} R^{2}}{\left(T_{o}-T_{w}\right) \vartheta_{o}} y^{2}=1-A y^{2}
$$

Where $A=\frac{A^{\prime} R^{2}}{\left(T_{o}-T_{w}\right) \vartheta_{o}}>0$ always.
The IPPF model is incorrect as given by Borkink (1993). It may be made correct by defining:

$$
B o_{h, r}^{\theta}(\text { corrected })=\frac{G C_{p} R^{2}}{k_{r} L} \frac{1}{1-{ }^{Z_{o}} / L}=B o_{h, r}^{\theta} \frac{1}{1-{ }^{Z_{o}} / L}
$$

Convert into present variables using corrected $B o_{h, r}^{\theta}$:

$$
B o_{h, r}^{\theta}=P e_{R} \frac{R^{2}}{L d_{p}} \frac{1}{1-{ }^{Z_{o}} / L}=P e_{R} \frac{R}{L} \frac{1}{1-x_{o} R / L}
$$

$$
\begin{gathered}
\zeta=\frac{x^{R} / L-x_{o} R / L}{1-x_{o} R / L} \\
\frac{\partial \zeta}{\partial x}=\frac{R}{L} \frac{1}{1-x_{o} R / L} \\
\vartheta=\frac{\left(T-T_{w}\right)}{\left(T_{o}-T_{w}\right)} / \frac{\left(\left.T\right|_{r=o}-T_{w}\right)}{\left(T_{o}-T_{w}\right)} \\
=\left[\frac{\left(T_{w}-T_{o}\right)}{\left(T_{w}-T_{o}\right)}-\frac{\left(T-T_{o}\right)}{\left(T_{w}-T_{o}\right)}\right] /\left[\frac{\left(T_{w}-T_{o}\right)}{\left(T_{w}-T_{o}\right)}-\frac{\left(\left.T\right|_{y=o}-T_{o}\right)}{\left(T_{w}-T_{o}\right)}\right] \\
=(1-\vartheta) /\left(1-\vartheta_{o}\right)
\end{gathered}
$$

Equations become:

$$
\frac{\partial \vartheta}{\partial x}=\frac{1}{P e_{R}}\left(\frac{\partial^{2} \vartheta}{\partial y^{2}}+\frac{1}{y} \frac{\partial \vartheta}{\partial y}\right)
$$

With:

$$
\begin{gathered}
\vartheta=1-\left(1-\vartheta_{o}\right)\left(1-A y^{2}\right) \text { at } x=x_{o} \\
\vartheta \text { finite at } y=0 . \\
\frac{\partial \vartheta}{\partial y}+B i(\vartheta-1)=0 \text { at } y=1
\end{gathered}
$$

This reduces to the conventional PF model if $x_{o}=0, A=0$, and ϑ_{o}. The solution is:

$$
\begin{aligned}
\vartheta= & 1-2\left(1-\vartheta_{o}\right) \sum_{i=1}^{\infty}\left\{\frac{\left[\left(B i \lambda_{i}^{2}+4 A B i-2 A \lambda_{i}^{2}-A B i \lambda_{i}^{2}\right) J_{o}\left(\lambda_{i} y\right)\right]}{\lambda_{i}^{2}\left[\lambda_{i} J_{o}\left(\lambda_{i}\right)+B i J_{i}\left(\lambda_{i}\right)\right]} e^{\left[-\frac{\lambda_{i}^{2}}{P e_{R}}\left(x-x_{o}\right)\right]}\right\} \\
& =1-2\left(1-\vartheta_{o}\right) \sum_{i=1}^{\infty}\left\{\frac{\left(B i+4 A B i / \lambda_{i}^{2}-2 A-A B i\right)}{\left[B i^{2}+\lambda_{i}^{2}\right]} \frac{J_{o}\left(\lambda_{i} y\right)}{J_{o}\left(\lambda_{i}\right)} e^{\left[-\frac{\lambda_{i}^{2}}{P e_{R}}\left(x-x_{o}\right)\right]}\right\}
\end{aligned}
$$

Dimensionless Parameters

The Reynolds number (Re) is a dimensionless fluid mechanics parameter that is directly proportional to the superficial velocity of the fluid. The equation for the Reynolds number of the air flowing through a fixed bed is:

$$
R e=\frac{v_{s} \rho d_{p}}{\mu}
$$

Where v_{s} is the superficial velocity of the air in $\mathrm{ft} / \mathrm{min}, \rho$ is the density of the air, d_{p} is the diameter of the particle in inches, and μ is the dynamic viscosity of the air

The Peclet number $\left(\mathrm{Pe}_{\mathrm{r}}\right)$ is given by the following equation:

$$
P e_{r}=\frac{R e * P r}{k_{r} / k_{f}}
$$

Assuming kr/kf is linearly related to Re , and Pr is assumed to be constant at 0.71 for air at $60^{\circ} \mathrm{C}$:

$$
P e_{r}=\frac{R e * P r}{m * R e+b}
$$

Where m and b are the slope and intercept respectively of the line fitting our k_{r} / k_{f} versus Re data. The Peclet number should increase rapidly for a low range of Reynolds numbers and stay relatively constant with respect to Reynolds number after reaching a certain velocity. This is because when Re is low, the intercept (b) has more of an effect on $P e_{r}$.

The Biot Number (Bi) is a relationship between the wall heat transfer coefficient and the thermal conductivity of the packing. It is given by the following equation:

$$
B i=\frac{h_{w} R}{k_{r}}=N u_{w} \frac{R / d_{p}}{k_{r} / k_{f}}
$$

Since k_{r} is assumed to be linearly proportional to the Reynolds number, and h_{w} increases at a slower rate with Reynolds number, we would assume the Biot number to decrease with respect to the Reynolds number. If Nu_{w} was linearly proportional to Re , the Biot number would decrease linearly, but theoretically Nu_{w} should fit the equation:

$$
N u_{w}=N u_{w}^{o}+A R e^{B} P r^{C}
$$

Where A, B, and C are experimentally determined constants. With only six data points, it is impossible to create an accurate fit line with this model for Nu_{w}, so we just assume that the Biot number will decrease with respect to Reynolds number.

The dimensionless parameter N is a ratio of tube diameter to particle diameter.

$$
N=\frac{2 * R}{d_{p}}
$$

Several studies completed have given various parameters that must be met in order to receive accurate data when using models such as the IPPF. Many of these studies suggest that the first bed depth used should be at least 1.5 times the diameter of the column (Borkink \& Westerterp, 1993). This being said, the optimum first height for the 4 inch column would be 6 inches. With the limited number of particles available, the first height chosen was 4 inches, which could have had an effect on the accuracy of our data.

Methodological Procedure

Equipment

The apparatus used in a cooling experiment with a fixed bed reactor tube is shown in Figure 1.

Figure 1: Schematic of Laboratory Apparatus

Columns

Each column used was constructed using two concentric brass tubes to form an annular space between the two (water jacket). The columns were attached to calming sections using four screws. Screws used in the 4 inch column were constructed from nylon, whereas the screws used in the 2 inch column were constructed from steel. The calming sections were constructed out of nylon and filled with $1 / 4$ inch steel spheres. The steel spheres were separated from the test packing by a circular piece of steel mesh. The calming section allowed for the airflow to be evenly
dispersed over the cross-section of the column. The columns had internal diameters measuring 2 inches (50.8 mm) and 4 inches (101.6 mm).

Determining Reynolds number of inlet air flow

To measure the flow rate of the air entering the column, it was passed through a $1 / 2-27-\mathrm{G}-10$ rotameter tube with a $1 / 2$-GSVT-48A float. Depending on the pressure of the air, different amounts of air would flow through the rotameter at 100% of the total flow. These values are listed in Table 1.

Table 1: Flow data for a $1 / 2-27-\mathrm{G}-10$ rotameter tube with a $1 / 2$-GSVT-48A float

Gauge pressure	MAX	Gauge Pressure	MAX
0	44.9	26	2.94
1	4.73	27	2.91
2	4.6	28	2.88
3	4.46	29	2.84
4	4.34	30	2.8
5	4.23	31	2.78
6	4.13	32	2.75
7	4.03	33	2.72
8	3.94	34	2.69
9	3.86	35	2.67
10	3.78	36	2.64
11	3.7	37	2.61
12	3.64	38	2.59
13	3.57	39	2.56
14	3.51	40	2.54
15	3.45	41	2.52
16	3.39	42	2.49
17	3.34	43	2.47
18	3.28	44	2.45
19	3.23	45	2.43
20	3.19	46	2.41
21	3.15	47	2.39
22	3.1	48	2.37
23	3.06	49	2.35
24	3.02	50	2.34
25	2.98	51	2.32

The volumetric flowrate of air flowing through the column (SCFM) was found using the following equation:

$$
S C F M=\% * \operatorname{Max} *\left(\frac{14.7+p s i g}{14.7}\right)
$$

Where \% is the percentage read on the rotameter tube for air, Max is the maximum flow rate (at 100% on the rotameter, which can be found in Table 1) for the rotameter tube and float used, and psig is the pressure read off of the pressure gauge downstream from the rotameter. The percentage of airflow is read from the "knife-blade edge" of the float (which is at the widest diameter of solid on the float).

Since the column area, and the density and viscosity of air were assumed constant for air flowing though the column, the Reynolds number was then determined using the following equation derived for each column:

$$
R e=C * S C F M * d_{p}
$$

Where C is 380 for the 2 inch column and 95 for the 4 inch column.

Packings

Four different packing shapes were examined throughout the course of the project:

- $1 / 2$ inch ceramic spheres
- Raschig rings
- Johnson Matthey K-57 4-hole pellets (4-hole cylinders)
- Monoliths

The $1 / 2$ inch ceramic spheres measured 12.7 mm in diameter and were porous in nature. There have been many studies completed using spheres with $\mathrm{N}=8$ (in our case, the spheres were used in the 4 inch column only). By comparing our data to these studies, we could verify that our data is consistent with past experiments.

Raschig rings in this study are brittle non-porous ceramic cylinders with a single hole in the middle. The rings we used had heights and outer diameters equal to 13 mm , with a wall thickness of 3mm. There have also been some studies with raschig rings with various values of N , which
allows us to do a comparison to verify our data is relatively consistent and will give values for the N we used.

The Johnson Matthey K-57 4-hole pellets were porous ceramic 4-hole cylinders. These were 17 mm tall, with an outer diameter of 14 mm and hole diameters of 4 mm . Packings such as these are typical support for steam reforming.

The monoliths are ceramic cylinders, measuring 7 mm tall with a diameter of 6 mm and a hole density of $0.563 \mathrm{holes} / \mathrm{mm}^{2}$ (56.3 holes $/ \mathrm{cm}^{2}$). The monoliths used in this study are illustrated in Figure 2.

Figure 2: Monoliths (http://www.made-in-china.com/showroom/hisina88/product-detailKoXmSOuGZzVf/China-Automobile-Exhaust-Catalyst-Carrier.html)

The Inlet Profile Plug Flow model requires a particle diameter to complete calculations. This diameter is referred to as the equivalent spherical diameter. In other words, this is the diameter required in a sphere to obtain the same volume as the particle (without accounting for any internal voids). The three non-spherical packings were all cylindrical in shape, so the equivalent spherical diameter could be found using the following equation:

$$
\pi \frac{d_{c}^{2}}{4} h=\frac{4}{3} \pi \frac{d_{p}^{3}}{8}
$$

Where d_{c} is the diameter of the cylinder and d_{p} is the equivalent spherical diameter.
Table 2 lists the equivalent spherical diameters of the packings, as well as the ratio of each column to said diameters.

Table 2: Packing to column diameter ratios

Packing	Equivalent Spherical Diameter	N in the 2 inch column	N in the 4 inch column
Spheres	12.7	--	8.0
Raschig Rings	14.5	3.5	7.0
JM 4-hole cylinders	17.4	2.9	5.8
Monoliths	7.3	7.0	14.0

Micromega Heater

The heater used to heat the inlet air flow was controlled by an Omega Micromega CN77000 Series Controller. Complete instructions to use the controller may be found on Omega's website at http://www.omega.com/Manuals/manualpdf/M2491.pdf. The purpose of the heater in this experiment is to heat the inlet air to approximately $100{ }^{\circ} \mathrm{C}$. There are two settings that may be altered to acquire this: the desired temperature and the rate at which it takes to get to the desired temperature (ramp and soak). Our desired temperature was set to $100{ }^{\circ} \mathrm{C}$. The rate will affect how long it will take the system to reach equilibrium. Since it is impossible to get the temperature of the air to be exactly $100^{\circ} \mathrm{C}$ at all times, the heater heats until the air is $100^{\circ} \mathrm{C}$ and hinders heating until the flow is cooled below $100{ }^{\circ} \mathrm{C}$, in which case it will start heating again. This creates an oscillation in temperature over time, and after infinite time the temperature will approach $100^{\circ} \mathrm{C}$. With a faster heating rate, the air flow will reach $100{ }^{\circ} \mathrm{C}$ sooner; however, larger oscillations will occur. Conversely, with a slower heating rate, the air flow will reach 100 ${ }^{\circ} \mathrm{C}$ slower, but smaller oscillations will occur. The ramp and soak configuration was disabled, which allows the heater to reach the desired setting as fast as possible.

Thermocouples

A diagram of the thermocouple cross can be seen in Figure 3.

Figure 3: Thermocouple Cross
The thermocouple cross consisted of two sets of four arms set 45 degrees apart from each other. Each arm had three thermocouples attached, measured at different radii. The radii for each thermocouple in millimeters are shown in Table 3.

Table 3: Radial position of each thermocouple represented in Figure 2 in both columns

Thermocouple	2 inch column (mm)	2 inch column (dimensionless)	4 inch column (mm)	4 inch column (dimensionless)
A	0	0.00	0	0.00
B	8.5	0.33	9.5	0.19
C	12	0.47	19	0.37
D	15	0.59	28	0.55
E	18	0.71	41	0.81
F	21.5	0.85	44	0.87
G	24	0.94	48	0.94

Not counting the center thermocouple, data is collected by 24 thermocouples at six different radial positions. By rotating the thermocouple cross 45° and taking a second set or readings, 48 thermocouple readings are recorded (i.e. eight angular replicates of six radial positions). This allows for a more accurate measurement of the average temperature of each radial position across the cross-section of the column. The thermocouples were held in place by thin plastic tubing (like a small straw) connected to two nylon bars (each arm consisted of two bars) with holes drilled at the same radial position. A side view of the thermocouple cross (one of the eight arms) is shown in Figure 4.

Figure 4: Side view of one arm in the thermocouple cross
Consecutive thermocouples used in these experiments are placed at radii very similar to the ones before and after (within 3mm). These thermocouples must be verified before inserting the thermocouple cross into the column each time to ensure that they are not bent, as reading temperatures from 1 or 2 mm different than expected will yield faulty results.

Three thermocouples were placed in the cooling water jacket. These were placed 7.5, 24.5, and 37.5 mm from the bottom of the column. All three were averaged for each set of data in order to determine the wall temperature.

Temperature Profile Collection

The data acquisition device used was a Keithley Integra Series 2700 Datalogger. This device combines functions of DMM, switch system, and datalogger, and allows for the collection of
thermocouple data for up to 200 channels (35 of these channels were utilized in this experiment). The device worked in conjunction with ExceLINX (an add-in designed for Microsoft Excel) to collect data over time.

To install ExceLINX, the program file ExceLINX.xla must be placed in the Excel Add-ins folder. This can be found in explorer: $\mathrm{C} \rightarrow$ Documents and Settings \rightarrow All users \rightarrow Application Data \rightarrow Microsoft \rightarrow Add Ins. Then in Excel, go to Tools \rightarrow Add In. Click browse and select ExceLINX.xla from the menu. Now the ExceLINX tab should be available from the menu at the top of Excel.

The Keithley instrument must now be configured to use with the ExceLINX program. Start by turning on the Keithley instrument. Then, at the top of the Excel screen, select ExceLinx \rightarrow DMM Config and complete as shown in Figure 5.
 Figure 5: DMM Config Screenshot

Then click ExceLINX \rightarrow DMM Scan and complete as shown in Figure 6.

To record data, select the dropdown menu "Status/Cmds", select "Start", and then press enter. Data will be recorded in the selected sheet under "Worksheet". To stop collecting, choose "Stop" from the "Status/Cmds"drop down menu and press enter very shortly after (almost instantaneously). Each column of data represents temperatures read at specific thermocouples
depending on their placement. In order to determine which thermocouple corresponded to each column, each thermocouple was tested by touching one by one with a finger-tip and checking ExceLINX to determine which column's temperature changed. The ambient temperature in the lab was usually close to $20^{\circ} \mathrm{C}$ and after being touched by a finger-tip, the temperature reading for that thermocouple would read about $30^{\circ} \mathrm{C}$. There were five thermocouples removed from the column, but still connected to the Keithley instrument. Temperatures for these thermocouple connections read 9E31 on ExceLINX. After the channels on ExceLINX for these five thermocouples and the 25 thermocouples from the thermocouple cross were determined, the channels for the wall thermocouples and the inlet airflow needed to be determined. These were found by removing the connecting wires one by one and seeing which channel read 9E31.

Procedure

In order to ensure a good fit for our data, six different Reynolds numbers were measured during each day of column operation, and four bed depths were taken for the packings in each column. A table of all runs completed during the course of the project is shown in Table 4.

Table 4: Table of runs

Column Diameter (mm)	Packing	Re Values	Bed Depths (mm)
101.6	$1 / 2$ " spheres	$75,145,195,260$, 335,425	$92,150,200,225$
101.6	Raschig Rings	$85,142,190,258$, 341,432	$100,150,200,250$
101.6	JM 4-hole cylinders	$102,198,268,358$, 460,584	$100,150,200,250$
101.6	Monoliths	$43,71,95,129,171$, 216	$100,160,200,260$
50.8	Raschig Rings	$350,490,676,909$, 1209,1570	$80,150,210,255$
50.8	JM 4-hole cylinders	$409,775,1052$, $1412,1822,2275$	$80,150,200,265$
50.8	Monoliths	$170,323,439,589$, 760,948	$95,155,210,260$

It has been determined that the minimum packing depth should be 1.5 times the column diameter to let the parabolic temperature profile develop (Borkink \& Westerterp, 1993). This must be
done so that the IPPF model would fit the data (requires parabolic temperature profiles). Although the minimum packing depth was determined to be 1.5 times the column diameter, this could not be done with some of the packings in the 4 inch column due to a lack of packing quantity. To ensure enough deviation in bed depths, and keeping consistency throughout the runs, runs in the 4 inch column started at a height close to 4 inches (only 1 times the column diameter).

Operating the Column

1. If running the tower for the first time, carefully unscrew and remove the top section of the tower.
2. Fill the calming section of the tower with metal spheres and cover the calming section with a wire mesh to keep it separate from the test packing.
3. Re-attach the top section of the tower.
4. Measure the inside height of the empty tower and record the value.
5. Add the desired amount of the packing you are working with to the tower. To do this properly you should:
a. Add the packing little by little and gently compact it from the top after each addition to assure for uniformity of packing.
b. Regularly measure the height of the empty space left in the column (space from packing to top) to ensure that you do not surpass your desired packing height. (Packing height=height of empty tower - empty space left)
6. Set up the thermocouple cross so that once it is inside the tower the thermocouples are just above the packing (no more than 3-6 mm). To do this measure the distance from the cross bar that will support the cross to the bottom of the thermocouples and set it so that this distance is slightly less that the empty space remaining in the tower. Before lowering the thermocouple cross into the column each time, straighten all thermocouple tips and ensure that they are centered with the guide tubes.
7. Carefully lower the thermocouples cross into the tower. If you feel it hit the top of the packing remove it from the tower, re-adjust the height of the cross bar, and straighten all thermocouple tips.
8. Open ExceLINX. If you have not yet set up ExceLINX as described in the ExceLINX section take the time to do so now.
9. Turn on and configure the Keithley 2700 Multimeter/Data Acquisition System.
10. Prior to starting any flows make sure that all the valves are in the fully shut position. For Water Valves (WV) $1 \& 2$ as well as Air Valves (AV) $1 \& 3$ this means that the valve is perpendicular to the tube on which it is located. For AV 2 this means that the valve is turned fully in the CLOCKWISE direction.
11. Slowly fully open WV 1.
12. Slowly open WV 2 until the rotameter reads a flow of 80%.
13. Slowly fully open AV 1. At this point if the pressure gauge following AV 1 is showing a non-zero pressure reading it means that AV 2 is not fully shut, in which case take the time to fully shut it now.
14. Slowly fully open AV 3.
15. If you are running the column for the first time adjust AV 4 so that at the desired setting it allows for a full range of desired Re values to be obtained using only AV 2 to adjust the flow. The following things should be noted:
a. Once this has been set AV 4 should not be touched in further runs to ensure for uniformity of values.
b. Never allow the rotameter to reach or exceed 100%.
c. The pressure gauge that should be used to calculate the Re values is the one that is right before entering the heater (i.e. downstream from the rotameter).
16. Turn on the heater. If you have not yet set up the Omega Micromega heating control unit take the time to do so now.
17. Set the flow to the desired amount by adjusting only AV 2 .
18. Using ExceLINX start recording the data.
19. Once the system has reached steady state stop the data recording. This should take anywhere from 1 to $3+$ hours depending on the flow rate, packing height, and if it's the first run of the day.
20. Carefully rotate the thermocouple cross 45 degrees. The top of the column has markings for 0 and 45° in which the cross is to be lined up with to accurately measure the 45° rotation.
21. Commence recording data in ExceLINX. Make sure to do this in a different Excel sheet then the one used for the previous data.
22. Once the system has once more reached steady state stop the data recording. This should only take about 5 min after the angular rotation.
23. Repeat Steps 17-22 for all desired Re values.
24. Shut the system down in the reverse order that you started it in.

Safety Precautions

The spheres, raschig rings, and monoliths were all inert ceramic packings. However, the 4-hole cylinders contained a white powdered metal on the surface of each particle. Labels on the container provided by Johnson and Matthey warn that exposure may cause irritation. Although it has not been classified as hazardous, it is good practice to minimize exposure to this metal. In order to do so, gloves were worn at all times when handling the 4 -hole cylinders. Also, in order to prevent inhalation, the first set of runs performed with this packing was done using the largest bed depth. Once packed for the first time, painter's masks and safety glasses were worn and then the air was set to the highest flowrate achievable. Visibly, no dust came from the column at the highest flowrate, so the air was left at a high flowrate overnight so that any particles that did get
blown up were not breathed in by anyone. No dust was visible anywhere in the lab the next day; a miniscule amount was actually loose enough to be blown off the particles.

The heater would reach temperatures of $115^{\circ} \mathrm{C}$, and even though was insulated on all sides, could cause minor burns if touched. These surfaces were not touched for any reason, and if a particle or other object were to fall on top of the heater, it was immediately removed with pliers.

Data file format for model fitting

The IPPF model was fit to the temperature profile readings using an existing program written in FORTRAN. In order to run the program, it was required to create a text file in the correct format with data collected. A template of this format is shown in Table 5. In order to smooth the steady state thermocouple temperatures, the last five time values in our ExceLINX data collection sheet were averaged.

Table 5: FORTRAN input template

\# of Profiles	\# of Radial Positions	\# of wall Temperature Readings	\# of Angles		
Column Diameter	Particle Diameter				
Radius 1	Radius 2	Radius 3	Radius 4	Radius 5	Radius 6
Reynolds Number	Bed Depth	Angle of Rotation			
Inlet Temperature					
Radius 1 Thermocouple 1	Radius 1 Thermocouple 2	Radius 1 Thermocouple 3	Radius 1 Thermocouple 4		
Radius 2 Thermocouple 1	Radius 2 Thermocouple 2	Radius 2 Thermocouple 3	Radius 2 Thermocouple 4		
Radius 3 Thermocouple 1	Radius 3 Thermocouple 2	Radius 3 Thermocouple 3	Radius 3 Thermocouple 4		
Radius 4 Thermocouple 1	Radius 4 Thermocouple 2	Radius 4 Thermocouple 3	Radius 4 Thermocouple 4		
Radius 5 Thermocouple 1	Radius 5 Thermocouple 2	Radius 5 Thermocouple 3	Radius 5 Thermocouple 4		
Radius 6 Thermocouple 1	Radius 6 Thermocouple 2	Radius 6 Thermocouple 3	Radius 6 Thermocouple 4		
Wall Thermocouple 1	Wall Thermocouple 2	Wall Thermocouple 3			

One text file could be made for all packing depths and Reynolds numbers for each packing in each column. Therefore, when using this template, the top three lines were only needed once at the top of the file. To indicate the end of the file, a " -1 " was inserted on the last line to notify the program to stop. A sample text file is shown in Appendix A: Sample Fortran Input Text File (for JM 4-hole cylinders in the 2 inch column).

Fitting the IPPF model to collected data

In order to obtain a solution for the program in FORTRAN, the IPPF program uses iterations to minimize the sum of squares function given below:

$$
\min \left(P e_{r}, B i\right) S=\sum\left(T_{\text {calc }}-T_{\text {measured }}\right)^{2}
$$

Where the measured temperatures are taken at each angular and radial position for the different bed depths. The temperatures are made dimensionless by:

$$
\vartheta=\frac{\left(T-T_{w}\right)}{\left(T_{o}-T_{w}\right)}
$$

The IPPF model can now be solved analytically. The program performs two sets of functions: first solving the partial differential equation, and the second minimizing the sum of squares shown above as a function of input parameters. The sequence in which this is performed is:

1. Guess Pe_{r} and Bi
2. Solve partial differential equation
3. Form S
4. Is S at a minimum? If not, start back at 1 and reiterate

For the IPPF model, Pe_{r} and Bi vary for each packing and initial values are needed before running the program. . The Biot number was assumed to be anywhere between 1 and 2 , so was usually guessed to be 2 (unless iterations were not able to be completed). The Peclet number has been suggested from past research to be about 10 for spheres, and 6 for rings.

The function for the sum of squares is then solved using the guessed values for Pe_{r} and Bi . This sum is ended dependent on the user's desired accuracy.

The sum of squares function is in the category of target functions $\mathrm{S}(\underline{\mathrm{x}})$ with $\underline{x}=\left(\mathrm{x}_{1}, \mathrm{x}_{2} \ldots \mathrm{x}_{\mathrm{n}}\right)$

$$
S(\underline{x})=\sum_{i=1}^{m} f_{i}(\underline{x})^{2}=\underline{f^{T} f}
$$

Where m is the number of data points and n is the number of parameters to be estimated. Then, a $m * n$ Jacobian matrix is formed with the first partial derivatives:

$$
J_{i j}(\underline{x})=\left(\frac{\partial f_{i}}{\partial x_{j}}\right)_{\underline{x}}
$$

Using this, the gradient of S is given by:

$$
G=2 J^{T} J+2 \sum_{i=1}^{m} f_{i} K^{i}
$$

Where K^{i} is the matrix of second derivatives of f_{i} (under some conditions, may be zero). S is minimized by the Levenberg-Marguardt algorithm. The accuracy of this solution is then determined by the accuracy of the radial temperature measurements used in the iterations. The approximate error (\underline{E}) is then obtained by solving the following:

$$
\left(J(\underline{x})^{T} J(\underline{x})\right) \underline{E}=-J(\underline{x})^{T} \underline{f}(\underline{x})
$$

The second derivative of the target function must be available to approximate \underline{x}. The actual method for calculating \underline{E} depends on which of $\mathrm{J}, \mathrm{J}^{\mathrm{T}} \mathrm{J}$, or $\left(\mathrm{J}^{\mathrm{T}} \mathrm{J}\right)^{-1}$ is available. The accuracy of x_{i} values is determined by observing how x_{i} changes over iterations. Values for x_{i} should not change over the last few iterations (Van Dongeren, 1994).

Although these iterations allow the determination of accurate values for Peclet and Biot numbers, it is important to determine confidence intervals for these parameters. As long as the hessian of S is available in some form, variances may be calculated. If J is known, $G=2 J^{T} J$ can be evaluated. Letting H be the inverse of G and S be the sum of squares, then an estimate of the uncertainty in the $\mathrm{i}^{\text {th }}$ parameter x_{i} is:

$$
\operatorname{var}\left(x_{i}\right)=\frac{S}{m-n} H_{i i}
$$

Now that the variance is known, the values for a t-distribution with m-n degrees of freedom can be used to give $100(1-\beta)$ confidence intervals for \underline{x} :

$$
x_{i}-\sqrt{\operatorname{var}\left(x_{i}\right)} t_{(\beta / 2, m-n)}<x_{i}^{*}<x_{i}+\sqrt{\operatorname{var}\left(x_{i}\right)} t_{(\beta / 2, m-n)}
$$

Where x_{i}^{*} is the true solution. For these calculations, a 95% confidence interval was used, meaning 2.5% is tolerated on each side (Van Dongeren, 1994).

F-test

For each flowrate observed, data collected at the same radial and axial positions, but different angular positions, are considered to be "replicates". Therefore, each data set for a given column, packing, and bed depth yields eight replicate sets of six measurements, if two angular positions are used. A first test of model adequacy is to perform an F-test to show adequacy of fit. The pure-error sum of squares is calculated by:

$$
\text { SSPE }=\sum_{1}^{N}\left(\sum_{1}^{6} \sum_{1}^{8}\left(T_{\text {observed }}-T_{\text {average }}\right)^{2}\right)
$$

Where N is the number of bed depths. Indices are omitted for clarity and averages are taken over each set of eight replicate measurements for each position. The mean square pure error is then calculated by:

$$
M S P E=\frac{S S P E}{n_{2}}
$$

Where $\mathrm{n}_{2}=\mathrm{m}$-(number of averages found). The mean square pure error is an estimate of the error variance. Since this varies weakly over the bed depths, it must be estimated by averaging the error variance over the bed-depths for the "overall" analysis case. The mean lack-of-fit sum of squares is then calculated by:

$$
M S L F=\frac{S-S S P E}{n_{1}}
$$

Where $n_{1}=m$ - number of parameters estimated $-n_{2}$. If the model is linear in the parameters, the mean lack-of-fit sum of squares is an independent estimator of error variance. However, if the model is nonlinear, then it is a biased estimator, and a test of model inadequacy may be stated as:

$$
F_{c}=M S L F / M S P E>F_{0.05}\left(n_{1}, n_{2}\right)
$$

With values of $\mathrm{F}_{\mathrm{c}}>\mathrm{F}_{0.05}$, either the model is a poor fit or the data has a low amount of variability. This indicated a lack of fit error is significant compared to inherent scatter in the data.

Results

In order to proceed with any results, it was necessary to first prove that the data collected was representative of what was expected compared to past experiments. This includes the following:

- Plots of θ vs. y should show a parabolic fit at the first bed depth
- On the Plots of θ vs. y for each Reynolds number, temperatures should be lower with a higher bed depth
- On a height to height basis, $\mathrm{k}_{\mathrm{r}} / \mathrm{k}_{\mathrm{f}}$ and Nu_{w} should be height independent
- Peclet and Biot numbers are in line with previously found literature figures

Parabolic Fit

Over the vast amounts of experiments done with fixed bed reactor tubes, it has been found that temperature profiles in the tubes fit a parabolic curve of the form $T=A * r^{2}+B$, or in dimensionless form, $\theta=A * y^{2}+B$. Figure 7 shows an example of a parabolic fit for the first depth for raschig rings in the 4 inch column. As expected, the data follows a parabolic fit very closely with a coefficient of determination of 0.99 . It would also be expected that $\theta_{y=0}=1$ for the best fit, this is due to how the θ is calculated in terms of the center temperature and as so would only hold true if the center of the column had not cooled more than the surrounding locations. This example has an intercept (A) of 1.005 , very close to 1 . Some temperature profiles for other packings are not as parabolic as expected. Figure 8 is an example of a parabolic fit for the first height of JM 4-hole cylinders. This poor parabolic fit was uncommon however and only occurred in two instances, the raschig rings and the JM 4-hole cylinders in the 2 in column, both of which were instances with a particularly low N value. Graphs expressing the parabolic fit for first depth temperature profiles for each packing/column combination can be found in Appendix B: θ vs. y for First Heights.

First Height Parabolic Fit for Raschig Rings

First Height Parabolic Fit for 4-hole cylinders

The dimensionless profiles should also make physical sense. Since this is a cooling experiment, higher bed depths should yield lower temperatures. Temperatures should also decrease farther from the center of the tubes. It would also make sense for temperature differences between successive bed depths to be lower at greater bed depths. As air travels through the tube, the temperature difference between the center of the tube and the walls is decreased, lowering the driving force of the heat transfer. This means that the rate of temperature decrease with increasing radial position should also decrease with increasing bed depths. A sample radial temperature profile is shown in Figure 9.

Figure 9: Temperature Profile for JM 4-hole cylinders in the 4 inch column for Reynolds Number 268
Figure 9 is representative of the majority of our temperature profiles, and shows the expected trends for radial profiles obtained during the experiment. It would also be expected for higher

Reynolds numbers to yield higher temperatures. Figure 10 is a temperature profile of the same packing/column as Figure 9 but with a higher Reynolds number.

Figure 10: Temperature Profile for JM 4-hole cylinders in the 4 inch column for Reynolds Number 358
Each data point on Figure 10 corresponding with the same bed depth and radius as points on Figure 9 have higher temperatures. Figure 11 displays a temperature profile for a given bed depth rather than Reynolds number.

Figure 11: Temperature Profile for JM 4-hole cylinders in the 4 inch column for Bed Depth 200mm
There were few temperature profiles that did not represent our expected findings. Some of the temperatures for higher bed depths would be higher than those for lower bed depths, as well as some temperatures at higher radii being higher than those closer to the center of the tube. This can be a result of bent thermocouples where even a slight deviation from their expected position would cause such a discrepancy. Furthermore since most of the uncharacteristic behavior was seen in the near wall region it could be the result of wall effects dominating this portion of the tube. Figure 12 is an example of these findings.

Figure 12: Temperature profile for Monoliths in the 4 inch column with Reynolds Number 129
It is also understood that θ should not exceed 1 , as T_{0} should be the greatest temperature recorded; however, for some packings, θ values of greater than 1 were recorded. This also contradicts prior statements regarding the fit being parabolic with an intercept of 1 . Larger than expected θ values were only recorded for raschig rings in the 2 inch column ($\mathrm{N}=3.5$). An example of this is shown in Figure 13. This could be the result of the larger currents created by the larger packing. Because the larger packing takes up a much larger fractional area of the tube cross section it can in effect, if positioned in a certain manner, channel the hot air around the center thermocouple effectively creating a cool spot in this region and resulting in θ of over 1 .

Figure 13: Example of θ exceeding 1; Raschig Rings in the 2 inch column with Reynolds number 1570
41 different sets of Reynolds numbers were examined over this course of this project (5 for the spheres, 6 for the other 6 packing/column combinations). Radial temperature profiles for all 41 sets of Reynolds numbers can be found in Appendix C: θ vs. y by Reynolds Number.

Depth independence on heat transfer parameters

The heat transfer coefficients $\mathrm{k}_{\mathrm{r}} / \mathrm{k}_{\mathrm{f}}$ and Nu_{w} are strictly based on the packing size and shape, and airflow. It was once assumed that these parameters were both expected to decrease with bed depth because the models using to fit the parameters were not accounting for the axial dispersion of heat (DeWasch \& Froment, 1972; Gunn \& Khalid, 1975). However, it has been shown that bed depth should not be a factor in determining the heat transfer coefficients if the IPPF model is used. In order to show this, the data for the second, third, and fourth heights completed were
compared directly to the first height and values were found for the coefficients. Sample graphs of height by height analysis are shown in Figures 14 and 15, using IPPF model. The vertical error bars for all data collected in this study represent 95% confidence intervals.

Figure 14: Height by height analysis of kr/kf for JM 4-hole cylinders in the 4 inch column with Reynolds Number 584

Figure 15: Height by height analysis of Nu_{w} for JM 4 -hole cylinders in the 4 inch column with Reynolds Number 584

Most data obtained presents no strictly positive or negative trends. For respective bed depths, if $\mathrm{k}_{\mathrm{r}} / \mathrm{k}_{\mathrm{f}}$ decreased, Nu_{w} would usually increase, and vice versa. Since the overall heat transfer coefficient, U , is dependent on both of these, increasing one and decreasing the other will not affect this parameter. Figure 16 represents how h_{w} and k_{r} / k_{f} are representative of this, showing that using the following equation for the overall heat transfer coefficient:

$$
\frac{1}{U}=\frac{1}{h_{w}}+\frac{\alpha R}{k_{r}}
$$

An increase in Nu_{w} and decrease in $\mathrm{k}_{\mathrm{r}} / \mathrm{k}_{\mathrm{f}}$ will yield the same value for U . This has also been seen in the literature. Landon (1996) also showed this; this is shown in Figure 16.

Figure 16: Illustration of bed depth dependence for heat transfer parameters (Landon, 1996)

Peclet and Biot number analysis

Graphs of the Peclet and Biot numbers were also compared to expectations. All except for one, the graphs are representative of our expectations. As stated before, it was expected according to their definitions that the Peclet number would increase rapidly at low Reynolds numbers and
level out at a certain value of the Reynolds number. Figure 17 presents the Peclet number over a range of Reynolds numbers for 4-hole cylinders in the 4 inch column.

Figure 17: Peclet number versus Reynolds Number for JM 4-hole cylinders in the 4 inch column
The data presented above shows that the Peclet number does not deviate with respect to Reynolds number. The data also shows that the Peclet number for Monoliths is approximately 4.5, which is believable compared to the expected 6 for ceramic particles. This lower value indicates superior heat transfer and as such would make the particle more appealing. Since lower Reynolds numbers were found not to yield reliable data, the values at which Peclet increases rapidly with respect to Reynolds number were not examined. One of the packing/column combinations yielded data unrepresentative of our expectations. This is shown in Figure 18.

Figure 18: Peclet Number versus Reynolds Number for JM 4-hole cylinders in the 2 inch column

It is very unlikely that Pe_{r} would behave in such a manner, and the reasoning for such behavior is uncertain. This might be due to the small N value not allowing the heat to disperse evenly across the cross section of the column, causing a discrepancy in parameters at different flowrates.

The Biot number is expected to decrease with respect to Reynolds numbers. All data of Biot number versus Reynolds number obtained in these experiments expressed this behavior. A sample of these graphs is shown in Figure 19.

Figure 19: Biot Number versus Reynolds Number for Raschig Rings in the 2 inch column
Most values for the Biot number fall in the range of $1-2$, which is close to the expected value. All graphs of Peclet and Biot numbers plotted against Reynolds numbers can be found in Appendix E: kr/kf, Nuw, Bi, and Per for all Packings and Columns.

The Bauer/Schlunder Method

A study done by Smirnov (2002) showed an equation for finding k_{r} / k_{f} :

$$
k_{r} / k_{f}=k_{r} / k_{f}, b e d+K * R e * \operatorname{Pr}
$$

Where Pr is the Prandtl number for air, which is assumed constant at 0.71 . The parameter $\mathrm{k}_{\mathrm{r}} / \mathrm{k}_{\mathrm{f}, \mathrm{bed}}$ is the effective radial thermal conductivity of the packing with stagnant air. This parameter must be determined experimentally by plotting $\mathrm{k}_{\mathrm{r}} / \mathrm{k}_{\mathrm{f}}$ versus Reynolds number and finding the y intercept of the best fit line. In Smirnov's (2002) study, this was assumed to be 10 for ceramic particles (regardless of shape or size) and 20 for glass particles. Although this is much less significant than the slope of the line (considering steam methane reforming is undergone at very high Reynolds numbers), it is important to verify that this value is close to expected to ensure that the slope is accurate. This means that having a negative $\mathrm{k}_{\mathrm{r}} / \mathrm{k}_{\mathrm{f}, \text { bed }}$ value will yield a slope that cannot be assumed to be perfectly accurate, and therefore extrapolating will not be precise.

This leaves K, which may be determined experimentally or mathematically through the Bauer/Schlunder method. K varies for each packing, and depends on size (N), shape, and material. Experimentally, this would be the slope of the $\mathrm{k}_{\mathrm{r}} / \mathrm{k}_{\mathrm{f}}$ versus Re plot divided by the Prandtl number. The Bauer/Schlunder method (Bauer \& Schlunder, 1978) for determining K can be expressed by:

$$
K_{\text {Bauer }}=\frac{X}{8 *\left\{2-\left[1-\left(\frac{1}{R / d_{p}}\right)\right]^{2}\right\} * d_{p}}
$$

Where X for cylindrical particles can be expressed as:

$$
X=\frac{\varepsilon_{\text {bed }}}{\varepsilon_{\text {hbed }}} F_{c y l} d_{p}+\frac{\varepsilon_{\text {hole }}\left(1-\varepsilon_{\text {bed }}\right)}{\varepsilon_{\text {hbed }}} F_{\text {hole }} d_{\text {hole }}
$$

Where $F_{c y l}=1.75, F_{\text {hole }}=2.8, d_{\text {hole }}=\sqrt{2} l$, $\varepsilon_{\text {bed }}$ can be assumed as 0.40 for cylindrical particles, $\varepsilon_{\text {hole }}$ is the porosity of one particle, and $\varepsilon_{\text {hbed }}=\varepsilon_{\text {bed }}+\varepsilon_{\text {hole }}\left(1-\varepsilon_{\text {bed }}\right)$. For Spherical particles, X can be expressed as:

$$
X=1.15 d_{p}
$$

Experimental K values were compared with those found mathematically using the aforementioned equations. The Bauer/Schlunder equation does not correlate our results well. However, correcting the equation to read:

$$
K_{\text {Bauer ,corrected }}=\frac{X}{7 *\left\{2-\left[1-\left(\frac{1}{R / d_{p}}\right)\right]^{2}\right\} * d_{p}}
$$

By correcting the $\mathrm{K}_{\text {Bauer }}$ equation, it was found that the equation correlates our experimentally found K values nicely. This yields the following K values:

Table 6: Comparison of $K_{\text {Bauer }}$ and $K_{\text {exp }}$ to account for corrected equation

Packing	$\mathrm{K}_{\text {Bauer }}$	$\mathrm{K}_{\text {Bauer,corrected }}$	$\mathrm{K}_{\text {exp }}$	N
Raschig Ring (4 inch)	0.226	0.258	0.252	7.0
JM 4-hole cylinders (4 inch)	0.195	0.223	0.225	5.8
Raschig Ring (2 inch)	0.185	0.212	0.175	3.5
JM 4-hole cylinders (2 inch)	0.161	0.184	0.183	2.9

The value of 8 used in the denominator of the $K_{\text {Bauer }}$ equation has been found for an ideal model. Since the experiment was not ideal, changing this value to 7 works similar to that of a correction factor to correct for the reality of this experiment.

A study completed by Borkink et al. (1993) compared Peclet number (Note that this is not the radial Peclet number, but instead $P e=R e * P r$) to the effective radial thermal conductivity for different packings including raschig rings with an equivalent spherical diameter of 6.2 mm in a 49.9 mm column ($\mathrm{N}=8$). This was compared to data obtained in this study for raschig rings in the 4 inch column ($\mathrm{N}=7$). To obtain the Peclet number, the Reynolds number was multiplied by the Prandtl number for air. This comparison is displayed in Figure 20.

Figure 20: Comparison of Borkink Raschig Ring effective radial thermal conductivity to values from this study
The slopes for both best fit lines are nearly identical, verifying that the value determined for K (which is the slope for the best fit lines above) using the corrected Bauer and Schlunder equation is accurate (according to this and Borkink et al.).

Comparison to past experiments using spheres

The data from this experiment was also compared to various other studies which used $1 / 2$ inch porous ceramic sphere packing in the 4 inch column. These studies were performed by Hans Van Dongeren (1994) and Darryl Pollica (Dixon, Personal Communication). The two studies were both performed using a heating method rather than cooling; cool air entered the column at the inlet and steam in the jacket heated the air up. Although these were not cooling experiments as this study was, the two are comparable as the IPPF model adjusts all variables to be dimensionless.

Figure 21: Comparison of $\mathbf{k}_{\mathrm{r}} / \mathbf{k}_{\mathrm{f}}$ for spheres

Figure 22: Comparison of Nu_{w} for spheres

The k_{r} / k_{f} comparison illustrates that this study, Pollica, and van Dongeren all determined that the intercept should lie somewhere around 15 , however, none of the slopes strongly correlate from one study to another. Although it appears that van Dongeren has a stronger correlation with more data points than the other two studies, a slope (where slope $=\mathrm{K} * \operatorname{Pr}$) of 0.044 is far less than the expected 0.07 for a spherical packing with N=8 (Bauer \& Schlunder, 1978).

Although Nu_{w} is not linear in nature with respect to Reynolds number, it can be compared using linear trends at low flowrates. The intercept collected in this study deviates greatly from the intercepts obtained by Pollica and van Dongeren (which are both about 16). However, disregarding the first data point (at a Reynolds number less than 100), the intercept is less than 20. The slope in this study is identical to that of Pollica, which shows that both our study and Pollica's will yield similar Nu_{w} values at very high flowrates.

Asymptotic radial Peclet relationship to $\mathbf{k}_{\mathrm{r}} / \mathbf{k}_{\mathrm{f}}$

Von Landon (1996) stated that at high Reynolds numbers, one may disregard $\mathrm{k}_{\mathrm{r}} / \mathrm{k}_{\mathrm{f}, \text { bed }}$ in calculating k_{r} / k_{f} by using the equation:

$$
k_{r} / k_{f}=\frac{R e * P r}{P e_{r, f}^{\infty}}
$$

Where $P e_{r, f}^{\infty}$ is the radial asymptotic Peclet number at high Reynolds numbers. This equation states that $P e_{r, f}^{\infty}=\frac{1}{K}$.There are empirically derived equations for $P e_{r, f}^{\infty}$, such as Bauer and Schlunder, but when using different shaped particles, these equations cannot be assumed accurate. To determine this value, these experiments need to be run at high Reynolds numbers. However, with varied data for Pe_{r} at higher Reynolds numbers, this calculation cannot be assumed perfect. With the data taken in this study, $P e_{r, f}^{\infty}$ is the approximate average of Pe_{r} values over the last 4 Reynolds numbers in which data was recorded. For example, for 4-hole cylinders in the 4 inch column (Figure 17), values for Pe_{r} average 4.5.

Table 7: Correlation between experimentally found slopes and radial Peclet numbers

Packing	$\mathrm{K}_{\exp }$	$P e_{r, f}^{\infty}$	$1 / P e_{r, f}^{\infty}$	N
Raschig Ring (4 inch)	0.252	4	0.25	7.0
JM 4-hole cylinders (4 inch)	0.225	4.5	0.22	5.8
Monoliths (4 inch)	0.225	3.5	0.29	14.0
Raschig Ring (2 inch)	0.175	6	0.17	3.5
JM 4-hole cylinders (2 inch)	0.183	6	0.17	2.9
Monoliths (2 inch)	0.225	4.5	0.22	7.0

The only packing that greatly deviates from $\mathrm{K}_{\exp }$ is the monoliths in the 4 inch column. The correlation between Peclet and Reynolds numbers is shown in Figure 23.

Figure 23: Peclet versus Reynolds number for monoliths in the 4 inch column
As shown in Figure 23, the Peclet number is increasing over Reynolds numbers instead of remaining constant. This is most likely due to the flowrates being too low for the Peclet number to asymptote, and therefore $P e_{r, f}^{\infty}$ is not definable for this packing. According to the experimental K value determined by the slope, $P e_{r, f}^{\infty}$ should be 4.5 , and very well might be. Comparing $1 / P e_{r, f}^{\infty}$ and slopes of $\mathrm{k}_{\mathrm{r}} / \mathrm{k}_{\mathrm{f}}$ to Reynolds number is also useful to confirm that the data has been collected at high enough flowrates where the flow is fully developed. The lower the value for $P e_{r, f}^{\infty}$, the higher $\mathrm{k}_{\mathrm{r}} / \mathrm{k}_{\mathrm{f}}$ is, meaning that the heat transfer would be overestimated for cases such as this.

Analytically determining a Nusselt wall value

Martin and Nilles (1993) proposed that Nu_{w} may be determined analytically by using the following equation:

$$
N u_{w}=\left(1.3+\frac{5}{N}\right)^{k_{r}} / k_{f}, \text { bed }+0.19 R e^{0.75} \operatorname{Pr}^{0.33}
$$

In a simpler form, this equation is:

$$
N u_{w}=A+0.1697 R e^{0.75}
$$

Where A is the intercept based on the packing's N and $\mathrm{k}_{\mathrm{r}} / \mathrm{k}_{\mathrm{f}, \text { bed }}$ value. There are equations to determine theoretical values for $\mathrm{k}_{\mathrm{r}} / \mathrm{k}_{\mathrm{f}, \text { bed }}$, however, this study used the values of the intercepts from graphs of $\mathrm{k}_{\mathrm{r}} / \mathrm{k}_{\mathrm{f}}$ versus Reynolds number. Since Prandtl is assumed constant for air at $60^{\circ} \mathrm{C}$ to be 0.71 , the second term is solely dependent on Reynolds number. The data collected in this study does not support the accuracy of this equation. An example of this equation compared to this study is shown in Figure 24.

Figure 24: Nu_{w} versus Re for raschig rings in the 4 inch column
In order to determine correct values for Nu_{w}, the intercept of $\mathrm{k}_{\mathrm{r}} / \mathrm{k}_{\mathrm{f}}$ versus Re graphs must be accurate. Some of the data in this study yielded intercepts far lower than expected (some negative) which causes the Martin and Nilles comparison to be far off from the collected Nu_{w} data. The Martin and Nilles equation compared to this study's data for 4-hole cylinders in the 4 inch column is shown in Figure 25.

Figure 25: Nu_{w} versus Re for 4-hole cylinders in the 4 inch column
It can be seen that the series created by the Martin and Nilles is relatively parallel to the data obtained in this study; this deviation of the equation to collected data is solely dependent on the intercept $\left(k_{r} / k_{f, \text { bed }}\right)$. After correcting the $k_{r} / k_{f, \text { bed }}$ value to be 8 instead of the obtained 0.2835 for the 4-hole cylinders in the 4 inch column, a much better correlation was found. This is shown in Figure 26.

Figure 26: Nu_{w} versus Re for 4 -hole cylinders in the 4 inch column with corrected $\mathbf{k}_{\mathrm{r}} / \mathbf{k}_{\mathrm{f}}$ bed

N Dependence

Through the course of the experiment the value of N ranged from 2.9 to 14 depending on the packing and tube, the full list can be found in Table 2. Typically N can be expected to fall in the range of 5 to 15 (Von Landon, 1996) and it is generally accepted that this range will produce the desired heat dispersion profiles. As the N drops significantly lower than this range you start to encounter data that does not fit the predicted profiles. This is largely due to the wall effects which dominate the region within a particle diameter of the tube wall (Smirnov, 2002).

Therefore, for any $\mathrm{N} \leq 2$, the entire tube region would be affected entirely by wall effects; N must be large enough so that the majority of thermocouple readings are not affected by this phenomena. This can be observed by looking at the parabolic fits for the runs where the Raschig Rings and the JM 4-hole cylinders in the 2in column, $\mathrm{N}=3.5$ and $\mathrm{N}=2.9$ respectively (figures 5 and 6), by far produced the least parabolic curves at the first bed heights. Further evidence of poor model prediction in this region comes from values of θ larger than one found for the Raschig Rings in the 2 inch column as well as an uncharacteristic Peclet versus Reynolds correlation for the JM 4-hole cylinders in the 2 inch column. These findings come in contrast to a study done by Dixon (1997) which concluded that an N of as low as 2 for non-sphere particles will still produce the desired results.

Particle Durability

All the particles in this study were composed of ceramics however they varied in both shape and size. It was found that the monolith packing, being of smallest size and having the thinnest walls was far more brittle than the other packings. While the packing heights in this study remained below 300 mm in all instances it was still found that many monoliths at the bottom of the column, whether as a result of weight or agitation cracked and crumbled. The raschig rings were far more durable than the monoliths however even these resulted in a few broken particles most likely during the initial packing of the tower. The JM 4-hole cylinders and the spheres were by far the most resilient of the particles as none of these showed cracking or breaking.

Analysis of Variance

In order to ensure that the data is accurate, the F-ratio of $\mathrm{F} / \mathrm{F}_{95}$ should be less than 1 . However, it was found that for packings in the two inch column, values larger than 1 were very common. It was also found that values larger than 1 were often found for monoliths in the 4 inch column. For the raschig rings and 4-hole cylinders in the 2 inch column, this was most likely due to the low N value, causing less uniform heat dispersion, causing the sum of squares to be very large. However, since this is not the case with the monoliths, the discrepancy may be attributed to the large voidage within the particle. A table with all F-ratio values can be found in Appendix F: Ftest values.

Conclusion

The IPPF model requires that the lowest height of packing used should provide a z/R ratio of 3 . It has been stated that a value below this results in insufficient development of the profile at the inlet height resulting in failure of the model. However, data collected in this study for z / R ratios of 2 showed parabolic profiles. In future studies, if this is found not to be the case, a new model would need to be utilized that does not require a parabolic fit of the temperature profile.

The value of N displays a positive correlation to Nu_{w} resulting in a distinctive rise in the latter when N was double by moving to the smaller tube. Furthermore an N 3.5 is dominated by wall effects and results in data that does not fit the model while $¥ \$.8$ fits the model well. Further studies would need to be conducted in the range of $3 \$ \mathrm{~N} \leq 5.8$ to determine at which point the wall effects start to dominate a sufficiently large portion of the tube to negate the model.

Analyzing our data for the packings in the 4 inch column, we were able to not only get nearly identical findings for raschig rings, but were able to determine analytical models for determining heat transfer parameters based on shape and size. The Bauer/Schlunder equation, when corrected, gave parameters identical to those collected experimentally. It was also found that Von Landon's $P e_{r, f}^{\infty}$ correlation to $\mathrm{k}_{\mathrm{r}} / \mathrm{k}_{\mathrm{f}}$ is a fair estimation. It was however found that the Martin and Nilles equation for determining Nu_{w} cannot be relied on for accurate measurements as it only depends weakly on particle shape.

The JM 4-hole cylinders and Monoliths studied provided the best heat transfer parameters. However, since the Monoliths are brittle and would be subjected to high forces during steam methane formation, these should not be considered for industrial processes. Further studies should compare the differences between similar shapes such as 3-hole, 4-hole, and 5-hole cylinders.

Nomenclature

Bi Biot Number ($N u_{w} \frac{R / d_{p}}{k_{r} / k_{f}}$)
$B o_{h, r}^{\theta} \quad$ Bodenstein Number $\left(\frac{G c_{p} R^{2}}{k_{r} L}\right)$
$\mathrm{C}_{\mathrm{p}} \quad$ Heat capacity
$\mathrm{d}_{\mathrm{p}} \quad$ Particle diameter
$\mathrm{d}_{\text {hole }} \quad$ Characteristic length of the particle $(\sqrt{2} l)$
$\mathrm{d}_{\mathrm{t}} \quad$ Tube diameter
G Mass flowrate of the gas
$\mathrm{h}_{\mathrm{w}} \quad$ Wall heat transfer coefficient
$\mathrm{k}_{\mathrm{r}} \quad$ Effective radial thermal conductivity
$\mathrm{k}_{\mathrm{f}} \quad$ Effective thermal conductivity of the fluid
F Variance
L Largest bed length analyzed
$\mathrm{N} \quad$ Tube to particle diameter ratio $\left(\mathrm{d}_{\mathrm{t}} / \mathrm{d}_{\mathrm{p}}\right)$
$\mathrm{Nu}_{\mathrm{w}} \quad$ Wall Nusselt number $\left(\frac{h_{w} d_{p}}{k_{f}}\right)$
$\mathrm{Pe}_{\mathrm{r}} \quad$ Radial Peclet number $\left(\frac{R e * P r}{k_{r} / k_{f}}\right)$
$P e_{r, f}^{\infty} \quad$ Asymptotic radial Peclet number $\left(\frac{R e * P r}{k_{r} / k_{f}}\right.$ at high Re values)
Pr Prandtl number (0.71 for air at $60^{\circ} \mathrm{C}$)
r Radial position
R Radius of the tube
Re Reynolds number ($\frac{v_{s} \rho d_{p}}{\mu}$)
T Temperature
$\mathrm{T}_{0} \quad$ Center temperature of the first bed depth
$\mathrm{T}_{\mathrm{w}} \quad$ Wall temperature
U Overall heat transfer coefficient
$\mathrm{v}_{\mathrm{s}} \quad$ Superficial velocity
$\mathrm{x} \quad$ Dimensionless bed depth (z/R)
y Dimensionless radial position(r / R)
z Bed depth
a Experimentally determined constant
$\varepsilon_{\text {bed }}$ Bed porosity without account of porosity of particle
$\varepsilon_{\text {hbed }}$ Overall bed porosity
$\varepsilon_{\text {hole }}$ Porosity of one particle
$\lambda \quad$ Effective radial thermal conductivity (same as k)
$\mu \quad$ Viscosity
$\rho \quad$ Density
$\theta \quad$ Dimensionless temperature $\left(\frac{\left(T-T_{w}\right)}{\left(T_{o}-T_{w}\right)}\right)$
$\zeta \quad$ Dimensionless bed depth $\left(\frac{x^{R} / L^{-x_{o}}{ }^{R} / L}{1-x_{o} R / L}\right)$

References

Bauer, R., \& Schünder, E.U. (1978). Effective radial thermal conductivity of packings in gas flow. Part I Convective transport coefficient. Int. Chem. Eng., 18, 181-188.

Borkink, J.G.H., Borman, P.C., Westerterp, K.R. (1993). Modeling of the Radial heat Transport in Wall-Cooled packed beds. Chemical Engineering Communications, 121, 135-155.

Coberly, C.A., \& Marshall Jr., W.R. (1951). Temperature gradients in gas streams flowing through fixed granular beds. Chem. Eng. Prog., 47, 141-150.

DeWasch, A.P., \& Froment, G.F. (1972). Heat transfer in packed beds. Chem. Eng. Sci., 27, 567576.

Dixon, A.G., Cresswell, D.L., \& Paterson, W.R. (1978). Heat transfer in packed beds of low tube/particle diameter ratio. ACS Symp. Ser., 65, 238-253.

Dixon, A.G. (1985). The length effect on packed bed effective heat transfer parameters. Chem. Eng. J., 31, 163-173.

Dixon, A.G. (1988). Wall and particle-shape effects on heat transfer in packed beds. Chem. Eng. Comm., 71, 217-237.

Dixon, A.G. (1997). Heat transfer in fixed beds at very low (<4) tube-to-particle diameter ratio. Ind. Eng. Chem. Res., 36, 3053-3064.

Dixon, A.G. (2009). MQP Projects in Catalyst and Reactor Design for Hydrogen Production by Methane Reforming.

Gunn, D.J., \& Khalid, M. (1975). Thermal dispersion and wall heat transfer in packed beds. Chem. Eng. Sci., 30, 261-267.

Focus Technology Co., Ltd. Automobile Exhaust Catalyst Carrier. Made-in-China. (2009, December 13).
http://www.made-in-china.com/showroom/hisina88/product-detailKoXmSOuGZzVf/China-Automobile-Exhaust-Catalyst-Carrier.html

Landon, Von G., Adams, C. Bryan, Hebert, Larry A. (1996). Heat Transfer Measurement for Industrial packed Bed Tubular Reactor Modeling and Design. AIChE Symposium Series, 92, 134-144.

Martin, H., \& Nilles, M. (1993). Radiale Wärmeleitung in durchströmten Schüttungsrohren. Chem.-Ing.-Tech., 65, 1468-1477.

New York State Energy Research and Development Authority. (2009, November 23). Hydrogen production- Steam Methane Reforming. Retrieved from:
http://www.getenergysmart.org/Files/Schools/Hydrogen/6HydrogenProductionSteamMet haneReforming.pdf

Smirnov, E.I., Kronberg, A.E., Kuzmin, V.A., Muzykantov, A.V., Zolotarskii, I.A. (2003). Radial Heat Transfer in Packed Beds of Spheres, Cylinders and Raschig Rings. Chemical Engineering Journal, 91, 243-248.

Smirnov, E.I., Kuzmin, V.A., Zolotarskii, I.A. (2004). Radial Thermal Conductivity in Cylindrical beds packed by Shaped Particles. Chemical Engineering Research and Design, 82(A2), 293-296.

Smirnov, E.I., Koning, G.W., Kronberg, A.E., Kuzman, V.A., Muzykantov, A.V., Zolotarskii, I.A. (2003). Radial Heat Transfer in Packed Beds of Shaped Particles. Chemistry for Sustainable Development, 11, 293-296.

Stitt, E.H., (2005). Reactor Technology for Syngas and Hydrogen. NATO Science Series II, 191, 185-216.

US Department of Energy, Hydrogen Production. (2009, November 23). Natural Gas Reforming. Retrieved from:
http://www1.eere.energy.gov/hydrogenandfuelcells/production/natural_gas.html
Van Dongeren, J.H.. (1994). Influence of Tube and Particle Diameter at fixed Ratios on Heat transport in Packed Beds. Final Year project Report, University of Twente.

Appendices

Appendix A: Sample Fortran Input Text File (for JM 4-hole cylinders in the 2 inch column)

19.72838284	21.09444772	24.4977024	
105280	0		
98.8001999			
68.29434206	65.19507292	66.60065306	66.83636778
64.68190612	68.25741732	69.82284546	70.71866304
63.92250366	67.90347598	68.50434264	68.65388334
69.14316408	63.49986954	65.06321718	68.72596892
62.48444292	56.15174638	67.8101944	52.43913954
51.44942398	64.33299254	53.92048034	54.6673523
20.2851219	21.36883354	24.19305116	
105280	45		
98.89687198			
59.91440584	58.86440276	59.0906105	59.24870224
64.17294388	56.07076494	62.93479616	58.85851134
60.84555434	54.73794404	60.27732468	63.80253372
53.72100146	63.26296768	59.98911668	55.78862226
47.97101974	58.24943086	58.64743574	59.78501664
48.59130326	50.051342	56.23343276	48.8460846
20.27505568	21.15976448	23.92082404	
77580	0		
99.43384704			
59.45823746	61.6884689	62.73048478	62.46504518
65.95184784	61.06864318	65.21930846	58.41373674
59.70376434	57.51419678	64.41526184	63.91295698
59.09545746	63.09750598	58.552787	53.92599182
51.70502546	61.2921379	56.91301496	58.56207198
47.50985186	55.72848282	53.45356826	44.60525436
20.31828842	21.1653122	23.46459046	
77580	45		
99.5616104			
68.68361206	63.5823059	61.86362916	62.37270354
62.53291472	65.90697784	61.09473192	63.43332518
64.0926132	64.39998626	61.02958984	65.32199096
57.55845868	64.65750732	60.02675782	64.38395692
60.25372468	59.1067772	62.8616829	59.52434004
56.02996826	50.4035042	55.21190646	48.15922166
20.31336402	21.18619424	23.48711738	
40980	0		
118.6779892			
61.59536668	52.45747606	51.95164946	53.74286958
52.38668366	55.49029696	50.82851026	55.43695144
55.15008468	53.41965256	50.87927324	55.7397484
48.3984268	52.73624648	48.4462166	50.59808884
46.3868744	48.52955476	51.60263214	46.51319352
45.83642578	37.79503402	43.69383314	32.8810745
20.18028944	20.63690606	22.03336868	
40980	45		
115.8672944			
46.89469604	40.70767592	40.4937172	47.82091598
44.55739288	37.52248078	44.38219528	47.39627154
49.52509384	34.64694902	40.84518738	46.16904524
41.36538162	42.24956284	45.1345604	44.68399504
30.60537682	42.41700286	43.01247252	45.32846682
32.8019684	38.80463332	42.5204437	30.83472978
20.17482872	20.52550964	21.59088936	
2275150	0		

98.91356508			
58.43430328	60.83964308	63.91230622	63.82107468
61.44636842	61.42918168	64.08067014	59.02149506
55.13606186	59.46472624	65.10252836	62.940213
63.5492874	60.35691376	63.37976916	56.53418884
56.3140785	65.41085968	61.00628664	51.28270644
48.51304932	57.2770996	63.54102782	53.03800506
19.56986694	22.42404098	27.06655008	
2275150	45		
98.62605742			
58.73306882	60.26290054	64.38950196	64.7239746
57.95550918	61.47342226	65.20809022	64.25086974
55.06790694	58.79736326	63.9519615	62.98031006
59.12059098	57.87317044	64.7995209	61.86237182
59.14152144	64.8930344	59.46840822	52.28660656
53.22789	53.5156502	59.27845002	51.18025818
19.54683762	22.52379266	27.16913606	
1822150	0		
98.6984726			
50.67919006	51.93387604	59.05755616	59.44996874
50.29889906	56.62985916	60.96076582	58.29543536
47.95373078	51.76853638	58.13508528	58.63936234
56.99634626	49.17751694	60.99326704	58.00704422
54.63617708	60.73489074	55.4197731	47.53644486
45.08495408	50.19479218	56.01174318	46.6245842
19.2335289	21.498431	25.7419239	
1822150	45		
98.6147278			
56.77056808	49.41270372	57.39555436	58.6312027
52.338488	53.32281494	57.6699066	58.52672958
57.09482574	46.32721864	56.52928848	59.86500244
54.8510872	53.31860504	59.7137375	59.45969544
44.55054322	52.48655244	59.7456833	57.80756608
47.53789826	47.028257	54.29777374	56.67471468
19.12161484	21.57909472	25.69528312	
1412150	0		
98.9509506			
50.77979968	52.58001328	56.76442566	55.53376772
49.65307238	53.9867485	57.66937942	56.13626404
50.15673296	54.14580612	57.11678008	55.44091338
51.93353118	45.9466507	56.7082733	53.5809471
49.6351883	53.94620438	55.31752014	49.32602538
37.22709578	47.92097246	51.71604768	39.12158202
19.34335938	21.0656891	24.85866166	
1412150	45		
98.57024386			
48.80660018	52.86111146	53.3242119	52.78184662
52.836792	55.80041504	56.68186494	52.11970826
46.5125061	52.9849617	56.58839644	55.360421
56.12694856	51.27490998	57.5123207	52.21260302
51.89121474	56.30685654	50.99152144	42.50901564
40.20662996	53.07470704	55.34767456	42.76657564
19.38923264	21.12947806	24.85371858	
1052150	0		
99.0073639			
40.91475754	48.37804872	49.69394378	44.75125428

41.19297028	49.95391008	50.35421524	43.21306688
38.8451248	47.79931642	49.53569186	47.91036528
51.21306152	43.73466644	52.38024904	45.05809172
47.18281328	50.41306534	46.15266038	36.77309798
33.3092529	48.60114438	50.73813096	36.52398222
19.16157456	20.50416106	23.67472992	
1052150	45		
98.62762146			
46.55139084	50.37760542	48.8636734	41.72287138
45.81043778	50.49033814	48.18919678	40.85421524
46.73076936	50.27729416	51.40846788	43.54044876
51.33971708	47.48421098	48.51408158	38.6225525
50.43963316	52.52350996	45.03630522	42.02005766
38.76716766	49.8013588	42.7995491	31.79461822
19.2223526	20.58517952	23.8402817	
775150	0		
100.4869492			
45.82597198	48.88180924	48.64862902	43.62995148
45.46760638	49.50203702	48.50621186	42.58764344
46.45537264	49.10773392	49.6659912	45.5958679
49.3028244	45.623275	47.26775512	39.63362196
47.500325	49.26344376	45.51480788	42.73489836
37.46359254	46.86143492	40.74909362	32.50484694
19.61428872	20.74641036	23.3496689	
775150	45		
97.4851593			
48.8413147	49.661438	45.4838379	46.24140396
48.72106704	48.09358522	43.23610688	45.94310912
48.47971724	49.90555954	45.859346	46.2270523
47.4385887	48.55472716	40.49301912	44.75554962
48.4061447	45.473584	43.57394258	46.35172424
40.50546492	44.33735276	36.64361114	32.95051194
19.61437988	20.76703798	23.37957422	
409150	0		
108.5689758			
36.31838836	36.00875854	32.74766846	33.9221222
36.42999266	33.94670334	30.76653978	34.41045534
35.80542754	36.14849626	30.22783204	33.96519164
31.35536196	37.33917542	29.57197228	33.74812316
34.73056108	24.12475432	32.94790344	33.4170845
32.75461652	29.23967438	26.69602202	26.30184174
19.19199756	19.6527851	21.40013428	
409150	45		
103.9985366			
36.79264756	36.4160965	32.58012774	34.5112465
36.55339582	34.16837616	31.1742687	34.88336714
37.12656172	36.52278898	30.67872924	34.82304308
31.96548194	37.33473208	29.40726546	34.20025178
34.88130416	25.34253044	32.83948364	35.09132766
32.65042036	28.8647785	26.1234558	25.78597908
19.15955582	19.6281311	21.4826889	
2275200	0		
99.16753998			
56.80274048	56.5553627	55.35040894	55.66593932
56.48750994	55.8770172	54.6225708	55.54912872
55.06276856	55.50765228	53.97180328	51.80721436

53.6000389	56.02751234	55.77091596	54.49867782
53.37738264	50.68227464	48.56469346	52.22539214
50.68758774	47.39768144	53.3546509	42.7739067
19.9816288	24.27942428	27.3081413	
2275200	45		
99.32751464			
56.8763939	56.26218492	56.48807982	56.3740486
56.35706176	57.1123329	55.01497806	55.8926445
56.32222672	54.2671028	56.18304598	54.26648866
55.97688828	55.09260254	52.54919816	52.98763428
52.77218934	52.95060806	54.98386228	52.06026304
48.62270968	54.22021406	50.13025282	47.67022018
19.96664236	24.4571537	27.47696648	
1822200	0		
98.75254518			
52.77601622	52.2064331	52.1440544	51.74226988
52.39601898	52.94602584	50.73092422	51.81161346
52.09917146	49.93562622	51.71668168	49.73918764
50.47908556	50.70390778	48.12815628	48.78876494
47.19949416	46.8016281	50.37097092	48.32941208
43.98571776	47.95161056	46.1387558	44.51240924
19.47835502	22.96445274	25.7378071	
1822200	45		
98.99816742			
46.73545458	42.03614576	45.39466628	48.28736572
43.19481586	21.73489762	47.51638642	46.57336886
40.54960176	39.46253052	43.84951708	48.62294236
38.2229309	38.050766	44.00555876	44.44626692
39.54594574	43.10226364	46.77544478	36.17896652
32.50676192	32.80727462	38.04145966	41.05914232
19.2466503	22.3741989	25.6514675	
1412200	0		
98.87921142			
47.7934906	46.2575569	48.8368439	47.38877412
45.2327606	47.04674378	48.03281784	46.26497802
44.3535927	40.13817138	47.12823716	47.4955345
44.86109696	35.17089234	44.22092666	48.9150421
39.61377488	44.59798128	44.9947319	38.58955536
30.74430542	42.20111084	37.01335526	43.82090456
19.7666401	22.48489492	25.22439576	
1412200	45		
98.5345642			
46.32924804	48.3742035	48.14803698	47.5756569
46.00261536	48.96492462	46.95700226	46.0573738
42.17110368	46.27195664	48.52537918	44.81440962
46.5326851	38.79361878	45.09022902	41.37486496
43.4593918	44.30651016	45.34169312	34.4771507
37.65764236	44.62176666	43.78035812	34.187677
19.81744498	22.5064728	25.27298088	
1052200	0		
98.90518646			
41.69141464	43.93356322	43.96338578	43.00163726
42.08356248	44.7333618	42.92609786	41.22968826
38.4459564	41.72648162	44.28848724	40.32664414
42.73218156	40.75215912	41.01621246	36.77588576
38.96191406	39.5943901	40.25822066	30.58843956

33.66010284	40.84319838	40.1227333	30.39145394
19.6530487	21.6501873	24.25802344	
1052200	45		
98.94475404			
42.642659	40.93933562	43.49178466	42.71018754
40.83062362	41.8938591	42.83531266	41.70334852
39.34235308	35.26944732	41.42165374	43.3284668
40.17119906	36.29108656	39.35680158	42.1175003
33.46795576	39.31444244	41.46668244	34.50531998
28.95948334	35.94878388	32.84912796	37.29596784
19.65926816	21.48394086	24.13745194	
775200	0		
98.44761658			
38.6051117	37.4156601	39.48222732	38.845166
37.08525314	38.17751694	39.177832	37.64824982
35.41690064	32.3655525	37.5056557	39.48755798
36.19804	32.72103272	35.99720536	38.1797447
30.77688676	35.59904098	37.54720688	31.55895578
26.36857068	31.97444456	29.73430366	33.805246
19.45078966	20.87292788	23.20948906	
775200	45		
99.293779			
38.33902666	37.92753676	38.50621336	39.31750944
36.5863365	36.29005434	38.7314659	39.57939072
37.01532516	35.3193451	37.41386568	37.83820574
29.9499901	32.99298934	37.02521744	38.69386292
29.44973108	35.1542488	34.28367692	38.43269804
28.45227546	26.36058654	34.58326036	34.8159691
19.44895478	20.87421608	23.1486824	
409200	0		
111.9536896			
31.03306464	30.35135156	30.88413926	31.98917502
29.54854852	28.77385824	30.87115518	32.11796418
29.87023812	27.45694084	29.4767399	31.0357235
23.83875616	27.43690186	29.65249024	29.92760734
23.40657158	28.01109048	28.66285056	30.69504014
24.3244854	22.15790978	27.759346	27.32902602
19.34734918	20.1006733	21.720932	
409200	45		
109.4164322			
29.67201578	26.41555826	28.50524368	29.93023416
26.89048918	26.26057092	29.77409746	29.27373314
27.51098212	23.35940628	27.73017768	29.87352526
23.93672906	23.09819526	27.94829558	29.11346052
22.03939018	26.90578842	28.60467338	25.22316246
21.42739336	21.35714682	25.24629404	25.95150148
19.3326126	19.96550522	21.64152298	
2275265	0		
98.93516996			
51.52176742	49.21428452	50.76236496	49.38575362
48.88019104	49.23531266	50.61433334	49.36290664
50.31932298	46.08536074	51.42882308	49.4229492
50.92274398	45.73157654	52.48243558	48.54239732
42.85022354	50.2087555	48.30945514	46.24342498
38.42465594	47.09502638	47.69607544	41.99709398
19.15761566	22.83422852	25.63332102	

$\begin{array}{lr} 2275 & 265 \\ 98.53293456 \end{array}$	45		
	49.26488418	50.10499344	49.98358612
51.07362212	47.37760314	52.17178114	49.77518692
49.5806618	47.7857712	50.11046524	50.6676811
46.00337676	48.51928712	51.20819552	49.48350982
45.03485108	50.19804764	50.2034294	47.94532014
40.21110228	42.11347884	49.10993194	43.37984618
19.14161796	22.82235376	25.6085289	
1822265	0		
98.6812439			
45.64598466	45.38593904	46.33173368	46.16474382
47.2903206	43.71267548	48.0881996	45.86076738
45.66292114	44.4619667	46.02790068	47.06360014
41.8697502	45.01825792	47.16648484	45.427948
41.13500598	45.99850846	46.4579643	43.97706374
36.88848192	36.26695482	45.13731002	38.98748628
19.13657722	22.81351854	25.60926932	
1822265	45		
98.54974824			
40.23674318	41.40471724	41.78658068	43.065905
40.36697006	42.1230606	40.6655464	43.69579698
39.12290878	41.32575532	39.48177186	42.29679184
40.51795654	38.9880913	38.06063768	43.35520782
41.0656563	39.80584792	44.13357772	37.30011594
32.17085114	36.9378525	34.38277056	40.00833436
19.16079788	22.79908218	25.6180031	
1412265	0		
98.86578064			
38.85801544	40.33667298	41.21251526	39.3657837
41.02693712	39.53769534	42.59932708	38.1136116
38.99116362	39.99701918	41.10022506	41.65617904
38.27532042	40.0788841	42.83440324	37.3191269
37.29112626	40.71051256	40.61609422	37.57031404
33.90524674	35.1454651	41.77336274	31.52881432
19.30854414	22.29714164	24.7952156	
1412265	45		
98.84623718			
40.84026108	40.28384552	40.93802412	38.18530426
40.0435661	40.25686796	40.24929352	38.56129454
40.50852966	38.9292061	42.20601348	37.72995224
41.57413102	38.55087358	42.70633698	37.83195952
37.91297914	42.59278488	36.45733796	38.74069826
32.4420685	38.94508132	38.72758942	32.00665246
19.34336056	22.30565488	24.81808052	
1052265	0		
98.09759826			
36.20451658	33.15526428	36.40771636	33.58348694
32.71285326	35.2932205	36.85055848	33.38526384
34.7976776	33.23992082	36.67690506	34.27435608
35.24885482	28.84222374	40.1488388	33.02709502
31.88615686	37.90348968	33.2546242	30.61848222
25.40261496	32.41366576	37.13974838	29.28974496
19.3337341	21.68404466	23.84773864	
1052265	45		
97.96114348			

35.79308546	32.31847306	35.40328292	35.34646988
35.32076034	32.20355608	38.20213088	34.305616
33.40152894	30.65407182	35.30542906	36.50457916
32.60639648	32.333667	37.0570244	34.15605394
29.6860058	37.62654956	37.27133942	32.78776094
26.0327778	31.92216798	35.86511306	28.8260361
19.38240816	21.70701676	23.86766778	
$775 \quad 265$	0		
99.89899596			
31.82552604	28.38801652	30.5000683	31.62730332
31.06622048	27.57356606	33.3532692	30.88825838
29.44453966	26.32150536	30.79584962	32.26807864
27.96599694	28.06433906	32.06499098	30.6549839
25.32743416	32.47447206	33.15893628	28.53027764
23.201284	26.99083404	30.97368928	26.04771766
19.22278254	20.92047804	22.90697594	
$775 \quad 265$	45		
97.69941254			
31.92369768	28.91629524	31.81234208	30.4450676
27.01779098	30.30033952	31.98719826	31.88331568
28.97728652	27.63662642	34.2344177	30.6048332
32.50058058	26.23759192	31.85536194	29.03033294
27.94880486	31.50609702	30.267054	24.08791198
23.96117554	31.70822486	31.33988838	26.99343032
19.26017456	20.96857226	22.96351282	
409	265	0	
112.4658508			
24.88429414	23.86322706	24.40131724	23.95190508
22.69894904	24.37530212	24.39242288	24.7513981
23.15618592	22.77808152	25.97793732	24.04668348
25.1021969	21.79917872	24.2587055	23.52177584
22.74705086	24.2143673	23.62438622	21.05283624
20.57918664	24.04594078	24.72375946	21.10760954
18.73377798	19.5138748	21.00809098	
$409 \quad 265$	45		
109.804715			
24.10503808	25.07635842	24.41656036	23.32913706
24.43660392	24.4563286	24.6548073	22.89769706
23.58973198	26.3138546	23.8388481	22.91086046
24.27376138	24.76650392	23.57692644	22.27217254
25.59636114	23.14626388	21.51476516	22.94084472
23.4987427	22.99370384	22.18857652	20.10545082
18.7401596	19.53059462	21.00464324	
-1	-1		
1			
1			

Appendix B: $\boldsymbol{\theta}$ vs. y for First Heights

First Height Parabolic Fit for Raschig Rings

In the 4inch Column

First Height Parabolic Fit for 4-hole cylinders

In the 4inch Column

First Height Parabolic Fit for Monoliths

In the 4inch Column

First Height Parabolic Fit for Raschig Rings

 In the 2inch Column

First Height Parabolic Fit for 4-hole cylinders

 In the 2inch Column

First Height Parabolic Fit for Monoliths

In the 2inch Column

Appendix C: $\boldsymbol{\theta}$ vs. y by Reynolds Number

Appendix D: $\mathbf{k}_{\mathrm{r}} / \mathbf{k}_{\mathrm{f}}$ and Nu_{w} Height by Height Analysis

4 inch column Raschig Ring Re 258

4 inch column JM 4-hole cylinders Re 584

4 inch column Monoliths Re 95

2 inch column Raschig Ring Re 350

2 inch column JM 4-hole cylinders Re 775

2 inch column Monoliths Re 760

Appendix E: $\mathbf{k}_{\mathrm{r}} / \mathbf{k}_{\mathrm{f}}, \mathrm{Nu}_{\mathrm{w}}, \mathrm{Bi}$, and Pe_{r} for all Packings and Columns

4 inch column Spheres

Bi vs Re

4 inch column Spheres (Van Dongeren)

Bi vs Re

4 inch column Spheres (Pollica)

4 inch column Raschig Rings

Bi vs Re

4 inch column JM 4-hole cylinders

Bi vs Re

4 inch column Monoliths

2 inch column Raschig Rings

Bi vs Re

2 inch column 4-hole cylinders

2 inch column Monoliths

Appendix F: F-test values

Column	Packing	Re	F/F95
4 Inch Column	Spheres	75	0.384578
		145	1.008367
		195	0.671051
		260	0.53057
		335	0.307174
		425	0.210865
	$\begin{aligned} & \hline \text { Raschig } \\ & \text { Rings } \end{aligned}$	85	0.42928
		142	0.338531
		190	0.377891
		258	0.331282
		341	0.386067
		432	0.424467
	4-hole Cylinders	102	0.806354
		198	0.641854
		268	0.481158
		358	0.558235
		460	0.727119
		584	0.493383
	Monoliths	43	4.647282
		71	1.305055
		95	0.983003
		129	0.629038
		171	0.886185
		216	1.336643
2 Inch Column	Raschig Rings	350	3.912612
		490	2.507197
		676	3.358442
		909	5.43473
		1209	4.867726
		1570	3.886017
	4-hole Cylinders	409	0.82748
		775	2.000006
		1052	0.668281
		1412	1.207582
		1822	1.15873
		2275	1.615775
	Monoliths	170	2.37015
		323	3.674283
		439	10.36014
		589	2.966539
		760	0.986552
		948	1.847035

